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A B S T R A C T   

The buffeting response of a 5000-m-long curved floating bridge is investigated for different mean wind di
rections, with emphasis on the wind load formulations and use of experimental data. Wind tunnel tests, with a 
section model of the bridge girder, provided six aerodynamic coefficients for different yaw and inclination an
gles. A comprehensive 3D buffeting formulation with bivariate polynomial fits of the coefficients is proposed and 
investigated. For cases where the skew wind data is not available, alternative 2D formulations, including the 
traditional “cosine rule”, are examined. A finite element model is established together with the three-dimensional 
wind field, in both frequency- and time-domain, and the structural response is analysed. The response is 
compared for: linear and non-linear coefficient formulations, different buffeting load formulations, different 
fitting methods, different coefficients considered and different quasi-steady motion-dependent force formula
tions. The case study demonstrates limitations of the 2D buffeting formulations, in particular of the “cosine rule”, 
and further supports the use of 3D buffeting formulations, the gathering of comprehensive data for skew wind 
loads and the use of constrained polynomials when fitting and extrapolating the data. This study also provides 
valuable insight on how to perform these analyses and overcome some of the practical challenges.   

1. Introduction 

The Norwegian Parliament has a long-term plan to develop and 
improve the E39 Coastal Highway Route, outlined in Fig. 1 (Samferd
selsdepartement, 2017). Within this plan lies the stretch between the 
cities of Stavanger and Bergen, where a roughly 5-km-long floating 
bridge is planned to cross the Bjørnafjord. Such a pioneering project 
comprises many challenges, with the present work focusing on the wind 
loads and skew wind effects in particular. 

Bridges located in steep surroundings are often subject to wind 
channelling effects, marked by narrow distributions of mean wind di
rections, which can differ drastically from those observed in nearby 
offshore measurements. This observation is seen to a different extent in 
Lysefjord (Cheynet et al., 2020), Hardangerfjord (Castellon et al., 2021), 
and Sulafjord (Midjiyawa et al., 2021). Contrastingly, near-flat sur
roundings such as at the Donghai Bridge allow wider and more uniform 
distributions of mean wind directions (Zhou et al., 2020). Bjørnafjord, 

shown in Figs. 1 and 2, exhibits topographic effects that lie in-between 
the examples mentioned, with moderate wind channelling effects and 
multiple relevant wind directions (Cheynet et al., 2018). The planned 
bridge deck is curved in the horizontal plane, and it also includes ver
tical curvatures and slopes. This geometry naturally gives rise to skew 
winds along most or all of its length. Other motivations to study skew 
wind effects include e.g. assisting full-scale studies which deal with wind 
and bridge response data for arbitrary mean wind directions, fatigue 
analyses which require a comprehensive understanding of the environ
mental loads, as well as bridge operation and maintenance decision 
support. 

Traditionally, when analysing the buffeting response of a bridge 
deck, only the wind components perpendicular to the deck are consid
ered and treated as a 2D flow-structure interaction problem in the 
normal plane, as introduced in (Davenport, 1961a). This formulation, 
denoted as a 2D approach, can be supplemented with an axially oriented 
aerodynamic load whenever the bridge is sensitive to axial loads, 
making it a so-called 2D + 1D approach where 1D represents the axial 
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Table of notations 

Variables 
β Local mean yaw angle 
β̃ Local instantaneous yaw angle (turbulence dependent) 
β* Smallest angle between the xy-projection of Xu and the y 

axis 
βCardinal Global mean yaw angle, with respect to the wind cardinal 

directions 
βG Global mean yaw angle, with respect to the Gs coordinate 

system 
βrx=0 β before rotating the model test by rx 
Δi Displacements in the degree-of-freedom i 
ΔXu,ΔYv,ΔZw Distance between two reference points, in the Xu, Yv 

and Zw directions 
θ Local mean inclination angle 
θ̃ Local instantaneous inclination angle (turbulence 

dependent) 
θyz, θ̃yz yz-plane projections of θ and θ̃ 
θG Global mean inclination angle 
ρ Air density 
σΔi Standard deviation of the displacements in the i axis 
A Matrix dependent on tested β and θ angles such that Ax 

returns polynomials 
Ai Non-dimensional parameter to regulate the frequency 

distribution of i = u,v,w 
b Vector of tested aerodynamic coefficients 
B; B Cross-section width; Diagonal matrix: diag(B,B,B,B2,B2B2)

ci Polynomial coefficients 
Ci, Ci Static aerodynamic coefficient in the i axis; Vector of static 

aerodynamic coefficients in the coordinate system i 
C

′β
i Partial derivative of Ci with respect to β 

C′θ
i Partial derivative of Ci with respect to θ 

f Frequency, in Hertz 
f mean,i Vector of mean wind forces, per unit length, in the 

coordinate system i 
H Cross-section height 
Ii Turbulence intensity of i 

Ki,j Non-dimensional decay coefficient of the turbulence 
component i, to decrease coherence along the direction j 

L Bridge element length 
Li,Xu Characteristic length scale of i in the direction of Xu 

P Polynomial function 
Si Auto spectral density of the turbulence component i 
Sii, Si1 i2 Diagonal entry of the cross spectral density matrix of the 

turbulence component i; Off-diagonal entry of the cross 
spectral density matrix associated with turbulence 
components i1 and i2 

SΔi Auto spectral density of the nodal displacement response in 
the i axis 

Tsym Transformation matrix to impose symmetry properties 
u Turbulence component along the mean wind 
U, Ui, U Mean wind speed; mean wind projection onto the i axis or i 

plane; Mean wind vector 
Ũ, Ũi Local instantaneous wind speed; local instantaneous wind 

projection onto the i axis or i plane (both turbulence 
dependent) 

Urx=0 Mean wind vector, before rotating the model test by rx 
v Horizontal turbulence component across the mean wind 
w Upward turbulence component, perpendicular to u and v 
x Vector of polynomial coefficients 

Accents / styles 
̃ Time-varying quantity due to turbulence 
boldface Variables in bold represent vectors and matrices 

Acronyms 
1D, 2D or 3D 1-, 2-, or 3-dimensional in space 
CFD Computational fluid dynamics 
DOF Degrees-of-freedom 
FEM Finite element method 
QS Quasi-steady 

Coordinate systems and respective axes 
Gs (X,Y,Z) Global structural (X,Y,Z, rX, rY, rZ)
Ls (x,y, z) Local structural (x,y, z, rx, ry, rz)
Gw (Xu,Yv,Zw) Global mean wind (Xu,Yv,Zw, rXu, rYv, rZw)

Fig. 1. a) E39 Coastal highway route project, Norway. b) One proposed floating bridge solution for the Bjørnafjord, Norway.  
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direction, as described in (Costa et al., 2022). When the mean wind is in 
the same horizontal plane as the bridge girder, these approaches are 
often simplified into what is generally referred to as the “Cosine rule” or 

“Cosine + Sine rule” (see e.g. (Tanaka and Davenport, 1982) and 
(Kimura and Tanaka, 1992) respectively). 2D formulations are the only 
feasible option when only univariate aerodynamic coefficient functions 
C(θyz) are available (here, θyz is the projection of the inclination angle θ 
onto the normal yz plane shown in Fig. 3). Such univariate aerodynamic 
coefficients are often obtained in wind tunnel tests with the deck placed 
normal to the wind, or through 2D CFD simulations of the deck 
cross-section. 

Literature, however, includes several example cases where the 2D 
approaches underestimate the bridge buffeting response when 
compared to measured data. This was observed for example in (Tanaka 
and Davenport, 1982), (Kimura and Tanaka, 1992), (Zhu and Xu, 2005), 
(Xu and Zhu, 2005), (Wang et al., 2011), (Huang et al., 2012), (Li et al., 
2016) and (Jian et al., 2020). A brief description of each of these literary 

Fig. 2. Wind rose of long-term synthetic data at the centre of the Bjørnafjord (60◦06′N 5◦22′ E), corrected by nearby wind measurements.  

Fig. 3. Global wind – Gw – (Xu,Yv,Zw) and global structural – Gs – (X, Y,Z) coordinate systems; global mean yaw angle βG and global mean inclination angle θG; 
Global wind – Gw – (Xu,Yv,Zw) and local structural – Ls – (x, y, z) coordinate systems; local mean yaw angle β and local mean inclination angle θ. 

Table 1 
Input parameters for the wind simulation.  

Au = 6.8 Av = 9.4 Aw = 9.4 

Lu,Xu = 111.8 m Lv,Xu = 27.9 m Lw,Xu = 9.3 m 
Ku,Xu = 3.0 Kv,Xu = 6.0 Kw,Xu = 3.0 
Ku,Yv = 10.0 Kv,Yv = 6.5 Kw,Yv = 6.5 
Ku,Zw = 10.0 Kv,Zw = 6.5 Kw,Zw = 3.0 
Iu = 0.137 Iv = 0.115 Iw = 0.082 
U = 33.4 m/s (Z = 14.5 m)

Fig. 4. Comparison between the target and numerically generated values of the normalized auto-spectra of turbulence components and of one normalized co- 
spectrum of u as a function of the frequency and the distance of two colinear reference points along the Yv axis, using the parameters from Table 1. Welch’s 
method was used in this figure (with 20 non-overlapping windows) for a better visual comparison. 
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examples was introduced in (Costa et al., 2022) and is not repeated here. 
To improve the theoretical buffeting models, a 3D formulation was 

originally developed in (Zhu, 2002), where bivariate aerodynamic co
efficients C(β, θ) are first estimated in a wind tunnel for different com
binations of the yaw angle (β) and the inclination angle (θ), and then 
included in the analysis accordingly. Diverging ratios of aerodynamic 
coefficients and their respective “Cosine rule” approximations were re
ported by Zhu, signifying important differences between 2D and 3D 
approaches. A follow-up work in (Costa et al., 2022), which made 
further improvements to these approaches, also provides a useful 
overview of the different theoretical skew wind buffeting models, and is 
used as the basis for the current case study. 

Svend Ole Hansen ApS performed a series of wind tunnel tests on a 

section model of the bridge girder studied. The gathered data is pre
sented and used in this study. Aerodynamic coefficients at 30 different 
combinations of β and θ are estimated. Despite obtaining results for β up 
to 50◦, beyond a range previously documented in the literature, signif
icant extrapolations are still necessary for a full description of the buf
feting response under skew winds. The challenges of fitting the data and 
extrapolating the results are carefully presented and discussed. Con
strained polynomial fits are proposed and compared with their uncon
strained counterparts. A comparison is made between the univariate 
polynomial fits that do not consider the skew wind data at β ∕= 0◦ and the 
bivariate polynomial fits that consider all the data. The traditional 
“Cosine rule” extrapolation is also included for comparison. 

A finite element model is developed exclusively in Python, together 
with the different theoretical buffeting models. Buffeting analyses are 
conducted and compared in both frequency- and time-domain. Analyses 
that use non-linear aerodynamic coefficients are compared with their 
linearized counterparts. The different skew wind formulations, namely 
2D, 2D + 1D and 3D, and the different fitting methods are compared in 
terms of bridge response. Finally, the effects of the quasi-steady motion- 
dependent forces are assessed, using the formulation presented in (Zhu, 
2002) as well as the main and alternative formulations presented in 
(Costa et al., 2022). 

2. Case study: A curved floating bridge in Bjørnafjorden 

The bridge considered in this study is one of four proposed alterna
tives to cross the Bjørnafjord in Norway. Three floating bridge alterna
tives with several pontoons moored to the seabed, and one alternative 
without any mooring lines, have been proposed (Norwegian Public 
Roads Administration, 2019a) (Norwegian Public Roads Administra
tion, 2019b). Any one of these alternatives promises to extend the cur
rent longest floating bridge record, from 2350 m (White, 2013) to 
roughly 5000 m. The case studied herein is the alternative without 
mooring lines, which owes its horizontal stiffness to its curvature, with a 
horizontal radius of also 5000 m. This unprecedently long and unique 

Fig. 5. Cross-section of the bridge girder used for the model test (including the wind guide vanes) [mm].  

Fig. 6. Model setup for.(β, θ) = (0◦, 0◦)

Fig. 7. Model setup for.(β, θ) = (50.94◦, − 1.89◦)

Fig. 8. Model parts: 1) Disconnected pseudo ends; 2) 6 DOF force sensor; 3) 
rotary joint for rx; 4) bridge girder; 5) rotary table for rZ; Schematic relation 
between the rotation rx, the mean wind vectors Urx=0 (before the rotation) and 
U, and the angles βrx=0, β, θ, θyz. 
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structure is fixed at both ends and will be subject to various environ
mental loads. 

The coordinate systems used and referred to hereafter are shown in 
Fig. 3, where the global wind axes Xu, Yv and Zw coincide with the di
rections of u, v and w, respectively, which are the three wind turbulence 
components, namely the along-wind, the horizontal across-wind and the 
remaining upward orthogonal component. X, Y, Z and x, y, z are the 
global and local structural axes, respectively. 

2.1. Wind characteristics 

The wind field is, for the sake of simplicity, considered a stationary, 
homogenous stochastic process with equal velocity, turbulence, and 
coherence properties, for all mean wind directions. This simplification 

isolates the effect of the wind direction on the bridge aerodynamics and 
the resulting structural response. The single-point spectrum used, shown 
in eq. (1), is given by the Norwegian bridge design manual (Norwegian 
Public Roads Administration, 2015), which is a “blunt model” (Olesen 
et al., 1984) inspired by the Kaimal spectrum (Kaimal et al., 1972). The 
normalized co-spectrum used, whose diagonal and off-diagonal entries 
are shown in eqs. (2a) and (2b) respectively, is a root sum of squares 
adaptation of that in (Davenport, 1961b), to consider the 
three-dimensionality of the wind field. The correlation between 
different turbulence components was assumed to be zero, to comply 
with the design manual and for simplicity. However, the effects of a 
non-zero Suw are potentially relevant, in particular for low natural fre
quencies, as suggested by (Øiseth et al., 2013) and by another ongoing 
study. The relevant parameters are summarized in Table 1, for Z =

Fig. 9. Left: Example of one homogeneous mean wind direction and associated local mean yaw angles β along the curved floating bridge. Right: Joint and marginal 
probability density functions of the instantaneous yaw and inclination angles, β̃ and θ̃, due to turbulence, at three different bridge nodes. The yz-plane projection of 
inclination angle, θ̃yz, is also included for reference. 

Fig. 10. Values of Tsym and β* to be used in eq. (14), for different β-intervals, to impose symmetry from the tested domain β ∈ [0◦,90◦] to the domain β ∈ ] − 180◦,

180◦], assuming a vertical xz plane of symmetry. 
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Fig. 11. Comparing the C2D(β, θ) fit with the measurements C(β, θ). The fit was obtained with an nth degree univariate polynomial at (β= 0◦, θ) and a 2D approach 
extrapolation to other β as in eq. (12). 

Fig. 12. Assessing the two assumptions of the Cosine rule approximation of the 2D approach, namely that Uyz ≈ Ucosβ (left plot) and θyz ≈ θ (right plot).  
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14.5 m (above sea level). 

f Si(f )
σ2

i
=

Ai f̂ i

(1 + 1.5Ai f̂ i)
5/3 ; where : f̂ i =

f Li,Xu

U
; for i = u, v,w (1)  

Re(Sii(f ,ΔXu,ΔYv,ΔZw))

Si(f )
= exp

⎛

⎝

−

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(

Ki,Xu

f ΔXu

U

)2

+

(

Ki,Yv

f ΔYv

U

)2

+

(

Ki,Zw

f ΔZw

U

)2
√ ⎞

⎠ (2a)  

Re(Si1 i2 (f ,ΔXu,ΔYv,ΔZw))
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
Si1 (f )⋅Si2 (f )

√ = 0, for i, i1, i2 = u, v,w and i1 ∕= i2 (2b) 

Si is the single-point spectrum of the turbulence component i, which 

is then normalized by the frequency f , in Hertz, and the variance σ2
i of 

the considered turbulence component. Ai is a non-dimensional param
eter used to regulate the frequency distribution of the turbulence 
component i and Li,Xu is its characteristic length scale, in the Xu direction, 
which is equivalent to its average eddy size. Sii and Si1 i2 represent the 
diagonal and off-diagonal entries of the wind co-spectral matrix, 
respectively. ΔXu, ΔYv and ΔZw are the distances between two reference 
points in the Gw (Global wind) coordinate system. Ki,j represents the 
non-dimensional exponential decay coefficient of the turbulent 
component i, used to decrease its coherence with increasing frequency 
and increasing distance in the direction j = Xu, Yv, Zw. The values 
adopted for each parameter in the case studied are presented in Table 1, 
where Ii = σi/U is the turbulence intensity of i. These values were ob
tained following the latest available version of the project-related design 
basis (Norwegian Public Roads Administration, 2018), except the three 
decay coefficients Ki,Xu which were taken from an aerodynamic design 

Fig. 13. Comparing the CCosine rule(β, θ) fit with the measurements C(β, θ). The fit was obtained with an nth degree univariate polynomial at (β= 0◦, θ) and a Cosine 
rule extrapolation to other β as in eq. (13). 
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report (Norwegian Public Roads Administration, 2019c). 
The wind field can be then generated numerically, through e.g. the 

procedure shown in (Shinozuka, 1972) and (Deodatis, 1996), and used 
in time-domain simulations of the response. Various methods to 
compute the wind field have been proposed, e.g., (Di Paola, 1998; 
Hémon and Santi, 2003; Tao et al., 2021), with different computational 
efficiency. The target and the generated non-dimensional auto-spectral 
densities of each turbulence component, using the parameters from 
Table 1, are illustrated in Fig. 4 (left-hand plot). The first diagonal entry 
of the co-spectrum (concerning the u component) is also illustrated in its 
normalized form and zoomed for the frequencies of interest (right-hand 
plot). It is a function of the frequency and the vector of distances (ΔXu,

ΔYv,ΔZw) between the two reference points, which in this example are 
assumed to be colinear with the Yv axis for illustration purposes. 3-hour 
long Monte Carlo simulations of the wind field, with a sampling fre
quency of 4 Hz, were used. The Welch method, with 20 non-overlapping 
windows, was used in both plots of Fig. 4 for a better visual comparison 
(reducing the noise at the cost of lower frequency resolution). The wind 
simulations for this study were performed in Python. A compromise 

between computational time and accuracy was found by simulating 
several independent 10-min long “wind blocks”. To prevent abrupt 
changes in the wind velocities, these blocks are concatenated with 
8-s-long overlapping periods and a linear transition between velocities 
of adjacent blocks. 

2.2. Wind tunnel experiment 

Svend Ole Hansen ApS performed a series of wind tunnel tests in 
connection with the Bjørnafjord floating bridge project, including static 
section model tests under skew winds (Norwegian Public Roads 
Administration, 2019e). The test results and the raw data were provided 
to the authors and were further examined. The model is 2.40 m long, has 
a geometric scale of 1:80, and has an aspect ratio of 6.2 (length / width). 
A straight strip theory is assumed valid due to the large curvature radius 
of the bridge and the relatively rapid decaying coherence of the wind. 
The relevant static model setup is described in Fig. 5, Fig. 6, Fig. 7 and 
Fig. 8. 

In a wind tunnel setting it is often practical to perform rotations of 

Fig. 14. Free bivariate polynomial fits of the aerodynamic coefficients.  
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the bridge girder model around its longitudinal x axis, denoted as a rx 
rotation, to access the wind loading at different wind angles. For skew 
winds, the effects of such a rotation on the local wind angles are shown 
in Fig. 8. A rx rotation of the girder causes the y and z axes to rotate as 
well but, equivalently and for better illustration purposes, the mean 
wind vector is rotated instead in Fig. 8, as it is the relative angles be
tween the mean wind and the structure that are of interest. Note that rx 
is directly correlated with θyz, with opposite sign, and not with θ. The 
mean wind vectors, before and after the rx rotation, are denoted Urx=0 
and U respectively. Also, the yaw angle may change with rx, from an 

initial value βrx=0 to β. From an initial unrotated position with θ = θyz =

0◦ and with given values of βrx=0 and rx, it is possible to estimate the 
resulting β, θ and θyz using eqs. (3)–(5), which are valid for βrx=0 ∈ [ −

90◦,90◦] ∧ rx ∈ [ − 90◦,90◦]. 

β= arctan
(

tan(βrx=0)

cos(rx)

)

(3)  

θ= − arcsin(cos(βrx=0)sin(rx)) (4)  

θyz = − rx (5) 

Fig. 14. (continued). 
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Also, it may be helpful to obtain θyz from known values of β and θ, 
through eq. (6). 

θyz = arcsin
(

sin θ
/

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1 − sin 2 βcos 2 θ

√
)

(6) 

In 2D analyses, i.e. with only the wind components in the normal 
plane, the aerodynamic loads are traditionally represented in the Drag, 
Lift and Moment directions. However, in 3D analyses, different repre
sentations of the wind forces have been used. In (Costa et al., 2022), 
representing the aerodynamic coefficients in the global wind system Gw 
(Xu,Yv,Zw) achieves a more compact formulation of the buffeting and 
self-excited forces. However, in the present case study, the local struc
tural system Ls (x, y, z) is used to represent the aerodynamic coefficients, 
together with a normalization by the total mean wind speed squared U2 

and the cross-section width B (or B2), such that the vector of mean 
aerodynamic forces per unit length in the Ls system f mean,Ls is expressed 
by eq. (7). 

f mean,Ls=1

/

2ρU2BCLs(β,θ)=1

/

2ρU2

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

B 0 0 0 0 0
0 B 0 0 0 0
0 0 B 0 0 0
0 0 0 B2 0 0
0 0 0 0 B2 0
0 0 0 0 0 B2

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

Cx
Cy
Cz
Crx
Cry
Crz

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

(β,θ)

(7) 

Wind- and structure-based coordinate systems have their pros and 
cons, which should be weighted by the user. The Ls (x,y,z) system rep
resentation was used here, with the following advantages:  

1. It is consistent regardless of wind direction, avoiding transformations 
between instantaneous and mean wind directions when describing 
the static aerodynamic forces.  

2. It is practical in both the experimental setup and the FEM 
implementation.  

3. It enables intuitive and easily defined constraints on the polynomials 
for fitting the aerodynamic coefficients, as shown in Section 2.3.  

4. It describes well the axial direction with x and rx, as well as the 
perpendicular (y) and vertical (z) directions, and it isolates the two 

Fig. 15. Constrained bivariate polynomial fits of the aerodynamic coefficients.  
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often negligible coefficients Cry and Crz, as opposed to a wind- 
oriented coordinate system.  

5. A normal-projection coordinate system representation (such as Drag, 
Moment and Lift) would lead to extra non-linearities due to the 
projections and it would be discontinuous at certain regions (e.g. at 
β = ±90◦ an inversion of the normal drag direction occurs). Also, it is 
often associated with an inconsistent normalization (e.g. Drag 
normalized by H and Lift normalized by B) that could lead to mis
takes in the transformations (and also lose meaning at large angles). 

Note that when Cy is plotted as a function of θ, the plotted curve can 
concave downwards, contrary to the more traditional drag coefficient 
that usually concaves upwards for similar cross-sections (the reason for 
this is that the second derivative of Cy, evaluated at θ = 0, depends on 
the slope of the Lift, the second derivative of the Drag, and the Drag 
itself, though this is not relevant for the analysis). 

A mean wind speed of approximately 5 m/s was used in the exper
iments, together with a turbulent flow setting where horizontal and 
vertical turbulence intensities where measured at 10% and 7%, 
respectively. The static aerodynamic coefficients were obtained by 

Fig. 15. (continued). 
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averaging the measured forces over 60 s, at a 500 Hz sample rate, for 
each mean wind direction. A 6 DOF "ATI Industrial Automation Mini45" 
force/torque sensor was used. 

The tests were conducted for six initial angles of βrx=0 (0◦, 9.90◦, 
19.90◦, 29.90◦, 39.90◦ and 49.90◦) and, for each of them, five different 
rx rotations ( − 3.0◦, − 1, 5◦, 0◦, 1.5◦ and 3.0◦). The tested angles, 
expressed in β and θ, and the measured coefficients are presented in the 
Appendix. 

The results from the wind tunnel tests need to be interpolated and 
extrapolated in order to be used in the buffeting analyses of the finite 
element model at different instantaneous values of β̃ and θ̃ (variables 
represented with a tilde accent are time- and turbulence-dependent). 

To assess the θ̃-interval of interest, 1 million samples of u, v and w 
were generated in Fig. 9, assuming them independent of each other, 
normally distributed, with σi = Ii U obtained from Table 1, and with an 
arbitrary global (homogeneous) mean wind direction. The joint and 
marginal probability density functions of the instantaneous θ̃ =

arcsin(Ũz /Ũ) and β̃ = atan2(− Ũx /Ũy) are plotted, where Ũ =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(U + u)2
+ v2 + w2

√

and where Ũx, Ũy and Ũz are the local x, y and z 

components of Ũ. The yz-plane projection of the instantaneous inclina
tion angle, θ̃yz, is also included for reference. The 10th and 90th per
centiles (P10 and P90) are included for both θ̃ and θ̃yz. 

The domain and variance of θ̃yz increase strongly as β̃ approaches 
±90◦, as anticipated. On the other hand, the tested domain of θ [− 3◦, 3◦]

covers 50.5% of all occurring ̃θ-values. An interval of [− 10◦, 10◦] would 
cover 97.2% of the occurring θ̃-values and is the interval used to illus
trate the aerodynamic coefficient fits in Section 2.3. 

Lastly, it should be mentioned that alternative model test setups 
could be considered when studying very large yaw angles. A rotatable 
girder with elongated pseudo ends on a large rotary table in a large wind 
tunnel or the cantilevered setup presented in (Zhu et al., 2002b) are two 
possibilities. A strip section perpendicular to the x axis was tested, but an 
oblique strip section, aligned with the wind, could also be considered. 
Local flow effects caused by the small air gaps or eccentricities between 
the girder and the pseudo ends, were neglected. These effects were 
assessed in (Zhu et al., 2002b) and (Zhu, 2002), by estimating the six 
aerodynamic coefficients with different air gap alignments relative to 
the wind, using different oblique strips. Small differences were observed 
for some of the DOF (Xu, Zw, rXu), and larger differences were observed 

Fig. 16. Sectional view, at a fixed θ = 0◦, of the different fits of the aerodynamic coefficients.  
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for the other DOF (Yv, rYv, rZw) that were associated with smaller valued 
coefficients. 

2.3. Approximations and fits of the aerodynamic coefficients C(β, θ)

2.3.1. Initial considerations 
The basic mean wind load expressions for the different skew wind 

formulations, namely the 2D approach, the traditional “Cosine rule” 
which is a further simplification of the 2D approach (see Section 2.3.3 
for more details), and the preferred 3D approach are recalled in eqs. (8)– 
(10). 

f 2D
mean,i =

{
1
/

2ρBUyz
2Ci

(
β = 0◦, θyz

)
, for i = y, z, rx

0, for i = x, ry, rz
(8)  

f Cosine rule
mean,i =

{
1
/

2ρBU2cos 2 βCi(β = 0◦, θ), for i = y, z, rx
0, for i = x, ry, rz

(9)  

f 3D
mean,i = 1

/
2ρBU2Ci(β, θ), for i= x, y, z, rx, ry, rz (10)  

where θyz is defined in eq. (6) and Uyz in eq. (11). 

Uyz =U
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1 − sin 2 βcos 2 θ

√
(11) 

For comparison purposes, all coefficients can be re-normalized by 1/
2ρBU2, as in the 3D approach. A direct comparison of the quantities 
C(β = 0◦, θyz)Uyz

2/U2, C(β= 0◦, θ)cos 2 β and C(β, θ) is then possible, 
where the first two quantities are denoted C2D(β, θ) and CCosine rule(β,θ), to 
distinguish them from the C(β, θ) coefficients that were estimated in a 
skew wind configuration for the 3D approach. This is expressed in eqs. 
(12) and (13). 

C2D
i (β, θ) =

{
Ci
(
β = 0◦, θyz

)
Uyz

2/U2, for i = y, z, rx
0, for i = x, ry, rz (12)  

CCosine rule
i (β, θ) =

{
Ci(β = 0◦, θ)cos 2 β, for i = y, z, rx

0, for i = x, ry, rz (13) 

Since no experimental data was yet available for β ∈ [90◦, 180◦] at the 
current project phase, the present cross-section is assumed to have a 
vertical plane of symmetry (xz plane). Then, the extrapolation of the 
coefficient fits from β ∈ [0◦, 90◦] to the desired domain of β ∈

]− 180◦,180◦] is performed through the symmetry transformations 
described in eq. (14) and Fig. 10. 

CLs(β, θ) =TsymCLs(β*, θ) (14)  

where β* is the smallest angle between Uxy (mean wind projection onto 
the xy plane) and the y axis, such that β* ∈ [0◦,90◦]. β* and Tsym are both 
given in Fig. 10, for different β-intervals. 

The different polynomial fits to the experimentally obtained aero
dynamic coefficients are now presented for the different skew wind load 
approaches. The coefficients of determination R2 are included for the 
different polynomial degrees considered. 

2.3.2. Comparing C2D(β, θ) with the measured C(β, θ)
In both the 2D approach and its Cosine rule approximation, only the 

five data points at β = 0◦ are considered since these are the only avail
able ones in a traditional wind tunnel test experiment with the mean 
wind normal to the girder. A univariate polynomial, as a function of θ, is 
fitted exclusively to these five points at β = 0◦, using the least-squares 
method, for each coefficient, and extrapolated onto the β-dimension 
through eq. (12) and the β-dependencies of θyz and Uyz. A comparison 
between the resulting values C2D(β, θ) and the measured values C(β, θ) is 
shown in Fig. 11. The calculated R2 values, which include all the 30 data 
points, are a measure of the goodness-of-fit of such a simplified 
β-extrapolation that is implicitly assumed in a 2D buffeting load 
formulation. 

As expected, the data points at β = 0◦ are well fitted, but the poor fit 
at the remaining data points reinforces the idea that the 2D approach is a 
poor approximation of the actual three-dimensional wind flow and the 
corresponding skew wind load acting on a static bridge girder. More
over, inconvenient discontinuities are obtained at β = 90◦ ∧ θ ∕= 0 for 
Cy and Crx as a result of the yz projections in eq. (12) and the symmetry 
transformations. 

2.3.3. Comparing CCosine rule(β, θ) with the measured C(β, θ)
The Cosine rule is a further simplification of the 2D approach. It 

implicitly assumes that Uyz ≈ U cos β and that θyz ≈ θ. The adequacy of 
these approximations is investigated in Fig. 12. 

The Cosine rule is seemingly identical to the 2D approach when θ =

0, but even in θ = 0 conditions, non-zero θ values need to be tested to e. 
g., estimate the derivatives of the aerodynamic coefficients. In the 

Fig. 17. Yaw angle of the mean resultant wind force β
F→

for different mean 
wind yaw angles β, at θ = 0◦. 

Table 2 
Boundary constraints adopted for the polynomial fits P(β, θ) of each Ci.  

No. Constraint equation Cx Cy Cz Crx Cry Crz 

1 P(0◦ ,θ) = 0 Xa    Xa Xa 

2 P(90◦,θ) = 0  Xb  Xb  Xb 

3 P(90◦,0◦) = 0  Xa,c Xa Xa,c  Xb,c 

4 P(β, − 90◦) = 0 Xa Xb  Xb Xa Xa 

5 P(β,90◦) = 0 Xa Xb  Xb Xa Xa 

6 P(β, − 90◦) = − 1.9   Xd    

7 P(β,90◦) = 1.9   Xd    

8 ∂P/∂β(0◦,θ) = 0  Xe Xe Xe   

9 ∂P/∂β(90◦,θ) = 0 Xf  Xf  Xf  

10 ∂P/∂β(90◦, 0◦) = 0 Xc Xg Xc Xg Xc  

X – adopted constraint. 
a Required by symmetry, for any cross-section. 
b Required by symmetry, for a cross-section with a vertical plane (xz) of 

symmetry. 
c Redundant constraint since it is a subset of another applied constraint. 
d Adopted by assuming that the cross-section grossly behaves as a flat plate at 

θ = ±90◦. 
e Adopted due to: 1) symmetry (for any cross-section), and 2) assumption of 

smoothness (differentiability class C1) at the current boundary. 
f Same as e, but only valid for a cross-section with a vertical plane of 

symmetry. 
g Adopted by assuming that the independence principle is valid locally. 
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domain of the experimental data (β ∈ [0◦,50◦] ∧ θ ∈ [ − 3◦,3◦]), both the 
2D approach and its Cosine rule approximation give similar results, 
meaning that the experimental data is insufficient to compare both these 
approaches accurately. However, a “Cosine rule fit” is also included for 
comparison as it gives significantly different results beyond that domain. 
A univariate polynomial fit is first performed exclusively on the five data 
points at β = 0◦, as in the 2D approach, followed by the extrapolation 
onto the β-dimension through cos 2 β, as in eq. (13). The resulting values 
CCosine rule(β, θ) and the measured values C(β, θ) are compared in Fig. 13 
and the R2 values are provided. 

Both the 2D approach and the Cosine rule give similar comparisons 
and similar R2 values, as expected. One advantage of using the Cosine 
rule approximation is that it provides continuous and smooth co
efficients throughout the domain as a consequence of using cos 2 β. On 
the other hand, the principle on which the Cosine rule is based (a wind 
projection onto the 2D normal plane) is not valid for large values of β 
and θ (as shown in Fig. 12). 

2.3.4. Bivariate polynomial fit to the measured C(β, θ)
Bivariate (β, θ) polynomials are now used to fit the entire experi

mental dataset and later used as input for the 3D approach formulation. 
An example of a maximum 2nd degree polynomial is shown in eq. (15) 
(where e.g., a total 4th degree monomial β2θ2 is allowed). Hereafter, 
“degree” refers to the highest degree used in the polynomial. 

P(β, θ) = c00 + c01θ+ c02θ2 + c10β+ c11βθ+ c12βθ2 + c20β2 + c21β2θ

+ c22β2θ2 (15) 

The c constants are found with the least-squares solution, by mini

mizing 
∑m

k=1
(Pi(βk, θk) − Ci(βk, θk))

2, where k iterates over each of the m 

experimental data points of the aerodynamic coefficient Ci. It can be 

useful to reformulate the function to be minimized as 
∑m

k=1
(Ax − b)2

k . The 

parameters A, x and b are exemplified in eqs. (16)–(18), using the same 
2nd degree polynomial example. 

Fig. 18. Selected mode shapes of the simplified finite element model.  
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A=

⎡

⎢
⎢
⎣

1 θ1 θ2
1 β1 β1θ1 β1θ2

1 β2
1 β2

1θ1 β2
1θ2

1

⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯
1 θm θ2

m βm βmθm βmθ2
m β2

m β2
mθm β2

mθ2
m

⎤

⎥
⎥
⎦ (16)  

x= [ c00 c01 c02 c10 c11 c12 c20 c21 c22 ]
T (17)  

b= [Ci,1 ⋯ Ci,m ]
T (18) 

Then, the Jacobian row matrix of 
∑m

k=1
(Ax − b)2

k becomes simply 

2(Ax − b)TA, and the Hessian matrix becomes 2ATA, which can be 
valuable inputs for an efficient minimization. 

2.3.4.1. Free bivariate polynomial fits. In Fig. 14, free (unconstrained) 
polynomials are fitted to all six aerodynamic coefficients and compared 
with the measured values. 

It is clear that bivariate polynomials provide good fits to the mea
surement data for the four main coefficients Cx, Cy, Cz and Crx, even with 
low degree polynomials. The measured values of Cry and Crz are rela
tively small and irregular. The higher degree polynomials adopted for 
these two coefficients result in somewhat larger extrapolated values but 
their effect on the response is still small, as shown in Section 2.5.4. 

One disadvantage of these free bivariate polynomials is that they 
provide discontinuous or non-differentiable results at the β-boundaries 
(see e.g. a discontinuity at Cy(90◦, θ) or, less noticeably, of ∂Cz/∂β at 
(0◦, θ) and (90◦,θ), which is more clearly illustrated in Fig. 16). Also, due 
to the lack of data at higher values of β and θ, unrealistic values are 
estimated for some of the coefficients in these regions. 

2.3.4.2. Constrained bivariate polynomial fits - the proposed fitting meth
od. The present case study and buffeting analysis covers a large domain 
of yaw angles β from − 180◦ to 180◦ (and inclination angles θ from 
roughly − 10◦ to 10◦), which has only been partly covered by 

Fig. 18. (continued). 
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experimental data. This shortage of data is the first indication of a need 
to control the shape of the polynomials where no data is available, by 
imposing key physical principles at the boundaries. It should be noted 
that neither the present experiment nor previous literature has pre
sented aerodynamic coefficients of bridge decks at yaw angles larger 
than 50◦, and even if data was abundant, the aerodynamic coefficients 
C(β, θ) should still follow certain principles, such as continuity, differ
entiability and symmetry, in order to provide stable and reliable line
arized numerical buffeting analyses. For example, simply mirroring a 
free polynomial fit from a tested domain (e.g. β ∈ [0◦, 90◦]) to an 
extrapolated domain (e.g. β ∈ [90◦, 180◦]) can compromise these prin
ciples. Hence, different shape constraints were introduced for different 
polynomial fits based on the expected aerodynamic behaviour at the 
boundaries of β and θ. Together with the symmetry transformations 
already introduced, these constraints enable smooth transitions of the 
fits at the boundaries (at β = − 90◦, 0◦, 90◦ and ±180◦), ensuring 
continuous and differentiable aerodynamic coefficients throughout the 
domain, as well as enforcing certain assumed polynomial shapes and 
encouraging the polynomials to remain within reasonable values. The 
boundary constraints adopted are presented in Table 2, for each fitted 
coefficient, within the domain β ∈ [0◦,90◦] ∧ θ ∈ [ − 90◦,90◦]. They are 
considered valid for bridge section models with a constant cross-section 

along the x axis. 
The two constraints marked with Xd (No. 6 and 7) prevent the 

polynomial fit from attaining extremely high or low values at the θ 
boundaries, which are very far from any data point. In the domain of 
interest, the polynomial is not sensitive to moderate variations around 
the chosen value of 1.9 (flat plate drag coefficient for Re > 104 ac
cording to (Veritas, 2010)). These two constraints lead to a higher 
linearity of Cz with respect to θ, in the θ-interval of interest, resembling 
the shape of Cz at β = 0◦ of other comparable bridge cross-sections (such 
as the proposed Langenuen, Julsundet and new Sotra bridges) while still 
providing an accurate fit. The constraints marked with Xg can be 
explained in more detail, as follows: 

A 2D approach, which assumes the independence principle, implies, 
for β ∈ [0◦,90◦], that:  

• Cy(β,θ) ≈ Cy(β = 0◦,θyz)Uyz
2/U2  

• Crx(β,θ) ≈ Crx(β = 0◦,θyz)Uyz
2/U2 

Where θyz and Uyz are expressed in eqs. (6) and (11). Then, in the 
subdomain where β = 90◦:  

• ∂(Uyz
2 /U2)/∂β = 0 

Figs. 19. 3D buffeting analysis example, in the frequency-domain, using constrained polynomial fits, for a mean wind cardinal direction βCardinal = 280◦. Auto- 
spectral densities of the nodal displacement responses for y, z, and rx. Standard deviation of the response along the bridge girder for x, y, z, and rx. Maximum 
standard deviation of the response in y, for each global mean wind direction. 
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And, at the point β = 90◦ ∧ θ = 0◦:  

• ∂θyz/∂β = 0 

This means that the polynomial fits of Cy and Crx also comply with 
the constraint ∂P/∂β(90◦, 0◦) = 0. This assumption aims to mitigate the 
data insufficiency at β ≈ 90◦ when other arguments (e.g., smoothness 
assumption) are not applicable. Note that ∂θyz/∂β does not exist at β =

90◦ ∧ θ ∕= 0◦. 
Additionally, inequality constraints (e.g. P(β, θ) > 0) could also be 

employed. Equality and inequality constraints can then be combined 
and fed into minimization algorithms to minimize the residual sum of 
squares already described. The Byrd and Omojokun’s trust region al
gorithm was adopted, using SciPy v1.6.1 (Virtanen et al., 2020), which is 
a toolbox available for Python. The software implementation of this al
gorithm is described in (Lalee et al., 1998)). Whenever the available 
tools are insufficient to automatically convert an inequality constraint 
on the polynomial into a system of inequalities of the polynomial co
efficients (which is often the required format), the work by (Wahl and 
Espinasse, 2014) provides a useful procedure for some common con
straints on multivariate polynomials. 

The constrained polynomial fits are finally presented in Fig. 15. 
Constrained bivariate polynomials also provide good fits of the mea
surements for the four main coefficients Cx, Cy, Cz and Crx. As expected, 

they provide continuous and smooth estimations, and constrain the re
sults to reasonable values while preserving high R2 values. 

Particular attention is given to Cz and ∂Cz/∂θ at high values of β, 
where no data is available to the authors’ knowledge, and to the adopted 
constraints No. 6 and 7 (Xd). A Cosine rule considers that ∂Cz/∂θ = 0 at 
β = 90◦, which is a non-conservative assumption as any changes in θ̃ 
should lead to changes in the instantaneous vertical forces. This natu
rally affects the vertical response of the case studied at high yaw angles 
and is also deemed important for other bridges where the wind speed at 
high angles and the vertical turbulence are significant. 

2.3.5. Additional comparisons 
Some of the constraints and smoothness assumptions discussed can 

be better visualized in Fig. 16, where θ is fixed at θ = 0◦. The free 
polynomials are intentionally left out of the visible window for Cry and 
Crz where they attain disproportionally large values. Also, at θ = 0◦, 
there are no differences between the 2D approach and the Cosine rule so 
only the former is presented. 

Next, the yaw angle of the resultant mean wind force β
F→

is plotted in 
Fig. 17 as a function of the mean wind yaw angle β, at a fixed inclination 
angle θ = 0◦, estimated from the different fits based on the measure
ments. This indicates whether the mean wind force is aligned with the 
mean wind XuZw plane or not. The assumption of such a yaw alignment 
β

F→
= β (which could eventually be used in e.g. 2D CFD simulations that 

Fig. 20. Example of a 3 h time-domain simulation and respective spectral analysis of the response, for βCardinal = 280◦. The time windows (left) are centred at the 
maximum obtained values, with a time range proportional to the relevant eigen modes depicted. The colour range of the spectra (right) is the same as in Fig. 19, for a 
direct comparison. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.) 
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are performed on oblique cross-sections coplanar with the wind XuZw 
plane) is not recommended, since β

F→
∕= β for most yaw angles β. 

2.4. Finite element model 

A finite element model was assembled in Python, following conven
tional practices described in e.g. (Bathe, 2006; Clough and Penzien, 
2003; Hutton, 2004). For the sake of simplicity and generality, the 
floating bridge is reduced to a 5000-m-long symmetric and horizontal 
Euler-Bernoulli beam with a constant curvature radius of 5000 m, at an 
altitude of 14.5 m, discretized every 25 m. The pontoons are modelled as 
nodes every 100 m at the water level with equivalent mass, damping and 
hydrostatic stiffness properties, including the frequency-dependent hy
drodynamic added mass and potential damping, using the software 
Ansys Aqwa 2019R1. More information about these hydrodynamic loads 
(described in e.g. (Faltinsen, 1993)) can be found in (Norwegian Public 
Roads Administration, 2019d). The hydrodynamic interaction between 
pontoons, studied for the same bridge in (Xiang et al., 2018)), was not 
considered in this study. The pontoon nodes are connected to the girder 
via short and stiff columns. Structural damping was set to 0.5%, as 
Rayleigh damping, tuned to the two periods of 120 and 2 s. 

The floating bridge studied has additional important damping 
sources, such as non-linear hydrodynamic viscous forces due the pon
toons’ response relative to the local sea current. To accurately consider 
these forces was left outside the scope of this study as it would further 
add complexity to the results and reduce their interpretability. The 
model is not intended for absolute assessments of the response but rather 
for relative assessments of the different load models. 

The obtained mode shapes and eigen periods resemble those re

ported in the latest design reports (concept K11 in e.g. (Norwegian 
Public Roads Administration, 2019a)). The mean wind forces signifi
cantly affect the first few mode periods of this particular structure. Mean 
wind directions that cause mean tension forces in the girder reduce these 
modes’ eigen period, whereas mean wind directions that lead to mean 
compression forces increase it, due to geometric stiffness effects. For 
simplicity, static wind effects were not included in the analysis. A few 
key eigen modes are presented in Fig. 18 in the horizontal (XY) and 
vertical (XZ) planes, multiplied by a scale factor of 200 for visualization 
purposes. These are the first 7 horizontal modes, where mode 6 and 7 
have a high axial participation, the first two vertical modes (modes 10 
and 11) with nearly identical mode periods, the two first torsional 
modes (modes 32 and 34) and one of the last relevant vertical modes 
(mode 79) that still mobilizes the pontoons, meaning that most of the 
vertical response comes from a narrow band between the periods of 6.0 
and 2.6 s. 

2.5. Buffeting analysis 

2.5.1. Methodology and validation 
In the following sections, the established finite element model of the 

floating bridge is subjected to different skew wind buffeting load 
models. First, an illustrative example of the frequency-domain analysis 
performed, using the previously introduced constrained polynomial fits 
and the 3D approach, is shown in Fig. 19. The first 100 eigen modes were 
included in the analysis and the Complete Quadratic Combination (CQC) 
method was used. In this example, the mean wind cardinal direction 
βCardinal = 280◦ is adopted, which corresponds to having β = 180◦ at the 
middle of the bridge, as illustrated. A linearized 3D buffeting analysis 

Fig. 21. Comparison between 3D frequency-domain and time-domain analyses (mean of 10 simulations, for each direction, whose standard deviation is indicated by 
the error bars). “Non-linear” refers to the use of aerodynamic coefficients as functions of instantaneous β̃ and θ̃, instead of using a Taylor approximation. 
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then provides the auto-spectral densities of the nodal displacement 
response, shown for y, z and rx, at different positions along the bridge 
girder. The integrated response follows, also presented along the bridge 
girder. Then, by noting the maximum response values along the bridge, 
and iterating this process for all possible mean wind directions, a final 
polar plot of the maximum standard deviation σΔi of the relevant 
response components can be presented, providing an overview of the 
bridge behaviour for all mean wind directions. 

Time-domain simulations of the wind field and the structural 
response are also implemented as a tool to validate the results of the 
frequency-domain simulations. In both the time- and frequency-domain 
analyses that are being compared in this section, the frequency- 
dependent added mass and damping were set at fixed frequency 
values corresponding to the dominant eigen frequencies of each DOF, for 
simplicity and to improve computational efficiency, with reasonable 
accuracy. These frequency dependencies are fully accounted in the 
following sections 2.5.2 to 2.5.5, where only computationally efficient 
frequency-domain analyses are performed. A representative example of 
one 3 h long simulation is illustrated in Fig. 20, for the same mean wind 
direction βCardinal = 280◦. A time step of 0.25 s was used. The time 
windows plotted (left side) are centred at the maximum obtained Δi 
values during the simulation and show a time range proportional to the 
relevant eigen modes depicted. The respective spectral analyses (right 
side) of the time-domain response reflect the entire 3 h simulation, 
which starts after an initial 20 min transient period, with colour ranges 
matching those from the frequency-domain for a direct comparison. 
There is an apparent similarity between the spectral response in the 
frequency-domain and the spectral analysis of the time-domain response 
in the example given, supporting their validity. 

Next, ten different time-domain simulations are performed for each 
global mean wind direction. The mean values and standard deviations 
(by using error bars) of all ten simulations’ maximum responses are 
noted and plotted in Fig. 21 for each direction, where a comparison is 
made with the frequency-domain results. Additionally, the assumption 
of linearized coefficients, i.e., C̃(β̃, θ̃) ≈ C(β,θ) + C′β(β,θ)Δβ + C′θ(β,θ)Δθ, 
is also assessed in the time-domain where instantaneous β̃ and θ̃ are 
easily obtained at each time step. The two different types of analyses and 
the linear and non-linear coefficient formulations provide reasonably 
similar results. 

A series of sensitivity studies were also conducted to ensure 
convergence of the present model results. Some of the parameters 
studied include the different frequency discretizations, number of modes 
included, number of nodes, time step, simulation duration and transient 
period duration. 

The effects of the admittance functions are conservatively dis
regarded in this study. These effects could be relevant for the higher 
vertical and torsional modes, whereas, for the first horizontal mode, the 
wavelength of the relevant turbulence components (U/f) is roughly 100 
times the cross-section width and thus the effect should be negligible. 
The wind has a major role on the horizontal response of this bridge, but 
the vertical and torsional responses are dominated by wave loads, which 
are not considered in this study. 

In the following sections, various findings of the skew wind buffeting 
analyses performed are presented. 

2.5.2. Comparing the different skew wind buffeting formulations 
The 2D, 2D + 1D and 3D buffeting formulations are compared in 

Fig. 22, in terms of maximum response obtained. The same constrained 

Fig. 22. Maximum bridge responses, for each mean wind direction, for different theoretical models of the skew wind buffeting. The same constrained polynomial fits 
of the aerodynamic coefficients are used. 
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polynomial fits are used in all three cases in order to keep the focus on 
the different buffeting formulations. Note that only the 3D approach can 
use the data at β ∕= 0◦, except for the 2D + 1D formulation which simply 
imports the estimated value of Cx at β = 90◦ ∧ θ = 0◦ and additionally 
considers the wind projection onto the x axis. The maximum x axis 
response is omitted in the following plots as it closely resembles the 
shape of the maximum y axis response, only with smaller amplitudes. 

Despite the inherent uncertainty of the Ci coefficients at large yaw 
angles, it is clear that there are important differences between the 
response estimates of the different buffeting load formulations. The 
vertical response, in particular, can be strikingly different. In the 3D 
approach, the maximum vertical response is estimated to occur at high 
yaw angles, and a large vertical response is observed on a wide range of 
yaw angles. These results require validation through more extensive 
wind tunnel tests, but it seems plausible that small changes in ̃θ can lead 
to changes in the vertical forces with similar (or perhaps larger) 
importance for large β as for small β. In other words, it seems plausible 
that C′θ

z (0◦,0◦) ≈ C′θ
z (90◦,0◦) despite that the latter one often goes un

noticed in literature and design practices. Also, it might be interesting to 
investigate the vertical response at large yaw angles in bridges with a 
significant vertical curvature of the deck, which would be overlooked 
using a Cosine rule approach. In Fig. 22, it can also be seen that adding 
the axial dimension (+1D) to the 2D approach affects the horizontal 
response at large yaw angles. 

2.5.3. Comparing the different aerodynamic coefficient fitting methods 
The maximum bridge response, for the different fitting methods 

previously introduced, is shown in Fig. 23. The 3D approach formulation 
is used in all four cases to draw out how the choice of a fitting method 

affects the response. 
The main differences between the fitted coefficients of the “Univar

iate fit + Cosine rule” and the “Univariate fit + 2D approach” are found 
at large yaw angles β and at θ ∕= 0◦, which thus affects the coefficients’ 
partial θ derivatives at θ = 0◦. The impact of such differences in the 
horizontal response is only up to 3%, but they can be larger than 100% 
for the vertical and torsional responses. This is the first attempt in the 
literature to suggest that the Cosine rule should be replaced by the 2D 
approach, when experimental data is only available at β = 0◦, since the 
2D approach is seemingly more conservative and closer to the 3D 
bivariate estimates that utilize the data at β ∕= 0◦. For a straight and non- 
horizontal bridge girder, larger differences could be obtained. As for the 
preferred bivariate approaches, significant deviations are also obtained 
as expected, directly related to the fitting differences already discussed 
in Section 2.3. For the reasons already explained there, the constrained 
fit is believed to give the most reliable results. The important differences 
between the univariate and the bivariate polynomial fitting models are 
closely related to the 2D and 3D differences shown in Fig. 22. But note 
that introducing new data points to a polynomial fit can change the 
entire fit. This effect was suppressed in Fig. 22, where all approaches 
purposedly used the same constrained polynomial fits, for comparison, 
but it is naturally included in Fig. 23 (each univariate fit considered only 
the 5 data points at β = 0◦, whereas each bivariate fit considered all 30 
data points). 

2.5.4. Comparing different aerodynamic coefficients’ contributions to the 
response 

The next step in the analysis is to assess the isolated effects of 
including the axial coefficient Cx as well as the two last rotational co
efficients Cry and Crz, by using the 3D approach and the constrained 

Fig. 23. Maximum bridge responses, for each mean wind direction, for different aerodynamic coefficient fitting methods. The 3D buffeting load formulation is used.  
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polynomial fits for all three cases. The results are shown in Fig. 24. As 
expected, the axial coefficient Cx contributes to the horizontal response 
at large yaw angles, which is also a consequence of having a curved 
bridge. On the other hand, the effects of including the Cry and Crz co
efficients seem relatively small despite the uncertainty from the poor fits 
obtained. The minor effects of Cry, which mostly affect the vertical 
response, can be detected in the vertical response plot, at large yaw 
angles. The Crz, which should mostly affect the horizontal response, has 
practically unnoticeable effects there. 

2.5.5. Comparing the different skew wind quasi-steady motion-dependent 
force formulations 

In this section, the effects of including the quasi-steady (QS) self- 
excited forces are investigated. Since the unsteady flutter derivatives 
under skew winds were not available for the case studied, the quasi- 
steady theory was assumed to be a sufficient approximation, given the 
low eigen frequencies and high mean wind speeds. This approximation 
should be investigated in a future study. 

Three different QS formulations of the self-excited forces are 
compared in Fig. 25. “(QS) Zhu” is the formulation introduced in (Zhu, 
2002). “(QS) Costa et al. (6 DOF)” is the formulation later proposed in 
(Costa et al., 2022) which considers all six degrees-of-freedom, further 
improved the aerodynamic stiffness terms and made a minor correction 
to the P*

5 term. The alternative “(QS) Costa et al. (3 DOF)” formulation is 
the same as the “(QS) Costa et al. (6 DOF)” formulation when only the 
three main DOF, namely y, z and rx, are considered, as in (Scanlan and 
Tomo, 1971). 

It is noted that neglecting the quasi-steady self-excited forces 
changes the response substantially, particularly the horizontal response, 

which would be increased between 60% and 120%. These motion- 
dependent forces are an important source of damping for the first 
eigen modes where the hydrodynamic potential damping is very low. 
The vertical and torsional responses also see a significant increase, be
tween 7% and 10%. For this case study, the three different formulations 
of the quasi-steady self-excited forces provide similar results. The “(QS) 
Zhu” and “(QS) Costa et al. (3 DOF)” formulations provide virtually the 
same results (less than 0.1% differences). The recommended “(QS) Costa 
et al. (6 DOF)” formulation is also similar, with differences up to 2.5% 
for the horizontal response, up to 1% for the vertical response and 
smaller than 0.1% for the torsional response. 

3. Conclusions 

One proposed floating bridge solution to cross the Bjørnafjord, in 
Norway, was modelled through a simplified finite element model. It is 
important to carefully investigate this bridge buffeting response for all 
possible mean wind directions due to its curvature, its long eigen pe
riods, the relatively open surroundings and also for fatigue 
considerations. 

Wind tunnel tests of a section model of the bridge girder were ana
lysed for different combinations of the mean wind yaw angle β and 
inclination angle θ. Some of the challenges faced in the wind tunnel 
testing and data interpretation are discussed. Static aerodynamic co
efficients were obtained for all six DOF. Despite the domain of yaw 
angles tested (up to 50◦) being larger than what is available in the 
current literature, it was still necessary to significantly extrapolate the 
results for a complete 360◦ assessment of the skew wind buffeting 
response. Thus, different extrapolation approaches are presented, using 

Fig. 24. Maximum bridge responses, for each mean wind direction, considering (or not) Cx, Cry and Crz. The 3D buffeting load formulation is used together with 
constrained polynomial fits. 
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univariate and bivariate polynomial fits of the coefficients. Several 
possible constraints are investigated and applied to the bivariate poly
nomials, imposing key physical principles at the boundaries. The sug
gested constrained polynomials fit reasonably well the measured 
coefficients in the four main DOF, they provide sensible estimates in the 
challenging regions of β and θ that are far from the available data, and 
also, together with the appropriate symmetry transformations, they 
ensure smooth functions in the entire β and θ domain, as required by a 
linear approach. 

Previously established theoretical models for the skew wind buffet
ing are grouped into so-called 2D, 2D + 1D and 3D approaches, 
depending on whether they only consider the wind components in the 
plane that is normal to the bridge girder (2D), additionally consider an 
independent axial component (+1D) or fully account for the three- 
dimensionality of the wind flow (3D). The present article provides the 
first comparison of these three methodologies. The three-dimensional 
wind field and the structural response were investigated in both fre
quency- and time-domain to increase confidence in the results. 

The theoretical buffeting models and fitting methods that only 
consider the aerodynamic data at β = 0◦ underestimated the response of 
the case studied at large yaw angles, relative to the models and methods 
that consider all the data. The large differences in the vertical response 
are particularly interesting, indicating a need for more comprehensive 
wind tunnel tests that can estimate C′θ

z at large yaw angles. The tradi
tional “Cosine rule” approximation of the 2D approach is believed to be 
particularly non-conservative at large yaw angles. Therefore, this work 
further consolidates the support for a 3D approach. 

The bivariate aerodynamic coefficients are thought to be most 
conveniently represented in the local structural coordinate system. For 
the case studied, the axial coefficient Cx was of some importance at large 

yaw angles and should be included in the analyses. On the other hand, 
the rotational Cry and Crz coefficients were found to have a small impact 
on the response, with Crz being particularly negligible. 

Finally, three different quasi-steady formulations of the motion- 
dependent aerodynamic forces were compared, namely the original 
formulation by Le-Dong Zhu and the main and alternative formulations 
proposed in a preceding article (Costa et al., 2022). These self-excited 
forces have a large impact on the bridge response. However, the dif
ferences between the three different quasi-steady formulations are found 
to be smaller than 2.5% for this particular case study. 

4. Recommendations for further work 

A few recommendations for further work are summarized below:  

• Wind tunnel tests could be performed for a larger domain of yaw and 
inclinations angles to better extrapolate the aerodynamic coefficients 
and more accurately compare the different fitting methods.  

• The effects of non-homogeneity and non-stationarity of the mean 
wind speeds, mean wind directions, turbulence intensities, spectral 
properties and coherences properties could be investigated due to the 
large dimensions and very long eigen periods of the bridge studied.  

• Different formulations of the normalized co-spectra of the wind 
turbulence could be pursued and their effects on the response 
compared. A non-zero spectral density between different wind 
components (e.g., Suw), should also be considered.  

• The axial coefficient Cx could be further improved to consider other 
bridge equipment (besides the railings) and to consider design cases 
where the wind loads and traffic are concomitant, such that the cu
mulative effect of many fast-moving vehicles against the wind is 

Fig. 25. Maximum bridge responses, for each mean wind direction, considering (or not) different formulations of the quasi-steady (QS) self-excited forces.  
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considered for such long and continuous bridge girders as the one 
presented.  

• An accurate estimation of the aerodynamic admittance functions, 
which were conservatively disregarded in this study, could be pur
sued, with a possible impact on the buffeting analysis, in particular 
for the vertical and torsional responses.  

• Unsteady flutter derivatives under skew winds should provide more 
accurate motion-dependent forces. They could be estimated and 
compared with the quasi-steady formulation used. They have been 
previously estimated in (Zhu et al., 2002a). In the same study, an 
approximate method by (Scanlan, 1999), requiring only the un
steady flutter derivatives under normal wind, was included for 
comparison. The method by Scanlan was decreasingly accurate with 
increasing wind speeds. A hybrid method could also be pursued using 
Scanlan’s method and imposing quasi-steady asymptotes at larger 
values of reduced wind velocities and yaw angles. 
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Appendix. Wind tunnel test results  

Table A 1 
30 tested pairs of angles (β, θ) in degrees.  

(0.00, 3.00) (9.91, 2.96) (19.93, 2.82) (29.93, 2.60) (39.94, 2.30) (49.94, 1.93) 
(0.00, 1.50) (9.90, 1.48) (19.91, 1.41) (29.91, 1.30) (39.91, 1.15) (49.91, 0.97) 
(0.00, 0.00) (9.90, 0.00) (19.90, 0.00) (29.90, 0.00) (39.90, 0.00) (49.90, 0.00) 
(0.00, − 1.50) (9.90, − 1.48) (19.91, − 1.41) (29.91, − 1.30) (39.91, − 1.15) (49.91, − 0.97) 
(0.00, − 3.00) (9.91, − 2.96) (19.93, − 2.82) (29.93, − 2.60) (39.94, − 2.30) (49.94, − 1.93)   

Table A 2 
Measured Cx(β, θ) with β and θ pairs from Table A. 1.  

0.00E+2* − 4.91E-3 − 1.07E-2 − 1.87E-2 − 2.01E-2 − 2.22E-2 
0.00E+2* − 6.75E-3 − 1.41E-2 − 2.09E-2 − 1.73E-2 − 2.42E-2 
0.00E+2* − 7.18E-3 − 1.52E-2 − 2.19E-2 − 2.33E-2 − 1.95E-2 
0.00E+2* − 8.53E-3 − 1.71E-2 − 2.06E-2 − 2.27E-2 − 2.58E-2 
0.00E+2* − 2.82E-3 − 1.72E-2 − 2.67E-2 − 2.61E-2 − 2.80E-2   

Table A 3 
Measured Cy(β, θ) with β and θ pairs from Table A. 1.  

7.32E-2 7.31E-2 6.45E-2 5.90E-2 4.95E-2 3.19E-2 
7.40E-2 7.46E-2 6.81E-2 6.08E-2 5.95E-2 3.79E-2 
7.11E-2 7.60E-2 7.11E-2 6.30E-2 5.53E-2 4.03E-2 
7.07E-2 7.51E-2 6.67E-2 6.62E-2 5.45E-2 4.10E-2 
6.39E-2 6.86E-2 6.57E-2 5.52E-2 5.35E-2 3.90E-2   

Table A 4 
Measured Cz(β, θ) with β and θ pairs from Table A. 1.  

4.27E-2 5.99E-2 9.74E-2 1.18E-1 1.51E-1 1.60E-1 
− 5.51E-2 − 2.79E-2 6.39E-3 4.88E-2 6.76E-2 1.02E-1 
− 1.47E-1 − 1.16E-1 − 7.03E-2 − 3.75E-2 3.80E-2 2.74E-2 
− 2.41E-1 − 2.15E-1 − 1.54E-1 − 1.09E-1 − 1.95E-2 2.66E-2 
− 3.29E-1 − 3.12E-1 − 2.26E-1 − 1.63E-1 − 7.26E-2 − 1.44E-2   
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Table A 5 
Measured Crx(β, θ) with β and θ pairs from Table A. 1.  

-6.17E-2 − 6.20E-2 − 6.16E-2 − 5.33E-2 − 4.81E-2 − 3.81E-2 
− 3.74E-2 − 3.90E-2 − 3.96E-2 − 3.54E-2 − 3.56E-2 − 2.64E-2 
− 1.20E-2 − 1.82E-2 − 2.07E-2 − 1.73E-2 − 2.21E-2 − 1.61E-2 
1.55E-2 1.09E-2 1.75E-3 1.04E-3 − 7.79E-3 − 6.62E-3 
4.22E-2 3.89E-2 2.61E-2 2.08E-2 6.35E-3 2.30E-3   

Table A 6 
Measured Cry(β, θ) with β and θ pairs from Table A. 1.  

0.00E+2* − 3.03E-2 − 3.65E-2 6.58E-3 1.93E-2 4.44E-3 
0.00E+2* − 1.05E-2 4.03E-3 1.26E-2 2.01E-2 1.79E-2 
0.00E+2* − 3.05E-2 − 2.38E-2 3.85E-2 1.22E-2 2.04E-2 
0.00E+2* − 5.96E-3 − 9.29E-3 6.38E-3 2.50E-2 3.78E-2 
0.00E+2* 4.86E-5 − 2.88E-2 1.39E-2 6.36E-3 2.32E-2   

Table A 7 
Measured Crz(β, θ) with β and θ pairs from Table A. 1  

0.00E+2* − 2.73E-3 − 1.09E-3 2.46E-3 1.07E-3 2.19E-3 
0.00E+2* − 1.94E-3 − 8.82E-4 3.23E-3 1.62E-4 1.42E-3 
0.00E+2* − 3.17E-3 − 5.52E-4 1.78E-3 − 2.80E-3 − 8.24E-3 
0.00E+2* − 8.42E-4 1.84E-3 1.51E-3 5.16E-4 1.03E-3 
0.00E+2* − 1.69E-3 1.61E-3 5.51E-3 1.75E-3 1.87E-3 

* Small, measured values marked with * were forced to 0 due to symmetry assumptions at β = 0. 
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