

A Novel Processor for Artificial Intelligence Acceleration

ATANAS N. KOSTADINOV

Department of Computer Systems and Technologies

Technical University of Sofia, Plovdiv Branch

25 Tsanko Diustabanov Str., 4000 Plovdiv

BULGARIA

GUENNADI A. KOUZAEV

Department of Electronic Systems

Norwegian University of Science and Technology - NTNU

Gløshaugen, O.S. Bragstads plass 2B, 7491 Trondheim

NORWAY

Abstract: - A variable predicate logic processor (VPLP) is proposed for artificial intelligence (AI), robotics,

computer-aided medicine, electronic security, and other applications. The development is realized as an

accelerating unit in AI computing machines. The difference from known designs, the datapath of this processor

consists of universal gates changing on-the-fly their logical styles-subsets of predicate logic according to the data

type and implemented instructions. In this paper, the processor’s reconfigurable gates and the main units are

proposed, designed, modeled, and verified using a Field-Programmable Gate Array (FPGA) board and

corresponding computer-aided design (CAD) tool. The implemented processor confirmed its reconfigurability

on-the-fly performing testing codes. This processor is interesting in accelerating AI computing, molecular and

quantum calculations in science, cryptography, computer-aided medicine, robotics, etc.

Key-Words: - Variable predicate logic processor (VPLP), predicate logic, artificial intelligence (AI), predicate

RAM (PRAM), topological computing, Hilbert-space pseudo-quantum computers, hybrid quantum-classical

computers, Field-Programmable Gate Array (FPGA).

Received: April 25, 2022. Revised: June 7, 2022. Accepted: April 27, 2022. Published:

1 Introduction
In artificial intelligence (AI), many data flows have

very complicated structures requiring fast change of

the logic processing styles. Partially, this idea is

realized in FPGAs (Field-Programmable Gate

Arrays), where a designed processor is modeled by

programmed computing cells. Unfortunately,

moving from one design to another requires an

essential reconfiguration time [1]-[5]. Meanwhile,

accelerated change of logic style requires fine-grain

reconfigurability on the gate level [6],[7].

In this paper, a new specific approach to this

reconfigurability is discussed. It is known that

predicate logic (the logic of our intelligence) is

general for many logic styles, including the Boolean

one, for instance [8]-[10].

If universal predicate gates controlled by

instructions are realized, they can fulfill particular

logic operations of different styles. We have already

published the first ideas and circuits in this field in

Refs. [11]-[14]. These contributions describe only

initial designs for several different logic styles.

Section 2 is on the theory and hardware

realizations of predicate logic and its subsets that can

be unified in a single processor. In Section 3, the

proposed variable predicate logic processor is

described in detail. Section 4 is on implementing the

processor in FPGA and its verification. Concluding

remarks are in Section 5.

2 Predicate Logic and Processing

Units
In mathematics, predicate logic is a generic term for

formal symbolic systems [8]-[10],[15],[16].

This predicate system is distinguished from others in

the formula S containing variables Aand

quantifiers T .

 (),S A T= (1)

Thus, predicate logic operates with sentences S

similar to the atomic one (1) instead of truth tables of

propositional logic [8]. Some predicate logic

applications are used in computer science.

They could be found in AI modeling software, big

data-based systems, circuit theory, hardware

verification codes, etc. [17]-[21].

However, such programs are mostly executed on

processors built on propositional logic gates.

Depending on the number of quantifiers, this source-

code-level simulation can increase the execution time

in orders of magnitude compared to possible micro-

parallel gates realized operations with these

predicated data streams.

In some hardware, the predicate gates of fixed

logic and even large units are implemented to

enhance the processor parameters, as it was in the

Itanium processor architecture [22]. Several ideas

were published to modify the conventional computer

modules for better processing Prolog programs

[23]-[26] or enhance information exchange in multi-

processor supercomputing systems [27].

Today, the computing devices involved in

massive AI operations [28] require new designs

called artificial intelligence accelerators [15],

[29]-[34]. Some of them can be built on the combined

use of propositional and predicate logic units [12] to

improve AI computers’ performance.

According to our best knowledge, the first

application-specific instruction-set processor (ASIP)

accelerating some AI operations was a predicate

logic processor published in Refs. [35],[36].

The idea of computing the electromagnetic (EM)

signals carrying predicated information relates to the

90th of the last century [11],[37]-[41]. The elementary

binary predicate or atomic unit of knowledge

[42]-[44] is a pair of logically coupled bits for the

formula (1). They can be carried by two logically or

even EM coupled wires [39].

 Generally, predicate logic uses an extended set

of logical and non-logical symbols. Among them are

the quantifier ones, conjunction (AND), disjunction

(OR), negation (NOT), and implications (if-then).

A reduced predicate logic in Ref. [36] and here

uses only the AND, OR, and NOT logical operations

applied to a predicate expression S :

1 2

1 2

 (NOT),

S (AND),

S (OR).

S S

S S

S S

=

= 

= 

 (2)

After developing predicate gates according to the

formula (2), an experimental 8-bit processor

consisting of a predicate datapath and a conventional

control unit was designed [36]. The datapath there

implements the mentioned logically full set of

predicate operations (2) in a parallel manner.

This processor, thought a predicate logic

accelerator, was modeled by VHDL (Very High-

Speed Integrated Circuit Hardware Description

Language) and synthesized in FPGA board from Intel

(formerly Altera) using Quartus II design software.

The realized microprocessor works at a maximum

clock frequency of 130.28 MHz. It consists of 5868

total logic elements, 3482 combinational functions,

4628 registers, and 10624 memory bits. The results

of some testing programs were observed helped by

the Quartus II tool and successfully compared with

theoretical calculations.

Ref. [36] shows the need for further enhancement

of the designed predicate processor. It was overly

specific for some practical applications. As a rule, the

data is not always organized in predicate form in

knowledge-based applications. Many flows need

Boolean, multi-valued, reversible, etc., operations.

Performing them by fixed predicate gates requires an

additional program code. In this way, it leads to a

decrease in throughput.

As it was mentioned in the Introduction, the main

idea of this paper is the development of a processor

whose universal gates are controlled by instructions

and realize several subsets of predicate logic.

This possibility was noticed in the first works on

spatially-modulated signals propagating along paired

wires in Refs. [11],[37],[39]. There, one of the

predicate logic units in the formula (1) can be

assigned to control a logic type or realize the

reversibility of gates [14]. Additionally, the paired

wires can be used to model qubits in quantum

computer emulators [11],[41].

In some applications, such as security-enhanced

data processing, the paired wires can be used to avoid

or diminish information leakage through irradiation

from signal traces or/and power delivering wires.

Again, this pair-wire style is a subset of the predicate

logic set (2).

 In all these cases, the signals propagating along

the paired lines, formally in predicate form, require

new universal reconfigurable gates and newly built

arithmetic logic units (ALUs).

In this article, based on our experience in the

development, design, simulation, and FPGA

implementations, a novel flexible processor

architecture tailored to modern artificial intelligence

applications is considered prospective to boost AI

operations. The predicate flows are combined with

conventional data representation in a specially

designed microprocessor containing flexible ALU.

 As a difference from all other microprocessors,

the processor’s datapath can perform operations

logically equal to the results produced by seven types

of logic. These logics allow new possibilities which

have been not realized earlier in full:

(1) Predicate logic with the paired wires

(2) Conventional Boolean operations along

each wire (depending on signal and

instruction) [14]

(3) Multi-valued (with four logic levels)

operations spatially mapped on two

wires [45]-[47]

(4) Pseudo-quantum logic [13],[41],[45],

[48]-[59]

(5) Reversible logic [60]-[61]

(6) Dual-rail operations [62],[63]

(7) Dual-rail single-spacer operations

[64],[65]

(8) Dual-rail dual-spacer operations

[66],[67]

The initial designs of universal gates performing

the above-considered operations have already been

published in Refs. [13],[14]. More information is

needed on pseudo quantum gates, which are not

widely known to the electronic community.

It is known that quantum computing can be

powerful in some cases because of quantum

parallelism when n - particles are in 2n states.

We need 2n classical electronic gates integrated into

a 2n − dimensional Hilbert-space processor to

emulate a quantum computing unit. The initial idea

in this field was from R.J.C. Spreeuw, who discussed

building a Hilbert-space processor using photons of

opposite polarization [50] paired into qubits.

Unfortunately, the use of a multitude of bulky optical

elements is a rather challenging problem.

Contemporary electronics integrating billions of

gates allows emulating a several-ten-qubit quantum

machine. In 1999, we proposed using the microwave

or digital electronics when a sum of even and odd

modes in coupled strip lines models a qubit state

because they have topologically different

electromagnetic field maps [41]. A logically full set

of gates was designed and realized in hardware by us

in those years [40],[48],[49].

 In Fig. 1 (not published earlier), a PCB board for

a CNOT gate and switch-controlled signal

generator (designed with A. Ermakov in 1999) is

shown as an example. The gate is described in detail

in Ref. [40].
The interest in emulation of quantum computers

has been strong for many next following years [13],

[14],[51]-[55], considering the problems in the

developments of full-scale fault-tolerant quantum

processors. It was found that pseudo-quantum

architectures, being still classical, can calculate the

quantum algorithms used in cryptography, quantum

physics, chemistry, and biology more effectively than

ordinary computers [53]-[56]. It is known, emulating

quantum computers, that not all operations are with

qubits; then, a universal computer should have gates

performing Boolean and other operations belonging

to the predicate set. Besides, in AI applications,

quantum algorithms are not always powerful.

Fig. 1. A gate module (from G.A. Kouzaev’s

archive, see as well [40]).

 The proposed here processor, called the variable

logic one, can change its logic styles on-the-fly

according to the incoming data flow and

corresponding control signal. It will increase the

effectiveness of data processing. Considering that all

eight mentioned operations are the subsets of

predicate logic, the full name of our design is the

Variable Predicate Logic Processor (VPLP)

3 Variable Predicate Logic Processor

(VPLP) Design
This VPLP architecture [13] has been developed in

three major steps. Initially, the design of the variable

predicate logic gates is performed [14], which is not

considered here. The PRAM (Predicate Random-

Access Memory) is also composed and designed in

the second step. Finally, the complete variable

predicate logic processor has been realized and

verified using an appropriate CAD (Computer-Aided

Design) tool and an FPGA board (Fig. 2).

Fig. 2. Cyclone II FPGA Starter Development

Board (Altera, now Intel) is connected to a

computer to emulate the designed VPLP.

An 8-bit predicate processor is studied, i.e., each

value in predicate expression (1) is represented by

8-bit digits.

A PRAM basic cell has been implemented in the

second step of the processor development (Fig. 3).

This basic cell has two inputs and two outputs for

predicated signals. These signals can be of predicate

information origin or contain the bits for control of

logic of predicate gates.

Q

Q
SET

CLR

D

Q

Q
SET

CLR

D

Q

Q
SET

CLR

D

Q

Q
SET

CLR

D

ENB

CLKpmc

p1

p2

RSTpmc

ENpmc
ENB

q1

q2

Dff1

Dff2

Dff3

Dff4
ENB

ENB

TSB1

TSB2

Fig. 3. Implemented PRAM cell.

This design uses four D flip-flops (from Dff1 to

Dff4) and two three-state buffers (TSB1 and TSB2,

denoted by triangles). The inputs CLKpmc and

RSTpmc are for the clock and reset signals. The signal

ENpmc enables the input of this PRAM unit.

When the ENpmc signal is equal to the logic zero,

then the three-state buffer outputs go to a

high-impedance state. In this case, PRAM basic cell

is disabled. In the opposite case, the ENpmc signal

goes to logic one.

A new 8-bit PRAM module is designed (Fig. 4)

when eight cells are combined. Two memory data

buses have 8-bit width. All other signals are equal to

the described ones in Fig. 3 (a basic predicate

memory unit). Then, 256 8-bit PRAM cells are

connected, and PRAM is organized as 256 words by

16 bits. An address decoder and a multiplexer have

been added to this PRAM module (they are not

included in Fig. 4 due to simplification reasons).

CLKpmc

RSTpmc

ENpmc
p1

q1

p2

q2

CLKpmc

RSTpmc

ENpmc
p1

q2

CLKpmc

RSTpmc

ENpmc
p1

q2

CLKpmc

RSTpmc

ENpmc
p1

q2

CLKpmc

RSTpmc

ENpmc
p1

q2

CLKpmc

RSTpmc

ENpmc
p1

q2

CLKpmc

RSTpmc

ENpmc
p1

q2

CLKpmc

RSTpmc

ENpmc
p1

q2

CLK8pmc

RST8pmc

EN8pmc

q18

p18 q28

p28

8

8

8

8

q1

q1

q1

q1

q1

q1

q1

p2

p2

p2

p2

p2

p2

p2

Fig. 4. Designed 8-bit PRAM cell.

The complete variable predicate logic processor

has been realized and verified in the final step.

VPLP is a successor of the PLP (Predicate Logic

Processor) [36] and PBOP (Predicate and Boolean

Operation Processor) [12] processor architectures.

It extends the architectures mentioned above.

The instruction set is enlarged with new instructions.

It has been used term flexible processor to express its

opportunity to tune to different types of incoming

data. The synthesized block diagram of the variable

predicate logic processor is shown in Fig. 5.

The VPLP includes a reset circuit, datapath, and

control unit.

vplp_clk

vplp_rst

MVD_in

MVD_out

dato

RD

WR

addressdati

RESET

CIRCUIT

DATAPATH

CONTROL

UNIT

Qrst

Fig. 5. Synthesized variable predicate logic

processor (VPLP).

Another part of the variable predicate logic

processor is its interface. It includes the signal lines

vplp_clk, vplp_rst, MVD_in, MVD_out, dati, dato,

RD, WR, and address. The lines vplp_clk and

vplp_rst interface the clock and reset (Qrst is

produced by reset circuit) signals to various

components of VPLP. Signal lines MVD_in and

MVD_out are the input and output of multi-valued

numbers to the variable predicate logic processor.

At the input, the multi-valued numbers are converted

to binary ones and vice versa to the output using

convertors.

The rest signal lines (Fig. 5) connect VPLP to the

PRAM module. RD and WR signals are utilized to

perform the read and write memory operations.

A signal line address is the address bus of the

variable predicate logic processor. The data buses of

the VPLP are formed by dati and dato signals.

In Fig. 6, the variable predicate logic processor

datapath is shown. It is responsible for the

manipulation of data. It consists of the storage units:

register B, accumulator A, multi-valued register, flag

register (FLAGs), and the combinational units: data

multiplexer and variable predicate arithmetic logic

unit (VPALU).

VPALUs_dp

LD1_dp

LD2_dp

dato_dp

vplp_clk

Qrst

DEC_dp

INC_dp

LDB

Fld_dp

MS

Mvi_dp

dati_dp

Mvo_dp

FL_dp
FLAGs

MULTI-VALUED

REGISTER

ACCUMULATOR

A

VARIABLE

PREDICATE

ARITHMETIC

LOGIC UNIT

REGISTER

B

DATA

MULTIPLEXER

Fig. 6. Designed VPLP datapath.

The data multiplexer in Fig. 6 selects the data

either from PRAM (dati_dp) or from multi-valued

signal lines Mvi_dp and sends the selected input’s

data to VPALU. This data multiplexer has a select

line, which is named MS. The VPALU control bits

belong to signal line VPALUs_dp, which is of 5-bit

size. Accumulator A and register B are provided to

aid in executing instructions in VPALU.

Accumulator A is a 16-bit register (Fig. 6).

It usually contains one of the two operands involved

in actual instruction execution. The second operand

is read from PRAM or register B. The result of an

operation is again stored in accumulator A, either

register B or both. The load signal line LD1_dp is

applied to load/store operations.

Register B is 16-bit, too. It plays the same role as

accumulator A in some instructions. The added letter

B in the assembly instruction names (in mnemonics)

specifies the application of register B in their

execution.

Accumulator A and register B are both used in

some operations. Clock vplp_clk and reset Qrst signal

lines are distributed to other datapath components

except for the data multiplexer and VPALU. The

decrement DEC_dp, increment INC_dp and load

LDB signal lines only apply to register B.

The multi-valued register (Fig. 6) is 16-bit that

stores the processed multi-valued data. Load signal

line LD2_dp is used for this operation to be

performed. The multi-valued register output signal

line is Mvo_dp. The output signal line of datapath for

a different type of data, excluding multi-valued one,

is dato_dp.

A flag register (FLAGs) is a 3-bit one containing

three status flags. These bits are set to logic one or

logic zero based on the results after completion of the

comparison operation by VPALU. The FLAGs load

signal line is Fld_dp. When logic one is applied to

this load signal line FLd_dp, the VPLP flags are

saved into the flag register. They are placed on the

output signal line FL_dp.

Variable predicate arithmetic logic unit (VPALU)

performs arithmetic and logical operations (Fig. 6).

The current design extends these operations with the

ones applicable to several types of logics: mainly the

Boolean, predicate, multi-valued (multiple-valued),

pseudo-quantum, reversible, and dual-rail

(differential) logics and its modifications using a

single spacer (all-zeroes state) or dual spacers

(all-zeroes and all-ones states).

The corresponding processor instructions have

been implemented. Table 1 shows new instructions

belonging to the VPLP instruction set. The old ones,

including a part of the Boolean and predicate

instructions, are inherited from previous PLP and

PBOP variants [12],[36].

Table 1. New VPLP instructions.

Command Semantic

Arithmetic and load

instructions

INCA Increment the content of

accumulator A by 1

DECA Decrement the content of

accumulator A by 1

INCB Increment the content of register

B by 1

DECB Decrement the content of register
B by 1

LDB Load constant into register B

LBA Load register B with the content

of accumulator A

LAB Load accumulator A with the
content of register B

Multi-valued logic instructions

INM Load accumulator A with

converted quaternary to binary
number

OUTM Load multi-valued register with

processed binary number

Pseudo-quantum logic

instructions

CNB The logic equivalent of

controlled-NOT (CNOT)

operation

(according to the truth table)

SWB The logic equivalent of the swap
operation (with an identical truth

table)

Table 1. (continued)

Additional information about the VPLP

instruction set is presented in the following lines:

o INCA – VPALU increments by one

accumulator A. The result is stored in

accumulator A.

o DECA – VPALU decrements by one

accumulator A content. The result is saved in

accumulator A.

o INCB – Variable predicate logic controller

sets a logic one on datapath signal line

INC_dp. The content of register B is

incremented by one.

o DECB – Variable predicate logic controller

sets a logic one on datapath signal line

number DEC_dp. The content of register B

is decremented by one.

o LDB – The program counter is incremented

by one. From the next PRAM cell (each

memory cell is 16-bits wide), the 16-bit

operand is fetched. With VPALU pass-

through operation, the operand is loaded to

register B.

o LBA – 16-bit operand is initially stored in

accumulator A. With a VPALU pass-through

operation, the operand is transferred to

register B.

o LAB – Register B contains a 16-bit operand

initially. With VPALU pass-through

operation, the operand is moved to

accumulator A.

o INM – 16-bit value (converted quaternary to

binary number) is placed on VPLP signal

lines MVD_in. With a VPALU pass-through

operation, the operand is loaded into

accumulator A.

o OUTM – 16-bit operand is initially stored in

accumulator A. With datapath load signal

line LD2_dp the operand is transferred to a

multi-valued register.

o CNB – Register B holds two 8-bit operands.

According to the controlled-NOT (CNOT)

truth table, the result is again stored in

register B.

o SWB – Register B holds two 8-bit operands.

The result, according to the SWAP truth

table, is contained again in register B.

o FGO – The first 8-bit operand is stored in the

most significant byte of accumulator A and

the second two 8-bit operands – in register B.

According to the Fredkin gate truth table, the

result is kept again in the same registers (one

8-bit result in the most significant byte of

accumulator A and two 8-bit results in

register B).

o DOR – Two 8-bit dual-rail operands are

loaded into accumulator A and register B.

The dual-rail OR logic operation results are

stored again in the same registers.

o DAND – Two 8-bit dual-rail operands are

loaded into accumulator A and register B.

Result of dual-rail AND logic operation is

kept again in the same registers.

 TNOT, TOR, TAND, SNOT, SOR, and

SAND instructions perform the dual-rail NOT, OR,

and AND logic operations. The operand and result

for TNOT and SNOT instructions are in accumulator

A only. The operands and results for TOR, TAND,

SOR, and SAND instructions are in accumulator A

and register B. A single spacer (all-zeroes state) or

dual spacer (all-zeroes and all-ones states) can be

used during transmission for each of the two groups

of three instructions, respectively.

Reversible logic instruction

FGO Logic equivalent (with identical
truth table) of Fredkin gate

operation

Dual-rail (differential) logic

instructions

DOR Dual-rail OR operation

DAND Dual-rail AND operation

Dual-rail (differential) logic

instructions using a single

spacer (all-zeroes state)

TNOT Dual-rail NOT operation

TOR Dual-rail OR operation

TAND Dual-rail AND operation

Dual-rail (differential) logic

instructions using dual spacers

(all-zeroes and all-ones states)

SNOT Dual-rail NOT operation

SOR Dual-rail OR operation

SAND Dual-rail AND operation

Reversible logic instruction

FGO Logic equivalent (with identical
truth table) of Fredkin gate

operation

Dual-rail (differential) logic

instructions

DOR Dual-rail OR operation

DAND Dual-rail AND operation

Dual-rail (differential) logic

instructions using a single

spacer (all-zeroes state)

TNOT Dual-rail NOT operation

TOR Dual-rail OR operation

TAND Dual-rail AND operation

Dual-rail (differential) logic

instructions using dual spacers

(all-zeroes and all-ones states)

SNOT Dual-rail NOT operation

SOR Dual-rail OR operation

SAND Dual-rail AND operation

 The control unit (CU) issues the appropriate

signals to be executed the current command. The CU

also performs instruction fetching and decoding.

It consists of sequential components such as an

instruction register, index register, program counter,

another register, variable predicate logic controller,

and combinational units, which are the address

multiplexer and adder. Fig. 7 shows the internal

architecture of the VPLP control unit.

vplp_clk

dati

VPALUs_cu

RD

LD_cu

LDMV_cu

WR

MS_cu

LDB_cu

Bdec_cu

Binc_cu

Qrst

dato_cu

address

FLs_cu

FLd_cu

ADDER

REGISTER
ADDRESS

MULTIPLEXER

PROGRAM

COUNTER

INDEX

REGISTER

INSTRUCTION

REGISTER

VARIABLE

PREDICATE

LOGIC

CONTROLLER

Fig. 7. Realized VPLP control unit.

 The instruction register is 16-bit. It holds the

instruction fetched from PRAM. Every instruction is

encoded in eight bits. Clock vplp_clk and reset Qrst

signal lines are distributed to other control unit

sequential components. A variable predicate logic

controller (VPLCl) is the main component of the

control unit. The VPLCl is realized as a finite state

machine (FSM). Each state of the FSM corresponds

to a different instruction encoded in eight bits.

Depending on decoded instruction, other control

signals are issued and sent to datapath, control unit

components, and PRAM. These signals are required

for proper instruction execution.

PRAM data is transferred to the instruction

register using signal lines dati. Data are also sent to

signal lines dato_cu. The VPLCl output signal line

VPALU_cu selects a VPALU operation.

PRAM read or write operation is performed when

RD or WR signals are applied. The select signal line

MS_cu is coupled to the data multiplexer signal line

MS (in Fig. 6). The following output signal lines are

the load ones. Signal line LD_cu is set to load the

accumulator A. Signal line LDMV_cu is used to load

the multi-valued register. The next signal line

LDB_cu applies to register B. When logic one is set

to Binc_cu or Bdec_cu control signals, it is possible

to increment or decrement the value of register B.

The index register (IXR) can contain the operand

address. The IXR output line is connected to one

address multiplexer inputs.

Adder is implemented to calculate the operand

address when a branch instruction is executed. It adds

the offset value to the current program counter

content. The result is loaded into the program

counter.

The additional register (located under VPLCl in

Fig. 7) stores the program counter content.

Later, this program counter could be loaded again

with stored value.
Address multiplexer selects the address signals

from the program counter or the index register.

The selected address will appear on the address bus

address.

The Program Counter (PC) is an 8-bit digital

component, and it holds the address of the next

instruction, which must be executed. This PC needs

to be incremented by one count for every instruction

or two of them. Its output is the signal line PCout.

Fig. 8 illustrates the Program Counter

implementation.

Q

Q
SET

CLR

DS1

S2

D

C

EN

B

Multiplexer 1

S1

S2

D

C

EN

B

Multiplexer 2Adder

A

B

S

D Flip-flop

ENA

CLK

PCclr

PCld1

PCld2

PCinc

PCin1

PCin2

PCout

00000001

Fig. 8. Implemented VPLP’s Program Counter.

This electronic circuit consists of an 8-bit adder,

an 8-bit register (denoted as a D flip-flop in Fig. 8),

and two multiplexers (Mux1, Mux2). The register is

incremented by one helped by the adder and

corresponding signal line PCinc (in logic high).

For this purpose, the input operand is used equally to

the value one (0000 0001) placed on input B of this

adder. The 8-bit register could be loaded using two

multiplexers and corresponding load signal lines

PCld1 and PCld2. Two values are applied to 8-bit

input buses PCin1 and PCin2.

The signal lines CLK and PCclr (connected to

Qrst) are clock and reset signals correspondingly.

Fig. 9 shows the VPLP reset circuit [68].

D1

FLIP-FLOP

D2

FLIP-FLOP

vplp_clk

vplp_rst

Qrst

D

 D

Q1

Q2

CLR

CLR

Fig. 9. VPLP reset circuit.

The main building blocks are two D flip-flops D1

and D2. Clock vplp_clk and reset vplp_rst signal lines

are connected to both flip-flops. D input of the first D

flip-flop is coupled to ground potential. Its output

signal line (Q1) is connected to the D input of the

second flip-flop. The output of the reset circuit is the

signal line Qrst.

The reset circuit is used to synchronize

asynchronous VPLP reset signals (Qrst). It is avoided

any potential problems with asynchronous reset using

this presented circuit.

4 Variable Predicate Logic Processor

Testing
The designed VPLP is connected to the PRAM

module, as it is shown in Fig. 10.

Multiplexer

S1

S2

C1

VPLP

PRAM

CONTROLLER

PRAM

vplp_rst

26

26
26

pram_rst

16

vplp_clk

Qrst

Fig. 10. Designed VPLP connected to PRAM.

A test program is coded and loaded into memory

using an additional PRAM controller and a

multiplexer. VPLP and PRAM controllers have reset

signals with different logic levels. VPLP has an

active-high reset signal, and the PRAM controller

uses an active-low reset signal. The reset signal

(Qrst) is connected to the select input of the

multiplexer (C1). In this way, when the PRAM

controller works, VPLP is idle and vice versa.

The PRAM reset signal is pram_rst.

VPLP address bus, data (dato), and read/write

signals are coupled to the first data input of the

multiplexer (S1). The same signals of the PRAM

controller are connected to the second data input of

the multiplexer (S2). Another part of VPLP data bus

information (dati) is transferred directly to the

processor. Clock signal vplp_clk is distributed to

VPLP, PRAM controller, and PRAM. Reset signal

vplp_rst is connected to VPLP’s reset circuit input.

During the VPLP verification phase, the results

obtained from the test programs used for the earlier

designed computer architectures [12],[36] are

compared with those obtained using this new

architecture. Then, the implemented further

instructions are checked for correct work. It is done

with the SignalTap II Embedded Logic Analyzer,

which is a part of Quartus II design software [69] and

Cyclone II FPGA Starter Development Board [70].

4.1 Test program 1
The final step in the VPLP verification process is

executing several test programs. One example of

them, with short comments, is given below.

o LDB #$55AF ; Register B is loaded with

hexadecimal value “55AF” (timestamp – ts

11).

o LAB ; Accumulator A is loaded

with hexadecimal value “55AF” (ts 15).

o CNB ; Operation, logically equal

to control-NOT, is executed between 8-bit

numbers located in register B (ts 22).

o FGO ; Operation, logically equal

to Fredkin gate, is performed. 8-bit A

operand is in the MSB of accumulator A. The

other two 8-bit operands (B and C) are

maintained in register B (ts 26).

o LDB #$AACD ; Register B is loaded with

hexadecimal value "AACD" (ts 35).

o LAB ; Accumulator A is loaded

with hexadecimal value “AACD” (ts 39).

o CNB ; Operation, logically equal

to control-NOT one, is executed between

8-bit numbers in register B (ts 46).

o FGO ; Operation, logically equal

to Fredkin gate one, is performed. 8-bit A

operand is in the MSB of accumulator A.

The other two 8-bit operands (B and C) are

maintained in register B (ts 50).

o NOP ; There is no processor

operation (ts 54).

o HLT ; VPLP stops execution

of any instructions (ts 58).

The checked instructions in the above-presented

test program are the LDB, LAB, CNB, FGO, NOP,

and HLT ones. The SignalTap II Embedded Logic

Analyzer’s captured data is compared with one based

on theoretical calculations. The conclusion is that the

designed VPLP works appropriately. The basic

signals used in the verification process are shown in

Table 2.

Table 2. VPLP test signal legend.

Key Signal name Signal explanation

0

vplp_rst

VPLP reset signal (It is

assigned pushbutton

KEY [0]

to vplp_rst)

1

PRAM|address

PRAM address

2

PRAM|dati

PRAM input data

3

PRAM|dato

PRAM output data

4

PRAM|RD

PRAM read signal

5

PRAM|WR

PRAM write signal

6

control_unit|VPLPcontroller

|OPCODE

Operation code of

executed instruction

7

control_unit|PC|PCout

Program counter output

data

8

datapath|ACCA|Q1

Accumulator A output

data

9

datapath|REGB|regBout Register B output data

The clock frequency of this variable predicate

logic computer prototype in Figure 9 is 50 MHz

(PIN_L1 of the Cyclone II FPGA Starter

Development Board is connected to the vplp_clk

signal [70]).

An essential part of the collected data is included

in Table 3. It is a portion of the created SignalTap II

Embedded Logic Analyzer list file. The data in this

Table 3 is captured using the clock (vplp_clk) as an

acquisition signal. The VPLP reset signal (vplp_rst)

is a trigger one. The signal keys from Table 2 are in

the first row of Table 3.

The sample depth of the SignalTap II Embedded

Logic Analyzer data buffer is specified to get 128

samples. Table 3 presents half of them. The first

column contains the time in which the logic value of

the test signals is registered. Minus sign (-) denotes a

period before a trigger signal appears.

Table 3. A part of SignalTap II Embedded Logic

Analyzer list file.

t 0 1 2 3 4 5 6 7 8 9

-2 1
00

h

0000

h

0000

h 0 0

07

h

00

h

0000

h

0000

h

-1 1
00

h

0000

h

0000

h 0 0

07

h

00

h

0000

h

0000

h

0 0
00
h

0000
h

0000
h 0 0

07
h

00
h

0000
h

0000
h

1 0
00

h

0000

h

0000

h 0 0

07

h

00

h

0000

h

0000

h

2 0
00

h

0000

h

0000

h 0 0

07

h

00

h

0000

h

0000

h

3 0
00

h

0000

h

0000

h 1 0

07

h

00

h

0000

h

0000

h

4 0
00

h

0000

h

171

Dh 0 0

07

h

00

h

0000

h

0000

h

5 0
00

h

0000

h

171

Dh 0 0

07

h

00

h

0000

h

0000

h

6 0
00

h

0000

h

171

Dh 0 0

17

h

00

h

0000

h

0000

h

7 0
00

h

0000

h

171

Dh 0 0

17

h

00

h

0000

h

0000

h

8 0
00

h

0000

h

171

Dh 0 0

17

h

00

h

0000

h

0000

h

9 0
01

h

0000

h

171

Dh 1 0

17

h

01

h

0000

h

0000

h

10 0
01

h

0000

h

55A

Fh 0 0

17

h

01

h

0000

h

0000

h

11 0
01

h

0000

h

55A

Fh 0 0

17

h

01

h

0000

h

55A

Fh

12 0
01

h

0000

h

55A

Fh 0 0

1D

h

01

h

0000

h

55A

Fh

Table 3. (continued)

13 0
01

h

0000

h

55A

Fh 0 0

1D

h

01

h

0000

h

55A

Fh

14 0
01

h

0000

h

55A

Fh 0 0

1D

h

01

h

0000

h

55A

Fh

15 0
01

h

55A

Fh

55A

Fh 0 0

1D

h

01

h

55A

Fh

55A

Fh

16 0
02

h

55A

Fh

55A

Fh 1 0

1D

h

02

h

55A

Fh

55A

Fh

17 0
02

h

55A

Fh

1B20

h 0 0

1D

h

02

h

55A

Fh

55A

Fh

18 0
02
h

55A
Fh

1B20
h 0 0

1D
h

02
h

55A
Fh

55A
Fh

19 0
02

h

55A

Fh

1B20

h 0 0

1B

h

02

h

55A

Fh

55A

Fh

20 0
02
h

55A
Fh

1B20
h 0 0

1B
h

02
h

55A
Fh

55A
Fh

21 0
02

h

55A

Fh

1B20

h 0 0

1B

h

02

h

55A

Fh

55A

Fh

22 0
02
h

55A
Fh

1B20
h 0 0

1B
h

02
h

55A
Fh

55F
Ah

23 0
02

h

55A

Fh

1B20

h 0 0

20

h

02

h

55A

Fh

55F

Ah

24 0
02
h

55A
Fh

1B20
h 0 0

20
h

02
h

55A
Fh

55F
Ah

25 0
02

h

55A

Fh

1B20

h 0 0

20

h

02

h

55A

Fh

55F

Ah

26 0
02
h

55A
Fh

1B20
h 0 0

20
h

02
h

55A
Fh

50FF
h

27 0
03

h

55A

Fh

1B20

h 1 0

20

h

03

h

55A

Fh

50FF

h

28 0
03
h

55A
Fh

171
Dh 0 0

20
h

03
h

55A
Fh

50FF
h

29 0
03

h

55A

Fh

171

Dh 0 0

20

h

03

h

55A

Fh

50FF

h

30 0
03
h

55A
Fh

171
Dh 0 0

17
h

03
h

55A
Fh

50FF
h

31 0
03

h

55A

Fh

171

Dh 0 0

17

h

03

h

55A

Fh

50FF

h

32 0
03
h

55A
Fh

171
Dh 0 0

17
h

03
h

55A
Fh

50FF
h

33 0
04

h

55A

Fh

171

Dh 1 0

17

h

04

h

55A

Fh

50FF

h

Table 3. (continued)

34 0
04

h

55A

Fh

AAC

Dh 0 0

17

h

04

h

55A

Fh

50FF

h

35 0
04

h

55A

Fh

AAC

Dh 0 0

17

h

04

h

55A

Fh

AAC

Dh

36 0
04

h

55A

Fh

AAC

Dh 0 0

1D

h

04

h

55A

Fh

AAC

Dh

37 0
04

h

55A

Fh

AAC

Dh 0 0

1D

h

04

h

55A

Fh

AAC

Dh

38 0
04

h

55A

Fh

AAC

Dh 0 0

1D

h

04

h

55A

Fh

AAC

Dh

39 0
04
h

AAC
Dh

AAC
Dh 0 0

1D
h

04
h

AAC
Dh

AAC
Dh

40 0
05

h

AAC

Dh

AAC

Dh 1 0

1D

h

05

h

AAC

Dh

AAC

Dh

41 0
05
h

AAC
Dh

1B20
h 0 0

1D
h

05
h

AAC
Dh

AAC
Dh

42 0
05

h

AAC

Dh

1B20

h 0 0

1D

h

05

h

AAC

Dh

AAC

Dh

43 0
05
h

AAC
Dh

1B20
h 0 0

1B
h

05
h

AAC
Dh

AAC
Dh

44 0
05

h

AAC

Dh

1B20

h 0 0

1B

h

05

h

AAC

Dh

AAC

Dh

45 0
05
h

AAC
Dh

1B20
h 0 0

1B
h

05
h

AAC
Dh

AAC
Dh

46 0
05

h

AAC

Dh

1B20

h 0 0

1B

h

05

h

AAC

Dh

AA6

7h

47 0
05
h

AAC
Dh

1B20
h 0 0

20
h

05
h

AAC
Dh

AA6
7h

48 0
05

h

AAC

Dh

1B20

h 0 0

20

h

05

h

AAC

Dh

AA6

7h

49 0
05
h

AAC
Dh

1B20
h 0 0

20
h

05
h

AAC
Dh

AA6
7h

50 0
05

h

AAC

Dh

1B20

h 0 0

20

h

05

h

AAC

Dh

22EF

h

51 0
06
h

AAC
Dh

1B20
h 1 0

20
h

06
h

AAC
Dh

22EF
h

52 0
06

h

AAC

Dh

0807

h 0 0

20

h

06

h

AAC

Dh

22EF

h

53 0
06
h

AAC
Dh

0807
h 0 0

20
h

06
h

AAC
Dh

22EF
h

54 0
06

h

AAC

Dh

0807

h 0 0

08

h

06

h

AAC

Dh

22EF

h

Table 3. (continued)

55 0
06

h

AAC

Dh

0807

h 0 0

08

h

06

h

AAC

Dh

22EF

h

56 0
06

h

AAC

Dh

0807

h 0 0

08

h

06

h

AAC

Dh

22EF

h

57 0
06

h

AAC

Dh

0807

h 0 0

08

h

06

h

AAC

Dh

22EF

h

58 0
06

h

AAC

Dh

0807

h 0 0

07

h

06

h

AAC

Dh

22EF

h

59 0
06

h

AAC

Dh

0807

h 0 0

07

h

06

h

AAC

Dh

22EF

h

60 0
06
h

AAC
Dh

0807
h 0 0

07
h

06
h

AAC
Dh

22EF
h

61 0
06

h

AAC

Dh

0807

h 0 0

07

h

06

h

AAC

Dh

22EF

h

4.2 Test program 2
 Another test program example is given below

(with short comments).

o LDA #$0000 ; Register A is loaded with

hexadecimal value “0000”.

o LDB #$4FB1 ; Register B is loaded with

hexadecimal value "4FB1".

o DECB ; The value in register B is

reduced by one.

o SWB ; A SWAP operation is

executed. The result, according to the SWAP truth

table, is contained again in register B.

o CNB ; Operation, logically equal

to control-NOT one, is executed between 8-bit

numbers in register B.

o NOP ; There is no processor

operation.

o HLT ; VPLP stops execution of

any instructions.

 The checked instructions in the above-presented

test program are the LDA, LDB, DECB, SWB,

CNB, NOP, and HLT ones. The SignalTap II

Embedded Logic Analyzer’s captured data is

compared again with one based on theoretical

calculations. The conclusion is the same as the

previous one that the designed VPLP works

appropriately. The basic signals (in particular the

contents of registers A and B) used in the verification

process are shown in Fig 11.

Fig. 11. SignalTap II wave diagram.

 4.3 Test program 3
 The third test program example is given below

(with short comments).

o LDC $0B ; Instruction counter (IC)

is loaded with hexadecimal value “0B”.

o INC ; IC is incremented by 1.

o LDAC ; Register A is loaded

with hexadecimal value “55AA”.

o INC ; IC is incremented by 1.

o CPAH ; The content of register A

(high byte) is compared (subtracted) with the value

of the memory cell addressed by the IC.

o BIG $02 ; Branch if flag Greater is

equal to one.

o NOP ; There is no processor

operation.

o HLT ; VPLP stops execution of

any instructions.

o INC ; IC is incremented by 1.

o STAC ; The content of register A

is stored in a cell with an address specified by the IC.

o DEC ; IC is decremented by 1.

o LDAC ; Register A is loaded with

hexadecimal value “00AA”.

o DEC ; IC is decremented by 1.

o STAC ; The content of register A

is stored in a cell with an address specified by the IC.

o INC ; IC is incremented by 1.

o INC ; IC is incremented by 1.

o LDAC ; Register A is loaded with

hexadecimal value “55AA”.

o DEC ; IC is decremented by 1.

o STAC ; The content of register A

is stored in a cell with an address specified by the IC.

o HLT ; VPLP stops execution of

any instructions.

 Memory cell with address $0C has an initial

content $55AA.

 Memory cell with address $0D has an initial

content $00AA.

 The checked instructions in the third test program

are the LDC, INC, LDAC, CPAH, BIG, NOP, STAC,

DEC, and HLT ones. The SignalTap II Embedded

Logic Analyzer’s captured data is compared with one

based on theoretical calculations. The conclusion is

that the designed VPLP works well as it is shown in

Fig 12 (in Appendix 1).

 During VPLP testing have been used more than

ten test programs of different lengths. All instructions

belonging to the instruction set of the microprocessor

have been checked and their operation is correct.

5 Conclusions
In this article, a novel variable predicate logic

processor has been presented. The designed VPLP

consists of a variable-logic datapath, control unit,

reset circuit, and PRAM module to store information.

Depending on the data and generated

instructions, the datapath units perform the logical

operations belonging to eight subsets of reduced

predicate logic, including the predicate, Boolean,

multi-valued (4-level), pseudo-quantum, reversible,

and pair-wire logic styles. The logic change is

realized on-the-fly if it is required. The processor can

emulate in hardware many algorithms, including the

AI operations and 2n - dimensional Hilbert-space

pseudo-quantum computing.

The proposed microprocessor architecture has

been developed in three steps: the variable predicate

logic gates design, PRAM realization, and final

VPLP implementation in an FPGA board (Altera’s

Cyclone II FPGA Starter Development Kit) with

subsequent verification using several test codes.

The invented variable predicate logic processor is

interesting in accelerating artificial intelligence

applications, enhancing hybrid quantum-classical

architectures, molecular and pseudo-quantum

calculations used in science, cryptography,

computer-aided medicine, robotics, electronic

security, etc.

References:

[1] C. Bobda, Introduction to Reconfigurable

Computing Architectures, Algorithms, and

Applications, Springer, 2007.

[2] Reconfigurable Computing: From FPGAs to

Hardware/Software Codesign, Cardoso

J.M.P and M. Hübner, (Eds.), Springer,

2011.

[3] I. Pérez and M. Figueroa, A Heterogeneous

Hardware Accelerator for Image

Classification in Embedded Systems,

Sensors, Vol. 21, Issue 8, 2637, 2021.
https://doi.org/10.3390/s21082637

[4] R. Chen,T. Wu,Y. Zheng, and M. Ling,

MLoF: Machine Learning Accelerators for

the Low-Cost FPGA Platforms, Appl. Sc.,

Vol. 12, Issue 1, 89, 2021.

https://doi.org/10.3390/app12010089

[5] K. Seng, P. Lee, and L. Ang, Embedded

Intelligence on FPGA: Survey, Applications

and Challenges, Electronics, Vol. 10, Issue 8,

895, 2021.

https://doi.org/10.3390/electronics10080895

[6] K. Rajagopalan, B. Phillips, and D. Abbott,

On-the-fly reconfigurable logic, SPIE Proc.,

https://doi.org/10.3390/s21082637
https://doi.org/10.3390/app12010089
https://doi.org/10.3390/electronics10080895

Smart Structures, Devices, and Systems II,

Vol. 5649, 2005, pp. 101-109.

https://doi.org/10.1117/12.582429

[7] M.A. Iqbal and S.A. Khan, Run-time

reconfigurable instruction set processor

(RT-RISP): Design and simulation using

Verilog-HLD, Lap Lambert Acad. Publ.,

2012.

[8] A.A. Stolyar, Introduction to Elementary

Mathematical Logic, Dover Publ. Inc., 1983.

[9] E.J. Lowe, Forms of Thought. A Study in

Philosophical Logic, Cambridge Univer.

Press, 2013.

[10] A. Iacona, Logic: Lecture Notes for

Philosophy, Mathematics, and Computer

Science, Springer, 2021.

[11] G.A. Kouzaev, Topological computing,

WSEAS Trans. Comp. Res., Vol. 5, Issue 10,

2006, pp. 2221-2224.

https://www.researchgate.net/journal/WSE

AS-Transactions-on-Computer-Research-

1991-8755

[12] A.N. Kostadinov and G.A. Kouzaev,

Predicate and binary operations processor,

Proc. 8th WSEAS Int. Conf. Appl. El. Eng.,

WSEAS, Houston, 2009, pp. 199-204, 2009.

https://www.researchgate.net/publication/31

6495127_Predicate_and_Boolean_operation

s_processor

[13] G.A. Kouzaev, A.N. Kostadinov, M.

Olavsbraten, and V. Guitberg, Variable

predicate logic computer architectures, UK

Pat. Appl. GB2508162 dated on 21.11.2012,

Searchable Pat. J. 6523, online published on

28.05.2014, Publ. # GB2508162.

[14] A.N. Kostadinov, V. Guitberg, M.

Olavsbraten, and G.A. Kouzaev,

Multi-logics gates, Proc. IEEE Int. Sem.

Electron. Dev. Design Production, Prague,

2019. pp. 1-3.

https://doi.org/10.1109/SED.2019.8798452

[15] A.G. Hamilton, Logic for Mathematicians,

Cambridge Univer. Press, 1988.

[16] Microsoft Corp., Project Brainwave, 2018

(accessed June 26, 2021).

https://blogs.microsoft.com/ai/build-2018-

project-

brainwave/?utm_source=press&utm_campa

ign=75592,

[17] I. Bratko, Prolog Programming for

Artificial Intelligence, 4th Edition, Pearson

Educ., 2011.

[18] S.P. Vingron, Switching Theory: Insight

through Predicate Logic, Springer, Berlin,

2004.

[19] V.D. Shet, M. K. Singh, C. Bahlmann,

V. Ramesh, S. P. Masticola, J. Neumann,

T. Parag, M. A. Gall, and R. A. Suarez,

Predicate logic based image grammars for

complex visual pattern recognition, US Pat.

8548231 B2, 2013 (accessed June 26, 2021).

http://www.google.com/patents/US8548231

[20] G. Tzimpragos, D. Vasudevan,

N. Tsiskaridze, G. Michelogiannakis,

A. Madhavan, and J. Volk, A computational

temporal logic for superconducting

Accelerators, Proc. 25th Int. Conf. Arch..

Supp. for Prog. Lang. and Oper. Syst.,

Lausanne, ACM, New York, 2020, pp. 435–

448.

https://dl.acm.org/doi/10.1145/3373376.337

8517

[21] A. Dutt, C. Wang, A. Nazi, S. Kandula,

V. Narasayya, and S. Chaudhuri, Selectivity

estimation for range predicates using

lightweight models, Proc. VLDB

Endowment, Vol. 12, issue 5, 2019, pp.

1044-1057.

https://dl.acm.org/doi/10.14778/3329772.33

29780

[22] H. Sharangpani and H. Arora, Itanium

processor microarchitecture, IEEE Micro.,

Vol. 20, 2000, pp. 24-43.

https://ieeexplore.ieee.org/document/87794

8

[23] M. Umemura and M. Yokota, Prolog

processing system US Pat. 4546432 A, 1986

(accessed June 26, 2021).

https://www.google.com/patents/US454643

2

[24] K. Kobayashi and M. Sasaki, System for

processing data using logic language, US

Pat. 5129081 A, 1992 (accessed June 26,

2021).

http://www.google.com.na/patents/US5129

081

[25] R.I. Baum, G.A. Brent, D.H. Gibson, and

D.B. Lindquist, Database engine predicate

evaluator, US Pat. 5590362 A, 1996

(accessed June 26, 2021).

http://www.google.ch/patents/US5590362

[26] T. Yokota and K. Seo, Pegasus - an ASIC

implementation of high-performance Prolog

processor, Proc. EURO ASIC’90, IEEE,

Paris, 1990, pp. 156-159.

https://doi.org/10.1117/12.582429
https://www.researchgate.net/journal/WSEAS-Transactions-on-Computer-Research-1991-8755
https://www.researchgate.net/journal/WSEAS-Transactions-on-Computer-Research-1991-8755
https://www.researchgate.net/journal/WSEAS-Transactions-on-Computer-Research-1991-8755
https://www.researchgate.net/publication/316495127_Predicate_and_Boolean_operations_processor
https://www.researchgate.net/publication/316495127_Predicate_and_Boolean_operations_processor
https://www.researchgate.net/publication/316495127_Predicate_and_Boolean_operations_processor
https://doi.org/10.1109/SED.2019.8798452
https://blogs.microsoft.com/ai/build-2018-project-brainwave/?utm_source=press&utm_campaign=75592
https://blogs.microsoft.com/ai/build-2018-project-brainwave/?utm_source=press&utm_campaign=75592
https://blogs.microsoft.com/ai/build-2018-project-brainwave/?utm_source=press&utm_campaign=75592
https://blogs.microsoft.com/ai/build-2018-project-brainwave/?utm_source=press&utm_campaign=75592
http://www.google.com/patents/US8548231
https://dl.acm.org/doi/10.1145/3373376.3378517
https://dl.acm.org/doi/10.1145/3373376.3378517
https://dl.acm.org/doi/10.14778/3329772.3329780
https://dl.acm.org/doi/10.14778/3329772.3329780
https://ieeexplore.ieee.org/document/877948
https://ieeexplore.ieee.org/document/877948
https://www.google.com/patents/US4546432
https://www.google.com/patents/US4546432
http://www.google.com.na/patents/US5129081
http://www.google.com.na/patents/US5129081
http://www.google.ch/patents/US5590362

https://doi.org/10.1109/EASIC.1990.20792

8

[27] P. R. Pietzuch, K. H. Tsoi, I. Papagiannis,

M. Migliavacca, and W. Luk Accelerating

publish/subscribe matching on

reconfigurable supercomputing platforms,

Proc. Many-core and Rec. Supercomp.

Conf., Vol. 3, Rome, MRSC, Rome, 2010.

https://www.semanticscholar.org/paper/Acc

elerating-Publish%2FSubscribe-Matching-

on-Pietzuch-

Tsoi/d9ab550bf483b9adcc4583025e0c4490

5bea1809

[28] G.F. Luger, Artificial intelligence:

structures and strategies for complex

problems solving, 6th Edition, Pearson

Education Inc., Boston, 2009.

[29] D. Monroe, Chips for artificial intelligence,

Commun. ACM, Vol. 61, 2018, pp. 15-17.
https://doi.org/10.1145/3185523

[30] R. Kumar and S. Baul, Artificial

intelligence chip market outlook – 2025,

2019 (accessed June 26, 2021).

https://www.alliedmarketresearch.com/artifi

cial-intelligence-chip-market,

[31] S. Harini, A. Ravikumar, and D. Garg,

VeNNus: An artificial intelligence

accelerator based on RISC-V architecture,

Proc. Int. Conf. Comp. Intell. Data Eng.

Singapore, 2020, In: Lect. Notes Data Eng.

Commun. Techn., Vol. 56, Springer,

pp. 287-300. https://doi.org/10.1007/978-

981-15-8767-2_25

[32] A. Shawahna, S. Sait, and A. El-Maleh,

FPGA-based accelerators of deep learning

networks for learning and classification: A

review, IEEE Access, Vol. 7, 2019,

pp. 7823-7859.

https://doi.org/10.1109/ACCESS.2018.2890

150

[33] Y. Chi, Z. Zheng, R. Liu, and W. Cui,

Design of hardware acceleration system

based on FPGA and deep learning algorithm,

Proc. IEEE Int. Conf. Art. Intell. Comp.

Apps., Dalian, IEEE, New York, 2020, pp.

1332-1337.

https://doi.org/10.1109/ICAICA50127.2020

.9182658

[34] M. Talib, S. Majzoub, Q. Nasir, and

D. Jamal, A systematic literature review on

hardware implementation of artificial

intelligence algorithms, J. Supercomp.,

Vol. 77, 2021, pp. 1897-1938.

https://doi.org/10.1007/s11227-020-03325-

8

[35] G.A. Kouzaev and A.N. Kostadinov,

Predicate logic processor of spatially

patterned signals, Proc. WSEAS Int. Conf.

Recent Advances in Systems Eng. Appl.

Math., 2008, pp. 94-96.

[36] G.A. Kouzaev and A.N. Kostadinov,

Predicate gates, components and a processor

for spatial logic, J. Circ. Syst. Comp., Vol.

40, No. 7, 2010, pp. 1517-1541.

https://doi.org/10.1142/S021812661000688

8

[37] V.I. Gvozdev and G.A. Kouzaev,

Microwave flip-flop for topological

computers, Russian Federation Pat., No

2054794, dated May 26, 1992.

[38] G.A. Kouzaev and V.I. Gvozdev,

Topological pulse modulation of field and

new microwave circuits design for

superspeed operating devices, Proc. ISSE’95

– Int. Symp. Signals, Systems Electron.,

1995, pp. 383-384.

https://doi.org/10.1109/ISSSE.1995.498014

[39] G.A. Kouzaev, Topologically modulated

signals and predicate gates for their

processing, 2001.

https://arxiv.org/abs/physics/0107002v1

[40] G.A. Kouzaev, Applications of Advanced

Electromagnetics. Components and Systems,

Springer, 2013. https://doi.org/10.1007/978-

3-642-30310-4

[41] G.A. Kouzaev, I.V. Nazarov, and A.V.

Kalita, Unconventional logic elements on the

base of topologically modulated signals,

1999.
https://arxiv.org/abs/physics/9911065v1

[42] M. Houška, L. Dömeová, and R.

Kvasnička, Unary operations with

knowledge units, Proc. 2nd Int. Conf.

Software Techn. Eng., Vol. 1, San Juan,

IEEE, San Juan, 2010, pp. 237-241.

https://doi.org/10.1109/ICSTE.2010.560884

0

[43] M.H. Zack, Managing codified knowledge,

Sloan Manag., Vol. 40, 1999, pp. 45-58.

[44] R. Kowalsky, Predicate logic as

programming language, Proc. IFIP

Congress., North-Holland Publ. Comp.,

Amsterdam, pp. 569-574, 1974.

[45] G.A. Kouzaev, V.V Cherny, and T.A.

Lebedeva, Multivalued processing spatially

modulated discrete electromagnetic signals,

https://doi.org/10.1109/EASIC.1990.207928
https://doi.org/10.1109/EASIC.1990.207928
https://www.semanticscholar.org/paper/Accelerating-Publish%2FSubscribe-Matching-on-Pietzuch-Tsoi/d9ab550bf483b9adcc4583025e0c44905bea1809
https://www.semanticscholar.org/paper/Accelerating-Publish%2FSubscribe-Matching-on-Pietzuch-Tsoi/d9ab550bf483b9adcc4583025e0c44905bea1809
https://www.semanticscholar.org/paper/Accelerating-Publish%2FSubscribe-Matching-on-Pietzuch-Tsoi/d9ab550bf483b9adcc4583025e0c44905bea1809
https://www.semanticscholar.org/paper/Accelerating-Publish%2FSubscribe-Matching-on-Pietzuch-Tsoi/d9ab550bf483b9adcc4583025e0c44905bea1809
https://www.semanticscholar.org/paper/Accelerating-Publish%2FSubscribe-Matching-on-Pietzuch-Tsoi/d9ab550bf483b9adcc4583025e0c44905bea1809
https://doi.org/10.1145/3185523
https://www.alliedmarketresearch.com/artificial-intelligence-chip-market
https://www.alliedmarketresearch.com/artificial-intelligence-chip-market
https://doi.org/10.1007/978-981-15-8767-2_25
https://doi.org/10.1007/978-981-15-8767-2_25
https://doi.org/10.1109/ACCESS.2018.2890150
https://doi.org/10.1109/ACCESS.2018.2890150
https://doi.org/10.1109/ICAICA50127.2020.9182658
https://doi.org/10.1109/ICAICA50127.2020.9182658
https://doi.org/10.1007/s11227-020-03325-8
https://doi.org/10.1007/s11227-020-03325-8
https://doi.org/10.1142/S0218126610006888
https://doi.org/10.1142/S0218126610006888
https://doi.org/10.1109/ISSSE.1995.498014
https://arxiv.org/abs/physics/0107002v1
https://doi.org/10.1007/978-3-642-30310-4
https://doi.org/10.1007/978-3-642-30310-4
https://arxiv.org/abs/physics/9911065v1
https://doi.org/10.1109/ICSTE.2010.5608840
https://doi.org/10.1109/ICSTE.2010.5608840

Proc. 30th Europ. Microw. Conf., Paris, Oct.

2000, pp. 209-213.

https://doi.org/10.1109/EUMA.2000.33880

7

[46] V. Patel and K.S. Gurumurthy, Arithmetic

operations in multivalued logic, Int. J.

VLSICS, Vol. 1, 2010, Issue 1, pp. 21-32.

https://doi.org/10.5121/vlsic.2010.1103

[47] M. Huang, X. Wang, G. Zhao, P. Coquet,

and B. Tay, Design and implementation of

ternary logic integrated circuits by using

novel two-dimensional materials, Appl. Sci.

J., Vol. 9, 2019, pp. 1-13.

https://doi.org/10.3390/app9204212

[48] G.A. Kouzaev and T.A. Lebedeva, New

logic components for processing complex

measurement data, Measurement Tech., Vol.

43, 2000, pp. 1070-1073.

https://doi.org/10.1023/A:1010948020127

[49] G.A. Kouzaev, Qubit logic modeling by

electronic gates and electromagnetic signals,

2001. https://arxiv.org/abs/quant-

ph/0108012v2

[50] R.J.C. Spreeuw, A classical analogy of

entanglement, Found. Phys., Vol. 28, 1998,

pp.361-374.

https://doi.org/10.1023/A:1018703709245

[51] S. O’uchi, M. Fujishima, and K. Hoh, An

8-qubit quantum circuit processor, Proc.

IEEE Int. Symp. Circuits Syst. (ISCAS),

2002,pp.V-209-212.

https://doi.org/10.1109/ISCAS.2002.101067

7

[52] L.B. Kish, Quantum computing with

analog circuits: Hilbert space computing,

Proc. SPIE Conf. Smart Electron., MEMS,

BioMEMS, and Nanotechnology, March 3,

2003. http://dx.doi.org/10.1117/12.497438

[53] B.R. La Cour and G.E. Ott, Signal based

classical emulation of a universal quantum

computer, New J. Phys.,Vol. 17, 2015, pp.

053017(1-19).
http://iopscience.iop.org/1367-

2630/17/5/053017/article

[54] M. Halid, N.I. Muhammad, U.M. Khokhar,

A. Jafri, and H. Choi, An FPGA based

hardware abstraction of quantum computing

system, J. Comput. Electron., Vol. 20, 2021,

pp.2001-2018.
https://doi.org/10.1007/s10825-021-01765-

w

[55] M. Borgarino, Circuit-based compact

model of electron spin qubit, electronics,

Vol. 11, 2022, pp. 526 (1-14).

https://www.mdpi.com/2079-

9292/11/4/526#

[56] D. O’Shea, Nvidia expands efforts to

support hybrid classical-quantum

computing, Fierce Electronics, March 25,

2022.

https://www.fierceelectronics.com/embedde

d/nvidia-expands-efforts-support-hybrid-

classical-quantum-computing

[57] C.P. Williams, Explorations in Quantum

Computing, 2nd Edition, Springer, London,

2011.

[58] R. Stárek, M. Mičuda, M. Miková, I.

Straka, M. Dušek, M. Ježek, and J. Fiurášek,

Experimental investigation of a four-qubit

linear-optical quantum logic circuit, Sci.

Rep. J., Vol. 6, 2016, pp. 1 – 11.

https://doi.org/10.1038/srep33475

[59] T. Chattopadhyay, All-optical modified

Fredkin gate, IEEE J. Sel. Top. Quant.

Electron., Vol. 18, 2012, pp. 585-592.

https://doi.org/10.1109/JSTQE.2011.21061

11

[60] H.G. Rangaraju, U. Venugopal, K.

Muralidhara, and K.B. Raja, Low power

reversible parallel binary adder/subtractor,

Int. J. VLSICS, Vol. 1, 2010, pp. 23-34.

https://doi.org/10.5121/vlsic.2010.1303

[61] J. Rice, Project in Reversible Logic, 2005

(accessed June 26, 2021).

http://www.cs.uleth.ca/~rice/publications/T

R-CSJR1-2005.pdf

[62] J. Waddle and D. Wagner, Fault attacks on

dual-rail encoded systems, Proc. 21st Annual

Comp. Security Appl. Conf., IEEE, Tucson,

2005,pp.483–494.

https://doi.org/10.1109/CSAC.2005.25

[63] Z. Xia, M. Hariyama, and M. Kameyama,

Asynchronous domino logic pipeline design

based on constructed critical data path, IEEE

Trans., VLSI Syst., Vol. 23, 2014, pp. 619-

630.

https://doi.org/10.1109/TVLSI.2014.231468

5

[64] K. Tiri and I. Verbauwhede, A digital

design flow for secure integrated circuits,

IEEE Trans. Comp.-Aided Des. Int. Circ.

Syst., Vol. 25, 2006, pp. 1197-1208.

https://doi.org/10.1109/TCAD.2005.855939

[65] F. Huemer and A. Steininger, Novel

approaches for efficient delay-insensitive

communication, J. Low Pow. Electron.

Appl., Vol. 9, 2019, Art. no. 16.

https://doi.org/10.3390/jlpea9020016

https://doi.org/10.1109/EUMA.2000.338807
https://doi.org/10.1109/EUMA.2000.338807
https://doi.org/10.5121/vlsic.2010.1103
https://doi.org/10.3390/app9204212
https://doi.org/10.1023/A:1010948020127
https://arxiv.org/abs/quant-ph/0108012v2
https://arxiv.org/abs/quant-ph/0108012v2
https://doi.org/10.1023/A:1018703709245
https://doi.org/10.1109/ISCAS.2002.1010677
https://doi.org/10.1109/ISCAS.2002.1010677
http://dx.doi.org/10.1117/12.497438
http://iopscience.iop.org/1367-2630/17/5/053017/article
http://iopscience.iop.org/1367-2630/17/5/053017/article
https://doi.org/10.1007/s10825-021-01765-w
https://doi.org/10.1007/s10825-021-01765-w
https://www.mdpi.com/2079-9292/11/4/526
https://www.mdpi.com/2079-9292/11/4/526
https://www.fierceelectronics.com/embedded/nvidia-expands-efforts-support-hybrid-classical-quantum-computing
https://www.fierceelectronics.com/embedded/nvidia-expands-efforts-support-hybrid-classical-quantum-computing
https://www.fierceelectronics.com/embedded/nvidia-expands-efforts-support-hybrid-classical-quantum-computing
https://doi.org/10.1038/srep33475
https://doi.org/10.1109/JSTQE.2011.2106111
https://doi.org/10.1109/JSTQE.2011.2106111
https://doi.org/10.5121/vlsic.2010.1303
http://www.cs.uleth.ca/~rice/publications/TR-CSJR1-2005.pdf
http://www.cs.uleth.ca/~rice/publications/TR-CSJR1-2005.pdf
https://doi.org/10.1109/CSAC.2005.25
https://doi.org/10.1109/TVLSI.2014.2314685
https://doi.org/10.1109/TVLSI.2014.2314685
https://doi.org/10.1109/TCAD.2005.855939
https://doi.org/10.3390/jlpea9020016

[66] D. Sokolov, J. Murphy, A. Bystrov, and

A. Yakovlev, Improving the security of dual-

rail circuits, Proc. Crypt. Hardw. Emb. Syst.,

Springer, Cambridge, 2004, pp. 282-297.

https://doi.org/10.1007/978-3-540-28632-

5_21

[67] D. Sokolov, J. Murphy, A. Bystrov, and

A. Yakovlev, Design and analysis of dual-

rail circuits for security applications, IEEE

Trans. Comp., Vol. 54, 2005, pp. 449-460.

https://doi.org/10.1109/TC.2005.61

[68] C. Cummings, D. Mills, and S. Golson,

Asynchronous & synchronous reset design

techniques - part deux, 2003 (accessed June

26, 2021).

https://trilobyte.com/pdf/CummingsSNUG2

003Boston_Resets_rev1_2.pdf

[69] Intel Corp., Quartus II Subscription

Edition Software, 2011 (accessed June 26,

2021).

https://fpgasoftware.intel.com/13.0sp1/?edit

ion=subscription&platform=windows

[70] Intel Corp., Cyclon II FPGA Starter

Development Kit, 2016 (accessed June 26,

2021).

https://www.intel.cn/content/dam/www/pro

grammable/us/en/pdfs/literature/ug/ug_cii_s

tarter_board.pdf

Contribution of individual authors to

the creation of a scientific article

(ghostwriting policy)
Guennadi A. Kouzaev proposed the initial ideas as

well formulation of overarching research goals and

aims. He was also responsible for the research

activity planning and execution, including

mentorship to the core team.

Atanas N. Kostadinov has implemented the

microprocessor and performed verification of the

design.

Sources of funding for research

presented in a scientific article or

scientific article itself
The European Research Consortium for Informatics

and Mathematics (ERCIM), Faculty of Information

Technology and Electrical Engineering (NTNU), and

Department of Electronic Systems (NTNU)

supported the initial stage of this research.

Acknowledgments
Authors thank their colleagues, Drs. M. Olavsbraten

(NTNU, Norway) and V. Guitberg (ATSS, Canada)

who took part in the earlier stages of the research.

The authors would like to thank the Research and

Development Sector at the Technical University of

Sofia for the financial support.

Creative Commons Attribution

License 4.0 (Attribution 4.0

International, CC BY 4.0)
This article is published under the terms of the

Creative Commons Attribution License 4.0

https://creativecommons.org/licenses/by/4.0/deed.en

_US

https://doi.org/10.1007/978-3-540-28632-5_21
https://doi.org/10.1007/978-3-540-28632-5_21
https://doi.org/10.1109/TC.2005.61
https://trilobyte.com/pdf/CummingsSNUG2003Boston_Resets_rev1_2.pdf
https://trilobyte.com/pdf/CummingsSNUG2003Boston_Resets_rev1_2.pdf
https://fpgasoftware.intel.com/13.0sp1/?edition=subscription&platform=windows
https://fpgasoftware.intel.com/13.0sp1/?edition=subscription&platform=windows
https://www.intel.cn/content/dam/www/programmable/us/en/pdfs/literature/ug/ug_cii_starter_board.pdf
https://www.intel.cn/content/dam/www/programmable/us/en/pdfs/literature/ug/ug_cii_starter_board.pdf
https://www.intel.cn/content/dam/www/programmable/us/en/pdfs/literature/ug/ug_cii_starter_board.pdf
https://creativecommons.org/licenses/by/4.0/deed.en_US
https://creativecommons.org/licenses/by/4.0/deed.en_US

Appendix 1

Fig. 12. SignalTap II wave diagrams for the third test program.

