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Abstract— This paper proposes an optimal scheduling policy for broadcasting
spatio-temporally dependent observations to two remote estimators over a
finite time horizon. The system comprises a scheduler that can broadcast one
observation from one out of two spatio-temporally dependent processes at
each time instant. Since the number of broadcasting instants for each sensor
is constrained, the scheduler must plan the broadcasting that minimizes
the time-averaged estimation error. As the scheduler cannot observe the
measurements, it determines the expected estimation error based on the
age-of information (AoI). Using AoI as a state variable, we derive a set of
optimal scheduling policies that minimizes the average mean squared error
(MSE) for any given time horizon. The policies provide the optimal number of
transmission instances for each sensor and time-varying AoI thresholds for when to be scheduled. By studying how the
MSE evolves with respect to the AoI generated by a given scheduling sequence, we can obtain an optimal policy using
a low-complexity numerical method. Numerical results validate the theory and demonstrate how utilizing spatio-temporal
dependencies together with AoI can enhance the estimation accuracy in a communication-constrained sensor network.

Index Terms— Age-of-information, Scheduling, Spatio-temporal correlation, Wireless sensor networks

I. INTRODUCTION

ADVANCEMENTS in wireless communication have en-
hanced the ability to monitor and control systems re-

motely. Wireless sensor networks (WSNs) and networked con-
trolled systems rely upon sensors observing physical processes
and communicating their measurements to remote estima-
tors that track process parameters. However, the information-
update rate is limited by both the number of communication
channels and the sensor nodes’ energy storage capabilities. In
many WSNs, sensors transmit their measurements over parallel
channels, where each channel can be occupied by one sensor at
a given time. If the number of channels is less than the number
of sensors, all sensors transmissions must be coordinated. For
this reason, a common task is to design scheduling schemes
that assign available time slots for each sensor [1], [2].

It is important to design scheduling policies that maximize
the utility of the WSN. In the context of remote estimation,
the focus is on designing scheduling policies that achieve high
estimation accuracy. A common objective is to derive optimal
scheduling policies that minimize the time-averaged estimation
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error. The structure of each optimal scheduling policy depends
on the system settings and the nature of the measurement
process distribution. Optimal scheduling schemes have been
studied under different system scenarios such as limited packet
sizes for different source processes [3], limited battery [4],
single or multiple communication channels [1], [5], and in the
presence of eavesdroppers [6].

Finding optimal scheduling policies involves solving se-
quential decision-making problems, mainly through dynamic
programming, as processes are generally dynamic. As the time
horizon grows, the number of potential scheduling trajectories
increases, and deriving optimal policies for large time-horizons
becomes prohibitive due to high computational complexity. In
order to reduce the computational complexity, one approach
is to employ a greedy method and find scheduling sequences
that minimize the estimation error over shorter time horizons
[7], [8]. The disadvantage is that it can lead to sub-optimal
performance for extended time horizons.

For large time horizons, a practical approach is to consider
an infinite time horizon [1], [5], [9]. This assumption can
simplify the mathematical framework when deriving opti-
mal scheduling policies. However, when dealing with non-
stationary processes [10] or with stochastic energy supply,
e.g., energy harvesting [11], it is beneficial to be able to
quickly derive optimal scheduling policies for finite horizons.
The performance discrepancy of finite and infinite approaches
depends on the time horizon they converge.
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TABLE I: Table of symbols

Symbol Definition
θi[k] Value of the ith process
σi Standard deviation of the ith process
ρij Spatial correlation between the ith and the

jth process
ρt(·) Temporal correlation given the time differ-

ence
xi[k] Measurement of the ith sensor
wi[k] Measurement noise at the ith sensor
ξi Standard deviation of the measurement noise

at the ith sensor
π[k] Index of the sensor scheduled (broadcasted)
∆i[k] AoI of the ith sensor
∆ij [k] AoI differences between the ith and the jth

process
γk(·) Scheduling strategy mapping ∆[k−1] to π[k]
yi[k] Most recently broadcasted measurement

from the ith sensor
T Time horizon
γ Scheduling policy, i.e., γ = (γ1, γ2, . . . γT )

θ̂i[k] Estimated value of the ith process
∆γ
i [k] AoI of the ith sensor given policy γ

nγi Number of scheduling instances for the ith
sensor given policy γ

n̄i Transmission constraint for the ith sensor
J(γ) Time averaged MSE given policy γ
γ∗ Optimal scheduling policy minimizing J(γ)
n∗i Optimal number of scheduling instances for

the ith sensor
E(∆[k]) MSE at instant k given the AoI
hγi [k] AoI peak of the ith sensor at instant k, i.e.,

the immediate AoI before the ith sensor is
scheduled or before the complete time period
has elapsed

gγi (l) Number of instances the ith sensor reaches
AoI l ∈ N+ given policy γ ∈ Γ

m Vector of time-varying AoI thresholds
γm Policy defined by threshold vector m
Ē(m) Time averaged MSE for scheduling segment

of length m where the AoI of Sensor 1
reaches m− 1 before Sensor 2 is scheduled

m̂ Value m minimizing Ē(m)
δ(·) Dirac delta function
1(·) Indicator function having value 1 if the con-

dition in the argument is true and 0 otherwise

Although sensor observations are correlated in practice, only
a few works investigate scheduling policies that account for
dependency among the observations. In resource-constrained
WSNs, sensor dependencies have been exploited to achieve
energy-efficient routing [12], [13], missing data inference in
environmental crowd sensing [14], optimal sensor location
selection [15], and reducing traffic load [16]. For a remote
estimation WSN where sensors transmit noisy measurements

of a Gaussian source process over multiple access channels
(MAC), the estimation accuracy is normally restricted by
the transmission powers of the sensors and the number of
antennas at the remote estimator [17], [18]. However, the
results in [18] demonstrate once the transmission power
allocation is optimized to maximize the overall estimation
accuracy, a higher degree of dependence among measurements
significantly reduces the minimum MSE. In [11], [19], an op-
timal scheduling policy is obtained, assuming a scheduler that
observes measurements from all the sensors before selecting a
finite number of measurements to communicate to the remote
estimator. However, such a solution may not always be feasible
due to privacy and latency constraints.

For an observation-driven scheduling scheme, all sensors
consistently measure and transmit measurements to the cen-
tralized network scheduler. This approach can result in ad-
ditional delays due to the communication bottleneck at the
scheduler. In addition, it makes the scheduler a vulnerable
security point to be targeted by an eavesdropper or malicious
attacker [20]. Finally, it presumes all sensors continually
measure and transmit measurements to the scheduler, spending
excessive energy.

In this paper, we present an optimal scheduling policy
for a finite time horizon for two sensors observing spatio-
temporally observations. At each time instant, an observation
from one of the processes is broadcast through a network
scheduler to two remote estimators with each tracking one
process. We consider a system model similar to [19], but with
two differences. Firstly, we assume a transmission constraint
on each sensor to account for limited energy resources at
the sensor nodes. Secondly, the scheduler cannot view the
measurements. Instead, the scheduling policies can be derived
based on the timeliness of the information received at the
estimators, i.e., the age-of-information (AoI) [21]–[23].

The AoI is defined as the freshness of information, i.e.,
the elapsed time between the received measurement at the
estimator and its generation at the source. In remote estimation
systems, the real-time estimation accuracy depends on the
AoI at the estimator. However, the relationship is commonly
nonlinear and, minimizing the AoI does not consistently lead
to optimal performance [22]. Instead, the AoI can be utilized
as a state variable to design optimal scheduling policies in
remote estimation tasks. Most previous works related to AoI
in the context of remote estimation and scheduling assume
independent sensor observations [7], [24]–[29].

Recent works have allowed for dependent observations
when utilizing AoI to find optimal scheduling policies. In [30],
the authors propose a policy that minimizes the average AoI
for a WSN, where observations from multiple sensors need to
be collected to reconstruct one of many source processes. In
[31], the authors consider the problem of sensors with overlap-
ping observation areas, monitoring processes that generate up-
dates at a random frequency. Our work is mostly related to [4],
[32], [33], which study the transmission frequency of spatio-
temporally correlated sensor measurements, also modeled by
a random field. In contrast, our policy provides a scheduling
decision based on the AoI for each available discrete time slot
instead of deciding transmission rates for each sensor, which
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allows us to exploit full channel capacity. Additionally, we
assume observations being corrupted by measurement noise
and allow for processes with different marginal variances.

To clarify the difference to the related work [19] regarding
scheduling observations of two correlated Gaussian processes
for a remote estimation WSN, we assume that: i) the two
processes are spatio-temporally correlated and derive an opti-
mal policy over a finite time horizon; ii) the scheduler cannot
observe the measurements and determines the scheduling
decision based on the AoI, and; iii) observations are corrupted
by measurement noise.

The main contributions of this paper are as follows. We
first prove the existence of an optimal scheduling policy for
a general set of spatio-temporal correlation functions with
sensor transmission constraints. After that, we show how to
derive an optimal scheduling sequence for a given horizon
using a low-complexity method. Although dependency adds
additional complexity to scheduling problems, our method
does not rely on dynamic programming, and the computational
complexity does not become prohibitive beyond a given time
horizon. The results corroborate the theory and demonstrate
the performance enhancement of exploiting spatio-temporal
dependencies in communication-constrained systems. Further-
more, we can utilize the results to derive necessary energy
resources to achieve optimal performance in similar systems.

The remainder of the paper is organized as follows. Section
II presents the system model and the scheduling problem.
Next, in Section III, we demonstrate the structure of an
optimal policy and how to derive an optimal policy. Section IV
presents numerical results to validate the theory, and compare
the performance improvement of exploiting spatio-temporal
correlation. Section V concludes the paper.

II. BACKGROUND AND PROBLEM FORMULATION

As illustrated in Fig. 1, we consider a WSN consisting of
one scheduler, two sensors, and two remote estimators. The
ith sensor observes the stochastic process θi[k] ∈ R, with
θi[k] ∼ N (0, σ2

i ), at time instant k ∈ N+ and i = 1, 2.
The distributions of the two processes are not assumed to
be homogenous, where without loss of generality σ1 ≥ σ2.
Furthermore, they are correlated over space and time with the
cross-covariance given by a positive-definite function [34]

E[θi[k]θj [l]] = σiσjρijρt(|k − l|), i, j ∈ {1, 2}, (1)

where ρij ∈ [−1, 1] denotes the spatial correlation and
ρt : R+ → (0, 1] represents the temporal correlation,
which is a strictly decreasing function with ρt(0) = 1 and
limn→∞ ρt(n) = 0. At time instant k, the ith sensor acquires
measurement xi[k] ∈ R, which is modeled as

xi[k] = θi[k] + wi[k], k ∈ N+, i = 1, 2, (2)

where wi[k] ∈ R is independent measurement noise with
distribution wi[k] ∼ N (0, ξ2

i ). For each process θi[k], there
exists a corresponding remote estimator that tracks the stochas-
tic process and computes an estimate θ̂i[k] based on sensor
measurements transmitted by the network scheduler, as can
be seen in Fig. 1.
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Fig. 1: Scheduling problem for remote estimation in a WSN
consisting of two sensors and two remote estimators.

A. Scheduler
At every time instant, the scheduler can broadcast only one

sensor observation to the remote estimators. Since the pro-
cesses are spatio-temporally correlated, the estimators can use
every measurement to improve the local estimation accuracy.

Let π[k] ∈ {1, 2} denote the index of the sensor that is
scheduled at time instant k. The AoI of the ith sensor is
denoted by ∆i[k] ∈ N+, i = 1, 2, and defined as the time
elapsed between two successive measurement transmissions
from the ith sensor [32], i.e.,

∆i[k] =

{
0, if i ∈ π[k],
∆i[k − 1] + 1, if i /∈ π[k].

(3)

The scheduler is not allowed to observe the measurements,
x[k] = [x1[k], x2[k]]T; however, it can keep track of the AoI
for each sensor using ∆[k] = [∆1[k],∆2[k]]T. Let γk denote
the scheduling strategy at time k, i.e.,

π[k] = γk(∆[k − 1]), (4)

which provides a mapping from ∆[k − 1] to the scheduling
decision at instant k.

B. Remote Estimators
The data available at Estimator i, at time instant k, consists

of AoI ∆[k] and y[k] = [y1[k], y2[k]]T, representing the most
recently broadcasted measurement from each sensor, i.e.,

yi[k] = xi[k −∆i[k]], i = 1, 2. (5)

The minimum mean square error (MMSE) estimate of θi[k]
given the information {∆[k],y[k]} is computed as

θ̂i[k] = E[θi[k]|∆[k],y[k]], i = 1, 2. (6)

C. Scheduling Policy
The scheduling policy γ is defined as the collection γ =

(γ1, γ2, . . . γT ), where T indicates the time horizon. The
performance measure, or cost, is taken as the average mean
squared error (MSE) of the estimate (6) over T time slots and
is given by

J(γ) =
1

T

T∑
k=1

2∑
i=1

E
[
(θi[k]− θ̂i[k])2

∣∣∣∆γ [k]
]
, (7)
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where ∆γ [k] = [∆γ
1 [k],∆γ

2 [k]]T is the AoI at time k generated
by γ and ∆[0] = [1, 0]T when initializing the system.

Let nγ1 and nγ2 , respectively, denote the number of instants
Sensor 1 and Sensor 2 are scheduled using policy γ. The values
of nγ1 and nγ2 can be computed as

nγ1 =

T∑
i=1

1(∆γ
1 [i] = 0), nγ2 =

T∑
i=1

1(∆γ
2 [i] = 0), (8)

where nγ1 , nγ2 ∈ {0, 1, ..., T}, n
γ
1 + nγ2 = T and 1(·) is

an indicator function which equals 1 if the condition in the
argument is true, 0 otherwise.

Without loss of generality, let us assume each transmission
costs unit energy. Also, let n̄1, n̄2 ∈ N++, be the energy
resources available for transmitting data, i.e., Sensor i can
transmit n̄i measurements. We assume that the total energy
available at the sensors satisfies n̄1 + n̄2 ≥ T .

Our objective is to find an optimal scheduling policy γ∗ that
minimizes the average cost in (7) over any time-horizon

min
γ∈Γ

J(γ), (9)

s. t. nγi ≤ n̄i, n̄i ∈ N++, i = 1, 2,

nγ1 + nγ2 = T,

where Γ is the set of all feasible policies, and n̄i, i = 1, 2, is
a transmission constraint on each sensor.

III. OPTIMAL SCHEDULING POLICY

In this section, we will derive an optimal scheduling policy
in two steps. We begin by deriving an optimal scheduling
policy for the specific case; having no transmission constrains,
i.e., n̄i > T , i = 1, 2, and the number of transmission instances
for the ith sensor must equal ni ∈ N+, i = 1, 2. This results
in the following optimization problem

min
γ∈Γ

J(γ), (10)

s. t. nγi = ni, i = 1, 2, n1 + n2 = T.

To solve (10), we first derive an expression for how the MSE
at instant k depends on ∆[k] and, then, analyze how the MSE
evolves for any given process ∆γ [k]. Thereafter, we present a
method to attain the optimal number of scheduling instances
for Sensor 1, n∗1, and Sensor 2, n∗2, for different transmission
constrains n̄i, i = 1, 2. Finally, once n∗1 and n∗2 are known,
we use the solution for (10) to derive an optimal policy γ∗.

In order to find γ∗, we need to calculate the cost in (7)
for any given policy γ ∈ Γ. The MSE at time k depends on
∆γ [k], which is perfectly known using (3). Let E(·) denote
the MSE at instant k given the AoI ∆[k] and be defined as

E(∆1[k],∆2[k]) =

2∑
i=1

E
[
(θi[k]− θ̂i[k])2

∣∣∣∆[k]
]
. (11)

As shown in [9], we can derive a closed-form expression for

the MSE (11) as

E(∆1[k],∆2[k]) = (σ2
1 + σ2

2)

+ β[k]
(

2(σ1σ2ρ12)2ρt(∆1[k])ρt(∆2[k])ρt(∆12[k])(σ2
1 + σ2

2)

− ρ2
t (∆1[k])(σ2

2 + ξ2
2)((σ1σ2ρ12)2 + σ4

1) (12)

− ρ2
t (∆2[k])(σ2

1 + ξ2
1)((σ1σ2ρ12)2 + σ4

2)
)
,

where β[k] =
(
(σ2

1 +ξ2
1)(σ2

2 +ξ2
2)−(σ1σ2ρ12)2ρ2

t (∆12[k])
)−1

and ∆ij [k] = |∆i[k] − ∆j [k]| ∈ N+ is the AoI-difference
between the two sensors. By analyzing the properties of
E(∆1[k],∆2[k]) in (12), we can better understand how the
MSE evolves for any process ∆γ [k], which can help in the
derivation of an optimal policy γ∗.

From (3), we know that one sensor is scheduled at each
time instant k and the process ∆γ [k] evolves as

[∆γ
1 [k],∆γ

2 [k]]T =

{
[0,∆γ

2 [k − 1] + 1]T, if π[k] = 1,

[∆γ
1 [k − 1] + 1, 0]

T
, if π[k] = 2.

(13)
For E(1, 0) ≥ E(0, 1), we see that the following properties

hold for the function in (12):

E(0,∆2[k]) ≤ E(∆1[k], 0), ∀∆2[k] ≤ ∆1[k], (14a)
E(0,∆2[k]) ≤ E(0,∆2[k] + ε) ≤ E∞2 , ε ∈ N+, (14b)
E(∆1[k], 0) ≤ E(∆1[k] + ε, 0) ≤ E∞1 , ε ∈ N+, (14c)

where the upper bounds in (14b) and (14c) are given by

E∞1 = lim
∆1[k]→∞

E(∆1[k], 0) ≤ σ2
1 + σ2

2 ,

E∞2 = lim
∆2[k]→∞

E(0,∆2[k]) ≤ σ2
1 + σ2

2 . (15)

Equations (14) imply that if E(1, 0) ≥ E(0, 1) holds, any
given AoI value, ∆ ∈ N+, generated at Sensor 1 results in
a higher MSE than if generated at Sensor 2, i.e., E(∆, 0) ≥
E(0,∆), ∀∆ ∈ N+. As seen in (12), the inequality, E(1, 0) ≥
E(0, 1), depends on the statistical properties σ1, σ2, ξ1, and ξ2,
where σ1 and σ2 are the dominent factors. For our system, we
assume that E(1, 0) ≥ E(0, 1) holds based on the following
reasons. Firstly, we know that the marginal variance of Process
1, σ1, is greater or equal to the marginal variance of Process
2, σ2, i.e., σ1 ≥ σ2. Secondly, we assume that the variances of
the measuement noises ξ1 and ξ2 have similar magnitude, i.e.,
ξ1 ≈ ξ2, and are not greater than the variances of the process
σi ≥ ξj , i, j = 1, 2. For this scenario, based on (12), we state
the following assumption.

Assumption 1: The inequality E(1, 0) ≥ E(0, 1) holds,
yielding that the properties in (14) also hold.

The properties in (14) show that the MSE increases with
the AoI but is bounded as MSE ≤ σ2

1 + σ2
2 . Furthermore,

as seen in inequality (14a), a given AoI for Sensor 1 has a
larger MSE than for Sensor 2. Thus, we make the following
two conclusions of an optimal policy; firstly, given the optimal
number of transmission instances for each sensor, n∗i , i = 1, 2,
an optimal policy should result in a scheduling sequence that
minimizes the maximum AoI for each sensor. Secondly, if
n̄1 ≥ n̄2, then Sensor 2 is not scheduled more times than
Sensor 1. Based on these two properties, we will in the
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following theorem present a solution to (10) and a reduced
feasible set for n∗1 and n∗2. To do so, we first introduce some
necessary mathematical notations.

Let hγi [k] ∈ N+, i = 1, 2, represent the AoI peaks, i.e.,
the immediate AoI before Sensor i is scheduled or before the
complete time period has elapsed, and be defined as

hγi [k] =

{
∆γ
i [k], if k = T or ∆γ

i [k + 1] = 0,
0, else . (16)

From (13), together with initial AoI ∆[0] = [1, 0]T, the
cumulative sum of the AoI peaks satisfy

T∑
k=1

hγi [k] =

{
nγ2 + 1(γ1(∆[0]) = 2), if i = 1,
nγ1 , if i = 2.

(17)

Let ∆̄i : N+ → {0, 1, ..., T + 1}, represent the lowest
maximum AoI (minmax) for Sensor i, given that Sensor i
is scheduled l instances during interval k ∈ [1, T ], and be
defined as

∆̄i(l) = min
γ∈Γ

sup
k=1,...,T

{
hγi [k]

∣∣∣nγi = l
}
, i = 1, 2. (18)

Since ∆[0] = [1, 0]T, to achieve (18), given pair nγi = l and
nγj = T − l, i 6= j, the scheduling sequence of Sensor 1
and 2 must be as evenly distributed as possible. For the ith
sensor, such a sequence will result in either l, or l + 1, non-
zero AoI peaks, i.e., hγi [k] > 0, having either one, or two,
distinct values, i.e.,

hγi [k] ∈
{

0, ∆̄i(n
γ
i )− 1(nγi 6= T ), ∆̄i(n

γ
i )
}
, i = 1, 2. (19)

The value ∆̄i(l) is approximately the average of all the non-
zero AoI peaks, rounded-up, to adjust for ∆̄i(l) ∈ N+. From
(17), we derive a closed form expression of ∆̄i(l) as

∆̄1(l) =

⌈
T + 1− l
l + 1

⌉
, ∆̄2(l) =

⌈
T − l
l + 1

⌉
, l = 0, ..., T − 1

∆̄1(T ) = ∆̄2(T ) = 0, (20)

where d·e is the ceil operator.
Finally, let gγi : N+ → N+, i = 1, 2, represent the number

of instances the ith sensor reaches AoI l ∈ N+ given policy
γ ∈ Γ, and be defined as

gγi (l) =

T∑
k=1

1(∆γ
i [k] = l). (21)

Theorem 1: i) Under Assumption 1, a policy γ ∈ Γ is a
solution to (10), if it minimizes the maximum AoI as

∆γ
i [k] ≤ ∆̄i(ni), k = 1, ..., T, i = 1, 2, (22)

and the number of instances the AoI equals ∆̄i(ni) and
∆̄i(ni) − 1, i =, 1, 2, given in (20), can be computed as; if
ni = T and nj = 0, i 6= j, then ∆̄i(ni) = 0, and

gγi (0) = ni, gγj
(
∆̄j(0)

)
= 1, (23)

else, if 1 ≤ nj ≤ ni, then ∆̄i(ni) = 1, and

gγi (1) = nj , gγi (0) = ni (24)

gγj
(
∆̄j(nj)

)
= ni − (nj + 1)

(
∆̄j(nj)− 1

)
+ 1(j = 1),

gγj
(
∆̄j(nj)− 1

)
= nj + 1− 1(j = 1)1

(
∆̄j(nj) = 2

)
− 1

(
∆̄j(nj) = 1

)
.

ii) Under Assumption 1, for problem (9), the optimal
number of scheduling instances satisfies

n∗1 = n̄1, if n̄1 ≤ T/2 (25)
n∗1 ≥ T/2, if n̄1 > T/2,

and n∗2 = T − n∗1.
Proof: To prove Theorem 1, we first, using (12), define

the two functions Ẽi(k) : N+ → N+, i = 1, 2, which gives
the cumulative MSE of scheduling Sensor i = 1, 2, for k
consecutive time instances, where Ẽi(0) = 0 and

Ẽ1(k) =

k∑
i=1

E(0, i), Ẽ2(k) =

k∑
i=1

E(i, 0), k ≥ 1. (26)

From (26), we find that Ẽi(k) can be expressed as

Ẽ1(k + ε) = Ẽ1(k) +

k+ε∑
l=k+1

E(0, l), ε ∈ N++, (27)

Ẽ2(k + ε) = Ẽ2(k) +

k+ε∑
l=k+1

E(l, 0), ε ∈ N++.

Thus, from (14) and (27), the following inequality holds

Ẽi(k) + Ẽi(ε) ≤ Ẽi(k + ε), ε ∈ N+, i = 1, 2,

Ẽ1(k) ≤ Ẽ2(k), ∀k ∈ N+. (28)

Using the definitions in (26) and (16)-(17), we reformu-
late the optimization problem in (10), where the number of
scheduling instances must equal ni, i.e., nγi = ni, i = 1, 2, as

min
γ∈Γ

1

T

( T∑
k=1

Ẽ1(hγ2 [k]) +

T∑
k=1

Ẽ2(hγ1 [k]
)

− T−1
1(γ1(∆[0]) = 2)E(1, 0) (29)

s. t.
T∑
k=1

hγ1 [k] = n2 + 1(γ1(∆[0]) = 2),

T∑
k=1

hγ2 [k] = n1.

As seen in the constraints of (29), the cumulative sum of
the AoI peaks is constant for Sensor 2, and can only take
two possible values for Sensor 1. Thus, we infer from (28)
that to solve (29) the AoI peaks hγi [k], i = 1, 2, should be
minimized. To achieve this, a solution to (29) must result in an
evenly distributed scheduling sequence that, firstly, minimizes
the maximum AoI, which using (19), gives

hγi [k] ∈ {0, ∆̄i(ni)− 1(ni 6= T ), ∆̄i(ni)}, i = 1, 2. (30)

Secondly, a solution that maximizes the number of instances
the AoI equals ∆̄i(ni)−1(ni 6= T ), i = 1, 2. Hence, a solution
to (10), is obtained by solving the optimization problem

max
γ∈Γ

gγi
(
∆̄i(ni)− 1(ni 6= T )

)
, i = 1, 2 (31)

s. t. ∆γ
j [k] ≤ ∆̄j(nj), j = 1, 2, k = 1, ..., T,

where the constraints in (31) proves (22).
Proving (23) is straightforward; if only Sensor i is sched-

uled, i.e., nγi = T and nγj = 0, i 6= j, the AoI will never be
greater than zero, ∆i[k] = 0, k = 1, ..., T , while for Sensor j
the maximum AoI will be reached only once at k = T .



6 IEEE SENSORS JOURNAL, VOL. XX, NO. XX, XXXX 2022

To prove (24), where ni ≥ 1, i = 1, 2, we form a linear
expression given the criteria in (30) as

T∑
k=1

hγi [k] = αi∆̄i(ni) + βi
(
∆̄i(ni)− 1

)
, (32)

where αi, βi ∈ N+, represent the number of AoI peaks hγi [k],
i = 1, 2, that equal, respectively, ∆̄i(ni) and ∆̄i(ni)−1. Based
on (29)-(32), we formulate (21) in terms of αi and βi as

gγi
(
∆̄i(ni)

)
= αi, (33)

gγi
(
∆̄i(ni)− 1

)
=

 ni, if ∆̄i(ni) = 1,
αi + βi − 1, if i = 1, ∆̄i(ni) = 2,
αi + βi, else.

From (31) we see that βi, i = 1, 2, should be maximized and
we must derive expressions for αi and βi, given n1 and n2.

For n1 < n2, we have that ∆̄2(n2) = 1, γ1(∆[0]) = 2,∑T
k=1 h

γ
1 [k] = n2 + 1, and α1 +β1 = n1 + 1, with (32), gives

α1 = (n2 + 1)− (n1 + 1)
(
∆̄1(n1)− 1

)
, β1 = n1 + 1− α1,

α2 = n1, β2 = 0. (34)

For n1 = n2, we have that ∆̄i(ni) = 1, i = 1, 2, and

α1 = α2 = n2, β1 = β2 = 0. (35)

For n1 > n2, we have that ∆̄1(n1) = 1, γ1(∆[0]) = 1,∑T
k=1 h

γ
1 [k] = n1 and α2 + β2 = n2 + 1, with (32), gives

α1 = n2, β1 = 0, (36)

α2 = n1 − (n2 + 1)
(
∆̄2(n2)− 1

)
, β2 = n2 + 1− α2.

Given the values of n1 and n2, ni ≥ 1, i = 1, 2, we substitute
the corresponding expression (34)-(36) into (33), proving (24).

To prove (25), we see from (28) that for γ∗ to satisfy (29),
Sensor 1 should be scheduled an equal number of instants, or
more, than Sensor 2. This gives, that if n̄1 ≥ T/2, Sensor 1
should be scheduled n∗1 ≥ n∗2; otherwise, if n̄1 < T/2, then
n∗1 = n̄1, which proves (25).

Theorem 1 implies that if the number of scheduling in-
stances n∗1 and n∗2 are known, we can use expressions (22) -
(24) to derive an optimal policy γ∗. The criteria for an optimal
policy is that; for Sensor i, i = 1, 2, the maximum AoI must
equal ∆̄i(n

∗
i ) in (22), and the number of instants the AoI

reaches ∆̄i(n
∗
i ) and ∆̄i(n

∗
i ) − 1 during time interval [1, T ]

must satisfy (23) and (24). Hence, we conclude, that there can
be one or more optimal policies as long as they satisfy (22)
to (24).

From (25), we know that if n̄1 ≤ T/2, then n∗1 = n̄1 =
T − n∗2 and we can again use (22)–(24), to obtain γ∗. In the
next section, we show how to derive n∗1 and n∗2 for the case
n̄1 > T/2 in (25), to obtain γ∗.

A. Optimal Scheduling Policy for n̄1 > T/2

In Theorem 1, we presented the structure of an optimal
policy γ∗ if either; n∗1 or n∗2 is known. To find n∗i , i = 1, 2,
one approach is to construct an optimal policy that satisfies
Theorem 1, for all feasible pairs nγ1 and nγ2 in (9), and compare
the performance using (7) and (12). However, this becomes
cumbersome if the number of feasible pairs are large.

In this section, we will present a low-complexity method to
reduce the number of feasible values of n∗2, and subsequently
derive γ∗. Based on the results in Theorem 1, we begin
formulating the structure of an optimal policy for the case
n̄1 > T/2. The structure is based on defining AoI thresholds,
indicating when Sensor 1 is to be scheduled. We then derive
optimal thresholds, which implicitly gives us n∗2.

In Theorem 1, we see in (25) that if n̄1 > T/2 then

max{T − n̄1, 0} ≤ n∗2 ≤ bT/2c ≤ n∗1 ≤ n̄1, (37)

and, from (24), that ∆̄1(n∗1) ≤ 1. This implies that γ∗ always
results in Sensor 1 being scheduled immediately after Sensor
2, i.e., if ∆γ∗

2 [k] = 0, 1 ≤ k ≤ T − 1 then ∆γ∗

1 [k + 1] = 0.
Based on this property, we define a policy that satisfies the
conditions of an optimal policy γ∗. We begin by defining the
scheduling strategies in (4) that the policy will consist of.

Let γmk , k ∈ N+ be a scheduling strategy defined as

γmk (∆[k − 1]) =

{
1, if ∆2[k − 1] + 1 < m,
2, if ∆2[k − 1] + 1 ≥ m, (38)

where m ∈ N+ and m ≥ 2. The value m of γmk is referred
to as a threshold of γmk , which implies that Sensor 2 will
be scheduled at instant k if the AoI of Sensor 2, otherwise,
becomes greater than or equal m, i.e., ∆2[k] ≥ m.

Let γm be a policy consisting of scheduling strategies as in
(38) expressed as

γm = (γm1
1 , . . . , γm1

m1︸ ︷︷ ︸
m1

, γm2
m1+1, . . . , γ

m2
m1+m2︸ ︷︷ ︸

m2

, . . . , γmN

T ), (39)

where threshold vector m = [m1,m2, . . . ,mN ]T, mi ∈
{2, 3, ..., T + 1}, i = 1, . . . , N , and m ∈ RN+ , N ≤ T . The
policy γm is defined by m, which will be referred to as the
threshold vector. Let c(m,m) be a function that counts the
number of threshold elements in m that equals m, i.e.,

c(m,m) =

N∑
i=1

1(mi = m), m ∈ {2, 3..., T + 1}, (40)

which satisfies

N =

T+1∑
m=2

c(m,m). (41)

The sum of all the thresholds satisfy

T ≤
N∑
i=1

mi ≤ T + 1. (42)

From (42), the scheduling decision at instant T for γm is

π[T ] =

{
1, if

∑N
i=1mi = T + 1,

2, if
∑N
i=1mi = T.

(43)

For example, if N = 2, m = [m1,m2]T and
∑N
i=1mi = T ,

the policy would generate a scheduling sequence as

(π[1], π[2], . . . , π[T ]) = (1, 1, . . . , 1, 2,︸ ︷︷ ︸
m1

1, 1, . . . , 1, 2︸ ︷︷ ︸
m2

). (44)

As seen in (44), a policy γm results in N scheduling segments,
where threshold mi corresponds to segment i, in which, Sensor
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1 is scheduled mi − 1 consecutive time instances. From (8)
and (43), the number of instances Sensor 1 and Sensor 2 is
scheduled during k ∈ [1, T ] is

nγ
m

1 =

N∑
i=1

(mi − 1) (45)

nγ
m

2 =

{
N, if

∑N
i=1mi = T,

N − 1, if
∑N
i=1mi = T + 1.

The policy γm satisfies criteria (25) in Theorem 1. Thus,
by finding an optimal threshold vector m∗ that satifies

min
m

J(γm), (46)

where m∗ = [m∗1,m
∗
2, ...,m

∗
N∗ ]T and N∗ ≤ T , we can derive

an optimal policy γ∗ as γm
∗
, which minimizes (9).

In the following proposition, we present conditions that an
optimal threshold vector m∗ must satisfy.

Proposition 1: Under Assumption 1, if n̄1 > T/2, for any
optimal threshold vector m∗, there exist an optimal threshold
m∗ ∈ {2, 3, ..., T + 1} that satisfies

m∗ − 1 ≤ m∗i ≤ m∗, ∀i = 1, ..., N∗,

where N∗ = c(m∗,m∗) + c(m∗ − 1,m∗).
If n∗2 = T/2, then

m∗ = 2, c(m∗,m∗) =
T

2
, c(m∗ − 1,m∗) = 0, (47)

else,

m∗ =

⌈
T + 1

n∗2 + 1

⌉
, c(m∗,m∗) + c(m∗ − 1,m∗) = n∗2 + 1,

c(m∗,m∗) = T + 1− (n∗2 + 1)(m∗ − 1), (48)
c(m∗ − 1,m∗) = n∗2 + 1− c(m∗,m∗).

Proof: Equations (47) and (48) follow from Theorem 1,
definitions (39) and (40), and equations (41)-(45).

For n̄1 > T/2, Proposition 1 shows that an optimal
threshold vector m∗ consists of either one or two threshold
values, i.e., m∗i ∈ {m∗ − 1,m∗}, i = 1, ..., N∗. From (48),
we see that the optimal number of scheduling instances for
Sensor 2, n∗2, implies the optimal threshold m∗. Hence, if n∗2
is known, we can derive an optimal policy γ∗ using the results
in Proposition 1.

In the following, we will reduce the feasible set of n∗2 to
simplify the derivation of n∗2, by analyzing how the average
error depends on the scheduling segment length m. Let
Ē : {2, 3, ...,∞} → R+, represent the average error over a
scheduling segment of length m, and be defined as

Ē(m)=

∑m−1
i=1 E(0, i) + E(1, 0)

m
, (49)

which converges to the upper MSE boundary in (15), i.e.,
limm→∞ Ē(m) = E∞2 .

If n∗2, and thus, m∗, is known, we use (49) to express the
cost in (7) as a combination of Ē(m∗) and Ē(m∗ − 1), as

J(γ∗) = Ē(2), for m∗ = 2, (50)

else, for m∗ > 2, i.e.,

J(γ∗) =
1

T

(
m∗Ē(m∗)c(m∗,m∗) (51)

+ (m∗ − 1)Ē(m∗ − 1)c(m∗ − 1,m∗)− E(1, 0)
)

For n̄1 > T/2, using (37), let L be the set of feasible values
of n∗2, n∗2 ∈ L, given by

L =
{
n ∈ N+

∣∣max{T − n̄1, 0} ≤ n ≤ min{n̄2, bT/2c}
}
.

From (50) and (51), we find that n∗2 should be equal to the
value n, n ∈ L, satisfying

min
n∈L

f(n) = J(γ∗), (52)

with f : L → R+ defined as

f(n) =

{
Ē(2), if n = T/2,
ν(n)Ē(m) + ω(n)Ē(m− 1) + w0, else,

(53)
where ν(n), ω(n) and m are derived by substituting (48) in
(51) as

m =

⌈
T + 1

n+ 1

⌉
, w0 = −E(1, 0)

T
,

ν(n) =
m

T

(
T + 1− (n+ 1)(m− 1)

)
,

ω(n) =
m− 1

T

(
n+ 1− ν(n)

T

m

)
,

and ν(n) + ω(n) = (T + 1)/T for all n ∈ L.
One way to find n∗2 is to evaluate every element in L and see

which minimizes (52). However, as mentioned earlier, if the
cardinality of L is large, this becomes cumbersome. Instead,
we can reduce the set of feasible values for n∗2 based on
mathematical properties of Ē(m) presented in [9].

For E(1, 0) ≥ E(0, 1), the value Ē(m̂), m̂ ≥ 2, is a
minimum point, satisfying

Ē(m̂) ≤ Ē(m̂− l) ≤ · · · ≤ Ē(2),

Ē(m̂) ≤ Ē(m̂+ l) ≤ · · · ≤ E∞2 , (54)

i.e., Ē(m̂) ≤ Ē(m̂+l), for m̂ ≥ 2, l ∈ N and 2−m̂ ≤ l <∞.
Furthermore, for m̂ ≥ 2, the value m̂ is m̂ =∞ if

∞∑
i=1

(
E∞2 − E(0, i)

)
≤ E(1, 0)− E∞2 , (55)

else, if (55) does not hold, the value m̂ is finite and given by

m̂ = inf
{
m ≥ 2

∣∣∣∑m−1
i=1 E(0, i) + E(1, 0)

m
≤ E(0,m)

}
.

(56)
From definition (56), we formulate the following Theorem.

Theorem 2: Under Assumption 1, for n̄1 > T/2, the
optimal number of scheduling instances for Sensor 2, n∗2,
satisfies (52) and belongs to set n∗2 ∈ {n−, n+}, where

n− = sup

{
n ∈ L

∣∣∣ ⌈T + 1

n+ 1

⌉
> m̂

}
,

n+ = inf

{
n ∈ L

∣∣∣ ⌈T + 1

n+ 1

⌉
≤ m̂

}
. (57)
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Fig. 2: Average cost J(γ) versus nγ1 for system parameters
σ1 = 2, σ2 = 1, ρ12 = −0.5, T = 100, n̄1 = n̄2 = 100,
and ξ1 = ξ2 = 0.5. Solid lines show results derived from
theory and markers show simulation results. Red asterix show
optimal performance at n∗1.

Proof: Let Lm ⊆ L, represent the number of scheduling
instances of Sensor 2 that correspond to threshold m as

Lm =

{
n ∈ L

∣∣∣m =

⌈
T + 1

n+ 1

⌉ }
. (58)

If the optimal threshold m∗ is known, the optimal number
of scheduling instances for Sensor 2, n∗2, satisfies (52) as

n∗2 = arg min
n∈Lm∗

f(n).

The inequalities in (54) imply; that if Ē(m) ≤ Ē(m − 1),
the following inequality holds for (53)

min
n∈Lm

f(n) ≤ min
n∈Lm−l

f(n), l ∈ N+, (59)

where 2 ≤ m− l ≤ m. Also, if Ē(m) ≤ Ē(m+ 1) then

min
n∈Lm+1

f(n) ≤ min
n∈Lm+1+l

f(n), l ∈ N+. (60)

From (59) and (60), we conclude that if either m̂, or m̂+1, are
feasible thresholds, one of these two threshold values equals
m∗. Otherwise, m∗ is either of the feasible thresholds lying
closest to m̂, and m̂+ 1. Hence, an optimal threshold m∗ lies
in m∗ ∈ {m−,m+},

m− = sup
n∈L

{⌈
T + 1

n+ 1

⌉ ∣∣∣ ⌈T + 1

n+ 1

⌉
≤ m̂

}
,

m+ = inf
n∈L

{⌈
T + 1

n+ 1

⌉ ∣∣∣ ⌈T + 1

n+ 1

⌉
> m̂

}
. (61)

For any m > 2, the sum, ν(n) + ω(n), in (53), is constant
for all n ∈ Lm and depend on n as

ν(n+ k) ≤ ν(n), ω(n) ≤ ω(n+ k), ∀n, n+ k ∈ Lm.

Thus, if m∗ is known, then n∗2 is found by maximizing the
weight ν(n) or ω(n), n ∈ Lm∗

, which is multiplied with the
smallest of the two elements; Ē(m∗) and Ē(m∗−1). Together
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Fig. 3: Optimal number of scheduling instances of Sensor 1,
n∗1, versus spatial correlation ρ12 for system parameters σ1 =
2, σ2 = 1, T = 100, n̄1 = n̄2 = 100, and ξ1 = ξ2 = 0.5.

with expressions (59) and (60), this gives that n∗2 belongs to
the set n∗2 ∈ {n−, n+}, where

n− = arg min
n∈Lm+

f(n) = maximum{Lm
+

},

n+ = arg min
n∈Lm−

f(n) = minimum{Lm
−
}. (62)

By substituting (61) for Lm−
and Lm+

in (62), we derive (57).

For n̄1 > T/2, Theorem 2 implies that γ∗ can be derived
by, firstly, calculating m̂ from expressions (55) and (56). This
can be done in a straightforward way using the algorithm in
[9, Alg. 1]. Secondly, by deriving n− and n+ in (57) and
evaluating the value that minimizes (52) as

n∗2 = arg min
n∈{n−,n+}

f(n).

Finally, deriving γ∗ by applying n∗2 to expressions (47) and
(48) in Proposition 1.

To summarize the theoretical results presented in Section
III, we have presented two important properties that an optimal
scheduling policy must satisfy. First, Theorems 1 and 2 show
that an optimal scheduling policy corresponds to an optimal
number of transmission instances for each sensor, n∗i , i = 1, 2.
Theorem 1 in (25) specifically states that if the transmission
constraint for Sensor 1, n̄1, is more than half the number of
total scheduling instances, i.e., n̄1 ≥ T/2, the optimal number
of scheduling instances for Sensor 1 should be more than,
or equal to, the optimal number of scheduling instances for
Sensor 2, i.e., n∗1 ≥ n∗2. In Theorem 2, we presented a simple
numerical method to reduce the number of possible values of
n∗2 to evaluate, to a set of only two values, {n−, n+}. For
n̄1 ≤ T/2, the value n∗1 should simply be maximized, i.e.,
n∗1 = n̄1.

The results in Theorem 1 in (25) demonstrate that in order
to maximize the overall MSE for a WSN where two sensors
observe Gaussian spatio-temporally correlated processes, the
sensor with the highest MSE for a given AoI should be
transmitted more frequently. Thus, it must be allocated more
transmission power resources. These results can be compared
to [17], where, in order to maximize the SNR, sensors are
allocated different resources for transmission depending on
their measurement noise.
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TABLE II: Simulation Parameters

Parameter Values
Standard deviation of Process 1, σ1 2
Standard deviation of Process 2, σ2 1
Standard deviation of measurement noises,
ξ1 and ξ2

0.5

Spatial correlation, ρ12 −0.5
Temporal correlation decay factor, λt 0.1, 0.2, 0.3, 0.4
Time horizon, T 100
Transmission constraint, n̄i, i = 1, 2 100

Secondly, as shown in Theorem 1, if n∗1 and n∗2 are known,
an optimal scheduling policy should result in a scheduling
sequence that minimizes the maximum AoI for each sensor.
In other words, an optimal scheduling policy can be derived
by finding a scheduling policy that minimizes the maximum
AoI for each sensor while considering the constraints n∗1 and
n∗2. The structure of an optimal scheduling sequence in this
paper is similar to the form of an optimal scheduling sequence
for a system where sensors observe independent linear time-
invariant processes, sharing a single communication channel
[1]. Although this paper has focused on minimizing the

overall MSE, an optimal scheduling sequence that minimizes
the AoI interconnects with the large body of work regarding
the AoI that has considered minimizing the AoI under different
system set-ups, e.g., [21], [31], [35]

IV. NUMERICAL EXAMPLES

We assume a system with statistical parameters σ1 =
2, σ2 = 1, ρ12 = −0.5, and ξ1 = ξ2 = 0.5. For the temporal
correlation ρt in (1), we use ρt(x) = e−λtx, x ∈ N+ [34],
where λt ∈ R, λt > 0, indicates the temporal correlation
decays with respect to the AoI. Thus, a larger value of λt
corresponds to a weaker temporal correlation. The simulation
parameters for our numerical examples can be found in Table
II.

Fig. 2 shows the average cost J(γ) versus nγ1 for λt =
(0.1, 0.2, 0.4) with time horizon T = 100 and n̄i = T ,
i = 1, 2. Given the value nγ1 , an optimal policy is derived from
the results in Theorems 1 and 2, and Proposition 1, referred
to as OPTIMAL. Solid lines depict theoretical values obtained
from (7)-(12) and markers show Monte Carlo simulations of
1000 sequences with T = 100, which matches the theory. The
red markers show the performance given the optimal number
of transmission instances n∗1 = (76, 84, 100). The respective
values for n∗1 can be compared to the respective optimal
threshold values in (54), m̂ = (4, 6,∞), which indicate that
Sensor 2 is scheduled around every m̂th time instance. The
results show that for λt ≤ 0.2, an optimal performance is
achieved for n∗1 < n̄1 = T .

In Fig. 2, the optimal performance is compared to a pol-
icy where Sensor 1 is scheduled nγ1 instances in a random
order during interval [1, T ], referred to as RANDOM. The
performance is calculated as the average MSE after simulating
1000 scheduling sequences for each value nγ1 . We see that an
optimal scheduling order outperforms a random scheduling

policy for every value of nγ1 . Furthermore, we see that as
the temporal correlation increases, i.e., λ = 0.1, the best
performance for RANDOM is at nγ1 < T .

Fig. 2 demonstrates that as the temporal correlation in-
creases, i.e., λt → 0, both optimal and RANDOM policy
performance increases. The reason for this can be found
in (12), where an increase in the temporal correlation, i.e.,
ρt → 1, results in a reduction of the MSE given the AoI. Thus,
we can conclude that if the degree of temporal correlation
increases, the performance of any given scheduling policy will
improve or remain the same.

Fig. 3 shows the optimal number of scheduling instances
for Sensor 1, n∗1, versus the spatial correlation ρ12 for
λt = (0.01, 0.05, 0.1, 0.14). The results show that n∗1 is
lower bounded at ρ12 = 0 with values, respectively n∗1 =
(75, 75, 88), and then increases with ρ12. We see that as the
temporal correlation increases, i.e., λt → 0, n∗1 decreases.

V. CONCLUSION

This paper studied a finite-horizon optimal scheduling pol-
icy for broadcasting observations from two spatio-temporally
processes. At each time instant, a network scheduler can
broadcast a measurement from one of the two processes to
two remote estimators, each tracking one process. The number
of scheduling instances for each sensor is limited by each
sensor’s energy supply. The scheduler cannot observe the
measurements and decides the scheduling policy based on
the AoI. We derived an optimal scheduling policy using the
AoI as a state variable. The policy can be attained for any
time horizon using a low-complexity numerical method. The
numerical results matched the theory. The numerical results in
this paper support earlier findings that exploit spatio-temporal
correlation in scheduling tasks to improve the estimation
accuracy in resource-constrained WSNs in various system
settings [18], [32], [36].

Future work includes exploring the possibility of deriving
an optimal finite time horizon scheduling policy using a differ-
ent dynamic spatio-temporally process, e.g., a Gauss-Markov
model [1], [37]. Another extension of our work would be to
consider using a sequential estimator that incorporates past
measurements and derive an optimal scheduling policy for
such a system to further improve the estimation accuracy at
the remote estimators.
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Victor Wattin Håkansson received the M.Sc.
degree in Engineering Physics from Lund Uni-
versity, Sweden, in 2014. He is currently pur-
suing a Ph.D. degree at the Norwegian Univer-
sity of Science and Technology (NTNU). He is
presently with the Signal Processing Group in
the Department of Electronic Systems at NTNU.
His experience and research interests include
machine learning, age-of-information, wireless
sensor networks, and financial modeling.

Naveen K. D. Venkategowda (S’12–M’17) re-
ceived the B.E. degree in electronics and com-
munication engineering from Bangalore Univer-
sity, Bengaluru, India, in 2008, and the Ph.D. de-
gree in electrical engineering from Indian Insti-
tute of Technology, Kanpur, India, in 2016. He is
currently an Universitetslektor at the Department
of Science and Technology, Linköping Univer-
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