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Abstract—Distributed Kalman filtering techniques enable
agents of a multiagent network to enhance their ability to track a
system and learn from local cooperation with neighbors. Enabling
this cooperation, however, requires agents to share information,
which raises the question of privacy. This paper proposes
a privacy-preserving distributed Kalman filter (PP-DKF) that
protects local agent information by restricting and obfuscating
the information exchanged. The derived PP-DKF embeds two
state-of-the-art average consensus techniques that guarantee
agent privacy. The resulting PP-DKF utilizes noise injection-
based and decomposition-based privacy-preserving techniques to
implement a robust distributed Kalman filtering solution against
perturbation. We characterize the performance and convergence
of the proposed PP-DKF and demonstrate its robustness against
the injected noise variance. We also assess the privacy-preserving
properties of the proposed algorithm for two types of adversaries,
namely, an external eavesdropper and an honest-but-curious
(HBC) agent, by providing bounds on the privacy leakage for
both adversaries. Finally, several simulation examples illustrate
that the proposed PP-DKF achieves better performance and
higher privacy levels than the distributed Kalman filtering so-
lutions employing contemporary privacy-preserving techniques.

Index Terms—Sensor networks, privacy, information fusion,
average consensus, distributed Kalman filtering, multiagent sys-
tems.

I. INTRODUCTION

THE proliferation of affordable sensor equipment with
built-in networking capabilities has kindled a great deal

of interest in distributed learning and estimation techniques
in multiagent systems [1]–[6]. Furthermore, these systems
incorporate honest communication with neighbors to enable
cooperation and achieve a common target. In this work, we
mainly focus on the distributed Kalman filtering techniques
due to their computational efficiency, high accuracy, and the
ability to model an extensive array of real-world physical
systems. This broad applicability has made distributed Kalman
filtering techniques a prominent fixture of multiagent learning
and estimation applications in the signal processing commu-
nity [7]–[11].

The distributed Kalman filtering techniques became more
applicable to large-scale systems [10] and became widely
used with the emergence of consensus filtering [12] and [13].
Kalman consensus filtering has a significant impact on the dy-
namic state estimation and was originally proposed in [8] and
has been analyzed for stability and performance in [14]. The
literature also includes a variety of consensus-based distributed
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Kalman filtering techniques to improve the performance in
distributed estimation scenarios [6], [15], [16]. In the mean-
time, a diffusion-based strategy is proposed for distributed
filtering and smoothing to estimate the state of linear dynamic
systems in [11]. Generally, distributed Kalman filtering tech-
niques rely on agents running local Kalman filtering operations
using consensus filters to fuse observation and state vector
information [9], [14]. On the one hand, sharing information
among agents of the network facilitates cooperation between
the agents. On the other hand, sharing of observation and state
vector estimates gives rise to concerns about privacy [17], [18];
hence, there is a demand for secure filtering solutions [19],
[20] and data aggregation [21]. Moreover, distributed filtering
techniques are vulnerable to eavesdroppers that can potentially
obtain private information by tapping communication links.
This vulnerability turns privacy-preservation into an urgent
requirement in many applications [22]–[32]. Also, privacy and
security concerns become more pronounced when considering
that even a single-agent infiltration can threaten the entire
network integrity [25], [33].

The literature contains various methods that address the
privacy issues in distributed processing problems, such as con-
sensus [25]–[32], [34], optimization [22], [23], filtering [24],
and state estimation [35]–[44]. A secure estimator is pre-
sented as a minimax optimization problem in the presence
of a resource-limited attacker in [35], while the study in
[36] detects the attacker by using χ2 detectors to investigate
the impact of intermittent data integrity attacks on Kalman
filter-based estimators. By locating the misbehaving agents,
[37] proposed a secure distributed state estimator based on
a Gaussian mixture model detection mechanism, while [38]
proposed a secure estimator that differentiates the malicious
from the faulty agents. As opposed to detection-based secure
state estimation, the work in [39] and [40] is designed to
perform robustly in the presence of Byzantine agents without
specifically detecting malicious agents. Additionally, to gen-
erate secure estimates, we can convert the problem of secure
estimation into a distributed optimization problem [41]. A se-
cure estimation scheme based on Kalman filters is proposed in
[42], which fuses the local estimates securely using a quadratic
programming approach. In [43], the authors propose a secure
multi-party dynamic state estimation method based on Paillier
encryption, while [44] investigates how to maximize privacy
of stochastic dynamical systems with an information-theoretic
privacy approach based on mutual information. Although
these frameworks provide privacy, they are computationally
demanding, and finding a secure and computationally efficient
distributed state estimation remains a challenge.

When it comes to privacy concerns in distributed consensus
areas, differential privacy is one of the main approaches [26]–
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[28]. The differential privacy technique perturbs local mes-
sage exchanges to protect individual information from being
inferred by other agents or an external eavesdropper [26]–
[28]. However, this privacy comes at a performance penalty.
Among more recent consensus approaches, noise-injection-
based methods [45], [46] have gained wide acceptance due to
their improved privacy-accuracy trade-off. At the same time,
decomposition-based techniques mainly focus on the amount
of information exchanged between neighbors. For instance, in
[47], [48], the initial state at each agent is decomposed into
two substates, one for inter-node interactions and another that
remains invisible to other agents.

Regarding privacy concerns in Kalman filtering settings, the
work in [49] designs a differentially private Kalman filter
in both input and output perturbation cases. Furthermore,
differentially private Kalman filtering solutions that minimize
the achieved mean squared error (MSE) under the differential
privacy constraints are proposed in [19], [20], [50]. These
works address the problem of releasing filtered signals that
respect the privacy of individual data by employing differential
privacy constraints over the filtering operations. In contrast,
we apply privacy constraints to protect the value of agent-
sensitive information from being estimated by adversaries.
The proposed privacy-aware Kalman filter in [51] linearly
transforms the sensor measurements before releasing them to
the fusion center to maximize the estimation error for the
private state and minimize that for the public state. Although
considerable research has been devoted to privacy-preserving
Kalman filtering solutions, no attention has been paid to a
privacy-preserving framework for distributed Kalman filtering
strategies.

In this paper, we assume that the local state estimates of
individual agents are sensitive and must be kept private from
adversaries. To that end, we propose a privacy-preserving
distributed Kalman filter (PP-DKF) based on embedded av-
erage consensus that guarantees privacy via decomposition of
local states and perturbation of the messages exchanged with
neighboring agents. In the proposed approach, the local state
at the agent is decomposed into private and public substates,
where only public substates are shared with neighbors to re-
duce the amount of information exchanged. Furthermore, these
shared messages are perturbed with a zero-mean Gaussian
noise to further limit the information leakage. We show that the
proposed DKF converges to unbiased steady-state estimates
regardless of the initializing values or privacy-preserving
perturbations. In addition, we provide rigorous mathematical
analysis for the convergence behavior and the achievable MSE
performance.

Next, we characterize the privacy performance of the
proposed PP-DKF under two different adversaries, namely
external eavesdroppers and honest-but-curious (HBC) agents.
Defining the MSE of the estimate of the private information at
the adversary as the privacy measure, we provide bounds on
the privacy leakage for both adversaries. More importantly,
we also derive the conditions under which perfect privacy
can be achieved, i.e., conditions where there is no privacy
leakage. Further, we show that the proposed PP-DKF achieves
a better privacy-accuracy trade-off than state-of-the-art solu-

tions, implying that PP-DKF achieves a higher state estimation
accuracy for a given privacy level.

The rest of the paper is organized as follows. Section II
provides preliminaries on distributed Kalman filtering and its
vulnerability to internal and external adversaries. Section III
presents the derivation of the proposed PP-DKF that protects
private information through state decomposition and noise
perturbation. In Section IV, the performance of the proposed
PP-DKF is investigated in detail. In particular, we study the
convergence of the PP-DKF, in the mean and mean-squared
senses, for a finite number of consensus iterations and provide
closed-form solutions incorporating state decomposition and
noise perturbation effects. In Section V, we study the privacy
guarantees provided by the PP-DKF when the network is sub-
jected to external eavesdroppers and HBC agents. Section VI
presents simulation results that corroborate our theoretical
findings. Finally, conclusions are given in Section VII.
Mathematical Notations: Scalars, vectors, and matrices are
denoted by lowercase, bold lowercase, and bold uppercase
letters, while Il, 0l, and 1l represent an l×l identity matrix, an
l× l zero matrix, and a column vector with l elements where
all entries are one, respectively. The transpose and statistical
expectation operators are denoted by (·)T and E{·}, while ⊗
denotes the matrix Kronecker product. The trace operator is
denoted as tr(·), whereas the Blockdiag({Ai}Ni=1) represents a
block diagonal matrix containing Ais on the main diagonal.
In order to distinguish between Kalman filtering operations
and consensus filter iterations, consensus iterations are denoted
in parenthesis and Kalman filtering time instants are denoted
using subscripts, e.g., xi,n(k) denotes the state at agent i
and time instant n, after k consensus iterations. A white
Gaussian sequence x(k) with covariance Σ is represented as
x(k) ∼ N (0,Σ), † denotes the Moore–Penrose pseudoin-
verse operator.

II. BACKGROUND AND PROBLEM FORMULATION

This section revisits the classical distributed Kalman fil-
tering problem of tracking a dynamic system state through
observations from a network of sensors/agents. The network
is modeled as a graph G = {N , E} with node set N ,
representing agents, and edge set E , representing bidirectional
communication links. The neighborhood of node i, denoted
by Ni, is the set of nodes that agent i receives information
from, which does not include agent i itself. The cardinality of
the set Ni is denoted by Ni, while N is the number of agents
in the network.

The state-space model, characterizing the state vector evo-
lution and observation, is given by

xn = Axn−1 + vn (1)

yi,n = Hixn + wi,n (2)

where for time instant n and agent i, A ∈ Rm×m denotes the
state transition matrix, Hi ∈ Rq×m denotes the observation
matrix, yi,n ∈ Rq is the local observation, and wi,n ∈ Rq
and vn ∈ Rm, are observation and process noises, respec-
tively. The process noise and observation noise are zero-mean



3

Algorithm 1 Distributed Kalman Filter
Initialization: For each agent i ∈ N

1: x̂i,0|0 = E{x0}
2: Mi,0|0 = E

{
(x0 − E{x0})(x0 − E{x0})T

}
Model update:

3: x̂i,n|n−1 = Ax̂i,n−1|n−1

4: Mi,n|n−1 = AMi,n−1|n−1A
T + Cvn

Measurement update:
5: Γi,n = M−1

i,n|n−1 +NHT
iC
−1
wi,n

Hi

6: M−1
i,n|n ←− ACF ←− {∀j ∈ Ni : Γj,n}

7: Gi,n = NMi,n|nHT
iC
−1
wi,n

8: ri,n = x̂i,n|n−1 + Gi,n

(
yi,n −Hix̂i,n|n−1

)
9: x̂i,n|n ←− ACF ←− {∀j ∈ Ni : rj,n}

Gaussian noise processes with a joint covariance matrix given
by

E
{[

vn
wi,n

] [
vT
l wT

j,l

]}
=

[
Cvn

0m×q
0q×m Cwi,nδi,j

]
δn,l

with δn,l denoting the Kronecker delta function. The opera-
tions of the distributed Kalman filtering solution is summa-
rized in Algorithm 1.

As can be seen from Algorithm 1, each agent first updates
its local state estimate, where x̂i,n|n−1 and x̂i,n|n are the
respective a priori and a posteriori estimates of the state
vector. Thereafter, the a priori covariance information at agent
i and time instant n, denoted by Mi,n|n−1 ∈ Rm×m, is
updated as

Γi,n = M−1
i,n|n−1 +NHT

iC
−1
wi,n

Hi· (3)

As shown in [3], the a posteriori centralized covariance infor-
mation is the network average of the updates in (3). Hence,
a distributed update of M−1

i,n|n is obtained via an average
consensus filter (ACF), wherein the agents refine their updates
through local averaging within their neighborhoods. Finally,
the a posteriori covariance M−1

i,n|n is used to determine the
local intermediate state estimate

ri,n = x̂i,n|n−1 + Gi,n

(
yi,n −Hix̂i,n|n−1

)
(4)

which is, similar to Γi,n, passed through an ACF to get the a
posteriori state estimate x̂i,n|n.

In particular, a generic iterative average consensus filter
(ACF) is given by

Si,n(k) = qiiSi,n(k − 1) +
∑
j∈Ni

qijSj,n(k − 1) (5)

where consensus weights {qij : ∀i, j ∈ N} are positive real-
valued weights so that the consensus weight matrix Q where
qij = [Q]ij is a doubly stochastic matrix. In Algorithm 1, we
represent the general ACF with the following schematic [3]:

Si,n(k)←− ACF ←− {∀j ∈ Ni ∪ i : Sj,n(0)} (6)

where Sj,n(0), j ∈ Ni ∪ i are the initial inputs to the ACF at
node i, and Si,n(k) is the output at node i after k iterations.

The shared intermediate state vector estimates ri,n ∈ Rm
contain node-sensitive information that can be exploited by

Data observed by Honest-but-curious agent

Data observed by external eavesdropper

Network
External Eavesdropper

Honest-but-curious Agent

Fig. 1. Illustration of information accessible to external eavesdroppers and
HBC agents.

adversaries [49], [50]. We, therefore, need to modify the
distributed Kalman filter (DKF) to protect node-sensitive in-
formation from possible privacy breaches. In what follows, we
consider two types of adversaries, namely:
• An external eavesdropper, who is external to the network,

is trying to learn private information by accessing all the
information exchanged between agents.

• An HBC agent, a legitimate node of the network, is
contributing to the overall estimation task but, at the same
time, passively attempts to infer private information from
the messages shared by its immediate neighbors.

The two types of adversaries above can access different types
and amounts of information; Fig 1 illustrates the different
information types accessible to the adversaries and more
details on their observation models is provided in Section V. In
addition to the adversaries, the network includes regular agents
that contribute to the overall estimation task without colluding
with adversaries. Next, we propose a DKF that modifies the
state messages exchanged by neighbors to induce privacy.

III. PRIVACY-PRESERVING DISTRIBUTED KALMAN FILTER

In this section, we propose a PP-DKF based on the
framework in [3]. In the distributed Kalman filtering set-
ting, information leakage happens when agents share private
information amongst each other. Without loss of generality,
we will consider the local states, ri,n, private. We aim to
protect the private information from being estimated by an
adversary inside the network or an external eavesdropper. For
this purpose, we decompose the agent states into public and
private substates, where only noisy versions of the public
substates are shared between neighbors.

The proposed PP-DKF tracks the dynamic system state by

x̂i,n|n−1 = Ax̂i,n−1|n−1

Mi,n|n−1 = AMi,n−1|n−1A
T + Cvn

(7)

where, for agent i, x̂i,n|n−1 and x̂i,n|n are the respective a pri-
ori and a posteriori state vector estimates. The intermediate
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Imaginary agents containing private substates
Original agents containing public substates

Agent 

Fig. 2. State decomposition representation of ri,n to public substate αi,n
and private substate βi,n.

information of agent i, at time instant n, denoted by Γi,n, is
updated as in (3), and shared with neighbors to reach average
consensus. We assume that the condition for convergence of
the covariance matrices {Mi,n|n : ∀i ∈ N , n = 1, 2, . . .}
to unique stabilizing solutions, as given in [3], are satisfied.
Therefore, we have limn→∞Mi,n|n = Mi for each i ∈ N .
Then, the average-consensus covariance matrix is employed to
compute the intermediate state vector estimate of agent i as
in (4), with the local gain matrix

Gi,n = NMi,n|nHT
iC
−1
wi,n

.

The local state estimate is improved through local collabora-
tion. As mentioned above, the local state, ri,n, is decomposed
into a public substate αi,n ∈ Rm and a private substate
βi,n ∈ Rm. Only a perturbed version of the public substate is
shared among neighbors in the ensuing consensus process.

In particular, the proposed PP-DKF chooses the initial
values αi,n(0) and βi,n(0) randomly from the set of all real
numbers in a manner that they satisfy the following relation
[47]:

1

2
(αi,n(0) + βi,n(0)) = ri,n (8)

where ri,n is the ith agent initial information to start the
privacy-preserving average consensus mechanism. The sub-
state αi,n is the only value that is shared with neighbors, while
substate βi,n evolves internally and will not be observed by
neighbors, as represented in Fig. 2. Although βi,n remains
invisible to neighbors, it directly affects the evolution of αi,n.

In order to improve privacy preservation, we also inject
noise into the messages shared by neighbors; see, e.g., [45]. To
that end, each agent i shares a perturbed version of its public
substate α̃i,n(k) = αi,n(k) + ωi(k), with noise sequence
ωi(k) ∈ Rm, at each consensus iteration k. In particular, at
consensus iteration k, each agent, i, perturbs its public substate
with the following random noise vector

ωi(k) =

{
νi(0) k = 0

φkνi(k)− φk−1νi(k − 1) o.w.
(9)

where φ ∈ (0, 1) is a common constant for all agents and
νi(k) ∈ Rm ∼ N (0, σ2Im) is an independent and identically
distributed white Gaussian sequence for each k and i ∈ N . At

each consensus iteration k, agent i updates its local substates
using the received neighbor messages as follows:

αi,n(k + 1) =αi,n(k) + εUi(k)
(
βi,n(k)−αi,n(k)

)
+ ε

∑
j∈Ni

wij(k) (α̃j,n(k)−αi,n(k))

βi,n(k + 1) =βi,n(k) + εUi(k)
(
αi,n(k)− βi,n(k)

)
(10)

where ε is the consensus step size, residing in (0, 1
∆+1 ]

with ∆ , maxi∈N Ni. In (10), wij(k) = wji(k) denotes
the interaction weight of agents i and j, while Ui(k) ,
diag(ui(k)) ∈ Rm×m is a diagonal matrix defined by the
coupling weight vector ui(k) ∈ Rm of agent i. In particular,
for k = 0, wij(0) = wji(0) can be arbitrarily chosen from
the set of all real numbers, while, for k > 0, we require that
there exists a scalar 0 < η < 1 such that all wij(k) = wji(k),
j ∈ Ni must reside in the range [η, 1). This assumption ensures
that each agent gives sufficient weight to the information
received from its neighbors, including the private substates of
the extended graph in Fig. 2. As a result, the information from
each agent continuously affects the information of other agents
over time. Similarly, for ui(k), the elements of ui(0) are
independently chosen from the set of all real numbers, while,
for k > 0, they are limited to [η, 1). In the subsequent conver-
gence analysis, we assume that the interaction and coupling
weights are arbitrarily chosen at k = 0 and remain fixed for
k > 0, while satisfying the weighting mechanism in [47]. For
notational convenience, the interaction weights of the entire
network is collected into matrix W(k) , [wij(k)] ∈ RN×N .

Finally, after repeating the steps in (10) for sufficient
number of iterations, say K iterations, the local state estimate,
x̂i,n|n, is taken as

x̂i,n|n = αi,n(K) ∀i ∈ N .

The operations of the proposed PP-DKF at each agent are
summarized in Algorithm 2.

The privacy-preserving average consensus mechanism in
(10), asymptotically converges to the exact average state
estimate among agents. In particular, considering the con-
vergence of the decomposition-based consensus operations in
Appendix A, it can be shown that under the symmetric weight
assumption for the interaction weight, the sum of all substates,
defined as

ζ(k) =

N∑
i=1

(αi,n(k) + βi,n(k)),

is preserved across the consensus iterations k, i.e., the sum of
all substates are always time-invariant. This can be verified by
simplifying ζ(k) as

ζ(k) = ζ(0) + ε

N∑
i=1

di

( k−1∑
l=1

ωi(l)

)
(11)

with di =
∑
j∈Ni

wij and showing that ζ(k) converges to
ζ(0) in the mean square sense, i.e.,

ζ(k)
m.s.−−→ ζ(0)⇔ lim

k→∞
E{‖ζ(k)− ζ(0)‖2} = 0·
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This is due to the connected network properties and assump-
tions of symmetric weights for k ≥ 0, [47], [52], and decaying
covariance of the noise sequences. Consequently, the substates
will converge to the average of 1

2N

∑N
i=1(αi,n(k) +βi,n(k)),

which equals 1
2N

∑N
i=1(αi,n(0) + βi,n(0)), and due to the

initial condition αi,n(0) + βi,n(0) = 2ri,n, we have

lim
k→∞

αi,n(k) = lim
k→∞

βi,n(k) =
1

N

N∑
i=1

ri,n

that completes the convergence of substates to the desired
average consensus value for each agent i ∈ N .

Despite the above asymptotic performance guarantees, in
practice, the number of consensus iterations is always finite;
hence, questions arise concerning its consequences in filtering
performance, convergence behavior, and resulting privacy.
Therefore, it is imperative to examine the effect of injected
noise and state decomposition on the proposed distributed
Kalman filtering accuracy with a finite number of consensus
iterations and the resulting privacy protection capabilities
against internal and external adversaries. These topics are
treated in detail in the following two sections.

Remark 1. Public and private substates αi,n(k) and βi,n(k)
are chosen randomly at k = 0 such that αi,n(0) + βi,n(0) =
ri,n and updated according to (10) for k ≥ 1. Therefore, the
intermediate state estimate ri,n cannot be obtained by con-
catenating the public and private substates at each consensus
iteration k.

IV. KALMAN FILTERING PERFORMANCE EVALUATION

In order to provide an intuitive analysis and a proper insight
into the effects of incorporating the privacy-preserving mecha-
nism, we commence our analysis with simplifying assumptions
and subsequently generalize the results. Without loss of gener-
ality, it is assumed that agents initialize the privacy-preserving
steps with equal substates, so that αi,n(0) = βi,n(0) for all
i ∈ N , and the noise added to the shared substate leaks
into the private substate as well. This presents a worst-case
scenario and upper-bounds the achievable MSE performance.
Proceeding on the basis of Fig. 2, a network of 2N agents
is considered so that each private substate corresponds to an
agent only attached to its peer in the original network. In this
case, to analyze the mean and mean-square performances of
Algorithm 2, we consider the intermediate estimation error of
agents in the decomposed network (see Fig. 2) as

εi,n =xn −αi,n(0) i = 1, · · · , N
εi,n =xn − βi−N,n(0) i = N + 1, · · · , 2N

(12)

From the made assumption on the substates, we have
αi,n(0) = βi,n(0) = ri,n. Now, by substituting the inter-
mediate state ri,n, from line 8 in Algorithm 2, and the local

Algorithm 2 Privacy-Preserving Distributed Kalman Filter
Initialization: For each agent i ∈ N

1: x̂i,0|0 = E{x0}
2: Mi,0|0 = E

{
(x0 − E{x0})(x0 − E{x0})T

}
Model update:

3: x̂i,n|n−1 = Ax̂i,n−1|n−1

4: Mi,n|n−1 = AMi,n−1|n−1A
T + Cvn

Measurement update:
5: Γi,n = M−1

i,n|n−1 +NHT
iC
−1
wi,n

Hi

6: M−1
i,n|n ←− ACF ←− {∀j ∈ Ni : Γj,n}

7: Gi,n = NMi,n|nHT
iC
−1
wi,n

8: ri,n = x̂i,n|n−1 + Gi,n

(
yi,n −Hix̂i,n|n−1

)
Privacy-Preserving Mechanism:

9: Select αi,n(0), and set βi,n(0) = 2ri,n −αi,n(0)
10: Select weights wij(k),ui(k), j ∈ Ni and k = 0, 1, · · · ,K
11: Share weights wij(k), j ∈ Ni and k = 0, 1, · · · ,K
12: Generate {ωi(k), k = 0, 1, · · · ,K} based on (9)
13: Share α̃i,n(0) = αi,n(0) + ωi(0)
14: for k = 1 to K do
15: Receive α̃j,n(k − 1), ∀j ∈ Ni
16: Update αi,n(k) andβi,n(k), as given in (10)
17: Share α̃i,n(k) = αi,n(k) + ωi(k),
18: end for
19: x̂i,n|n = αi,n(K)

observation (2) into (12), the intermediate estimation error of
each agent i ∈ {1, 2, · · · , 2N} is formulated as

εi,n =xn − ri,n
=xn − x̂i,n|n−1 −NMiH

T
iC
−1
wi

(
yi,n −Hix̂i,n|n−1

)
=xn − x̂i,n|n−1 −NMiH

T
iC
−1
wi

Hi

(
xn − x̂i,n|n−1

)
−NMiH

T
iC
−1
wi

wi,n.
(13)

Here, we assume that the imaginary agents {N + 1, · · · , 2N}
employ the same observation parameters, yi,n, Hi, and Cwi ,
as their original peers. Substituting (1) into (13) and using the
relation x̂i,n|n−1 = Ax̂i,n−1|n−1 from (7), we have:

εi,n =
(
Im −NMiH

T
iC
−1
wi

Hi

)
Aεi,n−1|n−1 (14)

+
(
Im −NMiH

T
iC
−1
wi

Hi

)
vn −N MiH

T
iC
−1
wi

wi,n.

where εi,n−1|n−1 = xn−1 − x̂i,n−1|n−1. Considering the
stacked vectors organizing all error terms as

En ,[εT
1,n, · · · , εT

2N,n]T ∈ R2Nm (15)

En−1|n−1 ,[εT
1,n−1|n−1, · · · , ε

T
2N,n−1|n−1]T ∈ R2Nm (16)

and the state estimation error of the state-decomposed network
after k consensus iterations, at each agent i, as εi,n|n,k, the
stacked vector organizing all error terms of εi,n|n,k after the
privacy-preserving average consensus operations in (10), is
denoted as

En|n,k =[εT
1,n|n,k, · · · , ε

T
2N,n|n,k]T ∈ R2Nm·
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Due to notational convenience, we are no longer including the
index k in error parameters, and the stacked vector estimation
error can be computed as

En|n = GkEn + φk−1Bν(k − 1) (17)

+

k∑
s=2

φk−s
(
Gs−1 −Gs−2

)
Bν(k − s)

where ν(k) = [νT
1(k), · · · ,νT

N (k)]T, B = ε[W,W]T ⊗ Im ∈
R2Nm×Nm, and G ∈ R2Nm×2Nm is a doubly stochastic
matrix given by

G =

[
M εU
εU INm − εU

]
(18)

with M , (IN − ε(D−W)) ⊗ Im − εU, U =
Blockdiag({Ui}Ni=1), and D , diag({

∑
j∈Ni

wij}Ni=1). To
simplify the state vector estimation error analysis, we assume
that the interaction and coupling weight matrices are time-
invariant. Substituting the network-wide intermediate state
vector estimation error En from (14) into (17) results

En|n =PkEn−1|n−1 + QkΥn −Ωn,k + φk−1Bν(k − 1)

+

k∑
s=2

φk−s
(
Gs−1 −Gs−2

)
Bν(k − s)

(19)
where Υn = [vT

n, · · · ,vT
n]T ∈ R2Nm and

Pk = GkBlockdiag({PiA}2Ni=1)

Qk = GkBlockdiag({Pi}2Ni=1)

Ωn,k = GkBlockdiag({Qi}2Ni=1)[wT
1,n, · · · ,wT

2N,n]T

with Pi = Im − NMiH
T
iC
−1
wi

Hi and Qi = MiH
T
iC
−1
wi

.
Assuming the mutual independence of the noise sequences
wi,n, vn, and νi(k) for all n = 1, 2, · · · , i ∈ N , and k ∈
[1,K], the recursive expression of the state vector estimation
error in (19), is used to formulate the second-order statistics
of all agents, denoted by Σn,k = E{En|nET

n|n} ∈ R2Nm×2Nm,
as

Σn,k = PkΣn−1,kPT
k + QkCΥQT

k + CΩk
+ T k (20)

where CΥ = E{ΥnΥT
n},CΩk = E{Ωn,kΩ

T
n,k} ∈ R2Nm×2Nm,

and given k consensus iterations

T k =

k∑
s=2

φ2(k−s)T̄ s + φ2(k−1)BCνBT (21)

with Cν = E{ν(s)νT(s)} ∈ RNm×Nm at each consensus itera-
tion s and T̄ s =

(
Gs−1 −Gs−2

)
BCνBT (Gs−1 −Gs−2

)T.
Due to the doubly stochastic matrix G and similar to [3],

Pi and A are stable, Pk is stable; therefore, Σn,k → Σk as
n→∞, where Σk is the solution of the discrete time Lya-
punov equation in (20) that represents the MSE convergence
of the filtering performance. The effect of injected noise,
considering a privacy-preserving average consensus with k
consensus iterations, is manifested in T k. It degrades the
steady-state MSE of Algorithm 2 compared to the non-private
approach and introduces a performance-privacy trade-off. On
the other hand, taking the statistical expectation of (19) yields

E{En|n} = PkE{En−1|n−1} = Pn
kE{E0|0}.

Once again, since Pk is stable, we have limn→∞ E{En|n} = 0

that indicates the steady-state estimates are unbiased regardless
of their initializing values or privacy-preserving perturba-
tions. The effect of injected noise, considering a privacy-
preserving average consensus with k consensus iterations, is
manifested in T k, which degrades the steady-state MSE of Al-
gorithm 2 compared to the non-private approach, introducing
a performance-privacy trade-off.

For the case where agents start the privacy-preserving
steps with different initial substates, one can claim that the
imaginary agents that hold the private substates, demonstrated
in Fig. 2, are perturbed by noise sequence with vanishing
covariance. In the privacy-preserving mechanism, the pri-
vate substates affect the updating equations without being
perturbed; this will reduce the effect of term T k in the
corresponding Lyapunov equation, resulting in improved MSE
performance without affecting the convergence. This trade-off
is shown using numerical simulation examples in Section VI.
Next, we evaluate the privacy guarantees of the PP-DKF for
the cases of internal and external adversaries.

V. PRIVACY ANALYSIS

This section provides a comprehensive privacy analysis
of the PP-DKF for two different adversaries: an external
eavesdropper and an honest-but-curious (HBC) agent. The
state estimate rj,n is considered private since it corresponds
to the local a posteriori estimate and includes more node-
specific information than the global a posteriori state estimate
x̂j,n|n. As an output of the ACF, the a posteriori state estimate
x̂j,n|n has the same value among agents, therefore it contains
less local information about the agents. Similar to [45], [53],
we assume that the adversary employs an estimator to infer
the states of the agents rj,n, j = 1, 2, . . . , N at time n and
consider the MSE of the estimator as the privacy metric.
The MSE metric is used here to measure how accurately
the adversary can estimate the exact value of the initial local
a posteriori state estimates given a specific attack model and
information available to the adversary. Let r̂j,n(k) denote the
estimate of the state of agent j at the adversary at time n
after k consensus iterations and the corresponding privacy loss
Ej,n(k) is the MSE given by

Ej,n(k) , tr
(
E{(rj,n − r̂j,n(k)) (rj,n − r̂j,n(k))

T}
)
. (22)

A. External eavesdropper

We assume that the external eavesdropper knows the net-
work topology and can access all information exchanged by
the agents with their neighbors. As can be seen from Algo-
rithm 2, the messages exchanged after k consensus iterations
form the following information set at the eavesdropper

IE(k) = {α̃j,n(l), wij(l), ∀i, j ∈ N , l = 0, 1, . . . , k} (23)

where α̃j,n(l) is the perturbed state and wij(l) is the in-
teraction weights exchanged with the neighbors. The eaves-
dropper estimates the states of the agents r̂j,n(k) ∀j ∈ N
by constructing an observer at each consensus iteration using
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the information set (23). Under this adversarial model, the
proposed filtering Algorithm 2 is privacy-preserving.

Theorem 1. If the external eavesdropper can only access mes-
sages shared by the agents, Algorithm 2 is privacy-preserving
and the privacy leakage for agent j is given by

Ej = lim
n→∞

lim
k→∞

Ej,n(k) = tr
(

(eT
j ⊗ Im) L̃Σ̃L̃

T
(ej ⊗ Im)

)
(24)

where ej ∈ RN is a vector with 1 in the jth en-
try and zeros elsewhere, Σ̃ is the stabilizing solution for
(20), L̃ = 1

2
L− εULΛ, Λ = Θ diag( 1

1−λ1
, 1
1−λ2

, 1, · · · , 1)ΘT,
λ1 < · · · < λ2Nm−m < 1 are eigenvalues of G and Θ is
the matrix of eigenvectors corresponding {λi}2Nmi=1 , and
L = [−INm, INm],.

Proof: The proof is given in Appendix B.
In Algorithm 2, we see that agents communicate with their

neighbors to choose the weights wij(l) so that wij(l) =
wji(l), ∀i, j ∈ N ,∀l and hence the adversary can acquire
wij(l). However, if the external eavesdropper does not know
the interaction weights wij(0), ∀i, j ∈ N , then the state of the
network agents remains private with no information leakage
and we can guarantee a stronger privacy. We can see that in
Algorithm 2, the nodes perturb the substates transmitted to
their neighbors in addition to independently selecting coupling
weights for different elements of the substates αi,j(l) and
βi,j(l). From [47, Theorem 3], we can show that any variation
in the initial state of the jth agent remains hidden from the
external eavesdropper, and hence, no privacy leakage.

B. Honest-but-curious agent

Without loss of generality, let us assume that agent N is
the HBC agent as defined in Section II. Agent N uses its own
local information {αN,n(l),βN,n(l),ωN (l),uN (l)}kl=0 and
the information received from its neighbors NN to estimate
the sensitive information of other agents. From Algorithm 2,
we can see that the information available at the HBC agent N
at the kth consensus iteration is given by

IN (k) = {αN,n(l),βN,n(l),ωN (l),uN (l), (25)

wNj(l), α̃j,n(l) : ∀j ∈ NN , l = 0, 1, . . . , k}.

The proposed filtering algorithm offers privacy even against
HBC agent.

Theorem 2. If an HBC agent has access only to messages
shared by its neighbors and every agent has at least one
regular agent in its neighborhood, then an HBC agent cannot
infer private information of any other agent in the network.

Proof: We show that an arbitrary change in the in-
formation of agent j, change from rj,n to r̄j,n, remains
indistinguishable from the HBC agent if agent j has at least
one neighboring regular agent l. Compared to Theorem 2
in [47], the shared substates are multivariate and perturbed
by noise. However, due to the diminishing perturbation noise
and independent coupling weights of the different elements
the procedure in the proof of Theorem 2 in [47] is applicable.

Consequently, the change from rj,n to r̄j,n remains indistin-
guishable for the HBC agent, which completes the proof.

In Theorem 2, we assumed that the HBC agent has access
only to information related to its neighboring agents. We can
observe that agent privacy depends on the availability of the
interaction and coupling weights at the adversary. Therefore,
next, we consider the scenario where the HBC agent has
access to the entire weight matrix W and an estimate of the
coupling weight matrix Û in addition to information in (25).
This information set at the adversary can be represented as

ĨN (k) = IN (k) ∪ {W(l), Û(l), l = 0, 1, . . . , k} (26)

where Û denotes the estimate of the coupling weight matrix
U at the adversary.

Under these assumptions, the HBC agent estimates
the initial substate of the network agents, i.e.,
zn(0) , [αT

n(0),βT
n(0)]T. To this end, we require

defining an observation vector that includes the shared
information of the neighbors and the information of the
HBC agent itself at each time instant k, denoted as
{α̃j,n(t), ∀j ∈ NN , αN,n(t), βN,n(t)}, that can be expressed
as

yn(k) = Czn(k) + Cαω(k), (27)

at each consensus iteration k with zn(k) = [αT
n(k),βT

n(k)]T.
In order to capture the relevant set of information, we define
C = [Cα,Cβ ] with Cβ = [0, eN ]

T ⊗ Im ∈ R(NN+1)m×Nm

that captures the private substates of the HBC agent itself and

Cα =
[
ej1 , ej2 , · · · , ejNN

, eN

]T
⊗ Im ∈ R(NN+1)m×Nm,

that captures the public substate of neighbors and the HBC
agent itself. The vector ej ∈ RN is a vector with 1 in the
jth entry and zeros elsewhere, NN = {j1, j2, · · · , jNN

} is the
adjacency set of the HBC agent and NN denotes the number of
its neighbors. As a result, the HBC agent infers the information
of all agents as rn = 1

2 (αn(0) + βn(0)). Substituting the
network-wide substate update equations in (10), i.e.,

αn(k + 1) =Mαn(k) + εUβn(k) + ε(W ⊗ Im)ω(k)

βn(k + 1) =εUαn(k) + (INm − εU)βn(k)

into (27) gives

yn(k) = CGkzn(0) + Cα

(
k−1∑
t=0

Ck−1−tBω(t) + ω(k)

)
(28)

where Ck =
[
INm 0Nm

]
Gk
[
INm 0Nm

]T
and

B = ε(W ⊗ Im). Further, G can be written as
G = ΘΛ̃ΘT, where Θ = [θ1,θ2, · · · ,θ2Nm] ∈ R2Nm×2Nm and
Λ̃ = diag(λ1, λ2, · · · , λ2Nm) consists of eigenvalues of matrix
G, with λ1 < λ2 < · · · < λ2Nm−m+1 = · · · = λ2Nm = 1.
Subsequently, we have Gl = ΘΛ̄

l
ΘT + 1

2N (12N1T
2N ⊗ Im)

and

Ck = Θ1:NmΛ̄
k
ΘT

1:Nm +
1

2N
(1N1T

N ⊗ Im) (29)

where Λ̄ = diag(λ1, λ2, · · · , λ(2Nm−m), 0, · · · , 0) and
Θ1:Nm denotes a matrix that contains the first Nm rows of
matrix Θ.
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Since ν(k) is a zero-mean i.i.d. sequence, the accumulated
observation of the HBC agent set-up at consensus iteration k
is simplified as

k∑
t=0

yn(t) =C(I2Nm −G)k+1(I2Nm −G)−1zn(0)

+ Cα

(
k−1∑
t=0

φtCk−1−tBν(t) + φkν(k)

)
.

Stacking all the available accumulated observations at each
consensus iteration k in a vector gives

∑0
t=0 yn(t)/φ0∑1
t=0 yn(t)/φ1

...∑k
t=0 yn(t)/φk

 = H(k)zn(0) + F(k)


ν(0)
ν(1)

...
ν(k)

 (30)

where

H(k) =


C

φ−1C(I2Nm + G)
...

φ−kC(I2Nm +
∑k
t=1 Gt)

 , (31)

and

F(k) =


F̂0 0 · · · 0

F̂1 F̂0 · · · 0
...

...
. . .

...
F̂k−1 F̂k−2 · · · F̂0

 (32)

with F̂0 = Cα and F̂k = ε
φk+1 CαCk(W ⊗ Im) for k ≥ 1

which, by substituting Ck in (29), simplifies as

F̂k =
ε

φk+1
Cα

(
Θ1:NmΛ̄

k
ΘT

1:Nm

)
(W ⊗ Im) (33)

+
ε

2Nφk+1

(
1(NN+1)[d1, d2, . . . , dN ]

)
⊗ Im

where di =
∑
j∈Ni

wij . Assuming the estimate of the cou-
pling weight matrix U at the adversary as Û = U + ∆U,
where ∆U denotes the uncertainty in adversary’s estimate,
we quantify the privacy guarantee in the following results.

Theorem 3. If an HBC agent has access to the information
{W(l)}kl=0, the messages shared by its neighbors, and an
estimate of the coupling weight matrix Û, then the error
covariance at the HBC agent corresponding to estimate the
initial substates [αT

n(0),βT
n(0)]T is given by

P̃n(k) = P̄n(k) + EU

{
ε2H†(k)∆H(k)Π̃n∆T

H(k)(H†(k))T}
(34)

where Π̃n = 12N1T
2N ⊗ E{xnxT

n} with xn as the state vector,

P̄n(k) = EU

{
ε2H†(k)∆H(k)Σ̃n∆T

H(k)(H†(k))T (35)

+ σ2(I− εH†(k)∆H(k))H†(k)F(k)FT(k)(H†(k))T

(I− εH†(k)∆H(k))T}

where Σ̃n is the covariance matrix for (20), H(k) and F(k)
are defined in (31) and (32), respectively, and

∆H(k) =


0

φ−1C∆G1

...
φ−kC

∑k
t=1 ∆Gt


with ∆Gk =

∑k
t=1

k!εt−1

(k−t)!t!G
k−t∆t

G1
, ∆G1 = −LT∆UL, and

L = [−INm, INm].

Proof: The proof is given in Appendix C.
From Theorem 3, we can show that the first term in (34)

converges to the fixed matrix P̄LB(k) = limn→∞ P̄n(k)
as limn→∞ Σ̃n = Σ̃ and the second term diverges as
limn→∞ tr

(
E{xnxT

n}
)

=∞. Therefore, a lower bound of the
privacy leakage at agent j after k consensus iterations is given
by

Ēj(k) = tr
(
(eT
j ⊗ Im)P(k)(ej ⊗ Im)

)
(36)

where ej ∈ RN is a vector with 1 in the jth entry and zeros
elsewhere and

P(k) =
1

4

[
ImN ImN

]
P̄LB(k)

[
ImN ImN

]T
. (37)

For the worst-case scenario, when the HBC agent knows the
exact coupling weights of the entire network, we can establish
the privacy leakage as follows.

Theorem 4. If an HBC agent knows the exact coupling
weights U, i.e., ∆U = 0, then the error covariance P̃n(k) in
(34) is

P̃(k) = σ2
(
HT(k)

(
F(k)FT(k)

)−1
H(k)

)−1

, ∀n. (38)

Proof: The proof is given in Appendix D.

Remark 2. The privacy guarantee of agents under the special
case of αi,n(0) = βi,n(0) = ri,n can only be provided by
the noise injection technique, and the decomposition technique
does not provide privacy. Fortunately, this special case is not
of great interest, and the algorithm can be configured to avoid
this specific scenario of initial decomposition.

VI. SIMULATION RESULTS

To illustrate the performance of the proposed PP-DKF
algorithm, we consider the undirected connected network with
N = 25 agents shown in Fig. 3. The proposed PP-DKF
is used to collaboratively track the speed and position of
a target moving in two dimensions where the state vector
xn = [Xn, Yn, Ẋn, Ẏn]T consists of the positions {Xn, Yn}
and velocities {Ẋn, Ẏn} in the horizontal and vertical di-
rections, respectively. The state evolution of such a dynamic
system is given by

xn =


1 0 ∆T 0
0 1 0 ∆T
0 0 1 0
0 0 0 1

xn−1 +


1
2 (∆T )2 0

0 1
2 (∆T )2

∆T 0
0 ∆T

 v̂n
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Fig. 3. Network topology with N = 25 agents.

Fig. 4. Tracking performance of distributed Kalman filtering settings for each
N = 25 agents (shaded color) and their average as a solid line with K = 30
consensus iterations and noise variance σ2 = 4.

where v̂n = [Ẍn, Ÿn]T denotes the unknown acceleration
in horizontal and vertical directions and ∆T = 0.04 is the
sampling interval. The acceleration is modeled as zero-mean
Gaussian process with covariance matrix of E{v̂nv̂T

n} =
1.44 I2 while the observation parameters as considered as

Hi =

[
1 0 0 0
0 1 0 0

]
and Cwi,n

=

[
0.0416 0.008
0.008 0.04

]
for each agents i ∈ N . For comparison purposes, we introduce
a DKF that employs the conventional noise-injection based av-
erage consensus technique proposed in [45], with the injected
noise following (9). This algorithm is hereafter referred to as
the noise-injection based privacy-preserving DKF (NIP-DKF).
The consensus and noise parameters are selected as ε = 1/4
and φ = 0.9, respectively. We considered the interaction
weights given in [47], which is W = 0.75E where E denotes
the adjacency matrix of the network shown in Fig. 3. The
elements of the coupling weight ui are chosen independently
with distribution U(η, 1) where η = 0.4.

0 2 4 6 8 10

-20

-15

-10

-5

Fig. 5. Average MSE of the filtering process versus noise variance σ2 for
both theory and simulation with K = 30 consensus iterations.

10 20 30 40 50 60

-20

-10

0

10

20

Fig. 6. The overall filtering average MSE versus the number of consensus
iteration with noise variance σ2 = 4.

A. Kalman filtering performance

Fig. 4 shows the tracking capabilities of the conventional
DKF [3], the NIP-DKF, and the proposed PP-DKF, respec-
tively. We see that the PP-DKF performs as well as the
conventional DKF, which demonstrates the robustness of the
PP-DKF to noise injection and state decomposition. Fig. 5
shows the average MSE of the Kalman filtering process versus
the perturbation noise variance σ2. We see that the perturbation
noise degrades the performance of both approaches, PP-DKF
and NIP-DKF, compared to the conventional DKF [3]. In
other words, increasing the variance of the perturbation noise
increases the MSE. The slower growth rate of the PP-DKF
compared to the NIP-DKF implies its improved robustness to
the injected noise. To compute the filtering state vector esti-
mation error for the NIP-DKF, we follow a similar approach
to the PP-DKF (cf. (17)); the detailed derivation is provided in
Appendix E. Fig. 5 also shows that the theoretical predictions
for NIP-DKF (75) and PP-DKF (20) match the simulation
results perfectly.

Fig. 6 shows the average MSE of the PP-DKF and the
NIP-DKF versus the number of consensus iteration. We see
that increasing the number of consensus iterations reduces the
resulting average MSE. For a sufficiently large number of
iterations, the filtering performance of the PP-DKF and the
NIP-DKF converges to the conventional DKF [3]. Also, it can
be seen that the theoretical predictions for a finite number of
consensus iterations match the simulation results.
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Fig. 7. The observer of the external eavesdropper to estimate all components
of the initial state r4,n(0), i.e., r̂4,n(k), given the noise variance σ2 = 4.
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35

Fig. 8. Network topology with N = 5 agents.

B. External eavesdropper: privacy analysis

To investigate the privacy performance of the proposed PP-
DKF algorithm, we need to focus more on the network and the
effect of adversaries on each individual agents. We therefore
consider a smaller undirected connected network with N = 5
agents shown in Fig. 8. When the NIP-DKF is employed, the
external eavesdropper can construct the following observer (cf.
(46))

r̂n(k + 1) = r̂n(k) + r̃n(k + 1)− (Q⊗ Im) r̃n(k) (39)

where r̂n(k) is the estimate rn at the eavesdropper at time n
after k consensus iterations, Q ∈ RN×N is a doubly stochastic
consensus weight matrix, and r̃n(k) = rn(k) + ω(k). After
some algebraic manipulation the observer in (39) is simplified
as

r̂n(k + 1) = rn(0) + φk+1ν(k + 1) (40)

Since φ < 1, the observer converges to the exact values of
the initial states, i.e., limk→∞ r̂n(k) = rn(0). Fig. 7 shows
the state estimate of the eavesdropper versus the number of
consensus iterations. As mentioned above, whenever the NIP-
DKF is employed, the eavesdropper can estimate the initial
state with great accuracy. In contrast, the PP-DKF prevents
the initial state of the agents from being correctly estimated,
as predicted by Theorem 1. Fig. 7 shows that the estimate
at the eavesdropper in (60) is biased and does not converge
to the exact initial state of the agents. It also represents that

0 10 20 30 40 50 60 70 80

10
-5

10
0

Fig. 9. Average privacy 1
N

∑N
j=1 Ej(k) versus the number of consensus

iterations in the presence of the external eavesdropper.

the predicted estimation bias at the eavesdropper under the
PP-DKF matches the simulation perfectly.

Fig 9 shows the average MSE at the external eavesdropper,
i.e., 1

N

∑N
j=1 Ej(k) with Ej(k) in (22), versus the number of

consensus iterations. In general, the larger this MSE becomes,
the better the privacy of agent j. Under the NIP-DKF, the
average MSE of the external eavesdropper decreases monoton-
ically with the number of consensus iterations. In other words,
the MSE at the eavesdropper tends to zero, meaning that the
external eavesdropper can determine the initial a posteriori
state of the agents exactly. In contrast, when considering the
proposed PP-DKF, the achievable MSE at the adversary is
bounded as in (24) and, therefore, cannot be improved by
extending the number of consensus iterations. Fig 9 also shows
that the predicted bound of the privacy leakage in Theorem 1
matches the simulation.

C. HBC agent: privacy analysis

Here, we investigate the case when an HBC agent attempts
to estimate the initial state of the network agents. We consider
the 5th agent to be an HBC agent (see Fig. 8). The HBC agent
has no access to the coupling weights of other agents, while
as a legitimate agent of the network knows the parameter η.
Based on the assumption about the coupling weights distribu-
tion, the HBC agent uses an average value Ū, with uncertainty
∆U = U− Ū, to estimate the initial states of the other agents.

Fig 10 shows the lower bound of the agent privacy in (36)
after K = 30 consensus iterations versus the injected noise
variance σ2. We see that employing the NIP-DKF, the privacy
of agent 4 is breached due to the lack of neighbors other than
the HBC agent. Consequently, the HBC agent can estimate the
initial state of the 4th agent with negligible error. In contrast,
the proposed PP-DKF significantly improves the privacy for
all agents (agents obtain a substantial level of privacy even
with a low amount of injected noise).

The trade-off between Kalman filtering accuracy and the
average privacy

∑4
j=1 Ēj(k)/4, after K = 30 consensus

iterations, is shown in Fig. 11. It illustrates the privacy-MSE
trade-off for different values of the injected noise variance
σ2. For both PP-DKF and NIP-DKF, we see that a larger
privacy guarantee brings a reduction in filtering accuracy,
which is reflected in a higher MSE. We see that the Kalman
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Fig. 10. Agent privacy versus noise variance (σ2), given K = 30 consensus
iterations. Due to the symmetric topology, agents 1 and 3 achieve same privacy
level and only the result of the 1st agent is shown in the figure.
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Fig. 11. The trade-off between Kalman filtering accuracy and average privacy∑4
j=1 Ēj(k)/4 for different values of the injected noise variance σ2.
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Fig. 12. The mean squared estimation error at the HBC agent after K = 30
consensus iterations versus filtering time instant n.

filter accuracy and the average privacy can be controlled with
injected noise variance. A fixed privacy guarantee is ensured
with the PP-DKF, which has a lower filtering MSE than the
NIP-DKF. This is because the NIP-DKF perturbs the entire
intermediate state vector estimate before sharing it, whereas
the PP-DKF perturbs only its public substate and keeps the
private substate noise-free.

Fig. 12 shows the average of the diagonal elements of
P̃n(k) in (34) after K = 30 consensus iterations versus
filtering time instant n. It illustrates the impact of the diverging
term 12N1T

2N ⊗ E{xnxT
n} in P̃n(k), as stated in Theorem 3,

and also demonstrates the accuracy of the proposed lower
bound of the error covariance matrix, i.e., P̄LB(k), at the
HBC.

VII. CONCLUSIONS

This paper introduced a privacy-preserving distributed
Kalman filter (PP-DKF) using state-decomposition and noise
injection to protect sensitive data of the network agents. The
convergence of the PP-DKF was analyzed in the mean and
mean-square senses, and we provided closed-form expressions
that capture the privacy-related state-decomposition and noise
perturbation effects. Further, the agent-privacy provided by the
PP-DKF was studied in two adversarial settings, namely, when
the network is subjected to external eavesdroppers and honest-
but-curious agents. In particular, we established conditions for
zero privacy leakage and provided lower bounds on achieved
privacy for various practical scenarios. Furthermore, it was
shown that the proposed PP-DKF enhances the privacy level
of all agents and reduces the sensitivity of the Kalman filtering
operations to the injected noise. In addition, the PP-DKF
achieved lower MSE than distributed Kalman filters employing
other recently proposed privacy-preserving techniques. Lastly,
several simulations were presented to corroborate the theoret-
ical results.

APPENDIX A
CONVERGENCE OF THE DECOMPOSITION METHOD

To prove that the noise-free version of the update equa-
tions (10) converge to the exact average of the initial infor-
mation, let us assume

αn(k) =[αT
1,n(k), · · · ,αT

N,n(k)]T ∈ RNm

βn(k) =[βT
1,n(k), · · · ,βT

N,n(k)]T ∈ RNm.
(41)

then network-wide update equations of agents in (10), without
perturbation, can be expressed as

αn(k + 1) =Mαn(k) + εUβn(k)

βn(k + 1) =εUαn(k) + (INm − εU)βn(k)
(42)

where M = (IN − ε(D−W)) ⊗ Im − εU with U =
Blockdiag({Ui}Ni=1) and D = diag({

∑
j∈Ni

wij}Ni=1). Alter-
natively, (42) can be represented as[

αn(k + 1)
βn(k + 1)

]
︸ ︷︷ ︸

z(k+1)

=

[
M εU
εU INm − εU

]
︸ ︷︷ ︸

G

[
αn(k)
βn(k)

]
︸ ︷︷ ︸

z(k)

(43)

where G ∈ R2Nm×2Nm is a doubly stochastic matrix. We can
derive z(k)’s recursive equation based on its initial value as

z(k + 1) = Gk+1z(0)· (44)

Since G is doubly stochastic, all elements of both αn(k+ 1)
and βn(k + 1) converge to the average of the initial value
z(0) = [αT

n(0),βT
n(0)]T, i.e.,

∑N
i=1

1
2N (αi,n(0) + βi,n(0)),

asymptotically. Further, since we have the initial condition
αi,n(0) + βi,n(0) = 2ri,n, we conclude that

lim
k→∞

αi,n(k) = lim
k→∞

βi,n(k) =

N∑
i=1

1

2N
(αi,n(0) + βi,n(0))

=

N∑
i=1

1

2N
(2ri,n) =

1

N

N∑
i=1

ri,n

that is the desired average consensus value and completes the
proof.
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APPENDIX B
PROOF OF THEOREM 1

With the information set IE(k) in (23) and the update
model in (10), the eavesdropper can construct the following
observation model pertaining to agent j

r̂j,n(k + 1) = r̂j,n(k) + α̃j,n(k + 1) (45)

−
(
α̃j,n(k) + ε

∑
l∈Nj

wjl (α̃l,n(k)− α̃j,n(k))
)

with initial value r̂j,n(0) = α̃j,n(0). After collecting the states
and corresponding eavesdropper estimates in the network-wide
vectors

rn(0) , [rT
1,n(0), · · · , rT

N,n(0)]T ∈ RNm

r̂n(k) , [r̂T
1,n(k), · · · , r̂T

N,n(k)]T ∈ RNm,

we can, using (45), express the network-wide eavesdropper-
estimate as

r̂n(k + 1) =r̂n(k) + α̃n(k + 1)

− ((IN − ε(D−W))⊗ Im) α̃n(k)
(46)

where α̃n(k) = αn(k) + ω(k) and

ω(k) ,[ωT
1(k), · · · ,ωT

N (k)]T ∈ RNm

αn(k) ,[αT
1,n(k), · · · ,αT

N,n(k)]T ∈ RNm.

Employing α̃n(k+ 1) = αn(k+ 1) +ω(k+ 1) and α̃n(k) =
αn(k)+ω(k), the network-wide eavesdropper-estimate in (46)
can be further simplified as

r̂n(k + 1) = r̂n(k) +αn(k + 1) + ω(k + 1) (47)
− ((IN − ε(D−W))⊗ Im) (αn(k) + ω(k))·

Considering the network-wide substate update equations
in (10), i.e.,

αn(k + 1) =Mαn(k) + εUβn(k) + ε(W ⊗ Im)ω(k) (48)
βn(k + 1) =εUαn(k) + (INm − εU)βn(k) (49)

where M = (IN − ε(D−W)) ⊗ Im − εU, we obtain
from (48) that

αn(k + 1)− ((IN − ε(D−W))⊗ Im)αn(k) (50)
= εU (βn(k)−αn(k)) + ε(W ⊗ Im)ω(k).

By substituting (50) into (47), we obtain

r̂n(k + 1) =r̂n(k) + εU (βn(k)−αn(k))

− ((IN − εD)⊗ Im)ω(k) + ω(k + 1)
(51)

where βn(k) = [βT
1,n(k), · · · ,βT

N,n(k)]T.
Using (51) and r̂n(0) = αn(0) +ω(0) , we can derive the

recursive equation of r̂n(k) as

r̂n(k + 1) =αn(0) + εU

k∑
l=0

(βn(l)−αn(l))

+ ε (D⊗ Im)

k∑
l=0

ω(l) + ω(k + 1). (52)

Employing the network-wide update equations in (48) and
(49), we obtain

zn(l) =

[
αn(l)
βn(l)

]
= Glzn(0) +

l−1∑
s=0

Gl−1−sB̄ω(s) (53)

with B̄ = ε[W,0N ]T ⊗ Im, and as a result, we can compute
βn(l)−αn(l) as

Lz(l) = βn(l)−αn(l) = LGlzn(0) + L
l−1∑
s=0

Gl−1−sB̄ω(s)

(54)
with L = [−INm, INm]. Substituting (54) into (52) results in

r̂n(k + 1) = αn(0) + εUL
(

k∑
l=0

Gl

)
zn(0) + n(k + 1)

(55)

where noise n(k + 1) is given by

n(k + 1) =εUL
k∑
l=1

l−1∑
s=0

Gl−1−sB̄ω(s) (56)

+ ε (D⊗ Im)

k∑
l=0

ω(l) + ω(k + 1).

Employing the network-wide definition of the perturbation
sequences in (9) results

n(k + 1) =εUL
k−1∑
s=0

φsGk−1−sB̄ν(s) (57)

+ φk ((εD− IN )⊗ Im)ν(k) + φk+1ν(k + 1).

Since G is a symmetric and doubly stochastic matrix, by
construction, we have

Gk =

[
Ck X k

X k Sk

]
.

Substituting Gk in (57), we obtain

n(k + 1) =ε2U
k−1∑
s=0

φs(X k−1−s − Ck−1−s) (W ⊗ Im)ν(s)

+ φk ((εD− IN )⊗ Im)ν(k) + φk+1ν(k + 1).

Due to the structure of G and φ ∈ (0, 1),
limk→∞ n(k + 1) = 0. Consequently, the estimate r̂n(k)
converges to r̂n = limk→∞ r̂n(k) where

r̂n = αn(0) + lim
k→∞

(
εUL

(
k∑
l=0

Gl

)
zn(0)

)
. (58)

Further, G can be written as G = ΘΛ̃ΘT,
where Θ = [θ1,θ2, · · · ,θ2Nm] ∈ R2Nm×2Nm and
Λ̃ = diag(λ1, λ2, · · · , λ2Nm) consists of eigenvalues of matrix
G, with λ1 < λ2 < · · · < λ2Nm−m+1 = · · · = λ2Nm = 1.
Subsequently, we have

Gl = ΘΛ̄
l
ΘT +

1

2N
(12N1T

2N ⊗ Im) (59)

where Λ̄ = diag(λ1, λ2, · · · , λ(2Nm−m), 0, · · · , 0). Since
the spectral radius of the Λ̄ is less than one, we have
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limk→∞
∑k
l=0 Λ̄

l
= (I − Λ̄)−1 and the asymptotic estimate

r̂n in (58) simplifies to

r̂n = αn(0) + εULΛzn(0) (60)

where Λ = Θ(I− Λ̄)−1ΘT ∈ R2Nm×2Nm. The MSE at the
eavesdropper corresponding to agent j can be computed as

Ej = lim
n→∞

lim
k→∞

Ej(k)

= lim
n→∞

tr
(

(eT
j ⊗ Im)E{(rn − r̂n) (rn − r̂n)

T}(ej ⊗ Im)
)

Hence, from the state decomposition constraint in (8), the
privacy leakage for agent j in (22) can be expressed as

Ej = lim
n→∞

tr
(

(eT
j ⊗ Im) L̃E{zn(0)zT

n(0)} L̃
T

(ej ⊗ Im)
)

(61)
where L̃ = 1

2
L− εULΛ. Since we are considering the asymp-

totic analysis, for notational convenience, we remove the
index of k from the parameters. In order to remove the
time-dependence, E

{
zn(0)zT

n(0)
}

needs to be computed. By
stacking all the vectors in (12), we obtain a network-wide
intermediate estimation error as En = 12N⊗xn−zn(0). Since
xn and the intermediate estimation error En are uncorrelated,
we have

E
{
zn(0)zT

n(0)
}

= Σ̃n + 12N1T
2N ⊗ E{xnxT

n} (62)

where Σ̃n = E{EnET
n}. From (1) and assuming that

x−1 ∼ N (0,Π0), we can obtain

E{xnxT
n} = An+1Π0(An+1)T +

n∑
i=0

An−iCvi
(An−i)T

(63)
which is diverging. Since limn→∞Σn = Σ, it follows that
limn→∞ Σ̃n = Σ̃. Thus, limn→∞ E{zn(0)zT

n(0)} consists of
a fixed term Σ̃ and a diverging term as

lim
n→∞

E{zn(0)zT
n(0)} = Σ̃+12N1T

2N⊗ lim
n→∞

E{xnxT
n}. (64)

From (59) and since Gl is a doubly stochastic matrix,
it follows that for all l the sum of elements in each
row (column) of the matrix ΘΛ̄

l
ΘT is zero. Subsequently,

the sum of elements in every row (column) of the ma-
trix Λ = Θ(

∑∞
l=0 Λ̄

l
)ΘT is equal to one. Thus, the term of

L̃(12N1T
2N ⊗ limn→∞ E{xnxT

n})L̃
T in (61) becomes zero due

to the structure of L̃, and, privacy leakage for agent j is
obtained as

Ej = tr
(

(eT
j ⊗ Im) L̃Σ̃L̃

T
(ej ⊗ Im)

)
which completes the proof.

APPENDIX C
PROOF OF THEOREM 3

To find a closed-form expression for the error covariance
P̃n(k) in (34), we estimate the initial substates zn(0) using
the observation model in (30). If the perfect observation
matrix H(k) is available, the estimate of the initial substates
zn(0) = [αT

n(0),βT
n(0)]T can be modeled as

z̄n(0) = H†(k)(H(k)zn(0) + F(k)ν̄(k)) (65)

where ν̄(k) = [νT(0),νT(1), · · · ,νT(k)]T. However, the obser-
vation matrix H(k) has to be estimated at the HBC agent due
to the uncertainty of the coupling weight matrix U at the HBC
agent.

Following the estimation procedure in [54], the HBC agent
estimates the coupling weight matrix as Û = U + ∆U

where ∆U shows its uncertainty to determine the coupling
weight matrix U. An estimate of matrix G is obtained using
uncertainty modeling above as Ĝ = G + ε∆G1 where
∆G1 = −LT∆UL. Employing the binomial expansion, the
uncertainty of Ĝk is simplified as Ĝk = Gk + ε∆Gk

where

∆Gk
=

k∑
t=1

k!εt−1

(k − t)!t!
Gk−t∆t

G1
∀k ≥ 2.

Thus, estimate of the observation matrix H(k) is is formulated
as Ĥ(k) = H(k) + ε∆H(k) where ∆H(k) denotes the
uncertainty of the observation matrix, independent of H(k),
and is computed as

∆H(k) =


0

φ−1C∆G1

...
φ−kC

∑k
t=1 ∆Gt

 .
Subsequently, the estimate of the initial substates in (65) is

reformulated as

ẑn(0) = Ĥ†(k)yn(k) (66)

where Ĥ†(k) = (H(k) + ∆H(k))
†. The HBC agent is a

legitimate agent of the network and knows the distribution
of coupling weights. Given a negligible uncertainty in Ĥ(k),
the pseudo-inverse in (66) can be approximated by the first
order Taylor expansion as

Ĥ†(k) ∼= H†(k)
(
I(k+1)(NN+1)m − ε∆H(k)H†(k)

)
. (67)

Substituting (67) into (66) results in

ẑn(0) =
(
H†(k)− εH†(k)∆H(k)H†(k)

)
yn(k),

which can be further simplifies as

ẑn(0) = zn(0) + η(k) (68)

where η(k) is the estimation error of the initial substates

η(k) =H†(k)F(k)ν̄(k)− εH†(k)∆H(k)zn(0)

− εH†(k)∆H(k)H†(k)F(k)ν̄(k).

Thus, the estimation error covariance, given
E{ν̄(k)ν̄(k)} = σ2I(k+1)Nm, assuming mutual independence
of the noise sequences wi,n, vn, νi(k), and initial system
state x−1 ∼ N (0,Π0) for all n = 1, 2, · · · , i ∈ N , and
k ∈ [1,K], is obtained as

E{η(k)ηT(k)}=
ε2H†(k)∆H(k)E{zn(0)zT

n(0)}∆T
H(k)(H†(k))T

+ σ2(I− εH†(k)∆H(k))H†(k)F(k)FT(k)(H†(k))T

(I− εH†(k)∆H(k))T. (69)
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The average of the estimation error covariance in (69), with
respect to the uncertainty of the coupling weights is denoted
as P̃n(k) = EU

{
E{η(k)ηT(k)}

}
which by substituting (62)

into (69), we have

P̃n(k) = P̄n(k) +EU

{
ε2H†(k)∆H(k)Π̃n∆T

H(k)(H†(k))T}
where Π̃n = 12N1T

2N ⊗ E{xnxT
n} with xn representing the

state vector in (1) and

P̄n(k) = EU

{
ε2H†(k)∆H(k)Σ̃n∆T

H(k)(H†(k))T (70)

+ σ2(I− εH†(k)∆H(k))H†(k)F(k)FT(k)(H†(k))T

(I− εH†(k)∆H(k))T}.
From (64), it has been shown that P̃n(k) is comprised of a
fixed and a diverging terms, which completes the proof.

APPENDIX D
PROOF OF THEOREM 4

A worst-case scenario for privacy in Appendix C occurs
when the HBC agent has access to coupling weights of the
entire network, resulting in access to the actual value of the
observation matrix H(k). In this scenario, ∆H = 0, the
estimation error covariance matrix in (34) simplifies to

P̃(k) = σ2
(
HT(k)

(
F(k)FT(k)

)−1
H(k)

)−1

(71)

which is the same as the error covariance matrix of an ML
estimator [55] with the observation model in (30). Here,
we show that although the HBC agent has access to the
coupling weights of the entire network, the mean squared
estimation error at the HBC agent attempting to estimate
substates αj,n(0) and βj,n(0), respectively, defined as

Ẽj(k) = tr
(

(ẽj ⊗ Im)P̃(k)(ẽT
j ⊗ Im)

)
ẼN+j(k) = tr

(
(ẽN+j ⊗ Im)P̃(k)(ẽT

N+j ⊗ Im)
)
,

is non-zero, where ẽj ∈ R2N is a vector with 1 in the jth
entry and zeros elsewhere. The mean squared estimation error
Ẽj(k) for j = 1, 2, · · · , 2N is lower-bounded as

Ẽj(k) = tr
(

(ẽj ⊗ Im)(ẽT
j ⊗ Im)P̃(k)

)
> λmin m

where λmin is the minimum eigenvalue of the error covariance
P̃(k) and m is length of the state vector. Therefore, all agents
will have an estimate error greater than zero if we can show
that λmin > 0. In other words, it is sufficient to show that
(71) is invertible. We start by showing the invertibility of
F(k)FT(k) where F(k) , (Ik+1 ⊗Cα)F(k) and

F(k) =


INm 0Nm · · · 0Nm

φ−1C0B INm · · · 0Nm
...

...
. . .

...
φ−kCk−1B φ−(k−1)Ck−2B · · · INm

 .
(72)

To this end, let us consider an arbitrary vector
x =

[
xT

0,x
T
1, · · ·xT

k

]T ∈ R(k+1)Nm, and form

F(k)x =


x0

φ−1C0Bx0 + x1

...
φ−kCk−1Bx0 + · · ·+ xk

 = 0. (73)

It follows that the only vector satisfying (73) is the trivial
solution x = 0. Thus, F(k) is a full rank matrix and invertible.
Considering the structure of the observation matrix H(k) and
P̃(k) in (71), for HT(k)

(
F(k)FT(k)

)−1
H(k) to be invertible

H(k) must have rank greater than or equal to 2mN . By
collecting sufficient information, the observation matrix H(k)
must have at least 2mN independent rows, then the HBC agent
can estimate the initial substate of the network agents with a
non-zero estimation error.

APPENDIX E
FILTERING PERFORMANCE UNDER THE NIP-DKF

Following a same approach to that of the PP-DKF (cf. (17)),
we formulate the network-wide state vector estimation error
dynamics, given k consensus iterations, as follows

Ēn|n =
(
Qk ⊗ Im

)
Ēn + φk−1(Q⊗ Im)ν(k − 1)

+

k∑
s=2

φk−s
(
(Qs −Qs−1)⊗ Im

)
ν(k − s)

(74)

where Q is the doubly stochastic consensus weight matrix as
introduced in [45]. For notational convenience, we removed
the index k from the parameters in the following analysis.
Alternatively, (74) can be reformulated as

Ēn|n = P̄Ēn−1|n−1 + Q̄Ῡn − Ω̄n + φk−1(Q⊗ Im)ν(k − 1)

+

k∑
s=2

φk−s
(
(Qs −Qs−1)⊗ Im

)
ν(k − s)

where Ῡn = [vT
n, · · · ,vT

n]T ∈ RNm and

P̄ =
(
Qk ⊗ Im

)
Blockdiag({PiA}Ni=1)

Q̄ =
(
Qk ⊗ Im

)
Blockdiag({Pi}Ni=1)

Ω̄n =
(
Qk ⊗ Im

)
Blockdiag({Qi}Ni=1)[wT

1,n, · · · ,wT
N,n]T.

The second-order statistics of all agents, denoted by Σ̄n =

E{Ēn|nĒ
T
n|n}, is given by

Σ̄n = P̄Σ̄n−1P̄
T

+ Q̄C̄ΥQ̄T
+ C̄Ω + T̄ (75)

where C̄Υ = E{ῩnῩ
T
n}, and C̄Ω = E{Ω̄nΩ̄

T
n}. The effect

of injected noise is manifested in T̄ which evolves as

T̄ =

k∑
s=2

φ2(k−s)T̃ s + φ2(k−1)(Q⊗ Im)Cν(Q⊗ Im)T

with T̃ s =
(
(Qs−1 −Qs−2)⊗ Im

)
Cν

(
(Qs−1 −Qs−2)⊗ Im

)T.
Due to the doubly stochastic matrix Q and similar to [3], P̄
is stable; therefore, Σ̄n → Σ̄ as n→∞ and

E{Ēn|n} = P̄E{Ēn−1|n−1} = P̄nE{Ē0|0}.
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Since P̄ is stable, we have limn→∞ E{Ēn|n} = 0 that indicates
the steady-state estimates are unbiased regardless of their
initializing values or privacy-preserving perturbations. The
effect of injected noise is manifested in terms of T̄ , which
degrades the steady-state MSE.
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