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Abstract: - A variable predicate logic processor (VPLP) is proposed for artificial intelligence (AI), robotics, 

computer-aided medicine, electronic security, and other applications. The development is realized as an 

accelerating unit in AI computing machines. The difference from known designs, the datapath of this processor 

consists of universal gates changing on-the-fly their logical styles-subsets of predicate logic according to the data 

type and implemented instructions. In this paper, the processor’s reconfigurable gates and the main units are 

proposed, designed, modeled, and verified using a Field-Programmable Gate Array (FPGA) board and 

corresponding computer-aided design (CAD) tool. The implemented processor confirmed its reconfigurability 

on-the-fly performing testing codes. This processor is interesting in accelerating AI computing, molecular and 

quantum calculations in science, cryptography, computer-aided medicine, robotics, etc. 
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1 Introduction 
In artificial intelligence (AI), many data flows have 

very complicated structures requiring fast change of 

the logic processing styles. Partially, this idea is 

realized in FPGAs (Field-Programmable Gate 

Arrays), where a designed processor is modeled by 

programmed computing cells. Unfortunately, 

moving from one design to another requires an 

essential reconfiguration time [1]-[5]. Meanwhile, 

accelerated change of logic style requires fine-grain 

reconfigurability on the gate level [6],[7]. 

In this paper, a new specific approach to this 

reconfigurability is discussed. It is known that 

predicate logic (the logic of our intelligence) is 

general for many logic styles, including the Boolean 

one, for instance [8]-[10].  

If universal predicate gates controlled by 

instructions are realized, they can fulfill particular 

logic operations of different styles. We have already 

published the first ideas and circuits in this field in  

Refs. [11]-[14]. These contributions describe only 

initial designs for several different logic styles.  

Section 2 is on the theory and hardware 

realizations of predicate logic and its subsets that can 

be unified in a single processor. In Section 3, the 

proposed variable predicate logic processor is 

described in detail. Section 4 is on implementing the 

processor in FPGA and its verification. Concluding 

remarks are in Section 5.  

 

2 Predicate Logic and Processing 

Units 
In mathematics, predicate logic is a generic term for 

formal symbolic systems [8]-[10],[15],[16].              

This predicate system is distinguished from others in 

the formula S  containing variables Aand 

quantifiers T . 

  

 ( ),S A T=  (1) 



 

 

Thus, predicate logic operates with sentences S  

similar to the atomic one (1) instead of truth tables of 

propositional logic [8]. Some predicate logic 

applications are used in computer science.               

They could be found in AI modeling software, big 

data-based systems, circuit theory, hardware 

verification codes, etc. [17]-[21].  

However, such programs are mostly executed on 

processors built on propositional logic gates. 

Depending on the number of quantifiers, this source-

code-level simulation can increase the execution time 

in orders of magnitude compared to possible micro-

parallel gates realized operations with these 

predicated data streams. 

In some hardware, the predicate gates of fixed 

logic and even large units are implemented to 

enhance the processor parameters, as it was in the 

Itanium processor architecture [22]. Several ideas 

were published to modify the conventional computer 

modules for better processing Prolog programs    

[23]-[26] or enhance information exchange in multi-

processor supercomputing systems [27].  

Today, the computing devices involved in 

massive AI operations [28] require new designs 

called artificial intelligence accelerators [15],       

[29]-[34]. Some of them can be built on the combined 

use of propositional and predicate logic units [12] to 

improve AI computers’ performance.  

According to our best knowledge, the first 

application-specific instruction-set processor (ASIP) 

accelerating some AI operations was a predicate 

logic processor published in Refs. [35],[36].  

The idea of computing the electromagnetic (EM) 

signals carrying predicated information relates to the 

90th of the last century [11],[37]-[41]. The elementary 

binary predicate or atomic unit of knowledge        

[42]-[44] is a pair of logically coupled bits for the 

formula (1). They can be carried by two logically or 

even EM coupled wires [39]. 

 Generally, predicate logic uses an extended set 

of logical and non-logical symbols. Among them are 

the quantifier ones, conjunction (AND), disjunction 

(OR), negation (NOT), and implications (if-then).  

A reduced predicate logic in Ref. [36] and here 

uses only the AND, OR, and NOT logical operations 

applied to a predicate expression S : 
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After developing predicate gates according to the 

formula (2), an experimental 8-bit processor 

consisting of a predicate datapath and a conventional 

control unit was designed [36]. The datapath there 

implements the mentioned logically full set of 

predicate operations (2) in a parallel manner.  

This processor, thought a predicate logic 

accelerator, was modeled by VHDL (Very High-

Speed Integrated Circuit Hardware Description 

Language) and synthesized in FPGA board from Intel 

(formerly Altera) using Quartus II design software. 

The realized microprocessor works at a maximum 

clock frequency of 130.28 MHz. It consists of 5868 

total logic elements, 3482 combinational functions, 

4628 registers, and 10624 memory bits. The results 

of some testing programs were observed helped by 

the Quartus II tool and successfully compared with 

theoretical calculations. 

Ref. [36] shows the need for further enhancement 

of the designed predicate processor. It was overly 

specific for some practical applications. As a rule, the 

data is not always organized in predicate form in 

knowledge-based applications. Many flows need 

Boolean, multi-valued, reversible, etc., operations. 

Performing them by fixed predicate gates requires an 

additional program code. In this way, it leads to a 

decrease in throughput. 

As it was mentioned in the Introduction, the main 

idea of this paper is the development of a processor 

whose universal gates are controlled by instructions 

and realize several subsets of predicate logic.         

This possibility was noticed in the first works on 

spatially-modulated signals propagating along paired 

wires in Refs. [11],[37],[39]. There, one of the 

predicate logic units in the formula (1) can be 

assigned to control a logic type or realize the 

reversibility of gates [14]. Additionally, the paired 

wires can be used to model qubits in quantum 

computer emulators [11],[41]. 

In some applications, such as security-enhanced 

data processing, the paired wires can be used to avoid 

or diminish information leakage through irradiation 

from signal traces or/and power delivering wires. 

Again, this pair-wire style is a subset of the predicate 

logic set (2). 

 In all these cases, the signals propagating along 

the paired lines, formally in predicate form, require 

new universal reconfigurable gates and newly built 

arithmetic logic units (ALUs).  

In this article, based on our experience in the 

development, design, simulation, and FPGA 

implementations, a novel flexible processor 

architecture tailored to modern artificial intelligence 

applications is considered prospective to boost AI 

operations. The predicate flows are combined with 



 

 

conventional data representation in a specially 

designed microprocessor containing flexible ALU.   

 As a difference from all other microprocessors, 

the processor’s datapath can perform operations 

logically equal to the results produced by seven types 

of logic. These logics allow new possibilities which 

have been  not realized earlier in full: 

 

(1) Predicate logic with the paired wires 

(2) Conventional Boolean operations along 

each wire (depending on signal and 

instruction) [14] 

(3) Multi-valued (with four logic levels) 

operations spatially mapped on two 

wires [45]-[47] 

(4) Pseudo-quantum logic [13],[41],[45], 

[48]-[59] 

(5) Reversible logic [60]-[61] 

(6) Dual-rail operations [62],[63] 

(7) Dual-rail single-spacer operations 

[64],[65] 

(8) Dual-rail dual-spacer operations 

[66],[67] 

 

The initial designs of universal gates performing 

the above-considered operations have already been 

published in Refs. [13],[14]. More information is 

needed on pseudo quantum gates, which are not 

widely known to the electronic community.  

It is known that quantum computing can be 

powerful in some cases because of quantum 

parallelism when n  - particles are in 2n  states.          

We need 2n  classical electronic gates integrated into 

a 2n −  dimensional Hilbert-space processor to 

emulate a quantum computing unit. The initial idea 

in this field was from R.J.C. Spreeuw, who discussed 

building a Hilbert-space processor using photons of 

opposite polarization [50] paired into qubits. 

Unfortunately, the use of a multitude of bulky optical 

elements is a rather challenging problem.  

Contemporary electronics integrating billions of 

gates allows emulating a several-ten-qubit quantum 

machine. In 1999, we proposed using the microwave 

or digital electronics when a sum of even and odd 

modes in coupled strip lines models a qubit state 

because they have topologically different 

electromagnetic field maps [41]. A logically full set 

of gates was designed and realized in hardware by us 

in those years [40],[48],[49].  

 In Fig. 1 (not published earlier), a PCB board for 

a CNOT  gate and switch-controlled signal 

generator (designed with A. Ermakov in 1999) is 

shown as an example. The gate is described in detail 

in Ref. [40].  
The interest in emulation of quantum computers 

has been strong for many next following years [13], 

[14],[51]-[55], considering the problems in the 

developments of full-scale fault-tolerant quantum 

processors. It was found that pseudo-quantum 

architectures, being still classical, can calculate the 

quantum algorithms used in cryptography, quantum 

physics, chemistry, and biology more effectively than 

ordinary computers [53]-[56]. It is known, emulating 

quantum computers, that not all operations are with 

qubits; then, a universal computer should have gates 

performing Boolean and other operations belonging 

to the predicate set. Besides, in AI applications, 

quantum algorithms are not always powerful.  

 

 

Fig. 1. A   gate module (from G.A. Kouzaev’s 

archive, see as well [40]). 

 

 The proposed here processor, called the variable 

logic one,  can change its logic styles on-the-fly 

according to the incoming data flow and 

corresponding control signal. It will increase the 

effectiveness of data processing. Considering that all 

eight mentioned operations are the subsets of 



 

 

predicate logic, the full name of our design is the 

Variable Predicate Logic Processor (VPLP) 

 

3 Variable Predicate Logic Processor 

(VPLP) Design 
This VPLP architecture [13] has been developed in 

three major steps. Initially, the design of the variable 

predicate logic gates is performed [14], which is not 

considered here. The PRAM (Predicate Random-

Access Memory) is also composed and designed in 

the second step. Finally, the complete variable 

predicate logic processor has been realized and 

verified using an appropriate CAD (Computer-Aided 

Design) tool and an FPGA board (Fig. 2).  

 

 
 

Fig. 2. Cyclone II FPGA Starter Development 

Board (Altera, now Intel) is connected to a 

computer to emulate the designed VPLP. 

 

An 8-bit predicate processor is studied, i.e., each 

value in predicate expression (1) is represented by    

8-bit digits. 

A PRAM basic cell has been implemented in the 

second step of the processor development (Fig. 3). 

This basic cell has two inputs and two outputs for 

predicated signals. These signals can be of predicate 

information origin or contain the bits for control of 

logic of predicate gates. 
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Fig. 3. Implemented PRAM cell. 

 

This design uses four D flip-flops (from Dff1 to 

Dff4) and two three-state buffers (TSB1 and TSB2, 

denoted by triangles). The inputs CLKpmc and 

RSTpmc are for the clock and reset signals. The signal 

ENpmc enables the input of this PRAM unit.       

When the ENpmc signal is equal to the logic zero, 

then the three-state buffer outputs go to a                

high-impedance state. In this case, PRAM basic cell 

is disabled. In the opposite case, the ENpmc signal 

goes to logic one.  

A new 8-bit PRAM module is designed (Fig. 4) 

when eight cells are combined. Two memory data 

buses have 8-bit width. All other signals are equal to 

the described ones in Fig. 3 (a basic predicate 

memory unit). Then, 256 8-bit PRAM cells are 

connected, and PRAM is organized as 256 words by 

16 bits. An address decoder and a multiplexer have 

been added to this PRAM module (they are not 

included in Fig. 4 due to simplification reasons). 
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Fig. 4. Designed 8-bit PRAM cell. 

 

The complete variable predicate logic processor 

has been realized and verified in the final step.   

VPLP is a successor of the PLP (Predicate Logic 

Processor) [36] and PBOP (Predicate and Boolean 

Operation Processor) [12] processor architectures.       

It extends the architectures mentioned above.          

The instruction set is enlarged with new instructions. 

It has been used term flexible processor to express its 

opportunity to tune to different types of incoming 

data. The synthesized block diagram of the variable 

predicate logic processor is shown in Fig. 5.             

The VPLP includes a reset circuit, datapath, and 

control unit. 

 

 

 

vplp_clk

vplp_rst

MVD_in

MVD_out

dato

RD

WR

addressdati

 

RESET 

CIRCUIT

DATAPATH

CONTROL

UNIT

Qrst

 
  

Fig. 5. Synthesized variable predicate logic 

processor (VPLP). 

 

Another part of the variable predicate logic 

processor is its interface. It includes the signal lines 

vplp_clk, vplp_rst, MVD_in, MVD_out, dati, dato, 

RD, WR, and address. The lines vplp_clk and 

vplp_rst interface the clock and reset (Qrst is 

produced by reset circuit) signals to various 

components of VPLP. Signal lines MVD_in and 

MVD_out are the input and output of multi-valued 

numbers to the variable predicate logic processor.     

At the input, the multi-valued numbers are converted 

to binary ones and vice versa to the output using 

convertors.  

The rest signal lines (Fig. 5) connect VPLP to the 

PRAM module. RD and WR signals are utilized to 

perform the read and write memory operations.          

A signal line address is the address bus of the 

variable predicate logic processor. The data buses of 

the VPLP are formed by dati and dato signals.  

In Fig. 6, the variable predicate logic processor 

datapath is shown. It is responsible for the 

manipulation of data. It consists of the storage units: 

register B, accumulator A, multi-valued register, flag 

register (FLAGs), and the combinational units: data 

multiplexer and variable predicate arithmetic logic 

unit (VPALU).  
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Fig. 6. Designed VPLP datapath. 

 

The data multiplexer in Fig. 6 selects the data 

either from PRAM (dati_dp) or from multi-valued 

signal lines Mvi_dp and sends the selected input’s 

data to VPALU. This data multiplexer has a select 

line, which is named MS. The VPALU control bits 

belong to signal line VPALUs_dp, which is of 5-bit 

size. Accumulator A and register B are provided to 

aid in executing instructions in VPALU. 

Accumulator A is a 16-bit register (Fig. 6).              

It usually contains one of the two operands involved 

in actual instruction execution. The second operand 

is read from PRAM or register B. The result of an 

operation is again stored in accumulator A, either 

register B or both. The load signal line LD1_dp is 

applied to load/store operations.   

Register B is 16-bit, too. It plays the same role as 

accumulator A in some instructions. The added letter 

B in the assembly instruction names (in mnemonics) 

specifies the application of register B in their 

execution.  

Accumulator A and register B are both used in 

some operations. Clock vplp_clk and reset Qrst signal 

lines are distributed to other datapath components 

except for the data multiplexer and VPALU. The 

decrement DEC_dp, increment INC_dp and load 

LDB signal lines only apply to register B. 

The multi-valued register (Fig. 6) is 16-bit that 

stores the processed multi-valued data. Load signal 

line LD2_dp is used for this operation to be 

performed. The multi-valued register output signal 

line is Mvo_dp. The output signal line of datapath for 

a different type of data, excluding multi-valued one, 

is dato_dp.  

A flag register (FLAGs) is a 3-bit one containing 

three status flags. These bits are set to logic one or 

logic zero based on the results after completion of the 

comparison operation by VPALU. The FLAGs load 

signal line is Fld_dp. When logic one is applied to 

this load signal line FLd_dp, the VPLP flags are 

saved into the flag register. They are placed on the 

output signal line FL_dp. 

Variable predicate arithmetic logic unit (VPALU) 

performs arithmetic and logical operations (Fig. 6). 

The current design extends these operations with the 

ones applicable to several types of logics: mainly the 

Boolean, predicate, multi-valued (multiple-valued), 

pseudo-quantum, reversible, and dual-rail 

(differential) logics and its modifications using a 

single spacer (all-zeroes state) or dual spacers         

(all-zeroes and all-ones states). 

The corresponding processor instructions have 

been implemented. Table 1 shows new instructions 

belonging to the VPLP instruction set. The old ones, 

including a part of the Boolean and predicate 

instructions, are inherited from previous PLP and 

PBOP variants [12],[36].  

 

Table 1. New VPLP instructions. 

 
Command Semantic 

Arithmetic and load 

instructions 

 

INCA Increment the content of 

accumulator A by 1 

DECA Decrement the content of 

accumulator A by 1 

INCB Increment the content of register 

B by 1 

DECB Decrement the content of register 
B by 1 

LDB Load constant into register B 

LBA Load register B with the content 

of accumulator A 

LAB Load accumulator A with the 
content of register B 

Multi-valued logic instructions  

INM Load accumulator A with 

converted quaternary to binary 
number 

OUTM Load multi-valued register with 

processed binary number 

Pseudo-quantum logic 

instructions 

 

CNB  The logic equivalent of  

controlled-NOT (CNOT) 

operation  

(according to the truth table) 

SWB  The logic equivalent of the swap 
operation (with an identical truth 

table) 

Table 1. (continued)  



 

 

 
Additional information about the VPLP 

instruction set is presented in the following lines: 

 

o INCA – VPALU increments by one 

accumulator A. The result is stored in 

accumulator A. 

o DECA – VPALU decrements by one 

accumulator A content. The result is saved in 

accumulator A. 

o INCB – Variable predicate logic controller 

sets a logic one on datapath signal line 

INC_dp.   The content of register B is 

incremented by one. 

o DECB – Variable predicate logic controller 

sets a logic one on datapath signal line 

number DEC_dp. The content of register B 

is decremented by one. 

o LDB – The program counter is incremented 

by one. From the next PRAM cell (each 

memory cell is 16-bits wide), the 16-bit 

operand is fetched. With VPALU pass-

through operation, the operand is loaded to 

register B.  

o LBA – 16-bit operand is initially stored in 

accumulator A. With a VPALU pass-through 

operation, the operand is transferred to 

register B. 

o LAB – Register B contains a 16-bit operand 

initially. With VPALU pass-through 

operation, the operand is moved to 

accumulator A. 

o INM – 16-bit value (converted quaternary to 

binary number) is placed on VPLP signal 

lines MVD_in. With a VPALU pass-through 

operation, the operand is loaded into 

accumulator A. 

o OUTM – 16-bit operand is initially stored in 

accumulator A. With datapath load signal 

line LD2_dp the operand is transferred to a 

multi-valued register. 

o CNB – Register B holds two 8-bit operands.        

According to the controlled-NOT (CNOT) 

truth table, the result is again stored in 

register B. 

o SWB – Register B holds two 8-bit operands. 

The result, according to the SWAP truth 

table, is contained again in register B. 

o FGO – The first 8-bit operand is stored in the 

most significant byte of accumulator A and 

the second two 8-bit operands – in register B. 

According to the Fredkin gate truth table, the 

result is kept again in the same registers (one 

8-bit result in the most significant byte of 

accumulator A and two 8-bit results in 

register B). 

o DOR – Two 8-bit dual-rail operands are 

loaded into accumulator A and register B. 

The dual-rail OR logic operation results are 

stored again in the same registers. 

o DAND – Two 8-bit dual-rail operands are 

loaded into accumulator A and register B. 

Result of dual-rail AND logic operation is 

kept again in the same registers. 

 

 TNOT, TOR,  TAND,  SNOT, SOR, and 

SAND instructions perform the dual-rail NOT, OR, 

and AND logic operations. The operand and result 

for TNOT and SNOT instructions are in accumulator 

A only. The operands and results for TOR, TAND, 

SOR, and SAND instructions are in accumulator A 

and register B. A single spacer (all-zeroes state) or 

dual spacer (all-zeroes and all-ones states) can be 

used during transmission for each of the two groups 

of three instructions, respectively. 

  

Reversible logic instruction  

FGO Logic equivalent (with identical 
truth table) of Fredkin gate 

operation 

Dual-rail (differential) logic 

instructions 

 

DOR Dual-rail OR operation 

DAND Dual-rail AND operation 

 

Dual-rail (differential) logic 

instructions using a single 

spacer (all-zeroes state) 

 

TNOT Dual-rail NOT operation 

TOR Dual-rail OR operation 

TAND Dual-rail AND operation 

Dual-rail (differential) logic 

instructions using dual spacers 

(all-zeroes and all-ones states) 

 

SNOT Dual-rail NOT operation 

SOR Dual-rail OR operation 

SAND Dual-rail AND operation 

Reversible logic instruction  

FGO Logic equivalent (with identical 
truth table) of Fredkin gate 

operation 

Dual-rail (differential) logic 

instructions 

 

DOR Dual-rail OR operation 

DAND Dual-rail AND operation 

 

Dual-rail (differential) logic 

instructions using a single 

spacer (all-zeroes state) 

 

TNOT Dual-rail NOT operation 

TOR Dual-rail OR operation 

TAND Dual-rail AND operation 

Dual-rail (differential) logic 

instructions using dual spacers 

(all-zeroes and all-ones states) 

 

SNOT Dual-rail NOT operation 

SOR Dual-rail OR operation 

SAND Dual-rail AND operation 



 

 

 The control unit (CU) issues the appropriate 

signals to be executed the current command. The CU 

also performs instruction fetching and decoding.        

It consists of sequential components such as an 

instruction register, index register, program counter, 

another register, variable predicate logic controller, 

and combinational units, which are the address 

multiplexer and adder. Fig. 7 shows the internal 

architecture of the VPLP control unit. 
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Fig. 7. Realized VPLP control unit. 

 

 The instruction register is 16-bit. It holds the 

instruction fetched from PRAM. Every instruction is 

encoded in eight bits. Clock vplp_clk and reset Qrst 

signal lines are distributed to other control unit 

sequential components. A variable predicate logic 

controller (VPLCl) is the main component of the 

control unit. The VPLCl is realized as a finite state 

machine (FSM). Each state of the FSM corresponds 

to a different instruction encoded in eight bits. 

Depending on decoded instruction, other control 

signals are issued and sent to datapath, control unit 

components, and PRAM. These signals are required 

for proper instruction execution.  

PRAM data is transferred to the instruction 

register using signal lines dati. Data are also sent to 

signal lines dato_cu. The VPLCl output signal line 

VPALU_cu selects a VPALU operation. 

PRAM read or write operation is performed when 

RD or WR signals are applied. The select signal line 

MS_cu is coupled to the data multiplexer signal line 

MS (in Fig. 6). The following output signal lines are 

the load ones. Signal line LD_cu is set to load the 

accumulator A. Signal line LDMV_cu is used to load 

the multi-valued register. The next signal line 

LDB_cu applies to register B. When logic one is set 

to Binc_cu or Bdec_cu control signals, it is possible 

to increment or decrement the value of register B. 

The index register (IXR) can contain the operand 

address. The IXR output line is connected to one 

address multiplexer inputs. 

Adder is implemented to calculate the operand 

address when a branch instruction is executed. It adds 

the offset value to the current program counter 

content. The result is loaded into the program 

counter.   

The additional register (located under VPLCl in 

Fig. 7) stores the program counter content.             

Later, this program counter could be loaded again 

with stored value.  
Address multiplexer selects the address signals 

from the program counter or the index register.       

The selected address will appear on the address bus 

address.  

The Program Counter (PC) is an 8-bit digital 

component, and it holds the address of the next 

instruction, which must be executed. This PC needs 

to be incremented by one count for every instruction 

or two of them. Its output is the signal line PCout. 

Fig. 8 illustrates the Program Counter 

implementation.  
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Fig. 8. Implemented VPLP’s Program Counter. 

 

This electronic circuit consists of an 8-bit adder, 

an 8-bit register (denoted as a D flip-flop in Fig. 8), 

and two multiplexers (Mux1, Mux2). The register is 

incremented by one helped by the adder and 

corresponding signal line PCinc (in logic high).       

For this purpose, the input operand is used equally to 

the value one (0000 0001) placed on input B of this 

adder. The 8-bit register could be loaded using two 

multiplexers and corresponding load signal lines 



 

 

PCld1 and PCld2. Two values are applied to 8-bit 

input buses PCin1 and PCin2. 

The signal lines CLK and PCclr (connected to 

Qrst) are clock and reset signals correspondingly. 

Fig. 9  shows the VPLP reset circuit [68].       

 

D1

FLIP-FLOP

D2

FLIP-FLOP

vplp_clk

vplp_rst

Qrst

D

     D

Q1

Q2

CLR

CLR

 
 

Fig. 9. VPLP reset circuit. 

 

The main building blocks are two D flip-flops D1 

and D2. Clock vplp_clk and reset vplp_rst signal lines 

are connected to both flip-flops. D input of the first D 

flip-flop is coupled to ground potential. Its output 

signal line (Q1) is connected to the D input of the 

second flip-flop. The output of the reset circuit is the 

signal line Qrst.  

The reset circuit is used to synchronize 

asynchronous VPLP reset signals (Qrst). It is avoided 

any potential problems with asynchronous reset using 

this presented circuit. 

 

4 Variable Predicate Logic Processor 

Testing   
The designed VPLP is connected to the PRAM 

module, as it is shown in Fig. 10.  

 

Multiplexer

S1

S2

C1

VPLP

PRAM

CONTROLLER

PRAM

vplp_rst

26

26
26

pram_rst

16

vplp_clk

Qrst

 
 

Fig. 10. Designed VPLP connected to PRAM. 

A test program is coded and loaded into memory 

using an additional PRAM controller and a 

multiplexer. VPLP and PRAM controllers have reset 

signals with different logic levels. VPLP has an 

active-high reset signal, and the PRAM controller 

uses an active-low reset signal. The reset signal 

(Qrst) is connected to the select input of the 

multiplexer (C1). In this way, when the PRAM 

controller works, VPLP is idle and vice versa.         

The PRAM reset signal is pram_rst.  

VPLP address bus, data (dato), and read/write 

signals are coupled to the first data input of the 

multiplexer (S1). The same signals of the PRAM 

controller are connected to the second data input of 

the multiplexer (S2). Another part of VPLP data bus 

information (dati) is transferred directly to the 

processor. Clock signal vplp_clk is distributed to 

VPLP, PRAM controller, and PRAM. Reset signal 

vplp_rst is connected to VPLP’s reset circuit input. 

During the VPLP verification phase, the results 

obtained from the test programs used for the earlier 

designed computer architectures [12],[36] are 

compared with those obtained using this new 

architecture. Then, the implemented further 

instructions are checked for correct work. It is done 

with the SignalTap II Embedded Logic Analyzer, 

which is a part of Quartus II design software [69] and 

Cyclone II FPGA Starter Development Board [70]. 

 

4.1 Test program 1 
The final step in the VPLP verification process is 

executing several test programs. One example of 

them, with short comments, is given below. 

 

o LDB  #$55AF   ; Register B is loaded with 

hexadecimal value “55AF” (timestamp – ts 

11). 

o LAB                  ; Accumulator A is loaded 

with hexadecimal value “55AF” (ts 15). 

o CNB                  ; Operation, logically equal 

to control-NOT, is executed between 8-bit 

numbers located in register B (ts 22). 

o FGO                   ; Operation, logically equal 

to Fredkin gate, is performed. 8-bit A 

operand is in the MSB of accumulator A. The 

other two 8-bit operands (B and C) are 

maintained in register B (ts 26). 

o LDB  #$AACD  ; Register B is loaded with 

hexadecimal value "AACD" (ts 35). 

o LAB                   ; Accumulator A is loaded 

with hexadecimal value “AACD” (ts 39). 

o CNB                      ; Operation, logically equal 

to  control-NOT one, is executed between    

8-bit numbers in register B (ts 46). 



 

 

o FGO                      ; Operation, logically equal 

to Fredkin gate one, is performed. 8-bit A 

operand is in the MSB of accumulator A.  

The other two 8-bit operands (B and C) are 

maintained in register B (ts 50). 

o NOP                ; There is no processor 

operation (ts 54). 

o HLT               ; VPLP stops execution 

of any instructions (ts 58). 

 

The checked instructions in the above-presented 

test program are the LDB, LAB, CNB, FGO, NOP, 

and HLT ones. The SignalTap II Embedded Logic 

Analyzer’s captured data is compared with one based 

on theoretical calculations. The conclusion is that the 

designed VPLP works appropriately. The basic 

signals used in the verification process are shown in 

Table 2. 

 

Table 2. VPLP test signal legend. 

 
Key Signal name Signal explanation 

0 

vplp_rst 

 

 

VPLP reset signal  (It is 

assigned pushbutton 

KEY [0] 

to vplp_rst) 

1 

PRAM|address 

 

PRAM address 

 

2 

PRAM|dati 

 

PRAM input data 

 

3 

PRAM|dato 

 

PRAM output data 

4 

PRAM|RD 

 

PRAM read signal 

 

5 

PRAM|WR 

 

PRAM write signal 

6 

control_unit|VPLPcontroller 

|OPCODE 

 

Operation code of 

executed instruction 

7 

control_unit|PC|PCout 

 

Program counter output   

data 

 

8 

datapath|ACCA|Q1 

 

Accumulator A output 

data 

 

9 

datapath|REGB|regBout Register B output data 

 

 

The clock frequency of this variable predicate 

logic computer prototype in Figure 9 is 50 MHz 

(PIN_L1 of the Cyclone II FPGA Starter 

Development Board is connected to the vplp_clk 

signal [70]).  

An essential part of the collected data is included 

in Table 3. It is a portion of the created SignalTap II 

Embedded Logic Analyzer list file. The data in this 

Table 3  is captured using the clock (vplp_clk) as an 

acquisition signal. The VPLP reset signal (vplp_rst) 

is a trigger one. The signal keys from Table 2 are in 

the first row of Table 3. 

The sample depth of the SignalTap II Embedded 

Logic Analyzer data buffer is specified to get 128 

samples. Table 3 presents half of them. The first 

column contains the time in which the logic value of 

the test signals is registered. Minus sign (-) denotes a 

period before a trigger signal appears. 

 

Table 3. A part of SignalTap II Embedded Logic 

Analyzer list file. 

 
t  0 1 2 3 4 5 6 7 8 9 

-2 1 
00

h 

0000

h 

0000

h 0 0 

07

h 

00

h 

0000

h 

0000

h 

-1 1 
00

h 

0000

h 

0000

h 0 0 

07

h 

00

h 

0000

h 

0000

h 

0 0 
00
h 

0000
h 

0000
h 0 0 

07
h 

00
h 

0000
h 

0000
h 

1 0 
00

h 

0000

h 

0000

h 0 0 

07

h 

00

h 

0000

h 

0000

h 

2 0 
00

h 

0000

h 

0000

h 0 0 

07

h 

00

h 

0000

h 

0000

h 

3 0 
00

h 

0000

h 

0000

h 1 0 

07

h 

00

h 

0000

h 

0000

h 

4 0 
00

h 

0000

h 

171

Dh 0 0 

07

h 

00

h 

0000

h 

0000

h 

5 0 
00

h 

0000

h 

171

Dh 0 0 

07

h 

00

h 

0000

h 

0000

h 

6 0 
00

h 

0000

h 

171

Dh 0 0 

17

h 

00

h 

0000

h 

0000

h 

7 0 
00

h 

0000

h 

171

Dh 0 0 

17

h 

00

h 

0000

h 

0000

h 

8 0 
00

h 

0000

h 

171

Dh 0 0 

17

h 

00

h 

0000

h 

0000

h 

9 0 
01

h 

0000

h 

171

Dh 1 0 

17

h 

01

h 

0000

h 

0000

h 

10 0 
01

h 

0000

h 

55A

Fh 0 0 

17

h 

01

h 

0000

h 

0000

h 

11 0 
01

h 

0000

h 

55A

Fh 0 0 

17

h 

01

h 

0000

h 

55A

Fh 

12 0 
01

h 

0000

h 

55A

Fh 0 0 

1D

h 

01

h 

0000

h 

55A

Fh 

Table 3. (continued) 



 

 

13 0 
01

h 

0000

h 

55A

Fh 0 0 

1D

h 

01

h 

0000

h 

55A

Fh 

14 0 
01

h 

0000

h 

55A

Fh 0 0 

1D

h 

01

h 

0000

h 

55A

Fh 

15 0 
01

h 

55A

Fh 

55A

Fh 0 0 

1D

h 

01

h 

55A

Fh 

55A

Fh 

16 0 
02

h 

55A

Fh 

55A

Fh 1 0 

1D

h 

02

h 

55A

Fh 

55A

Fh 

17 0 
02

h 

55A

Fh 

1B20

h 0 0 

1D

h 

02

h 

55A

Fh 

55A

Fh 

18 0 
02
h 

55A
Fh 

1B20
h 0 0 

1D
h 

02
h 

55A
Fh 

55A
Fh 

19 0 
02

h 

55A

Fh 

1B20

h 0 0 

1B

h 

02

h 

55A

Fh 

55A

Fh 

20 0 
02
h 

55A
Fh 

1B20
h 0 0 

1B
h 

02
h 

55A
Fh 

55A
Fh 

21 0 
02

h 

55A

Fh 

1B20

h 0 0 

1B

h 

02

h 

55A

Fh 

55A

Fh 

22 0 
02
h 

55A
Fh 

1B20
h 0 0 

1B
h 

02
h 

55A
Fh 

55F
Ah 

23 0 
02

h 

55A

Fh 

1B20

h 0 0 

20

h 

02

h 

55A

Fh 

55F

Ah 

24 0 
02
h 

55A
Fh 

1B20
h 0 0 

20
h 

02
h 

55A
Fh 

55F
Ah 

25 0 
02

h 

55A

Fh 

1B20

h 0 0 

20

h 

02

h 

55A

Fh 

55F

Ah 

26 0 
02
h 

55A
Fh 

1B20
h 0 0 

20
h 

02
h 

55A
Fh 

50FF
h 

27 0 
03

h 

55A

Fh 

1B20

h 1 0 

20

h 

03

h 

55A

Fh 

50FF

h 

28 0 
03
h 

55A
Fh 

171
Dh 0 0 

20
h 

03
h 

55A
Fh 

50FF
h 

29 0 
03

h 

55A

Fh 

171

Dh 0 0 

20

h 

03

h 

55A

Fh 

50FF

h 

30 0 
03
h 

55A
Fh 

171
Dh 0 0 

17
h 

03
h 

55A
Fh 

50FF
h 

31 0 
03

h 

55A

Fh 

171

Dh 0 0 

17

h 

03

h 

55A

Fh 

50FF

h 

32 0 
03
h 

55A
Fh 

171
Dh 0 0 

17
h 

03
h 

55A
Fh 

50FF
h 

33 0 
04

h 

55A

Fh 

171

Dh 1 0 

17

h 

04

h 

55A

Fh 

50FF

h 

Table 3. (continued) 

34 0 
04

h 

55A

Fh 

AAC

Dh 0 0 

17

h 

04

h 

55A

Fh 

50FF

h 

35 0 
04

h 

55A

Fh 

AAC

Dh 0 0 

17

h 

04

h 

55A

Fh 

AAC

Dh 

36 0 
04

h 

55A

Fh 

AAC

Dh 0 0 

1D

h 

04

h 

55A

Fh 

AAC

Dh 

37 0 
04

h 

55A

Fh 

AAC

Dh 0 0 

1D

h 

04

h 

55A

Fh 

AAC

Dh 

38 0 
04

h 

55A

Fh 

AAC

Dh 0 0 

1D

h 

04

h 

55A

Fh 

AAC

Dh 

39 0 
04
h 

AAC
Dh 

AAC
Dh 0 0 

1D
h 

04
h 

AAC
Dh 

AAC
Dh 

40 0 
05

h 

AAC

Dh 

AAC

Dh 1 0 

1D

h 

05

h 

AAC

Dh 

AAC

Dh 

41 0 
05
h 

AAC
Dh 

1B20
h 0 0 

1D
h 

05
h 

AAC
Dh 

AAC
Dh 

42 0 
05

h 

AAC

Dh 

1B20

h 0 0 

1D

h 

05

h 

AAC

Dh 

AAC

Dh 

43 0 
05
h 

AAC
Dh 

1B20
h 0 0 

1B
h 

05
h 

AAC
Dh 

AAC
Dh 

44 0 
05

h 

AAC

Dh 

1B20

h 0 0 

1B

h 

05

h 

AAC

Dh 

AAC

Dh 

45 0 
05
h 

AAC
Dh 

1B20
h 0 0 

1B
h 

05
h 

AAC
Dh 

AAC
Dh 

46 0 
05

h 

AAC

Dh 

1B20

h 0 0 

1B

h 

05

h 

AAC

Dh 

AA6

7h 

47 0 
05
h 

AAC
Dh 

1B20
h 0 0 

20
h 

05
h 

AAC
Dh 

AA6
7h 

48 0 
05

h 

AAC

Dh 

1B20

h 0 0 

20

h 

05

h 

AAC

Dh 

AA6

7h 

49 0 
05
h 

AAC
Dh 

1B20
h 0 0 

20
h 

05
h 

AAC
Dh 

AA6
7h 

50 0 
05

h 

AAC

Dh 

1B20

h 0 0 

20

h 

05

h 

AAC

Dh 

22EF

h 

51 0 
06
h 

AAC
Dh 

1B20
h 1 0 

20
h 

06
h 

AAC
Dh 

22EF
h 

52 0 
06

h 

AAC

Dh 

0807

h 0 0 

20

h 

06

h 

AAC

Dh 

22EF

h 

53 0 
06
h 

AAC
Dh 

0807
h 0 0 

20
h 

06
h 

AAC
Dh 

22EF
h 

54 0 
06

h 

AAC

Dh 

0807

h 0 0 

08

h 

06

h 

AAC

Dh 

22EF

h 

Table 3. (continued) 



 

 

55 0 
06

h 

AAC

Dh 

0807

h 0 0 

08

h 

06

h 

AAC

Dh 

22EF

h 

56 0 
06

h 

AAC

Dh 

0807

h 0 0 

08

h 

06

h 

AAC

Dh 

22EF

h 

57 0 
06

h 

AAC

Dh 

0807

h 0 0 

08

h 

06

h 

AAC

Dh 

22EF

h 

58 0 
06

h 

AAC

Dh 

0807

h 0 0 

07

h 

06

h 

AAC

Dh 

22EF

h 

59 0 
06

h 

AAC

Dh 

0807

h 0 0 

07

h 

06

h 

AAC

Dh 

22EF

h 

60 0 
06
h 

AAC
Dh 

0807
h 0 0 

07
h 

06
h 

AAC
Dh 

22EF
h 

61 0 
06

h 

AAC

Dh 

0807

h 0 0 

07

h 

06

h 

AAC

Dh 

22EF

h 

 

  

4.2 Test program 2 
 Another test program example is given below 

(with short comments). 

 

o LDA  #$0000        ; Register A is loaded with 

hexadecimal value “0000”. 

o LDB  #$4FB1       ; Register B is loaded with 

hexadecimal value "4FB1". 

o DECB           ;  The value in register B is 

reduced by one. 

o SWB                     ; A SWAP operation is 

executed. The result, according to the SWAP truth 

table, is contained again in register B. 

o CNB                      ; Operation, logically equal 

to control-NOT one, is executed between    8-bit 

numbers in register B. 

o NOP                     ; There is no processor 

operation. 

o HLT                ; VPLP stops execution of 

any instructions. 

 

 The checked instructions in the above-presented 

test program are the LDA, LDB, DECB, SWB, 

CNB, NOP, and HLT ones. The SignalTap II 

Embedded Logic Analyzer’s captured data is 

compared again with one based on theoretical 

calculations. The conclusion is the same as the 

previous one that the designed VPLP works 

appropriately. The basic signals  (in particular the 

contents of registers A and B) used in the verification 

process are shown in Fig 11. 

  
 

Fig. 11. SignalTap II wave diagram. 

 



 

 

 4.3 Test program 3 
 The third test program example is given below 

(with short comments). 

 

o LDC $0B            ; Instruction counter (IC) 

is loaded with hexadecimal value “0B”. 

o INC            ; IC is incremented  by 1. 

o LDAC              ;  Register A is loaded 

with hexadecimal value “55AA”. 

o INC                     ; IC is incremented  by 1. 

o CPAH                        ; The content of register A 

(high byte) is compared (subtracted) with the value 

of the memory cell addressed by the IC. 

o BIG $02                   ;  Branch if flag Greater is 

equal to one. 

o NOP                      ; There is no processor 

operation. 

o HLT                 ; VPLP stops execution of 

any instructions. 

o INC          ; IC is incremented  by 1. 

o STAC          ; The content of register A 

is stored in a cell with an address specified by the IC. 

o DEC           ; IC is decremented  by 1. 

o LDAC          ; Register A is loaded with 

hexadecimal value “00AA”. 

o DEC           ; IC is decremented  by 1. 

o STAC           ; The content of register A 

is stored in a cell with an address specified by the IC. 

o INC                    ; IC is incremented  by 1. 

o INC                    ; IC is incremented  by 1. 

o LDAC          ; Register A is loaded with 

hexadecimal value “55AA”. 

o DEC           ; IC is decremented  by 1. 

o STAC           ; The content of register A 

is stored in a cell with an address specified by the IC. 

o HLT                 ; VPLP stops execution of 

any instructions. 

 

 Memory cell with address $0C has an initial 

content $55AA. 

 Memory cell with address $0D has an initial 

content $00AA. 

 

 The checked instructions in the third test program 

are the LDC, INC, LDAC, CPAH, BIG, NOP, STAC, 

DEC, and HLT ones. The SignalTap II Embedded 

Logic Analyzer’s captured data is compared with one 

based on theoretical calculations. The conclusion is 

that the designed VPLP works well as it is shown in 

Fig 12 (in Appendix 1). 

 During VPLP testing have been used more than 

ten test programs of different lengths. All instructions 

belonging to the instruction set of the microprocessor 

have been checked and their operation is correct. 

5 Conclusions 
In this article, a novel variable predicate logic 

processor has been presented. The designed VPLP 

consists of a variable-logic datapath, control unit, 

reset circuit, and PRAM module to store information.  

Depending on the data and generated 

instructions, the datapath units perform the logical 

operations belonging to eight subsets of reduced 

predicate logic, including the predicate, Boolean, 

multi-valued (4-level), pseudo-quantum, reversible, 

and pair-wire logic styles. The logic change is 

realized on-the-fly if it is required. The processor can 

emulate in hardware many algorithms,  including the 

AI operations and 2n  - dimensional Hilbert-space 

pseudo-quantum computing. 

The proposed microprocessor architecture has 

been developed in three steps: the variable predicate 

logic gates design, PRAM realization, and final 

VPLP implementation in an FPGA board (Altera’s 

Cyclone II FPGA Starter Development Kit) with 

subsequent verification using several test codes. 

The invented variable predicate logic processor is 

interesting in accelerating artificial intelligence 

applications, enhancing hybrid quantum-classical 

architectures, molecular and pseudo-quantum 

calculations used in science, cryptography, 

computer-aided medicine, robotics, electronic 

security, etc. 
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Appendix 1 

 

 
 

 

Fig. 12. SignalTap II wave diagrams for the third test program. 

 

 

 

 

 

 

 

 

 


