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ABSTRACT: Wave load on offshore wind turbines is one of the most important hydrodynamic design factors.
Many offshore wind farms are located near the coast, where wave transformation due to bathymetry variations
and irregular coastlines lead to a complex hydrodynamic environment. The wave height statistical information
does not linearly correlate to the wave loads on wind turbines. Fast calculations to transfer the sea state infor-
mation to wave loads information are needed for the optimisation of site choice and wind farm configurations.
In this article, the authors propose to use the efficient and flexible fully nonlinear potential flow (FNPF) model
REEF3D::FNPF to provide large-scale wave environment information. An arbitrary Eulerian-Lagrangian (ALE)
method is used to calculate the wave loads on the offshore wind turbines using the non-linear hydrodynamic
information from REEF3D::FNPF. The hydrodynamic simulations and force calculations are integrated and
performed at run time. The force spectra at all wind turbines in an entire wind farm in an irregular sea can be
obtained directly from the simulations. The method provides a holistic overview of the wave forces for an entire
wind farm in a computationally- and time-efficient manner. The procedure is a powerful and cost-beneficial tool
for the offshore wind industry to optimise the preliminary design of the wind farm installations.

1 INTRODUCTION

Facing the increasing world energy demand, more
wind turbines are being constructed in the coastal wa-
ters. The support structures of the wind turbines are
exposed to complex hydrodynamic loads, especially
the wave loads. The evaluation of the wave forces on
the wind turbine structures is critical for safe and eco-
nomically beneficial designs. In order for the realistic
evaluation of the wave loads, two steps are required:
1) accurate simulation of the wave field, including
wave transformations and non-linear interactions; and
2) accurate calculation of wave forces on structures
based on nonlinear hydrodynamics. For a large-scale
wind farm, such an evaluation needs computationally
efficient models for both the wave field investigation
and the wave loads calculation.

Many wave models have been developed for the
sea states simulations. The phase-averaged spectra

wave models are able to simulate offshore waves
efficiently but often not able to resolve the non-
linear coastal wave transformations such as diffrac-
tion sufficiently (Thomas and Dwarakish 2015). For
the representation of the coastal wave transforma-
tions, phase-resolving models are needed. The most
commonly used phase-resolving models for large-
scale coastal waves are based on the shallow water
assumption with the depth-averaged approach, such
as the Boussinesq-type models (Madsen et al. 1991,
Madsen and Sørensen 1992, Nwogu 1993, Madsen
and Schäffer 1998, Gobbi et al. 2000, Madsen et al.
2002), non-hydrostatic multi-layer models (Lynett
and Liu 2004, Stelling and Duinmeijer 2003, Zijlema
and Stelling 2005, Zijlema and Stelling 2008, Zijlema
et al. 2011) and quadratic non-hydrostatic pressure
models (Jeschke et al. 2017, Wang et al. 2020). How-
ever, the accuracy or computational efficiency of these



models deteriorate in deeper water conditions. In con-
trast, potential flow based models are less restricted
by the water depth conditions. Some noticeable mod-
els are boundary element models (BEM) (Grilli et al.
1994, Grilli et al. 2001), high-order spectrum (HOS)
models (Ducrozet et al. 2012, Bonnefoy et al. 2006a,
Bonnefoy et al. 2006b, Raoult et al. 2016, Yates and
Benoit 2015) and finite difference method (FDM)
based fully nonlinear potential flow models (FNPF)
(Li and Fleming 1997, Bingham and Zhang 2007,
Engsig-Karup et al. 2009, Bihs et al. 2020). To fur-
ther increase the stability and flexibility of the poten-
tial flow based models near irregular coastal geometry
and drastic bathymetry variations, the fully nonlinear
potential flow (FNPF) model REEF3D::FNPF intro-
duced various breaking wave algorithms and a novel
coastline algorithm and achieved good accuracy and
flexibility for both validations and engineering appli-
cations (Wang et al. 2022).

For the force calculations, CFD simulations of-
fer the most insights in the fluid-structure inter-
actions but are also very computationally demand-
ing. For the preliminary design of a wind farm, the
CFD computational demand is economically expen-
sive and time consuming. Instead, the Morison equa-
tion is often used for monopile wind turbine substruc-
tures. However, the current practice often uses lin-
ear wave theories to approximate the hydrodynam-
ics and thus the resulting estimations are often not
sufficient in complex seas. In order to include the
high-order wave kinematics such as velocity fields
and accelerations near the free surface, an Arbi-
trary Lagrangian–Eulerian (ALE) framework (Donea
et al. 2004) is introduced by Pákozdi et al. (2022)
in combined used with the numerical wave model
REEF3D::FNPF. Here, the nonlinear wave kinemat-
ics are used in the Morison equation for the most re-
alistic representation of the hydrodynamic loads. As
REEF3D::FNPF uses the bottom and free surface-
following σ-grid in the vertical direction, the mesh
moves with the oscillating free surface, the ALE
framework can be straightforwardly included. In this
way, the force calculations on multiple cylinders are
made run-time as the large-scale wave simulations are
performed. The hydrodynamic loads on all wind tur-
bines in a wind farm can be estimated simultaneously
in an efficient manner.

The hydrodynamic loads are closely associated
with the local fluid particle accelerations, and the
wave force distribution does not necessarily corre-
spond to the significant wave height distribution, es-
pecially with the presence of irregular bathymetry and
coastlines. The fast large-scale force calculation is re-
quired to give a more realistic understanding of the
force distribution on a wind farm. In this article, the
FNPF-ALE approach is integrated in the numerical
model REEF3D::FNPF and a new procedure for a
highly efficient wind-farm-scale wave force estima-
tion method is proposed. A study site at the coast of

Norway is used to demonstrate the methodology and
the important findings are summarised in the conclu-
sions.

2 NUMERICAL MODEL

2.1 REEF3D::FNPF

The potential flow model assumes inviscid and in-
compressible fluid and irrotational flow. As a result,
the fluid particle velocities can be calculated from the
velocity potential φ. The governing equation to solve
for φ is the Laplace equation:
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+
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= 0 (1)

In order to solve the Laplace equation, boundary
conditions are required. As the fluid particles cannot
penetrate the solid boundary, the kinematic bottom
condition is written as follows:
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At the free surface, two boundary conditions are
required: the kinematic free surface boundary condi-
tion:
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where φ̃ is the vertical velocity at the free surface;
and the dynamic free surface boundary condition:

∂φ̃

∂t
=− 1

2

(∂φ̃
∂x

)2

+

(
∂φ̃

∂y

)2


+
1

2
w̃2

(
1 +

(
∂η

∂x

)2

+

(
∂η

∂y

)2
)
− gη,

(4)

where x = (x, y) represents the horizontal location
and w̃ is the vertical velocity at the free surface.

The Laplace equation is solved using a finite dif-
ference scheme on a σ-grid, which can be transferred
from a Cartesian grid as the following:

σ =
z + h (x)

η(x, t) + h(x)
(5)



The solution is achieved with the conjugated gra-
dient BiCGStab solver (van der Vorst 1992) precon-
ditioned with the geometric multigrid solver PFMG
(Ashby and Flagout 1996) provided by hypre.

Through the σ-grid transformation, the particle ve-
locities can be calculated once the velocity potential
φ is obtained:
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The fifth-order WENO (weighted essentially
non-oscillatory) scheme (Jiang and Shu 1996) is used
for the spatial derivatives in the free surface boundary
conditions and the third-order accurate TVD Runge-
Kutta scheme (Shu and Osher 1988) is used for the
temporal discretisation. The parallel computation is
achieved with the domain decomposition strategy,
where MPI (Message Passing Interface) is used for
sub-domain communications.

2.2 Wave generation

In this work, a relaxation method is used for the wave
generation (Mayer et al. 1998):

Γ(x̃) = 1− e(x̃
3.5) − 1

e− 1
for x̃ ∈ [0; 1], (9)

where x̃ is scaled to the dimension of the relaxation
zone and the velocity potential φ and the surface ele-
vation η are ramped up gradually following the relax-
ation function:

ϕ(x̃)relaxed = Γ(x̃)ϕanaly. + (1− Γ(x̃))ϕcompu., (10)

In the numerical beach, φ and η are reduced to still
water values following the reversed procedure to min-
imise the undesired reflection at the outlet boundary.

2.3 Breaking wave algorithm

In order to detect breaking waves and dissipate wave
energy due to breaking, several breaking criteria are
introduced. A steepness-based wave breaking crite-
rion is used for deep water:

∂η

∂xi
≥ β. (11)

where β is the threshold of wave slope at the wave
front.

At shallow water, the depth-induced wave break-
ing is initialised when the vertical velocity of the free-
surface exceeds a fraction of the shallow water celer-
ity (Smit et al. 2013):

∂η
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√
gh. (12)

αs = 0.6 is recommended as it works well with
most of the waves (Smit et al. 2013).

After a wave breaking is detected, viscous damp-
ing terms are introduced in the free surface boundary
conditions as artificial diffusion and thus reduce wave
energy. The free surface boundary conditions Eqn. 3
and Eqn. 4 are modified with the added artificial vis-
cosity:
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where νb is the artificial turbulence viscosity. νb =
1.86 is used based on the calibrations against CFD
models (Baquet et al. 2017).

2.4 Coastline algorithm

The detection and treatment of the coastline bound-
aries are challenging in a potential flow model. In
REEF3D::FNPF, it is implemented in a three-step
manner. First, the computational cells are identified
as wet and dry cells based on a local water depth cri-
terion. When the local total water depth defined in
Eqn. (15) is smaller than a user-defined threshold, the
cell is considered as a dry cell on land.

h
′
= η + h. (15)



η is the surface elevation, h is the still water level
measured from the bottom.

Thereafter, the wet cells are assigned with a value
+1 and the dry cells are assigned with a value −1.
As all computational cells are signed, the coastline is
captured using a level-set function (Osher and Sethian
1988):

φls(~x, t)


> 0 if ~x ∈ wet cell,
= 0 if ~x ∈ Γ,

< 0 if ~x ∈ dry cell.
(16)

Where Γ indicates the coastline. The Eikonal equa-
tion |∇φls| = 1 holds true at all times.

Finally, relaxation zones are applied following the
geometry of the coastline. As a result, the coast-
line position is fixed, the coastal reflection property
can be customised and the numerical stability is im-
proved since the derivative over an infinitesimal water
depth is avoided. The coastline algorithm gives realis-
tic representing of complex coastal wave transforma-
tion phenomena as presented in Wang et al. (2022)

2.5 Arbitary Eulerian Lagrangian force calculation

Instead of costly CFD force simulations or implied
Morison calculations, Pákozdi et al. (2022) intro-
duced a fast force calculation approach based on the
Arbitary Eulerian Lagrangian (ALE) methods pre-
sented by Donea et al. (2004). Here, the material co-
ordinate of a water particle ~X is linked to a fixed Eu-
lerian coordinate ~x by the law of motion:

~x = x( ~X, t) at t = t (17)

The material velocity ~v is calculated based on the
local derivative of x:
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∂x
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where |~x denotes the material coordinate ~X that is
fixed at ~x. The motion of the fluid particle is described
in a moving frame in the Lagrangian system and a in a
time-dependent framework in the Eulerian system. In
the ALE coordinate ~χ, the coordinate system moves
with a mesh velocity ~̂v equal to the fluid particle ve-
locity ~v. This mesh velocity in the Eulerian system is
described as the follows:
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The fluid particle velocity in the ALE coordinate ~χ
can also be expressed as the following:
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This velocity ~w is the time variation of the ALE
coordinate ~χ. The difference between the material and
the mesh velocity is then described as a convective
velocity ~c:

~c = ~v− ~̂v =
∂~x

∂~χ
· ~w (21)

where ~c is variation of ~x but ~w is variation of ~χ.
As a result, the fluid particle acceleration~a= d~v/dt

in an ALE system is expressed as:
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where the convective derivative∇~v = ∂~v
∂~x

is usually
calculated in the Eulerian system (~x). In the poten-
tial flow solver REEF3D::FNPF, the velocity potential
is calculated on a σ-grid, which can be treated as an
ALE system. Following the description in Eqn. (22),
the one-dimensional acceleration in the x-direction
can be expressed as:
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where all terms are known in the ~σ system and ~σ
defines the relation ship between the Eulerian and the
ALE coordinates:

~σ =

[
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With the knowledge of the fluid particle accelera-
tion, the Morison force in the x-direction can then be
expressed as:

Fx = ρ(h+ η)[∫ 1

0

CMaxAxydσ +
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1

2
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]
,
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where CM is the inertia coefficient, Axy is the
cross-section area, CD is drag coefficient, Bp is the
section breath, h is the still water depth and η is the
free surface elevation.

Similarly, the force in the y-direction and the mo-
ments can be defined. In this way, forces and moments
can be directly calculated from the numerical results
in the σ-grid, removing the necessity for further inter-
polation to a fixed Eulerian frame.



3 NUMERICAL RESULTS

The study case is near Flatøya at the coast of Nor-
way, where a hypothetical wind farm can be con-
structed, as shown in Fig. 1a. The hypothetical wind
farm consists of 24 wind turbines with monopile sub-
structures. The diameter of each monopoly is 6 m, the
estimated drag coefficient is 0.9 and the inertia co-
efficient is 1.5. Here, the red box indicates the study
area, where the waves propagate from the north-west
direction and diffract around the island of Flatøya.
The potential structures are located in the yellow box.
By extracting the bathymetry data and align the input
wave direction with the input boundary of the numeri-
cal wave tank (NWT), the resulting bathymetry in the
REEF3D::NFPF NWT is shown in Fig. 1b. The red
box to the left hand side is the wave generation zone.
The yellow boxes along the other three boundaries are
the numerical beaches. The square-shaped computa-
tional domain is 4000 m in both x and y-direction.
The water depth varies drastically with the deepest
point reaching 244 meters. The wave gauges and wind
turbine monopiles are shown as yellow dots. Since the
ALE approach does not require the physical existence
of the structure, the locations of the wave gauges and
the monopiles collocate. The wave gauge numbering
sequence is indicated by the selected wave gauges.

The input irregular wave has a significant wave
height Hs = 4.0 m and peak period Tp =10.0 s. The
JONSWAP spectrum following the formulation rec-
ommended by DNV-GL (DNV 2011) is used as the
input design spectrum. Following the grid conver-
gence reccomendations by Wang et al. (2022), the
horizontal cell size is 5 m, 10 vertical σ cells are used
with a strechign factor of 2.5, resulting in 6.4 mil-
lion cells in total. The simulation is performed for
3.5 hours where the last 3h time series are used for
the following analyses. The free surface elevation at
the last time step is shown in Fig. 2. Strong diffrac-
tion takes place around Flatøya, creating a cross-sea
pattern at the centre of the wind farm. This leads to
a complex sea state and makes it challenging to cal-
culate the wave forces based on linear wave theory
hydrodynamics.

The significant wave heights at all wave gauges
are plotted in Fig. 3a. The maximum total ALE wave
forces, defined as Ftotal =

√
F 2
x + F 2

y , are plotted in
Fig. 3b. It’s seen that higher waves are observed at the
northern and southern boundaries of the wind farm,
smaller waves are present in the center of the farm.
However, the maximum total wave forces show a dif-
ferent pattern, as seen in Fig. 3b. Here, large wave
forces are observed in the center of the domain. This
misalignment shows that significant wave height does
not linearly corresponds to the wave force. Therefore,
the calculation of the wave forces are critical in addi-
tion to the investigation of the sea state.

Fla
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Figure 1: (a) the map of the surrounding area near
Flatøya, the red box shows the domain of interest, the
yellow box shows the hypothetical wind farm loca-
tion, (b) the numerical wave tank in REEF3D::FNPF
with the bathymetry included. The red box shows the
wave generation zone, the yellow boxes show the nu-
merical beaches and the yellow dots indicates the lo-
cations of the wave gauges as well as the wind tur-
bines.

Figure 2: Free surface elevation at the last time step
t = 12800 s in the simulation of wave propagation
near Flatøya.
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Figure 3: Flatøya.

In order to reveal more details and understand
the misalignment between the distribution of Hs and
Ftotal max, monopile number 8 and monopile number
12 are selected for the comparison. In Fig. 4, the time
series of wave forces Fx and Fy in x and y directions,
the wave spectrum and the wave force spectrum in
the x and y directions at wave gauge 8 are plotted. It
is seen that the wave force in the x-direction is signif-
icantly larger than the y-direction. The Fx spectrum
also has a peak frequency the same as the wave peak
frequency and the spectrum shape is similar to the
wave spectrum. On the contrary, the Fy spectrum has
a significant secondary peak in the lower frequency
range. It shows that Fx is the dominant force and the
force distribution over frequency is different in the x
and y directions.
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Figure 4: The time series of wave forces in x and y di-
rections, the wave spectrum and the wave force spec-
tra in the x and y directions at wave gauge 8.

Similarly, the wave field and force information are
shown for wave gauge 12 in the centre of the wind
farm, as seen in Fig. 5. Here, Fx and Fy have a sim-
ilar amplitude most of the time according to the time
series. As a result, the combined total force tends to



be larger than that at wave gauge 8. Both the wave
spectrum and the wave force spectra in the x and y
directions have two noticeable peaks, though the two
peaks are more predominant for the force spectra.
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Figure 5: The time series of wave forces in x and y di-
rections, the wave spectrum and the wave force spec-
tra in the x and y directions at wave gauge 12.

The different distributions of force components and
force spectra are possible reasons that lead to the to-
tal force differences in at wave gauge 8 and 12. Since
wave forces are closely related to local accelerations,
the wave height statistics alone is not a sufficient indi-
cator for the wave forces, especially for such a com-
plex nonlinear wave field with multiple simultaneous
wave transformations.

4 CONCLUSIONS

The article uses a fully-nonlinear potential flow
(FNPF) model with an Arbitary Eulerian Lagrangian
(ALE) force calculation method to evaluate the sea
state and predict the forces for a hypothetic wind
farm. The FNPF model captures the detailed nonlin-
ear wave transformations near the Flatøya island, es-
pecially the predominant diffraction. The force cal-
culations are performed in run-time with the wave
simulations. The method does not require the phys-
ical presence of the structures, but uses the nonlinear
hydrodynamics in the σ-grid of the FNPF model to
calculate the wave forces based on the Morison ap-
proach. In this way, the wind farm size force evalu-
ation is achieved for the preliminary design of off-
shore wind installations. The distributions of the sig-
nificant wave height and the maximum wave forces
do not align, stressing the necessity of a fast force es-
timation in addition to the sea state simulations. The
wave force components in the x and y directions and
their frequency spectrum both have an influence on
the maximum forces. The FNPF-ALE method proves
to be an effective way for a large-scale farm-size force
calculations with monopoly foundations. Fast force
calculations on arbitrary geometry are also planned
for the future advancements.
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Madsen, P. A. & H. A. Schäffer (1998). Higher-order
boussinesq-type equations for surface gravity waves: deriva-
tion and analysis. Philosophical Transactions of the Royal
Society of London. Series A: Mathematical, Physical and En-
gineering Sciences 356(1749), 3123–3181.

Madsen, P. A. & O. R. Sørensen (1992). A new form of the
Boussinesq equations with improved linear dispersion char-
acteristics. Part 2. A slowly-varying bathymetry. Coastal En-
gineering 18(3), 183 – 204.

Mayer, S., A. Garapon, & L. S. Sørensen (1998). A fractional
step method for unsteady free surface flow with applications
to non-linear wave dynamics. International Journal for Nu-
merical Methods in Fluids 28, 293–315.

Nwogu, O. (1993). Alternative form of Boussinesq equations
for nearshore wave propagation. Journal of Waterways, Port,
Coastal, and Ocean Engineering 119(6), 618–638.

Osher, S. & J. A. Sethian (1988). Fronts propagating with
curvature-dependent speed: Algorithms based on Hamilton-
Jacobi formulations. Journal of Computational Physics 79,
12–49.

Pákozdi, C., A. Kamath, W. Wang, & H. Bihs (2022). Appli-
cation of arbitrary lagrangian–eulerian strips with fully non-
linear wave kinematics for force estimation. Marine Struc-

tures 83, 103190.
Raoult, C., M. Benoit, & M. L. Yates (2016). Validation of a

fully nonlinear and dispersive wave model with laboratory
non-breaking experiments. Coastal Engineering 114, 194 –
207.

Shu, C. W. & S. Osher (1988). Efficient implementation of es-
sentially non-oscillatory shock capturing schemes. Journal
of Computational Physics 77, 439–471.

Smit, P., M. Zijlema, & G. Stelling (2013). Depth-induced
wave breaking in a non-hydrostatic, near-shore wave model.
Coastal Engineering 76, 1–16.

Stelling, G. S. & S. P. A. Duinmeijer (2003). A staggered conser-
vative scheme for every froude number in rapidly varied shal-
low water flows. International Journal for Numerical Meth-
ods in Fluids 43(12), 1329–1354.

Thomas, T. J. & G. Dwarakish (2015). Numerical wave mod-
elling – a review. Aquatic Procedia 4, 443 – 448.

van der Vorst, H. (1992). BiCGStab: A fast and smoothly con-
verging variant of Bi-CG for the solution of nonsymmetric
linear systems. SIAM Journal of Scientific Computing 13,
631–644.

Wang, W., T. Martin, A. Kamath, & H. Bihs (2020). An im-
proved depth-averaged nonhydrostatic shallow water model
with quadratic pressure approximation. International Jour-
nal for Numerical Methods in Fluids 92(8), 803–824.

Wang, W., C. Pákozdi, A. Kamath, S. Fouques, & H. Bihs
(2022). A flexible fully nonlinear potential flow model for
wave propagation over the complex topography of the nor-
wegian coast. Applied Ocean Research 122, 103103.

Yates, M. L. & M. Benoit (2015). Accuracy and efficiency of two
numerical methods of solving the potential flow problem for
highly nonlinear and dispersive water waves. International
Journal for Numerical Methods in Fluids 77(10), 616–640.

Zijlema, M. & G. Stelling (2008). Efficient computation of surf
zone waves using the nonlinear shallow water equations with
non-hydrostatic pressure. Coastal Engineering 55(10), 780 –
790.

Zijlema, M., G. Stelling, & P. Smit (2011). SWASH: An oper-
ational public domain code for simulating wave fields and
rapidly varied flows in coastal waters. Coastal Engineer-
ing 58(10), 992 – 1012.

Zijlema, M. & G. S. Stelling (2005). Further experiences with
computing non-hydrostatic free-surface flows involving wa-
ter waves. International Journal for Numerical Methods in
Fluids 48(2), 169–197.


