
Localization for Ships during Automated Docking using a Monocular
Camera
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Abstract— Automating docking operations of ships requires
at least two robust and precise localization systems for reaching
the typically required safety and redundancy levels. Global
navigation satellite systems are typically chosen as one of
these, while the second needs to be independent and preferably
use another measurement principle. Optical sensors are ver-
satile, low-cost, and assumed to provide sufficient localization
range. Used to simultaneously locate the vessel and map the
harbor environment, this technology is believed to offer the
necessary properties to complement navigation satellite systems
in a resilient manner. In this paper, a monocular camera
together with the state-of-the-art ORB-SLAM3 algorithm is
used for localization. Umeyama’s method is used to create
an initialization procedure to determine the unknown scale
factor encountered in monocular camera odometry and to
find the transformation between the camera and a world-
fixed coordinate frame. The proposed system is validated using
data recorded on a commercial high-speed passenger ferry in
nominal operation. The results indicate a localization range
of more than 200m. The mean absolute position error is less
than 0.5m with an estimated heading error of 0.5° in favorable
weather conditions.

Index Terms— Localization, Visual Odometry, SLAM, Au-
tonomous Vehicle Navigation

I. INTRODUCTION

Ship docking and harbor maneuvering are complex tasks
that rely on skilled and experienced operators, both with
respect to the ship dynamics and the environmental forces.
A docking maneuver is stressful for human operators since
it requires simultaneous control of several thrusters in a
dynamic environment. Human error is the most common
reason for accidents in the maritime industry [1]. Therefore,
it is of interest to investigate requirements for development
of automated control systems in harbor maneuvering and
docking. A multi-vehicle framework for guidance, navigation
and control is introduced to automate maneuvers in harbor
areas in [1]. Moreover, [2] investigates optimal maneuvering
and control for multiple vessels within a harbor. [3] designs
a trajectory planning and control framework for automatic
docking with full-scale experiments.

The control algorithms calculating the forces and moments
required to bring the ship into and maintaining contact with
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the quay are an integral part of an automated docking system.
However, for modern ships with electric thrusters, their
ability to fulfill the control objective with sufficient precision
relies mostly on the precision of the localization system.
Obtaining the planar position and heading from sensor data
is, therefore, an important aspect for surface ships. Global
navigation satellite systems (GNSS) with real-time kinematic
(RTK) corrections is the state-of-the-art solution in ship
navigation systems [4]. However, harbors are often located
near tall buildings and large structures. This can degrade
the GNSS performance or lead to outage. Moreover, GNSS
have known vulnerabilities such as jamming and spoofing
[5], [6]. Therefore, automated control systems require at least
one additional and independent localization system that can
guide the ship in case of GNSS failure.

Cost-effective localization systems without the need for
additional infrastructure on the quay are desirable. It is
also preferable that the system uses another measurement
principle for redundancy. Passive optical sensors, radars, and
LIDARs fulfill these requirements. LIDARs are precise, but
are also expensive. Maritime radars are used to detect other
structures, but are not suitable for high-precision localization.
Consequently, passive optical sensors are more attractive as a
low-cost localization system during docking. Electro-optical
(EO) sensors are versatile, and have the required range
and resolution in sufficient lighting and weather conditions
[7]. Moreover, they are also commonly used as part of
automatic safety-critical systems such as collision detection
and avoidance systems [8], [9].

Camera-based localization is often based on visual odom-
etry (VO), visual simultaneous localization and mapping
(VSLAM) or specific camera markers. Monocular SLAM
has been a widespread solution to localize drones, robots,
and vehicles. Vision-based localization has also been a par-
ticularly important research topic for the automotive industry
in recent years. VO for automotive applications was studied
in [10] and a survey of VO and its applications was presented
in [11]. Computer vision for automated parking systems was
studied in [12]. A few works have also investigated vision-
based localization in maritime environments. [13] presents
a monitoring system for ship localization during docking
based on artificial intelligence. However, the camera is
mounted on the quay which requires wireless communication
for feedback and provides no flexibility on the choice of
docking position. [14] uses bearing measurements fused with



inertial measurements, but is only verified in an indoor lab
environment. Underwater docking using a visual sensor is
studied in [15]. [16] presents a vision-based localization for
docking but requires physical markers in the scene. This
limits the distance for when the algorithm works and requires
a permanent installation on the quay. Consequently, there
has not been much research in localization for surface ships
in harbor environments using an on-board camera system
without additional infrastructure on land.

This paper investigates the performance of a camera-based
VO system. The aim is to provide insight into how accurate
a monocular camera can localize a ship using VO in harbor
environments without additional sensors. This is important
to investigate because many maneuvers cannot rely on loop
closures, which is a key principle in VSLAM to avoid drift.
Fusion of VO with data from an inertial measurement unit
(IMU) is obviously an attractive solution, but it is desirable
to assess the accuracy of a VO system before other sensors
are added. Moreover, accurate heading information is crucial
for ships and investigating the drift in heading using VO is
an important research topic.

Maritime environments are often homogeneous with few
distinguishable features, which poses a challenge for feature-
based VSLAM and VO methods. The feature distribution is
typically sparse in open waters but may be enriched when the
ship moves closer to the quay. Moreover, features detected
on waves and moving structures are problematic since a com-
mon assumption is static landmarks. Therefore, the feature
distribution in harbor environments is studied in this paper.
ORB-SLAM3 is used as a proof-of-concept VO method. The
performance of ORB-SLAM3 is analyzed experimentally
and compared with a conventional navigation filter based on
RTK-GNSS and an IMU. The results presented in this paper
are relevant for other VSLAM and VO architectures, since
they share many similar challenges.

This paper is structured as follows. Section II describes
preliminaries important for the rest of the paper. Section III
describes ORB-SLAM3 and state-of-the-art methods. Sec-
tion IV describes Umeyama’s alignment method. Section V
describes the experiments carried out to collect field data and
the methods. Section VI presents experimental results before
the paper is concluded in Section VII.

II. PRELIMINARIES

The motion of a ship can be described in several coordi-
nate frames. The 6-DoF generalized pose vector x consists of
three parameters representing the position (x, y, and z) and
three parameters representing the attitude (e.g., roll, pitch,
and yaw). For ships in harbor maneuvering with a monocular
camera, the relevant coordinate frames are typically a camera
frame, the body (vehicle) frame, and the North-East-Down
(NED) frame. The NED frame acts as a world frame and
is a local tangent plane considered to be inertial locally [4].
The relevant coordinate systems are illustrated in fig. 1 and
also defined in [4].

A position vector x given in one coordinate frame is
transformed to another coordinate frame using homogeneous

transformations. For example, the homogeneous transforma-
tion from the NED frame to the camera frame is

x̃c = Tcnx̃n

where x̃c and x̃n are the position vectors represented using
homogeneous coordinate vectors and decomposed in the
camera frame and the NED frame, respectively. The homo-
geneous transformation matrix is defined as:

Tcn = TcbTbn

=

[
Rcb tccb
0T 1

] [
Rbn tbbn
0T 1

]
where Tcb and Tbn are the transformation matrices describ-
ing the transformation from the camera frame to the body
frame, and the NED frame to the body frame, respectively.
Rcb is the rotation matrix between the camera and body, and
tbcb is the translation between the origins.

Fig. 1. Illustration of the coordinate frames of interest. Tbn and Tcb are
homogeneous transformation matrices describing the relative orientation and
translation between the three coordinate frames.

A Bayesian probabilistic model is typically used to for-
mulate and solve VO and VSLAM problems. The true state
vector X is unknown and includes the camera pose and
position of detected map (feature) points:

X =

[
camera pose
map points

]
(1)

where camera pose is 6-DoF camera pose vector x, and the
map points is the position coordinates of all points in a map
created by the VO or VSLAM algorithm decomposed in the
camera frame. The objective in VO and VSLAM is to find
an estimate X̂ , given a set of noisy sensor measurements
Z and the initial states X(0). The MAP estimator is most
often used to maximize the posterior density p(X|Z) by
applying Bayes’ theorem. Moreover, these methods apply
Bayesian smoothing to improve the accuracy at the expense
of computational complexity.



III. VISUAL SIMULTANEOUS LOCALIZATION AND
MAPPING AND VISUAL ODOMETRY

The methods investigated in this research are based on
monocular camera systems. In monocular SLAM, a single
camera, which is freely moving through its environment, rep-
resents the sole sensory input to the system [17]. One major
characteristic of monocular SLAM is the scale ambiguity,
meaning that it cannot estimate the absolute scale of the
scene, and thus the perceived scale will drift over time. The
scale ambiguity is caused by the lack of depth information
in monocular camera images. Adding more sensors, such as
another camera and obtaining stereo vision, or fusing the
measurements with an IMU are some of the strategies to
recover the scale in real-time applications. However, this
paper only concerns VO using a single camera, where an
initialization procedure handles the scale ambiguity.

The most widely used VO and VSLAM algorithms are
sparse and indirect. DSO [18] is sparse and direct, while
LSD-SLAM [19] and DTAM [20] are dense and direct. The
performance of some state-of-the-art algorithms is bench-
marked in [21], where ORB-SLAM3 is shown to outperform
the other methods in terms of accuracy and robustness,
which is the main motivation for using ORB-SLAM3 in this
paper. Without utilizing its loop closure feature, only the
VO capability of ORB-SLAM3 is used. ORB-SLAM and its
successors are described in the next section.

A. ORB-SLAM

ORB-SLAM is a feature-based, indirect, and sparse
monocular SLAM algorithm with real-time capabilities.
ORB-SLAM includes the following modules:

1) ORB feature detector: Oriented FAST and Rotated
BRIEF (ORB) is the feature selector, which builds on FAST
keypoint detector [22] and BRIEF [23] feature descriptor.
ORB is both scale and rotation-invariant, computationally
efficient, and is also invariant to the viewpoint. This allows
for scenes captured from wide viewpoints to be matched,
which is an advantage in urban areas.

2) Main Threads: There are three main threads that run si-
multaneously: tracking, local mapping, and loop closing. The
tracking thread is responsible for localizing the camera for
every new frame and deciding when to add a new keyframe.
Feature matching is done with the previous keyframe and the
camera pose is optimized using motion-only bundle adjust-
ment. The local mapping thread is responsible for inserting
keyframes into the map, creating new map points, removing
map point outliers and redundant keyframes, and performing
local bundle adjustment. Loop closing is responsible for
searching for new loops on every new keyframe. Loop
closure is not relevant for the experiments, and thus not
described further.

B. ORB-SLAM3

ORB-SLAM3 [21] is the most recent version of ORB-
SLAM [24] with improved accuracy and robustness. The
method has some new features such as full bundle adjustment
which optimizes all map points and camera poses to improve

the accuracy and map consistency. It also includes tight
integration of inertial measurements, which is, however, not
exploited in this paper.

Using this algorithm in a harbor environment has its
advantages and disadvantages. The method runs in real-time
and is known to provide excellent localization accuracy in
several environments. Since it is an indirect system, it is
less sensitive to brightness variations. However, contrary to
direct methods, it can be vulnerable to motion blur and a
sparsely textured environment. The number of features can
be a challenge in maritime environments and poses some
limitations on the localization range of the system. It is
further addressed in Section VI. Motion blur can occur, but
it is not normally an issue in low-speed harbor maneuvering.

IV. UMEYAMA’S ALIGNMENT METHOD

Umeyama’s SIM(3) alignment is a method used to find
the similarity transformation parameters s (scaling), R (rota-
tion), and t (translation) that give the least mean-squared
error between two point patterns [25]. The method can
also be used to align and compare a ground-truth pose and
an estimated pose. To put it formally, given N estimated
positions {p̂i}N−1i=0 and the ground-truth positions {pi}N−1i=0

from the corresponding time steps, it is possible to find a
similarity transformation S′ = {s′,R′, t′} that satisfies:

S′ = argmin
S={s,R,t}

N−1∑
i=0

||pi − sRp̂i − t||2

To solve this least squares problem, the method in [25] is
often used. If the ground-truth positions are given in a dif-
ferent coordinate frame compared to the estimated positions,
then the similarity transformation can be used to obtain the
relative pose of the two coordinate systems. In this paper,
Umeyama’s SIM(3) alignment method is used to estimate
and transform the VO pose given in the camera-frame to
the NED-frame for localization and evaluation purposes.
Moreover, the method is used to estimate the unknown scale
factor present in monocular VO as part of an initialization
procedure described in Section V-D.3.

V. EXPERIMENTS

A. Data Collection

The data used in this study was collected on a passenger
ferry traveling between Trondheim and Vanvikan in Norway.
Data from several crossings were captured, and two data sets
are chosen for detailed analysis in this paper. The findings
have been verified in the other data sets. Figure 2 shows
the ferry docked at the terminal. The chosen portion of the
data sets contain trajectories of about 190m to 210m. These
trajectories represent the part of the ferry mission with harbor
maneuvering and docking. The trajectories cover the distance
from where buildings and structures in the scenery begin to
appear clearly in the camera images. The weather conditions
were sunny with brief wind, which lead to images being
captured with good brightness and minor camera motion due
to waves and winds, as it can be seen in fig. 4 and fig. 5.



Fig. 2. Image of the ferry used to gather data at the dock

B. Sensor Suite

The following sensor suite was used to capture data:
• Analog Devices Adis 16490 IMU providing measure-

ments of specific force and angular rate at 250Hz.
• 2x uBlox Neo-M8T GNSS receivers paired with Harxon

HX-GS288A-antennas. Dual antenna setup provides
aiding measurements for heading estimation [4].

• Ueye UI-5260FA-C-HQ visual spectrum camera with a
focal length of 12mm. A frame rate of 10Hz was used,
and the resolution was adjusted to 1936× 1216.

To benchmark the VO system, a multiplicative extended
Kalman filter (MEKF) was used to fuse data from the IMU
and the GNSS receivers [26] with real-time kinematic (RTK)
capability to obtain an accuracy of a few centimeters using
the carrier phase observables [4]. The ground-truth reference
is assumed to have an accuracy within 10 cm to 20 cm based
on a floating-point solution for the GNSS integer ambiguity.

C. Mounting Pose

The camera was mounted on a metal railing, on the
starboard side of the ferry, as shown in fig. 3. It was mounted
in this manner to ensure that the quay area was within the
field of view during docking. Figure 4 shows the docking
area captured by the camera nearby the docking terminal.
The metal railing is visible in the lower-left corner.

D. Methods

1) ORB-SLAM3: The open-source implementation of
ORB-SLAM3 [21] was used as VO system in this research.
The camera intrinsic matrix and distortion parameters were
obtained through camera calibration [27].

2) EVO: To evaluate the localization accuracy of ORB-
SLAM3, EVO [28] was used. It supports most of the well-
known benchmarking data set file formats and provides

Fig. 3. Sensor placement on the ferry during data collection

algorithmic options for data association, alignment, and scale
adjustment using Umeyama’s method [28]. EVO can be used
to estimate the camera mounting pose by aligning a reference
trajectory with the SLAM trajectory during an initialization
period. This is described next.

3) Initialization Procedure: The VO system must be an-
chored to NED initially, since only relative measurements are
obtained in VO. Initialization using a single initial pose is not
robust. Therefore, an initialization method is defined in this
paper. Umeyama’s method, described in Section IV, is used
to find the transformation between the initial VO trajectory in
the camera frame and a ground-truth trajectory in NED. The
origin of NED is placed on the quay for convenience. The
ground truth is based on a MEKF as mentioned in Section V-
B and decomposed in the same NED frame. The initialization
procedure is conducted to anchor the VO trajectory to NED
and estimate the unknown scale factor of the camera. The
length of the initialization period is tunable and chosen to be
25 s here. This choice is further explained in Section VI-B.
The length of the initialization period affects the accuracy
initially, but cannot prevent long-term drift. In practice, this
strategy means that GNSS must be available initially before
the camera acts independently in a dead-reckoning fashion
using VO. The initialization procedure is typically carried
out before the docking maneuver starts.

VI. RESULTS

In this section, the results from the field tests are presented.
First, the feature distribution and performance of the ORB
feature detector are analyzed. This is followed by a case
study that is conducted to benchmark the localization accu-
racy using a monocular camera and VO. All results are based
on experimental data. The motivation behind the results is
to emulate a likely situation in which RTK-GNSS position
measurements are available initially but become unavailable,
degraded or unreliable close to the dock. In open waters, the
RTK-GNSS coverage is expected to be stable and can be



used as part of the initialization procedure. Only the camera
is used for localization closer to the dock.

A. Feature Detection and Mapping

Feature detection is perhaps the most crucial part in
VO, and the maximum number of features to detect is a
typical tuning parameter. Choosing a large number leads to
higher execution time. In the results, a maximum of 1000
features was allowed per frame, which makes the algorithm
run at 1.4Hz on a 9th Gen Intel Core vPro i7 processor.
Figure 4 and fig. 5 show typical examples of how the ORB
features are distributed across the images when the ferry
is nearby the docking terminal and in open water during
transit, respectively. Near the docking terminal, features are
detected on the terminal structure as well as on the tall
buildings in the background. In open waters, features are
mainly detected in a smaller region of the camera frame,
making it harder to estimate the pose of the ferry. Features
detected in fig. 4 have short distances to the camera compared
to fig. 5. In VO, map points detected at shorter distances with
good distribution across the camera frame usually provide
localization estimates with less uncertainty. This is due to
epipolar geometry and its well-known depth uncertainty [29].
This uncertainty limits the localization range for surface
vehicles in open sea.

Fig. 4. ORB features detected in an image captured near the docking
terminal. .

Several features are detected in undesirable regions of the
camera frame. This includes features on surface waves, the
metal railing where the camera is mounted, and on moving
targets such as the other ferry in fig. 4. The other ferry
in fig. 4 was stationary during arrival in the experiments,
but moving landmarks are undesirable. Moreover, waves are
non-stationary unwanted features. Therefore, the maximum
number of features has a limit where increasing the number
of features can lead to worse accuracy since more undesired
uncertain or non-stationary features will be detected. The
metal railing is not part of the quay environment and is
observed in the same locations in all images. Therefore,
if the motion is estimated relative to the railing, then the
camera seems to stand still, which contradicts the hypothesis

Fig. 5. ORB features detected in an image captured in the open water
before arriving at the harbor area. .

that the camera is moving relative to the environment.
To provide robust estimates, ORB-SLAM3’s culling policy
handles anomalies like these, that do not describe the camera
motion in a sensible manner with respect to the majority of
the detected features [21].

B. Ferry Localization Using ORB-SLAM3

Data from two independent crossings are used to evaluate
the localization accuracy of ORB-SLAM3. The initialization
procedure described in Section V-D.3 was used to estimate
the unknown scale factor, and anchor the VO estimates to
NED in the initialization period. The trajectory of interest is
when the ferry is within the harbor area. This corresponds
to 95 s to 105 s with a trajectory length of about 185m to
205m in both data sets. Absolute position error (APE) is
used to evaluate the accuracy of the VO trajectory against
the true trajectory, and it is a frequently employed metric in
the literature.

Length of Initialization Period

The VO system must be anchored to NED initially as
described in Section V-D.3. An initialization period of 25 s
was chosen. With the system running at 1.4Hz, the first 25 s
corresponds to about 35 poses that are aligned between the
VO and MEKF. The length of the initialization affects the
overall accuracy and is thus interesting to analyze. Figure 6
shows the mean APE as a function of the length of the
initialization procedure. The error converges if more than
50 s is used for initialization, but that corresponds to a
large portion of the trajectory. An initialization period of
25 s was chosen since it gives the localization system a
more relevant scenario with more than a minute without
any other measurements. Navigating in a dead-reckoning
fashion for more than a minute is challenging in applications
which require precise localization. [30] investigates the dead
reckoning capabilities of a state-of-the art inertial navigation
system driven by MEMS IMU. The reported drift is about
1m over 1min for a vessel under dynamic positioning.
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initialization procedure.

First experiment

Figure 7 shows the estimated trajectory of the ferry in
the first experiment using VO with the APE mapped onto
the trajectory. The GNSS-aided MEKF is used as ground
truth. The initialization period only lasted for 25 s of the
total trajectory length of 95 s but cover half of the trajectory
length because the ferry speed was much higher initially.
The speed decreased when the ferry moved closer to the
docking station. The precision of the localization system is
particularly important in the final part of the trajectory so
that the propulsion system is able to steer the ferry towards
the dock. Figure 8 shows the absolute positioning error.
The mean APE is 6 cm during the initialization period and
44 cm after the initialization period. The maximum APE is
15 cm and 63 cm during and after the initialization period,
respectively. The drift during VO is not significant and the
positioning error only grows to 63 cm as shown in fig. 8.
This corresponds to 0.8% of the trajectory length after the
initialization procedure ended. Moreover, the error does not
increase systematically with time. This is a promising result
since the localization system worked in a dead-reckoning
fashion for more than a minute.

Figure 9 shows the estimated heading angle compared
with the reference. The maximum error is less than a degree
without the drift increasing notably during the final part of
the trajectory. Accurate heading estimation is key during
docking, and the results show that a monocular camera can
be a promising solution for localization without a gyrocom-
pass or a GNSS compass. The long-term drift has not been
investigated due to the lack of features further out at sea.

Second experiment

The second set of results originates from an independent
data set captured with the same ferry. Figure 10 shows the
estimated trajectory. The initialization period lasted for 25 s.
The trajectory length after the initialization procedure is
coincidentally somewhat longer in this experiment with a
length of about 115m.
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Fig. 7. North-east trajectory of the ferry with absolute position error
mapped onto the trajectory with color coding. The maximum error is about
63 cm near the end.
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Fig. 8. Absolute position error during first experiment.

Figure 11 shows the absolute positioning error. The mean
APE is 6 cm during the initialization period and 25 cm after
the initialization period. The maximum APE is 14 cm and
70 cm during and after the initialization period, respectively.
The drift during VO is not significant and the positioning
error only grows to 70 cm as shown in fig. 11. This drift is
about 0.6% of the trajectory length after the initialization
procedure ended. The maximum APE occurs in a time
period with significant variations in the heading as observed
in fig. 12. This is expected since monocular VO is more
prone to positioning errors during rotations. Potential time-
synchronization inaccuracies are also more influential during
rotations. Overall, the mean APE is smaller in this experi-
ment and the accuracy better.

The estimated heading angle is shown in fig. 12. The
estimates are more accurate for this experiment and follows
the ground truth precisely, also during heading changes. This
is promising and shows that a camera is a reliable sensor for
heading estimation during harbor maneuvering.
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Fig. 10. North-east trajectory of the ferry with APE mapped onto the
trajectory with color coding in the second experiment. The maximum error
is about 70 cm near the end.

Discussion

The results indicate that a camera-based localization sys-
tem using VO is a promising alternative in harbors with
restricted GNSS coverage if properly initialized. An accuracy
of 0.5m in horizontal position and 0.5° in heading is con-
sidered to be sufficient for most ships during docking. This
obviously depends on the type of ship and how the docking
maneuver is conducted. In small, confined areas with obsta-
cles, it may be necessary with even better accuracy. However,
for docking at a longer quay without obstacles, an accuracy
of 1m might be sufficient. It is also worth highlighting that
obstacles could enrich the feature distribution and improve
the accuracy of the VO system. Also note that for longer
ships, the heading accuracy is often even more important than
the position accuracy since it is necessary to know where
the bow and stern are. Finally, increasing the length of the
initialization procedure will improve the accuracy since dead
reckoning using VO will be conducted over a shorter time
period. Therefore, it is obviously beneficial to use GNSS for
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Fig. 11. Absolute position error during localization in the second
experiment.
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Fig. 12. Estimated heading in second experiment. The maximum error is
less than a degree.

as long as it is considered to be reliable.
This research does not fully cover the generalizability of

the method for other docking areas, since both data sets
were captured in the same harbor. For a complete feasibility
assessment, the results must be validated in other densely
and sparsely textured environments, with larger variations in
light and environmental conditions. Moreover, challenging
elements in the scene, such as moving objects, is a field that
needs more research.

VII. CONCLUSION

In this study, the VO capabilities of ORB-SLAM3 is used
to create a localization system for ferries in harbor ma-
neuvering. Visual features are observed during maneuvering
and used to estimate the navigation states of the ferry. By
using detected features, the algorithm can simultaneously
localize and map the harbor area in real-time, proving that
the ORB-SLAM3-based localization system can act as a
backup for state-of-the art inertial navigation systems aided
by dual-antenna GNSS without a gyrocompass. The VO



system provides robust and satisfactory planar positioning
and heading estimates up to a distance of 200m if properly
initialized. For shorter localization ranges, the accuracy is
better since the drift in the estimates increases with the
localization distance. As shown in the results, a mean APE
of 0.5m can be achieved when an increasingly larger portion
of the RTK-GNSS data is used for initialization. This is
not worse than the typical achievable accuracy for a dead-
reckoning system based on a state-of-the- art MEMS-based
inertial navigation system. Future work should therefore
study fusion of VO and IMU data in harbor environments.
Moreover, investigating the performance in poor lighting and
weather conditions, and in other harbors are also interesting
topics for further work.
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T. Jeinsch, A. Schubert, M. Gluch, O. Simanski, E. Pairet-Garcia,
F. Siemer, and D. Abel, “Optimal maneuvering and control of cooper-
ative vehicles as case study for maritime applications within harbors,”
in European Control Conference (ECC), 2019, pp. 3022–3027.

[3] G. Bitar, A. B. Martinsen, A. M. Lekkas, and M. Breivik, “Trajectory
planning and control for automatic docking of asvs with full-scale
experiments,” 21st IFAC World Congress, vol. 53, no. 2, pp. 14 488–
14 494, 2020.

[4] T. I. Fossen, Handbook of marine craft hydrodynamics and motion
control, second edition. John Wiley & Sons, 2021.

[5] M. L. Psiaki and T. E. Humphreys, “Gnss spoofing and detection,”
Proceedings of the IEEE, vol. 104, p. 1258–1270, 2016.

[6] J. C. Grabowski, “Personal privacy jammers,” GPS World, pp. 28–37,
April 2012.

[7] M. O. Aqel, M. H. Marhaban, M. I. Saripan, and N. B. Ismail, “Review
of visual odometry: types, approaches, challenges, and applications,”
SpringerPlus, vol. 5, no. 1, 2016.

[8] E. Dagan, O. Mano, G. P. Stein, and A. Shashua, “Forward collision
warning with a single camera,” in IEEE Intelligent Vehicles Sympo-
sium, 2004, 2004, pp. 37–42.

[9] H. Alvarez, L. M. Paz, J. Sturm, and D. Cremers, “Collision avoidance
for quadrotors with a monocular camera,” Experimental Robotics: The
14th International Symposium on Experimental Robotics, pp. 195–209,
2016.

[10] M. Persson, T. Piccini, M. Felsberg, and R. Mester, “Robust stereo
visual odometry from monocular techniques,” in 2015 IEEE Intelligent
Vehicles Symposium (IV), 2015, pp. 686–691.

[11] M. O. Aqel, M. H. Marhaban, M. I. Saripan, and N. B. Ismail, “Review
of visual odometry: types, approaches, challenges, and applications,”
SpringerPlus, vol. 5, no. 1, pp. 1–26, 2016.

[12] M. Heimberger, J. Horgan, C. Hughes, J. McDonald, and S. Yogamani,
“Computer vision in automated parking systems: Design, implemen-
tation and challenges,” Image and Vision Computing, vol. 68, pp. 88–
101, 2017.

[13] H. Kim, D. Kim, B. Park, and S. M. Lee, “Artificial intelligence vision-
based monitoring system for ship berthing,” IEEE Access, vol. 8, pp.
227 014–227 023, 2020.

[14] S. de Marco, M.-D. Hua, T. Hamel, and C. Samson, “Position,
velocity, attitude and accelerometer-bias estimation from imu and
bearing measurements,” in European Control Conference (ECC), 2020,
pp. 1003–1008.

[15] M. C. Nielsen, T. A. Johansen, and M. Blanke, “Cooperative ren-
dezvous and docking for underwater robots using model predictive
control and dual decomposition,” in European Control Conference
(ECC), 2018, pp. 14–19.

[16] Ø. Volden, A. Stahl, and T. I. Fossen, “Vision-based positioning system
for auto-docking of unmanned surface vehicles (usvs),” International
Journal of Intelligent Robotics and Applications, vol. 6, no. 1, pp.
86–103, 2022.

[17] R. Munguı́a and A. Grau, “Monocular SLAM for visual odometry:
A full approach to the delayed inverse-depth feature initialization
method,” Mathematical Problems in Engineering, vol. 2012, 2012.

[18] J. Engel, V. Koltun, and D. Cremers, “Direct Sparse Odometry,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol. 40,
no. 3, pp. 611–625, 2018.

[19] J. Engel, J. Sturm, and D. Cremers, “LSD-SLAM: Large-Scale Direct
Monocular SLAM,” Proceedings of the IEEE International Conference
on Computer Vision, pp. 1449–1456, 2013.

[20] R. A. Newcombe, S. J. Lovegrove, and A. J. Davison, “Dtam: Dense
tracking and mapping in real-time,” in International Conference on
Computer Vision, 2011, pp. 2320–2327.

[21] C. Campos, R. Elvira, J. J. G. Rodrı́guez, J. M. M. Montiel, and
J. D. Tardós, “Orb-slam3: An accurate open-source library for visual,
visual–inertial, and multimap slam,” IEEE Transactions on Robotics,
vol. 37, no. 6, pp. 1874–1890, 2021.

[22] E. Rosten and T. Drummond, “Machine Learning for High-Speed
Corner Detection,” in Computer Vision – ECCV 2006, 2006, pp. 430–
443.

[23] M. Calonder, V. Lepetit, C. Strecha, and P. Fua, “BRIEF: Binary
Robust Independent Elementary Features,” in Computer Vision –
ECCV 2010, 2010, pp. 778–792.

[24] R. Mur-Artal, J. M. Montiel, and J. D. Tardos, “ORB-SLAM: A
Versatile and Accurate Monocular SLAM System,” IEEE Transactions
on Robotics, vol. 31, no. 5, pp. 1147–1163, 2015.

[25] S. Umeyama, “Least-squares estimation of transformation parameters
between two point patterns,” IEEE Transactions on Pattern Analysis
and Machine Intelligence, vol. 13, no. 4, pp. 376–380, 1991.

[26] J. Sola, “Quaternion kinematics for the error-state kf,” 2017, last
accessed 2020-02-02. [Online]. Available: http://www.iri.upc.edu/
people/jsola/JoanSola/objectes/notes/kinematics.pdf

[27] Z. Zhang, “Flexible camera calibration by viewing a plane from
unknown orientations,” Proceedings of the IEEE International Con-
ference on Computer Vision, vol. 1, no. c, pp. 666–673, 1999.

[28] M. Grupp, “evo: Python package for the evaluation of odometry and
slam.” https://github.com/MichaelGrupp/evo, 2017.

[29] Z. Zhang, “Determining the Epipolar Geometry and its Uncertainty:
A Review,” International Journal of Computer Vision, vol. 27, no. 2,
pp. 161–195, 1998.

[30] R. H. Rogne, T. H. Bryne, T. I. Fossen, and T. A. Johansen, “On
the usage of low-cost mems sensors, strapdown inertial navigation,
and nonlinear estimation techniques in dynamic positioning,” IEEE
Journal of Oceanic Engineering, vol. 46, no. 1, pp. 24–39, 2021.

http://www.iri.upc.edu/people/jsola/JoanSola/objectes/notes/kinematics.pdf
http://www.iri.upc.edu/people/jsola/JoanSola/objectes/notes/kinematics.pdf
https://github.com/MichaelGrupp/evo

	Introduction
	Preliminaries
	Visual Simultaneous Localization and Mapping and Visual Odometry
	ORB-SLAM
	ORB feature detector
	Main Threads

	ORB-SLAM3

	Umeyama's Alignment Method
	Experiments
	Data Collection
	Sensor Suite
	Mounting Pose
	Methods
	ORB-SLAM3
	EVO
	Initialization Procedure


	Results
	Feature Detection and Mapping
	Ferry Localization Using ORB-SLAM3

	Conclusion
	References

