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Abstract— This paper presents a novel strategy for au-
tonomous teamed exploration of subterranean environments
using legged and aerial robots. Tailored to the fact that
subterranean settings, such as cave networks and underground
mines, often involve complex, large-scale and multi-branched
topologies, while wireless communication within them can be
particularly challenging, this work is structured around the
synergy of an onboard exploration path planner that allows for
resilient long-term autonomy, and a multi-robot coordination
framework. The onboard path planner is unified across legged
and flying robots and enables navigation in environments with
steep slopes, and diverse geometries. When a communication
link is available, each robot of the team shares submaps
to a centralized location where a multi-robot coordination
framework identifies global frontiers of the exploration space
to inform each system about where it should re-position to best
continue its mission. The strategy is verified through a field
deployment inside an underground mine in Switzerland using
a legged and a flying robot collectively exploring for 45 min,
as well as a longer simulation study with three systems.

I. INTRODUCTION

The collective progress in robotic systems has enabled
their utilization in a multitude of autonomous exploration
and mapping missions. Aerial and ground robots are now
employed in diverse search and rescue [1–4], industrial in-
spection [5–12], surveillance [13], planetary exploration [14–
19] and other mission scenarios. Despite the progress, a set
of environments remain particularly demanding for robots to
autonomously explore and challenge the state-of-the-art in
robot navigation and autonomy. Among them, subterranean
settings such as underground mines, subway infrastructure
and cave networks are especially strenuous. Motivated by
the goals and aspirations of the DARPA Subterranean Chal-
lenge [20], this work culminates on a sequence of devel-
opments in autonomous exploration path planning for both
legged and aerial robots that have enabled the robots of
Team CERBERUS to explore underground mines, multi-level
power plants, tunnels, sewers, caverns, lava tubes and more.

Specifically, we present two synergistic contributions,
namely a) “GBPlanner2”, a revised and enhanced version

This material is based upon work supported by the Defense Advanced Re-
search Projects Agency (DARPA) under Agreement No. HR00111820045.
The presented content and ideas are solely those of the authors.

1University of Nevada, Reno, 1664 N. Virginia, 89557, Reno, NV, USA
mkulkarni@nevada.unr.edu

2ETH Zurich, Leonhardstrasse 21, 8092, Zurich, Switzerland
3NTNU, O. S. Bragstads Plass 2D, 7034, Trondheim, Norway
? The authors have contributed equally.

Fig. 1. Instances of autonomous exploration of a subterranean environment.

of our Graph-Based subterranean exploration path Plan-
ner [21] to uniformly guide both legged and aerial robots
(open-sourced at https://github.com/ntnu-arl/
gbplanner_ros), as well as b) the newly developed
CoOperation for HeterOgeneous Robot Teams (COHORT)
framework that facilitates the synergistic exploration of large-
scale, multi-branching, and diverse subterranean settings hav-
ing both narrow and wide sections. The two methods working
in harmony enable the autonomous cooperative exploration
and mapping of complex underground domains using legged
and flying systems that coordinate their exploration, while
each retains complete individual exploratory capacity.

To verify the proposed solution for teamed exploration
path planning, a set of evaluations are presented including a
deployment in the Hagerbach underground mine in Switzer-
land (Figure 1) using legged and aerial robots exploring for
37 min and 8 min respectively, as well as a large-scale simu-
lation study. We demonstrate that due to the individual prop-
erties of GBPlanner2 and COHORT, as well as their synergy,
the robots present efficient autonomous exploration behaviors
that are resilient against the complexities introduced by the
vast scale of the environments, the challenging terrain and
complicated geometries involved, as well as the difficulty of
establishing reliable communications. A page of results is
maintained at https://s.ntnu.no/exploration.

In the remaining paper, Section II presents related work,
followed by the problem statement in III. The proposed
approach is detailed in Section IV, with evaluation studies
in Section V and conclusions in Section VI.

https://github.com/ntnu-arl/gbplanner_ros
https://github.com/ntnu-arl/gbplanner_ros
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II. RELATED WORK
A rich body of work has focused on the problems of au-

tonomous single and multi-robot exploration [21–35]. Early
work in single-robot exploration included the sampling of
“next–best–views” [25], and the detection of frontiers [26],
while recent efforts have focused on powerful planning tech-
niques such as random trees and graphs possibly combined
with volumetric calculations [22, 23, 36–39], receding hori-
zon techniques [23], multi-objective optimization [36, 37],
information-theoretic schemes [40], learning-based meth-
ods [41], and approaches that account for the likelihood
of accumulating localization drift [22, 42]. In multi-robot
exploration, the seminal work in [30] presented a strategy
for multi-robot coordination exploiting a grid map and a
planning policy that tries to minimize the collective ex-
ploration time by considering both the cost of reaching a
certain frontier cell and the “exploration utility” of each
such cell as a function of the number of robots moving to
that cell. Recent efforts have included distributed inference-
based schemes [35], volumetric gain-driven multi-robot ex-
ploration [32], methods on the collaboration of ground and
aerial systems [43], techniques that consider the effect of lim-
ited communication range and endurance [29, 31], concepts
on how robots can work together to physically clear blocked
paths [44] and more. The community has recently focused
on the specific problem of subterranean exploration given
the accelerating effects of the DARPA Subterranean Chal-
lenge. In response, groups around the world have proposed
novel methods both for single- and multi-robot exploration.
This includes techniques for quadruped robots [28], meth-
ods tailored to fast exploration using aerial platforms [27],
schemes for both legged and flying systems [21], hierarchical
frameworks to exploit dense local and sparse global informa-
tion [45], multi-robot exploration strategies [34], approaches
exploiting underground mine and cave topologies [46, 47],
and significant field robotics work [48–51]. Motivated by
the importance of autonomous exploration and tailored to
the teamed deployment of legged and flying robots inside
subterranean settings, this work contributes two methods,
namely on teamed exploration coordination and single-robot
planning that enable resilient multi-robot teaming and reli-
able single-robot operation when communication to and from
a robot is not possible, ability to negotiate challenging terrain
and capacity to map diverse and large-scale geometries.

III. PROBLEM FORMULATION
The overall problem considered in this work is that of

autonomously exploring a bounded volume V ⊂ R3 enclos-
ing a subterranean environment with a heterogeneous team
of robots given models of their motion constraints, as well
as of their onboard depth sensors {Si} with horizontal and
vertical Fields Of View (FoV) [F iH , F

i
V ], and effective range

dimax. As subterranean environments such as underground
mines, subway infrastructure, and caves often consist of
complex networks of branches, multiple levels, large rooms,
vertical structures, steep slopes, and anomalous terrain, we
concentrate on the teaming of legged and flying systems that

exploit their synergies, while maintaining a high degree of
individual autonomy.

The total exploration problem is cast globally and refers
to determining which parts of the initially unmapped space
Vunm

init
= V are free Vfree ⊂ V or occupied Vocc ⊂ V .

The environment is represented as an occupancy map M
discretizing the volume in (free, occupied or unknown)
cubical voxels m ∈ M with edge size rV . Since most
depth sensing modalities cannot pass through objects, the
environment may contain hollow, narrow, or more generally
occluded sections that can not be explored:

Definition 1 (Residual Volume) Let Ξ be the simply con-
nected set of collision free configurations and V̄m ⊆ Ξ the
set of all configurations from which the voxel m can be
perceived by a depth sensor S . Then the residual volume is
given as Vres =

⋃
m∈M(m| V̄m = ∅).

The multi-robot exploration problem is then defined as:

Problem 1 (Multi-Robot Volumetric Exploration) Given a
bounded volume V and a team of NR heterogeneous robots,
find a set of NR collision free paths σi, i = 1, ..., NR
starting at an initial configuration ξinit ∈ Ξ that leads to
identifying the free and occupied parts Vfree and Vocc, such
that there does not exist any collision free configuration from
which any piece of V \ {Vfree, Vocc} could be perceived
(Vfree ∪Vocc = V \Vres). Feasible paths σi of this problem
are subject to the limited Field of View (FoV) of the sensor,
its modeled range, and applicable robot motion constraints.

As noted however, it is in the core principle of this
work that multi-robot exploration takes place by robots
demonstrating major individual autonomy since subterranean
environments present topologies and materials that may
prohibit continuous network connectivity. Respectively, we
define the single-robot exploration problem given that a
volume V S

k
i ⊂ V is allocated to a robot i at time instance

tk and for a duration T ik.

Problem 2 (Single-Robot Volumetric Exploration) Given a
bounded volume V S

k
i and a robot i, find a collision free

path σSk
i

starting at an initial configuration ξkinit,i ∈ Ξ

that identifies the free and occupied parts V S
k
i

free and V
Sk
i

occ ,
such that there does not exist any reachable collision free
configuration from which any piece of V S

k
i \ {V S

k
i

free, V
Sk
i

occ}
could be perceived. Thus, V S

k
i

free ∪ V
Sk
i

occ = V S
k
i \ Vres. A

feasible path must respect the sensor model, and applicable
motion, namely a max yaw rate and - for legged robots -
traversability limitations requiring that M presents support-
ive ground along every path and its inclination is affordable.

IV. PROPOSED APPROACH
The presented contribution outlines a strategy for multi-

robot ground and flying exploration of predominantly subter-
ranean environments that exploits increased levels of individ-
ual robot autonomy based on a comprehensive exploration
planner. We detail both the new single-robot Graph-Based
exploration Planner (GBPlanner 2.0) and the CoOperation for
HeterOgeneous Robot Teams (COHORT) planning method.



Fig. 2. Outline of the key functional steps of the revised graph-based subterranean exploration planner for aerial and ground (legged) robots.

A. Graph-based Subterranean Exploration Revisited
At the core of the presented policy for autonomous subter-

ranean exploration through ground and aerial robot teaming
is a path planner for single-robot autonomous exploration
of assigned, initially unmapped, underground volumes V S

k
i .

The method builds on top of our previous open-source work
on graph-based subterranean exploration [21], which we
will refer to as “GBPlanner1”. The new GBPlanner version
presented in this paper, “GBPlanner2”, has been heavily
improved to best handle challenging subterranean geometries
and steep slopes, and to provide improved computational
performance. GBPlanner2 retains the bifurcated local/global
planning architecture originally proposed, with the local
planner being responsible for identifying efficient explo-
ration paths that respect the robot motion and perception
constraints, while the global planner is triggered to re-
position the robot towards a previously perceived frontier of
the exploration space when the local layer reports inability
to find a path of significant exploration gain or to ensure
that the robot returns home within its endurance limits.
Figure 2 provides a graphical overview of GBPlanner2. Like
GBPlanner1, the new method considers exploration gain, as
the new volume to be observed by the robot i if it moves
along a certain path σL,best given a depth sensor Si with
FoV [F iH , F

i
V ] and modeled range dimax (Algorithm 1).

As compared to GBPlanner1, most changes are in the
local exploration step. For ground robots, the method now
explicitly handles the case of (steep) positive or negative
slopes, vertical obstacles, and ditches, thus offering true 3D
exploration capabilities for ground systems. Exploiting the
volumetric map representation based on Voxblox [52], the
method randomly samples vertices in the known free space
within a local bounding box that is adaptively calculated
to best fit the locally explored geometry. To identify the
best fitting bounding box DL, Principal Component Analysis
(PCA) is performed on the locally aggregated point cloud and
the respective normalized eigenvectors [vx, vy, vz] are scaled
by µV > 0 (tunable). Accordingly, a random local graph GL
can be built. For a flying robot, admissible edge connections

between two vertices are simply collision-free straight line
segments. Conversely, when planning for a ground robot,
the method checks each edge between two vertices by
a) projecting points along the edge onto the ground and
verifying that ground exists and is mapped, thus being able
to support the robot’s traversal, and b) verifying that the
path inclination is within feasible bounds for the given robot
(Algorithm 2). Notably, the projection also queries points on
a circle around the shortest point to the ground as ground
voxels may occasionally be incorrectly mapped as “free”
(e.g., due to high LiDAR incidence angle, water puddles).
This key feature also allows for the organization of vertices in
those that have supportive ground, and those that are in free
space but do not have any ground (occupied) voxels below
them, called “hanging” vertices. They can be connected to
other vertices in GL through edges adhering to the edge
inclination limit and are used for volumetric gain purposes,
but their gain is scaled by e−γH , γH > 0 and the edges to
them are not allowed to be commanded to the robot.

Algorithm 1 Local Planner
1: ξ0 ← GetCurrentConfiguration()
2: GL ← BuildLocalGraph(ξ0) . Algorithm 2
3: ΣL ← GetDijkstraShortestPaths(GL, ξ0)
4: ComputeVolumetricGain(GL) . Algorithm 3
5: gbest ← 0
6: σL,best ← ∅
7: for all σ ∈ ΣL do
8: gσ ← ExplorationGain(σ)
9: if gσ > gbest then

10: gbest ← gσ; σL,best ← σ

11: σL,best ← ImprovePath(σL,best)
12: return σL,best

Provided these modifications, the method then builds a
local random graph as in GBPlanner1. Once the graph is
built, Dijkstra’s algorithm is used to derive shortest paths
from the robot’s location to all vertices. Along these paths
ΣL, volumetric exploration gain is calculated over each of



Algorithm 2 Build a Local Graph GL (ξ = [x, y, z, ψ]T )

1: function BUILDLOCALGRAPH(ξ0)
2: V← {ξ0}; E← ∅ . ξ0[x0, y0, z0, ψ0]T

3: GL = (V,E)
4: DL ← CalculateAdaptiveLocalBound(ξ0)
5: while NV ≤ NV,max and NE ≤ NE,max do
6: ξrand ← SampleFree(DL)
7: if GroundRobot then
8: ξproj ← ProjectPoint(ξrand)
9: ξproj .Hanging ← False

10: if not GroundAttached(ξproj) then
11: ξproj .Hanging ← True
12: ξnearest ← NearestVertex(GL, ξproj)
13: e← ProjectEdge(ξproj , ξnearest)

14: ξnew ← ξproj
15: else
16: ξnearest ← NearestVertex(GL, ξrand)
17: e← LineSegment(ξrand, ξnearest)

18: ξrand.Hanging ← False
19: ξnew ← ξrand
20: if AdmissibleEdge(e) then
21: V← V ∪ {ξnew}; E← E ∪ {e}
22: Ξnear ← NearestVertices(GL, ξnew, δ)
23: for all ξnear ∈ Ξnear do
24: if GroundRobot then
25: enear ← ProjectEdge(ξnew, ξnear)

26: else
27: enear ← LineSegment(ξnew, ξnear)

28: if AdmissibleEdge(enear) then
29: E← E ∪ {enear}
30: return GL = (V,E)

Algorithm 3 Compute Volumetric Gain
1: function COMPUTEVOLUMETRICGAIN(GL)
2: Vl ← GetLeafVertices(GL)
3: while Vl 6= ∅ do
4: v ← Vl[0]
5: Vnear ← NearestVertices(GL, v, ρ)
6: v.Gain← V olumetricGain(v)
7: if v.Hanging then
8: v.Gain← e−γHv.Gain
9: for all vnear ∈ Vnear do

10: vnear.Gain← v.Gain
11: if vnear.Hanging then
12: vnear.Gain← e−γHvnear.Gain

13: Vnear ← Vnear \ vnear

their vertices and accumulated to derive the total gain of
a path as in [21]. Since this process is among the most
computationally demanding within the method, GBPlanner2
offers the option to calculate the gain only on leaf vertices
of the Dijkstra paths and also cluster these vertices using a
radius ρ > 0 thus allowing to approximate the gain of some
vertices based on the calculated gain of a nearby vertex.

This modification is tailored to computationally-constrained
micro flying robots operating in very wide, long and tall
environments as ray casting, used to identify the number of
unknown voxels to be observed by a depth sensor from a new
vertex location, can be very demanding. Algorithms 1-3 offer
an overview of the revised local planning in GBPlanner2.
The best path σL,best is derived and conducted by the robot.
Beyond utilizing the revised edges from the local layer
and other small improvements, the global planning stage of
GBPlanner2 is identical to that of GBPlanner1 as in [21].

B. Cooperation for Heterogeneous Robot Teams

COHORT enables teamed operation by heterogeneous
robotic systems, each empowered with single-agent explo-
ration autonomy based on GBPlanner2. A prerequisite for
this task is that all robots’ poses and maps are expressed in
the same inertial frame IC , an ability facilitated by the global
multi-modal, multi-robot mapping (M3RM) and Voxgraph
frameworks detailed in [48, 53, 54]. M3RM requires software
to run both onboard the robot and on a Centralized Computa-
tional Hub (C2H), with the robot iteratively sending selective
and compressed local map data and the C2H improving
and aligning the map estimates of the robots thus requiring
a (possibly intermittently available) communication link.
COHORT operates as outlined in Figure 3 in order to support
the exploration of the unknown volume V (and mapM) by a
team of NR robots. At any time, every robot i, i = 1, ..., NR
builds a local “submap” Ml

i which is the volumetric repre-
sentation of the environment over a predefined window as
developed by Voxblox [52] with resolution rC . The submap
window is defined based both on a fixed time-slot (here 45 s)
and a maximum robot displacement from the point of starting
a new submap (here 20 m) with a new submap initiated when
any of these thresholds is exceeded.

Once submaps are received and aligned with the global
map estimate MC using Voxgraph [54], they are processed
by COHORT. Upon receiving a new submap, wavefront
propagation is performed to identify map frontiers. As wave-
front we define the list of unvisited voxels neighboring
visited ones in this submap. The wavefront propagation
utilizes Breadth-First Search (BFS) and results in getting
back adjacent voxels forming common frontiers which are
defined as a collection of neighboring frontier points (cen-
troids of unknown voxels neighboring a free mapped voxel).
Using the extremities of the visited voxels above, a local
bounding box DMl

i
is derived per submap. Within DMl

i

the method randomly samples a fixed number of vertices
expressed in the local frame Bli of that submap which are
also checked for lying in free space. Using the sampled set of
free points ([x, y, z]T ) in the submap, a graph GMl

i
(called

“subgraph”) with NC vertices and all collision-free edges
within a radius ρC > 0 of each of the sampled points,
alongside sampled points over the trajectory of the robot
withinMl

i is constructed. Finally, the built GMl
i

is added to
the COHORT’s global graph of all robots GC which in turn
grows to expand through all the explored space from all the
robots as subgraphs are integrated into it.



Fig. 3. Outline of how COHORT combines submaps from multiple robots to identify global frontiers and build individual subgraphs, that are merged to
form a global graph to allow re-positioning to those frontiers in the global map that are likely to best enable future exploration.

When a new submap is added or the transformation to the
submaps changes due to updated multi-robot map alignment,
each frontier point is checked in the global map MC for
occupancy. If a frontier point for a submap turns out to
lie in a known voxel for another submap, that frontier
point is deleted. The frontier points are then clustered into
frontiers by identifying all connected components via BFS
with 26-connectivity [55]. Frontiers that are smaller than a
set minimum size fmin > 0 (here, fmin = 250) are discarded
and their frontier points are deleted. Once each frontier is
re-clustered, then the global graph is checked to identify the
points of GC that are near the geometric centroid of the
points forming the frontier. These points are linked to the
frontier and facilitate multi-robot exploration coordination.

Specifically, multi-robot exploration in COHORT takes
place by exploiting the above data structure organization
and the services of GBPlanner2. In particular, any robot
in the team operates by exploring the environment using
GBPlanner2 but periodically seeks to update where it ex-
plores based on COHORT by re-positioning itself towards a
frontier of the map MC as explored by the team of robots.
In detail, as long as a robot is in communication range to
the C2H (possibly via multiple network-hops through other
robots or breadcrumbed communication nodes as in [48]),
at every TC seconds of exploration the following steps are
taken: First, the distances from all robots to all points on
the COHORT’s global graph GC and the distances from
the home location (ξinit) to all GC vertices are calculated
using Dijkstra. Then, the frontier points are all expressed into
the global frame IC and re-clustered such that overlapping
frontiers from different submaps are not treated separately
and an accurate estimate of the size of each frontier is
derived. The re-clustered frontiers are sorted and the best
nC% are derived. Among the top nC% frontiers, the one
that is closest to the robot calling for re-positioning is
derived and using GC the path for the robot to traverse
is found, expressed in the robot’s coordinate frame, and
commanded to the system. COHORT also provides to the
robot a new (fixed-size) bounding box DSk

i updating the
GBPlanner2 exploration goal volume V S

k
i such that it is

now around the targeted frontier region. Upon arrival to the

selected frontier, GBPlanner2 is re-triggered using the new
V S

k
i (DSk

i ) as goal volume to explore. After TC seconds
of GBPlanner2-based exploration, COHORT will be called
again to update where the robot will be exploring, while the
procedure continues iteratively on this robot and works in
an identical fashion across all robots. Notably, when a robot
interacts with COHORT it also stores onboard the location
it was at during that interaction. If at a subsequent attempt
to interact with COHORT the communication channel is not
available, the system will check if the whole assigned V S

k
i is

explored and if so, it will return to the point that last offered
a communication link (or iteratively proceed to previous such
points if needed). If V S

k
i is not fully explored yet, the robot

continues for an extra T eC seconds using GBPlanner2 before
it backtracks to a previous communication point.

V. EVALUATION STUDIES
To systematically evaluate the proposed contributions, we

present two sets of experimental and simulation results. The
first involves the field deployment and exploration of differ-
ent sections of the Hagerbach underground mine in Switzer-
land using an ANYmal C quadruped robot [56, 57], and a
custom flying robot called “RMF-Obelix” (built as a follow-
up of the work in [58]) with both implementing GBPlanner2
onboard. ANYmal C integrated a Velodyne VLP-16 which
was used for the purposes of mapping and volumetric gain
evaluation. RMF-Obelix is a lightweight (1.4 kg) aerial robot
integrating an OUSTER OS0-64 LiDAR. Table I summarizes
the GBPlanner2 parameters for ANYmal C and RMF-Obelix,
alongside the total robot endurance Tend, mission time TM ,
average processing time tp and mapping resolution rV , while
µV = 50 m. It is noted that both systems rely on our
work in [59] for localization and mapping, but have very
diverse processing capabilities, namely an Intel i7 8850H
CPU with 6 cores (12 threads) on ANYmal and an Amlogic
A311D ARM big.LITTLE (4× A73 @2.2 GHz, 2× A53
@1.8 GHz) CPU for RMF-Obelix, and thus have different
GBPlanner2 settings. Figure 4 presents the results of this
mission with ANYmal C exploring for 37 min and RMF-
Obelix for 8 min, both without any manual interruptions,
automatically re-positioning to different sections of the mine
and safely returning to home. We also provide detailed



Fig. 4. Autonomous exploration using the ANYmal C legged robot and RMF-Obelix flying system running GBPlanner2 in the Hagerbach underground
mine in Switzerland. ANYmal C conducted exploration for 37 minutes demonstrating navigation over slopes, global repositioning and homing, whereas
RMF-Obelix performed an 8 minute mission including homing. For ANYmal C’s mission, γH = 5 is used to tune the weight of hanging vertices.

Parameter ANYmal C RMF-Obelix
rV 0.2 m 0.3 m
NV,max 1000 500
[FH , FV ], used dmax [360, 30]◦, 30 m [360, 90]◦, 30 m
ρ 0 (disabled) 1 m
Tend 70 min 8.5 min
TM 37.6 min 8.2 min
tp 605.53 ms 278.59 ms

TABLE I
GBPLANNER2 PARAMETERS FOR BOTH ROBOTS.

video overview of these missions, available at https:
//s.ntnu.no/exploration.

To evaluate COHORT and its inter-operation with GBPlan-
ner2, we present a large-scale simulation scenario involving
3 flying robot models that our team has openly released in
the DARPA Subterranean Challenge repositories [60] (Robot
1: RMF-Obelix [61], Robots 2,3: M100 [62]) but with
“virtual endurances” of [2000, 2500, 2500] s respectively.
Figure 5 presents the results for teamed exploration and
shows the path of each robot, instances where COHORT
re-positioned robots to global frontiers of the commonly
explored map (with rC = 0.4 m, NC = 200, ρC = 4.0 m,
nC% = 50%), and examples of exploration outside of
communications range. Every time COHORT commands a
robot to re-position itself towards a frontier, GBPlanner2 is
engaged (TC = 50 s, DSk

i = 360 × 360 × 20 m) onboard
the robot. As communication constraints are also modeled, at
certain instances GBPlanner2 continues the exploration for
an additional T eC = 150 s before commanding the robot to
backtrack to a node where communications were available.

VI. CONCLUSIONS

This paper presented a complete framework for the au-
tonomous teamed exploration of complex environments such
as large-scale, multi-branching subterranean settings involv-
ing challenging terrain. The method relies on the harmonic
synergy between resilient exploration path planning at the
level of each individual robot, combined with a multi-robot

Fig. 5. Instances of teamed exploration with 3 flying robots showing the
combined map at the C2H (1), frontiers (5), and path to frontier outside
communication range with new bounds calculated by COHORT (2,3) using
its global graph. GBPlanner2 explores outside communication range (shown
as cyan circles) and returns after T e

C (4,6,7). Map 3D views in (8,9).

exploration coordination framework that exploits aligned
maps to identify the global frontiers of the mapped en-
vironment and is robust against communications-deprived
environments. To evaluate our contribution, a set of large-
scale field deployments and simulations are presented.

https://s.ntnu.no/exploration
https://s.ntnu.no/exploration
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