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Abstract—In this paper, non-linear model predictive control
(NMPC) without an explicit modulator is applied to modular
multilevel converters (MMCs) in the abc reference frame. NMPC
can easily be extended for longer prediction horizons as opposed
to finite control set model predictive control (FCS-MPC). How-
ever, NMPC applied to power converters in previous studies uses
a modulator, which limits the transient response compared to
FCS-MPC. Therefore, to avoid the modulator, two strategies are
presented. In the first strategy, the continuous solution (number
of inserted submodules per arm) obtained from NMPC is simply
rounded off to the nearest integer for both the arms of each
phase. In the second strategy, the optimal solution obtained
from the NMPC is further evaluated by rounding it up and
down for both arms. This requires four simulations per time
step, independently from the number of SMs per arm. The
evaluation of the four cases is conducted only for the initial
time step within the prediction horizon. Then the solution that
minimizes a pre-defined cost function is applied to MMC. The
second strategy offers the fastest response and provides similar
dynamic performance as indirect FCS-MPC, while both strategies
offer similar steady-sate performance. Simulations are performed
to validate the performance of the proposed methods compared
to the FCS-MPC.

Index Terms—NMPC, differential current, model predictive
control, modular multilevel converter (MMC), capacitor voltage
balancing

I. INTRODUCTION

Modular multilevel converters (MMCs) have received sig-
nificant attention in recent years [1], [2]. This is mainly due to
the attractive properties resulting from the series connection
of submodules (SMs), which allows for achieving high output
voltage. Indeed, the modularity of MMCs allows for designing
systems with a high number of voltage levels and limited filter
requirements due to the low harmonic component in the output
voltage. These features make MMCs very attractive for high
voltage direct current (HVDC) transmission systems [2].

The multi-input multi-output (MIMO) nature of MMCs and
the presence of internal dynamics are imposing challenges
for the control system design [2]. Therefore, many control
techniques have been investigated in literature for MMCs [3]–
[5]. Among these, model predictive control is an effective
method to easily handle constraints while dealing with the
non-linearity and MIMO nature of the MMCs.

Usually, finite control set model predictive control (FCS-
MPC) is used for power converters [6]. FCS-MPC takes
advantage of the discrete nature of the power converters.

Therefore, in FCS-MPC, all possible switching combinations
of the power converters are used to evaluate a predefined cost
function. The switching combination that minimizes this cost
function is then applied to the power converter in the next
sampling instant. However, one problem with this approach is
that when the number of switching combinations is large, long
prediction horizons cannot be used due to high computational
complexity. Therefore, a prediction horizon of just one time
step is typically used for FCS-MPC if a high number of switch-
ing combinations have to be considered. MMCs used in HVDC
application typically have very high number of SMs/arm which
leads to a high number of switching combinations. Therefore,
direct FCS-MPC is not feasible for this application.

Considerable work has been done in order to reduce the
computational complexity of FCS-MPC to enable its practical
use [7]–[11] for MMCs. All of these approaches are based on
indirect FCS-MPC in which optimization is performed over
voltage levels instead of switching combinations. Furthermore,
the conventional or a modified sorting algorithms are used to
perform the capacitor voltage balancing. In order to further
reduce the computational complexity, these methods try to
reduce the number of control options to be evaluated at each
sampling instant by only considering the neighboring voltage
levels with respect to previous sampling instant. This consid-
erably reduces the computational complexity when compared
to direct or full indirect FCS-MPC but the dynamic response
of the converter becomes slow. Another approach based on
indirect FCS-MPC reduced the computational complexity by
evenly distributing the SMs into M groups with each contain-
ing X SMs resulting in a computational burden of 2X+M+3
[12]. However, no specific criterion is provided on how to
group the SMs. Different from indirect FCS-MPC, a dual-
stage MPC approach has been presented in [13]. This method
results in a very good dynamic performance, however, its
computational complexity is much higher when compared to
indirect FCS-MPC approaches.

Recently, some other variants of indirect FCS-MPC methods
have been presented to address the issue of slow dynamic
performance, while keeping the computational complexity low
[14]–[17]. In [14], the steady-state and transient state are
handled individually. In steady-state, the number of options
to be evaluated are the same as in most indirect FCS-MPC
strategies, however, they are increased in the transient state



which allows for high dynamic performance. In [15], the
improvement in dynamic performance is achieved by allowing
the number of inserted SM to change by more than one only
in the initial step within the prediction horizon. This method
does not have to detect when a transient state is occurring.
Both of these methods achieve high dynamic performance
with low computational complexity for MMCs as compared
to other FCS-MPC strategies. However, when dealing with
MMCs having hundreds of SMs per arm, these methods would
have to consider more number of options to ensure proper
operation, thus increasing the computational complexity. In
[16], backstepping is combined with reduced indirect FCS-
MPC and the work in [17] applies a bisection algorithm in
the first stage and reduced indirect FCS-MPC in the second
stage. These methods simplify the first stage by assuming that
the total number of inserted SMs are always equal to N (total
number of SMs/arm). Therefore, when the number of SMs
is higher, then these methods would need to consider more
number of options in the second stage which will result in
increased computational burden.

In this work, continuous set non-linear model predictive
control (NMPC) will be applied to MMC. Due to the progress
made over the last decade, the computational complexity
of NMPC is not anymore a significant challenge for most
practical applications [18]. However, in power electronics
where the sampling times are usually very small further work
is required. The benefit of NMPC will be that it can easily be
extended for longer prediction horizons and thus offer better
performance. The earlier works based on NMPC [19]–[21] use
PWM modulators. Due to the presence of these modulators,
the dynamic response of NMPC is worse as compared to
FCS-MPC [22], [23]. Similarly to the indirect FCS-MPC, the
NMPC proposed in this paper does not require a separate
modulator. Therefore, instead of PWM modulators, only the
conventional sorting algorithm is used, which directly provides
the switching sequence to MMC. The absence of modulator
would result in slightly reduced steady-state performance.
Solutions exist to address this issue without the inclusion of
explicit modulator [22]. However, this is not the focus of this
work, so interested readers are suggested to read [22] and
references therein.

The optimal solution (number of inserted SMs) obtained
from NMPC will be continuous. To avoid the modulator, this
needs to be converted to a discrete value as the number of
inserted SMs can only be discrete. Therefore, two strategies
are presented to deal with this. In the first strategy, the solution
obtained is simply rounded off to the nearest integer for both
the arms of each phase. In the second strategy, the optimal
solution obtained is tested by rounding it down and rounding
it up for both upper and lower arms. This would require
four simulations per time step, independently of the number
of SMs/arm. It is noted here that the rounding up/down is
done only for the initial time step in the prediction horizon.
The proposed second strategy offers similar steady-state and
dynamic performance as compared to indirect FCS-MPC.
However, the first strategy suffers from sluggish dynamic

Fig. 1. Circuit Diagram of MMC

response.
The rest of the paper is organized as follows. The MMC

model and operation is presented in Section II. In Section III,
the proposed method is explained. Finally, the performance
of the proposed method is validated through simulations in
Section IV.

II. MODEL OF THE MMC

The modeling presented in this section is based on [15].
Figure 1 depicts the three-phase MMC system where each
phase of the MMC consists of two arms i.e. an upper arm
and a lower arm denoted by u and l respectively. Each arm
consist of N half-bridge submodules (SM), an inductor and a
resistor. The arm inductor is used to limit the harmonics and
fault currents and the arm resistor is used for modeling the
losses of the MMC. Depending on the switching states of S1
and S2, each SM can provide two voltage levels i.e. 0 or vCmi,j

where the index m = u, l identifies the upper or lower arm,
i = 1, 2, . . . , N identifies the individual sub-module within
the arm, and j = a, b, c identifies the phase.

Based on Kirchoff’s voltage law, the mathematical model
of the MMC shown in Fig. 1 can be expressed as:

Vdc
2

−vu,j−Riu,j−L
div,j
dt

+Rciv,j +Lc
div,j
dt

−vf = 0 (1)

Vdc
2

− vl,j −Ril,j −L
dil,j
dt

−Rciv,j −Lc
div,j
dt

+ vf = 0 (2)

where vu,j and vl,j represent the upper and lower arm voltages
of phase j, iu,j and il,j represent the upper and lower arm



currents of phase j, iv,j is the ac-side current, Vdc is the
dc-side voltage, vf is the grid side voltage, R is the arm
resistance, L is the arm inductance, Rc and Lc are the grid
side converter resistance and inductance, respectively.

The ac-side current and differential current are given by:

iv,j = il,j − iu,j (3)

idiff,j =
iu,j + il,j

2
(4)

where idiff,j is the differential current.
By subtracting (1) and (2) and using (3) the dynamic

equation for, ac-side current is obtained as:

div,j
dt

=
−(R+ 2Rc)

L+ 2Lc
iv,j +

vu,j − vl,j
L+ 2Lc

+
2vf,j

L+ 2Lc
(5)

Similarly, by adding (1) and (2) and using (4), the dynamic
equation for the differential current is obtained as:

didiff,j
dt

=
−R
L
idiff,j −

1

2L
(vu,j + vl,j) +

1

2L
Vdc (6)

The arm voltages vu,j and vl,j depend on the number of SM
inserted in that arm. Assuming that SM capacitor voltages are
well balanced at their reference values, the arm voltages can
be expressed as:

vu,j ≈
nu,j
N

vΣ
u,j (7)

vl,j ≈
nl,j
N

vΣ
l,j (8)

where nu,j and nl,j are the number of SMs to be inserted
in upper and lower arm respectively and vΣ

u,j and vΣ
l,j are the

summation of all capacitor voltages in the upper and lower
arm respectively.
The dynamics of the total arm capacitor voltages can be
expressed as:

dvΣ
m,j

dt
=

im,j

Ce
m,j

=
nm,jim,j

C
(9)

where Ce
m,j is the equivalent arm capacitance of inserted

SMs in arm m. Using (3) and (4) into (9) the following
dynamic equations for total arm capacitor voltages of both
arms can be derived:

dvΣ
u,j

dt
= −nu,jiv,j

2C
+
nu,jidiff,j

C
(10a)

dvΣ
l,j

dt
=
nl,jiv,j

2C
+
nl,jidiff,j

C
(10b)

Using the definition of vu,j and vl,j from (7) and (8) into
(5) and (6), the dynamic equations for ac-side current and
differential current are modified as:

div,j
dt

=
−(R+ 2Rc)

L+ 2Lc
iv,j +

nu,jv
Σ
u,j − nl,jv

Σ
l,j

N(L+ 2Lc)
+

2vf,j
L+ 2Lc

(11a)

didiff,j
dt

=
−R
L
idiff,j −

(nu,jv
Σ
u,j + nl,jv

Σ
l,j)

2NL
+
Vdc
2L

(11b)

Using (10) and (11) the state space equation of the MMC is
shown by (12)

ẋ(t) = Ax(t) +

2∑
i=1

(Bixui) + d(t) (12)

where x = [iv,j , idiff,j , v
Σ
u,j , v

Σ
l,j ]

T is the state vector,
u = [u1u2]T = [nu,jnl,j ]

T is the input vector, d(t) is the
disturbance and

A =


− (R+ 2Rc)

L+ 2Lc
0 0 0

0 −TsR
L

0 0

0 0 0 0
0 0 0 0


Bix =

[
B1x(t) B2x(t)

]

B1 =


0 0

1

(L+ 2Lc)N
0

0 0
−1

2NL
0

−1

2C

1

C
0 0

0 0 0 0



B2 =


0 0 0

−1

(L+ 2Lc)N

0 0 0
−1

2NL
0 0 0 0
1

2C

1

C
0 0



d(t) =


2vf,j(t)

(L+ 2Lc)
Vdc(t)

2L
0
0


Equation (12) shows that the MMC is a bilinear system with

multiple inputs and outputs.

III. PROBLEM FORMULATION FOR PROPOSED METHOD

The control goals of the MMC are to regulate the ac-current
to its reference, minimize the ac-components in the differen-
tial current and to regulate the arm summation voltages at
their references. The reference for ac-side current, differential
current and summation voltages are calculated as in [7] and
a conventional sorting algorithm is used for SM capacitor
voltage balancing as in [7]. The definition of the references
is repeated here for completeness. The power equations in the
dq frame are used to obtain the reference value for the ac-side
current as follows:

id =
2

3

Pvd +Qvq
v2
d + v2

q

(13a)

iq =
2

3

Pvq −Qvd
v2
d + v2

q

(13b)

Then the reference current can be obtained in the abc frame
by dq to abc transformation. The differential current reference



as a first step is based on the assumption of equal input and
output power and is given as:

Idc,ref = − P

Vdc,ref
, Idiff,ref =

Idc,ref
3

(14)

With the above control goals and references, the stage cost
function is selected as:

Jj = λ1(iv,j,ref − iv,j)
2 + λ2(idiff,ref − idiff,j)

2 (15)

The λ’s are the weighting factors for setting the relative
importance between the control objectives. The first term in the
cost function is used to keep the ac-side current at its reference,
the second term is for minimizing the ac-components in the
differential currents. The other two objectives i.e. keeping the
average value of summation of capacitor voltages of each arm
at their reference values are met by adjusting the reference
of the differential current either in the outer loop or by
having its equivalent within MPC implementation [24]. This
is required because of the assumption of equal input and
output power, when determining the reference for differential
current. Therefore, in the outer loop a fundamental frequency
component is introduced in the differential current reference to
regulate arm voltage difference to zero and a dc-component is
introduced if the sum of summation voltages is not regulated
to 2Vdc

Now, the model in (12) can be discretized by any integration
method. In this work, Runge-Kutta 4 method is used for
discretization. The constraints on the inputs of the system are
linear and given as:

0 ≤ u1 ≤ N
0 ≤ u2 ≤ N

u1 + u2 ≤ N + 2
u1 + u2 ≥ N − 2

where N is the total number of SMs in each arm of the
MMC. The first two constraints are physical constraints i.e.
the number of inserted modules per arm cannot be negative
and cannot be more than the total number of SMs in that
arm. The other two constraints ensure that the total number of
switched on modules are not too far from N because in normal
operation the total number of voltage levels should be near N .
It is noted here, that the reference of summation voltages is
fixed to Vdc for this work. If the reference is not fixed then
the constraints three and four need to be modified. Moreover,
in addition to the constraints defined above, linear constraints
can also be imposed on state variables.

With the above problem, NMPC is applied using CasADi in
MATLAB to get the continuous optimal solution. In order to
avoid the modulator, two strategies are presented to deal with
the continuous solution of the NMPC. In the first strategy
(Case I), this solution is simply rounded off to the nearest
integer and is sent to the conventional sorting algorithm. In the
second strategy (Case II), the solution obtained from NMPC
for both arms is rounded up and rounded down. This would
require only four simulations per time step. It is noted here that

Fig. 2. Block diagram for Proposed Method

the rounding operations are only performed for the solution in
the first step of the prediction horizon.

Recently, a new cost function was proposed in [17], which
eliminates the need for having any kind of additional control
over the differential current reference in order to regulate the
average summation voltages in both arms. In the second stage
of the proposed method, the four options are evaluated by this
new cost function which is reproduced below:

Jj,new = λ1(iv,j,ref − iv,j)
2 + λ2(idiff,ref − idiff,j)

2

+ λ3(2vdc,ref − vΣ
u,j,avg − vΣ

l,j,avg)(idiff,ref − idiff,j)

+ λ4(vΣ
u,j,avg − vΣ

l,j,avg)∆W (16)

where ∆W is the instantaneous energy difference between
the lower and upper arm. The third term introduced above
ensures the regulation of total leg voltage at 2Vdc and the
fourth term ensures that the voltage difference between the
arms is regulated to 0. The third term would only act if the sum
of average summation voltages of both arms is not equal to
2Vdc and the fourth term would only act when their difference
is not 0. The detailed explanation of the above cost function
can be found in [17].

The cost function (16) is not used in the NMPC stage
because optimizers perform more efficiently with quadratic
cost function. The flowchart for Case II is shown in fig. 2
where nuc, nlc are the continuous solution from NMPC and
nud, nld are the discrete insertion indices. It is noted here,
that in Case I, an outer loop or some additional control over
differential current reference is required in order to regulate the
summation voltages. In this work, the method proposed in [24]



Fig. 3. Control Block Diagram of MMC

is used where the equivalent of outer loop is implemented with
in MPC framework. However, this method results in higher
ripples in the differential current and these ripples don’t vanish
even when the summation voltages are balanced.

Case I can be summarized as:
1) Continuous optimal insertion index based on the mini-

mization of cost function (15) is obtained by NMPC
2) Round off the solution to nearest integer from step 1
3) Perform capacitor voltage balancing task based on the

conventional sorting algorithm and rounded off solution
from 2

Case II can be summarized as:
1) Continuous optimal insertion index based on the mini-

mization of cost function (15) is obtained by NMPC
2) Round up and down the solution from 1
3) Select the insertion index from 2 that minimizes the cost

function (16)
4) Perform capacitor voltage balancing task based on the

conventional sorting algorithm and optimal insertion
index from 3

IV. SIMULATION RESULTS

The block diagram for calculation of insertion index through
the proposed methodology is shown in Fig. 3. The synchro-
nization of the system with grid is achieved by using a dq-
frame phase locked loop (PLL). The PLL is working to align
the d-axis to the grid voltage vector in steady state. All the
references and measurements are sent to the NMPC controller
which outputs the continuous insertion indices. These insertion
indices are then converted to discrete values using either Case
I or II. Once the discrete insertion indices are obtained then
they are sent to the conventional sorting algorithm which
determines the gating signals for the MMC.

A. Time Domain Results

The simulation results are provided for a prediction horizon
of two. The scenario used for simulation is such that, at t=0s

the reference values of active and reactive power are set to
25 MW and 0 MVar , respectively and at t = 0.15s a real
power reversal command is applied by changing active power
set point to −25 MW. Table I shows parameters used for
simulation.

TABLE I
SIMULATION PARAMETERS

Parameter Value
MMC nominal power (base power) 50 MVA
AC system nominal voltage (base voltage) 138 kV
Short circuit ratio at PCC 5
AC source inductance (Ls) 150 mH
Nominal frequency 60 Hz
Arm inductance (L) 7 mH
Arm resistance (R) 1Ω
Submodule capacitance (C) 14000µF
Transformer voltage rating (T) 138 kV / 30 kV
Transformer power rating 55 MVA
Transformer inductance 0.05 pu
Transformer resistance 0.01 pu
Grid side converter inductance (Lc) 5 mH
Grid side converter resistance (Rc) 0.03Ω
DC side reference voltage 60 kV
Number of SMs per arm (N) 20
Sampling time (Ts) 100µs

Figure 4 shows the dynamic response comparison of the
two cases discussed in previous section and indirect FCS-
MPC which considers all the possible voltage levels. Here
Iop is for Case II, Irf if for Case I and Iin is for indirect
FCS-MPC. It can be clearly seen that Case II offers similar
dynamic response as full indirect FCS-MPC. Therefore, we
can conclude that the Case II is better than Case I.

Figure 5 shows the performance of all the state variables
being controlled by the NMPC using Case II under active
power reversal command. A longer simulation time was used
to depict regulation of summation voltages. It can be seen
that all the state variables and power are regulated on their
references quite accurately. It can also be observed that after
the transient, the differential current has both a fundamental



Fig. 4. Comparison of Results for d-axis component of ac-side current
(Transient State): Irf simple rounded off, Iop both rounded up and down, Iin
Indirect FCS-MPC

frequency component and a small dc component, until the
summation voltage is regulated at its reference. This change
in differential current is as a result of the cost function (16).

Fig. 5. NMPC 2nd Strategy (Case II): (a) real power, (b) phase-a current, (c)
phase-a differential current, (d) summation of the capacitor voltages in the
lower arm of phase a

In Fig. 6, the results of Case I are shown. As highlighted
earlier, it can be seen that the differential current is contin-
uously adjusted in order to regulate the summation voltages.
However, still the summation voltages are not well regulated
as compared to Case II where a different cost function is used
in the second stage. This shows that the equivalent of outer

loop within MPC implementation is not accurate. In case of an
explicit outer loop the summation voltages are well regulated
and the differential current also settles on its fixed reference
once the summation voltages are balanced. However, the outer
loop has its own drawbacks i.e. tuning of PI controllers and
having slow dynamics.

Fig. 6. NMPC 1st Strategy (Case I): (a) real power, (b) phase-a current, (c)
phase-a differential current, (d) summation of the capacitor voltages in the
lower arm of phase a

B. Computational Requirements Discussion

The time taken by full indirect FCS-MPC and NMPC for
one time step for 20SMs/arm and a prediction horizon p = 2
are on average 0.9321 and 0.5401 seconds respectively. The
simulation was made using MATLAB R2019b on Intelr Core
i7, 3.20 GHz, with 16 GB RAM. It can be observed that
the time taken by FCS-MPC is almost twice as compared
to NMPC in this scenario. Therefore, for longer prediction
horizons, NMPC should be the automatic choice. However,
for p = 1 full indirect FCS-MPC (0.0185s ) is faster as
compared to NMPC (0.4997s). Therefore, due to the bilinear
model and short sampling time, the computational complexity
of NMPC for MMC is high thus hindering its real time
application. However, it is expected that with ongoing research
this computational complexity will be reduced in near future.
It is noted here that the time taken by both methods are
expected to be much shorter with efficient implementation on
a dedicated real time platform (without much of the overhead
of the operating system on a general purpose computer).

V. CONCLUSION

In this work, an NMPC strategy without modulator is
proposed for MMC. Two methods were presented to deal
with the continuous solution of NMPC. It was shown that
the method which considers both rounded up and rounded
down control options offers better dynamic performance. The
NMPC problem was formulated and solved using CasADi
in MATLAB with a quadratic cost function per phase and



linear constraints. The conventional sorting algorithm was
used to perform the voltage balancing task. To avoid any
sort of additional control on differential current reference, a
different cost function was used for Case II in the second
stage that ensured the regulation of summation voltages at
their reference on average. Simulations demonstrate that the
proposed method gives similar performance as full indirect
FCS-MPC. Moreover, as compared to indirect FCS-MPC
techniques the proposed method can easily be extended for
longer prediction horizons.
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