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ABSTRACT The ability to effectively process large amounts of information in reasonable time will be
important for robust deliberative collision avoidance (COLAV) planning algorithms. Failure to do so can
lead to collision, and can be compared to lack of proper supervision from officers on watch (OOW). The
main contribution in this article is a parallelized implementation of the Probabilistic Scenario-Based Model
Predictive Control (PSB-MPC) on a Graphical Processing Unit (GPU) platform which incorporates both
dynamic obstacle avoidance and anti-grounding. Simulation results demonstrate that the COLAV planner
can produce collision-free trajectories with respect to grounding hazards and nearby vessels at relatively
low computational cost, and which also comply to the COLREGS when deemed possible. Corresponding
run-time results show that the algorithm utilizing parallel processing performs better than the alternative
for increasing numbers of own-ship control behaviours, nearby static and dynamic obstacles, and dynamic
obstacle prediction scenarios considered.

INDEX TERMS Maritime collision avoidance, parallel processing, CUDA, autonomous ships, model
predictive control.

I. INTRODUCTION
A. BACKGROUND
Autonomous ships will require a high level of data processing
in order to have adequate situational awareness and to make
deliberate decisions. This requires efficient and robust algo-
rithms, and well chosen platforms to enable fast computation.
When facing a hazardous situation in e.g. confined space with
multiple static and dynamic obstacles, the need to evaluate a
larger set of future control behaviours or trajectories for the
autonomous ship and other obstacles will be necessary, such
that a risk minimizing or collision-free trajectory is possi-
ble to find. Furthermore, the collision-free planned trajectory
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should comply to the Convention on the International Regu-
lations for Preventing Collision at Sea (COLREGS) [1] when
possible. However, evaluating the risk associated in any of
these control behaviours can be computationally expensive.
Thus, to meet run-time requirements, a collision avoidance
(COLAV) planning algorithm which scales well in the eval-
uation of different control behaviours will be both beneficial
and necessary in such cases. Increased robustness can then
also result as a consequence of being able to evaluate more
vessel behaviour scenarios and situational information in the
system at run-time.

A Scenario-BasedModel Predictive Control (SB-MPC) [2]
approach is here a viable option that can incorporate most
of the elements needed in a robust COLAV planning algo-
rithm, such as anti-grounding, dynamic obstacle avoidance
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and multi-ship adherence to COLREGS when possible.
This is because of its flexibility in the formulation of its
optimization problem, with different control objectives and
possible integration of constraints, and which has a rich the-
oretical foundation. The sampling-based method is also flex-
ible in the prediction models used to generate own-ship and
dynamic obstacle prediction scenarios. The problemwith this
approach however, and especially for the probabilistic ver-
sion (PSB-MPC) [3], is that the optimization problem in the
COLAV planning algorithm scales poorly with an increas-
ing set of considered own-ship avoidance maneuvers, static
obstacles and dynamic obstacles with their own alternative
prediction scenarios. The prediction of the collision risk with
respect to all dynamic and uncertain obstacles involved, and
calculating distances to all static obstacles for anti-grounding
purposes, has exponentially increasing computational cost as
the optimization problem increases.

B. LITERATURE REVIEW
Many studies on maritime collision avoidance exists today,
and are mainly summarized in review papers such as [4], [5],
[6], and [7], whereas we here focus on deliberative COLAV
planning methods having dynamic obstacle avoidance and
COLREGS adherence in addition to anti-grounding in their
algorithms. For a general overview on planning algorithms,
see [8].

In this article, deliberative refers to the COLAV algorithm
planning efficient trajectories that adheres to the COLREGS
when deemed possible, and avoid collision well before risky
situations occur. Following the COLREGS blindly in any type
of situation will not be sufficient, as was shown in [9] and
also discussed in [10] and [11]. Thus, the deliberate COLAV
planning algorithm should in general also consider the inten-
tion uncertainties of nearby dynamic obstacles. Further note
that with COLREGS compliance, we mean compliance with
the COLREGS rules 8, 13 - 17 on taking early and appar-
ent action, and the correct action in overtaking, head-on and
crossing situations with either give-way or stand-on obliga-
tions, respectively. These are the rules most relevant and com-
mon to consider for automatic COLAV planning. However,
a complete COLAV system should consider the full rule set.

A lattice-based trajectory planner using A* search for find-
ing collision-free trajectories is introduced in [12], where
non-adherence to the COLREGS, trajectory deviation and
collision risk with respect to static and dynamic obstacles
is penalized in the cost function. An intention based motion
model is used for dynamic obstacles, which relies on learning
the positional prediction uncertainty for a given scene when
used in calculating collision probabilities. The details on this
model is not given, and results on how the planner scales
in run-time with increasing lattice grid density, dynamic and
static obstacles are however not given.

The work in [13] introduces a hierarchical system with
three levels. The top level trajectory planner uses lattice-
based A* search combined with an Optimal Control Prob-
lem (OCP) method for generating collision-free trajectories

with respect to static obstacles. A mid level MPC-based
COLAV planning algorithmmodifies this trajectory to adhere
to the COLREGS and avoid collisions with respect to
dynamic obstacles. Lastly, a low-level reactive COLAV
sampling-based planning algorithm acts as a fail-safe in case
the levels above can not handle the situation. The system does
however assume straight line trajectories for dynamic obsta-
cle predictions without uncertainty, which does not coincide
with real-time vessel behaviour in hazardous situations. Fur-
thermore, scalability and run-time properties with an increas-
ingly complex situation is not discussed.

In [14], a field-test verified A-star search trajectory planner
is developed, which attempts to find a COLREGS-compliant
and collision-free trajectory with respect to dynamic and
static obstacles in a lattice. To predict nearby dynamic obsta-
cle trajectories, the planner employs Monte-Carlo (MC) sim-
ulation using fuzzy logic and the trajectory history of the
obstacle to find a set of probable trajectories, where the
most probable one is considered for collision avoidance.
As in [13], the method does not consider the prediction uncer-
tainty associated with dynamic obstacles. Furthermore, the
computational efficiency of the planner only tested for a set of
500 possible own-ship trajectories and one expected dynamic
obstacle trajectory, which can be inadequate in highly con-
gested scenarios.

Candeloro et. al. [15] propose a global and local
lattice-based trajectory planner which uses Voronoi Diagrams
to generate a set of static obstacle collision-free waypoints,
from where a continuous trajectory is generated using Fer-
mat‘s Spiral. The method considers local replanning win-
dows for taking detected dynamic and static obstacles into
account, and predicts dynamic obstacle motion with the Con-
stant Velocity (CV) model [16]. A convex hull representing
the dynamic obstacle uncertainty up until time to Closest
Point of Approach (CPA) is created from using the position
estimates and error covariances from a Kalman filter, which
is then regarded as an area to avoid in the planner. This may
however be overly conservative, due to the unrealistic uncer-
tainty growth in the CVmodel [17]. How the local replanning
run-time scales with increasing windows size, dynamic and
static obstacles is not considered.

Nonlinear MPC for static and dynamic obstacle collision
avoidance with environmental disturbance rejection was pro-
posed in [18]. A deterministic CV model was used for the
dynamic obstacle prediction, which will not be the case
in real-time hazardous maritime situations where ships will
maneuver. Furthermore, how the MPC scales with static and
dynamic obstacles was not considered.

Chiang and colleagues [19] introduces a sampling-based
static and dynamic obstacle considerate trajectory plan-
ner with COLREGS-compliant COLAV planning algorithm
based on Rapidly exploring Random Trees (RRT), where
a joint simulator is used to predict both the own-ship and
dynamic obstacle motion. Potential fields are used in the
prediction to ensure that all the vessels have collision-free
trajectories with respect to each other and static obstacles.
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Themethod is shown to have beneficial run-times feasible for
real-time. However, the underlying assumption in the predic-
tion is however that ships will always perform deterministic
COLREGS-compliant maneuvers if possible, which is not
necessarily true in practice.

Collision avoidance within a distributed flocking control
strategy based on MPC was considered in [20], with respect
to nearby dynamic vehicles in the flock and static obstacles.
The computational efficiency or scalability of themethodwas
however not discussed, and the states of all vehicles involved
are assumed deterministic.

C. CONTRIBUTIONS
In this paper, an implementation of the sampling-based
PSB-MPC algorithm on a GPU platform which facilitates
efficient anti-grounding and dynamic obstacle avoidance is
introduced. The main contribution of the article compared to
current state-of-the-art static and dynamic obstacle COLAV
planning algorithms is the description of a parallelization
algorithm for efficient cost evaluation of possible own-ship
trajectories in the PSB-MPC, taking into account dynamic
obstacle uncertainties and complex static obstacles in mar-
itime hazardous situations. The algorithm is feasible for real-
time, as the MPC cost function evaluation scales linearly
with increasing numbers of dynamic obstacles with their
own prediction scenarios and also static obstacles, due to the
parallelization. Static obstacles are read in from Electronic
Navigational Chart (ENC) data and processed into simpli-
fied polygons using the Ramer-Douglas-Peucker (RDP) algo-
rithm [21]. The efficiency of the parallelized implementation
makes it possible for the COLAV planning algorithm to con-
sider more dynamic obstacle prediction scenarios and own-
ship trajectories, and more complex static obstacle maps for
elevated situational awareness and better trajectory planning.
Furthermore, a side contribution of the article is that the
dynamic obstacle prediction scheme in [3] is updated to use
a kinematic model with incorporated Line-of-Sight (LOS)
guidance for more realistic trajectories.

D. ARTICLE STRUCTURE
The article is organized as follows. Section II gives back-
ground information about the PSB-MPC, with prediction
models, cost function structure and grounding hazard
extraction and representation. An outline of a sequential
implementation of the algorithm is also given. A par-
allelized implementation of the PSB-MPC is given in
Section III. Finally, Section IV show simulation results with
the PSB-MPC, and Section V concludes the work.

II. THE PSB-MPC COLAV PLANNING ALGORITHM
The Probabilistic Scenario-based Model Predictive Con-
trol (PSB-MPC) is an optimization-based COLAV planning
method that samples a finite set of possible own-ship trajec-
tories, represented by control behaviours. This is illustrated
in Fig. 1, where we note that the control behaviours selected
are arbitrary.

FIGURE 1. PSB-MPC illustration, with the own-ship running the algorithm
in blue. Nearby dynamic obstacles are shown in cyan and brown.
Grounding hazards are shown in beige. Candidate control behaviours
predicted in the MPC are also shown, where the color from red to green
represents their cost, with green being the lowest. Thus, the green
candidate trajectory is the optimal one. The nominal trajectory goes
straight north-east through the confined environment.

Formally, a control behaviour l in the PSB-MPC represents
a sequence [(U l

m,1, χ
l
m,1), . . . , (U

l
m,nM , χ

l
m,nM )] consisting of

speed multiplicative factors Um and additive course angle
offsets χm. The sequence represent nM sequential avoidance
maneuvers. The parameter nM can in general be a variable,
but will be considered fixed in this work. The sequence of
speed and course modifications are applied to the autopilot
references Ud and χd in speed and course angle at different
time steps in the finite prediction horizon, which in turn gen-
erates a specific own-ship trajectory. Each control behaviour
is evaluated by a cost function Hl(·), which penalizes prob-
abilistic collision risk, grounding risk, COLREGS violation
and nominal trajectory deviation. The optimal one is selected
as

l∗(t0) = argmin
l

Hl(t0) (1)

where t0 is the current time, and it is the first avoidance
maneuver represented by U l

m,1 and χ lm,1 that is applied by
the autopilot through the modified guidance references Uc =
U l∗
m,1 · Ud and χc = χ l

∗

m,1 + χd . The open loop optimization
based on (1) is repeated at regular intervals to account for
more information in a moving horizon fashion as is common
in MPC, and thus closes the loop. More discussion around
feasibility and constraint satisfaction in the PSB-MPC can be
found in [22].

A. PREDICTION MODELS
For deliberate COLAV planning algorithms, the own-ship
prediction model can be selected to be complex or sim-
ple depending on how much vessel information one has.
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The PSB-MPC can easily handle complex ship motion mod-
els in its framework. However, as the kinematic uncertainty
associated with the ship motion prediction increases substan-
tially with time, having a simple model to capture the approx-
imate own-ship behaviour is often adequate for deliberative
COLAV planning algorithms, where the low-level vessel con-
trol systems (autopilot) can compensate for model inaccu-
racies and disturbances. As predictions of vessel motions
over longer time horizons are inherently uncertain, due to
environmental disturbances, future maneuvering decisions
and unforeseen events, especially in hazardous situations,
we argue that there is limited gain in using an overly complex
model. On the other hand, for reactive collision avoidance
methods and lower level motion control with shorter predic-
tion horizons, it will be more important to consider the ship
dynamics accurately. Thus, as the PSB-MPC is flexible in
the choice of the own-ship prediction model, it will not be
described here but in the simulation study in Section IV.

Therefore, the following text will detail the model used
for dynamic obstacles. To create trajectories simulating the
ship motion for the own-ship and dynamic obstacles forward
in time, we use Euler‘s method for numerical integration.
Specifically, the integration is done over the prediction hori-
zon with discrete predicted times tk ∈ D(t0) = {t0, . . . , t0 +
k1mpc, . . . ,Tmpc}, with1mpc as the time step and Tmpc as the
prediction horizon.

As one most often do not have information on the under-
lying dynamic obstacle vessel or object, their motion mod-
els should be simple. The preliminary PSB-MPC used the
Ornstein-Uhlenbeck (OU) process [23] in order to predict the
motion of dynamic obstacles, and allows for alternative obsta-
cle prediction scenarios [24]. However, the trajectories only
specify a single change in course, and are thus not necessarily
realistic. A more realistic approach as shown in Fig. 2 is now
used, where more avoidance like maneuvers are used.

The predicted obstacle motion is implemented using the
following kinematic model

x ik+1 = x ik + U
i
kcos(χ

i
k )

yik+1 = yik + U
i
ksin(χ

i
k )

χ ik+1 = χ
i
k +

1
Tχ

(χ id,k − χ
i
k )

U i
k+1 = U i

k +
1
TU

(U i
d,k − U

i
k ) (2)

where the superscript i is used for dynamic obstacles. The
above kinematic model is combined with Line-of-Sight
(LOS) guidance [25] to predict the following of a nomi-
nal obstacle path parameterized by nwps waypoints WPS:
[p1, . . . , pz, . . . , pnwps], where pz = [xwpz , ywpz ]T is waypoint
z ∈ {1, 2, . . . , nwps}. In the case of straight line paths, the
LOS guidance method considers waypoint segments from pz
to pz+1, and finds the path tangential angle

αz = atan2(ywpz+1 − y
wp
z , x

wp
z+1 − x

wp
z ) (3)

FIGURE 2. Head-on scenario with obstacle i in green and own-ship in
blue. Their velocity vectors vi and v0, respectively, are also shown. The
updated prediction scheme using LOS guidance allows for the obstacle to
make realistic alternative maneuvers to port and starboard. The
stationary time spacing between trajectories is determined by rct .

and path-fixed frame referenced path deviation εk with rota-
tion αz as

εik = RTαz (p
i
k − pz) (4)

where pik = [x ik , y
i
k ]
T is the position of obstacle i at time tk .

The rotation matrix Rαz is given by

Rαz =
[
cos(αz) −sin(αz)
sin(αz) cos(αz)

]
(5)

The along-track error sik and cross-track error e
i
k , see [26] for

more details, makes up the path deviation εik = [sik , e
i
k ]
T ,

where the latter error is used with (3) to calculate the desired
obstacle COG as

χ id,k = αz + arctan

(
−
eik
1i

)
(6)

with1i as the lookahead distance, dependent on the obstacle
ship type. See [25] for illustrations andmore information. The
combination of a kinematic model used with LOS guidance
allows for a lightweight prediction of alternative dynamic
obstacle maneuvering scenarios. By also specifying a speed
profile through a desired SOG U i

d,k in addition to the LOS
guidance, one goes from path-generation to trajectory gener-
ation for the dynamic obstacles [26].

The PSB-MPC normally gets dynamic obstacle infor-
mation from the tracking system, where their state esti-
mates have an associated kinematic uncertainty, typically
represented through a covariance matrix P i(t0). The obsta-
cle kinematic uncertainty is here predicted forward in time
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heuristically using an OU-process [17] with mean velocity
taken as the current state estimated velocity:

P ik+1 = P i0 +61 ◦62(tk+1 − t0) (7)

with P ik as the predicted covariance and

61 =



σ 2
x

γ 3
x

σxy

γxγy

σ 2
x

2γ 2
x

2σxy
γx

σxy

γxγy

σ 2
y

γ 3
y

2σxy
γy

σ 2
y

2γ 2
y

σ 2
x

2γ 2
x

2σxy
γy

σ 2
x

γx

2σxy
γx + γy

2σxy
γx

σ 2
y

2γ 2
y

2σxy
γx + γy

σ 2
y

γy


(8)

as the stationary process noise part of the process, with σx ,
σxy and σy as the OU model Wiener process noise param-
eters. The parameters γx and γy are the reversion strength
parameters, which determines the convergence rate of the
OU-process towards its mean velocity. The expression for
62(tk+1 − tk ) can be found in [23]. The symbol ◦ in (7)
denotes the Hadamard product. The reason behind the usage
of the OU-process for uncertainty prediction is its more
limited growth in covariance compared to e.g. using a CV
model [23]. The 3σ positional uncertainty is heuristically
bounded by rct in the prediction, such that each obstacle
trajectory has a tube uncertainty with approximate radius rct .
As for the own-ship, the parameters for the obstacle predic-
tion are all dependent on the type of ship, ship control system,
ship captain etc., and should be estimated using available data
about the obstacle.

In this article we assume that the nominal obstacle tra-
jectory is a straight line from its current course, and create
waypoints on this line. Vessel to vessel communication or
e.g. road map methods [27] may be used to predict the nom-
inal obstacle trajectories in more confined spaces where the
straight line trajectory assumption is restrictive. An illustra-
tion of the uncertainty prediction together with the dynamic
obstacle trajectory is shown for a case with a non-straight line
obstacle trajectory in Fig. 3.

B. GROUNDING HAZARDS
The grounding hazards considered in the PSB-MPC are
parameterized as two-dimensional polygons. In this article,
polygons are read in from shapefiles using the C based library
Shapefile C Library, which are generated using the Electronic
Navigational Chart processing module in seacharts corre-
sponding to the relevant map region considered [28]. If real-
time sensor data is available, this can also be used to update
the polygons used in the MPC.

Because electronic map data can have high accuracy,
larger polygons extracted can have tens of thousands of ver-
tices. However, for collision avoidance, this level of detail
is not necessary, and the polygons should thus be simpli-
fied in order to save computation time in the algorithm.

FIGURE 3. Dynamic obstacle prediction illustration with an obstacle in
purple. Three prediction scenarios are shown, all starting at t0, where the
vessel is depicted in full purple with its tracked estimation error
covariance represented around it as a 3σ probability ellipse in light blue.
The nominal predicted obstacle trajectory is shown with the grey dotted
line, whereas the alternative scenarios are spaced rct apart.

One of the earliest and most common curve simplifica-
tion methods that can be used for polygon simplification
is the RDP algorithm [21]. The method recursively sim-
plifies a curve of points by consecutively considering its
line segments, pruning away points which are further away
from the considered line segment than a specified thresh-
old εrdp. The distance tolerance parameter ε should be cho-
sen as not to overly simplify the polygons, preserving as
much structure as possible. The method is summarized in
Algorithm 1. A graphical illustration of the algorithm can
be found in https://en.wikipedia.org/wiki/Ramer-Douglas-
Peucker_algorithm. The distance from the own-ship center to
nearby polygons is used in the PSB-MPC grounding cost. It is
obtained by using a point to polygon calculation method [29],
using the ray intersection method for determining if the
own-ship center point is inside the polygon, which is suitable
for both convex and concave polygons.

C. COST FUNCTION REFORMULATION
We consider the following restructuring of the PSB-MPC cost
function

Hl(t0) = Hl
do +Hl

colregs +Hl
so +Hl

p (9)

for a control behaviour l, where the four terms are the cost
associated with dynamic obstacles, COLREGS violation,
static obstacles or grounding hazards and trajectory tracking,
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Algorithm 1 The Ramer-Douglas-Peucker Curve Simplifica-
tion Algorithm
1: function RDP(Points, εrdp)
2: dmax ← 0, j← 1, end ← length(Points).
3: for i = 2, .., end do
4: d ← perpendicularDistance(Points[i],

Points[1],Points[end])
5: if d > dmax then
6: j← i, dmax ← d
7: end if
8: end for
9: if dmax > εrdp then

10: rResults1 =RDP(Points[1, .., j], ε)
11: rResults2 =RDP(Points[j, .., end], ε)
12: newPoints = {rResults1[1, ..,

length(rResults1)− 1], rResults2}
13: else
14: newPoints = {Points[1],Points[end]}
15: end if
16: return newPoints
17: end function

respectively. The dynamic obstacle related cost is here refor-
mulated to

Hl
do =

ndo∑
i=1

wiHl,i
do (10)

where wi represent the weight of the cost from obstacle i,
in general influenced by factors such as distance, bearing,
nearby grounding hazards and vessel-vessel communication.
If no prior information is used, it is set towi = 1. The dynamic
obstacle i cost is given by

Hl,i
do =

nips∑
s=1

PisC
l,i
s (11)

where nips is the number of prediction scenarios for the obsta-
cle, Pis represent the associated prediction scenario probabil-
ities from an intention inference module [24], and C l,i

s is the
cost involving prediction scenario s for obstacle i, given as

C l,i
s = max

k
ζiCl,si,k P̂

l,i,s
c,k exp(−tk/Td ) (12)

which is taken as the maximum of the probabilistic colli-
sion risk, involving the relative kinetic energy term Cl,si (t) =
Kcoll ||vik − vk ||2 between the obstacle i velocity vik and
own-ship velocity vk , with parameter Kcoll , [2]. P̂l,i,sc,k is the
collision probability estimate calculated using the Cross-
Entropy method, see [3] for more details. The track loss
modifier ζi, [30] takes into account cases when dynamic
obstacle tracks are lost for some time. Lastly, an exponential
discounting termwith time constant Td gives lower weighting
of collision events far ahead in the future.

The intention uncertainty of a dynamic obstacle is repre-
sented through the scenario probabilities Pis for each consid-
ered obstacle prediction scenario. Given a representable set

of obstacle prediction scenarios, we are able to cover most
anticipated obstacle maneuvering cases because we predict
the uncertainty for each of the scenarios. These probabili-
ties of different target ship plans or trajectories are typically
inferred by an intention model as in [24] and [31], and can be
used for having elevated situational awareness in the planner.
Furthermore, the probabilities are an adequate way of taking
into account intention information, as they are easy to inter-
pret, can be used to define risk and leads to a natural way of
weighting the collision risk associated with different decision
candidates for an obstacle ship. The downside is that one
needs a validated intention inference model, and a sufficient
set of dynamic obstacle prediction scenarios in order to have
meaningful estimates.

To favor COLREGS compliance in multi-ship situations,
the COLREGS related cost is now separated into its own term
in the PSB-MPC, and given as

Hl
colregs = κ

ndo∑
i=1

wiµl,i (13)

where κ is a tuning parameter and

µl,i =

nips∑
s=1

Pisµ
l,i
s (14)

with µl,is ∈ {0, 1} as the indicator of the own-ship follow-
ing control behaviour l violating COLREGS with respect to
obstacle i in prediction scenario s, calculated as in [2] for
head-on, overtaking and crossing situations. The parameters
wi and dynamic obstacle scenario probabilities are again used
for weighting purposes. The new formulation now penalizes
COLREGS breaches with respect to all dynamic obstacles,
and allows for better handling of compliance in multi-ship
situations.

The static obstacle related cost or grounding cost is param-
eterized as

Hl
so = max

j
Hl,j
so (15)

where

Hl,j
so = max

k
(G1 + G2φ

l
j,kV

2
w)

×exp(−(G3|d l0j,k − dsafe| + G4tk )) (16)

inspired by [32], where G1 to G4 are tuning parameters, Vw
the estimated wind speed, φlj,k = max(0,ωj ·Ll0j,k ) with ωj as
the wind direction unit vector. Ll0j,k is the unit vector point-
ing from the own-ship to the static obstacle j, and d l0j,k the
corresponding distance. dsafe is the circular own-ship safety
zone.

The trajectory deviation cost is given as

Hl
p =

1
nM

nM∑
M=1

f (·)+
1

nM − 1

nM∑
M=2

h(·) (17)

with f (·) and h(·) as the control deviation and change cost,
respectively. More details on the different terms involved in
the cost function can be found in [2], [22], [24], [30], and [33].
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D. STANDARD PSB-MPC IMPLEMENTATION
As the PSB-MPC is a finite set MPC, the solution to
the non-convex Mixed Integer Nonlinear Program (MINLP)
in (1) is parameterized by the chosen discrete set of own-ship
control behaviours. The benefit of the finite-set MPC formu-
lation is that by brute force iterating over the set of control
behaviours we are able to find a global solution, which would
be hard in the case if numerical optimization was used.

Implementing the cost evaluation in the PSB-MPC on a
sequential computing platform will involve loops over the
own-ship control behaviours, where loops over static and
dynamic obstacles in their set of prediction scenarios are
found within. This would look something like the method
outlined in Algorithm 2. One can see that this implementation

Algorithm 2 Standard PSB-MPC Cost Evaluation on a
Sequential Processing Platform, Assuming All Obstacle Pre-
diction Scenarios Are Generated Beforehand
1: Initialize optimal control behaviour to l∗ = 1.
2: for l = 1, .., ncbs do
3: Predict the own-ship trajectory following control

behaviour l.
4: Calculate the trajectory related costHl

p using (17).
5: for j = 1, .., nso do
6: Calculate the static obstacle j grounding costHl,j

so
using (16).

7: end for
8: Calculate total grounding costHl

so using (15).
9: for i = 1, .., ndo do

10: for s = 1, .., nips do
11: Calculate probabilistic collision cost C l,i

s
from (12) and COLREGS indicator µl,is in (14).

12: end for
13: Calculate dynamic obstacle i costHl,i

do using (11).
14: end for
15: Calculate total dynamic obstacle costHl

do using (10).
16: Calculate control behaviour cost Hl(t0) = Hl

do +

Hl
colregs +Hl

so +Hl
p.

17: ifHl(t0) < Hl∗ (t0) then
18: Set l∗ = l.
19: end if
20: end for

involves several nested for loops, especially the one over
dynamic obstacles and their prediction scenarios. In addi-
tion, one must also loop over the number of discrete sam-
ples tk ∈ D(t0) in the predicted trajectories. Thus, the MPC
problem will scale poorly with increasing number of control
behaviours, static and dynamic obstacles.

III. PARALLELIZED PSB-MPC IMPLEMENTATION
The nature of the finite set MPC described in the above
section makes it possible to independently evaluate the cost
associated with the control behaviours, and thus apply par-
allelism in the main part of the algorithm. Furthermore, all

obstacle prediction scenarios are assumed to be indepen-
dent of the own-ship control behaviour and can be gener-
ated beforehand. This is deemed reasonable as we take into
account maneuvering uncertainty in the obstacle prediction.

When considering large amounts of situational information
and a dense set of possible own-ship trajectories, evaluating
the cost of an own-ship control behaviour sequentially will
not make the COLAV planning algorithm real-time feasible.
Parallelizing the cost evaluation will allow for more refined
own-ship decision making, as more own-ship trajectories can
be considered. Also, more static obstacles and prediction sce-
narios for dynamic obstacles can then be considered, result-
ing in increased situational awareness for the own-ship. The
limiting factor here will then be how many threads that can
be scheduled on the parallel computation platform.

A naive way of cost function evaluation parallelization
would be to schedule GPU threads to evaluate the cost (9).
However, this is a big task for a single thread, as it among
others involves going through all static and dynamic obstacles
in all their prediction scenarios to find the total cost. This
equates to a nested for loop over obstacles, prediction sce-
narios and discrete time samples in the code that implements
the MPC as in Algorithm 2, and will scale poorly with an
increase in the number of obstacles and number of predic-
tion scenarios nips for dynamic obstacles. As GPU cores have
limited processing power compared to CPU cores, their tasks
should be as lightweight as possible.

Two of the main bottlenecks in the cost evaluation is cal-
culating the distance to static obstacles and the estimation of
collision probabilities. The first bottleneck is readily apparent
when considering large polygons with tens of thousands of
vertices. However, the RDP algorithm will reduce the num-
ber of vertices in a polygon and thus alleviate computational
effort. Reducing the number of time steps to evaluate the
grounding cost can also aid in fixing this problem.

For the second bottleneck, giving each thread the job of
estimating collision probabilities associated with only a pair
of trajectories will give higher throughput, at the cost of
scheduling more threads on the GPU and therefore having
higher memory demands. However, as GPU technology con-
tinue to improve with respect to single core processing power
and device memory, this is deemed a worthy trade-off. Fur-
thermore, the calculation efficiency using the Cross-Entropy
method for collision probability estimation [3] is increased
by estimating P̂l,i,sc ≈ 0 when the predicted distance between
the own-ship and an obstacle is larger than dsafe + 4σ ilargest ,
where σ ilargest is the standard deviation along the axis where
obstacle i has the largest predicted positional uncertainty.
Thus, a way to solve the bottlenecks in (1) utilizing par-

allel processing can be done in two steps: First schedule
ncbs threads to predict the own-ship trajectory and calculate
the trajectory related cost (17) for each control behaviour
l = 1, 2, .., ncbs. Then, schedule

nct = ncbs · (nso +
nobst∑
i=1

nips) (18)
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threads that evaluates the cost (16), (12) and the COLREGS
violation indicator in (14). The total cost (9) is finally
stitched together afterwards on the CPU. This way, no GPU
thread has run-times dependent on large nested for-loops,
and the MPC-problem scales better with increasing number
of obstacles and dynamic obstacle prediction scenarios. This
approach of using parallelization to solving (1) can be sum-
marized in Algorithm 3. Here, ‘‘parfor’’ denotes a parallel for
loop.

Algorithm 3 Parallelized PSB-MPC Cost Evaluation,
Assuming All Obstacle Prediction Scenarios Are Generated
Beforehand
1: Schedule ncbs GPU threads, transferring all the required

data for own-ship trajectory prediction and calculat-
ing (17).

2: parfor l = 1, .., ncbs do
3: Predict the own-ship trajectory following control

behaviour l, save trajectory in GPU memory for use by
the subsequent processing.

4: Calculate the trajectory related costHl
p using (17).

5: Return the results to CPU memory.
6: end parfor
7: Schedule nct GPU threads, transferring all the required

data needed for partial static and dynamic obstacle cost
evaluation.

8: parfor ct = 1, .., nct do
9: Extract control behaviour l, static obstacle j or

dynamic obstacle i and prediction scenario s to consider.
10: Calculate the grounding cost Hl,j

so using (16) or C l,i
s

using (12) and the indicator µl,is , depending on if a static
or dynamic obstacle is considered in the thread.

11: Return the results to CPU memory.
12: end parfor
13: Use all the calculatedHl,j

so to calculateHl
so using (15).

14: Use all the calculatedC l,i
s andµl,is plus other relevant data

to calculateHl
do using (10) andHl

colregs using (13).
15: Finally, calculate (9) for all control behaviours using the

previously calculated termsHl
do,H

l
colregs,Hl

so andHl
p of

the cost function, and extract the optimal one l∗ giving
minimal cost.

Note that how the PSB-MPC algorithm is implemented
both on the CPU and GPU will have big impacts on
the run-time results obtained in this article. Hardware,
programming language and software libraries used will be
significant factors here. An alternative to the structure in
algorithm 3 would be to have separate kernels to evaluate
the static and dynamic obstacle partial costs. This could
be better suiting for a setup with multiple GPUs, as the
two kernels could then be run concurrently. Lastly, because
of the extra latency overhead due to porting data from the
host (CPU) to the device (GPU), as much memory as pos-
sible for the relevant data needed on the GPU should be
pre-allocated.

IV. SIMULATION STUDY
A. OWN-SHIP MODEL
In this article we also use a kinematic model with LOS
guidance [25] and a constant speed profile for the own-ship,
as used for dynamic obstacles in Section II-A, to predict any
of the candidate trajectories shown in Fig. 1. Specific to the
own-ship, the model is restated as

xk+1 = xk + Ukcos(χk )

yk+1 = yk + Uksin(χk )

χk+1 = χk +
1
Tχ

(χd,k − χk )

Uk+1 = Uk +
1
TU

(Ud,k − Uk ) (19)

which describes the own-ship state xk = [xk , yk , χk , Uk ]T

motion at time tk . Again, the state consists of the vessel
surface position in Cartesian coordinates, course over ground
(COG) and speed over ground (SOG), respectively. The time
constants TU and Tχ in speed and course may be found by
applying parameter identification methods using motion data
from the considered vessel.

For each own-ship control behaviour, the speed modifica-
tions ulm,M and course modifications χ lm,M for all nM sequen-
tial maneuvers considered in the PSB-MPC are applied to the
LOS guidance references for speed and course at maneuver-
ing times tM ,M = 1, 2, . . . , nM , evenly spaced througout the
horizon with a time spacing parameter tts for simplicity.

B. SETUP
The GPU-based PSB-MPC is tested in two situations to illus-
trate that the COLAV planning algorithm can tackle dynamic
obstacles with uncertainties in addition to grounding hazards.
The first river scenario is chosen to test how the COLAVplan-
ning method handles avoidance in confined spaces, whereas
the second scenario aims to test the algorithm performance
in a longer time horizon with multiple dynamic obstacles
in a mix of an open sea area and a narrow channel. The
setup with tracking system and parameters are similar to
that in [3], where the obstacle tracker is deliberately tuned
conservatively to test the MPC robustness against kinematic
uncertainty. The situations are described below, with a num-
ber of NMC = 50 Monte Carlo simulations used for each
situation. A run-time analysis considering the first situation
is performed, comparing the CPU and GPU implementations
of the PSB-MPC, Algorithm 2 and 3, respectively. The CPU
version evaluates the PSB-MPC cost for all own-ship con-
trol behaviours sequentially on CPU cores. The simulations
are performed on a work station with an Intel(R) Core(TM)
i9-10900K 3.70GHz processor, with 32 GB RAM and an
NVIDIA GeForce RTX 3090 GPU. C++ is used to imple-
ment the CPU version of the PSB-MPC, whereas C++ and
CUDA is used for the GPU version.

1) Head-on scenario in Nidelva in Trondheim, Norway.
The own-ship travels upstream with constant
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TABLE 1. Important PSB-MPC parameters for the Nidelva situation.

FIGURE 4. Results for the situation in Nidelva with multiple obstacles.

speed 2m/s, whereas two dynamic obstacles travels
downstream with constant speed 2m/s. Vessels of

lengths 5m are here considered, and an own-ship safety
zone of dsafe = 5m is used.
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FIGURE 5. Box-plot representation of the runtime results with respect to
increasing numbers of control behaviours ncbs, when keeping the
number of dynamic obstacle prediction scenarios constant
at ni

ps = 1.

2) Multi-ship situation with grounding hazards near
Sakshaug, Trøndelag in Norway. Dynamic obstacle
i = 1 is traveling from the south through Straumen
with constant speed 5m/s and ends up in an over-
taking situation with respect to the own-ship, whereas
dynamic obstacle i = 2 travels east-west through
Straumen with constant speed 6m/s and ends up in
head-on situations with respect to the other vessels.
Obstacle i = 3 travels with speed 7m/s east-west from
Straumen towards the own-ship in a head-on situation,
and obstacle i = 4 just north-east of the own-ship
travels south with speed 8m/s. The own-ship travels
with constant speed 7m/s. Vessels of lengths 10m are
considered, and an own-ship safety zone of dsafe =
10m is used. In addition to COLREGS adherence with
respect to multiple ships, the challenge here is voyage
through the narrow passage in Straumen, beneath the
bridge which has two pylons that the vessels have to
avoid.

For simplicity, a uniform set of scenario probabilitiesPis are
defined for the dynamic obstacles, which resembles a conser-
vative case when no prior information from intent inference
is available. For the grounding hazards, only polygons within
a range dso are considered, to reduce computation time.
Waypoints for the own-ship are set in a way that a top
level planner could generate, but with small margins to static
obstacles, such that the anti-grounding part of the PSB-MPC
becomes important. Furthermore, the waypoints are set such
that a nominal collision-free trajectory does not exist for all
vessels involved.

The MPC is tuned such that anti-grounding and collision
avoidance is prioritized over adhering to COLREGS and fol-
lowing the nominal trajectory. Naturally, because river voy-
age is different from sea voyage, the PSB-MPC has a different
tuning for the two situations. Important parameters for the
first situation tuning are given in Table 1.

FIGURE 6. Box-plot representation of the runtime results with respect to
increasing dynamic obstacle prediction scenarios ni

ps, when keeping the
number of own-ship avoidance maneuvers constant at nM = 1 and a total
number of control behaviours ncbs = 39.

FIGURE 7. Box-plot representation of the runtime results with respect to
increasing dynamic obstacle prediction scenarios ni

ps, when keeping the
number of own-ship avoidance maneuvers constant at nM = 2 and a total
number of control behaviours ncbs = 1014.

C. NIDELVA SITUATION
Results for the first situation are given in Fig. 4. The dynamic
obstacles are here assumed to be self-governing, running their
own PSB-MPC algorithm to simulate human behaviour. The
conservative tracking system tuning will create an extra chal-
lenge for the COLAV planning algorithm, with higher kine-
matic obstacle uncertainty. Despite this and nearby grounding
hazards, all vessels involved are able to avoid collision and
grounding in addition to adhering to the COLREGS rules 8,
13 and 16 related to clear actions, head-on situation and
actions for give-way vessels, respectively. The near constant
minimum distance to the closest static obstacle in the statis-
tics is because the own-ship is closest to a grounding hazard
initially. Note that the map data for the river area do not
include the piers at which boats are docked, which would be
taken into account through e.g. LIDAR data in a real-time
application.
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FIGURE 8. Map of the Trondheim region with Nidelva in the middle, with
all relevant polygons labelled with different colors. The own-ship position
is the small red dot in Nidelva in the middle.

FIGURE 9. Box-plot representation of the runtime results with respect to
the worst case polygon scenario before and after applying RDP, when
keeping the number of own-ship avoidance maneuvers constant at
nM = 2 and a total number of control behaviours ncbs = 1014.

For the situation in Nidelva, a run-time analysis was per-
formed with respect to the number of control behaviours ncbs
for the MPC, and the number of dynamic obstacle prediction
scenarios nips considered. The number of control behaviours is
increased by increasing the number of sequential maneuvers
nM in the horizon, and by expanding the finite set of course
and surge modifications. Both the CPU and GPU imple-
mentations were run for NMC simulations for each parame-
ter setting. Figs. 5, 6 and 7 show a box-plot representation
of the results. The GPU-implementation of the PSB-MPC
performs better than the CPU-version when the number of
control behaviours increase beyond a thousand. With ncbs <
1000 and a scheduled number of threads nct < 5000, the
overhead of launching the GPU kernels becomes too large
compared to the gain of parallelized cost evaluation. This
makes the CPU-implementation feasible for cases where

TABLE 2. Polygon vertices before and after applying RDP on the Nidelva
environment.

FIGURE 10. Box-plot representation of the runtime results with respect to
increasing numbers of static obstacles nso, when keeping the number of
own-ship avoidance maneuvers constant at nM = 2 and a total number of
control behaviours ncbs = 1014.

typically nM = 1 and a small number of possible course and
speed changes is enough, and only a small number of static
and dynamic obstacles are considered.

Furthermore, one can see that the CPU implementation
performs better than the GPU implementation when con-
sidering increasing numbers of prediction scenarios up until
nips = 101 for dynamic obstacles, when using a low num-
ber of control behaviours ncbs = 39. In this case, the GPU
run-time is mainly caused by the overhead of porting data
back and forth between the host and device side. The contrary
result is the case when considering ncbs > 1000. This is again
because a CPU is optimized for fast sequential execution on
fewer but more complex tasks, whereas a GPU is optimized
for execution ofmany simple tasks in parallel. A similar result
is obtained by increasing nobst while keeping nips constant, but
will not be reported here.

From Figs. 5 - 7, an approximate linear scaling of the
MPC run-time complexity with increasing own-ship control
behaviours, dynamic obstacle scenarios and static obstacles
can be found. For static obstacles represented as polygons,
one also have to take into account the added run-time com-
plexity due to the number of vertices in the polygons.
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TABLE 3. Important PSB-MPC parameters for the Sakshaug situation.

FIGURE 11. Results for the situation in Sakshaug with multiple obstacles in the first case.
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FIGURE 12. Results for the situation in Sakshaug with multiple obstacles in the second case.

Also, tests to compare the run-time related to calculating
predominantly the grounding cost in the MPC on a CPU
and GPU platform was performed, when the own-ship is
located in Nidelva standing still. No dynamic obstacles are
considered, and thus the calculation of the distance to static
obstacles will be the bottleneck. The largest static obstacle
in the region is a polygon with 21962 vertices originally, and
has 1734 vertices after application of the RDP algorithm. The
map environment around Nidelva in Trondheim is illustrated
in Fig. 8, where the static obstacle j = 13 is the largest one
with 21962 vertices. Information about the number of vertices
for each polygon is given in Table 2.
The first test compares the run-time when only consider-

ing the largest polygon, with and without usage of the RDP

algorithm. This is a worst case scenario, as a real-time anti-
grounding system should preprocess large polygons such that
only the relevant local part is considered.We however include
this test for completeness, as it shows the importance of poly-
gon preprocessing. Results are here given in Fig. 9.

The results in Fig. 10 show a run-time analysis for increas-
ing numbers of static obstacles, after using the RDP for
polygon simplification. Note that the results considering an
increasing number of static obstacles are strongly dependent
on the number of vertices for each obstacle, which varies from
3 to 1734 vertices as seen fromTable 2 after usingRDP on this
environment. This is why there is a sharp increase in average
run-time when nso = 13, because the largest polygon is then
included in the consideration. An approximate linear run-time
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increase can however be found when considering polygons
of fairly the same complexity. The trend from these results is
that the GPU implementation becomes more feasible than the
CPU one when the number of scheduled parallel threads nct
surpasses around 5000.

D. SAKSHAUG SITUATION
Important parameters for the tuning are given in Table 3,
with results shown in Fig. 11 and 12. The first case show
results when only the own-ship has a COLAV planning algo-
rithm, whereas the second case show results when all vessels
involved use the PSB-MPC. For the first case, waypoints for
the obstacles are set such that they will not collide with each
other, but would collide with the own-ship if no COLAV
planning algorithm was used.

For both the first and second case, the own-ship has
difficulties with overtaking purple obstacle i = 1 while
simultaneously avoid grounding and avoiding blue obstacle
i = 2 head-on, that adheres to both COLREGS rules 13 and
14 regarding overtaking and head-on. Especially in the time
period between t2 and t3, the own-ship struggles with figur-
ing out the side to overtake obstacle i = 1 on when enter-
ing Straumen, hence the oscillations in the trajectory in this
period. The black obstacle i = 3 and green obstacle i = 4 are
easier to avoid as the vessels are here less constrained by land.

Thus, the own-ship is in general able to avoid collision
with all obstacles in both cases, but COLREGS adherence in
the narrow passage is difficult to accomplish with respect to
all ships. This is mainly due to constant conservative intent
information being used, with uniform prediction scenario
probabilities for dynamic obstacle trajectories, essentially
assuming that no dynamic obstacle will have specific incli-
nations towards adhering to the COLREGS. Also needing to
avoid grounding in the narrow passage further restricts the
PSB-MPC‘s ability to adhere to COLREGS in a safe manner.
The algorithm is however able to keep safe distance to all
obstacles in all Monte Carlo simulation runs. The diversity of
the environment makes algorithm tuning challenging, as one
can argue that the COLAV planning algorithm parameters
should be adaptive based on changes in the situation.

When the dynamic obstacles do not explicitly follow
COLREGS in the first case, the own-ship can be more
excused for not doing the same with respect to all vessels. For
the second case, one see the potential for vessel-vessel com-
munication to explicitly reduce trajectory uncertainties and
adhere to COLREGS, during the passage through Straumen.
Addressing these issues is the topic of future research more
focused on multi-ship COLREGS compliance in confined
waters.

Regarding run-time complexity for this example, it will be
similar as for the first situation when considering increasing
dynamic obstacles and their prediction scenarios. There will
be a small increase in the run-time due to the Sakshaug situa-
tion has larger and more complex static obstacles, although a
smaller set than for the Nidelva situation is considered in the
proximity of the own-ship. In total, run-time results generated

for this example would be fairly similar to the first simulation,
albeit with a bias on the static obstacle run-time complexity
due to larger obstacles considered.

V. CONCLUSION
The PSB-MPC COLAV planning algorithm presented in this
article facilitates both dynamic and static obstacle avoid-
ance, with the most performance-critical part of its algorithm
implemented on the GPU. What separates it from current
state-of-the-art is the computational speed of the algorithm,
where the cost evaluation is parallelized such that the MPC
problem scales approximately linearly with increasing con-
trol behaviours, static and dynamic obstacles and prediction
scenarios, as shown in the run-time results presented. This
makes the COLAV planner able to consider more control
behaviours and dynamic obstacle prediction scenarios effi-
ciently, which results in real-time capabilities and perfor-
mance gains in cases where large amounts of situational infor-
mation and possible own-ship decisions have to be consid-
ered.

In simulation, the COLAV planning algorithm is shown to
handle both grounding hazards and multiple dynamic obsta-
cles in a safe manner, both in a narrow river environment, and
also in a mix of more open sea and narrow waters. However,
there is an inherent challenge in finding parameters that will
make the algorithm work robustly and adhere to COLREGS
for multiple types of situations, especially when the environ-
mental constraints vary a lot.

Future work will involve making the PSB-MPC adaptive
to the environment faced, and utilize historical data for tun-
ing the algorithm. Also, the dynamic obstacle prediction and
COLREGS penalization cost evaluation should be extended
to consider static obstacles, for better applicability in con-
fined spaces.
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