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UNCERTAINTY PRINCIPLE VIA VARIATIONAL

CALCULUS ON MODULATION SPACES

NUNO C. DIAS, FRANZ LUEF AND JOÃO N. PRATA

Abstract. We approach uncertainty principles of Cowling-Price-Heis-
enberg-type as a variational principle on modulation spaces. In our
discussion we are naturally led to compact localization operators with
symbols in modulation spaces. The optimal constant in these uncer-
tainty principles is the smallest eigenvalue of the inverse of a compact
localization operator. The Euler-Lagrange equations for the associated
functional provide equations for the eigenfunctions of the smallest eigen-
value of these compact localization operators. As a by-product of our
proofs we derive a generalization to mixed-norm spaces of an inequality
for Wigner and Ambiguity functions due do Lieb.

1. Introduction

A cornerstone of Fourier analysis is the uncertainty principle about the
time and frequency localization of a function. Loosely speaking it states

that a function f(x) and its Fourier transform f̂(ω) cannot both be sharply
localized. One of the first quantitative versions of the uncertainty principle
to be put forward was the Heisenberg-Pauli-Weyl inequality:
(1.1)(∫

R

(x− x0)
2|f(x)|2dx

)1/2(∫

R

(ω − ω0)
2|f̂(ω)|2dω

)1/2

≥
‖f‖2L2(R)

4π
,

for any x0, ω0 ∈ R. In what follows, we will set x0 = ω0 = 0, as this can
be easily achieved by a phase-space translation, which does not alter the
results.

This inequality can be shown to be equivalent to [FoSi]:

(1.2) ‖xf‖2L2(R) + ‖ωf̂‖2L2(R) ≥
‖f‖2L2(R)

2π
.

The constant is sharp and we obtain an equality if and only if f is a gener-
alized Gaussian [Gr01].

Cowling and Price [CoPr] have generalized (1.2) by considering other
norms and other weights. Here we wish to consider the following result
[CoPr, FoSi].

Theorem 1 (Cowling-Price). Suppose p, q ∈ [1,∞] and a, b > 0. There is
a constant K > 0 such that:

(1.3) ‖ |x|af‖Lp(R) + ‖ |ω|bf̂‖Lq(R) ≥ K‖f‖L2(R),
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for all tempered distributions f and f̂ , which are represented by locally in-
tegrable functions, if and only if:

(1.4) a >
1

2
−

1

p
and b >

1

2
−

1

q
.

In the present work we intend to extend the Cowling-Price uncertainty
principle in the following sense. We shall prove, in arbitrary dimension
d ≥ 1, that inequalities of the form

(1.5) ‖ |x|af‖Lp(Rd) + ‖ |ω|bf̂‖Lq(Rd) ≥ K‖f‖Mr,s
α,β(R

d) ,

hold for all f ∈M r,s
α,β(R

d) and where the left-hand side may be infinite. Here

M r,s
α,β(R

d) is a certain modulation space to be specified below. Moreover, we

shall prove that there exist functions f0 for which we obtain an equality and
which are the solutions of certain nonlinear functional equations. This latter
result is missing in Cowling and Price’s original work.

In addition, we shall also prove that, for certain weight functions ψ, φ, we
have an inequality of the form:

(1.6) ‖ψf‖2L2(Rd) + ‖φf̂‖2L2(Rd) ≥ K‖f‖M2
m0

(Rd) ,

where M2
m0

(Rd) is another modulation space.
Inequalities (1.5,1.6) can be regarded as generalizations of the Heisenberg-

Pauli-Weyl inequality (1.2). Moreover, we shall show that we obtain an
equality in (1.6) for functions f0 which are eigenfunctions of a certain positive
compact localization operator and that the optimal constant is related with
its eigenvalues.

One ingredient of our treatment is the work of Galperin and Gröchenig
[Ga, GG, Gr96], where Heisenberg-type inequalities are interpreted as em-
beddings of weighted Lebesgue spaces Lpa(Rd) and weighted Fourier images
FLqb(R

d) of weighted Lqb(R
d) spaces into modulation spaces M r,s

α,β(R
d).

We denote by Lpa(Rd) the space of distributions f in the Lebesgue space

Lp(Rd) with finite ‖.‖Lpa(Rd), where ‖f‖Lpa(Rd) =
( ∫

Rd
|f(x)|p(1+|x|)apdx

)1/p
.

The space FLqb(R
d) consists of all tempered distributions f ∈ S ′(Rd) such

that f̂ is in Lqb(R
d) with finite norm ‖f‖FLqb(Rd)

= ‖f̂‖Lqb(Rd)
.

Modulation spaces were introduced by Feichtinger in 1983 [Fe81, Fe06,
Fe83B]. Here we restrict the discussion to the following classes of modulation
spaces: M r,s

α,β(R
d) and M2

m(R
d), to be defined below. Loosely speaking,

modulation spaces allow one to encode the decay and integrability properties
of a function on the phase-space.

There are various ways to measure the phase-space content of a function,
e.g. Wigner transform, Rihazcek transform [Co]. We use the matrix coeffi-
cients of the Schrödinger representation π of of the Heisenberg group H(d),
π(x, ω)g(t) = e2πit·ωg(t− x):

(1.7) Vgf(x, ω) = (f, π(x, ω)g)L2 =

∫

Rd

f(t)g(t− x)e−2πit·ωdt,

for f, g in L2(Rd). In signal analysis Vgf is known as the short-time-Fourier

transform. If g ∈ S(Rd), then the short-time Fourier transform extends to
tempered distributions f ∈ S ′(Rd).
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For α, β ∈ R and r, s ∈ [1, 2] we define the modulation space M r,s
α,β(R

d) as
the space of all functions such that
(1.8)

‖f‖Mr,s
α,β(R

d) =
( ∫

Rd

( ∫

Rd

|Vgf(x, ω)|
r(1 + |x|)αrdx

)s/r
(1 + |ω|)βsdω

)1/s

is finite with respect to a fixed non-zero g in S(Rd). Note that different
choices of the non-zero window g ∈ S(Rd) lead to equivalent norms for
M r,s
α,β(R

d). If we want to emphasize the choice of window g, we may some-

times write ‖ · ‖g,Mr,s
α,β(R

d).

We shall also consider the modulation spaces with norm

(1.9) ‖f‖M2
m(Rd) =

( ∫

Rd

∫

Rd

|m(x, ω)Vgf(x, ω)|
2dxdω

)1/2
,

where m(x, ω) is an appropriate time-frequency weight (see e.g.[AF]).
We need the following particular case of the results in [Ga, GG]:

Theorem 2 (Galperin-Gröchenig). Let α, β ≥ 0, 0 < r, s ≤ 2 and 1 ≤
p, q ≤ ∞. Suppose that r ≤ p and s ≤ q. If
(1.10) (

a−α
d + 1

p −
1
r

)(
b−β
d + 1

q −
1
s

)
>

max
{(

1
r −

1
q′ +

α
d

)
,
(
1
r −

1
2 +

α
d

)}
×max

{(
1
s −

1
p′ +

β
d

)
,
(
1
s −

1
2 + β

d

)}

with all factors positive, then Lpa(Rd) ∩ FLqb(R
d) is compactly embedded in

M r,s
α,β(R

d). Thus, there exists C > 0 such that:

(1.11) ‖f‖Lpa(Rd) + ‖f̂‖Lqb(Rd)
≥ C‖f‖Mr,s

α,β(R
d).

As usual p′, q′, · · · denote the Hölder duals of p, q, · · · ∈ [1,∞]: 1
p +

1
p′ = 1,

etc. We also remark that the condition r′ ≤ p, p′ ≤ r is equivalent to∣∣∣1p − 1
2

∣∣∣ ≤
∣∣1
r −

1
2

∣∣.
We will resort to this theorem to prove (Theorem 11) that inequality (1.5)

holds if 1 < r, s ≤ 2; α, β ≥ 0; 0 < a, b ≤ r′, and r ≤ p ≤ r′; s ≤ q ≤ r′ and
(1.10) is valid.

That this extends the Cowling-Price uncertainty principle is now obvious.
If we set r = s = 2, α = β = 0, d = 1 in (1.10) , we obtain (1.4). Likewise

(1.3) follows from (1.5) and the fact that M2,2
0,0 (R) = L2(R) [Gr01].

We shall prove the second inequality (eq.(1.6)) in Theorem 12. For this,
we shall require another compact embedding theorem due to Boggiatto and
Toft [BoTo] (see also [PfTo]) for modulation spaces of the form Mp,q

m (Rd)
(to be defined below in eq.(2.6)):

Theorem 3 (Boggiatto-Toft). Assume that m1,m2 ∈ P(R2d), and that
p, q ∈ [1,∞]. Then the embedding

(1.12) i :Mp,q
m1

(Rd) →Mp,q
m2

(Rd)

is compact if and only if m2/m1 ∈ L∞
0 (R2d).
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Here P(R2d) is a class of weights which are polynomially moderate (see
Definition 1) and L∞

0 (R2d) is the set of all f ∈ L∞(R2d) such that

(1.13) lim
R→∞

(
ess sup|z|≥R|f(z)|

)
= 0.

Let us remark that the compactness of such embeddings between modulation
spaces also follows from Theorem 9.4 in [FeGr].

The strategy of the proofs consists of approaching this problem from the
point of view of variational calculus. We will minimize the functional

(1.14) f 7→ ‖ |x|af‖Lp(Rd) + ‖ |ω|bf̂‖Lq(Rd)

on the constraint set:

(1.15) Ω =
{
f ∈ Lpa(R

d) ∩ FLqb(R
d) : ‖f‖Mr,s

α,β(R
d) = 1

}
.

In a similar fashion, we will seek to minimize

(1.16) f 7→ ‖ψf‖2L2(Rd) + ‖φf̂‖2L2(Rd),

for f in an appropriate modulation spaceM2
m(R

d) and such that ‖f‖M2
m0

(Rd) =

1, whereM2
m0

(Rd) is another modulation space, such thatM2
m(R

d) ⊂M2
m0

(Rd)
(see Corollary 3).

These variational problems will naturally lead to Euler-Lagrange equa-
tions (Theorem 13 and Theorem 15, Theorem 17).

To prove the existence of minimizers, we start by showing that the func-
tionals (1.14,1.16) are weakly lower semicontinuous (Lemma 2 and Lemma
4). Then we prove that certain subsets of the constraint sets 1 are weakly
sequentially compact (Proposition 3 and Proposition 4). This means that
the functionals attain a minimum on these subsets. Finally, we show that
they are in fact minima on the entire constraint sets (Theorems 11 and 12).

An essential tool in this last step is a generalization of an inequality for
Wigner and radar ambiguity functions due to E. Lieb. In [L1] Lieb proved
that

(1.17) ‖A(f, g)‖Lr(R2) ≥ C‖f‖Lp(R) ‖g‖Lp′ (R),

where 1 ≤ r < 2; r ≤ p, p′ ≤ r′, C > 0 is a constant and A(f, g)(x, ω) is the
radar ambiguity function:

(1.18) A(f, g)(x, ω) = e−iπω·xVgf(−x, ω).

In Theorem 6 and Corollary 1 we shall prove an extension of this inequality
to arbitrary dimension d ≥ 1 and mixed-norm spaces:

(1.19) ‖A(f, g)‖Lr,sω,x(R2d) ≥ C‖f‖Lu(Rd) ‖g‖Lv(Rd)

for appropriate values of u, v, r, s and where

(1.20) ||F ||Lr,sω,x(R2d) =

(∫

Rd

(∫

Rd

|F (x, ω)|rdω

) s
r

dx

) 1
s

.

We also determine the sharp constants and the functions which saturate
(1.19).

1Each of these subsets is the intersection of a closed ball and the constraint set.
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Notation

We denote by S(Rd) the space of Schwartz test functions and by S ′(Rd)
its dual - the space of tempered distributions. The duality bracket is 〈f, g〉
for g in some functional space B and f in its dual B′. The inner product in a
Hilbert space H is (·, ·)H, which is linear in the first argument. The Fourier

transform of f ∈ L2(Rd) is given by

(1.21) f̂(ω) =

∫

Rd

f(x)e−2πix·ωdx

where

(1.22) x · ω = x1ω1 + · · · xdωd,

for all x = (x1, · · · , xd), ω = (ω1, · · · , ωd) ∈ R
d. We shall also use the

notation:

(1.23) 〈x〉 = 1 + |x|.

Notice that the notation 〈x〉 is more commonly used in the literature for

the Japanese bracket 〈x〉 =
(
1 + |x|2

)1/2
, which is equivalent to our weight

(1.23). We shall nevertheless use the weight (1.23) as it will make our
derivations simpler.

If there is a constant C > 0 such that A(f) ≤ CB(f) for all f in some
set, then we write A(f) . B(f). If A(f) . B(f) and B(f) . A(f), then we
write A(f) ≍ B(f). If a sequence (un)n in some normed space X converges
strongly to some u ∈ X, then we write un → u, and if it converges weakly,
then we write un ⇀ u.

We denote the compact embedding of a functional space A into B by
A ⊂⊂ B.

2. Modulation spaces

Definition 1. A weight in R
d is a positive and continuous function m ∈

L∞
loc(R

d). Given two weights m and v, m is said to be v-moderate, if

(2.1) m(x+ y) ≤ Cm(x)v(y), ∀x, y ∈ R
d,

for some C > 0. We denote by P(Rd) the set of all weights m which are
v-moderate for some polynomial weight v.

Definition 2. Given a window g ∈ S(Rd)\ {0}, we define the short-time
Fourier transform of f ∈ S(Rd) by

(2.2) Vgf(x, ω) = (f, π(x, ω)g)L2(Rd) =

∫

Rd

f(t)g(t− x)e−2πit·ωdt.

This extends to f ∈ S ′(Rd), if we use the duality bracket:

(2.3) Vgf(x, ω) = 〈f, π(x, ω)g〉.

To study the time-frequency content of a function or tempered distribution,
we shall consider the mixed norms:

(2.4) ||F ||Lr,sx,ω(R2d) =

(∫

Rd

(∫

Rd

|F (x, ω)|rdx

) s
r

dω

) 1
s

,
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and

(2.5) ||F ||Lr,sω,x(R2d) =

(∫

Rd

(∫

Rd

|F (x, ω)|rdω

) s
r

dx

) 1
s

,

for F ∈ S ′(R2d) and 1 ≤ r, s < ∞, with the obvious modification for r or
s = ∞.

Given a weight m ∈ P(R2d), the modulation space M r,s
m (Rd) is defined as

the set of all f ∈ S ′(Rd) such that
(2.6)

||f ||Mr,s
m (Rd) = ||mVgf ||Lr,sx,ω(R2d) =

(∫

Rd

(∫

Rd

|Vgf(x, ω)m(x, ω)|rdx

) s
r

dω

) 1
s

<∞.

We shall write M r
m, when r = s and M r,s, when m ≡ 1.

If instead of the order of integration (2.4), we use the alternative order
(2.5), we obtain the so-called Wiener amalgam spaces W (FLp, ℓq) (Rd),
which were introduced in [Fe83A]. The Fourier properties of these spaces
for separable weights are explained in [Fe90].

Among the modulation spaces we find for instance L2(Rd), or the Sobolev
spaces Hs(Rd), the Feichtinger algebra S0(R

d) = M1,1(Rd) [Fe81], but also
the spaces M r,s

α,β(R
d) mentioned in the Introduction. Indeed, for m(x, ω) =

〈x〉α〈ω〉β , then M r,s
m (Rd) = M r,s

α,β(R
d) as in (1.8). For the particular choice

of weights vs(x, ω) =
(
1 + |x|2 + |ω|2

)s/2
, and r = s = 2 we obtain the so-

called Shubin class spaces
(
Qs(R

d), ‖ · ‖Qs

)
. Notice that these spaces are

denoted by M2
vs in [Gr01]. Special versions of the form M2

m are also given
in [AF].

For future reference, we state the following Proposition (Proposition 11.3.1
in [Gr01]):

Proposition 1. Let g ∈ S(Rd)\ {0}.

(1) If m(x, ω) = m(x), then M2
m = L2

m.

(2) If m(x, ω) = m(ω), then M2
m = FL2

m.

3. Lieb’s uncertainty principle for Modulation spaces

The radar ambiguity function is given by:

(3.1) A(f, g)(x, ω) =

∫

Rd

f
(
t−

x

2

)
g
(
t+

x

2

)
e−2πiω·tdt.

Let us remark that the ambiguity function and its Fourier transform - the

Wigner transform - can be extended to
(
S′
0(R

d), ‖ · ‖S′
0

)
, since it is evaluated

by taking a tensor product, then an automorphism of phase space R
2d and

then a partial Fourier transform. All these are well defined operators for the
Feichtinger algebra

(
S0(R

d), ‖ · ‖S0

)
, and extend, by duality, to S′

0(R
d) in a

unique way (see [FeHo90, FeHo14, Ho]).
It is straightforward to obtain the following properties.

(3.2) A(f, g)(x, ω) = A(f̂ , ĝ)(−ω, x).
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From (3.1) it follows that

(3.3) A(f, g)(x, ω) = e−iπω·xVgf(−x, ω) .

Lieb proved (Theorem 1 in [L1]) the following theorem:

Theorem 4 (Lieb). Let r > 2. If f ∈ Lp(R) and g ∈ Lp
′
(R) for r′ ≤ p, p′ ≤

r, then:

(3.4) ||A(f, g)||Lr(R2) ≤ [H(r, p)]1/r ||f ||Lp(R)||g||Lp′ (R),

where H(r, p) > 0 is given by:

(3.5) [H(r, p)]2 =
pp′

r2
|r − 2|2−r|r − p|−1+r/p|r − p′|−1+r/p′ ,

with the convention 00 ≡ 1 when r = p or r = p′.

This inequality is sometimes called Lieb’s uncertainty principle, as it im-
plies a lower bound on the measure of the support of A(f, g) [Gr01].

Lieb also proved a reverse inequality (Theorem 2 in [L1]).

Theorem 5 (Lieb). Assume that, for a.e. fixed x ∈ R, the function t 7→

f
(
t− x

2

)
g
(
t+ x

2

)
is in L1(R) for almost every x ∈ R. Let 1 ≤ r < 2

and assume that 0 < ||A(f, g)||Lr(R2) < ∞. Then f, g ∈ Lu(R) for every

r ≤ u ≤ r′. Moreover, for any p with r ≤ p, p′ ≤ r′, we have that:

(3.6) ||A(f, g)||Lr(R2) ≥ [H(r, p)]1/r ||f ||Lp(R)||g||Lp′ (R).

Remark 1. The constant H(r, p) can be expressed as:

(3.7) H(r, p) = Crr′

(
C p
r′
C p′

r′

C r
r′

)r/r′
,

where, for 0 < p ≤ ∞, Cp is the Babenko-Beckner [Ba, Be] constant, which
reads:

(3.8) Cp =

√
p1/p

|p′|1/p′
,

for p 6= 1 and p 6= ∞, and

(3.9) C1 = C∞ = 1.

Remark 2. The constants in (3.4,3.6) are sharp. Lieb also proved that one
can obtain an equality in (3.4) for p, p′ > r′ and in (3.6) for 1 < r < 2 if and
only if f, g are certain matched Gaussians.

The purpose of this section is to generalize inequality (3.6) to arbitrary
dimension d > 1 and for the mixed norms || · ||Lr,sx,ω(R2d) and || · ||Lr,sω,x(R2d)

(cf.(2.4,2.5)).

Remark 3. A generalization of inequality (3.4) for modulation spaces was
derived in [CoNi].

We shall prove the following generalization of the reverse Lieb inequality:
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Theorem 6. Assume that t 7→ f̂
(
t+ ω

2

)
ĝ
(
t− ω

2

)
is in L1(Rd) for a.e.

ω ∈ R
d. Notice that under these circumstances the definition of A(f, g)

makes sense, in view of (3.2). Let 1 ≤ r, s ≤ 2 and assume that 0 <

||A(f, g)||Lr,sx,ω(R2d) < ∞. Then f̂ , ĝ ∈ Lu(Rd) for every 0 < u ≤ r′. More-

over, for every pair u, v such that 0 < u, v ≤ r′ and

(3.10)
1

u
+

1

v
=

1

s
+

1

r′
,

we have:

(3.11) ||A(f, g)||Lr,sx,ω(R2d) ≥ B(r, s, u, v)||f̂ ||Lu(Rd)||ĝ||Lv(Rd),

where

(3.12) B(r, s, u, v) = Cdr′

(
Cu/r′Cv/r′

Cs/r′

)d/r′
.

The constant in (3.11) is sharp and for 1 < r < 2, 0 < u, v < r′, we have

an equality if and only f̂ , ĝ are Gaussians of the form:

(3.13)
f̂(ω) = exp [−ω · (|m′|A+ iB)ω + c · ω + γ]

ĝ(ω) = exp [−ω · (|n′|A− iB)ω + c̃ · ω + γ̃]

where A is a real, symmetric, positive-definite d × d matrix, B is a real,
symmetric d× d matrix, c, c̃ ∈ C

d, γ, γ̃ ∈ C, and:

(3.14) m′ =
u(r − 1)

ur − u− r
, n′ =

v(r − 1)

vr − v − r
.

Here m′ and n′ are the Hölder duals of m = u
r′ and n = v

r′ , respectively.

From this theorem and its proof we obtain the following two corollaries:

Corollary 1. Assume that t 7→ f
(
t− x

2

)
g
(
t+ x

2

)
is in L1(Rd) for a.e.

x ∈ R
d. Let 1 ≤ r, s ≤ 2 and assume that 0 < ||A(f, g)||Lr,sω,x(R2d) <∞. Then

f, g ∈ Lu(Rd) for every 0 < u ≤ r′. Moreover, for every pair u, v such that
0 < u, v ≤ r′ and (3.10) holds, we have:

(3.15) ||A(f, g)||Lr,sω,x(R2d) ≥ B(r, s, u, v)||f ||Lu(Rd)||g||Lv(Rd),

where

(3.16) B(r, s, u, v) = Cdr′

(
Cu/r′Cv/r′

Cs/r′

)d/r′
.

The constant in (3.15) is sharp and for 1 < s < 2 and 0 < u, v < r′, we have
an equality if and only f, g are matched Gaussians of the form (3.13,3.14)

with f̂ , ĝ replaced by f, g, respectively and ω replaced by x.

The proof of this corollary follows exactly the same steps of the proof of
Theorem 6 (see section 3.2).

Corollary 2. Let 1 ≤ r, s ≤ 2; 1 < p, q < ∞ and g ∈ S(Rd)\ {0}. Assume

that f is such that 0 < ||f ||g,Mr,s(Rd) <∞ and ||f ||Lp(Rd) <∞, ||f̂ ||Lq(Rd) <
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∞. Then f, f̂ ∈ Lu(Rd) for every 0 < u ≤ r′. Moreover, for every 0 < v ≤
r′, such that (3.10) holds, we have:

(3.17) ||f̂ ||Lu(Rd) ≤
||f ||g,Mr,s(Rd)

B(r, s, u, v)||ĝ||Lv(Rd)

and

(3.18) ||f ||Lu(Rd) ≤
||f ||g,Mr,s(Rd)

B(r, s, u, v)||g||Lv (Rd)

where B(r, s, u, v) is given by (3.12).

Proof. By assumption, we have f̂ ∈ Lq(Rd) and ĝ ∈ Lq
′
(Rd). It follows by

Hölder’s inequality that the function t 7→ f̂
(
t+ ω

2

)
ĝ
(
t− ω

2

)
is in L1(Rd)

for a.e. ω ∈ R
d. Also, from (3.3) we have

(3.19)

∞ > ||f ||g,Mr,s(Rd) =

=
(∫

Rd

(∫
Rd

|Vgf(x, ω)|
rdx
)s/r

dω
)1/s

=

= ||Vgf ||Lr,sx,ω(R2d) = ||A(f, g)||Lr,sx,ω(R2d)

By Theorem 6 we obtain (3.17). Eq. (3.18) is an immediate consequence of
Corollary 1 and the fact that (cf.(3.2)):

(3.20) ||A(f, g)||Lr,sx,ω(R2d) = ||A(f̂ , ĝ)||Lr,sω,x(R2d).

�

To prove Theorem 6 we shall need to recapitulate some classical theorems
in harmonic analysis.

3.1. Some results in harmonic analysis. The first result is the Hausdorff-
Young inequality:

Theorem 7 (Hausdorff-Young). Let r ∈ [1, 2]. If f ∈ Lr(Rd), then f̂ ∈

Lr
′
(Rd), and:

(3.21) ‖f̂‖Lr′(Rd) ≤ Cdr ‖f‖Lr(Rd),

where Cr is the Babenko-Beckner constant (3.8,3.9). There is obviously a

converse result. Suppose that f̂ exists and f̂ ∈ Lr(Rd). Since
(
f̂
)̂
(x) =

f(−x) then f ∈ Lr
′
(Rd) and

(3.22) ‖f‖Lr′(Rd) ≤ Cdr ‖f̂‖Lr(Rd).

Equality is achieved in (3.21) and in (3.22) when 1 < r < 2 if and only if f
is a Gaussian of the form

(3.23) f(x) = γ exp (−x · Ax+ c · x) ,

with γ ∈ C, A is any real, symmetric, positive-definite d × d matrix and
c ∈ C

d. For r = 1 we can obtain an equality for many different functions.
For r = r′ = 2 an equality holds for all functions (Plancherel’s Theorem).
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The sharp constant in (3.21) is due to Beckner [Be] and under some
more restrictive conditions to Babenko [Ba]. The criterion for equality was
obtained by Lieb [L2].

The second inequality is due to Young. It applies to the convolution of
two functions:

(3.24) (f ⋆ g)(x) =

∫

Rd

f(x− y)g(y)dy.

Theorem 8 (Young). Let 1 ≤ m,n, r ≤ ∞ with 1
m + 1

n = 1 + 1
r . If

f ∈ Lm(Rd) and g ∈ Ln(Rd), then f ⋆ g ∈ Lr(Rd) and

(3.25) ||f ⋆ g||Lr(Rd) ≤

(
CmCn
Cr

)d
||f ||Lm(Rd)||g||Ln(Rd).

Here Cm, Cr, etc denote the Babenko-Beckner constant as defined in (3.8,3.9).
Equality in (3.25) holds for m,n > 1 if and only if

(3.26)
f(x) = γ exp [−m′(x− x) · A(x− x)− ik · x]

g(x) = γ̃ exp [−n′(x− x̃) · A(x− x̃) + ik · x]

where γ, γ̃ ∈ C, x, x̃, k ∈ R
d and A is any real, symmetric, positive-definite

d× d matrix.

The sharp constant in Young’s inequality was obtained independently by
Beckner [Be] and by Brascamp and Lieb [BrL].

The reverse inequality was first obtained by Leindler [Le]. Its sharp ver-
sion was derived by Brascamp and Lieb [BrL]. A simple proof can be found
in [Bar].

Theorem 9 (Leindler). Let f and g be non-negative, real-valued functions
on R

d that are not identically zero and assume that f ⋆ g ∈ Lr(Rd) for
0 < r ≤ 1. Let 0 < m,n ≤ 1 be such that 1

m + 1
n = 1+ 1

r . Then f ∈ Lm(Rd)

and f ∈ Ln(Rd), and we have:

(3.27) ||f ⋆ g||Lr(Rd) ≥

(
CmCn
Cr

)d
||f ||Lm(Rd)||g||Ln(Rd).

Equality holds in (3.27) when 0 < m,n < 1, if and only if

(3.28)
f(x) = γ exp [−|m′|(x− x) · A(x− x)]

g(x) = γ̃ exp [−|n′|(x− x̃) ·A(x− x̃)]

where γ, γ̃ ∈ R
+, x, x̃ ∈ R

d and A is any real, symmetric, positive-definite
d× d matrix.

Finally, we shall also use the following extension of Cauchy’s functional
equation to quadratics:

Theorem 10 (Lieb). Let ξ, η be complex-valued, Lebesgue measurable func-
tions on R

d that satisfy |ξ(t)| = |η(t)| = 1, for a.e. t ∈ R
d. Suppose there

exist functions µ : Rd → R
d and ν : Rd → R (which are not a priori mea-

surable) such that for a.e. ω ∈ R
d the following holds for a.e. t ∈ R

d:

(3.29) ξ
(
t+

ω

2

)
η
(
t−

ω

2

)
= exp [iµ(ω) · t+ iν(ω)] .
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Then there exist a real, symmetric d × d matrix A, ξ, η ∈ R
d and γ, δ ∈ R

such that:

(3.30)
ξ(t) = exp

(
it ·At+ iξ · t+ iγ

)

η(t) = exp (−it · At+ iη · t+ iδ)

Conversely, if ξ, η are of the form (3.30), then (3.29) holds.

The proof of this theorem is basically the same as that of Lemma 4 in
[L1] with the obvious adaptations to d > 1.

3.2. Proof of Theorem 6. We are now in a position to prove Theorem 6.
The proof follows essentially the same steps as in the proof of Theorem 2 of
[L1].

Since by assumption, for a.e. fixed ω ∈ R
d, the function t 7→ f̂

(
t+ ω

2

)
ĝ
(
t− ω

2

)

is in L1(Rd), then by (3.1,3.2) we conclude that A(f, g) is the Fourier trans-
form of this L1 function. We can thus use (3.22) in Theorem 7 (with p = 1)
to obtain:

(3.31)

∫

Rd

|A(f, g)(x, ω)|rdx ≥ Cdrr′

(∫

Rd

|f̂
(
t+

ω

2

)
ĝ
(
t−

ω

2

)
|r

′
dt

) r
r′

for a.e. x ∈ R
d. Notice that the left-hand side of (3.31) is finite for a.e.

x ∈ R
d, since by assumption A(f, g) ∈ Lr,sx,ω(R2d). The integral on the

right-hand side can be written as:

(3.32) J(ω) =

∫

Rd

|f̂
(
t+

ω

2

)
|r

′
|ĝ
(
t−

ω

2

)
|r

′
dt =

(
|(f̂)∨|r

′
⋆ |ĝ|r

′
)
(−ω),

where (f̂)∨(ξ) = f̂(−ξ).
It follows from (3.31,3.32):

(3.33)

||A(f, g)||Lr,sx,ω(R2d) ≥ Cdr′

(∫

Rd

|J(ω)|
s
r′ dω

) 1
s

= Cdr′‖ |(f̂)∨|r
′
⋆ |ĝ|r

′
‖

1
r′

Ls/r
′
(Rd)

From the Leindler inequality, we thus get:

(3.34)

||A(f, g)||Lr,sx,ω(R2d) ≥ Cdr′
(
CmCn
Cs/r′

) d
r′

‖ |f̂ |r
′
‖

1
r′

Lm(Rd)
‖ |ĝ|r

′
‖

1
r′

Ln(Rd)
=

= Cdr′
(
CmCn
Cs/r′

) d
r′

‖ f̂‖Lmr′ (Rd) ‖ ĝ‖Lnr′ (Rd)

where 0 < m,n ≤ 1 with

(3.35)
1

m
+

1

n
= 1 +

r′

s
.

We thus recover (3.11) with 0 < u = mr′ ≤ r′, 0 < v = nr′ ≤ r′ and
1
u + 1

v = 1
r′ +

1
s . Notice that if r = s, then u, v are conjugate to each other,

as in Lieb’s inequality (3.6).
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From Theorem 7, we have an equality in (3.31) for 1 < r < 2, if and only if
(cf.(3.23)):

(3.36) f̂
(
t+

ω

2

)
ĝ
(
t−

ω

2

)
= λ(ω) exp [−t · C(ω)t+ c(ω) · t]

for a.e. ω ∈ R
d, and where λ(ω) ∈ C, C(ω) is any real, symmetric, positive-

definite d× d matrix and c(ω) is any vector in C
d.

On the other hand, we have an equality in (3.34) for 0 < u, v < r′ (or
equivalently, for 0 < n,m < 1) if and only if

(3.37)

|f̂(ω)| = exp [−|m′|(ω − ζ) ·A(ω − ζ) + δ]

|ĝ(ω)| = exp
[
−|n′|(ω − χ) · A(ω − χ) + δ̃

]

where A is a real, symmetric positive-definite matrix, ζ, χ ∈ R
d, δ, δ̃ ∈ R,

and:

(3.38)

m′ = m
m−1 = u

u−r′ =
u(r−1)
u(r−1)−r

n′ = n
n−1 = v

v−r′ =
v(r−1)
v(r−1)−r

Since these functions never vanish, we may safely define

(3.39) ξ(ω) ≡
f̂(ω)

|f̂(ω)|
, η(ω) ≡

ĝ(ω)

|ĝ(ω)|
.

By a simple inspection, we conclude that ξ and η satisfy all the conditions
stated in Theorem 10 for µ(ω) = Im (c(ω)) and ν(ω) = −i ln (λ(ω)/|λ(ω)|).
We conclude that:

(3.40)
ξ(ω) = exp (−iω ·Bω + ig · ω + iρ)

η(ω) = exp (iω ·Bω + ih · ω + iρ̃)

where B is any real, symmetric d× d matrix, g, h ∈ R
d and ρ, ρ̃ ∈ R. From

f̂(ω) = ξ(ω)|f̂(ω)| and ĝ(ω) = η(ω)|ĝ(ω)|, and (3.37,3.40) we recover (3.13),
which concludes the proof.

4. Cowling-Price type uncertainty principle

In the sequel we shall consider functionals of the form:

(4.1) F
p,q
a,b[f ] = ‖ |x|af‖Lp(Rd) + ‖ |ω|bf̂‖Lq(Rd)

Proposition 2. Let 1 ≤ p, q ≤ ∞ and a, b ≥ 0. The functional Fp,qa,b is

continuous and convex in Lpa(Rd) ∩ FLqb(R
d).

Proof. Convexity is obvious. The rest is an immediate consequence of the
fact that the functional is just the natural norm (in the spririt of H. Triebel
[Tr83]) of the function space Lpa(Rd)∩FLqb(R

d), and is therefore continuous.
�

Before we continue let us make the following observation:

Lemma 1. Let 1 < p, q <∞ and a, b ≥ 0. The space Lpa(Rd) ∩ FLqb(R
d) is

reflexive.
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Proof. Since Lpa(Rd) and FLqb(R
d) are reflexive, so is G ≡ Lpa(Rd)×FLqb(R

d),
when we use the usual product norm ‖(x, y)‖X×Y = ‖x‖X + ‖y‖Y for the
product of normed vector spacesX×Y and dual bracket 〈(x∗, y∗), (x, y)〉X×Y =
〈x∗, x〉X + 〈y∗, y〉Y , for (x∗, y∗) ∈ X ′ × Y ′, (x, y) ∈ X × Y . Then the set
K ≡ {(f, g) ∈ G : f = g} is a closed subspace of G with respect to the pre-
vious product topology. Therefore, K is reflexive. Since Lpa(Rd) ∩ FLqb(R

d)
is isomorphic to K, it is also reflexive. �

Notice that this also follows from an old result concerning dual spaces of
sums and intersections of Banach spaces (when both are embedded contin-
uously into S ′(Rd)) [LiRo].

To avoid a proliferation of indices, we shall use in the sequel the notation

(4.2) B1(R
d) = Lpa(R

d) ∩ FLqb(R
d), B2(R

d) =M r,s
α,β(R

d)

with indices a, b, p, q, r, s, α, β to be specified. Moreover, we shall assume
a fixed window g ∈ S(Rd)\ {0} for the norm of the modulation space
M r,s
α,β(R

d).

We denote by B1(R) the closed ball of radius R > 0 in B1(R
d):

(4.3) B1(R) =
{
f ∈ B1(R

d) : ||f ||B1(Rd) ≤ R
}
.

Proposition 3. Let 0 < r, s ≤ 2, α, β, a, b ≥ 0 and 1 < p, q < ∞. Suppose
that r ≤ p and s ≤ q, and that inequality (1.10) holds with all factors non-
negative. If, for R > 0, the set

(4.4) U(R) =
{
f ∈ B1(R) : ||f ||B2(Rd) = 1

}

is nonempty, then it is a weakly sequentially compact subset of B1(R
d).

Proof. Suppose that U(R) is nonempty. Let (fn)n be an arbitrary sequence
in U(R). Since B1(R

d) is reflexive (Lemma 1), we conclude that (fn)n has a
weakly convergent subsequence, say (gk)k with gk ⇀ g for some g ∈ B1(R

d).
Since B1(R) is convex and closed, we have by Mazur’s Theorem that g ∈
B1(R). It remains to prove that ||g||B2(Rd) = 1. As B1(R

d) is compactly

embedded in B2(R
d) (see Theorem 2), the sequence (gk)k has a subsequence

(hl)l converging strongly in B2(R
d) to some h ∈ B2(R

d). By the continuity
of the norm, we have: ||h||B2(Rd) = liml→∞ ||hl||B2(Rd) = 1. We conclude the

proof by showing that h = g a.e.. Since (hl)l is a subsequence of (gk)k, we
have for all u ∈ B′

2(R
d):

(4.5)
liml→∞〈u, g − hl〉2 = 〈u, g〉2 − liml→∞〈u, hl〉2 =

= 〈u, g〉1 − liml→∞〈u, hl〉1 = 〈u, g〉1 − 〈u, g〉1 = 0,

where 〈·, ·〉1, 〈·, ·〉2 denote the duality brackets in B1(R
d), B2(R

d), respec-
tively, and where we used the fact that u ∈ B′

2(R
d) ⊂ B′

1(R
d) and g, hl ∈

B1(R
d) ⊂ B2(R

d).
On the other hand, since (hl)l converges to h strongly in B2(R

d), it also
converges weakly, and thus:

(4.6) lim
l→∞

〈u, hl〉2 = 〈u, h〉2.
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From (4.5,4.6), we conclude that

(4.7) 〈u, g − h〉2 = 0,

for all u ∈ B′
2(R

d), and hence g = h a.e.. �

Lemma 2. Assume the same conditions as in the previous Proposition. If
U(R) is nonempty, then the functional Fp,qa,b is weakly lower semicontinuous

in U(R).

Proof. The closed ball B1(R) is a convex and closed subset of B1(R
d). Since

F
p,q
a,b is convex and continuous, it is weakly lower semicontinuous on B1(R).

On the other hand, U(R) is a weakly sequentially compact subset of B1(R
d).

Then the restriction of Fp,qa,b to U(R) is also weakly lower semicontinuous. �

Theorem 11. Let 1 < r, s ≤ 2, α, β ≥ 0, 0 < a, b ≤ r′ and r ≤ p ≤ r′,
s ≤ q ≤ r′. If, in addition, inequality (1.10) holds, with all factors non-
negative, then the functional

(4.8) F
p,q
a,b [f ] = ‖ |x|af‖Lp(Rd) + ‖ |ω|bf̂‖Lq(Rd)

attains a minimum in

(4.9) Ω =
{
f ∈ Lpa(R

d) ∩ FLqb(R
d) : ||f ||Mr,s

α,β(R
d) = 1

}
.

Proof. Let CG > 0 denote the sharp constant in the Galperin-Gröchenig
inequality:

(4.10) CG = inf
||f ||B1(Rd)

||f ||B2(Rd)

,

where the infimum is taken over all f ∈ B1(R
d)\ {0}. Consequently, there

exists f1 ∈ Ω such that

(4.11) CG < ||f1||B1(Rd) < 2CG.

Let

(4.12) M = max

{
ap− 1

p
,
bq − 1

q
, 0

}
,

and

(4.13) RG = 2M

(
1

B(r, s, q, u)||ĝ||Lu(Rd)
+

1

B(r, s, p, v)||g||Lv (Rd)
+ 2CG

)
,

where 0 < u, v ≤ r′ are such that:

(4.14)
1

q
+

1

u
=

1

r′
+

1

s
,

1

p
+

1

v
=

1

r′
+

1

s
.

From (4.11), we conclude that f1 ∈ B1(RG), and hence U(RG), as defined
in (4.4) is nonempty. By Proposition 3 it is weakly sequentially compact
and F

p,q
a,b is weakly lower semicontinuous therein. Consequently, there exists

a minimizer f0 of Fp,qa,b in U(RG). It remains to prove that f0 is a minimizer

everywhere in Ω.
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Suppose that ap ≥ 1. We then have from the inequality |x + y|t ≤
2t−1(|x|t + |y|t) for t ≥ 1:
(4.15)

||f ||Lpa(Rd) =
(∫

Rd
(1 + |x|)ap|f(x)|pdx

)1/p

≤ 2(ap−1)/p
(
||f ||p

Lp(Rd)
+ ‖ |x|af‖p

Lp(Rd)

)1/p
≤ 2M

(
||f ||Lp(Rd) + ‖ |x|af‖Lp(Rd)

)

Alternatively, if ap < 1, then we obtain again:
(4.16)

||f ||Lpa(Rd) =
(∫

Rd
(1 + |x|)ap|f(x)|pdx

)1/p

≤
(
||f ||p

Lp(Rd)
+ ‖ |x|af‖p

Lp(Rd)

)1/p
≤ 2M

(
||f ||Lp(Rd) + ‖ |x|af‖Lp(Rd)

)

In the same fashion, we have:

(4.17) ||f̂ ||Lqb(Rd)
≤ 2M

(
||f̂ ||Lq(Rd) + ‖ |ω|bf̂‖Lq(Rd)

)

Altogether, we conclude that:

(4.18)

||f ||B1(Rd) = ||f ||Lpa(Rd) + ||f̂ ||Lqb(Rd)

≤ 2M
(
||f ||Lp(Rd) + ||f̂ ||Lq(Rd) + F

p,q
a,b [f ]

)

If f is such that ||f ||B1(Rd) > RG, then:

(4.19)

||f ||Lp(Rd) + ||f̂ ||Lq(Rd) + F
p,q
a,b [f ] ≥ 2−M‖f‖B1(Rd)

> 1
B(r,s,q,u)||ĝ||

Lu(Rd)
+ 1

B(r,s,p,v)||g||
Lv(Rd)

+ 2CG

But, in view of the trivial inequality ‖f‖g,Mr,s
α,β(R

d) ≥ ‖f‖g,Mr,s(Rd) for all

α, β ≥ 0 and of Corollary 2, this entails:

(4.20) F
p,q
a,b [f ] > 2CG > ||f1||B1(R) ≥ F

p,q
a,b [f1] ≥ F

p,q
a,b [f0]

which concludes the proof. �

5. An uncertainty principle in the Hilbert case

In this section, we deal with the more specific case where r = s = p =
q = 2. All the functional spaces involved become Hilbert spaces. The
advantage is that we can slightly generalize our construction and consider
weights other than the powers |x|a and |ω|b. Moreover, as we shall see later,
the minimizers are given by the eigenvalue equation of the inverse of a certain
compact localization operator.

Let us start with the following definition.

Definition 3. Given some weight m0 ∈ P(R2d), we call a pair of continuous
functions ψ, φ ∈ L∞

loc(R
d) m0-admissible weights if

m(x, ω) =
√

|m0(x, ω)|2 + |ψ(x)|2 + |φ(ω)|2

satisfies m ∈ P(R2d) and m0
m ∈ L∞

0 (R2d).
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Let us remark that the conditions of the previous definition imply that
|ψ(x)| → ∞ and |φ(x)| → ∞ at a polynomial rate as |x| → ∞.

A simple consequence of this definition and of the compactness theorem
3 is the following.

Corollary 3. Let (ψ, φ) be m0-admissible weights. Then we have the com-
pact embedding

(5.1) M2
m(R

d) ⊂⊂M2
m0

(Rd).

For future reference, we consider the following alternative norm.

Lemma 3. Let (ψ, φ) be m0-admissible weights. Then the norm ‖ · ‖M2
m(Rd)

is equivalent to

(5.2) ||f ||2ψ,φ,m0
= ‖f‖2M2

m0
(Rd) + ‖ψf‖2L2(Rd) + ‖φf̂‖2L2(Rd).

Proof. Following the same steps of the proof which leads to Proposition 1
(see the proof of Proposition 11.3.1 in [Gr01]), we obtain

(5.3)

‖f‖2ψ,φ,m0
= ‖f‖2

M2
m0

(Rd)
+ ‖ψf‖2

L2(Rd)
+ ‖φf̂‖2

L2(Rd)

≍ ‖f‖2
M2
m0

(Rd)
+ ‖f‖2

M2
|ψ|

(Rd)
+ ‖f‖2

M2
|φ|

(Rd)
=

=
∫
R2d m

2(z)|Vgf(z)|
2dz = ‖f‖2

M2
m(Rd)

.

�

Notice that we can associate the norm ‖ · ‖ψ,φ,m0 to the inner product:

(5.4)
(u, v)ψ,φ,m0

=
∫
R2d m0(z)

2Vgu(z)Vgv(z)dz+

+
∫
Rd

|ψ(x)|2u(x)v(x)dx+
∫
Rd

|φ(ω)|2û(ω)v̂(ω)dω ,

such that (u, u)ψ,φ,m0
= ‖u‖2ψ,φ,m0

. Thus, the space Bψ,φ,m0(Rd) of measur-

able functions f with finite ‖f‖ψ,φ,m0 <∞, endowed with the inner product
(·, ·)ψ,φ,m0

, is a Hilbert space and:

Bψ,φ,m0(Rd) =M2
m(R

d) .

We shall now follow mutatis mutandis our proof of weak sequential com-
pactness (Proposition 3) for this case. In the sequel we shall always assume
that (ψ, φ) are a m0-admissible set of weights with m0 ∈ P(R2d). Let us

denote by B
ψ,φ,m0

R the following closed ball of radius R > 0:

(5.5) B
ψ,φ,m0

R :=
{
f ∈M2

m(R
d) : ‖f‖ψ,φ,m0 ≤ R

}
.

Proposition 4. Let R > 0. If the set

(5.6) Uψ,φ,m0

R =
{
f ∈ B

ψ,φ,m0

R : ‖f‖M2
m0

(Rd) = 1
}

is nonempty, then it is a weakly sequentially compact subset of M2
m(R

d).
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Proof. Suppose that Uψ,φ,m0

R is nonempty. Let (fn)n be an arbitrary se-

quence in Uψ,φ,m0

R . Since M2
m(R

d) is reflexive (it is a Hilbert space), and the
norms ‖ · ‖M2

m(Rd) and ‖ · ‖ψ,φ,m0 are equivalent, we conclude that (fn)n has

a weakly convergent subsequence (gk)k, say

(5.7) gk ⇀ g,

for some g ∈ M2
m(R

d), and by Mazur’s Theorem g ∈ B
ψ,φ,m0

R . It remains
to prove that ‖g‖M2

m0
(Rd) = 1. From Corollary 3, we conclude that the

sequence (gk)k has a subsequence (hl)l converging strongly in M2
m0

(Rd), say

‖hl−h‖M2
m0

(Rd) → 0, for some h ∈M2
m0

(Rd). By the continuity of the norm,

we also have ‖h‖M2
m0

(Rd) = 1. The proof is complete if we show that g = h.

Recall that M2
m0

(Rd) is a Hilbert space with inner product

(5.8) (u, v)M2
m0

(Rd) =

∫

R2d

m2
0(z)Vgu(z)Vgv(z)dz.

The mapping (u, v) 7→ (u, v)M2
m0

(Rd) is a sesquilinear form on Bψ,φ,m0(Rd)×

Bψ,φ,m0(Rd) =M2
m(R

d)×M2
m(R

d). Moreover, it is bounded as we now prove.
Since m0(z) ≤ m(z) for a.e. z ∈ R

2d, we have from the Cauchy-Schwarz
inequality and Lemma 3:
(5.9) ∣∣∣(u, v)M2

m0
(Rd)

∣∣∣ ≤
∫
R2d m

2(z)
∣∣∣Vgu(z)Vgv(z)

∣∣∣ dz

≤ ‖Vgu‖L2
m(R2d) ‖Vgv‖L2

m(R2d) = ‖u‖M2
m(Rd) ‖v‖M2

m(Rd) ≍ ‖u‖ψ,φ,m0 ‖v‖ψ,φ,m0 .

By the Riesz representation theorem, there exists a bounded linear operator
A :M2

m(R
d) →M2

m(R
d), such that

(5.10) (u, v)M2
m0

(Rd) = (Au, v)ψ,φ,m0
,

for all u, v ∈M2
m(R

d).
Let u ∈ S(Rd). Since m0 ∈ P(R2d), we have that S(Rd) is dense in

M2
m0

(Rd). We then have:

(5.11) (hl − g, u)M2
m0

(Rd) = (A(hl − g), u)ψ,φ,m0
.

If we take the limit l → ∞, the right-hand side of the previous equation
vanishes, while the left-hand side becomes (h− g, u)M2

m0
(Rd). Since S(R

d) is

dense in M2
m0

(Rd), we conclude that h = g a.e. �

Remark 4. Since Bψ,φ,m0(Rd) may be identified with the modulation space
M2
m(R

d), we have a concrete realization of the operator A in the preceding
proof as a localization operator. Recall that a localization operator with
symbol σ and window g ∈ S(Rd) is of the form

Agσf =

∫

R2d

σ(x, ω)〈f, π(x, ω)g〉π(x, ω)g dxdω.

If we take for σ the weight m0/m, then Agm0/m
is an isomorphism between

M2
m(R

d) and M2
m0

(Rd) by the results in [GT1, GT2].
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Next, we define the functional Fψ,φ,m0 :M2
m(R

d) → [ 0,∞ ),

(5.12) Fψ,φ,m0 [f ] = ‖ψf‖2L2(Rd) + ‖φf̂‖2L2(Rd) = ‖f‖2ψ,φ,m0
− ‖f‖2M2

m0
(Rd).

We then have:

Lemma 4. Let R > 0 be such that Uψ,φ,m0

R as defined in Proposition 4 is

nonempty. Then, the functional Fψ,φ,m0 is weakly lower semicontinuous in

Uψ,φ,m0

R .

Proof. Consider the maps

(5.13) (Mψf) (x) := ψ(x)f(x), (Uφf) (ω) := (MφFf) (ω) = φ(ω)f̂(ω),

for every x, ω ∈ R
d and f ∈ S(Rd). They extend to bounded linear operators

M2
m(R

d) → L2(Rd): ‖Mψf‖L2(Rd) = ‖ψf‖L2(Rd) ≤ ‖f‖ψ,φ,m0 ≍ ‖f‖M2
m(Rd).

Thus, the map f 7→ ‖Mψf‖L2(Rd) is a continuous and convex functional on

the closed ball B
ψ,φ,m0

R , which is a convex and closed subset of M2
m(R

2d).

This means that this map is weakly lower semicontinuous in B
ψ,φ,m0

R .

On the other hand, by Proposition 4, Uψ,φ,m0

R is a weakly sequentially

compact subset of Bψ,φ,m0(Rd). Hence the restriction of ‖Mψf‖L2(Rd) to

Uψ,φ,m0

R ⊂ B
ψ,φ,m0

R is weakly lower semicontinuous. The product of two
nonnegative weakly lower semicontinuous functionals is again weakly lower
semicontinuous, which entails that ‖Mψf‖

2
L2(Rd)

is weakly lower semicon-

tinuous. The same can be said about ‖Uφf‖
2
L2(Rd)

. Consequently, Fψ,φ,m0 ,

being the sum of these two functionals, is weakly lower semicontinuous in

Uψ,φ,m0

R . �

We next prove the existence of minimizers.

Theorem 12. Let R > 1 be such that Uψ,φ,m0

R as defined in Proposition 4

is nonempty. Then there exists f0 ∈ Uψ,φ,m0

R such that

(5.14) Fψ,φ,m0 [f0] ≤ Fψ,φ,m0 [f ] ,

for all

(5.15) f ∈ Ω :=
{
f ∈M2

m(R
d) : ‖f‖M2

m0
(Rd) = 1

}
.

Proof. The set Uψ,φ,m0

R is weakly sequentially compact (cf. Proposition 4).

Moreover, the functional Fψ,φ,m0 is weakly lower semicontinuous (Lemma 4).

Consequently, there exists a minimizer f0 of Fψ,φ,m0 in Uψ,φ,m0

R . It remains
to prove that f0 is in fact a minimizer on the whole set Ω.

From (5.12) and (5.15), we have:

(5.16) Fψ,φ,m0 [f ] = ‖f‖2ψ,φ,m0
− 1,

for all f ∈ Ω.

Since f0 ∈ Uψ,φ,m0

R , it follows:

(5.17) Fψ,φ,m0 [f0] ≤ R2 − 1.

On the other hand, if f ∈ Ω\Uψ,φ,m0

R :

(5.18) Fψ,φ,m0 [f ] > R2 − 1,
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and the result follows. �

6. Euler-Lagrange equations

6.1. The Banach case. In this section, we shall derive an equation satisfied
by the minimizer f0 of the functional (4.8) in the constraint set (4.9). We
thus consider the functional

(6.1)

L
p,q
a,b [f, λ] := F

p,q
a,b [f ] + λ

(
1− ‖f‖Mr,s

α,β(R
d)

)
=

= ‖ |x|af‖Lp(Rd) + ‖ |ω|bf̂‖Lq(Rd) + λ
(
1− ‖f‖Mr,s

α,β(R
d)

)
,

where λ is a Lagrange multiplier.

Theorem 13. The minimizers f0 of (4.8) in the constraint set (4.9) are
solutions of the equation:
(6.2)

‖ |x|af‖1−p
Lp(Rd)

∫
Rd

|x|ap|f(x)|p−2f(x)u(x)dx+

+‖ |ω|bf̂‖1−q
Lq(Rd)

∫
Rd

|ω|bq|f̂(ω)|q−2f̂(ω)û(ω)dω =

= λ
∫
Rd

‖Vgf(·, ω)‖
s−r
Lrα(R

d)

[∫
Rd

|Vgf(x, ω)|
r−2Vgf(x, ω)Vgu(x, ω)〈x〉

αrdx
]
〈ω〉βsdω,

for all u ∈ Lpa(Rd) ∩ FLqb(R
d), and where

(6.3) ‖Vgf(·, ω)‖Lrα(Rd) =

(∫

Rd

|Vgf(x, ω)|
r〈x〉αrdx

)1/r

.

The minimizers satisfy this equation with the smallest possible value of λ.

Proof. Let u ∈ S(Rd). Recall that S(Rd) is a dense subset of Lpa(Rd) ∩
FLqb(R

d). For t ∈ R, we have:

(6.4)

‖ |x|a(f + tu)‖Lp(Rd) = ‖ |x|af‖Lp(Rd)+

+t‖ |x|af‖1−p
Lp(Rd)

∫
Rd

|x|ap|f(x)|p−2R
(
f(x)u(x)

)
dx+O(t2),

where R denotes the real part of a complex number.
Similarly:

(6.5)

‖ |ω|b(f̂ + tû)‖Lq(Rd) = ‖ |ω|bf̂‖Lq(Rd)+

+t‖ |ω|bf̂‖1−q
Lq(Rd)

∫
Rd

|ω|bq|f̂(ω)|q−2R
(
f̂(ω)û(ω)

)
dω +O(t2).
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Finally:
(6.6)

‖f + tu‖Mr,s
α,β(R

d) = ‖Vg(f + tu)‖Lr,sα,β(R2d) =

= ‖f‖Mr,s
α,β(R

d) + t‖f‖1−s
Mr,s
α,β(R

d)
×

×
∫
Rd

‖Vgf(·, ω)‖
s−r
Lrα(R

d)

[∫
Rd

|Vgf(x, ω)|
r−2R

(
Vgf(x, ω)Vgu(x, ω)

)
〈x〉αrdx

]
〈ω〉βsdω+

+O(t2)

where ‖Vgf(·, ω)‖Lrα(Rd) is as in eq.(6.3).

The stationarity condition for (6.1) is obtained from the Fréchet deriva-
tive:
(6.7)

0 = limt→0
1
t

(
L
p,q
a,b [f0 + tu, λ]− L

p,q
a,b [f0, λ]

)

⇔ ‖ |x|af0‖
1−p
Lp(Rd)

∫
Rd

|x|ap|f0(x)|
p−2R

(
f0(x)u(x)

)
dx+

+‖ |ω|bf̂0‖
1−q
Lq(Rd)

∫
Rd

|ω|bq|f̂0(ω)|
q−2R

(
f̂0(ω)û(ω)

)
dω =

= λ0
∫
Rd

‖Vgf0(·, ω)‖
s−r
Lrα(R

d)

[∫
Rd

|Vgf0(x, ω)|
r−2R

(
Vgf0(x, ω)Vgu(x, ω)

)
〈x〉αrdx

]
〈ω〉βsdω,

where we used the constraint ‖f0‖Mr,s
α,β(R

d) = 1. The result then extends to

Lpa(Rd) ∩ FLqb(R
d) by density.

Since (6.7) holds for all u ∈ Lpa(Rd) ∩ FLqb(R
d), then we get in particular

for u = f0:

(6.8) λ0 = ‖ |x|af0‖Lp(Rd) + ‖ |ω|bf̂0‖Lq(Rd) = L
p,q
a,b [f0] .

If f1 is some other solution of (6.7) with λ0 replaced by λ1 and f0 is the
minimizer, we would get:

(6.9) λ0 = L
p,q
a,b [f0] ≤ L

p,q
a,b [f1] = λ1.

Finally, if we multiply (6.7) by i and add it to the same equation with u
replaced by −iu, we obtain (6.2). �

6.2. The Hilbert case. We want to minimize the functional

Fψ,φ,m0 [f ] = ‖ψf‖2L2(Rd) + ‖φf̂‖2L2(Rd) = ‖f‖2ψ,φ,m0
− ‖f‖2M2

m0
(Rd)

in M2
m(R

d), subject to the constraint:

(6.10) ‖f‖M2
m0

(Rd) = 1.

We thus optimize the functional

(6.11) Lψ,φ,m0 [f, λ] = Fψ,φ,m0 [f ] + λ
(
1− ‖f‖2M2

m0
(Rd)

)
,

where λ is a Lagrange multiplier. In this section we shall always think of
M2
m(R

d) as Bψ,φ,m0(Rd), with the inner product (·, ·)ψ,φ,m0
and the norm

‖ · ‖ψ,φ,m0 .
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Before we proceed, let us recall that the operator A defined in eq. (5.10)
is such that:

(6.12) (u, v)M2
m0

(Rd) = (Au, v)ψ,φ,m0
,

for all u, v ∈M2
m(R

d) = Bψ,φ,m0(Rd).

Theorem 14. The operator A is positive-definite, compact and closed. It
has empty residual spectrum, 0 belongs to the continuous spectrum and it is
a point of accumulation. Moreover, all remaining spectral values are eigen-
values.

Proof. From the definition of A, we have for all u, v ∈M2
m(R

d):
(6.13)

(Au, v)ψ,φ,m0 = (u, v)M2
m0

(Rd) = (v, u)M2
m0

(Rd) = (Av, u)ψ,φ,m0
= (u,Av)ψ,φ,m0 .

Hence A = A∗.
Similarly

(6.14) (Au, u)ψ,φ,m0 = ‖u‖2M2
m0

(Rd) > 0,

for all u ∈M2
m(R

d)\ {0}. Consequently, A is positive-definite.
That A is closed is a simple consequence of the fact that it is bounded

and defined on the whole of M2
m(R

d).
Next, we prove compactness. Let (un)n∈N be a bounded sequence in

M2
m(R

d):

(6.15) ‖un‖ψ,φ,m0 ≤ C

for some constant C > 0 and all n ∈ N. Since M2
m(R

d) ⊂⊂ M2
m0

(Rd),

(un)n∈N has a subsequence (vn)n∈N which converges in M2
m0

(Rd). It follows
that

(6.16)

‖Avn −Avm‖
2
ψ,φ,m0

= (vn − vm, A(vn − vm))M2
m0

(Rd) ≤

≤ ‖A(vn − vm)‖M2
m0

(Rd)‖vn − vm‖M2
m0

(Rd) ≤

≤ ‖A(vn − vm)‖M2
m(Rd)‖vn − vm‖M2

m0
(Rd) ≍

≍ ‖A(vn − vm)‖ψ,φ,m0‖vn − vm‖M2
m0

(Rd) ≤

≤ 2C‖A‖Op ‖vn − vm‖M2
m0

(Rd) ,

where we used (6.15) in the last inequality. This shows that (Avn)n∈N is a

Cauchy sequence. Since M2
m(R

d) is complete, we conclude that (Avn)n∈N
converges. Since the bounded sequence (un)n∈N was chosen arbitrarily, the
operator A is compact.

That all non-zero elements of the spectrum are eigenvalues is an imme-
diate consequence of the fact that A is compact. Eq. (6.14) shows that A
is injective. Since A is compact and injective, we conclude that 0 is in the
continuous spectrum and the residual spectrum is empty.
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If the spectrum of A were finite, then A would have to be of finite rank.
But since A :M2

m(R
d) → Ran(A) is bijective, this is impossible. Hence, the

spectrum is infinite and 0 must be an accumulation point. �

We are now in a position to obtain the Euler-Lagrange equation for the
minimizer f0.

Theorem 15. The minimizer f0 of Fψ,φ,m0 in M2
m(R

d), subject to the con-
straint (6.10) is a solution of the eigenvalue equation:

(6.17) Af0 =
1

λ+ 1
f0.

Moreover, we have that

(6.18) λ = Fψ,φ,m0 [f0]

is such that 1
λ+1 is the largest eigenvalue of the operator A.

Proof. Notice that we can reexpress the functional (6.11) as:

(6.19) Lψ,φ,m0 [f, λ] = (f, f)ψ,φ,m0
−(Af, f)ψ,φ,m0

+λ
(
1− (Af, f)ψ,φ,m0

)
,

The stationarity condition is:

(6.20) f0 −Af0 − λAf0 = 0,

which yields (6.17).
If we compute the inner product (·, ·)ψ,φ,m0

of the previous equation with

f0 and use the constraint condition (6.10), we obtain:

(6.21)

(f0, f0)ψ,φ,m0
− (Af0, f0)ψ,φ,m0

− λ (Af0, f0)ψ,φ,m0
= 0

⇔ ‖f0‖
2
ψ,φ,m0

− ‖f0‖
2
M2
m0

(Rd)
− λ‖f0‖

2
M2
m0

(Rd)
= 0

⇔ Fψ,φ,m0 [f0]− λ = 0,

which is (6.18).
It remains to prove that 1

λ+1 is the largest eigenvalue of A. Let µ ∈ R

be some other eigenvalue of A and vµ ∈ M2
m(R

d) an eigenvector associated
with it, which we assume to be in Ω:

(6.22) Avµ = µvµ, ‖vµ‖M2
m0

(Rd) = 1.

From the previous equation, we conclude that:

(6.23) (1− µ)Avµ = µ (vµ −Avµ) ,

and if we compute the inner product of this equation with vµ, we obtain:

(6.24)

(1− µ) (Avµ, vµ)ψ,φ,m0
= µ

(
(vµ, vµ)ψ,φ,m0

− (Avµ, vµ)ψ,φ,m0

)

⇔ (1− µ)‖vµ‖
2
M2
m0

(Rd)
= µ

(
‖vµ‖

2
ψ,φ,m0

− ‖vµ‖
2
M2
m0

(Rd)

)

⇔ 1− µ = µFψ,φ,m0 [vµ] .
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It follows that:

(6.25) Fψ,φ,m0 [vµ] ≥ Fψ,φ,m0 [f0] ⇔
1

µ
− 1 ≥ λ⇔ µ ≤

1

λ+ 1
,

which concludes the proof. �

It may be more convenient to express the Euler-Lagrange equations in
terms of the inverse A−1 rather than A.

Theorem 16. A−1 is densely defined inM2
m(R

d), closed and positive-definite.
Its spectrum consists only of eigenvalues which can be written as a sequence
0 < ν1 ≤ ν2 ≤ · · · , with νj → +∞. Moreover, all the eigenspaces are finite
dimensional.

Proof. We start by proving that Ran(A) is dense in M2
m(R

d). Since m ∈
P(R2d), then S(Rd) ⊂M2

m(R
d). Let u ∈M2

m(R
d) be such that:

(6.26) 0 = (Av, u)ψ,φ,m0
= (v, u)M2

m0
(Rd) ,

for all v ∈ S(Rd). Since S(Rd) is dense inM2
m0

(Rd), we conclude that u = 0,

and thus
{
Av : v ∈ S(Rd)

}
is dense in Bψ,φ,m0(Rd) =M2

m(R
d).

Under these circumstances and taking into account Theorem 14, we con-
clude that A−1 is densely defined, closed and that (A−1)∗ = (A∗)−1. Thus
A−1 is self-adjoint and positivity follows immediately.

The statements regarding the spectrum are also an immediate conse-
quence of Theorem 14. We just remark that 0 is a regular value of A−1,
since its inverse A exists, is bounded and defined on the wholeM2

m(R
d). �

Theorem 17. The minimizer f0 is an eigenvector of A−1 associated with
the eigenvalue λ + 1 = Fψ,φ,m0 [f0] + 1, which is the smallest eigenvalue of
A−1.

Proof. The proof follows mutatis mutandis that of Theorem 15. �

Example 1. As a particular example, consider a d = 1 system withM2
m0

(R) =

L2(R) (m0 ≡ 1), ψ(x) and φ(ω) = ω admissible weights.
We thus have, for all u ∈ Ran(A), v ∈ Bψ,ω,1(R):

(6.27) (
A−1u, v

)
L2(R)

= (u, v)ψ,ω,1

⇔
∫
R

(
A−1u

)
(x)v(x)dx =

∫
R

(
1 + |ψ(x)|2

)
u(x)v(x)dx+

∫
R
|ω|2û(ω)v̂(ω)dω

⇔
∫
R

(
A−1u

)
(x)v(x)dx =

∫
R

(
1 + |ψ(x)|2

)
u(x)v(x)dx+

∫
R
Du(x)Dv(x)dx,

where D denotes the distributional derivative.
Since S(R) ⊂ Bψ,φ,1(R), we conclude from Theorem 17 and (6.27) that

the minimizer f0 satisfies:

(6.28) −
1

4π2
D2f0(x) + |ψ(x)|2f0(x) = λf0(x),

with λ the smallest eigenvalue of A−1 − I = − 1
4π2D

2 + |ψ(x)|2.

If, in addition, ψ(x) is such that |ψ(x)|2 ∈ C2(R), then a well known
theorem shows that the distributional and classical solutions coincide, so
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that f0 is a solution of the time-independent Schrödinger equation

(6.29) −
1

4π2
f ′′0 (x) + |ψ(x)|2f0(x) = λf0(x).

If ψ(x) = x, then all the aforementioned conditions are satisfied, and we
obtain the Schrödinger equation for the simple harmonic oscillator:

(6.30) −
1

4π2
f ′′0 (x) + x2f0(x) = λf0(x).

It is well known that a solution associated with the lowest eigenvalue is:

(6.31) f0(x) = 21/4e−πx
2
,

which corresponds to

(6.32) λ =
1

2π
.

And we thus obtain the inequality

(6.33) ‖xu‖2L2(R) + ‖ωû‖2L2(R) ≥
1

2π

for all u with ‖u‖L2(R) = 1, for which the left-hand side makes sense. This
is equivalent to the standard Heisenberg uncertainty principle.

Notice that we have chosen to obtain the minimizer with the inverse op-
erator A−1 instead of the compact operator A. The latter alternative would
have been much harder to solve [BonTorr, CaRoTo].
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[GG] Y.V. Galperin, K. Gröchenig. Uncertainty principles as embeddings of modula-
tion spaces. J. Math. Anal. Appl. 274 (2002), 181–202.
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