A Novel Processor for Artificial Intelligence Acceleration

ATANAS N. KOSTADINOV
Department of Computer Systems and Technologies
Technical University of Sofia, Plovdiv Branch
25 Tsanko Diustabanov Str., 4000 Plovdiv
BULGARIA

GUENNADI A. KOUZAEV
Department of Electronic Systems
Norwegian University of Science and Technology - NTNU
Glgshaugen, O.S. Bragstads plass 2B, 7491 Trondheim
NORWAY

Abstract: - A variable predicate logic processor (VPLP) is proposed for artificial intelligence (Al), robotics,
computer-aided medicine, electronic security, and other applications. The development is realized as an
accelerating unit in Al computing machines. The difference from known designs, the datapath of this processor
consists of universal gates changing on-the-fly their logical styles-subsets of predicate logic according to the data
type and implemented instructions. In this paper, the processor’s reconfigurable gates and the main units are
proposed, designed, modeled, and verified using a Field-Programmable Gate Array (FPGA) board and
corresponding computer-aided design (CAD) tool. The implemented processor confirmed its reconfigurability
on-the-fly performing testing codes. This processor is interesting in accelerating Al computing, molecular and
guantum calculations in science, cryptography, computer-aided medicine, robaotics, etc.

Key-Words: - Variable predicate logic processor (VPLP), predicate logic, artificial intelligence (Al), predicate
RAM (PRAM), topological computing, Hilbert-space pseudo-quantum computers, hybrid quantum-classical
computers, Field-Programmable Gate Array (FPGA).

Received: April 25, 2022. Revised: June 7, 2022. Accepted: April 27, 2022. Published:

Refs. [11]-[14]. These contributions describe only
initial designs for several different logic styles.

Section 2 is on the theory and hardware
realizations of predicate logic and its subsets that can
be unified in a single processor. In Section 3, the
proposed variable predicate logic processor is
described in detail. Section 4 is on implementing the
processor in FPGA and its verification. Concluding
remarks are in Section 5.

1 Introduction

In artificial intelligence (Al), many data flows have
very complicated structures requiring fast change of
the logic processing styles. Partially, this idea is
realized in FPGAs (Field-Programmable Gate
Arrays), where a designed processor is modeled by
programmed computing cells. Unfortunately,
moving from one design to another requires an
essential reconfiguration time [1]-[5]. Meanwhile,
accelerated change of logic style requires fine-grain

reconfigurability on the gate level [6],[7].

In this paper, a new specific approach to this
reconfigurability is discussed. It is known that
predicate logic (the logic of our intelligence) is
general for many logic styles, including the Boolean
one, for instance [8]-[10].

If universal predicate gates controlled by
instructions are realized, they can fulfill particular
logic operations of different styles. We have already
published the first ideas and circuits in this field in

2 Predicate Logic and Processing

Units

In mathematics, predicate logic is a generic term for
formal symbolic systems [8]-[10],[15],[16].
This predicate system is distinguished from others in
the formula S containing variables Aand

quantifiers T .

S=(AT) (1)

Thus, predicate logic operates with sentences S
similar to the atomic one (1) instead of truth tables of
propositional logic [8]. Some predicate logic
applications are used in computer science.
They could be found in Al modeling software, big
data-based systems, circuit theory, hardware
verification codes, etc. [17]-[21].

However, such programs are mostly executed on
processors built on propositional logic gates.
Depending on the number of quantifiers, this source-
code-level simulation can increase the execution time
in orders of magnitude compared to possible micro-
parallel gates realized operations with these
predicated data streams.

In some hardware, the predicate gates of fixed
logic and even large units are implemented to
enhance the processor parameters, as it was in the
Itanium processor architecture [22]. Several ideas
were published to modify the conventional computer
modules for better processing Prolog programs
[23]-[26] or enhance information exchange in multi-
processor supercomputing systems [27].

Today, the computing devices involved in
massive Al operations [28] require new designs
called artificial intelligence accelerators [15],
[29]-[34]. Some of them can be built on the combined
use of propositional and predicate logic units [12] to
improve Al computers’ performance.

According to our best knowledge, the first
application-specific instruction-set processor (ASIP)
accelerating some Al operations was a predicate
logic processor published in Refs. [35],[36].

The idea of computing the electromagnetic (EM)
signals carrying predicated information relates to the
90" of the last century [11],[37]-[41]. The elementary
binary predicate or atomic unit of knowledge
[42]-[44] is a pair of logically coupled bits for the
formula (1). They can be carried by two logically or
even EM coupled wires [39].

Generally, predicate logic uses an extended set
of logical and non-logical symbols. Among them are
the quantifier ones, conjunction (AND), disjunction
(OR), negation (NOT), and implications (if-then).

A reduced predicate logic in Ref. [36] and here
uses only the AND, OR, and NOT logical operations
applied to a predicate expression S :

S =S (NOT),
S=S,AS, (AND), (2)
S=5,vS, (OR).

After developing predicate gates according to the
formula (2), an experimental 8-bit processor

consisting of a predicate datapath and a conventional
control unit was designed [36]. The datapath there
implements the mentioned logically full set of
predicate operations (2) in a parallel manner.

This processor, thought a predicate logic
accelerator, was modeled by VHDL (Very High-
Speed Integrated Circuit Hardware Description
Language) and synthesized in FPGA board from Intel
(formerly Altera) using Quartus Il design software.
The realized microprocessor works at a maximum
clock frequency of 130.28 MHz. It consists of 5868
total logic elements, 3482 combinational functions,
4628 registers, and 10624 memory bits. The results
of some testing programs were observed helped by
the Quartus Il tool and successfully compared with
theoretical calculations.

Ref. [36] shows the need for further enhancement
of the designed predicate processor. It was overly
specific for some practical applications. As a rule, the
data is not always organized in predicate form in
knowledge-based applications. Many flows need
Boolean, multi-valued, reversible, etc., operations.
Performing them by fixed predicate gates requires an
additional program code. In this way, it leads to a
decrease in throughput.

As it was mentioned in the Introduction, the main
idea of this paper is the development of a processor
whose universal gates are controlled by instructions
and realize several subsets of predicate logic.
This possibility was noticed in the first works on
spatially-modulated signals propagating along paired
wires in Refs. [11],[37],[39]. There, one of the
predicate logic units in the formula (1) can be
assigned to control a logic type or realize the
reversibility of gates [14]. Additionally, the paired
wires can be used to model qubits in quantum
computer emulators [11],[41].

In some applications, such as security-enhanced
data processing, the paired wires can be used to avoid
or diminish information leakage through irradiation
from signal traces or/and power delivering wires.
Again, this pair-wire style is a subset of the predicate
logic set (2).

In all these cases, the signals propagating along
the paired lines, formally in predicate form, require
new universal reconfigurable gates and newly built
arithmetic logic units (ALUS).

In this article, based on our experience in the
development, design, simulation, and FPGA
implementations, a novel flexible processor
architecture tailored to modern artificial intelligence
applications is considered prospective to boost Al
operations. The predicate flows are combined with

conventional data representation in a specially
designed microprocessor containing flexible ALU.

As a difference from all other microprocessors,
the processor’s datapath can perform operations
logically equal to the results produced by seven types
of logic. These logics allow new possibilities which
have been not realized earlier in full:

(1) Predicate logic with the paired wires

2 Conventional Boolean operations along
each wire (depending on signal and
instruction) [14]

3 Multi-valued (with four logic levels)
operations spatially mapped on two
wires [45]-[47]

(@) Pseudo-quantum logic [13],[41],[45],
[48]-[59]

(5) Reversible logic [60]-[61]

(6) Dual-rail operations [62],[63]

@) Dual-rail single-spacer operations
[64],[65]

(8) Dual-rail dual-spacer operations
[66],[67]

The initial designs of universal gates performing
the above-considered operations have already been
published in Refs. [13],[14]. More information is
needed on pseudo quantum gates, which are not
widely known to the electronic community.

It is known that quantum computing can be
powerful in some cases because of quantum
parallelism when N - particles are in 2" states.
We need 2" classical electronic gates integrated into
a 2"— dimensional Hilbert-space processor to
emulate a quantum computing unit. The initial idea
in this field was from R.J.C. Spreeuw, who discussed
building a Hilbert-space processor using photons of
opposite polarization [50] paired into qubits.
Unfortunately, the use of a multitude of bulky optical
elements is a rather challenging problem.

Contemporary electronics integrating billions of
gates allows emulating a several-ten-qubit quantum
machine. In 1999, we proposed using the microwave
or digital electronics when a sum of even and odd
modes in coupled strip lines models a qubit state
because they have topologically different
electromagnetic field maps [41]. A logically full set
of gates was designed and realized in hardware by us
in those years [40],[48],[49].

In Fig. 1 (not published earlier), a PCB board for

a VCNOT gate and switch-controlled signal
generator (designed with A. Ermakov in 1999) is

shown as an example. The gate is described in detail
in Ref. [40].

The interest in emulation of quantum computers
has been strong for many next following years [13],
[14],[51]-[55], considering the problems in the
developments of full-scale fault-tolerant quantum
processors. It was found that pseudo-quantum
architectures, being still classical, can calculate the
quantum algorithms used in cryptography, quantum
physics, chemistry, and biology more effectively than
ordinary computers [53]-[56]. It is known, emulating
guantum computers, that not all operations are with
qubits; then, a universal computer should have gates
performing Boolean and other operations belonging
to the predicate set. Besides, in Al applications,
quantum algorithms are not always powerful.

Fig. 1. A gate module (from G.A. Kouzaev’s
archive, see as well [40]).

The proposed here processor, called the variable
logic one, can change its logic styles on-the-fly
according to the incoming data flow and
corresponding control signal. It will increase the
effectiveness of data processing. Considering that all
eight mentioned operations are the subsets of

predicate logic, the full name of our design is the
Variable Predicate Logic Processor (VPLP)

3 Variable Predicate Logic Processor

(VPLP) Design

This VPLP architecture [13] has been developed in
three major steps. Initially, the design of the variable
predicate logic gates is performed [14], which is not
considered here. The PRAM (Predicate Random-
Access Memory) is also composed and designed in
the second step. Finally, the complete variable
predicate logic processor has been realized and
verified using an appropriate CAD (Computer-Aided
Design) tool and an FPGA board (Fig. 2).

Fig. 2. Cyclone Il FPGA Starter Development
Board (Altera, now Intel) is connected to a
computer to emulate the designed VPLP.

An 8-bit predicate processor is studied, i.e., each
value in predicate expression (1) is represented by
8-bit digits.

A PRAM basic cell has been implemented in the
second step of the processor development (Fig. 3).
This basic cell has two inputs and two outputs for
predicated signals. These signals can be of predicate
information origin or contain the bits for control of
logic of predicate gates.

o Dff1 N\

— D ¥ a—
CLKpmc —
= Q
RSTpmc ——
Dff2 ENB
PR, W, W— SET
D ¥ a P
D
@ Q
TSB1
51 Dff3
[— D ¥ ar—
Y N
w Q
[
| Dff4 ENB
ENpmc —— D ¥ a q
2
4i>4:>
@ Q
K TSBZ/

Fig. 3. Implemented PRAM cell.

This design uses four D flip-flops (from Dff1 to
Dff4) and two three-state buffers (TSB1 and TSB2,
denoted by triangles). The inputs CLKpmc and
RSTpmc are for the clock and reset signals. The signal
ENpmc enables the input of this PRAM unit.
When the ENpmc signal is equal to the logic zero,
then the three-state buffer outputs go to a
high-impedance state. In this case, PRAM basic cell
is disabled. In the opposite case, the ENpmc signal
goes to logic one.

A new 8-bit PRAM module is designed (Fig. 4)
when eight cells are combined. Two memory data
buses have 8-bit width. All other signals are equal to
the described ones in Fig. 3 (a basic predicate
memory unit). Then, 256 8-bit PRAM cells are
connected, and PRAM is organized as 256 words by
16 bits. An address decoder and a multiplexer have
been added to this PRAM module (they are not
included in Fig. 4 due to simplification reasons).

CLK8pmc —— CLKpme Pas
RST8pmc [RSTpmc p2 s —
EN8pmc > ENpmc % —
ST — p1 8 s
Qs > Qu
g
8
CLKpmc
RSTpmc
ENpmc P2
—— p1 92
— G
CLKpmc
RSTpmc P2
ENpmc
L1 p Q2
—
CLKpmc
RSTpmc P —
ENpmc
1 P G
—
CLKpmc
RSTpmc p2 —
ENpmc
—— G2
— du
CLKpmc
RSTpmc P2
ENpmc q
—— P 2
1 G
CLKpmc
RSTpmc
ENpmc 322
1 P
1 %
CLKpme
RSTpmc py +—
ENpmc
4 n G2
\ | ql j

Fig. 4. Designed 8-bit PRAM cell.

The complete variable predicate logic processor
has been realized and verified in the final step.
VPLP is a successor of the PLP (Predicate Logic
Processor) [36] and PBOP (Predicate and Boolean
Operation Processor) [12] processor architectures.
It extends the architectures mentioned above.
The instruction set is enlarged with new instructions.
It has been used term flexible processor to express its
opportunity to tune to different types of incoming
data. The synthesized block diagram of the variable
predicate logic processor is shown in Fig. 5.
The VPLP includes a reset circuit, datapath, and
control unit.

vplp_clk
RESET Qrst
vplp_rst CIRCUIT
MVD_out
. DATAPATH
MVD_in dato
\
RD
CONTROL WR >
dati UNIT address

Fig. 5. Synthesized variable predicate logic
processor (VPLP).

Another part of the variable predicate logic
processor is its interface. It includes the signal lines
vplp_clk, vplp_rst, MVD_in, MVD_out, dati, dato,
RD, WR, and address. The lines vplp_clk and
vplp_rst interface the clock and reset (Qrst is
produced by reset circuit) signals to various
components of VPLP. Signal lines MVD_in and
MVD_out are the input and output of multi-valued
numbers to the variable predicate logic processor.
At the input, the multi-valued numbers are converted
to binary ones and vice versa to the output using
convertors.

The rest signal lines (Fig. 5) connect VPLP to the
PRAM module. RD and WR signals are utilized to
perform the read and write memory operations.
A signal line address is the address bus of the
variable predicate logic processor. The data buses of
the VPLP are formed by dati and dato signals.

In Fig. 6, the variable predicate logic processor
datapath is shown. It is responsible for the
manipulation of data. It consists of the storage units:
register B, accumulator A, multi-valued register, flag
register (FLAGSs), and the combinational units: data
multiplexer and variable predicate arithmetic logic
unit (VPALU).

vplp_clk MS
Qrst DATA dwaidp
DEC_dp REGISTER MULTIPLEXER =
B .
INC_dp Mvi_dp
LDB
VPALUS_dp
LD1 dp VARIABLE
| ACCUMULATOR || PREDICATE
A - ARITHMETIC
LOGIC UNIT
/~ dato_dp M
" Fld_dp
FL_dp
FLAGS -
LD2_dp MULTI-VALUED
REGISTER
Mvo_dp

- J

Fig. 6. Designed VPLP datapath.

The data multiplexer in Fig. 6 selects the data
either from PRAM (dati_dp) or from multi-valued
signal lines Mvi_dp and sends the selected input’s
data to VPALU. This data multiplexer has a select
line, which is named MS. The VPALU control bits
belong to signal line VPALUs_dp, which is of 5-bit
size. Accumulator A and register B are provided to
aid in executing instructions in VPALU.

Accumulator A is a 16-bit register (Fig. 6).
It usually contains one of the two operands involved
in actual instruction execution. The second operand
is read from PRAM or register B. The result of an
operation is again stored in accumulator A, either
register B or both. The load signal line LD1_dp is
applied to load/store operations.

Register B is 16-bit, too. It plays the same role as
accumulator A in some instructions. The added letter
B in the assembly instruction names (in mnemonics)
specifies the application of register B in their
execution.

Accumulator A and register B are both used in
some operations. Clock vplp_clk and reset Qrst signal
lines are distributed to other datapath components
except for the data multiplexer and VPALU. The
decrement DEC_dp, increment INC_dp and load
LDB signal lines only apply to register B.

The multi-valued register (Fig. 6) is 16-bit that
stores the processed multi-valued data. Load signal
line LD2_dp is used for this operation to be
performed. The multi-valued register output signal
line is Mvo_dp. The output signal line of datapath for
a different type of data, excluding multi-valued one,
is dato_dp.

A flag register (FLAGS) is a 3-bit one containing
three status flags. These bits are set to logic one or
logic zero based on the results after completion of the
comparison operation by VPALU. The FLAGs load
signal line is FId_dp. When logic one is applied to
this load signal line FLd_dp, the VPLP flags are
saved into the flag register. They are placed on the
output signal line FL_dp.

Variable predicate arithmetic logic unit (VPALU)
performs arithmetic and logical operations (Fig. 6).
The current design extends these operations with the
ones applicable to several types of logics: mainly the
Boolean, predicate, multi-valued (multiple-valued),
pseudo-quantum, reversible, and dual-rail
(differential) logics and its modifications using a
single spacer (all-zeroes state) or dual spacers
(all-zeroes and all-ones states).

The corresponding processor instructions have
been implemented. Table 1 shows new instructions
belonging to the VPLP instruction set. The old ones,
including a part of the Boolean and predicate
instructions, are inherited from previous PLP and
PBOP variants [12],[36].

Table 1. New VPLP instructions.

Command Semantic
Arithmetic and load
instructions
INCA Increment the content of
accumulator A by 1
DECA Decrement the content of

accumulator A by 1

INCB Increment the content of register
Bbyl

DECB Decrement the content of register
Bby1l

LDB Load constant into register B

LBA Load register B with the content
of accumulator A

LAB Load accumulator A with the

content of register B

Multi-valued logic instructions

INM

Load accumulator A with
converted quaternary to binary
number

OUTM Load multi-valued register with
processed binary number

Pseudo-quantum logic

instructions

CNB The logic equivalent of
controlled-NOT (CNOT)
operation
(according to the truth table)

SWB The logic equivalent of the swap

operation (with an identical truth
table)

Table 1. (continued)

Reversible logic instruction

FGO

Logic equivalent (with identical
truth table) of Fredkin gate
operation

Dual-rail (differential) logic
instructions

DOR

Dual-rail OR operation

DAND

Dual-rail AND operation

Dual-rail (differential) logic
instructions using a single
spacer (all-zeroes state)

TNOT

Dual-rail NOT operation

TOR

Dual-rail OR operation

TAND

Dual-rail AND operation

Dual-rail (differential) logic
instructions using dual spacers
(all-zeroes and all-ones states)

SNOT

Dual-rail NOT operation

SOR

Dual-rail OR operation

SAND

Dual-rail AND operation

Reversible logic instruction

FGO

Logic equivalent (with identical
truth table) of Fredkin gate
operation

Dual-rail (differential) logic
instructions

DOR

Dual-rail OR operation

DAND

Dual-rail AND operation

Dual-rail (differential) logic
instructions using a single
spacer (all-zeroes state)

TNOT

Dual-rail NOT operation

TOR

Dual-rail OR operation

TAND

Dual-rail AND operation

Dual-rail (differential) logic
instructions using dual spacers
(all-zeroes and all-ones states)

SNOT

Dual-rail NOT operation

SOR

Dual-rail OR operation

SAND

Dual-rail AND operation

Additional information about the VPLP

instruction set is presented in the following lines:

o INCA - VPALU
accumulator A. The result is stored

accumulator A.

increments by one
in

through operation, the operand is loaded to
register B.

LBA - 16-bit operand is initially stored in
accumulator A. With a VPALU pass-through
operation, the operand is transferred to
register B.

LAB — Register B contains a 16-bit operand
initially. With VPALU pass-through
operation, the operand is moved to
accumulator A.

INM — 16-bit value (converted quaternary to
binary number) is placed on VPLP signal
lines MVD_in. With a VPALU pass-through
operation, the operand is loaded into
accumulator A.

OUTM - 16-bit operand is initially stored in
accumulator A. With datapath load signal
line LD2_dp the operand is transferred to a
multi-valued register.

CNB - Register B holds two 8-bit operands.
According to the controlled-NOT (CNOT)
truth table, the result is again stored in
register B.

SWB — Register B holds two 8-bit operands.
The result, according to the SWAP truth
table, is contained again in register B.

FGO — The first 8-bit operand is stored in the
most significant byte of accumulator A and
the second two 8-bit operands — in register B.
According to the Fredkin gate truth table, the
result is kept again in the same registers (one
8-bit result in the most significant byte of
accumulator A and two 8-bit results in
register B).

DOR — Two 8-bit dual-rail operands are
loaded into accumulator A and register B.
The dual-rail OR logic operation results are
stored again in the same registers.

DAND — Two 8-bit dual-rail operands are

DECA - VPALU decrements by one
accumulator A content. The result is saved in

INCB - Variable predicate logic controller
sets a logic one on datapath signal line
The content of register B is

DECB - Variable predicate logic controller
sets a logic one on datapath signal line
number DEC_dp. The content of register B

O
accumulator A.
O
INC_dp.
incremented by one.
O
is decremented by one.
O

LDB — The program counter is incremented
by one. From the next PRAM cell (each
memory cell is 16-bits wide), the 16-bit
operand is fetched. With VPALU pass-

loaded into accumulator A and register B.
Result of dual-rail AND logic operation is
kept again in the same registers.

TNOT, TOR, TAND, SNOT, SOR, and
SAND instructions perform the dual-rail NOT, OR,
and AND logic operations. The operand and result
for TNOT and SNOT instructions are in accumulator
A only. The operands and results for TOR, TAND,
SOR, and SAND instructions are in accumulator A
and register B. A single spacer (all-zeroes state) or
dual spacer (all-zeroes and all-ones states) can be
used during transmission for each of the two groups
of three instructions, respectively.

The control unit (CU) issues the appropriate
signals to be executed the current command. The CU
also performs instruction fetching and decoding.
It consists of sequential components such as an
instruction register, index register, program counter,
another register, variable predicate logic controller,
and combinational units, which are the address
multiplexer and adder. Fig. 7 shows the internal
architecture of the VPLP control unit.

ADDER

vplp_clk
FLs_cu P
VPALUS_cu /| INSTRUCTION Qrst
REGISTER
RD dati
WR “
MS_cu
VARIABLE
LD_cu PREDICATE
LoGIC
LDMV_cu CONTROLLER +— INDEX
REGISTER
LDB_cu
Binc_cu
Bdec_cu
PROGRAM
FLd_cu COUNTER
-, dato_cu —
|
T
REGISTER address
L ADDRESS
MULTIPLEXER

Fig. 7. Realized VPLP control unit.

The instruction register is 16-bit. It holds the
instruction fetched from PRAM. Every instruction is
encoded in eight bits. Clock vplp_clk and reset Qrst
signal lines are distributed to other control unit
sequential components. A variable predicate logic
controller (VPLCI) is the main component of the
control unit. The VPLCI is realized as a finite state
machine (FSM). Each state of the FSM corresponds
to a different instruction encoded in eight bits.
Depending on decoded instruction, other control
signals are issued and sent to datapath, control unit
components, and PRAM. These signals are required
for proper instruction execution.

PRAM data is transferred to the instruction
register using signal lines dati. Data are also sent to
signal lines dato_cu. The VPLCI output signal line
VPALU_cu selects a VPALU operation.

PRAM read or write operation is performed when
RD or WR signals are applied. The select signal line

MS_cu is coupled to the data multiplexer signal line
MS (in Fig. 6). The following output signal lines are
the load ones. Signal line LD _cu is set to load the
accumulator A. Signal line LDMV_cu is used to load
the multi-valued register. The next signal line
LDB_cu applies to register B. When logic one is set
to Binc_cu or Bdec_cu control signals, it is possible
to increment or decrement the value of register B.

The index register (IXR) can contain the operand
address. The IXR output line is connected to one
address multiplexer inputs.

Adder is implemented to calculate the operand
address when a branch instruction is executed. It adds
the offset value to the current program counter
content. The result is loaded into the program
counter.

The additional register (located under VPLCI in
Fig. 7) stores the program counter content.
Later, this program counter could be loaded again
with stored value.

Address multiplexer selects the address signals
from the program counter or the index register.
The selected address will appear on the address bus
address.

The Program Counter (PC) is an 8-bit digital
component, and it holds the address of the next
instruction, which must be executed. This PC needs
to be incremented by one count for every instruction
or two of them. Its output is the signal line PCout.
Fig. 8 illustrates the Program Counter
implementation.

Adder Multiplexer 1 Multiplexer 2 DFIip-flpr\ PCout

—S1 D—L—Sl D D Q
s 92 EN MS2 EN —
C B CcC B —ENA e Q

—CLK
—PCclr
— PCld1
—_ PCld2
__ PCinc
— PCinl
PCin2 |

00000001

/m>

Fig. 8. Implemented VVPLP’s Program Counter.

This electronic circuit consists of an 8-bit adder,
an 8-bit register (denoted as a D flip-flop in Fig. 8),
and two multiplexers (Mux1, Mux2). The register is
incremented by one helped by the adder and
corresponding signal line PCinc (in logic high).
For this purpose, the input operand is used equally to
the value one (0000 0001) placed on input B of this
adder. The 8-bit register could be loaded using two
multiplexers and corresponding load signal lines

PCIld1 and PCld2. Two values are applied to 8-bit
input buses PCinl and PCin2.

The signal lines CLK and PCclr (connected to
Qrst) are clock and reset signals correspondingly.
Fig. 9 shows the VPLP reset circuit [68].

()
vplp_clk
—
D D1
I FLIP-FLOP
vplp_rst
— CLR Q1
D
CLR
D2 Qrst
FLIP-FLOP Q2 —
. J

Fig. 9. VPLP reset circuit.

The main building blocks are two D flip-flops D1
and D2. Clock vplp_clk and reset vplp_rst signal lines
are connected to both flip-flops. D input of the first D
flip-flop is coupled to ground potential. Its output
signal line (Q1) is connected to the D input of the
second flip-flop. The output of the reset circuit is the
signal line Qrst.

The reset circuit is used to synchronize
asynchronous VPLP reset signals (Qrst). It is avoided
any potential problems with asynchronous reset using
this presented circuit.

4 Variable Predicate Logic Processor

Testing
The designed VPLP is connected to the PRAM
module, as it is shown in Fig. 10.

e N

—
VPLP
— Multiplexer 16
vplp_rst 1
[) I
[PRAM
26
26

PRAM |_|
CONTROLLER

LD
26

Qrst

pram_rs \
BN /

Fig. 10. Designed VPLP connected to PRAM.

A test program is coded and loaded into memory
using an additional PRAM controller and a
multiplexer. VPLP and PRAM controllers have reset
signals with different logic levels. VPLP has an
active-high reset signal, and the PRAM controller
uses an active-low reset signal. The reset signal
(Qrst) is connected to the select input of the
multiplexer (Cy). In this way, when the PRAM
controller works, VPLP is idle and vice versa.
The PRAM reset signal is pram_rst.

VPLP address bus, data (dato), and read/write
signals are coupled to the first data input of the
multiplexer (Si). The same signals of the PRAM
controller are connected to the second data input of
the multiplexer (Sz). Another part of VVPLP data bus
information (dati) is transferred directly to the
processor. Clock signal vplp_clk is distributed to
VPLP, PRAM controller, and PRAM. Reset signal
vplp_rst is connected to VPLP’s reset circuit input.

During the VPLP verification phase, the results
obtained from the test programs used for the earlier
designed computer architectures [12],[36] are
compared with those obtained using this new
architecture. Then, the implemented further
instructions are checked for correct work. It is done
with the SignalTap Il Embedded Logic Analyzer,
which is a part of Quartus Il design software [69] and
Cyclone 1l FPGA Starter Development Board [70].

4.1 Test program 1

The final step in the VVPLP verification process is
executing several test programs. One example of
them, with short comments, is given below.

o LDB #3$55AF ; Register B is loaded with
hexadecimal value “55AF” (timestamp — ts
11).

o LAB ; Accumulator A is loaded
with hexadecimal value “55AF” (ts 15).

o CNB ; Operation, logically equal
to control-NOT, is executed between 8-bit
numbers located in register B (ts 22).

o FGO ; Operation, logically equal
to Fredkin gate, is performed. 8-bit A
operand is in the MSB of accumulator A. The
other two 8-bit operands (B and C) are
maintained in register B (ts 26).

o LDB #$AACD ; Register B is loaded with
hexadecimal value "AACD" (ts 35).

o LAB ; Accumulator A is loaded
with hexadecimal value “AACD” (ts 39).

o CNB ; Operation, logically equal
to control-NOT one, is executed between
8-bit numbers in register B (ts 46).

o FGO ; Operation, logically equal
to Fredkin gate one, is performed. 8-bit A
operand is in the MSB of accumulator A.
The other two 8-bit operands (B and C) are
maintained in register B (ts 50).

o NOP ; There is no processor
operation (ts 54).
o HLT ; VPLP stops execution

of any instructions (ts 58).

The checked instructions in the above-presented
test program are the LDB, LAB, CNB, FGO, NOP,
and HLT ones. The SignalTap Il Embedded Logic
Analyzer’s captured data is compared with one based
on theoretical calculations. The conclusion is that the
designed VPLP works appropriately. The basic
signals used in the verification process are shown in
Table 2.

Table 2. VPLP test signal legend.

Key Signal name Signal explanation
vplp_rst VPLP reset signal (Itis
0 assigned pushbutton
KEY [0]
to vplp_rst)
PRAM|address PRAM address
1
PRAM |dati PRAM input data
2
PRAM|dato PRAM output data
3
PRAM|RD PRAM read signal
4
PRAM|WR PRAM write signal
5

control_unit|VVPLPcontroller
6 |OPCODE

Operation code of
executed instruction

control_unit|PC|PCout Program counter output

7 data
datapath|ACCA|Q1 Accumulator A output

8 data
datapath|REGB|regBout Register B output data

The clock frequency of this variable predicate
logic computer prototype in Figure 9 is 50 MHz

(PIN_L1 of the Cyclone 1l FPGA Starter
Development Board is connected to the vplp_clk
signal [70]).

An essential part of the collected data is included
in Table 3. It is a portion of the created SignalTap Il
Embedded Logic Analyzer list file. The data in this
Table 3 is captured using the clock (vplp_clk) as an

acquisition signal. The VPLP reset signal (vplp_rst)
is a trigger one. The signal keys from Table 2 are in
the first row of Table 3.

The sample depth of the SignalTap 1l Embedded
Logic Analyzer data buffer is specified to get 128
