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1 Introduction

Maritime transportation enables transportation of large volumes at relatively low
costs and is therefore a fundamental part of the world trade. It is estimated that
around 90 percent of world trade today is carried by the international shipping in-
dustry. Additionally, efficient port structures make it possible to combine sea trans-
portation with land-based modes of transportation.

Roughly speaking, liner shipping is the service of transporting large volumes of
cargo by means of high-capacity vessels that follow regular routes on fixed sched-
ules. Within this type of shipping service, the variety of vessel types can be split
into vessels designed for Lift-on/Lift-off (LoLo) operations, and Roll-on/Roll-off
(RoRo) operations. In LoLo operations, quay cranes located on the docks are used
to load and unload the vessels’ cargo, while RoRo vessels are designed to carry
cargo that can be rolled on and off the vessels.

Marielle Christiansen
Department of Industrial Economics and Technology Management, Norwegian University of Sci-
ence and Technology, Trondheim, Norway, e-mail: marielle.christiansen@iot.ntnu.no

Erik Hellsten
DTU Management, Technical University of Denmark, Akademivej 358, DK-2800 Kgs. Lyngby,
Denmark, e-mail: erohe@dtu.dk

David Pisinger
DTU Management, Technical University of Denmark, Akademivej 358, DK-2800 Kgs. Lyngby,
Denmark, e-mail: dapi@dtu.dk

David Sacramento
DTU Management, Technical University of Denmark, Akademivej 358, DK-2800 Kgs. Lyngby,
Denmark, e-mail: dsle@dtu.dk

Charlotte Vilhelmsen
DTU Management, Technical University of Denmark, Akademivej 358, DK-2800 Kgs. Lyngby,
Denmark, e-mail: chaandtu.dk

1



2 Christiansen and Hellsten and Pisinger and Sacramento and Vilhelmsen

In this chapter, we mainly focus on containerised liner shipping network design,
i.e., networks using LoLo operations, though we also briefly introduce network de-
sign for RoRo liner shipping. Although we have tried to cover most of the relevant
models and algorithms dealing with containerised liner shipping network design,
we have chosen to focus on those that seem to be applicable in practice.

This chapter is organised as follows: In Section 2 we give a brief introduction
to containerised liner shipping, RoRo liner shipping, and network design. We also
introduce the LINER-LIB test instances for network design in containerised liner
shipping. The following sections are focused on containerised liner shipping. In
Section 3 we discuss the challenges in designing a liner shipping network, and give
an introduction to the models and algorithms, which will be presented in the fol-
lowing sections. In Section 4 we give an overview of integrated Mixed Integer Pro-
gramming (MIP) models, while Section 5 studies two-stage algorithms where the
service generation and the flowing of containers are separated in two steps. Sec-
tion 6 presents the bibliographical notes of the topics addressed in this chapter. The
chapter is concluded in Section 7 with a short discussion of future trends and chal-
lenges. Finally, an overview of the notation used throughout the chapter is found in
Appendix 8. Some parts of this chapter are based on the authors’ previous survey
work presented in Hellsten et al. (2019) and Christiansen et al. (2019).

2 Overview of Liner Shipping and Liner Shipping Network
Design

Maritime transportation is a cost-effective means of transportation, as it offers the
transport of large volumes of cargo all around the world. The cargo vessels in the
maritime industry are generally divided into the following major categories: general
cargo ships, bulk cargo carriers, tankers, container ships and RoRo ships. This sec-
tion presents the network design for containerised liner shipping, which are based
on LoLo operations, as well as a brief description of RoRo liner shipping.

2.1 Containerised liner shipping

The liner shipping industry is a vital part of the global economy, constituting one
of the cheapest modes of cargo transportation. During the last three decades, the
volume of containerised cargo has grown by more than 8% per year, and more than
5,200 container vessels were in operation worldwide in 2019. Standard containers
come in two different sizes, twenty and forty feet, which have given rise to the
standard measures of containerised cargo, twenty foot equivalent units (TEU) and
forty foot equivalent units (FFE). The largest vessels carry more than 20,000 TEU
and during 2016, a container volume of around 140,000,000 TEU was estimated
to pass through the vast liner shipping network (Unctad, 2018, 2019). Clearly, any
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improvement in the network design in the liner shipping industry will correspond to
enormous savings.

The liner shipping industry is built up by so called services. A service is a fixed
cyclic itinerary, sailed by a number of similar vessels. Services usually have weekly
or biweekly departures to add consistency and regularity for the customers. The ves-
sels are operated by shipping companies called carriers, where the largest carriers
operate over 600 vessels. The trend is to build ever larger vessels, as they are signif-
icantly more energy efficient, see Figure 1. To efficiently utilise those tremendous
liner vessels, each region typically has a few larger ports, called hubs, where the
liner vessels pick up and deliver containers. From the hubs, the containers are then
transported to other ports by smaller, more flexible, so called feeder vessels. The
transfer of a container, from one vessel to another in a port, is called a transship-
ment. Transshipments occur both between larger vessels and smaller vessels, but
also between larger vessels when no suitable service connects the origin and desti-
nation hub. While transshipments add flexibility, they tend to be costly, as the cargo
needs to be unloaded, stored until the arrival of the new vessel and then reloaded
again. Finally, to protect the national trade business, many countries forbid foreign
carriers to ship cargo between two ports within the country. This is called cabotage
rules.

Fig. 1 Estimated cost per 1,000 container miles for different vessel sizes. The vessels are assumed
to sail at 19 knots and the bunker fuel price is estimated as 750 $/tonne. We see that bunker rep-
resents the largest cost and that transporting containers on larger vessels requires significantly less
fuel. Data has been obtained from Germanische Lloyd (2017).

The major costs for the carriers are vessel acquirement and bunker fuel. How-
ever, other costs, like canal fees, port costs, and transshipment costs, are also highly
significant. The fuel consumption is frequently estimated as a cubic function of the
speed, as seen in Figure 2. As the speed has such an impact on the fuel consump-
tion, slow steaming is often used to reduce the consumption. Especially after the
financial crisis in 2008, maritime shipping companies implemented slow steaming
policies for cost-cutting purposes. The obvious drawback of slow steaming is that
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Fig. 2 Estimated fuel consumption as a function of steaming speed and vessel size. Data has been
obtained from Notteboom and Vernimmen (2009).

more vessels are required to transport the same amount of cargo and also, that transit
times become longer, yielding a lower level of service for the customers. In general,
services have two directions, head- and back-haul, where most of the cargo is trans-
ported in the head haul direction. A good example of this is the trade between Asia
and Europe, where most of the goods are delivered from Asia to Europe. In this
case, vessels are slow steaming in the back-haul direction where less customers are
affected by the increased transit time.

2.2 Containerised liner shipping network design

The Liner Shipping Network Design Problem (LSNDP) can be defined as follows:
Given a collection of ports, a fleet of container vessels and a group of origin-
destination demands. A set of services is constructed for the container vessels such
that the overall operational expenses are minimised, while ensuring that all demands
can be routed through the resulting network from their origin to their destination,
respecting the capacity of the vessels.

In the following, we present some notation of the LSNDP that will be used
throughout the chapter, introducing the necessary notation when required. A table
of notation can be found in Table 2 in the Appendix.

The set of ports is denoted by N and represents the set of physical ports in the
problem. The set of arcs A represents all possible sailings between ports. The set of
commodities is denoted K and for each commodity k ∈ K, there is an origin port ok,
a destination port dk, as well as a quantity qk measured in TEU. Furthermore, the
corresponding unit-cost for transporting a unit of commodity k through arc (i, j) ∈
A is defined as ck

i j. Finally, the set V denotes the set of vessel classes. For each
v ∈ V there is a corresponding cargo capacity uv in number of TEUs, an available
fleet quantity mv, and additional speed limitations and fuel consumption parameters.
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Furthermore, for convenience, the demand of the commodities in each port i ∈ N is
defined as:

ξ
k
i =


qk if port i is the origin port of commodity k
−qk if port i is the destination port of commodity k

0 otherwise.
(1)

There is a limited fleet of container vessels, but not all vessels need to be used.
The deployment of a vessel v ∈ V has an associated charter cost cv. Additionally,
there are other costs related with the resulting network, such as the sailing cost cv

i j
associated with each vessel and each arc, which is given as a combination of the
port call cost and the fuel consumption for the corresponding arc. When containers
of commodity k ∈ K are transferred from one vessel to another in port i ∈ N, there
is a transshipment cost cT

ik for each container. Furthermore, there is an associated
sailing time tv

i j for each container vessel v sailing between ports i and j, which is
given as a combination of its design speed and the corresponding distance between
the ports. Moreover, each port i ∈ N has an associated berthing time bi.

One of the main traits of the liner shipping industry is the regular operation of
services under a pre-established schedule. Sometimes it is possible to define the set
of candidate services in advance. In these cases, let S be the set of feasible services
in the model. Notice that S can be exponentially large. Each service s ∈ S has an
associated operational cost cs. As the set of services is defined beforehand, the op-
erational cost is given as a combination of the sailing cost of the arcs on the service
route and the corresponding port-call costs. Moreover, it is required that all ser-
vices should have weekly operations, meaning that if a round trip takes eight weeks
to complete, then eight similar vessels need to be deployed to the service in order
to ensure that each port is visited once a week. Therefore, the required number of
vessels from vessel class v to maintain the weekly frequency is defined as ms

v. The
structure of the service can be divided into several types according to the number of
times a port is visited during the service. A simple service or a circular service visits
each port in the service exactly once. However, a service is often allowed to be non-
simple, meaning that a port can be visited several times, as this may improve transit
times. Nodes (or ports in the sequence) that are visited several times in the service
are denoted butterfly nodes and a service containing a single butterfly node defines
a butterfly service. Another common service type is the pendulum service, in which
each port is visited twice, once in each direction. Examples of the different type of
services for some European ports are illustrated in Figures 3, 4 and 5. Moreover, in
some cases, the structure of the service can naturally be defined by the geographical
distribution of the ports. For instance, if the ports are located along the coastline,
it can be convenient to define services following an outbound-inbound principle.
Such services are similar to pendulum services; however, they may be asymmetric,
as some ports can be omitted in each direction, as illustrated in Figure 6.

When designing a shipping network, different variants of the LSNDP can be
considered, varying mainly in the following four respects:
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Fig. 3 Example of a simple service, where each port is visited exactly once.

Fig. 4 Example of a butterfly service, where Aarhus is the butterfly node.

Fig. 5 Example of a pendulum service, where each port can be visited both on the head-haul and
back-haul trip.

• Transit time constraints. The demands may be subject to transit times and hence
have an associated time limit that must be respected. If the transit time is not
respected, perishable goods may become spoiled.

• Transshipment costs. The costs of transshipments are a significant part of the op-
erational costs, so it is generally important to represent these costs in the model.
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Fig. 6 Example of an asymmetric service with five ports with the outbound-inbound principle.

• Rejected demands. Although the standard formulation of LSNDP states that all
demands must be flowed through the network, many models allow rejection of
demands by imposing a penalty.

• Speed optimisation. There are three main approaches to model speed optimisa-
tion: Models which have constant speed for all services, models which choose a
speed for each service, and models which choose a speed on each individual leg
in each service. As the fuel consumption depends non-linearly on the speed, it is
common to choose between a number of discrete speed alternatives, each with a
corresponding cost.

Most models for LSNDP design the network without a specific schedule. Hence
the service for each vessel is defined, but not the exact day of arrival/departure.
This is typically done in a later step, where port availabilities are negotiated and
transshipment times at ports are adjusted.

2.3 RoRo network design

RoRo shipping is an important segment within liner shipping. The RoRo ships are
vessels designed to carry wheeled cargo, such as cars, trucks, semi-trailer trucks,
and railroad cars, that can be driven on and off the ship on their own wheels. In
addition, RoRo ships may carry complex cargo that is placed on trolleys and rolled
on and off the ships, such as boats, helicopters, and heavy plant equipment. RoRo
shipping is often the only viable method of ocean freight transportation for these
oversized vehicles, as they may not fit in standard containers. There exist various
types of RoRo ships, such as ferries, cruise ferries, cargo ships, and barges. In this
subsection, we consider the RoRo ships used for transporting cars, trucks and com-
plex general cargo across oceans known as Pure Car Carriers (PCC), Pure Truck
& Car Carriers (PCTC) and general RoRo ships, respectively. A typical PCTC has
a carrying capacity in the range of 5,500 to 8,000 RT43. Here, RT43 is a capacity
measure in the RoRo business and corresponds to the size of a 1966 Toyota Corona.
In 2016, the world fleet of RoRo ships consists of around 5,000 ships with a total
capacity of more than 24 million deadweight tons (ISL, 2016).

The trades to be serviced in RoRo shipping are usually designed based on a large
number of contracts for transportation of cargo between the different port pairs along
a trade route. Hence, trade routes are defined as transportation arrangements from
one geographical region to another, where the world is divided into a number of
geographical regions. Each trade route has a number of loading ports in one region
and a number of discharging ports in the other. In Figure 7, two trade routes are
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illustrated by solid lines and the ports are shown as filled circles. These trade routes
are similar to the services in container network design. As seen in Figure 7, the
trade routes are not traditionally circular. After a ship has sailed one voyage on a
trade route it often needs to reposition to start on the next one due to trade imbal-
ances. This repositioning means ballast sailing, i.e., sailing without cargo, which of
course should be reduced as much as possible. The ballast sailing between the two
trade routes in Figure 7 is illustrated by a dashed line. Differences in contractual re-
quirements and variety in the types of cargo transported on the various trade routes
may restrict which vessels can be assigned to a particular trade route, regarding both
capacity and vessel type.

Fig. 7 Illustration of two trade routes sailed in sequence, Oceania to Europe and North to South
America, with associated ballast sailing from Europe to North America. World map by San Jose
under a CC-BY-SA-3.0 license.

Each trade route is sailed regularly, for example weekly, fortnightly, 3 times per
months, depending on demand and contractual obligations. Each sailing on a trade
route is called a voyage, and normally there is a time window to start sailing a
voyage. Due to contractual obligations, these voyages are mandatory and must be
covered either by a ship in the RoRo shipping company’s own fleet or by a char-
tered ship. A RoRo shipping company owns and operates a heterogeneous fleet of
ships having different cargo capacities, sailing speed ranges, and bunker consump-
tion profiles, and serves a given set of trade routes.

The operations within RoRo shipping deviates from container shipping in several
ways as well as in the cargo and ships. In container shipping, each ship is normally
assigned to a single route, while in RoRo shipping a ship may sail several trade
routes during a planning horizon. Ship types, instead of individual ships, are often
considered in container shipping, while in RoRo shipping a route for each ship is
determined. This also means that in RoRo shipping each trade route may be serviced
by different ship types. Furthermore, there is a great variation in when to start each
voyage, as well as when and how often to visit each port along the trade. Therefore,
existing studies within fleet deployment in RoRo shipping have used time windows
for when each voyage along each trade should start. This flexibility is in contrast to
container shipping, as each service is usually served on a strict weekly basis, and
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each voyage along the trade visits all ports in the same order. Finally, transship-
ment rarely exist in RoRo shipping in contrast to container shipping. This makes
the network design easier.

2.4 The LINER-LIB test instances

In order to make it easier to compare algorithms for LoLo liner shipping network
design, Brouer et al. (2014a) introduced the LINER-LIB benchmark suite. The test
instances in LINER-LIB are based on real-life data from leading shipping compa-
nies along with several other industry and public stakeholders. The benchmark suite
contains data on ports including port call cost, cargo handling cost and draft restric-
tions, distances between ports considering draft and canal traversal, vessel related
data for capacity, cost, speed interval and bunker consumption, and finally a com-
modity set with quantities, revenue, and maximal transit time. The commodity data
is intended to reflect the differentiated revenue associated with the current imbalance
of world trade.

The LINER-LIB benchmark suite consists of seven instances described in Brouer
et al. (2014a) and is available at http://www.linerlib.org. The instances range from
smaller networks suitable for being solved by exact solution methods to large scale
instances spanning the globe. Table 1 gives an overview of these instances.

Instance Category |N| |K| |V | min v max v
Baltic Single-hub 12 22 2 5 7
WestAfrica Single-hub 19 38 2 33 51
Mediterranean Multi-hub 39 369 3 15 25
Pacific Trade-Lane 45 722 4 81 119
AsiaEurope Trade-Lane 111 4,000 6 140 212
WorldSmall Multi-hub 47 1,764 6 209 317
WorldLarge Multi-hub 197 9,630 6 401 601

Table 1 The seven test instances included in LINER-LIB with indication of the number of ports
(|N|), the number of origin-destination pairs (|K|), the number of vessel classes (|V |), the minimum
(min v) and maximum number of vessels (max v) in each class.

Each of the instances can be used in a low, base, and high capacity case depending
on the fleet of the instance. For the low capacity case, the fleet quantity and the
weekly vessel costs are adjusted to fewer vessels with a higher vessel cost. For the
high capacity case the adjustments are reversed.

Currently, most papers only report results for the base capacity case. Further-
more, most often only the six first instances are considered, with Krogsgaard et al.
(2018) being the only paper to report results for the WorldLarge instance.
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3 Overview of models and algorithms

Designing a liner shipping network is a difficult task, embracing several decisions:
Not only do we need to construct the individual services, but we should also deploy
vessels of the right size to each service and ensure that there is sufficient capac-
ity in the network to transport all containers from their origin to their destination.
Designing the individual services is an NP-hard problem. Furthermore, routing the
containers through a given network subject to time constraints for each container,
can be recognised as a time-constrained multi-commodity flow problem, which is
also NP-hard.

The problem is further complicated by the fact that ports are often visited several
times in the same service. This allows containers to quickly be transshipped to other
services, and it frees up capacity. However, formulating the problem with multiple
visits to a port as a MIP model becomes more difficult.

Finally, one should notice that transshipment costs represent the majority of the
cost of routing the containers through the network according to Psaraftis and Kon-
tovas (2015). It is therefore important to carefully model which containers might be
transshipped and at which costs. This adds further complexity to the problem, and
makes a graph formulation huge and difficult to solve.

First, we will focus on how the problem can be modeled. Generally speaking,
models for liner shipping network design can roughly be divided into the following
two groups:

• Service selection models. The idea behind these models is to use a large set of
promising candidate services and then select a subset of them to create a network.
The set of promising candidate services can both incorporate services designed
by experienced planners as well as services internally generated by an algorithm.
Many shipping companies and customers do not want the network to be com-
pletely restructured, in which case proposing small variations to each service
may be a sensible method.

• Arc formulation models. These unified MIP models design services and flow con-
tainers through the resulting network. In order to handle this task, two sets of
variables are needed: Binary variables to select edges in a service, and integer
variables to denote the flow on each edge. If multiple visits to a node are allowed
(butterfly nodes) then an additional index is needed to indicate the visit number
at each node.

Many of the MIP models can in principle solve the LSNDP to optimality. However,
due to the intrinsic complexity, only small instances can be solved to proven op-
timality within a reasonable time. The service selection based models more easily
solve the problem to optimality given that only the proposed candidate services are
valid. In practice, however, there may be an exponential number of valid services,
and we cannot expect to get all services as input. Hence, the found solution will
often be sub-optimal.

Large real world problems, in most cases, cannot be solved directly as MIP mod-
els. Therefore, it is required to use specialised algorithms to design the liner shipping
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network. Within this category, one of the most commonly used algorithms are the
two-stages algorithms, which benefit from the decomposition of the original prob-
lem into two tightly related problems: the vessel service network design and the
container flow problem. These algorithms can be roughly divided into the following
two groups:

• Service-first and flow-second algorithms. As the name suggests, these algorithms
model and solve the problem in two steps: Designing the services, and flowing
containers through the resulting network. Frequently, these algorithms contain a
feed-back mechanism, where output from the second-stage flow model is used as
input to improve the services in the first stage.

• Backbone flow algorithms. It can be difficult to design the individual services
without knowing how the containers will flow through the network. Hence, an-
other approach is to reverse the order of the sub-problems in the two-stage algo-
rithms, and start by finding an initial flow (a so-called backbone network) where
cargo is flowed through a complete network with all connections between ports
available. The connections are priced such that they are expensive at low loads
and cheap at high loads, in order to make the cargo gather at few connections.
The initial flow can be seen as an accomplishment of the physical internet (Mon-
treuil, 2011) where point-to-point transport has been replaced by multi-segment
intermodal transport.

In liner shipping network design problems, each stage corresponds to a single layer
of decision: service selection decisions for the network design problem and con-
tinuous decisions for the container flow problem. It is important to notice that the
two-stage algorithms are both heuristics, since they first solve one stage, and then
optimise the second stage with the first-stage decisions fixed. However, this decom-
position by stages make the problem more tractable for larger instances.

Most of the MIP models solve the network design problem by dealing simultane-
ously with the two layers of decisions. On the other hand, the two-stage algorithms,
and most of the heuristic approaches, separate these layers when designing the ship-
ping network. The way in which the two layers interact is what defines the core
of the algorithm. For example, when container flow decisions are postponed to the
second-stage, the service selection decisions of the first-stage can be made based on
estimates for serving the ports. At each iteration of the algorithm, the estimates can
be updated based on the current configuration of the resulting network after flowing
the containers. In other cases, such as for models or algorithms based on Column
Generation, new services can be iteratively constructed using the information ob-
tained from the dual variables of a restricted problem.

4 Models for the LSNDP

In this section we present graph-based models to define the LSNDP. Different for-
mulations are briefly introduced to model the network design problem in liner ship-
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ping and a summary of the main mathematical formulations proposed in the litera-
ture is presented under different assumptions.

4.1 Service selection formulations

This section introduces service flow formulations for the LSNDP, where the set of
all feasible services is defined in advance for the model. This reduces the network
design to the selection of feasible services.

Let us begin with introducing a basic service formulation. We use the termi-
nology presented in Section 2.2 with the addition of the following definitions: Let
G = (N,A) be a directed graph. Define for each service s and for each arc (i, j),
the associated capacity us

i j, which is given by the maximum cargo capacity of the
corresponding vessel class assigned to the service. Finally, let xks

i j be a continuous
variable denoting the amount of commodity k transported in service s on arc (i, j),
and ys a binary variable for the selection of service s in the network. Now, the service
formulation of the LSNDP can be expressed as:

min ∑
s∈S

csys + ∑
k∈K

∑
(i, j)∈A

ck
i j ∑

s∈S
xks

i j (2a)

s.t. ∑
s∈S

∑
j:(i, j)∈A

xks
i j −∑

s∈S
∑

j:( j,i)∈A
xks

ji = ξ
k
i i ∈ N,k ∈ K (2b)

∑
k∈K

xks
i j ≤ us

i jys s ∈ S,(i, j) ∈ A (2c)

∑
s∈S

ms
vys ≤ mv v ∈V (2d)

xks
i j ≥ 0 (i, j) ∈ A,k ∈ K,s ∈ S (2e)

ys ∈ {0,1} s ∈ S. (2f)

The objective function (2a) minimises the total operational cost of the network.
The first term accounts for the fixed cost of the selected services, whereas the sec-
ond term constitutes the sailing cost of shipping the demand. Constraints (2b) are
the flow conservation constraints, and the flow of commodities on the arcs has to
respect the capacity of the vessel deployed in the selected service s as formulated in
constraints (2c). For each vessel class v∈V , constraints (2d) ensure that the number
of deployed vessels on the selected services using vessel class v does not exceed
the maximum availability mv. Finally, the domain of the variables is defined in con-
straints (2e) and (2f).

For a better utilisation of the capacity of the deployed vessels, the model can also
allow the rejection of cargo by incurring a penalty. Hence, extra continuous variables
can be defined to account for the demand that is rejected by the liner company.
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As stated, the model requires all demand to be served, but cargo rejection can be
included by adding additional variables. Finally, to account for transshipment costs,
additional variables f ks

i could be added, denoting the transshipment of commodity
k at port i from service s, with a corresponding term in the objective function. The
following constraints (3) could be used to enforce the sought behaviour, though only
if we consider simple services.

f ks
i ≥ ∑

j∈N
j 6=i

xks
ji − xks

i j , i ∈ N \{ok,dk},k ∈ K,s ∈ S. (3)

This formulation allows designing networks considering only a subset of promis-
ing candidate services. It can easily be seen that, as the size of the problem increases,
the number of feasible services grows exponentially, making the model intractable
to solve. One possible approach to solve this problem for large instances is to apply
a Column Generation algorithm.

4.1.1 A sub-path service formulation with limited transshipments

In the previous model, the flow of each commodity, on each sailing arc, is modelled
explicitly. This leads to a compact formulation, but it turns out to be difficult to add
transshipments together with complex service structures. Another approach, which
allows limiting the number of transshipments for each commodity, while still per-
mitting complex structures, is to use sub-paths. A sub-path is defined as the section
of a service travelled by a group of containers. If this section spans the arcs from
port i to port j on service s, the sub-path is denoted 〈i, j,s〉. The set Hs denotes the
full set of sub-paths for service s, i.e., the set contains one sub-path 〈i, j,s〉 for each
combination of ports i and j included in service s, and us denotes the capacity of
service s.

Now, these sub-paths are used to introduce an augmented multi-commodity flow
network. The augmented network contains one node for each port and one link for
each sub-path of each service. The sub-path structure also extends to more complex
services, e.g., butterfly services. Let As

i j denote the set of sailing arcs of service s
included in sub-path 〈i, j,s〉. The cost of routing one container of commodity k on
sub-path 〈i, j,s〉 is denoted ck

i js. Finally, rk denotes the maximum allowed number
of sub-paths on which commodity k can travel. By limiting the maximum number
of sub-paths allowed for a commodity, we also implicitly limit the number of trans-
shipments.

We now present a multi-commodity model based on flows along sub-paths in the
augmented network. The binary variable ys is equal to 1 if service s ∈ S is selected,
and 0 otherwise. The flow of commodity k using sub-path 〈i, j,s〉 as the hth stage is
defined by the variable xhk

i js for s ∈ S, 〈i, j,s〉 ∈ As, and h = 1,2, . . . ,rk. Finally, zk is
equal to the unmet demand (number of containers) for commodity k ∈ K.

The sub-path service formulation can then be written as:
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min ∑
s∈S

csys + ∑
k∈K

∑
s∈S

∑
〈i, j,s〉∈As

rk

∑
h=1

ck
i jsx

hk
i js + ∑

k∈K
cR

k zk (4a)

s.t. ∑
s∈S

∑
〈ok, j,s〉∈Hs

x1k
ok js + zk = qk ∀k ∈ K, (4b)

rk

∑
h=1

∑
s∈S

∑
〈 j,dk,s〉∈Hs

xhk
jdks + zk = qk ∀k ∈ K, (4c)

∑
s∈S

∑
i:〈i, j,s〉∈Hs

xhk
i js − ∑

s∈S
∑

l:〈 j,l,s〉∈Hs

xh+1,k
jls = 0 ∀k ∈ K, j ∈ N \{ok,dk}, h = 1, . . . ,rk−1,

(4d)

∑
k∈K

rk

∑
h=1

∑
〈i, j,s〉∈Hs:a∈As

i j

xhk
i js ≤ uays ∀s ∈ S,a ∈ As (4e)

∑
s∈S

ms
vys ≤ mv ∀v ∈V, (4f)

xhk
i js ≥ 0 ∀k ∈ K,s ∈ S,〈i, j,s〉 ∈ Hs,h = 1, . . . ,rk,

(4g)

zk ≥ 0 ∀k ∈ K, (4h)
ys ∈ {0,1} ∀s ∈ S. (4i)

The objective function (4a) minimises the total cost comprised of fixed costs for the
selected services, the cost of transporting commodities along each sub-path, and fi-
nally the penalties incurred for rejected demand. By including penalties, the problem
is formulated as a cost minimisation problem as opposed to a profit maximisation
problem where ck

R would instead represent the revenue for transporting one unit of
commodity k.

Constraints (4b) and (4c) ensure that the flow of each commodity k is assigned
to sub-paths incident to the corresponding origin port ok and the destination port dk.
They also ensure that the flow out of the origin port in combination with the unmet
demand for commodity k adds up to the total demand for commodity k. Constraints
(4d) are flow-balancing constraints for intermediate ports. Together with constraints
(4b) and (4c) these constraints ensure that for each commodity k, the demand, minus
any unmet demand, will arrive at the destination port using at most rk sub-paths, i.e.,
fulfilling the constraint on a maximum number of transshipments.

Constraints (4e) impose capacity constraints on the sailing arcs and ensure that
only sub-paths from the selected services are used. Constraints (4f) ensure that no
more than the available vessels are used. Finally, constraints (4g)-(4i) impose non-
negativity and binary restrictions on the respective decision variables.

The model formulation is flexible enough to allow incorporation of several practi-
cal container routing issues such as cabotage rules, regional policies and embargoes.
The incorporation of many of these constraints can be handled during preprocess-
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ing simply by removing sub-paths that are no longer permitted. Balakrishnan and
Karsten (2017) show that the problem is NP-hard.

4.2 Arc formulations

The main problem with a service-based formulation is that generating all services
S is prohibitive, due to the high number of combinatorial possibilities. Therefore,
an alternative compact formulation is introduced in this section, which is based on
an arc formulation. The set of predefined services S is no longer considered in the
model, but the services are designed as the problem is solved.

We first present a basic mathematical model based on an arc formulation. For
this we again use the notation presented in Section 2.2 with small extensions. Let
G = (N,A) be a directed graph. Moreover, let Sv be an index set for the services for
vessel class v, indexed by s. Let xks

i j be a continuous variable denoting the flow of
commodity k on arc (i, j) by service s, and ys

i j a binary variable for the selection
of arc (i, j) in service s operated by vessel class v. The binary variable γs

i is equal
to 1 if port i is the hub port in service S. Moreover, we define τs

i as a continuous
variable for the time in service s of vessel class v departing from port i, and ws as
an integer variable indicating the number of vessels from class v needed to maintain
the weekly frequency in service s. Then, the arc formulation of the LSNDP can be
expressed as follows:

min ∑
v∈V

∑
s∈Sv

cvws + ∑
v∈V

∑
s∈Sv

∑
(i, j)∈A

cv
i jy

s
i j + ∑

k∈K
∑

(i, j)∈A
ck

i j ∑
v∈V

∑
s∈Sv

xks
i j (5a)

s.t. ∑
v∈V

∑
s∈Sv

∑
j:(i, j)∈A

xks
i j −∑

v∈V
∑

s∈Sv
∑

j:( j,i)∈A
xks

ji = ξ
k
i i ∈ N,k ∈ K (5b)

∑
j:(i, j)∈A

ys
i j− ∑

j:( j,i)∈A
ys

ji = 0 i ∈ N,v ∈V,s ∈ Sv (5c)

∑
i∈N

γ
s
i = 1 v ∈V,s ∈ Sv (5d)

∑
k∈K

xks
i j ≤ uvys

i j (i, j) ∈ A,v ∈V,s ∈ Sv (5e)

τ
s
j ≥ (τs

i + tv
i j +b j)(1− γ

s
j)y

s
i j i, j ∈ N,v ∈V,s ∈ Sv (5f)

∑
(i, j)∈A

(ts
i j +b j)ys

i j ≤ 24 ·7 ·ws v ∈V,s ∈ Sv (5g)

∑
s∈Sv

ws ≤ mv v ∈V (5h)

xks
i j ≥ 0 (i, j) ∈ A,k ∈ K,v ∈V,s ∈ Sv

(5i)
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ys
i j ∈ {0,1} (i, j) ∈ A,v ∈V,s ∈ Sv (5j)

ws ∈ Z+ v ∈V,s ∈ Sv (5k)
τ

s
i ≥ 0 i ∈ N,v ∈V,s ∈ Sv. (5l)

The objective function (5a) minimises the cost of deploying the vessels and de-
signing the services, and the cost of transporting the demand quantities through the
network. The flow conservation constraints for the cargo variables are given by con-
straints (5b), whereas the flow conservation constraints for the routing variables are
given by constraints (5c). Constraints (5d) ensure that there is only a single hub port
for each service. The flow of cargo on an edge (i, j) cannot exceed the capacity uv
of a vessel class, as expressed in (5e). If the service does not use a given edge in
the graph, i.e., ys

i j = 0, then the capacity is zero. The time schedule constraints for
the routing variables are given by the time variables in constraints (5f). Note that
it is necessary to linearise these constraints, as they are non-linear. Moreover, these
constraints also ensure the elimination of sub-tours when designing the liner net-
work, and prevents non-simple services. The weekly frequency of the services and
the deployment of the fleet are expressed by constraints (5g). The availability of the
fleet is limited by constraints (5h). Finally, the domain of the variables is defined by
constraints (5i)-(5l).

Furthermore, the arc formulation may also include the rejection of cargo by defin-
ing continuous variables that account for the overall demand that is not flowed.
Moreover, as this formulation only allows simple services, constraints (3) can also
be included to account for transshipments.

This model is a simple representation of the arc formulation for the LSNDP, but
it can be extended to incorporate the various constraints and considerations encoun-
tered in liner shipping. One of the main drawbacks with the formulation is that only
simple services can be modelled. Next, we present an extended MIP model based on
an arc-flow formulation which incorporates the network design and fleet assignment
and accounts correctly for the transshipment cost in intermediate ports. Moreover,
the model can handle the inclusion of butterfly services, where it is allowed to visit
a single port at most twice during the service, and the capacity of the services de-
pendent on the time horizon and the service length.

Let G = (N,A) be a directed graph. Define the set V as the set of vessels, instead
of the set of vessel classes. We consider each vessel v to belong to its own vessel
class. Let tmax be the length of the time horizon. The design of the network is mod-
elled with the binary variables yv

i j for the utilisation of an arc (i, j) in the service for
vessel v. Similarly, as proposed by Miller et al. (1960), positive integer variables ev

i j
are defined for enumerating the arcs used in the vessel service and avoid subtours
in services. As the model allows the definition of butterfly services, the binary vari-
ables γv

i and zv
i j are required to, respectively, identify the unique center-point, i.e.,

the hub port in the vessel service, and to allow the possibility of identifying the first
and last arc visiting the hub port. These variables are used for modelling the trans-
shipment of cargo in hub ports. The routing of containers through the network is
modelled with continuous variables xkv

i j , and extra continuous variables are defined
to count the amount of the transshipped containers in intermediate ports within the
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same service. Let the continuous variables f kv
j define the amount of commodity k

transshipped by vessel v at port j, while the continuous variables f kv
jih denote the

amount of commodity k, arriving at port i through arc ( j, i), in vessel v, and not
leaving in arc (i,h). Furthermore, the model also considers the fleet deployment.
The problem is defined for a heterogeneous fleet and the service capacities depend
on the deployed vessels as well as the frequency at which they sail. The deployment
of a vessel is controlled by the binary variable λ v, whereas the continuous variables
τv limit the service length of the vessels. Then, the arc-flow model can be defined
as:

min ∑
k∈K

∑
(i, j)∈A

ck
i j ∑

v∈V
xkv

i j +∑
k∈k

∑
i∈N

cT
ik ∑

v∈V
f kv
i + ∑

v∈V
cv

λ
v (6a)

s.t. ∑
v∈V

∑
j:(i, j)∈A

xkv
i j −∑

v∈V
∑

j:( j,i)∈A
xkv

ji = ξ
k
i i ∈ N,k ∈ K (6b)

f kv
i ≥ ∑

j:(i, j)∈A
xk

i j− ∑
j:( j,i)∈A

xk
ji k ∈ K, i ∈ N,v ∈V (6c)

f kv
i ≥ ∑

j,h∈N
∑
v∈V

f kv
jih−M1(1− γ

v
i ) k ∈ K, i ∈ N,v ∈V (6d)

f jih ≥ xkv
ji − xkv

ih −M2(2− yv
ji− yv

ih + zv
ji + zv

ih) k ∈ K, j, i,h ∈ N,v ∈V (6e)

f jih ≥ xkv
ji − xkv

ih −M3(4− zv
ji− zv

ih− yv
ji− yv

ih) k ∈ K, j, i,h ∈ N,v ∈V (6f)

∑
i∈N

γ
v
i = 1 v ∈V (6g)

∑
(i, j)∈A

zv
i j = 2 v ∈V (6h)

γ
v
i − ∑

j:(i, j)∈A
zv

i j ≤ 0 i ∈ N,v ∈V (6i)

γ
v
i − ∑

j:( j,i)∈A
zv

ji ≤ 0 i ∈ N,v ∈V (6j)

∑
j:(i, j)∈A

yv
i j− ∑

j:( j,i)∈A
yv

ji = 0 i ∈ N,v ∈V (6k)

∑
j:(i, j)∈A

yv
i j− γ

v
i ≤ 1 i ∈ N,v ∈V (6l)

ev
ji− ev

ih +M4(yv
ih + yv

ji−2− zv
ji− zv

ih)≤−1 i, j,h ∈ N,v ∈V (6m)

yv
i j−λ

v ≤ 0 (i, j) ∈ A,v ∈V (6n)

τv ≤ tmax v ∈V (6o)

τv = ∑
(i, j)∈A

yv
i j(t

v
i j +b j) v ∈V (6p)

tmax

τv
uvyv

i j ≥ ∑
k∈K

xkv
i j (i, j) ∈ A,v ∈V (6q)
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zv
i j,y

v
i j ∈ {0,1} (i, j) ∈ A,v ∈V (6r)

f kv
jih ≥ 0 k ∈ K, j, i,h ∈ N,v ∈V (6s)

f kv
j ≥ 0 k ∈ K, j ∈ N,v ∈V (6t)

ev
i j ∈ Z+ i, j ∈ N,v ∈V (6u)

xkv
i j ≥ 0 (i, j) ∈ A,k ∈ K,v ∈V (6v)

γ
v
i ∈ {0,1} i ∈ N,v ∈V (6w)

λ
v ∈ {0,1} v ∈V (6x)

τv ≥ 0 v ∈V. (6y)

The objective function (6a) minimises the total cost of transporting the cargo
through the network, the transshipment costs of the demand in hub ports, and the
associated cost for deploying the vessels. Furthermore, the flow conservation con-
straints (6b) ensure that all demand is satisfied. Constraints (6c) account for the
amount of containers transshipped in intermediate ports; however, if the correspond-
ing service is non-simple, the model requires constraints (6d)-(6f) for updating the
commodities transshipped by the same vessel in butterfly services. Constraints (6g)-
(6j) are used to handle butterfly services. Constraints (6g) identify the unique but-
terfly node for the vessel service and constraints (6h)-(6j) find the adjacent arcs
corresponding to the first or last visit to the butterfly node of the vessel service.
Moreover, constraints (6k) are the flow conservation constraints for the network de-
sign of the vessel service, and constraints (6l) control the number of times a vessel
visits the hub port in a service. In addition, constraints (6m) use the previous in-
formation for correctly enumerating the order in which the vessel traverses the arcs
in the vessel service. Additionally, the fleet deployment is controlled by constraints
(6n), and the corresponding service length is computed in constraints (6o) and (6p).
It can also be seen that the service length is included in the capacity constraints (6q),
as was first introduced in Agarwal and Ergun (2008). However, the model does not
require weekly departures for all ports. The inclusion of time for the service in the
calculation of the capacity results in a non-linear model. Therefore, it is necessary
to linearise the corresponding constraints (6q) together with (6o)-(6p) in order to
obtain a MIP formulation. Finally, constraints (6r)-(6y) define the domain of the
decision variables.

The high number of details in the model allows the representation of a fairly re-
alistic problem, making it possible to design efficient services reducing the overall
operational costs. Nonetheless, it can easily be observed that the compact model
is computationally hard to solve. The model presents several “big-M” constraints,
which produce a very weak relaxation, and Branch-and-Bound techniques provide
large integrality gaps and poor bounds. One proposed method to solve this problem
is Branch-and-Cut, as it has presented good results to the VRP and other transporta-
tion network design problems. The idea is to solve the relaxed problem without the
transshipment constraints, (6d)-(6f), and the connectivity constraints (6h)-(6j) and
(6m) in butterfly nodes and then, gradually add cuts to the formulation when those
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constraints are violated. This was used by Reinhardt and Pisinger (2012), to solve
instances of up to 10 ports to proven optimality.

4.3 Considering non-simple services in the formulation

The majority of models for LSNDP are defined using an arc formulation. These
formulations are suitable when the structure of the services can be assumed to be
simple. However, these formulations become problematic when formulating non-
simple services, as it requires the inclusion of many extra variables in the model.
In this section, we present different modelling approaches that can be used when
studying the design of more complex services.

4.3.1 Port-call formulations

The general idea of this formulation is to define services as sequences of port-calls,
instead of by the arcs that connect the physical ports in the graph, as presented in
Section 4.1. The formulation keeps track of the order in which the ports are visited
during a service, which makes it possible to distinguish between multiple visits to a
port by the same service. This, in turn, allows the inclusion of non-simple services,
which better reflects how services are designed in practice.

The port-call formulation defines service flow variables to model how containers
are transported within and between services. Therefore, the transshipment of cargo
can then be modelled by the service flows. Hence, not only can this approach cap-
ture the cost of transshipment between different services, but also within the same
service. Furthermore, the model can also account for the demand that is rejected by
considering the cargo that is not flowed in the services.

Nevertheless, the decision variables of this formulation must be extended with an
extra sequence index to identify the corresponding physical port visited at certain
port-call by the service. Since the complexity of the problem increases with the
addition of the extra index, it is common to impose a maximum number of port-
calls within a service.

4.3.2 Layer-networks for complex services structures

One way of managing the difficulty of handling complex service structures together
with transshipment restrictions, is by using a graph network with multiple nodes for
each port.

The graph network is modelled with multiple layers, where each layer is a com-
plete sub-graph, containing exactly one copy of each port. This way, each visit to a
port is considered a separate node, and the maximum number of visits to each port is
limited by the number of nodes representing that port. The layers are only connected
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between nodes representing the same port so that it is possible to switch layers at
any given point. A graphical representation of the network can be seen in Figure
8. The key is that, by separating the different visits to a port, complex services can
be modelled, together with transshipment costs for transshipments within the same
service.

Fig. 8 Visual representation of the layer-network with four ports and L layers.

However, the drawback with this modelling approach is that it is significantly
more complex. In addition to using more nodes and edges, symmetries can easily
arise, as a service could swap layers more or less arbitrarily without changing the
represented solution. Some of this can be counteracted by symmetry breaking con-
straints, but to this day, only smaller instances of up to around 15 ports have been
solved with modelling approach. Additionally, to keep down the complexity, it can
be beneficial to impose a limitation of two layers in the defined graph network.
This is a quite realistic limitation, as a service seldom visits a port more than twice.
Hence, the problem allows the creation of simple, butterfly and pendulum services.

4.3.3 Time-Space models

The LSNDP can also be represented by a time-space graph. The key of this mod-
elling approach is to include the temporal aspects into the graph structure. There-
fore, this graph structure not only allows the representation of any type of service,
but also integrates the vessel scheduling into the modelling.

Let H be the set of time-units after discretising the weekly planning horizon into
uniform time steps. This discretisation is used to define the graph structure of the
problem. Define G = (Ñ,A) as a directed graph, where Ñ and A are the set of nodes
and arcs, respectively.

The set of nodes contains a copy of each port for each of the time steps. Hence,
each node (i,h) ∈ Ñ represents the departure time of a vessel from port i ∈ N at
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a specific time h ∈ H. The set of arcs A is composed by two set of arcs; the set
of sailing arcs AS and the set of transshipment arcs AT . Each sailing arc a ∈ AS

connects the departure of a vessel from two different port-nodes, i.e., connects two
nodes (i1,h1) and (i2,h2) such as i1 6= i2. Note that, due to the weekly frequency of
the services, the times should be computed modulo 7 days,and hence, services are
modelled as closed cycles in the graph. Moreover, each transshipment arc a ∈ AT

represents the cargo transshipment between two services at the same port, i.e., the
arc connects two nodes (i1,h1) and (i2,h2) such as i1 = i2. As an example, Figure 9
illustrates a time-space graph for four ports with two services. The transshipment
of cargo between services can be carried out at ports B and C. Moreover, port B
is visited twice by Service 1, allowing cargo to be transshipped within the same
service.

One of the main advantages with the time-space models, is that in addition to
generating the routes for the services, they also generate the schedule. They also
make it handy to model more complex operations, such as speed optimisation and
transshipment times. Furthermore, if we disallow services to visit the same port
twice at the same time slot, we get the same benefits as the layered networks in
terms of handling transshipment together with complex services. This, however,
again comes at the price of having significantly more nodes and edges in the graph.

An important design choice, when working with time-space graphs is the time
discretisation granularity. By defining small time steps, the model can better reflect
the aforementioned operations; however, the graph would require a large number
of nodes, which increase the overall complexity of the problem. On the other hand,
large time steps may be too restrictive, and the model may not capture the additional
constraints as accurately.

Fig. 9 Example of a time-space graph G with four ports with a planning horizon discretised by
the days of the week. The graph depicts two services, where Service 1 visits port B twice during
the same rotation. Transshipment arcs are represented by dashed arcs, connecting the nodes for the
same port.
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5 Two-stage algorithms

The LSNDP consists of two tightly interrelated problems — the vessel service net-
work design and the container flow problem. One of the most successful approaches
so far for finding good solutions to the LSNDP, has been to use heuristics exploiting
this two-tier structure.

In general, the two stage algorithms can be divided into two categories: service
first and flow first. In service first, the service generation is the leading procedure,
and the containers are then flowed, given the generated services. It is then common
to use information from the container flow to update the services. This way a feed-
back loop is created, iteratively improving the services and solving the container
flow.

In flow first, the containers are instead first flowed without any information re-
garding the services, and the services are subsequently created to match that flow.
The key concept is to try to aggregate the container flows onto a small subset of the
arcs, to facilitate the ensuing service generation.

5.1 The container flow problem

Before going into the full two-stage algorithms, let us briefly discuss the container
flow problem, which is the lower tier problem in the LSNDP two-tier structure. In
general, for a given set of services, the container flow problem reduces to a multi-
commodity flow problem (MCFP) with fractional flows allowed.

In addition to the notation defined in Section 2.2, we need an additional param-
eter; to each arc (i, j) ∈ A define its corresponding flow capacity, ui j. The arc set A
and its corresponding costs ck

i j and capacities ui j are defined by the vessel services,
designed in the upper-tier problem. Also, let xk

i j be a continuous variable denoting
the flow of commodity k through arc (i, j). The MCFP can then be expressed as:

min ∑
(i, j)∈A

∑
k∈K

ck
i jx

k
i j (7a)

s.t. ∑
j∈N:(i, j)∈A

xk
i j− ∑

j∈N:( j,i)∈A
xk

ji = ξ
k
i i ∈ N,k ∈ K (7b)

∑
k∈K

xk
i j ≤ ui j (i, j) ∈ A (7c)

xk
i j ≥ 0 (i, j) ∈ A,k ∈ K. (7d)

Here, the objective, (7a), is to minimise the total cost. Constraints (7b) are the
flow conservation constraints, constraints (7c) are the capacity constraints, and con-
straints (7d) define the domain of the variables xk

i j.
When fractional flows are allowed, the MCFP is solvable in polynomial time.

For larger instances it is, however, still computationally demanding. As the model
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generally has to be solved a multitude of times in the presented two-tier solutions to
the LSNDP, efficient solution methods to the MCFP are essential.

One of the most common solution approaches is to exploit its block-angular con-
straints matrix and apply Dantzig-Wolfe Decomposition (Ahuja et al., 1993). The
problem should first be reformulated as a path flow formulation, where the goal is to
allocate the commodities to a number of flow paths from the commodities’ origins
to their destinations, while respecting the capacity constraints on the arcs. Let Pk be
the set of all paths for commodity k ∈ K, from ok to dk, and let Pk

a be the set of paths
for commodity k, which uses arc a. Then we define

Pa =
⋃
k∈K

Pk
a ,

to be the set of all paths going through arc a ∈ A. For each path, p, for commodity
k ∈ K, define its cost ck

p = ∑a∈A:p∈Pk
a

ck
a, and a corresponding decision variable f k

p ,
deciding the flow through path p. The path flow formulation can then be expressed
as:

min ∑
k∈K

∑
p∈Pk

ck
p f k

p (8a)

s.t. ∑
p∈Pk

f k
p = ξ

k
ok

k ∈ K (8b)

∑
p∈Pa

f k
p ≤ ua a ∈ A (8c)

f k
p ≥ 0 k ∈ K, p ∈ Pk. (8d)

The objective function, (8a), minimises the cost. Constraints (8b) ensure that all
commodities are delivered and constraints (8c) assert that the arc capacity cannot be
exceeded. Lastly, constraints (8d) define the domain for the variables.

The path formulation has a very large number of variables, but generally, only a
few of them are needed for the optimal solution. Using column generation, the prob-
lem can be restricted to only consider a limited amount of paths for each commodity
and new paths can then be generated dynamically. In this way, the path formulation
can generally be solved faster than the arc formulation, described earlier. The path
formulation makes it relatively easy to implement transit time constraints as they
can be handled in the pricing problem.

5.2 Service first methods

While the lower-tier container flow problem is solvable in polynomial time (when
no transit time constraints are imposed), the upper-tier service selection problem is
NP-hard, and just calculating the objective value of a given solution, requires solv-
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ing the container flow problem. This makes the service selection problem difficult
to solve to optimality and instead several matheuristics have been developed to find
good solutions to larger instances. A matheuristic is a method that employs heuris-
tics together with methods from linear and integer programming. In the case of the
LSNDP, the most common procedure is to use linear programming tools to solve
the MCFP and then various heuristics to update the vessel services.

Typically, we keep a set of services S, each with a designated speed and vessel
class, and sufficient vessels to keep the weekly frequency. When solving the con-
tainer flow for those services, we can see which services are under or over utilised
and change the speed and vessel classes of the services accordingly. Looking at the
dual variables for the capacity constraints, such as constraints (7c), we get infor-
mation about which arcs would need more capacity to lower the costs. This can
then be used to modify or create new services. Then, based on this information, we
gradually modify the services, most commonly within a tabu-search framework.

An alternative approach is to instead use linear programming for updating the
services. When modifying a service, the evaluation of the resulting change in time
and revenue require the full solution of the commodity flow problem. This is gen-
erally too expensive, if we would like to compare multiple modifications, and the
idea is therefore to instead work with estimates of those changes. We will iteratively
update the services one by one, and for each service we find a set of potential ports
to either include or exclude from the service. The key is then to, for each of those
ports, estimate the change in revenue for the problem and the change in time for the
service, if this port would be included or excluded. Where in the services to insert
new ports is decided using a greedy heuristic. Estimating the change in service time
is straightforward, but for estimating the change in revenue, we need an estimate of
how the cargo flow would be affected. For this we solve a shortest path problem for
each affected commodity to evaluate the approximate cost of routing it through the
resulting network.

With the estimates in place, we can then define an integer program to optimise
the service changes. In addition to the notation from the Section 2.2, let τs be the
time length of a service s, let ∆

R+
is (∆ R−

is ) be the estimated revenue change, and
∆

T+
is (∆ T−

is ) be the estimated duration change from including (excluding) port i ∈ N
in (from) service s ∈ S. Also, let η+

s (η+
s ) be the maximum number of inclusions

(removals) allowed and let N̄s denote the set of ports which can be included. Let m̂v
denote the number of free vessels of class v, such that

m̂v = mv−∑
s∈S

ms
v.

Lastly, let us define the binary variables x+is and x−is , which control the inclusion and
removal, respectively, of port i from service s, and the integer variables ζs, which
denote the number of vessels to add to/subtract from service s. For each service
s ∈ S, with corresponding vessel class v, we can then define the following integer
program:
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max ∑
i∈Ns

∆
R+
is x+is + ∑

i∈N̄s

∆
R−
is x−is − cvζs (9a)

s.t. τs + ∑
i∈Ns

∆
T+
is x+is + ∑

i∈N̄s

∆
T−
is x−is ≤ 24 ·7 · (ms

v +ζs) (9b)

ζs ≤ m̂v (9c)

∑
i∈N̄s

x+is ≤ η
+
s (9d)

∑
i∈Ns

x−is ≤ η
−
s (9e)

∑
j∈L+i

x−js ≤ |L
+
i |(1− x+is ) i ∈ N̄s (9f)

∑
j∈L−i

x−js ≤ |L
−
i |(1− x−is ) i ∈ Ns (9g)

x+is ∈ {0,1} i ∈ N̄s (9h)

x−is ∈ {0,1} i ∈ Ns (9i)
ζs ∈ Z. (9j)

Here, the objective (9a) is to maximise the increase in revenue. Constraint (9b) en-
sures that there is enough vessels assigned to keep the weekly frequency, and con-
straint (9c) says that no more than the number of free vessels can be added to the
service. Constraints (9d) and (9e) set a limit on the number of insertions and re-
movals, while (9f) and (9g) prevent certain combinations of insertions and removals.
The sets L+

i are defined such that if a port i is to be inserted, then no port in L+
i is

allowed to be removed. If instead a port i is removed, then every port in L−i must
remain. If a new port call is inserted in between two ports, then neither of those
are allowed to be removed, and if inserting a new port means that a new commod-
ity is transported, then the origin and destination nodes of this commodity are not
allowed to be removed. Constraints (9d)–(9g) are defined to limit the amount of
changes which can be applied, as the revenue and time change estimates are made
for one or a few changes and deteriorates rapidly when multiple changes are applied.
Lastly, (9h)–(9j) define the domain of the variables.

The algorithm works such that each service, one by one, is updated according to
the solution of the above defined mixed integer problem. Then the MCFP is solved
to update the total revenue and the effect of new changes is once again estimated
with the shortest path procedure. To diversify the solutions, in every tenth iteration
the services with lowest utilisation are removed and new services are created using
the greedy creation heuristic. A more thorough description of the algorithm can be
seen in Brouer et al. (2015). They also use the algorithm to find good solution to all
the LINERLIB instances, except for World Large.
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5.3 Backbone flow

The main idea in backbone flow algorithms is to reverse the order of two-phase
algorithms by first flowing the containers, and then constructing services that cover
the flow.

For the first step in the backbone flow algorithms, which flow the containers, a
directed graph G= (N,A) is used. There are no capacities associated with the edges,
as there are no services designed at this stage. To design a backbone flow, which can
later be effectively covered by a set of services, it is important to aggregate the
flows onto a few arcs. This can be achieved by using for example a fixed charge
cost. Another way would be to use a concave edge cost function c(x) of the flow
x, reflecting the economy of scale for flowing more containers. There is a large
cost associated with opening an arc (i.e., deploying a vessel), while the cost per
container decreases as the flow (and hence vessel size) increases. See Figure 1 for
an illustration of the costs.

Let xk
i j denote the flow of commodity k on edge (i, j). Then the backbone flow

problem becomes a non-linear MCFP as given by

min ∑
(i, j)∈A

c(∑
k∈K

xk
i j) (10a)

s.t. ∑
(i, j)∈A

xk
i j− ∑

( j,i)∈A
xk

ji = ξ
k
i i ∈ N,k ∈ K (10b)

xk
i j ≥ 0 (i, j) ∈ A,k ∈ K. (10c)

As before, the objective, (10a), is to minimise the total cost, and constraints (10b)
are the flow conservation constraints. Constraints (10c) define the domain of the
variables.

Since the model is non-linear and non-convex, many of the classic optimisation
techniques are not applicable. Instead, it is commonplace to use various heuris-
tics and approximation methods, such as, for example, dual ascent methods or tabu
search. One classic method is to use successive linearisation of the cost function,
where the concave cost function is estimated with a linear function. Typically, this
would be done by iteratively routing some or all containers, by solving a number
of shortest path problems, based on the current arc costs, and then update the costs
according to the new solution. If the arc costs are updated before all containers are
routed, generally, the first containers to be routed are more decisive for which arcs
are used in the final solution. To circumvent this, the algorithm is run several times,
with a random order of the containers, to achieve a reasonable average picture of the
backbone flow.

An example of running ten iterations for the demand matrix of the WorldSmall
instance gives the average arc loads shown in Figure 10. The figure clearly shows
that only a fraction of the possible arcs is used in the solution.
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Fig. 10 Typical backbone flow for the WorldSmall instance. Data from Krogsgaard et al. (2018)
and World map by San Jose under a CC-BY-SA-3.0 license.

5.3.1 From backbone flow to network design

Having found a backbone flow, the goal is to design services which satisfies it. This
becomes a kind of arc-covering problem, but with the addition that the commodities
have to be assigned to the different services for the purpose of modelling transship-
ments and handling capacity constraints. Alternatively, if the aim is to just create a
decent initial solution, the service generation can be split in two parts: one where
the routes are generated, trying to cover as much as possible of the flow, and one
where the containers are assigned to the services, trying to minimise the transship-
ments while satisfying the capacity constraints. Due to the rather limited amount of
arcs, on which containers flow, the pure arc-covering problem can be solved rather
effectively using greedy construction heuristics. The idea is to create services by
greedily inserting arcs one at a time, until the maximum service time is reached.

In a computational study by Krogsgaard et al. (2018), it is shown that usable
solutions can be found in relatively short time. Using the WorldSmall instance, the
authors generate 20 different sets of services by running the above algorithm where
the containers are flown in random order. This can be done in about 80 seconds, and
results in a profitable network, although the resulting network is far from optimal.

While it is unlikely that the backbone flow perfectly matches the structure of
the service network, this methodology can be used to quickly generate good initial
solutions. The container paths can then be updated to better fit the services, which
could be the starting step in a continued two-stage algorithm.

6 Bibliographic notes

A good introduction to the liner-shipping business along with a description of its
main assets and infrastructure can be found in Brouer et al. (2014a). This paper also
presents in details a complete model for the LSNDP with all side-constraints and
introduces the LINER-LIB test instances. For a detailed review of the research on
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liner shipping optimisation problems, see the survey papers Ronen (1983, 1993),
Christiansen et al. (2004), Christiansen et al. (2013), Meng et al. (2014), Tran and
Haasis (2015), Brouer et al. (2016, 2017), and Lee and Song (2017).

Planning problems within RoRo shipping are far less studied in the OR literature
compared to container shipping. As far as we know, there is no literature contribu-
tion considering RoRo network design. However, other strategic planning issues in-
volving decisions regarding fleet size and mix can be found in Pantuso et al. (2015).
On the tactical planning level, the fleet deployment problem consists of assigning
ships in the fleet to voyages that must be performed repeatedly on given trade routes.
In addition to the ship-voyage assignment, the results from fleet deployment are
sailing routes for the ships in the fleet. Deployment models for RoRo shipping are
presented by Fagerholt et al. (2009) and Andersson et al. (2015).

In Section 4.1, the service formulation for the LSNDP has been used by Álvarez
(2009) and Balakrishnan and Karsten (2017). Álvarez (2009) studied the LSNDP at
the tactical level, considering the joint routing and deployment of container vessels.
The formulation presented in the paper is based on the set of all feasible services,
which are given as a combination of vessel class, operating speed and route struc-
ture. Moreover, the idea of selecting a subset of sailing services from a pool of
candidate services was originally proposed by Balakrishnan and Karsten (2017),
who also presented the multi-commodity model based on flows along sub-paths in
the augmented network.

The arc formulation model, in Section 4.2, was originally presented by Reinhardt
and Pisinger (2012), in which network design and fleet assignment were combined.
The authors were among the first to study exact methods for the network design
problem in liner shipping with transshipment operations and butterfly services. They
developed a branch-and-cut algorithm and reported results for instances up to 15
ports.

In Section 4.3, different approaches for modelling complex-services are pre-
sented. The port-call formulation for the LSNDP is based on Plum et al. (2014).
The model proposed in this paper has been used to solve the two smallest LINER-
LIB instances using CPLEX. The authors reported promising solutions for these
instances, but optimal solutions were not achieved due to the large number of con-
straints and decision variables. The layer-network for complex services structures
is based on Thun et al. (2017). The problem is solved to integer optimality using a
branch-and-price algorithm, reporting results for small instances of between 5 and
7 ports with up to 14 demands. Finally, the time-space graph is based on Koza et al.
(2020). The authors developed a column generation matheuristic and reported very
good results for LINER-LIB instances of up to 45 ports.

Section 5 is dedicated to two-stage algorithms, where column generation and
Benders’ decomposition have been used by Agarwal and Ergun (2008), and various
matheuristics have been used by Álvarez (2009), Brouer et al. (2014b) and Karsten
et al. (2017). A good introduction to the transit time constrained multi-commodity
flow problem can be found in Karsten et al. (2015).

The general service-first method, in Section 5.2, is inspired by Álvarez (2009)
and the model (9a)-(9h) is based on Brouer et al. (2015). The authors report satis-
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factory solutions for 6 out of 7 LINER-LIB instances for the case with transit time
requirements for the commodities.

In Section 5.3 the main idea of backbone flow was presented by Krogsgaard
et al. (2018). Sun and Zheng (2016) also use a concave function to optimise the
container flow. Moreover, the greedy heuristic for generating services presented in
the same Section 5.3.1 was also presented in Krogsgaard et al. (2018). Promising
computational results are reported for all LINER-LIB instances without the transit
time requirements, where the best results are achieved for 4 out of the 7 instances,
namely WestAfrica, Pacific, WorldSmall and WorldLarge.

7 Concluding remarks and future challenges

Liner shipping is the backbone of international trade, hence it is important to de-
velop decision support tools that can help design more cost-efficient services, and
balance several objectives. This includes finding the right trade-off between speed,
transportation times, number of transshipments, and operational costs.

Slow steaming together with larger vessels has proven to be an efficient tool for
reducing energy consumption. However, slow steaming decreases the capacity of
vessels, since they cannot transport as much cargo per time unit as before. Hence,
more vessels are needed in order to maintain the same capacity, straining the en-
vironment. Bigger vessels tend to be more energy efficient per container, but the
increased capacity results in longer port stays, making it necessary to speed up be-
tween the port stays. It is therefore necessary to design services such that fewer
transshipments are needed, while still ensuring a good utilisation of the mega ves-
sels.

Although liner shipping generally is one of the most energy-efficient modes of
transportation per kilometer, the shipping industry emits large quantities of SOx
and NOx. In the future, we will see container vessels operating with new, greener,
propulsion types. Electric vessels may operate shorter services, while liquid natural
gas (LNG) may be used for operating longer services. The new propulsion types
will make it necessary to completely rethink service network design, since refuel-
ing/recharging will be more complicated, and vessels will have a more limited range
of operation.

The introduction of autonomous vessels in the container shipping industry may
also significantly change the way a network is designed and operated. In particular
for feeder-lines we will see more smaller vessels sailing on-demand, depending on
the cargo. This will turn the network design process into a dynamic routing problem.
It would also be interesting to investigate whether fuel savings are achievable if
autonomous vessels are sailing in convoys close to each other. If this is the case, the
network design should take these convoys into account.

Nearly every vessel will be delayed in one or more ports during a round trip.
Instead of just speeding up (and hence using more energy) advanced disruption
management tools need to be developed that can ensure timely arrival to the end
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customer with the lowest possible energy consumption. Some studies along this
path include Brouer et al. (2014a) but much more work needs to be done in this
area.

Vessel sharing agreements are an important tool for making it possible to operate
larger and more energy-efficient vessels. In a vessel sharing agreement two or more
companies share the capacity of a vessel throughout the full rotation or on certain
legs. Vessel sharing agreements, however, substantially increase the complexity of
designing a network, since some legs and capacities are locked according to the
agreement.
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8 Notation used in this chapter

We have tried to use an uniform mathematical notation throughout the chapter, al-
though each section needs some additional symbols. The notation has been gath-
ered and presented in the following tables. First, the general notation presented in
the introduction to be commonly used in the mathematical models of the chapter
is presented. Next, the extra notation needed to define the models of each specific
section is presented.

Table 2 General notation from the Introduction

Sets
N := Set of Ports
A := Set of Sailing Arcs
K := Set of Commodities
V := Set of Vessel Classes
S := Set of Services

Parameters
ok := Origin port for commodity k ∈ K
dk := Destination port for commodity k ∈ K
qk := Quantity of commodity k ∈ K
uv := Cargo capacity for vessel class v ∈V
mv := Available fleet quantity of vessel class v ∈V

ξ k
i :=


qk if port i ∈ N is the origin port of demand k ∈ K
−qk if port i ∈ N is the destination port of demand k ∈ K

0 otherwise.
ck

i j := Unit-cost for transporting a unit of commodity k ∈ K through arc (i, j) ∈ A
cv := Cost for deployment of a vessel from vessel class v ∈V
cv

i j := Sailing cost for vessel class v ∈V traversing arc (i, j) ∈ A
cT

ik := Cost per unit of commodity k ∈ K transshipped in port i ∈ N
tv
i j := Sailing time for vessel class v ∈V traversing arc (i, j) ∈ A
bi := Berthing time for the port call i ∈ N
cs := Cost for operation service s ∈ S.

ms
v := Required number of vessels from vessel class v∈V to maintain the weekly frequency

in service s ∈ S

Table 3 Additional notation for Section 4.1

Parameters
us

i j := Capacity for service s ∈ S along arc (i, j) ∈ A

Decision variables
xks

i j ∈ R+ := Amount of commodity k ∈ K transported in service s ∈ S along arc (i, j) ∈ A
ys ∈ {0,1} := Equal to 1 if service s ∈ S is selected in the network, and 0 otherwise
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Table 4 Additional notation for Section 4.1.1 (Balakrishnan and Karsten, 2017)

Sets
As := Set of sailing arcs for service s ∈ S
Hs := Full set of sub-paths for service s ∈ S (a sub-path is a part of a route in which the

container travels on a single service and is denoted 〈i, j,s〉)
As

i j := Set of sailing arcs of service s ∈ S included in sub-path 〈i, j,s〉

Parameters
ua := Capacity for arc a ∈ As
cR

k := Penalty cost per container for rejected demand of commodity k ∈ K
ck

i js := Cost of routing one container of commodity k ∈ K on sub-path 〈i, j,s〉
hk := Maximum allowed number of sub-paths on which commodity k ∈ K can travel

Decision variables
ys ∈ {0,1} := Equal to 1 if service s ∈ S is selected, and 0 otherwise
xhk

i js ∈ R+ := Flow of commodity k ∈ K using sub-path 〈i, j,s〉 as the hth stage for s ∈ S, 〈i, j,s〉 ∈
As, and h = 1,2, . . . ,hk

zk ∈ R+ := Unmet demand (number of containers) for commodity k ∈ K

Table 5 Additional notation for Section 4.2

Sets
Sv := Set of maximum number of services for vessel class v ∈V

Decision variables
xks

i j ∈ R+ := Amount of commodity k ∈ K transported in service s ∈ Sv along arc (i, j) ∈ A
τs

i ∈ R+ := Departure time from port i ∈ N of the vessel operating service s ∈ Sv

ws ∈ Z+ := Number of deployed vessels to maintain a weekly frequency in service s ∈ Sv

γs
i ∈ {0,1} := Equal to 1 if port i ∈ N is the hub port in the service s ∈ Sv, and 0 otherwise

ys
i j ∈ {0,1} := Equal to 1 if arc (i, j) ∈ A is selected on the service s ∈ Sv, and 0 otherwise

Table 6 Additional notation for Section 4.2 (Reinhardt and Pisinger (2012))

Parameters
tmax := Length of the time horizon

Decision variables
xkv

i j ∈ R+ := Amount of commodity k ∈ K transported by vessel v ∈V along arc (i, j) ∈ A
f kv

j ∈ R+ := Amount of commodity k ∈ K transshipped at port j ∈ N by vessel v ∈V
f kv

jih ∈ R+ := Amount of commodity k ∈ K arriving at port i ∈ N through arc ( j, i) ∈ A and not
leaving in arc (i,h) ∈ A by vessel v ∈V

ev
i j ∈ Z+ := Position of arc (i, j) ∈ A in the service of vessel v ∈V

τv ∈ R+ := Route length of the service operated by vessel v ∈V
yv

i j ∈ {0,1} := Equal to 1 if arc (i, j) ∈ A is selected in the service for vessel v ∈V , and 0 otherwise
zv

i j ∈ {0,1} := Equal to 1 if arc (i, j) ∈ A is either the first or the last arc in the service for vessel
v ∈V , and 0 otherwise

γv
i ∈ {0,1} := Equal to 1 if port i∈N is the hub port in the service for vessel v∈V , and 0 otherwise

λ v ∈ {0,1} := Equal to 1 if vessel v ∈V is deployed for operating a service, and 0 otherwise
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Table 7 Additional notation for Section 4.3

Sets
H := Set of time-units after discretising the weekly planning horizon
Ñ := Set nodes in the time-space graph

AS := Set of sailing arcs in the time-space graph
AT := Set of transshipment arcs in the time-space graph

Table 8 Additional notation for Section 5.1

Sets
Pk := Set of paths for commodity k ∈ K
Pa := Set of paths using arc a ∈ A

Parameters
ui j/ua := Flow capacity through arch a = (i, j) ∈ A

ck
p := Unit flow cost of commodity k ∈ K through path p ∈ Pk

Decision variables
xk

i j ∈ R+ := Flow of commodity k ∈ K through arc (i, j) ∈ A
f k
p ∈ R+ := Flow of commodity k ∈ K through path p ∈ Pk

Table 9 Additional notation for Section 5.2

Sets
Ns := Set of ports in service s ∈ S
N̄s := Set of ports available for inclusion into service s ∈ S
Li := Lockset containing the ports which are forbidden to remove, if port i ∈ Ns ∪ N̄s is

included (removed)

Parameters
∆

R+
is := Estimated revenue change from including port i ∈ N̄s into service s ∈ S

∆
R−
is := Estimated revenue change from removing port i ∈ Ns from service s ∈ S

∆
T+
is := Estimated duration change from including port i ∈ N̄s into service s ∈ S

∆
T−
is := Estimated duration change from removing port i ∈ Ns from service s ∈ S
m̂v := Number of free vessels of vessel class v ∈V
τs := Round trip time for service s ∈ S

η+
s := Maximum number of inclusions into service s ∈ S

η−s := Maximum number of removals into service s ∈ S

Decision variables
x+is ∈ {0,1} := Equal to 1 if port i ∈ N̄s is included into service s ∈ S, and 0 otherwise
x−is ∈ {0,1} := Equal to 1 if port i ∈ Ns is removed from service s ∈ S, and 0 otherwise

ζs ∈ Z := Change in number of vessels in service s ∈ S

Table 10 Additional notation for Section 5.3

Parameters
c(x) := Concave cost function of using an edge (i, j) ∈ A for the flow x

Decision variables
xk

i j ∈ R+ := Flow of commodity k ∈ K on edge (i, j) ∈ A


