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Abstract— This letter considers the problem of global
asymptotic position and heading tracking for multirotors. We
propose a hybrid adaptive feedback control law that globally
asymptotically tracks a position and heading reference in
the presence of unknown constant disturbances in both
the translational and rotational dynamics. By employing a
tuning function-based backstepping approach, the number
of parameter estimates are minimized. Moreover, we propose
a novel control law for the translational subsystem, which
leads to a simpler virtual control law when backstepping.
Global asymptotic heading tracking is achieved through a
novel construction of the desired rotation matrix. The theory
is verified through experiments on a quadrotor.

Index Terms— Flight control, adaptive control

I. INTRODUCTION

MULTIROTOR unmanned aerial vehicles (UAVs) have
become increasingly popular in recent years. Their low-

cost, vertical take-off and landing, and hovering abilities make
them well suited to perform a wide variety of tasks, such as
inspection [1], parcel delivery [2], surveillance, mapping and
even autonomous recovery of fixed-wing UAVs [3].

Multirotors are typically designed with co-planar propellers.
Although such systems have full torque actuation, forces can
only be produced along a single vehicle-fixed axis, known as
the thrust axis. Since the propulsion system cannot produce
an arbitrary three-dimensional force vector, these systems are
underactuated mechanical systems. Due to the underactuation
of the system, position and orientation tasks cannot be fully
decoupled. Instead, control algorithms for quadrotors often
employ a cascaded structure consisting of an inner- and outer-
loop control law for orientation and position control, respec-
tively [4]. For such schemes, the outer position control loop
often computes a desired three-dimensional force. The norm
of this vector then serves as the thrust input, while the vehicle
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orientation is controlled such that the thrust direction of the
vehicle is aligned with the desired force direction in the inertial
frame. This is the approach we will take in this letter.

There is an extensive amount of literature on the subject of
trajectory tracking for multirotor UAVs, and the reader is re-
ferred to the surveys [5], [6] and the references therein. The fol-
lowing review is limited to earlier works on geometric control
of multirotors, that is, the development of control laws based
on quaternion or rotation matrix feedback. The control law
proposed in [7] guarantees local exponential tracking for multi-
rotors that can produce both negative and positive thrust along
the thrust axis. An adaptive position tracking control scheme
for underactuated multirotors is proposed in [8]. However, the
control law does not enable a desired heading to be tracked.
Moreover, the adaptive control law is overparametrized.

The aforementioned approaches rely on continuous state-
feedback. However, the non-contractibility of the configuration
space of a rigid body implies that these control laws are at
most almost globally stabilizing [9]. This is referred to as a
topological obstruction to global asymptotic stability, and can
be overcome by employing hybrid feedback with a properly
defined switching logic [10]. The hybrid feedback approach
in [11] achieves global asymptotic position tracking using the
thrust and angular velocity as inputs. However, by using a
reduced orientation control approach, the rotation angle around
the thrust axis is left uncontrolled. A saturated tracking control
law for a quadrotor in the presence of unknown constant distur-
bances is developed in [12]. The control law ensures that the
position error is contained in an arbitrarily small neighborhood
of the origin, but leaves the heading uncontrolled and does not
ensure convergence of the position and linear velocity errors to
zero. In [13], the hybrid quaternion feedback strategy from [14]
is employed together with the results on backstepping of hybrid
feedback laws from [15] to synthesize a hybrid feedback control
law that achieves global asymptotic tracking of a smooth posi-
tion reference trajectory while minimizing the rotation angle
to a given orientation configuration. Moreover, the controller
includes an integral/adaptive term and is shown to work in the
presence of additive disturbances in the translational dynamics.
However, stability of the translational subsystem is shown
using a Lyapunov function with a cross term which results in a
complicated expression for the gradient, and hence, the virtual
backstepping control law. Moreover, due to the construction
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of the desired rotation matrix, a desired heading (specified by
a basic rotation matrix around the z-axis) can only be tracked
provided that the roll and pitch angles are zero. Furthermore,
the control law is overparametrized, as the number of parameter
estimates is three times larger than the number of unknown
parameters. Consequently, if the control law in [13] were to
be extended to the case of a constant disturbance in the rota-
tional dynamics, parameter convergence would be impossible.
Another hybrid feedback approach is introduced in [16]. This
approach achieves robust global trajectory tracking for multi-
rotors. However, due to a lack of integral action, the tracking
errors do not converge to zero in the presence of disturbances.

The goal of this letter is to achieve uniform global asymptotic
tracking of both the position and heading of a multirotor in
the presence of unknown constant disturbances in both the
translational and rotational dynamics. To this end, we build on
the work in [13], which we extend as follows. First, we propose
a novel bounded adaptive control law for the translational
subsystem, which leads to a simpler virtual control law when
backstepping. Second, we propose a novel construction for the
desired rotation matrix, which avoids the use of intermediary
Euler angles, and is crucial in ensuring global asymptotic
tracking of the desired heading reference. Third, we augment
the rotational dynamics with a constant disturbance, and by
employing tuning functions [17], the number of parameter
estimates becomes equal to the number of unknown parameters.
As a consequence, we can show that the disturbance estimates
in both the translational and rotational dynamics converge to
their true values.

This letter is organized as follows. In Section II, we intro-
duce the equations of motion and give the problem statement.
Section III introduces a bounded adaptive control law for the
translational subsystem, before extending this control law using
a backstepping approach to account for the rotational dynamics.
Finally, Section IV presents experimental results verifying the
theoretical developments, before Section V concludes the letter.

A. Preliminaries

The Euclidean inner product in Rn is written ⟨x, y⟩, and
the Euclidean norm is denoted |x| = ⟨x, x⟩1/2. The unit n-
sphere embedded in Rn+1 is given by Sn = {x ∈ Rn+1 :
|x| = 1}, and the closed ball of radius r in Rn is the set
rBn = {x ∈ Rn : |x| ≤ r}. The standard basis vectors in Rn

are denoted e1, e2, . . . , en and the entry of a matrix a ∈ Rn×n

corresponding to the ith row and jth column is denoted aij . The
special orthogonal group of dimension three is denoted SO(3)
and defined by SO(3) := {R ∈ R3×3 : detR = 1, RRT = I},
where I is the identity matrix. The Lie algebra of the matrix Lie
group SO(3) is denoted so(3) and can be identified with the
space of skew-symmetric matrices in R3×3. Define the mapping
(·)× : R3 → so(3) by α×β = α × β with α, β ∈ R3. A set-
valued mapping is denoted by F : X ⇒ U , where X ⊂ Rn is
the domain of the mapping and U ⊂ Rm is its codomain. The
range of a mapping f : Rm → Rn is defined as rge f = {y ∈
Rn : ∃x ∈ Rm such that y = f(x)}. A unit quaternion is given
by z = (η, ϵ) ∈ S3, where η ∈ R and ϵ ∈ R3, describe its real
and imaginary components, respectively. Any unit quaternion

is mapped to a rotation matrix through the surjective mapping
R : S3 → SO(3) defined by R(z) := I3 + 2ηϵ× + 2(ϵ×)

2.
Finally, we define the constant matrix S :=

(
0 −1
1 0

)
.

II. MODELING AND PROBLEM STATEMENT

Let p ∈ R3 denote the position of the vehicle in the inertial
frame and let R ∈ SO(3) denote the orientation of the vehicle-
fixed frame with respect to the inertial frame. Additionally,
we define the heading relative to the inertial frame as ν :=

1
|(R11,R21)| (R11, R21) ∈ S for |(R11, R21)| ≠ 0. Furthermore,
let v ∈ R3 and ω ∈ R3 denote the linear and angular velocites
of the vehicle in the inertial and vehicle-fixed frames, respec-
tively. The equations of motion for a multirotor are given by [4]

ṗ = v (1a)

Ṙ = Rω× (1b)
mv̇ = −Re3f +mge3 + b (1c)
Iω̇ = −ω×Iω + µ+ θ, (1d)

where b, θ ∈ R3 are constant disturbances, m > 0 is the mass
of the vehicle, g > 0 is the gravitational acceleration, I ∈ R3×3

is the vehicle inertia matrix, f ∈ R is the total thrust generated
by the rotors and µ ∈ R3 is the total torque generated by the
rotors in the vehicle-fixed frame.

Assumption 1. The disturbances b, θ are upper and lower
bounded by known constants b, θ ∈ R3 and b, θ ∈ R3, respec-
tively.

Assumption 1 implies that the disturbances are contained in
the convex sets

P := [b1, b1]× [b2, b2]× [b3, b3], (2)

Θ := [θ1, θ1]× [θ2, θ2]× [θ3, θ3]. (3)

Let Proj : R3 ×S ⇒ R3 be the outer semicontinuous, convex-
valued and locally bounded set-valued mapping defined by
Proj(σ,s) := (proj(σ1, s1),proj(σ2, s2),proj(σ3, s3)), where
s, s ∈ R3 and S:=[s1, s1]× [s2, s2]× [s3, s3] ⊂ R3 and

proj(σi, si) :=

{
σi, if σi ∈ T[si,si]

(si)

[0, 1]σi, if σi /∈ T[si,si]
(si)

(4)

where the tangent cone T[a,a] : [a, a] ⇒ R is defined by

T[a,a](φ) :=


[0,∞), if φ = a

(−∞,∞), if φ ∈ (a, a)

(−∞, 0], if φ = a

(5)

for a, a ∈ R. Observe that the solutions to the constrained
differential inclusion

ṡ ∈ Proj(σ, s), s ∈ S, (6)

where σ is a hybrid input [18], include solutions arrived at if
the discontinuous projection

proj(σi, si) :=

{
σi, if σi ∈ T[si,si]

(si)

0, if σi /∈ T[si,si]
(si)

(7)

would have been used instead. As a result, there always exists
a flow direction contained in Proj(σ, s) that steers s within
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S, i.e. Proj(σ, s) ∩ TS(s) ̸= ∅ for all s ∈ S, where TS(s) =
T[s1,s1]

(s1) × T[s2,s2]
(s2) × T[s3,s3]

(s3). Therefore, since S
is compact, every maximal solution to (6) is complete [19,
Proposition 6.10].

Lemma 1. Let s, ŝ ∈ S , s̃ = s− ŝ denote the estimation error
and Γ ∈ R3×3 be a positive definite and diagonal matrix. Then

−⟨s̃, Γ−1Proj(σ, ŝ)⟩ ≤ −⟨s̃, Γ−1σ⟩. (8)

Proof. If s < ŝ < s, or if ŝ ∈ S and σ ∈ TS(s), it follows
that Proj(σ, ŝ) = σ and (8) is satisfied with equality. Since Γ
is diagonal with positive entries, we only have to verify (8)
componentwise for the case ŝi ∈ {si, si} and σi /∈ T[si,si]

(si).
Observe that ŝi = si and σi /∈ T[si,si]

(si) implies that σi > 0
and s̃ ≤ 0. Similarly, ŝi = si and σi /∈ T[si,si]

(si) implies that
σi < 0 and s̃i ≥ 0. In both cases it follows that

−⟨s̃i, Γ−1
i σi⟩ ≥ −⟨s̃i, Γ−1

i [0, 1]σi⟩
= −⟨s̃i, Γ−1

i proj(σi, si)⟩ ≥ 0.
(9)

A desired trajectory for the multirotor consists of a desired
position pd : R≥0 → R3 of the multirotor relative to the
inertial frame, and a desired heading νd : R≥0 → S of the
multirotor relative to the inertial frame. Given a continuously
differentiable desired heading νd, the quantity ν̇d can always be
expressed in terms of the scalar desired heading rate ϖd(t) :=
⟨Sνd(t), ν̇d(t)⟩. Then, ν̇d(t) = Sνd(t)ϖd(t).

Assumption 2. The desired position pd and its derivatives up to
the fourth order are bounded and continuous. The desired head-
ing νd and its derivatives up to the second order are bounded
and continuous. The bias b is lower and upper bounded by the
constants b and b, respectively. Finally, it holds that

m(g − sup
t≥0

p̈d,3(t)) + b3 := c > 0. (10)

Let χ = (pd, ṗd, p̈d, p
(3)
d , νd, ϖd). For every desired trajec-

tory satisfying Assumption 2, there exist scalars c1 > 0, c2 > 0
and a compact set Ω ⊂ R3 ×R3 ×R3 ×R3 × S×R such that
the desired trajectory is a solution to the differential inclusion

χ̇ ∈ F (χ) := (ṗd, p̈d, p
(3)
d , c1B3, Sνdϖd, c2B1), χ ∈ Ω. (11)

Assumption 2 is relatively mild, seeing as the supremum of the
desired acceleration in the z-direction is often small compared
to the gravitational acceleration. When the z-component of the
desired acceleration is zero and b3 is negative, we require that
the absolute value of the lower bound of the z-component of
the disturbance force is smaller than the gravitational force.

Let Rd ∈ SO(3) denote the desired orientation, which will
be defined in Section III. The desired angular velocity is given
by (ωd)× := R−1

d Ṙd, and by introducing the error coordinates
p̃ := p − pd, ṽ := v − ṗd, R̃ := RRT

d and ω̃ := ω − ωd, we
obtain the error system

˙̃p = ṽ

˙̃R = R̃(Rdω̃)×

m ˙̃v = mge3 −Re3f −mp̈d + b

I ˙̃ω = µ− ω×Iω + θ − Iω̇d

χ̇ ∈ F (χ)


χ ∈ Ω (12)

Problem statement: Design a hybrid feedback control law
with output (f, µ) ∈ R× R3 such that the compact set

A0=
{
(p̃, R̃, ṽ, ω̃, χ) : p̃ = 0, R̃ = I, ṽ = 0, ω̃ = 0

}
, (13)

is uniformly globally asymptotically stable for the system (12).

III. CONTROL DESIGN

As introduced in [20] for fully actuated marine vehicles,
we define a modified velocity error ξ := ṽ − ζ, where ζ is
generated by the dynamical system

Λζ̇ = −k1ϑ(p̃)−Ξϑ(ζ), (14)

where Ξ,Λ ∈ R3×3 are positive definite and diagonal, k1 > 0
and ϑ : Rn → Rn denotes the following saturation mapping

ϑ(x) :=
tanh|x|
|x|

x. (15)

It is clear that ζ = 0 implies ξ = ṽ, which entails that the
velocity tracking control objective ṽ = 0 can be restated as
(ξ, ζ) = 0. We propose the following adaptive control law for
the translational subsystem

Λζ̇ = −k1ϑ(p̃)−Ξϑ(ζ)

˙̂
b ∈ Proj(Γξ, b̂)

u = b̂+mge3 −m(ζ̇ + p̈d) + k1ϑ(p̃) +Kϑ(ξ)

f = |u|

 b̂ ∈ P

where b̂ denotes the estimate of the disturbance b and K ∈
R3×3 is positive definite and diagonal.

Given a desired heading νd and a desired thrust direction
ρ := u

|u| ∈ S2, we define the desired vehicle orientation by

Rd :=
(
r ρ×r ρ

)
(16)

r :=
sgn ρ3√

ρ23 + (ρ1νd,1 + ρ2νd,2)2

(
ρ3νd

−ρ1νd,1 − ρ2νd,2

)
. (17)

Moreover, by defining w := (ρ, r), the desired angular velocity
can be computed according to

ωd=

 rTρ×ρ̇
rTρ̇

−rTρ×ṙ

=

rTρ× 0
rT 0
0 −rTρ×

(ρ̇
ṙ

)
=:A(w)ẇ. (18)

Observe that Rd is well-defined for any νd ∈ S and ρ ∈ S2
provided ρ3 ̸= 0. The desired orientation aligns the thrust axis
of the multirotor with the desired thrust direction ρ. The vector
r ∈ S2 should be interpreted as the desired configuration of the
vehicle-fixed x-axis of the multirotor expressed in the inertial
frame. It is chosen such that its projection onto the horizontal
plane is aligned with the desired heading. Note that Rd as
defined in (16) can also be constructed using the approach in
[21]. However, [21] employs an intermediary step in which the
desired roll and pitch angles are computed as a function of ρ
and the desired yaw angle. Although a direct computation of
the desired roll-pitch-yaw angles are required for any control
algorithm based on a three-parameter representation of SO(3),
it is unnecessary for any control scheme based on rotation
matrix or quaternion feedback. Also, note that the approach in
[7] does not yield the same Rd as (16) and only guarantees
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that the vehicle-fixed x-axis converges to the projection of the
desired body-fixed x-axis onto the plane orthogonal to ρ.

Let z = (η, ϵ) ∈ S3 be a unit quaternion satisfying R(z) =
R̃. Since z is not measured, we employ the path-lifting mech-
anism proposed in [22] in order to lift the solution t 7→ R̃(t)

of ˙̃R = R̃(Rdω̃)× to a continuous path t 7→ z(t) that satisfies
the kinematic equation

ż =
1

2

(
ϵT

ηI3 + ϵ×

)
Rdω̃ =: T (z)Rdω̃. (19)

If ωd were entirely known, it would be straightforward to
design a backstepping control law using the angular velocity
error as the virtual control input. However, due to the presence
of the constant disturbance b in the translational dynamics, the
following part of ωd is problematic

A(w)
(∂w
∂u

˙̂
b+

1

m

∂w

∂u

∂u

∂ξ
b̃
)
. (20)

Although the first term is known, it cannot be canceled without
increasing the dynamic order of the system. In other words,
we would need two additional estimators for the same bias due
to its appearance in ωd and ω̇d. Note that this is the approach
taken in [13]. To circumvent this, we will follow a tuning
function based design procedure. For i ∈ {2, 3}, we define βi
as the known part of ωd with ˙̂

b replaced by Γτi

βi := ωd −A(w)

(
∂w

∂u
˙̂
b+

1

m

∂w

∂u

∂u

∂ξ
b̃

)
+A(w)

∂w

∂u
Γτi,

which can be rewritten as

βi = A(w)
∂w

∂u

(
Γτi −m(ζ̈ + p

(3)
d ) + k1J(p̃)ṽ

+KJ(ξ)
(
ge3 − p̈d − ζ̇ +

1

m
(b̂−R(z)u)

))
+A(w)

∂w

∂νd
ν̇d

(21)

where τi is the ith tuning function and J(ε) := ∂ϑ(ε)
∂ε . Let q ∈

Q := {−1, 1} be a logic variable, let k2, kz > 0 and define
the virtual control input α by

αq := β2 + qRT
dh, (22)

h = −k2kzϵ+
2

kz
((ηI + ϵ×)u)×ξ. (23)

Furthermore, following the tuning function-based backstepping
approach in [23], we define the tuning functions

τ1 := ξ (24)

τ2 := τ1 −
kzq

m

(
∂u

∂ξ

)T (
∂w

∂u

)T

A(w)TRT
d ϵ (25)

τ3 := τ2 −W (x)I(ω − αq), (26)

W :=
1

m

((
∂u

∂ξ

)T (∂w

∂u

)T (∂β2

∂w

)T
+

(
∂u

∂ξ

)T (∂β2

∂u

)T
+

(
∂β2

∂ṽ

)T
+

(
∂β2

∂ξ

)T
−
(
∂u

∂ξ

)T (∂w

∂u

)T
ATRT

dT (z)T
(
∂β2

∂z

)T
+

kzq

m

(
∂u

∂ξ

)T (∂w

∂u

)T
AT(RT

d ϵ)×A
∂w

∂u

∂u

∂ξ
Γ

(
∂w

∂u

)T
AT

+ q

(
∂u

∂ξ

)T (∂h

∂u

)T
Rd − q

(
∂u

∂ξ

)T (∂w

∂u

)T
AT(RT

dh)×

+ q

(
∂h

∂ξ

)T
Rd − q

(
∂u

∂ξ

)T (∂w

∂u

)T
ATRT

dT (z)T
(
∂h

∂z

)T
Rd

)
.

(27)

Define the state space X := R3×S3×R3×R3×R3×P×Θ×Ω,
the state vector x := (p̃, z, ξ, ζ, ω̃, b̂, θ̂, χ), where θ̂ denotes the
estimate of θ, and the flow and jump sets

C := {(x, q) ∈ X ×Q : qΨ(x) ≥ −δ}, (28)
D := {(x, q) ∈ X ×Q : qΨ(x) ≤ −δ}, (29)

where δ ∈ (0, 1) is the hysteresis half-width, and

Ψ(x) := η +
1

2kz
(ω − β2 +A

∂w

∂u
Γ (τ2 − τ1))

TIo(x) (30)

o(x) := RT
dh− kz

m
A
∂w

∂u
Γ

(
∂u

∂ξ

)T (
∂w

∂u

)T
ATRT

d ϵ. (31)

Consider the following hybrid control law

ζ̇ = −Λ−1 (k1ϑ(p̃) +Ξϑ(ζ))

˙̂
b ∈ Proj(Γτ3, b̂)

˙̂
θ ∈ Proj(Γ2(ω − αq), θ̂)

 (x, q)∈C

q+= −q (x, q)∈D
u = b̂+mge3 −m(ζ̇ + p̈d) + k1ϑ(p̃) +Kϑ(ξ)

f = |u|
µ = −θ̂ + ω×Iω −K2(ω − αq)− qkzR

T
d ϵ

+ Iγq − qkzIW (x)TΓ

(
∂w

∂u

)T
A(w)TRT

d ϵ

(32)

where K2 = KT
2 ∈ R3×3 is positive definite and

γq :=

(
∂β2

∂w

∂w

∂u
+

∂β2

∂u

)
(u̇−

1

m
KJ(ξ)b̃) +

∂β2

∂z
T (z)Rd(ω − β3)

+
∂β2

∂ṽ
( ˙̃v −

1

m
b̃) +

∂β2

∂ξ
(ξ̇ −

1

m
b̃) +

∂β2

∂y
ẏ +

∂β2

∂b̂

˙̂
b

−
kzq

m
A
∂w

∂u
Γ

(
∂u

∂ξ

)T (∂w

∂u

)T

AT(RT
d ϵ)×β3 + q(RT

dh)×β3

+ qRT
d

∂h

∂z
T (z)Rd(ω − β3) +

1

m
A
∂w

∂u
KJ(ξ)R(z)u×(ω − β3),

(33)

where y := (p̃, ζ, p
(3)
d , νd, ϖd). The hybrid control law (32)

leads to the following hybrid closed-loop system

H :



˙̃p = R(z)ṽ

ż = T (z)ω̃

ξ̇ = ge3 − p̈d − ζ̇ +
1

m

(
b−R(z)u

)
ζ̇ = −Λ−1(k1ϑ(p̃) +Ξϑ(ζ))

˙̃ω = κ(x)

˙̂
b ∈ Proj(Γτ3, b̂)

˙̂
θ ∈ Proj(Γ2(ω − αq), θ̂)

χ̇ ∈ F (χ)



(z, q) ∈ C

q+= −q (z, q) ∈ D

(34)

where

κ(x) = θ̃ + γq − ω̇d − I−1K2(ω − αq)

− qkzI−1
(
I + IWTΓ

(
∂w

∂u

)T
AT

)
RT

d ϵ.
(35)
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Theorem 1. If Assumptions 1 and 2 hold and the gains satisfy

k1 +K33 +mk1
1

Λ33
+m

Ξ33

Λ33
< c, (36)

with c defined as in Assumption 2, then there exists ς > 0 such
that ρ3 ≥ ς for all solutions to H, and the compact set

A = {(x, q) ∈ X ×Q : p̃ = 0, z = qe1,

ξ = 0, ζ = 0, b̂ = b, ω̃ = 0, θ̂ = θ},
(37)

is uniformly globally asymptotically stable for H.

Proof. It follows from Assumption 2, (36) and (32) that
u3(t, j) ≥ inf(t,j) u3(t, j) > 0. Therefore, there exists ς ′ > 0
such that u3(t, j) ≥ ς ′ for all (t, j) in the hybrid time domain
of the solution. Since u is bounded, it follows that there exists
ς > 0 such that ρ3(t, j) = u3(t,j)

|u(t,j)| ≥ ς . Let U be an open
set containing X and consider the continuously differentiable
function V : U ×Q → R defined by

V (x, q) := k1 ln cosh|p̃|+
m

2
ξTξ +

1

2
ζTΛζ +

1

2
b̃TΓ−1b̃

+
1

2
θ̃TΓ−1

2 θ̃ + 2kz(1− qη) +
1

2
(ω − αq)

TI(ω − αq).

For all (x, q) ∈ C, the change in V along the solutions of H
can be shown to be

V̇ ≤ −ξTKϑ(ξ)− ζTΞϑ(ζ)− kzk2ϵ
Tϵ

− (ω − αq)
TK2(ω − αq) ≤ 0.

Consequently, the growth of V along the flow solutions of H
is bounded by

uc(x) =


− ξTKϑ(ξ)− ζTΞϑ(ζ)− kzk2ϵ

Tϵ

− (ω − αq)
TK2(ω − αq)

x ∈ C

−∞, otherwise

For all (x, q) ∈ D, the change in V across jumps is

V (x,−q)− V (x, q) = 2kzqΨ(x) < 0,

where the last inequality follows from the definition of the
jump set D. Since the continuously differentiable function V
has compact sublevel sets and is positive definite with respect
to the compact set A, it follows that A is uniformly globally
stable. Furthermore, H satisfies the hybrid basic conditions,
and the time between jumps is lower bounded by a positive
constant. Thus, it follows from [19, Corollary 8.7 (b)] that each
solution to H converges to the largest weakly invariant subset
Φ contained in V −1(r̄) ∩ u−1

c (0), for some r̄ ∈ R, where

u−1
c (0) = {(x, q) ∈ C : ξ = 0, ζ = 0, ϵ = 0, ω = αq} .

Note that for every z ∈ S2, ϵ = 0, implies η = ±1. The closed-
loop system H is such that ζ ≡ 0 implies p̃ ≡ 0. Thus, ξ ≡ 0
implies that b̃ ≡ 0, since ϵ = 0 implies R(z) = I . Finally, ϵ ≡
0 and ξ ≡ 0 imply that αq = β2 and that τ2 ≡ 0, from which
we can conclude that ω = αq = ωd. It follows that ˙̃ω ≡ 0 and
hence that θ̂ = θ. Consequently, no solution ϕ makes V (ϕ(t, j))
equal to a non-zero constant, and it follows from [19, Theorem
8.8] that A is uniformly globally asymptotically stable.

Fig. 1. ModalAI Qualcomm Flight RB5

We remark that Theorem 1 implies that the problem state-
ment is solved. Indeed, by employing the path-lifiting mecha-
nism from [22], it follows from [22, Thm. 9] and Theorem 1
that A0 is uniformly globally asymptotically stable for the
interconnection between (12) and (32).

IV. EXPERIMENTAL RESULTS

The experimental platform is the ModalAI Qualcomm
Flight RB5 depicted in Fig. 1. The mass of the quadro-
tor is m = 1.4 kg, the inertia matrix is I =
diag(0.029 kgm2, 0.029 kgm2, 0.052 kgm2), the lower and
upper bounds for the parameters are given by θ =
(−0.3,−0.12,−0.3), θ = (0.2, 0.2, 0.2), b = (−1,−1,−0.3),
and b = (1, 1, 3). Moreover, the reference trajectory is given by

pd(t) =


(0, 0,−0.75) t < 30 sin(0.5(t− 30)

1− cos(0.5(t− 30))

−0.8 + 0.5(cos(0.5(t− 30))− 1)

 t ≥ 30
(38)

νd(t) = (cosψd(t), sinψd(t)), (39)

ψd(t) =

{
π
2 t < 30
π
2 − 25π

180 sin(0.3(t− 30)) t ≥ 30
(40)

and the control parameters are chosen as k1 = 2.2, K =
diag(2.9, 2.9, 3.3), Ξ = K, K2 = diag(0.08, 0.08, 0.05),
kz = 3.1, k2 = 1, Λ = I , Γ = diag(0.25, 0.25, 0.52) and
Γ2 = 0.05I . It is straightforward to verify that (36) is satisfied.
In the implementation, we apply the approximation ϑ(x) ≈
x when |x| ≤ 10−6. Moreover, we implement the maximal
solution to (6), which employs the discontinuous projection
(7), i.e. a componentwise saturation.

The experimental results are presented in Figs. 2 to 5. From
Figs. 2 and 3 we observe that the quadrotor successfully tracks
the position and velocity references. Fig. 4 shows that the
estimate b̂3 approaches a value of approximately 1.7N. This
suggests that there are minor modelling errors in the mass
of the quadrotor and the thrust produced by the propellers.

0 20 40 60 80 100 120 140
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0

1

0 20 40 60 80 100 120 140

0

1

2

0 20 40 60 80 100 120 140
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-1

0

Fig. 2. The position p ∈ R3 and the desired position pd ∈ R3.
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Fig. 3. The linear velocity v and the desired linear velocity vd.
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Fig. 4. The estimates b̂ and θ̂ and the yaw angle and desired yaw angle
ψ and ψd.
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Fig. 5. The control torque µ, control thrust f and the logic variable q.

Indeed, as b̂3 approaches its steady-state value, we see that p3
approaches p3,d. The estimates b̂1 and b̂2 remain very close
to zero. The orientation disturbance θ̂1 increases to a value
of approximately 0.05Nm. This suggests that there are minor
modeling errors in the roll-loop of the quadrotor, most likely in
the position of the center of mass and the moments produced by
the propellers. The two other orientation disturbances remain
small. Moreover, we observe that the yaw angle of the quadrotor
ψ := atan2(ν2, ν1), successfully tracks the desired yaw angle
ψd. The desired propeller torque, total propeller thrust, and
logic variable q, are plotted in Fig. 5. The two spikes in the
desired torque correspond to lift off and the abrupt change
in the desired trajectory at t = 30 s, respectively. The logic
variable q does not change sign during the motion.

V. CONCLUSIONS

This letter has addressed the global position and heading
tracking control problem for multirotor aerial vehicles. The
proposed control law achieves uniform global asymptotic posi-
tion and heading tracking. Global asymptotic heading tracking

is achieved by utilizing a novel construction of the desired
rotation matrix. Moreover, the use of tuning functions ensures
that the number of parameter estimates is equal to the number
of unknown parameters. In turn, this guarantees that the param-
eter estimates in both the translational and rotational dynamics
converge to their actual values. The effectiveness of the control
law has been demonstrated through experiments.
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