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Abstract—This paper proposes an optimal scheduling policy
for a system where spatio-temporally dependent sensor observa-
tions are broadcast to remote estimators over a resource-limited
broadcast channel. We consider a system with a measurement-
blind network scheduler that transmit observations, and design
scheduling schemes that minimize MSE by determining a subset
of sensor observations to be broadcast based on their information
freshness, as measured by their age-of-information (AoI). By
modeling the problem as a finite state-space Markov decision
process (MDP), we derive an optimal scheduling policy, with
AoI as a state-variable, minimizing the average mean squared
error for an infinite time horizon. The resulting policy has a
periodic pattern that renders an efficient implementation with
low data storage. We further show that for any policy that
minimizes the overall AoI, the estimation accuracy depends on
how the scheduling order relates to the sensor’s intrinsic spatial
correlation. Consequently, the estimation accuracy varies from
worse than a randomized scheduling approach to near-optimal.
Thus, we present an additional age-minimizing policy with
optimal scheduling order. We also present alternative policies
for large state spaces that are attainable with less computational
effort. Numerical results validate the presented theory.

Index Terms—Wireless sensor networks, age-of-information,
spatio-temporal correlation, remote estimation, resource-
constrained networks

I. INTRODUCTION

Wireless sensor networks (WSN) provide the data collec-
tion infrastructure for control and estimation systems used
in internet-of-things applications. In WSN and networked
control systems, sensor observations are communicated to
controllers or remote estimators that track physical processes
by forming estimates. Sensors often share a limited number of
communication channels and follow protocols to reduce inter-
ference. Measurement transmission protocols are categorized
as either event- or time-triggered [1], [2]. The former refers to
sensors transmitting an observation in case of an event, e.g.,
a measurement exceeds a predefined threshold [3]. The latter
refers to allocating time slots for each sensor transmission.
Time-triggered scheduling has the advantage that it can result
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in collision-free communication [1], [4] and is the focus of
this paper.

In networked control systems, the system utility depends
on the estimation accuracy of the controllers and estimators.
A common objective is to design optimal sensor scheduling
schemes that minimize the time-average estimation error.
The processes tracked by the system are dynamic and time-
dependent, and finding optimal scheduling policies involves
solving sequential decision-making problems. One approach
to solve this problem, is to find scheduling sequences that
minimize the estimation error over shorter time horizons
[5], [6]. As the time horizon grows, the number of possi-
ble scheduling trajectories rapidly increases, and short-term
approximations can become sub-optimal over more extended
periods. A common objective is, therefore, to find optimal
policies for infinite time horizons.

Optimal scheduling schemes have been studied under var-
ious resource constraints, e.g., limited battery [7] or limited
packet size for sensors monitoring sources with heterogeneous
dynamics [8]. In [4], authors derive an optimal policy scheme
for a system with multiple linear time-invariant sub-systems
and a single communication channel. The resulting policy was
to schedule the sensors in a periodic sequence. Although,
addition of more communication channels improves the overall
real-time accuracy, it also adds complexity in finding optimal
scheduling policies as the number of possible scheduling
decisions increases. In [9], authors use deep reinforcement
learning to find an optimal policy for a system with multiple
linear time-invariant sub-systems and multiple communication
channels. The works [10], [11] propose an optimal policy
for the case when a network manager, responsible for the
scheduling, can observe the sensor measurements. Authors in
[12] consider the system security aspect and derive an optimal
scheduling policy in the presence of eavesdroppers.

All the previous works assume that sensor observations are
independent. In contrast, sensor observations tend to be spatio-
temporally dependent [13], [14], which can be exploited to
improve the remote estimators’ overall accuracy. For example,
this has been done in resource-constrained WSN to achieve
energy-efficient routing [15], optimal sensor location selection
[16], and reducing traffic load [13]. However, only a few
works have considered dependency among sensors in optimal
sensor scheduling problems related to remote estimation. In
[17]–[19], the authors study the transmission frequency of
spatio-temporally correlated sensor measurements modeled by
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a random field. Finally, in [20], the authors find an optimal
scheduling policy for a system of dependent sensor processes
where a network manager, responsible for the scheduling,
can observe measurements before scheduling. The scheduling
strategy reduces estimation error, but the setup has implica-
tions for privacy and latency.

This paper presents an optimal scheduling policy for a
system where multiple spatio-temporally dependent sensor
observations are broadcast to remote estimators via a network
manager. However, due to limited channel capacity, only a
subset of all sensor observations, which is determined by the
scheduler, can be communicated by the network manager at
each time instant. The estimators compensate for the lack of
observations by exploiting the spatio-temporal dependencies
in the received information to improve its local estimation
accuracy. Our system model is similar to [7], [11], [20], [21];
however, we allow for multiple sensor observations to be
broadcast as in [22] and assume that the scheduler can not view
the measurements. The scheduling policy is instead based on
determining the mean squared error (MSE) with respect to the
timeliness of the information. Thus, the scheduler decides the
scheduling decision given the age-of-information (AoI) [23].

The AoI refers to the freshness of information [23], i.e.,
the time elapsed since the information was generated. Per-
formance metrics of the AoI, e.g., peak and average, have
been studied under different system settings [2], [23]–[29].
For most remote-estimation systems, the real-time tracking
accuracy depends on the AoI. However, the relationship
between accuracy and the AoI is not always linear; thus,
minimizing average AoI may not correspond to optimal per-
formance [30]. The AoI can also be used as a state vari-
able to assist in designing and evaluating scheduling policies
in a variety of tasks, e.g., updating model parameters in
federated learning [31], maximizing the value-of-information
[30], and minimizing the time-average estimation error [5],
[30], [32]. In the same way, the AoI has been utilized in
several works regarding scheduling for remote state estima-
tion and network control, see, e.g., [5], [32]–[38]. Recently,
scheduling of multiple sensors that share multiple unstable
communication channels that result in packet dropouts have
been studied in [5], [37], [38]. In [37], the authors consider
a system of multiple Markov fading communication channels
and determine the system conditions in terms of LTI system
parameters and channel statistics that guarantee stability, i.e.,
the existence of a scheduling policy that result in a bounded
average estimation MSE. Similary, in [38] stability conditions
for a system of multiple wireless network control systems
sharing multiple imperfect communication channels for uplink
and downlink transmissions is determined, and a scheduling
policy is derived using deep-reinforcement-learning. However,
the aforementioned works regarding AoI-based scheduling
and remote estimation [5], [32]–[38] concern scheduling of
independent sensor observation, whereas there exist a minority
of works that consider and exploit dependency among sensor
observations.

Among the works that connect AoI and remote estimation of
correlated processes, ours resembles that of [17]–[19], which
assumes a similar model for the spatio-temporal dependency.

In contrast, [17]–[19] find optimal sensor transmission rates,
where as we exploit full channel capacity and decide the
subset of sensors to be scheduled during each time slot.
The authors of [17], [18] primarily focus on maximizing
sensor battery lifetime for the desired estimation accuracy.
In [39], the average AoI is minimized for a WSN where
sensors observe partial information from sources, and multiple
status packet updates are required at the receiver for proper
reconstruction. In [40], the overall AoI is minimized in a WSN
where neighboring sensors monitor overlapping sources that
produce updates according to independent Poisson processes.
In contrast, system setup in this paper differs from the above
as it allows for multiple communication channels. To clarify
the difference to the related works regarding the scheduling
of spatio-temporally dependent observations [17]–[19] for a
remote estimation WSN, we: i) allow for multiple sensors
to be scheduled over multiple communication channels at
each time-instant; ii) do not focus on the transmission rate
but regard time-discrete scheduling to exploit full channel
capacity, and; iii) do not assume homogenous distributions
among the processes.

The main contributions of the paper can be summarized as
follows:

• We prove the existence and derive an optimal schedul-
ing policy for a system of multiple spatio-temporally
dependent observations based on the age-of-information.
An optimal policy minimizes the average mean squared
estimation error over an infinite time horizon.

• We show that a policy can be derived by formalizing
the problem as a finite-state MDP. The finite-state MDP
is possible by exploiting the property that increasing
time-distance between consecutive transmissions from a
single source decreases spatio-temporal correlation to
observations from other sources.

• We also show that an optimal policy yields a periodic
scheduling pattern, which has earlier been demonstrated
for optimal single-sensor scheduling [?], [4], [41]. This
property simplifies the practical implementations and
saves data storage at the network manager.

• We show that the finite state space implies that any
deterministic policy results in a periodic structure. The
performance of any periodic scheduling policy can be
easily calculated using the theoretical framework given
in the paper.

The precursor of this work can be found in [42], where
the same system was considered for two sensors. Due to
the computational complexity for large sensor systems, we
present low-complexity policies compared to our optimal
policy. These alternative policies are respectively based on
minimizing the AoI and the short-term mean squared error. We
demonstrate that minimizing the AoI of a system can lead to
near-optimal performance. However, the intrinsic order of the
sensor scheduling significantly affects the estimation accuracy
when measurements are dependent. Thus, as most works
regarding AoI-based scheduling have focused on minimizing
the overall AoI, the scheduling order should be accounted for
when dealing with spatio-temporally dependent observations
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in remote estimation tasks. In all, this paper demonstrates that
performance can be improved for channel constrained remote
estimation systems by incorporating spatial dependencies and
the AoI.

The remainder of the paper is organized as follows. In
Section II, we present the system model and the scheduling
problem. Next, in Section III, we formulate the problem as
a finite-state Markov decision process and demonstrate how
an optimal policy can be obtained and that it results in a
periodic scheduling sequence. In Section IV, we show that
the performance of any periodic scheduling policies is inde-
pendent of the initial AoI and how this allows the scheduler
to save data storage. For large WSNs, we present in Section V
alternative scheduling policies that can be obtained using less
computational effort. Section VI validates the theory based on
numerical results, and Section VII concludes the paper.

II. BACKGROUND AND PROBLEM FORMULATION

We consider a WSN of N sensors, one scheduler, and N
remote estimators as depicted in Fig. 1. Sensor i observes
the stochastic process θi[k] ∈ R, at time instant k ∈ N and
i = 1, ..., N . For each process θi[k], there is a corresponding
remote estimator that tracks the process and forms an esti-
mate θ̂i[k] based on sensor measurements communicated via
the network scheduler. Due to limited channel capacity, the
scheduler broadcasts D ∈ N+, D ≤ N , sensor observations to
the remote estimators at instant k over D orthogonal channels.
We assume that the channels are reliable and packet losses
are addressed by retransmission through higher layers of the
communication protocol.

Below we describe the three key blocks in Fig. 1: the source
processes, the scheduler, and remote estimators. Finally, we
present the scheduling problem considered in this paper.

A. Source processes

Each process θi[k] follows a Gaussian distribution θi[k] ∼
N (0, σ2

i ). The processes {θi[k]}Ni=1 are correlated over space
and time with the cross-covariance given by a positive-definite
function [43], [44]

E[θi[k]θj [l]] = σiσjρijϕ(|k − l|), i, j ∈ {1, ..., N}, (1)

where ρij ∈ [−1, 1] represents the spatial correlation and ϕ :
R+ → (0, 1] is the temporal correlation, which is a strictly
decreasing function with ϕ(0) = 1 and limn→∞ ϕ(n) = 0. At
time instant k, the ith sensor acquires measurement xi[k] ∈ R,
which is modeled as

xi[k] = θi[k] + wi[k], k ∈ N, i = 1, 2, ..., N, (2)

where wi[k] ∈ R denotes independent identically distributed
(iid) measurement noise with distribution wi[k] ∼ N (0, ξ2).

B. Scheduler

Let π[k] ∈ {1, ..., N}D be a scheduling variable denoting
an index set of sensors to be scheduled at time k. The AoI
of the ith sensor is denoted by ∆i[k] ∈ N+, i = 1, ..., N,
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Fig. 1. Schematic of WSN scheduling problem with D = 2.

and defined as the time elapsed between two measurement
transmissions [17], i.e.,

∆i[k] =

{
0, if i ∈ π[k],
∆i[k − 1] + 1, if i /∈ π[k].

(3)

The scheduler is not allowed to observe the measurements,
x[k] = [x1[k], x2[k], ..., xN [k]]T, but can keep track of the
AoI at each sensor through vector ∆[k], where ∆[k] =
[∆1[k],∆2[k], ...,∆N [k]]T. Let us define the information set
I[k] available at the scheduler for decision at time instant k.
Information set I[k] is the collection of the AoI for time k =
0, 1, . . . , k−1 and defined as I[k] = {∆[0],∆[1], . . . ,∆[k−
1]}. Let γk : I[k] → {1, ..., N}D, denote the scheduling
strategy at time k, i.e.,

π[k] = γk(I[k]), (4)

which provides a mapping from I[k] to the scheduling deci-
sion at instant k.

C. Remote estimators

The data available at the ith remote estimator at time instant
k consists of ∆[k] and y[k] = [y1[k], y2[k], ..., yN [k]]T, where
yi[k] is the most recently broadcast measurement from Sensor
i, i.e.,

yi[k] = xi[k −∆i[k]], i = 1, ..., N. (5)

The estimate θ̂[k] = [θ̂1[k], θ̂2[k], ..., θ̂N [k]]T is the linear
minimum mean square error (MMSE) estimate [45] given as
a function of ∆[k] and y[k] as follows,

θ̂[k] = E[θ[k]|∆[k],y[k]] = Cθy[k]C−1
yy [k]y[k], (6)

where the elements of the cross-covariance and covariance
matrices are given by

[Cθy[k]]i,j = σiσjρijϕ(∆j [k]), i = 1, ..., N, j = 1, ..., N,

[Cyy[k]]i,j = σiσjρijϕ(∆ij [k]) + ξ2δ(i− j), (7)

with ∆ij [k] = |∆i[k]−∆j [k]| ∈ N+ being the AoI differences
between the two processes, and δ(·) the Dirac delta function.

It should be noted that estimator (6) uses only the most
recent measurement from each sensor. Even though the esti-
mation accuracy can be improved by using previous measure-
ments, the scheduling problem becomes intractable due to the
spatio-temporal correlation of the process and the influence of
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AoI on the scheduling policy. Therefore, in order to obtain
insights into the properties of an optimal scheduling policy
and derive efficient algorithms for scheduling, we simplify the
estimator as given in (6).

D. Scheduling policy

The scheduling policy γ over time horizon T is defined as
the collection of scheduling strategies from time instant k = 1
to k = T , i.e., γ = (γ1, γ2, . . . γT ). As performance measure
(cost), we adopt the total mean squared error (MSE) of the
estimate (6) over T time slots, given by

J(γ, T ) =
1

TN

T∑
k=1

N∑
i=1

E
[
(θi[k]− θ̂i[k])2

∣∣∣γ, I[k]
]
, (8)

where I[1] = {∆[0]} is known at the scheduler.
Our objective is to find an optimal scheduling policy γ∗ that

minimizes the average cost in (8) over an infinite time horizon

min
γ∈Γ

lim
T→∞

J(γ, T ), (9)

where Γ is the set of all feasible policies.

III. OPTIMAL SCHEDULING POLICY

In this section, we first reformulate (9) as a Markov decision
process (MDP). We propose an equivalent MDP with truncated
states to cope with the resulting high-dimensional state-space
by exploiting finite-duration temporal correlation. The two
formulations are shown to give the same set of possible MSE
values. Finally, we derive an optimal policy and show that it
yields a periodic scheduling sequence, significantly reducing
the implementation complexity.

To solve (9), we must be able to calculate the cost in (8),
which depends on the process ∆[k] during interval k ∈ [1, T ].
The MSE at instant k can be expressed as a function f :
∆[k]→ R+, i.e.,

f(∆[k]) =

N∑
i=1

E
[
(θi[k]− θ̂i[k])2

∣∣∣∆[k]
]

= tr
(
Cθθ −Cθy[k]C−1

yy [k]CT
θy[k]

)
, (10)

where Cθθ is the covariance matrix of θ[k] and tr(·) denotes
the trace of its argument matrix. The MSE increases with
respect to the AoI, i.e.,

f([∆1[k], ...,∆i[k], ...,∆N [k]]T) ≤ (11)

f([∆1[k], ...,∆i[k] + 1, ...,∆N [k]]T), i = 1, ..., N.

and is upper bounded by the sum of the marginal variances,
i.e.,

f(∆[k]) ≤ tr
(
Cθθ

)
=

N∑
i=1

σ2
i . (12)

Proposition 1. An optimal policy γ∗ can be obtained by
solving

min
γ∈Γ

lim
T→∞

1

TN

T∑
k=1

E
[
f(∆[k])

∣∣∣γ,∆[0]
]
. (13)

Proof. The proof is given in Appendix A.

Proposition 1 shows that the MSE at instant k depends on
∆[k], which in turn depends on ∆[k − 1] and π[k]. Hence,
the problem in (9) can be modeled as a Markov decision
process (MDP) with the AoI as the state, the MSE as the
reward and the scheduling decision as the action at instant k.
In the following section, we formalize an MDP and derive an
optimal scheduling policy γ∗ that fulfills being time-average
reward optimal.

A. Markov decision process formulation

To find γ∗, we model the system as an MDP with the AoI
as the state and the MSE as the reward at instant k. We begin
by deriving the set of possible AoI values, which will define
the state space for our MDP. Later, we show that an optimal
scheduling policy γ∗ is time-average reward optimal.

The set of possible AoI values depends on the system
parameters N and D. We assume that at time instant k = 0,
the system is initiated and that the AoI before initialization,
k ∈ N−, is ∆[k] = [∞,∞, ...,∞]T, ∆i[k] 6= ∆j [k],
i, j = 1, ..., N . At each time instant k ∈ N+, D observations
are scheduled, resulting in D sensors with AoI equal to zero
and at most D sensors having the same AoI.

If a round-robin scheduling policy [9] is applied, there
would be a maximum AoI across all sensors, denoted as
∆̄ ∈ N+, i.e.,

∆̄ = min
γ∈Γ

lim
k→∞

sup E
[
∆i[k]

∣∣γ], ∀i = 1, 2, ..., N,

=

{
N/D − 1, if 0 = N mod D,
bN/Dc, else, (14)

where b·c is the floor operator. For a round-robin scheduling
policy, at each time instant k, there will be N̄ sensors with an
AoI equal to ∆̄. The value N̄ is given by

N̄ =

{
D, if 0 = N mod D,
N mod D, else. (15)

Let c : NN+×N+ → N+ be an operator counting the number
of elements in a vector x ∈ Nn+ that equal to l ∈ N+, i.e.,

c(x, l) =

N∑
i=1

1([x]i = l),

where 1(·) is an indicator function having value 1 if the
condition in the argument is true and 0 otherwise.

Given N , D, (14) and (15), the set of possible AoI values
S, ∆[k] ∈ S, k ∈ N+ generated by any policy γ ∈ Γ becomes

S =
{
x ∈ NN+ |c(x, 0) = D,

c(x, l) ≤ D, l ∈ N++,

c(x, ∆̄) ≥ N̄
}
. (16)

Assumption 1. We assume ∆[k] ∈ S, for k ∈ N+

Definition 1. We define the MDP M in the following way;

• State at instant k is ∆[k − 1] and state space S.
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• Action at instant k is π[k] and the action space A =
{1, ..., N}D.

• Transition probabilities P (∆[k] |∆[k−1],π[k]), given
state and action at instant k, can be derived using (3).

• Reward r(∆[k − 1],π[k]) ∈ R− at instant k equals
−N−1f(∆[k]) in (10) and is given by the reward func-
tion r : {S,A} → R−.

As can be seen above, the scheduling problem in (9) can
be formulated as an MDP, where the current state, ∆[k − 1],
only depends on the previous state and the scheduling decision
π[k]. Thus, we formalize the following lemma.

Lemma 1. If the estimator uses only the most recent mea-
surement from each sensor, then it suffices to consider only
the restricted information set with only the previous AoI
Ī[k] = {∆[k− 1]} ⊆ I[k] for the scheduling decision at time
k = 1, ..., k−1 instead of I[k] = {∆[0],∆[1], . . . ,∆[k−1]}
at the scheduler to determine an optimal policy γ∗.

Proof. As shown, the problem in (9) can be modeled as the
Markov decision process M, where at instant k, the state is
∆[k−1], the action is π[k] and the reward is −N−1f(∆[k]).
The mathematical model fulfills Markovian properties, such
that the state transition and reward only depend on the state
and action at time k. From (3), the transition from ∆[k − 1]
to ∆[k], given π[k], is independent of time instant k ∈ N+.
From (8) and (9), the time horizon is infinite, i.e., T → ∞;
hence, it is unnecessary to include the time instant k ∈ N+

in state definition. Thus, it suffices to reduce the information
set I[k] to Ī[k] = {∆[k− 1]},∀k ∈ N+ and find a policy γ∗

that minimizes the time-average reward in M.

Hereafter, the information set is restricted to Ī[k] = {∆[k−
1]}. Let gγ : S → R− be a function giving the average reward
for policy γ in M

gγ(∆[0]) = lim
T→∞

1

T

T∑
k=1

E
[
r(∆[k − 1],π[k])

∣∣∣γ,∆[0]
]
.

(17)

Comparing (17) with (9), we can see that an optimal policy
γ∗ satisfies to maximize the average reward in M, i.e.,

gγ∗(∆[0]) ≥ gγ(∆[0]), ∆[0] ∈ S. (18)

If ∆[k−1] represents the state,M has an infinite countable
state-space S, for which an average reward optimal policy
γ∗ may not exist or is prohibitively complex to derive [46].
Therefore, we shall use another state-variable for the MDP
that corresponds to a finite state-space.

In the following section, we show that if the temporal cor-
relation in (1) is zero beyond a point, i.e., ϕ(x) = 0, ∀x ≥ m,
we can map S in (16) to an equivalent finite set and model
the scheduling problem using a finite state-space to derive γ∗.

B. Finite-state MDP

In this section, we will define the finite-state MDP by first
introducing a state-vairble by truncating AoI values larger then
m, based on the criteria that ϕ(x) = 0, ∀x ≥ m. Later on,
we define an optimal scheduling policy based on the truncated

AoI that minimizes the time-average MSE. If such a policy is
known, it can then be used to derive an optimal scheduling
policy γ∗.

From (10) and (12), we see that as the AoI grows, the
temporal correlation becomes negligible, and the MSE does
not increase with respect to the marginal AoI, i.e.,

lim
∆i[k]→∞

|f([∆1[k], ...,∆i[k] + 1, ...,∆N [k]]T) (19)

− f([∆1[k], ...,∆i[k], ...,∆N [k]]T)| = 0, i = 1, ..., N.

Therefore, we can reduce the state-space in our MDP to only
AoI values that correspond to distinct MSE values. Since ϕ
in (1) is continuous, we restrict the set of possible correlation
functions ϕ as stated in Assumption 2.

Assumption 2. The temporal correlation function ϕ : R+ →
[0, 1] in (1), satisfies ϕ(x) = 0, for all x ≥ m, m ∈ N+.

Assumption 2, together with (7), gives that the infor-
mation at Estimator j, yj [k], whose AoI exceeds m, i.e.,
∆j [k] ≥ m, is uncorrelated with all processes at time k,
i.e., E

[
θi[k]yj [[k]

]
= 0,∀i = 1, ..., N . As a consequence, the

infinite state space S maps to a finite-set of MSE values,
i.e., f : S → Y with |Y| < ∞. This gives that any of
the elements ∆̃i[k], ∆̃ij [k] ∈ {0, 1, ...,m}, ∀i, j = 1, .., N ,
belonging to the AoI vector ∆[k] can be truncated to m while
still corresponding to the same MSE value in (10).

Based on the former mentioned properties, we introduce a
variable that pertains to all possible MSE values and belongs
to a finite set. Let ∆̃[k] ∈ {0, 1, ...,m}N2

contain the elements
∆̃i[k], ∆̃ij [k] ∈ {0, 1, ...,m}, ∀i, j = 1, .., N , i.e.,

∆̃i[k] =
[
∆i[k]

]m
+
, i = 1, ..., N, (20)

∆̃ij [k] =
[
|∆i[k]−∆j [k]|

]m
+

=
[
∆ij [k]

]m
+
, i, j = 1, ..., N,

where m ∈ N+,
[
·
]m
+

is defined as the truncation operator[
x
]m
+

, min{x,m}, x ∈ R+ and ∆̃[k] denotes the truncated
AoI [47].

Let b : NN+ → {0, 1, ...,m}
N2

be a mapping from ∆[k] to
∆̃[k], i.e., ∆̃[k] = b(∆[k]). Applying b on the set of possible
AoI values S in (16), gives the finite set of possible truncated
AoI values

S̃ = {b(∆) |∆ ∈ S}. (21)

We can express the MSE as a function of ∆̃[k] as follows

f̃(∆̃[k]) =

N∑
i=1

E
[
(θi[k]− θ̂i[k])2

∣∣∣∆̃[k]
]

(22)

= tr
(
Cθθ − C̃θy[k](C̃yy)−1[k](C̃θy[k])T

)
,

with C̃yy[k] and C̃θy[k] calculated using ∆̃[k] as

[C̃yy[k]]i,j = σiσjρijϕ(∆̃ij [k]) + ξ2δ(i− j),
[C̃θy[k]]i,j = σiσjρijϕ(∆̃j [k]), i, j ∈ {1, ..., N}. (23)

In the following propositions, we show that ∆̃[k] can be
used as a state-variable for modeling the system as an MDP.
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Remark 1. Note in (20) that ∆ij [k] = ∆ji[k], for i, j =
1, .., N . It is, therefore, sufficient to store only one of the two
elements to reduce the dimension of S̃.

Proposition 2. Under Assumption 2, the following relation-
ship holds

f(∆[k]) = f̃(∆̃[k]), ∀∆[k] ∈ NN+ . (24)

Proof. The proof is given in Appendix B.

Similar to the AoI, ∆[k], the truncated AoI, ∆̃[k], depends
on the previous value ∆̃[k− 1] and scheduling variable π[k];
hence, it can be expressed as a function using (3) and (20).

Proposition 3. The truncated AoI ∆̃[k] can be expressed as
a function of ∆̃[k − 1] and π[k] as

∆̃i[k] =

{
0, if i ∈ π[k],[
∆̃i[k − 1] + 1

]m
+
, if i /∈ π[k],

(25)

∆̃ij [k] =


0, if i, j ∈ π[k],[
∆̃ij [k − 1]

]m
+
, if i, j /∈ π[k],[

∆̃i[k − 1] + 1
]m
+
, if i /∈ π[k], j ∈ π[k],[

∆̃j [k − 1] + 1
]m
+
, if i ∈ π[k], j /∈ π[k].

(26)

Proof. The proof is given in Appendix C.

In Section III, the scheduling problem was modeled as an
infinite state-space MDP with ∆[k − 1] as a state variable
∆̃[k]. Proposition 2 and Proposition 3 show that ∆̃[k] and
∆[k] corresponds to the same MSE and, if either ∆[k], or
∆̃[k], is known, any determined scheduling sequence that
follows after k will result in the same sequence of MSE values.

Definition 2. We define the finite state-space MDP, M̃, as
follows;

• Action at instant k is the scheduling decision π[k]
belonging to action-space A = {1, ..., N}D.

• State at instant k is the truncated AoI ∆̃[k−1] belonging
to state-space S̃ in (21).

• Transition probabilities P (∆̃[k] | ∆̃[k − 1],π[k]) ∈
{0, 1} are binary and given by (25) and (26) in Proposi-
tion 3.

• Reward r̃(∆̃[k−1],π[k]) ∈ R at instant k equals r̃[k] =
−N−1f̃(∆̃[k]) in (22) given by the reward function r̃ :
{S̃,A} → R−.

Let γ̃k : S̃ → A be a scheduling strategy based on ∆̃[k] as

π[k] = γ̃k(∆̃[k − 1]), (27)

where γ̃ = (γ̃1, γ̃2, ..., γ̃T ) is a scheduling policy γ̃ ∈ Γ̃. We
define the average reward function in M̃, g̃γ̃ : S̃ → R+ as

g̃γ̃(∆̃[0]) = lim
T→∞

1

T

T∑
k=1

E
[
r̃(∆̃[k − 1],π[k])

∣∣∣γ̃, ∆̃[0]
]
,

(28)

where an optimal truncated scheduling policy γ̃∗ is average
reward optimal for M̃ and fulfills

g̃γ̃∗(∆̃[0]) ≥ g̃γ̃(∆̃[0]), ∀∆̃[0]) ∈ S̃. (29)

Theorem 1. Under Assumption 1 and Assumption 2, if an
optimal truncated scheduling policy γ̃∗ = (γ̃∗1 , γ̃

∗
2 , ..., γ̃

∗
T )

exists, we can obtain γ∗ = (γ∗1 , γ
∗
2 , ..., γ

∗
T ) as

γ∗k := γ̃∗k ◦ b, k ∈ N+, (30)

where ◦ is the function composition operator.

Proof. The proof is given in Appendix D.

Theorem 1 states the relationship between an optimal trun-
cated scheduling policy γ̃∗ and an optimal scheduling policy
γ∗. In the following section, we first prove the existence of
γ̃∗ and how to derive it. Later on, we use γ̃∗ to derive γ∗

C. Optimal scheduling policy

We begin this section by presenting some important defini-
tions and mathematical properties of M̃, to be used to prove
the existence of γ̃∗, and how to derive it. We then obtain γ∗

using (30). The section ends by demonstrating that an optimal
scheduling policy results in a periodic scheduling pattern.

A policy γ̃ = (γ̃1, γ̃2, ..., γ̃T ) is said to be deterministic
if all the scheduling strategies γ̃k are deterministic functions,
γ̃k : S̃ → A, ∀k ∈ N+, which is the case in (27). A policy γ̃
is said to be stationary if the decision rules γ̃k are independent
of time k, i.e., γ̃k := γ̃0,∀k ∈ N+. Let Γ̃S ⊂ Γ̃ be the set of
all stationary policies γ̃.

Let Pγ̃(∆̃[k + l] | ∆̃[k]), l ∈ N+, be the probability that
the Markov chain transitions from ∆̃[k] to ∆̃[k+ l] in l-time
instances, given policy γ̃. A state ∆̃ ∈ S̃ is recurrent if, once
reached, the process will return to that state within a finite time
horizon, i.e., ∃l <∞, Pγ̃(∆̃[k + l] = ∆̃ | ∆̃[k] = ∆̃) = 1.

Proposition 4. If ∆̃[0] ∈ S̃ and γ̃ ∈ Γ̃S are applied, the
process ∆̃[k] evolves to a set of recurrent states S̃γ̃ ⊆ S̃, i.e.,

∆̃[k] ∈ S̃γ̃ , ∀k ≥ |S| (31)

Proof. Assume γ̃ is a stationary deterministic policy γ̃ ∈ Γ̃S .
From the definition of M̃, the transition probabilities are
binary, i.e., P (∆̃[k + 1] | ∆̃[k],π[k]) ∈ {0, 1}. Hence, given
the policy γ̃ and state at instant k, ∆̃[k], any future state
∆̃[k + l] is perfectly known. Since, the number of states is
finite, i.e., |S̃| < ∞, there can be a maximum number of
|S̃| actions before any state is re-visited for any stationary
deterministic policy γ̃ ∈ Γ̃S . If any state is re-visited, the
state-action process will keep repeating itself. Hence, S̃γ̃ ⊆ S̃
represents a set of recurrent states ∆̃[k] ∈ S̃γ̃ , ∀k ≥ |S|.

From Proposition 4 and [46], we find that if an average
optimal policy γ̃∗ for M̃ exist, it results in a constant average
reward gγ∗(∆̃[0]) = g∗ ∈ R, g∗ ∈ R, ∀∆̃[0] ∈ S̃. The scalar
g∗ must then satisfy the optimality equations

max
π∈A

{
r(∆̃,π)− g∗ +

∑
∆̃
′∈S

P (∆̃
′
|∆̃,a)h(∆̃

′
)− h(∆̃)

}
= 0,

(32)

where h : S̃ → R, and h ∈ V , where V is the set of bounded
functions on S̃. A solution for (32) is given in the following
lemma.
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Algorithm 1 Finding scheduling policy γ∗

1: Define M̃ = {A, S̃, r̃, P (· | ·)} as in Section III-B, given
N , D, Cθθ, ξ, ϕ and m

2: Set n = 0 and select arbitrary policy γ̃n ∈ Γ̃S

3: Obtain g ∈ R and h ∈ R|S̃|, [h]i = h(∆̃i), ∀∆̃i ∈ S̃, by
solving (32), below, represented in vector form

r̃γ̃n + [−1 | (Pγ̃ − I)]

[
g
h

]
= 0,

where r̃γ̃ ∈ R|S̃|, [r̃]i = r(∆̃i, γ̃(∆̃i)), ∀∆̃i ∈ S̃, is a
reward vector, 1 = (1, 1, ..., 1)T, 1 ∈ R|S̃| is a vector of
ones, Pγ̃ ∈ R|S̃|×|S̃|, [Pγ̃ ]i,j = P (∆̃j |∆̃i, γ̃(∆̃i)) is the
transition matrix..

4: Get policy γ̃n+1 = (γ̃n+1
0 , γ̃n+1

0 , ..., γ̃n+1
0 ), ∀∆̃ ∈ S, by

solving (33)

γ̃n+1
0 (∆̃) = arg max

π∈A

{
r
(
∆̃,a

)
+
∑

∆̃
′∈S̃

P (∆̃
′
|∆̃,a)h(∆̃

′
)
}

5: if γ̃n+1 = γ̃n then
6: Stop and set γ̃∗ = γ̃n+1

7: else
8: Return to Step 2 using γ̃n+1

9: end if
10: Obtain γ∗ = (γ∗0 , ..., γ

∗
0) as γ∗0 := γ̃∗0 ◦ b in (30)

Lemma 2. For the finite state MDP M̃, there exists an optimal
truncated scheduling policy γ̃∗ = (γ̃∗0 , γ̃

∗
0 , ..., γ̃

∗
0) with γ̃∗ ∈

Γ̃S corresponding to reward gγ̃∗(∆̃) = g∗, g∗ ∈ R−, ∀∆̃ ∈ S̃,
given by

γ̃∗0(∆̃) = arg max
π∈A

{
r
(
∆̃,a

)
+
∑

∆̃
′∈S

P (∆̃
′
|∆̃,a)h∗(∆̃

′
)
}
,

(33)

where h∗ ∈ V and g∗ satisfy (32). The policy γ̃∗ can be
obtained in a finite number of iterations using algorithm policy
iteration.

Proof. The proof is given in Appendix E.

Given the existence and possibility to derive γ̃∗, we sum-
marize the theoretical findings and formulate the following
theorem.

Theorem 2. Under Assumption 1 and Assumption 2, there ex-
ists an optimal stationary scheduling policy γ∗ = (γ∗0 , ..., γ

∗
0),

where γ∗0 = γ̃∗0 ◦ b and γ̃∗ = (γ̃∗0 , γ̃
∗
0 , ..., γ̃

∗
0 ), which can be

derived in a finite number of iterations using policy iteration.
The policy results in a periodic scheduling sequence.

Proof. The proof follows from Theorem 1 and Lemma 2.

Based on Lemma 2 and Theorem 2, we show in Algorithm
1 how an optimal scheduling policy γ∗ can be derived, by
first deriving an optimal truncated scheduling policy γ̃∗ using
policy iteration, to later obtain γ∗ using (30).

Theorem 2 states that γ∗ results in a periodic scheduling se-
quence. The following section will demonstrate that applying
a periodic scheduling sequence results in the same periodic

sequence of truncated AoI states, regardless of the initial
truncated AoI. We show how this result can be utilized to
save data storage at the scheduler, as it only needs to store the
periodic scheduling pattern and not the entire policy, mapping
every truncated AoI value to a scheduling decision.

Recall from (6), that the estimator is based on solely the
most recent measurement from each sensor. If there is no
temporal correlation, the estimator in (6) is optimal, since
previous measurements are uncorrelated. In that case, the
estimator together with the optimal scheduling policy results
in a joint optimal scheduling-estimator pair. On the other hand,
if the spatial correlation is weak and the temporal correlation
is strong, the estimator is suboptimal and can be improved by
utilizing the measurements received in prevision time instants.
However, there is a trade-off between the number of previous
measurements utilized in the estimator and the numerical
complexity in deriving an optimal scheduling policy.

IV. PROPERTIES OF PERIODIC SCHEDULING SEQUENCES

As stated in the previous section, an optimal scheduling
policy results in a periodic scheduling pattern. The scheduler
could store and execute the periodic scheduling pattern instead
of the complete state-action policy to save data storage. The
requirement for this is that both approaches result in the same
performance. In this section, we demonstrate that any periodic
scheduling decision results in the same performance regardless
of the initial AoI value.

Let γ ∈ Γ be a scheduling policy that results in a periodic
scheduling sequence with period n ∈ N+, such that

π[k + n] = π[k], ∀k ∈ N+

regardless of the previous AoI ∆[k − 1] ∈ S. Let Π ∈
{1, 2, ..., N}D×n, n ∈ R+, n <∞, be a matrix that represents
a defined periodic scheduling-sequence that the policy γ
results in, where each of the n columns represents a schedul-
ing decision in the sequence, i.e., [Π]∗,j ∈ {1, 2, ..., N}D,
j = 1, ..., n, is the jth column of matrix Π. Based on Π, the
scheduling strategy at instant k is defined as

[Π]∗,φ(k) = γk(∆[k − 1]), (34)

where φ : N+ → {1, 2, .., n} is defined as

φ(k) =

{
k mod n, if k mod n 6= 0,
n, if k mod n = 0.

As seen in (34), the scheduling decision only depends on the
time instant k and results in a periodic scheduling sequence

γk+nl(∆[k − 1 + nl]) = γk(∆[k − 1]), ∀k, l ∈ N+. (35)

We now want to determine how the AoI sequence, generated
by the policy in (34), evolves over time. If γ is applied and
sensor i is never scheduled, the AoI goes to infinity; otherwise,
it becomes periodic, i.e.,

E
[
∆i[k]

∣∣γ] =

{
n− sup

j∈{1,...,n}
{ i ∈ [Πk]∗,j}, if i ∈ Π

∞, if i /∈ Π,
(36)
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where Πk =
[
[Π]∗,φ(k)+1:n, [Π]∗,1:φ(k)

]
, Πk ∈

{1, 2, ..., N}D×n, and is derived by rearranging the n
columns of matrix Π.

Applying (20) to (36), yields the corresponding truncated
AoI sequence. Due to the truncation operator, the truncated
AoI sequence becomes periodic, regardless of whether every
sensor is scheduled or not. Let lγ ∈ N+ lγ ≤ n, represent the
fundamental period of the truncated AoI sequence generated
by γ

lγ = inf
l≤n

lim
k→∞

{
E
[
∆̃[k + l]

∣∣γ] = E
[
∆̃[k]

∣∣γ]}. (37)

Let S̃γ be the periodic sequence of ∆̃[k], i.e.,

S̃γ = lim
k→∞

{
E
[
∆̃[k + 1]

∣∣γ], E[∆̃[k + 2]
∣∣γ], ..., (38)

E
[
∆̃[k + lγ ]

∣∣γ] ∣∣∣∀∆̃[k] ∈ S̃
}
,

where lγ = |S̃γ |. The set S̃γ is independent of the initial state
∆[0]. Thus, based on (37) and (38) the cost for any policy that
result in a periodic scheduling sequence Π can be calculated
as

lim
T→∞

J(γ, T ) =
1

Nlγ

∑
∆̃∈S̃γ

f̃(∆̃). (39)

From Theorem 2, we know that an optimal stationary policy
results in a periodic scheduling sequence. The results in (36)-
(39) show that if the particular periodic scheduling sequence
is known, we can derive an optimal scheduling policy γ∗

as in (34) based on the periodic scheduling sequence that
γ∗ results. This allows the scheduler to save data storage
as it does not need to store a look-up table mapping each
possible truncated AoI value to a scheduling decision. For
an optimal stationary scheduling policy, the period of the
resulting periodic scheduling sequence, lγ∗ , is bounded by the
cardinality of the state-space |S̃| as lγ∗ ≤ |S̃|.

The computational complexity of deriving γ∗ becomes
challenging for large values of N or m. As seen in (16)
and (21), the set of truncated AoI values ∆̃, hence the state-
space S̃, grows exponentially with N and m. In contrast, it
decreases with D. The system parameters N , D and m affect
the number of possible states, the number of possible actions,
and the computational complexity to calculate the reward for
each state and action using expression (22). In the following
section, we present periodic suboptimal scheduling policies
that allow for a reduced computational complexity.

V. CONSTRUCTION OF SUBOPTIMAL POLICIES

This section considers suboptimal policies to avoid the ex-
ponential growth of the state space associated with the optimal
policies in previous sections. One approach to overcome this
problem is to derive scheduling policies using other less-
computationally heavy methods than the one presented in
Section III-C. These are based on optimizing other objective
functions than the infinity time-average MSE.

In this section we present three suboptimal scheduling
policies; the first two are based on; minimizing the AoI across
the sensors, while the third; approximating the truncated AoI
state space to a smaller finite state space.

A. Minimizing the AoI
For most works regarding AoI, the objective is to minimize

the maximum or average AoI [23]–[25]. To achieve this for our
system, one can schedule the D sensors with the highest AoI
in a round-robin fashion, which results in a periodic scheduling
pattern. To calculate the performance of a round-robin policy,
one can make use of expressions (36)-(39).

The performance of a round-robin policy depends on the
spatial dependencies ρij and the marginal variances σi, i =
1, ..., N in (2). The performance can be enhanced if the order
of the periodic scheduling sequence is re-organized in an
optimal fashion. Thus, we present an optimal order round-
robin scheduling policy as

min
γ

lim
T→∞

J(γ, T ),

s.t. lim
k→∞

sup E
[
∆i[k]

∣∣γ] = ∆̄, ∀i = 1, 2, ..., N, (40)

where the AoI is limited to fairness constraint ∆̄, presented
in (14). The way to solve (40) is to find which sensor index
order of a round-robin policy minimizes the cost in (39).

Proposition 5. For σi = σj and ρij = ρ0, ρ0 ∈
[−1, 1], ∀i, j = 1, 2, ..., N , a policy γ that satisfies (40) is
an optimal policy γ∗.

Proof. From (11) we know that the MSE either increases, or
is the same, with respect to an increase of ∆i[k], i = 1, ..., N .
Assume all process parameters are equal, i.e., σi = σj and
ρij = ρ0, ρ0 ∈ [−1, 1], ∀i, j = 1, 2, ..., N , then if ∆i[k] =
∆j [k], ∀i, j = 1, 2, ..., N , the change in MSE is equivalent
with respect to ∆i[k] and ∆j [k], i.e.,

f([∆1[k], ...,∆i[k] + 1, ...,∆N [k]]T) = (41)

f([∆1[k], ...,∆j [k] + 1, ...,∆N [k]]T).

Furthermore, all permutations of an AoI vector results in the
same MSE. Given (11), (41) and (16), the smallest possible
value of f(∆[k]) corresponds to the one minimizing the AoI
across all sensors. To achieve this, a round-robin scheduling
policy is applied.

B. Finite-horizon minimization
Similar to the works in [4], we propose a scheduling policy

where the scheduler minimizes the time-average MSE over
L-time steps given the current truncated AoI. The proposed
scheduling policy is referred to as FHM-L, referring to an
L-step finite-horizon minimization. The policy is constructed
such that the scheduler decides the same scheduling sequence
every time instant it returns to a previous truncated AoI value.
Since the number of truncated AoI values are finite, the policy
will result in a stationary deterministic policy γ defined by
a periodic scheduling sequence Π. An FHM-L scheduling
policy γ can, therefore, easily be calculated offline using
Algorithm 2.

If there is no temporal dependency, i.e., m = 1 in Assump-
tion 2, the scheduling problem becomes a one-shot decision
problem, independent of previous scheduling decisions. Thus,
the scheduler will choose the same D sensors, which minimize
(10), at every time instant. An FHM-L scheduling policy is in
that case an optimal policy γ∗.
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Algorithm 2 Finite-horizon minimization over L-time steps

1: Set b(∆[0]) = ∆̃[0], n = 1, ∆̃n = ∆[0] and k = 1
2: Obtain and store πn = π∗k:k+L−1 as

π∗k:k+L−1 = arg min
πk:k+L−1

1

NL

k+L−1∑
j=k

f̃(∆̃[j]),

where πk:k+L−1 = (π[k],π[k + 1], ...,π[k + L− 1])
3: Apply π∗k:k+L−1 to obtain ∆̃[k + L− 1]

4: Store ∆̃n = ∆̃[k + L− 1]
5: if ∆̃n ∈ {∆̃0, ∆̃1..., ∆̃n−1} then
6: Find n0 = supk≤n{∆̃k = ∆̃n}
7: Set Π = [πn0

,πn0+1, ...,πn−1]
8: Stop and set γ from Π
9: else

10: Return to Step 2
11: end if

C. Finite state-space approximation

To handle the computational complexity of using dynamic
programming for large state spaces S̃, one can reduce the state-
space by introducing an approximation for elements ∆̃ in S̃
that correspond to similar MSE values. The approximation is
done such that if the temporal correlation between process
i and the most recent measurement of a process j is zero,
i.e., E[θi[k]xj [k − ∆j [k]] = 0 due to ϕ(∆j [k]) = 0, but
the AoI difference between the recent measurements ∆ij [k]
is not greater then m, i.e., ∆ij [k] < m, the AoI difference
∆ij [k] has little contribution to the MSE. In that case, the AoI
difference ∆ij [k] can be approximated as m, without changing
the corresponding MSE value much. The approximation ∆̂[k]
is defined as

∆̂i[k] = ∆̃i[k]

∆̂ij [k] =

{
m, if m = max{∆̃i[k], ∆̃j [k]}
∆̃ij , else,

(42)

for all i, j = 1, 2, ..., N .
Based on the definition in (42), we then model an MDP

similar to M, but use ∆̂[k] to represent the state-variable
instead of ∆̃[k]. The transition probabilities can then be
derived using (25) and (26) in Proposition 3. The action set
and reward function is the same as in M. Further, we use the
same methodology as in Section III to first derive an optimal
policy γ̂∗ based on ∆̂[k− 1] and then map it to a scheduling
policy γ, similarly as in Theorem 1.

VI. NUMERICAL EXAMPLES

In this section, we perform numerical simulations to eval-
uate the performance of an optimal policy and the presented
suboptimal policies. To begin, we define a system with equal
marginal variance across the sensors and a spatio-temporal
correlation model that becomes zero beyond AoI m. We then
investigate the performance discrepancy for a policy that is
derived using the methods in Section III-C, while applying
a smaller truncation time than m to derive the state space.
Later on, we investigate the performance of an optimal policy

2 3 4 5 6 7
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Fig. 2. Asymptotic average cost, limT→∞ J(γ, T ), vs m with σi = 1, ∀i =
1, 2, ..., N , ξ = 0.5, λ = 0.35 and r0 = 0.9.
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Fig. 3. Asymptotic average cost, limT→∞ J(γ, T ), vs λ with N = 5,
D = 2, σi = 1, ∀i = 1, 2, ..., N , ξ = 0.5, and r0 = 0.5.

and the suboptimal policies, firstly, given the degree of spatio-
temporal, and secondly, the system size N and scheduling
capacity D.

We assume a system where N sensors observe dependent
processes with equal marginal variances, i.e., σi = 1, i =
1, ..., N , measurement noise ξ = 0.5 and the spatio-temporal
dependency components in (1) are given by [43], [44]

ρij = e−r0|i−j|, ϕ(x) = e−λx1(e−λx ≥ 0.1), x ∈ R+,
(43)

where λ ∈ R+, is the temporal correlation decay factor,
r0 ∈ R+, is the spatial correlation decay factor and, |i − j|,
represents the Euclidean distance between sensors i and j.
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Fig. 4. Asymptotic average cost, limT→∞ J(γ, T ), vs r0 with N = 5,
D = 2, ξ = 0.5, σi = 1, ∀i = 1, 2, ..., N , and λ = 0.8.

A. Performance vs truncation time m
The temporal correlation in (43) is zero for an AoI equal

to and larger than 7, i.e., ϕ(x) = 0 for x ≥ 7. If a scheduling
policy is derived using the methods in Section III-C with S̃ in
(21) based on m = 7, an optimal policy γ∗ is obtained. We
investigate the performance difference if the state space S̃ in
(21) is calculated using a truncation value m smaller than 7,
which results in a smaller state-space for the MDP and reduces
the computational workload.

Figure 2 shows the asymptotic average cost,
limT→∞ J(γ, T ), versus the truncation time m, when
deriving the policy γ using Algorithm 1, with ξ = 0.5,
λ = 0.35 and r0 = 0.9. We see that a policy derived using
m ≥ 4, performs near-to-optimal, for all three combinations
of N and D. This shows that it is possible to derive an
near-to-optimal policy using a truncation time m smaller than
infx∈N+

{ϕ(x) = 0}.
In the following sections, we examine the time-averaged

MSE per sensor, i.e., cost in (8), for an optimal policy and also
compare it to alternative scheduling policies under different
combinations of N , D, λ and r0. The truncation time m in
(20) will then be strictly set to m = infx∈N+

{e−λx ≤ 0.1}.

B. Performance vs spatio-temporal dependency
The periodic scheduling pattern and performance of an

optimal policy γ∗ depends on how fast the temporal correlation
decays over time, and the spatial dependencies of the sensors.
To determine the performance gain of deriving an optimal
policy compared to the policies in Section V, we investigate
the performance across all policies given the spatio-temporal
decay factors λ and r0 in (43).

Figure 3 shows the asymptotic average cost versus λ for
different scheduling policies, where N = 5, D = 2, and
r0 = 0.5. We compare an optimal policy (OPTIMAL) with
randomized scheduling (RANDOM), round-robin (RR), opti-
mal round-robin (ORR) and two FHM policies with L = 1 and
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Fig. 5. Asymptotic average cost, limT→∞ J(γ, T ), vs N with D = 4,
σi = 1, ∀i = 1, 2, ..., N , ξ = 0.5, λ = 0.8, , and r0 = 0.5.

L = 2, respectively, i.e., (FHM-1) and (FHM-2). Solid lines
show theoretical results, whereas dots represent simulation
results, obtained by averaging 200 ensembles for a time
horizon of T = 100. We see that simulations are in close
agreement with the theoretical predictions.

For λ → 0, the temporal correlation increases, and so, the
asymptotic average cost decreases for all policies. Both FHM
policies perform very close to optimal, which is due to λ
resulting in small values of m. The performance of the ORR
policy becomes near-optimal, since the temporal correlation
exceeds the spatial correlation and more information is inhib-
ited in recent measurements than in dependent processes. As
λ → ∞ the temporal correlation vanishes, FHM-1 becomes
optimal and the performance difference to ORR increases.
This is because the scheduling problem becomes a one-shot
optimization problem, where an optimal policy results in the
same set of sensors being chosen at every time instant. The
ORR consistently outperforms RR since it exploits the spatial
dependency more efficiently. For λ > 0.75, RANDOM even
performs better than RR. FHM-2 performs better than FHM-1
as it can plan over a longer time horizon.

Figure 4 shows the asymptotic average cost versus the
distance between neighboring sensors for N = 5, D = 2, and
T = 0.8. We see that all policies result in lower MSE as the
spatial dependency increases, i.e., r0 → 0. FHM-1 and FHM-
2 are optimal for large parts of r0. Note that for r0 < 0.8, RR
performs worse than RANDOM since it does not utilize the
spatial dependency efficiently. As the distance r0 increases, RR
and ORR become optimal policies. This is because the spatial
correlation becomes zero, leading to a symmetric covariance
matrix Cθθ, which matches with the theory in Proposition 5.

As seen in Figures 3 and 4, the performance of an OPTI-
MAL policy becomes bounded if either the temporal or the
spatial correlation vanishes, and is lower than if compared
to a system where no spatial or temporal correlation would
be exploited. This demonstrates the benefit of exploiting both
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Fig. 6. Asymptotic average cost, limT→∞ J(γ, T ), vs D with N = 8,
σi = 1, ∀i = 1, 2, ..., N , ξ = 0.5, λ = 0.8, , and r0 = 0.5.

temporal ans spatial correlation, since, a weak correlation
component can be counterbalanced by the other.

C. Performance vs system size

A higher ratio between the number of sensors N in relation
to the scheduling capacity D is expected to reduce perfor-
mance. In this section, we analyze the performance given N
or D to see how it changes across the policies.

Figure 5 shows the asymptotic average cost versus the
number of sensors N with D = 4, λ = 0.8, and r0 = 0.5.
For N = 8, we used the approximated FS-MDP presented in
Section V-C to derive a policy represented by the OPTIMAL
curve. We see that the cost increases as the number of sensors
N grows. The curve eventually flattens with N , as it can never
be higher than the marginal variances σi = 1, as shown in (12).
We see that RR performs the worse, which again demonstrates
the importance for the intrinsic scheduling order. The FHM-1
and FHM-2 is optimal for most parts of the figure.

Figure 6 shows the time-average MSE versus the number
of sensors D receiving broadcasts from the scheduler, with
N = 8, λ = 0.8, and r0 = 0.5. For D = 4, we used
the approximated FS-MDP in Section V-C to derive a policy
represented by the OPTIMAL curve. We see a similar, but
inverted result comparing to Figure 5, as the cost decrease
with the number of sensors receiving broadcasts D.

VII. CONCLUSION

This paper proposed optimal scheduling policies for trans-
mitting observations of spatio-temporally dependent processes
from multiple sensors to remote estimators over a limited
number of communication channels. The problem was mod-
eled as a finite state Markov decision process with the AoI
as state-variable. An optimal scheduling policy was derived
that minimizes the time-average mean squared error (MSE),
resulting in a periodic scheduling sequence. Due to increased

computational complexity for large systems, we also con-
sidered computationally less demanding scheduling policies,
minimizing the MSE over short-time horizons or the AoI
across the sensors, which both performed well.

Our paper expands the work regarding utilizing AoI for
remote estimation scheduling of dependent observations. We
showed that if the main objective is minimizing the average
AoI, regarding the intrinsic scheduling order can enhance
the estimation accuracy if the sensor observations are spatio-
temporally dependent.

For future work, a sequential estimator incorporating past
measurements can be considered to derive the optimal schedul-
ing policies for estimating spatio-temporal processes. Another
extension of our work, could be to model the measurements
using a different dynamic spatio-temporally process, e.g.,
a Gauss-Markov model [9]. Similarly, the research would
involve proposing how it could be modeled, determining if
an optimal scheduling policy exists and, if so, how it can
be derived. Finally, another extension of our work could be
to design AoI-based scheduling policies for multiple-access
channels considering queuing processes and random arrival
times that would influence the AoI. In that case, the MDP
would need to be re-designed for the considered system model.

APPENDIX A
PROOF OF PROPOSITION 1

Proof. If ∆[k] is given, the MSE at instant k is obtained from
(10). If ∆[0] and γ are known, it is possible to determine
∆[k] using (3) and (4). Thus, the cost function in (8) can be
expressed as

J(γ, T ) =
1

TN

T∑
k=1

N∑
i=1

E
[
(θi[k]− θ̂i[k])2

∣∣∣γ,∆[0]
]

=
1

TN

T∑
k=1

E
[
f(∆[k])

∣∣∣γ,∆[0]
]
. (44)

Substituting (44) in (9), we see that an optimal policy γ∗

satisfies (13).

APPENDIX B
PROOF OF PROPOSITION 2

Proof. Let ∆[k] and be known and have ∆̃[k] = b(∆[k])
given by (20). The value f(∆[k]) in (10) depends on the
covariance terms Cθy[k]] and Cyy[k], given as functions of
∆[k] in (7). Similarly, f̃(∆̃[k]) in (10) is given by the terms
C̃θy[k]] and C̃yy[k], which depends on ∆̃[k] in (23). By
substituting (20) in (23) we get

[C̃yy[k]]i,j = σiσjρijϕ(
[
|∆i[k]−∆j [k]|

]m
+

) + ξ2δ(i− j),

[C̃θy[k]]i,j = σiσjρijϕ(
[
∆i[k]

]m
+

), i, j ∈ {1, ..., N}. (45)

If Assumption 2 holds, the temporal correlation in (1) satisfy
ϕ(x) = ϕ(

[
x
]m
+

) for all x ≥ m, which leads to (7) and (45)
being equal, i.e.,

[C̃yy[k]]i,j = [Cyy[k]]i,j ,

[C̃θy[k]]i,j = [Cθy[k]]i,j , i, j ∈ {1, ..., N}. (46)
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From (46) we substitue Cθy[k]] with C̃θy[k]] and Cyy[k] with
C̃yy[k] in (20) and see that

f(∆[k]) = f̃(∆̃[k]), ∀∆[k] ∈ NN+ .

APPENDIX C
PROOF OF PROPOSITION 3

Proof. Applying the truncation on ∆i[k] in (3), yields

∆̃i[k] =

{
0, if i ∈ π[k],[
∆i[k − 1] + 1

]m
+
, if i /∈ π[k].

(47)

Further, the following relationship holds true[
∆i[k−1]+1

]m
+

=
[[

∆i[k − 1]
]m
+

+ 1
]m

+
=
[
∆̃i[k−1]+1

]m
+
.

(48)
After substituting (48) in (47), we obtain (25). Similarly,
substituting (3) in ∆ij [k] = |∆i[k]−∆j [k]|, gives

∆ij [k] =


0, if i, j ∈ π[k],
∆ij [k − 1], if i, j /∈ π[k],
∆i[k − 1] + 1, if i /∈ π[k], j ∈ π[k],
∆j [k − 1] + 1, if i ∈ π[k], j /∈ π[k].

(49)

Finally, (26) is obtained by applying the truncation operator
in (49) and employing the relationship in (48).

APPENDIX D
PROOF OF THEOREM 1

Proof. Throughout this proof, we assume that Assumption 1
and Assumption 2 holds. To prove the relationship between γ∗

and γ̃∗ in (30), we present four important properties showing
how M and M̃ relate.

Firstly, as seen in (21), every state in S maps to a state in S̃.
Secondly, based on Proposition 3, for any two states ∆′ ∈ S
and ∆′′ ∈ S, the following relationship holds

P
(
∆[k] = ∆′′

∣∣∣∆[k − 1] = ∆′,π[k]
)

=

P
(
∆̃[k] = b(∆′′)

∣∣∣∆̃[k − 1] = b(∆′),π[k]
)
, ∀∆′,∆′′ ∈ S,

showing that the mapping between S and S̃ is consistent after
any action is taken. Thirdly, from Proposition 2 we have that

f(∆[k]) = f̃ ◦ b(∆[k]) = f̃(∆̃[k]), ∀∆[k] ∈ S,

showing that for a given state ∆[k] in S, and the mapping state
∆̃[k] = b(∆[k]) in S̃, gives the same MSE value. Fourthly,
the two images f : S → Y and f̃ : S̃ → Ỹ are equal, i.e.,
Y = Ỹ . Showing that every possible MSE value in M exists
in M̃.

Given the aforementioned relating properties between M
and M̃, if the initial values ∆[0] and ∆̃[0] = b(∆[0]) are
known and two policies γ = (γ1, ..., γT ) and γ̃ = (γ̃1, ..., γ̃T ),
relate as γk = γ̃k ◦ b, ∀k ∈ N+, we have that

E [r(∆[k − 1],π[k])|γ,∆[0]] = (50)

E[r̃(∆̃[k − 1],π[k])|γ̃, ∆̃[0]], ∀∆[0] ∈ S, k ∈ N+.

Let two policies γ and γ̃ that satisfy (50) be referred to as
replicable. From (17) and (28) we see that two replicable
policies result in

gγ(∆[0]) = g̃γ̃ ◦ b(∆[0]), ∀∆[0] ∈ S.

Thus, if an optimal policy γ∗ is replicable, we have that

gγ∗(∆[0]) = g̃γ̃∗ ◦ b(∆[0]), ∀∆[0] ∈ S. (51)

Since we can always construct a policy γk = γ̃k ◦ b, there
always exists a replicable policy γ ∈ Γ for every policy γ̃ ∈ Γ̃.
If γ∗ is not replicable, the following inequality holds

gγ∗(∆[0]) ≥ g̃γ̃∗ ◦ b(∆[0]), ∀∆[0] ∈ S. (52)

To prove (51), we will followingly prove by contradiction that
gγ∗(∆[0]) > g̃γ̃∗ ◦ b(∆[0]) does not hold.

As seen in (21), some states in S maps to the same state
in S̃ and we have that |S̃| ≤ |S|. From (3), in every state, an
action π[k] ∈ A in M results in a state transition. Whereas
for M̃, in (20), the states in S̃ can be grouped into two types,
where; i) every action results in a state transition, or; ii) a
particular action results in returning to the same state, while
all other actions result in a transition. The state of type ii)
can only be reached in M if an action is repeated over a
consecutive number of instants. Given |S̃| ≤ |S|, there exists
policies γ ∈ Γ that are not replicable in γ̃ ∈ Γ̃. We must,
therefore, prove that the non-replicable policies in Γ are not
exclusively optimal.

To begin, we present some important properties of M and
M̃. In both MDPs, every state is reachable from every other
state. Every state in M and M̃ can only be reached from
a unique state. Also, the rewards and transition probabilities
are stationary and the rewards are upper-bounded in (12).
From (11), the MSE increases, but is upper-bounded, with
respect to the marginal AoI. Thus, the MSE increases or is
equal every time an action is consecutively repeated. Given
the aforementioned properties, the average reward function in
M does not increase with the marginal AoI, i.e.,

max
γ∈Γ

gγ
(
[∆1[k], ...,∆i[k], ...,∆N [k]]T

)
≥ (53)

max
γ∈Γ

gγ
(
[∆1[k], ...,∆i[k] + 1, ...,∆N [k]]T

)
, i = 1, ..., N.

Let ∆′ ∈ S, ∆̃
′

= b(∆′) ∈ S̃ and π[k] = π′ ∈ A be a
state-action combo that satisfy

P
(
∆[k] 6= ∆′

∣∣∣∆[k − 1] = ∆′,π[k] = π′
)

= 1,

P
(
∆̃[k] = ∆̃

′∣∣∣∆̃[k − 1] = ∆̃
′
,π[k] = π′

)
= 1.

Assume ∆[k − 1] ∈ S and that action π[k] = π′ results in a
transition to ∆[k] = ∆′. Let γ ∈ Γ be a policy that, regardless
of initial state ∆[0] ∈ S, if ∆[k] = ∆′ for any k ∈ N+, results
in action π[k+ l] = π′ for l = 1, ..., L, L ∈ N++, consecutive
instances, until instant k+L+1, i.e., π[k+L+1] 6= π′. Such
a policy γ is not replicable in γ̃ ∈ Γ̃. However, from (53),
γ is not optimal, since the average reward corresponding to
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transitioning states ∆[k] is non-increasing, and the expected
reward is the same over the L consecutive time instants, i.e.,

E[r(∆[k + l − 1],π[k + l])]|γ,∆[k] = ∆′] =

E[r(∆[k − 1],π[k])|γ,∆[k − 1]], l = 2, .., L.

For this reason, it would not exist a finite value L ≥ 1 for
an optimal policy γ∗. If L is either L = 0 or L → ∞, then
γ∗ is again replicable. Thus, the inequality in (52) becomes
(51), which proves (30).

APPENDIX E
PROOF OF LEMMA 2

Proof. A finite-state MDP is classified as unichain if every
stationary deterministic policy correspond to a Markov chain
with a single set of recurrent states and a set of transient states,
i.e., ∃n < ∞, P (∆̃[k + n] = ∆̃ | ∆̃[k] = ∆̃) < 1. From
Proposition 4, we see that S̃γ̃ is a set of recurrent states and
that the complement, i.e., S̃c = S̃ \ S̃γ̃ , is a set of transient
states. We conclude that M̃ is unichain.

Thus, M̃, is unichain, has a finite action set |A| < ∞,
a finite state-space |S̃| < ∞, bounded rewards |r(∆̃[k −
1],a[k]| < ∞ and stationary rewards and transition proba-
bilities. Given the aforementioned properties of M, [46, Th.
8.4.5] states that there exist a stationary optimal policy γ̃∗

and a pair (g∗, h∗) that satisfy (32). The theorem also states
the relationship between γ̃∗ and (g∗, h∗) in (33). Based on
[46, Th. 8.6.6], the pair (g∗, h∗) can be derived in a finite
number of iterations using policy iteration. The full proofs of
the referred theorems are presented in [46].
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