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This paper presents a new approach for evaluating and controlling expressive humanoid
robotic faces using open-source computer vision and machine learning methods. Existing
research in Human-Robot Interaction lacks flexible and simple tools that are scalable for
evaluating and controlling various robotic faces; thus, our goal is to demonstrate the use of
readily available AI-based solutions to support the process. We use a newly developed
humanoid robot prototype intended for medical training applications as a case example.
The approach automatically captures the robot’s facial action units through a webcam
during random motion, which are components traditionally used to describe facial muscle
movements in humans. Instead of manipulating the actuators individually or training the
robot to express specific emotions, we propose using action units as a means for
controlling the robotic face, which enables a multitude of ways to generate dynamic
motion, expressions, and behavior. The range of action units achieved by the robot is thus
analyzed to discover its expressive capabilities and limitations and to develop a control
model by correlating action units to actuation parameters. Because the approach is not
dependent on specific facial attributes or actuation capabilities, it can be used for different
designs and continuously inform the development process. In healthcare training
applications, our goal is to establish a prerequisite of expressive capabilities of
humanoid robots bounded by industrial and medical design constraints. Furthermore,
to mediate human interpretation and thus enable decision-making based on observed
cognitive, emotional, and expressive cues, our approach aims to find the minimum viable
expressive capabilities of the robot without having to optimize for realism. The results from
our case example demonstrate the flexibility and efficiency of the presented AI-based
solutions to support the development of humanoid facial robots.
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1 INTRODUCTION

Humanoid robots with expressive attributes that encourage social
interactions with humans are an important topic for various fields
of research and industrial contexts (Breazeal, 2009). With recent
technological advancements pushing the boundaries for complex
behavior and humanlike appearance, several robots designed to
look and behave like humans have been developed (Becker-Asano
and Ishiguro, 2011; Ameca 2021; Cominelli et al., 2021; Sophia
2021). New materials, accessible electronics, rapid prototyping,
and artificial intelligence (AI) have all been key enabling factors
for the emergence of these uncannily realistic (humanlike) robots
(Oh et al., 2006). Not only are they approaching a realistic visual
resemblance to humans (Mori et al., 2012), but by movements
and simulated cognition, robots are enabling eerily realistic
interactions with people (Pan et al., 2020). Hence, how the
robot looks, behaves, and reacts are important aspects to
consider when designing solutions for human-robot
interaction applications (Cameron et al., 2018; Ghazali et al.,
2018). In this context the face of the robot is particularly
important for non-articulate responses like body language,
expressions, and sudden reactions. The synergetic effects of
realistic appearance and complex humanlike behavior,
i.e., gaze, expressions, and motor abilities, have been identified
as essential factors (Minato et al., 2004). Hence, novel robots with
expressive capabilities have facilitated research on mimicking,
synthesizing, and modelling of robotic face movements (Wu
et al., 2009; Magtanong et al., 2012; Mazzei et al., 2012;
Meghdari et al., 2016). Furthermore, researchers aim at
providing insights on how we evaluate, recognize, respond,
react, and interact with such social and emotional humanlike
robots (Hofree et al., 2018; Hortensius et al., 2018; Jung and
Hinds, 2018; Tian et al., 2021).

However, while advanced expressive robots enable us to
explore ways to achieve humanlike face movements, there is a
lack of tools and methods supporting such robots’ (early-stage
and ongoing) development. Specifically, accessible, fast, and easy-
to-use tools and methods aiding in prototype evaluation and
control of new humanoid robots. Furthermore, these tools should
not be limited to specific hardware architecture and should
moreover, provide objective feedback on obtainable face
movement to the designers. For example, characterizing the
relations between actuator input and resulting face movement
could be critical to understanding (and improving) humanoid
robots’ design. Such tools may enable simplified control of these
robots by using human face parameters, such as facial action units
(AUs), to create a variety of custom facial responses and
expressions (Ekman and Friesen, 1978). For evaluating
generated expressions or movement, automatic visual
inspection leveraging human face tracking software and AI
applications could be purposeful to mitigate designer (or user)
biases. Additionally, this could speed up learning the potentials
and limitations of hardware prototypes, given that different use-
cases yield different design constraints and needs for future
robots. Hence, resources that inform development of
humanoid robots are essential as these will become custom in
a variety of industrial contexts.

This paper presents the use of open-source computer vision
and machine learning (ML) methods as tools for supporting the
development and evaluation of robotic faces. The approach of
utilizing these tools is showcased in a development project of a
new humanoid robot with facial movement capabilities intended
for healthcare learning applications. The development project has
utilized a highly iterative approach for designing, building, and
testing prototypes. This is an effective way of dealing with
ambiguity caused by complex design problems before
functional requirements have been established. However, a
challenge with prototyping a robotic face is the unavoidable
subjective effects of designing for social and communicative
attributes such as face appearance, movement, and
subsequently, expressions. As both user and designer biases
are evident, a flexible method for rapidly evaluating prototypes
and informing design decisions is needed. AI is a broad field that
includes computer vision and machine learning algorithms that
can make decisions on a par with humans. Hence, we present a
method for utilizing open and readily available AI-based software
solutions without requiring specialized hardware or human-in-
the-loop for obtaining facial action units from random motor
movements to create a control model for the robot. Furthermore,
the generated data are used to inform the current robot design by
using AU correlations, both between other AUs and against
motor actuation modes. The presence or absence of AUs in
the obtained data is used as a performance measurement for
the prototype capabilities. The proposed method is also
applicable for any type of mechanically actuated robotic face
resembling a human, regardless of the number of control units or
face characteristics.

This is a proof-of-concept intended to showcase the
applicability of using available AI tools for design of
humanoid robots, and the advantages and limitations of using
such tools during development. Furthermore, we want to give an
outlook and highlight the potential benefits of using this method
in development of flexible and customizable humanoid robots for
healthcare learning applications through a development case
example. To summarize, the aim of our method is to 1) gain
objective and actionable insights for early-stage robotic face
development, 2) rapidly generate AU data and train a control
model tailored to the specific robot face appearance and actuation
capabilities, and 3) to objectively evaluate the current robot
design and control model using various datasets.

2 BACKGROUND

2.1 Robot Motion and Behavior
State-of-the-art robots designed to look and behave like humans
are complex (and expensive) equipment, encompassing delicate
hardware to achieve many degrees of freedom for facial
movement (Faraj et al., 2020). Expressive motions and
behavior are important as they can communicate the internal
state of the robot and convey information about its’ affect, fatigue,
intent, style, and personality (Venture and Kulić, 2019).
Expressive robots are often developed by inspiration from the
anatomy of real humans using biomimicry (Hanson et al., 2002;
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Pioggia et al., 2004; Hashimoto et al., 2006) or by mechanical
modeling of target output movements predetermined from
human face capabilities (Magtanong et al., 2012).
Subsequently, control and evaluation of such robots becomes
challenging utilizing manual operation and hand-coded motion
sequences (Venture and Kulić, 2019). Moreover, due to the
complex system interactions and dynamic behavior, such
robots may need to be analyzed after being fully developed
(Ishihara et al., 2021). Therefore, exploring new and intuitive
ways to control (and evaluate) humanoid robotic faces has been a
topic of interest. For example, to control using machine vision
software and AI to recognize specific human expressions and
mirroring, recreating, or reacting using a robotic agent (Kim et al.,
2006; Silva et al., 2016; Todo, 2018). Similarly, AI applications
have been utilized to analyze robots’ facial capabilities and
automatically learn various expressions (Wu et al., 2009;
Mazzei et al., 2012; Meghdari et al., 2016; Chen et al., 2021;
Rawal et al., 2022). For automated control of robotic faces, using
AUs is valuable as it becomes a transferal unit of facial movement,
representing both the human action and the robot’s actuation
capabilities (Lin et al., 2011; Lazzeri et al., 2015; Faraj et al., 2020).
However, limitations of these approaches include the sequential
development of robot and control systems, thus restricting rapid
design cycles and performing simultaneous and cross-
disciplinary improvements. Furthermore, the tools and
methods deployed are often restricted to a set of static
expressions or are limited to specific hardware or appearance,
making them less suited in the early, conceptual, and prototype-
driven development of humanoid robots. The novelty of our
approach compared to existing solutions is the possibility of
effortlessly capturing AUs from different robot designs with
varying degrees of freedom and using this information to
support the development process and to rapidly create control
models for expression synthesis. While Wu et al. (2009) used the
correlations between AUs and servos of a high degree of freedom
robot face to create a linear mapping between the two, we
highlight the importance of additionally using AU to AU
correlation analysis to gain valuable information and support
the development of expressive robots. We also show howmodern
and scalable ML algorithms can quickly approximate both linear
and non-linear AU to servo mappings with limited degrees of
freedom.

2.2 Case of a Medical Simulator Face With
Expressive Capabilities
Simulation-based medical training and education is an area
where humanlike robots already play an important role. In
this context, the robot, often referred to as the manikin,
portrays a patient that needs care and treatment. Having
evolved from static and limited anatomical chassis’, manikins
have gained a range of simulated physiological and cognitive
abilities enabled by remote-controlled operation, and
autonomous or semi-autonomous control systems (Cooper
and Taqueti, 2008). These manikins have excided far beyond
their initial use-cases of psychomotor skills training and routine
practice for medical students. However, the non-articulate

communicative aspects of such robots remain limited, often
having a generic and static appearance incapable of
performing facial movements to render expressions,
communicate, react, or simulate important medical cues
(Lalitharatne et al., 2020). For training scenarios where
medical simulators (i.e., robots) are used instead of real
patients, the simulators should accommodate multimodal
tasks, such as combining data acquisition, interventions, and
clinical assessment (Pourebadi and Riek, 2018). This would
enable the simulated patient’s facial movements and behavior
to be observed and used for evaluating medical conditions,
cognitive abilities, and emotional states to pose a diagnosis.
Furthermore, the standardized appearance of simulators is
limiting, as it is important to capture various patient
characteristics to reflect the diversity found in the general
population. Age, gender, ethnicity, and cultural traits should
therefore be adequately captured by robots’ appearance and
behavior (Hortensius et al., 2018) to enable nuanced and
ecological valid training scenarios and improve medical
simulation by ensuring inclusivity and important training
variance (Conigliaro et al., 2020).

For a robot to simulate a human patient, clinical cues such as
pain response, altered cognitive state, and emotional gestures
need to be adequately captured for learners to recognize and
perform the required actions for treatment (Moosaei et al.,
2017). Hence the goal is to trigger the appropriate responses
from users by the robots’ actions in simulated scenarios. This
poses the challenge of determining sufficient facial movement
capabilities for the different use-cases of the robot. Furthermore,
trade-offs concerning scaling potential, robustness, and
integration in existing equipment for clinical simulation
training needs to be addressed. Since humanoid robots for
healthcare learning applications require several anatomical
features to enable clinical interventions and facilitate training
and routine practice, the available design space is constrained. A
multifaceted design problem is therefore inevitable, where both
non-verbal communication and physical interventions are
required to ensure ecologically valid training-scenarios. In
addition, the facial movements of robots may introduce
uncanny effects, aversion, misunderstandings, and
expectation gaps (Kwon et al., 2016). To approach these
challenges, there is a need for exploring and characterizing
the capabilities of robots by common parameters such as
AUs. Hence, we ought to explore the minimum viable
expressive capabilities, and simultaneously uncover the
expressive potential the robot can achieve given contextual
design constraints. We have developed a humanlike robotic
face prototype with facial actuation capabilities to highlight
these challenges with potential solutions by exploring AI tools to
evaluate and inform the current design. Using the robot as a
sandbox we have generated a control model utilizing intuitive
and high-level instructions by AU parameters instead of manual
control and pre-programmed sequences.

2.3 The Prototype
The robotic face prototype consists of a silicone-rubber skin with
embedded skull-interface connectors, and a rigid skull chassis for
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mounting the actuators and providing structural support. The
prototype also has eyelids that can open and close, with static
eyeballs and a non-articulated jaw. An anatomically accurate
(upper) airway with teeth and tongue is also a part of the
assembly. Furthermore, the prototype has six individual
actuation points located at the root of the nose, corner of the
mouth (cheek), and eyebrows. The location of actuation points is
set to accommodate anatomical artefacts such as the airway, eyes,
and tactile landmarks to enable clinical interventions. This
naturally limits available design space, and thus servo motors
for actuation are connected through individual push and pull
cable arrangements. The actuation is done by six inexpensive 9 g
RC servos that are controlled by a 18-channel Pololu Mini
Maestro servo motor controller (Pololu - Mini Maestro, 2021).
Additionally, two servos are mounted behind the eyeballs with a
bar linkage to actuate the eyelids. The prototype with indicated
connection points, actuation modes, and direction of servo
movement (positive and negative) are shown in Figure 1.

To both alter the appearance and accommodate rapid and
parallel design iterations, the robotic face and skull is designed
with easily interchangeable outer skins, as seen in Figure 2. The
current iteration of the facial skin portrays a geriatric male, where
the proportions of the skull, relative distances between
landmarks, and skull geometry remain fixed. Even though
different characteristics pose facial anthropometric differences
(Zhuang et al., 2010), the current use of (static) simulators with
interchangeable skin appearances suggests the generalized
hardware would enable a sufficiently wide design space to
portray broad span of patients with similar anatomy. The skin
is made from a highly flexible and low-density silicone rubber and
is molded with variable thicknesses to simulate the tactility of
facial tissue and muscles. The face to skull interface consists of
mechanical snap connections embedded in the silicone, either
interfacing the wire endpoints connected to the actuators, or as
fixed anchoring to the skull. With this setup, various designs for
the face skins can be explored, where flexible materials,

FIGURE 1 | The robotic face prototype with indicated actuation points, direction of travel, and achieved face movements.

FIGURE 2 | Modular face design for changing the visual appearance using interchangeable face skins.
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appearance, geometry, and connector designs can be tested
iteratively. Furthermore, alterations to the skull assembly can
be tested with readymade face skins by changing actuator
positions, connector positions, and structural geometry. This
enables rapid design iterations and new prototypes to be
generated and tested fast to address technical obstacles
encountered through the development process.

Another important aspect of being able to easily swap face
skins (apart from accommodating rapid design changes) is for the
robot to portray various patients corresponding to the vast
differences found in the human population, and thus increase
training variance, inclusivity, and realism. This is especially
important considering the robot is intended for healthcare
learning applications (Conigliaro et al., 2020). As a result, the
design objectives become more complex as the range of motion
and connections between the face skin and skull should be
tailored to the attached skin appearance. Since different
appearances yield different face geometries, and thus
mechanical properties of the artificial skin, it is not evident
how each skin appearance would perform. Furthermore, as
each appearance portrays a persons’ age, gender, cultural,
ethnical, and other visual attributes, control of the robot, and
subsequentially evaluating the output, becomes a challenge given
both designer and user biases.

The conceptual prototype was developed to test assumptions
and elicit technical requirements. The development has been
highly iterative, and thus several prototypes have been built to
answer technical questions, as well as being a manifestation of the
idea that can be presented to users to gain important feedback
(Auflem et al., 2019). However, the challenge of the subjective
matter of facial cues and expressions is obtaining actionable and
objective data to measure the performance of prototypes by
multimodal evaluation (Moosaei and Riek, 2013; Ege et al.,
2020). This is particularly challenging when evaluating
expressive robots due to the resolution and fidelity of the
presented prototype being perceived differently, especially
when users are unaware of the current state of development.
Furthermore, clear limitations such as the absence of a complete
head, fully covered skin, and missing anatomical landmarks not
addressed by the current prototype may influence the feedback
(Houde and Hill, 1997). This makes the evaluation process both
challenging, tedious, and costly. Alternative tools are, therefore,
needed in the early development stages to quickly improve the
design of robotic faces.

To rapidly evaluate the prototype with the current appearance,
we propose using a facial behavior analysis toolkit for capturing
human face attributes. We seek to obtain data on the possible
numbers and intensities of AUs the robot can generate to inform
the hardware design. Using this data could also accommodate the
many control methods and input data we want to explore for the
robot. This flexibility could be beneficial since it is not evident
how we want to control the robot in simulated scenarios. For
example, control instructions could be given based on face
expression coding using FACS or tracking an operator for
real-time reenactment (Nygaard et al., 2018). Also, in a
medical context, we could create simulation sequences using
video of real-life events and patient assessments. Therefore,

since structured data is available on human face movements
using AUs, we want to use AUs as framework for controlling and
evaluating the prototype (Lalitharatne et al., 2020).

2.4 Open-Source Computer Vision and
Machine Learning Methods
The facial behavior analysis toolkit OpenFace 2.0 (Baltrusaitis
et al., 2018) consists of state-of-the-art computer vision
algorithms for automatically detecting and estimating facial
landmarks, head pose, eye-gaze, and AUs. The toolkit has
been used for understanding and recognizing mental states
and social signals in human subjects within numerous fields.
With its successful utilization on human subjects, and because the
algorithms are trained and validated on actual humans, we believe
it can be used for improving the way robotic faces are developed
and controlled. More specifically, if we can detect the AUs of the
robotic face and map them to its actuation units, we can
synthesize more humanlike facial expressions while alleviating
the potential designer bias. The dynamic AU recognition
framework in OpenFace 2.0 also employs a person-specific
normalization step (Baltrušaitis et al., 2015), making it
adaptable for individual faces instead of relying on generalization.

The behavior of the robotic face can be modeled by applying
various MLmethods using facial expression analysis for the input
and actuation parameters of the mechanical face as output. Scikit-
learn (Pedregosa et al., 2011) is an open-source ML library for
Python that is simple to use and provides efficient tools for
predictive data analysis. By randomly moving the face-servos and
capturing the resulting AUs through OpenFace 2.0, the robotic
face can autonomously learn its facial expressions using a generic
Python application. The intensity of an expression can then be
adjusted on a continuous range by applying regression analysis to
enable a more objective way of controlling a robotic face.
Combinations of AUs can thus be used to estimate facial
expressions instead of manually adjusting the servo angles and
subjectively assessing the resulting expression. The same ML
methods can also be applied to different robot designs since a
model can be trained for each actuator with the same AUs as
input, where essential and redundant AUs are weighted
accordingly through the optimization algorithm. Furthermore,
the methods are not restricted by the number of actuators since
the automatic AU capturing approach allows the creation of large
sample sizes, although using many redundant actuators may
cause some of them to influence each other in opposite
directions, thus worsening the training data. A method to
quantify the relevance of each actuator is therefore beneficial
before creating the control models.

The ability of a robot to show specific emotional expressions
can be further evaluated using Residual Masking Network (RMN)
by Pham et al. (2021); a state-of-the-art ML model for facial
emotion recognition. RMN has achieved the highest classification
accuracy of 74.14% on the widely used Facial Emotion
Recognition (FER-2013) dataset (Goodfellow et al., 2013),
which includes 35,887 images of facial expression of humans
in seven categories: anger, disgust, fear, happiness, sadness,
surprise, and neutral. By using ML-based facial emotion
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recognition, we can evaluate the robot faster than finding experts
or using multiple people through surveys.

3 MATERIALS AND METHODS

3.1 Experiment Setup and Pipeline
The pipeline for the proposed method is illustrated in Figure 3. It
consists of two main parts: sending servo control instructions to
the robotic face to change its appearance and capturing the
characteristics of the resulting face using a camera and
OpenFace 2.0. A Logitech C930e webcam was used for
capturing frames of 1280 × 960 pixels to be analyzed with
OpenFace 2.0 for predicting AUs. Both the webcam and
Maestro servo controller were connected to a laptop through
USB connections.

3.2 Data Collection
The range of motion for each servo was set manually through the
Maestro control center and then normalized to a range between
zero and one. The 17 AUs have intensity values ranging from 0 to
5, with 0 meaning the AU is not present, 1 representing presence
at minimum intensity, and 5 representing presence at maximum
intensity. Datasets containing AUs and servo positions were
created by randomly moving the nose, eyebrow, and cheek-
servos symmetrically along the vertical axis while recording
the face through the webcam to extract AUs at a rate of
approximately 20FPS. Due to the framerate of the webcam
being affected by several factors including processing power
and lighting (exposure), the framerate fluctuated slightly
during real-time analysis. The AU estimations also fluctuated
accordingly during static facial expressions. Therefore, based on a
few initial tests, we found that capturing every 35th frame and
taking the average AU values of the seven preceding frames
reduced the variance and improved robustness while allowing the

face servos to settle for each random position. The data collection
and analysis sequence are illustrated in Figure 4.

Since OpenFace uses person-specific normalization, which
assumes that a neutral facial expression is present in most of
the analyzed frames in a video sequence, we need to find the
frequency of randomly moving the servos and returning them to
a neutral position to get the most consistent AUs. The effect of
AU normalization was therefore analyzed by adjusting the
frequency of returning the face to a neutral position (servos at
0.5) and capturing the combined mean of the resulting AUs to
observe the overall variance. Based on an appropriate frequency
of moving the face to a neutral position, a final dataset was
captured where 500 frames were extracted containing random
servo positions and the corresponding AUs. The datasets consist
of the 17 AUs shown in Figure 3 as independent variables and the
three symmetrical servo positions shown in Figure 1 as the
dependent variables, excluding the eyelid.

3.3 Correlation Analysis
The Pearson correlation coefficients between every pair of
variables were calculated using the “pandas.DataFrame.corr”
module in Python and subsequently visualized using a
correlation matrix. In addition to showing how the servos
relate linearly to AUs, the correlation matrix can also indicate
if AUs correlate to each other. If, for example, two AUs have a
strong correlation, we can deduce that the current servo
configuration cannot distinguish the respective AUs, thus
providing valuable feedback to the development process.
Redundant actuators can be discovered by detecting a
corresponding lack of affected AUs, which can be
disconnected to reiterate the process and analyze its effect. In
addition to analyzing the current robot design, the correlation
matrix is a tool for the development process to continuously
discover possible improvements to the design and make sure the
training data for the control model is appropriate.

FIGURE 3 | Pipeline for controlling and analyzing the robotic face, with an example frame captured and analyzed with OpenFace 2.0.
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3.4 Modeling and Evaluation
We trained several regression models for predicting the servo
positions with AUs as input. A supervised learning approach can
be used since the input and output samples are collected directly
through the pipeline. A few common supervised ML methods,
namely linear regression (LR), ridge regression (RR), support
vector regression (SVR), and multilayer perceptron (MLP) were
used through the scikit-learn library (version 0.23.1) to test how
different linear (with and without regularization) and non-linear
learning algorithms affects performance. Exploring multiple ML
methods without requiring considerable time is feasible if the
number of samples is within a few thousand. The dataset was split
into a training set (80%) and a test set (20%). Grid search with 5-
fold cross-validation, provided by the GridSearchCV module
from the scikit-learn library, was used when training models
containing hyperparameters, as shown in Table 1. A random
state value of 42 was used for the MLP model to preserve
reproducible results. The best model for each servo was
selected based on the lowest root-mean-square error (RMSE)
and then evaluated with the test set.

Learning curves are also presented to assess the effect of
training set size and to discover potential bias and variance in
the data. The number of training samples was incremented by 15
and subsequently trained using the optimal parameters found
from GridSearchCV and evaluated with 100 validation samples,
where the RMSE for both sets was reported in the learning curves.

The servo positions for six expressions were then estimated
using the best models by maximizing the relevant AUs based on
FACS and setting the others to zero. The resulting facial

expression of the robot was subsequently captured with the
webcam and evaluated using RMN. Although the RMN model
uses a softmax function for its output and consequently returns a
confidence score for each of the seven output categories, we only
report the top two predictions. Additionally, to demonstrate an
alternative method for dynamically controlling the robot, we
capture the AUs from a person in real time as input for the
models to predict the servo positions, i.e., using mimicry to control
the robotic face. This presented pipeline and experiments can be
seen in a video added as Supplementary Material.

4 RESULTS

4.1 Effect of Action Unit Normalization and
Correlation Analysis
The distribution of the average AU intensities based on the
frequency of setting the robotic face to a neutral position is
shown in Figure 5. As expected, displaying the neutral face
constantly (100% of the frames) results in the lowest AU
values with the least variation. The variation increases when
introducing random positions in 10%–25% of the frames
(90%–75% neutral faces), while the AU values increase
substantially when only 66.7%–12.5% of the frames contain a
neutral face position. A trade-off between speed and the effect of
person-specific normalization was made when capturing the final
dataset, where 75% of the frames contained neutral positions.
Thus, we captured a total of 2,000 samples, for which 500
contained the random servo positions included in the final
dataset. The distribution of intensities for each AU for the
final dataset is shown in Figure 6.

The correlationmatrix in Figure 7 shows the Pearson correlation
coefficients between all AUs and servos. Every correlation coefficient
higher than 0.1 in absolute value is statistically significant (p < 0.05).
Furthermore, each AU has a moderate to strong correlation with at
least one of the servos, with AUs 5, 14, 20, 25, and 26 having the
weakest (absolute values between 0.49–0.59), and AUs 1, 2, 9, 10, 15,
and 23 having the strongest (absolute values above 0.8). While the
strong correlation between AUs 1 and 2 is expected since they
represent the eyebrows, the correlation for AUs 7, 9, and 10 with
AUs 17 and 20 is less expected and may indicate a limitation in the
current servo configuration.

4.2 Regression Analysis and Evaluation
The results on the test set after training and validating each model
are shown in Table 2. Each method achieves low RMSE, with

FIGURE 4 | Illustration of the data capturing and analysis procedure. Each square represents one iteration, where green denotes the stages where data are
recorded.

TABLE 1 | Models and parameter values used for the grid search training
procedure.

Model Hyperparameters Parameter values

Linear regression — —

Ridge regression Alpha 0.01, 0.1, 1, 10, 100

SVR C 0.1, 1, 10, 100, 1,000
Gamma 1, 0.1, 0.01, 0.001
Kernel Rbf, linear, sigmoid, poly

MLP Hidden layers 1, 10, 25, 50
Activation function Identity, logistic, tanh, relu
Solver Lbfgs, sgd, adam
Alpha 0.00005, 0.0005
Learning rate Adaptive
Max iterations 5,000
Random state Numpy.random.RandomState (42)
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MLP having the lowest for each servo. Given the large number of
independent variables, it is expected that SVR and MLP can
capture some of the non-linear effects of the input and thus
achieve lower errors.

Using the parameters found for the best models through cross-
validation and grid search, we retrained each model using
increments of 15 training samples, resulting in the learning
curves shown in Figure 8. Here we can observe that relatively
few training samples were needed to converge to an optimal
solution for LR, RR, and SVRmodels. Low variance is observed by
the comparable training and validation accuracy, indicating that
no more than ~60 training samples are needed. The models do
not appear to be affected by high bias given the low errors for both
datasets, demonstrating that using AUs as features for predicting
the servo positions is feasible and does not result in overfitting.

5 INTERPRETATION OF RESULTS AND
EXPERIMENTAL EVALUATION

Based on the data we have generated from using OpenFace 2.0
and the results from training a control model for the robot, this

section presents how we can gain valuable information and
insights using the proposed tools when developing humanoid
robots. Sections 5.2, 5.3 demonstrate how we can use the control
model to generate facial expressions and dynamic motion
through real-time reenactment.

5.1 Evaluating Robot Face Movement
Capabilities Using Generated Action Unit
Data
To obtain actionable data for improving the current design, we
reviewed the AU intensities and respective correlations between
variables seen in Figures 6, 7. The distribution of AU intensities
shown in Figure 6, indicates that only subtle expressions are
obtainable as none of the captured AUs reach high levels ranging
from 0 to 5. However, while the overall intensities of the recorded
AUs are low, we can distinguish between the recognized output
movements that are obtainable and the ones that remain idle
given the current setup. We can further investigate the movement
capabilities by looking at the correlation matrix in Figure 7,
which shows that each servo has several strong correlations with
action units. Based on these observations we can identify, and

FIGURE 5 | Distribution of combined AU intensity values based on the frequency of a normal face analyzed with OpenFace 2.0.

FIGURE 6 | Distribution of AU intensities captured from the final 500 random face-servo positions.
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investigate, desirable AUs with weak intensities for improving the
range of motion and location of actuation points. Furthermore,
we can identify desirable correlations, such as servo to AU
correlations, and inseparable AUs limiting isolated face
movement given the current design.

Figure 7 shows a strong correlation between AU01, AU02,
and the eyebrow servo. This is expected as they correspond to the
inner and outer brow raiser, respectively. Their correlation with
the eyebrow servo means that moving the servo upwards (in the
negative direction) is identified as raising of the brows. However,
differential control of these AUs is not possible, meaning that
both the outer and inner brow will move simultaneously. Looking

at the other action unit related to brow movements, we find that
AU04 also correlates negatively with the eyebrow servos, which
may seem counterintuitive since an increase in the eyebrow servo
(Figure 1) should result in an increase in AU04 (brow lowerer).
However, AU04, also known as the corrugator and depressor
supercilli (Bartlett et al., 2005), represents the constriction of the
area between the eyebrows in addition to brow lowering, which
can happen simultaneously with AU01 and AU02. This means
brow lowering is obtainable, although with a constrained path
and weaker correlation indicating that a greater travel distance is
desired to fully achieve this actuation mode. This is also
highlighted in Figure 6, where the obtainable intensity of
AU04 is significantly lower than that of AU01 and AU02,
indicating that both travel and location of the brow
connection point should be re-evaluated to enhance the brow
lowering capability. Hence, we can improve the balance between
the observed action units through physical design changes to
create a model with more realistic brow movements.

In the mouth and nose area, we can observe a correlation
between the action units AU09 (nose wrinkler) and AU10 (upper

FIGURE 7 |Correlationmatrix showing the Pearson correlation coefficients between AUs and servos. The blue to red gradient indicates the strength of positive and
negative correlations, respectively.

TABLE 2 | RMSE on test set for best models. Lowest values are highlighted in
bold.

LR RR SVR MLP

Cheek servo 0.054887 0.054788 0.054162 0.040817
Eyebrow servo 0.073310 0.073149 0.071086 0.067251
Nose servo 0.084295 0.083979 0.062116 0.059183
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lip raiser), and between AU06 (cheek raiser) and AU12 (lip
corner puller). These AUs also correlate respectively to the
nose and cheek servos. This indicates some of the dependent
movements that are inseparable given the current design, caused
by the artificial facial skin being a single deformable structure.
Without additional anchoring of the face skin, deformations will
be transferred throughout the elastic material and thus cause
deformations ahead of the interface point along the line of travel
in the face. While these connected movements are also found
naturally in expressions by human faces, additional anchoring or
actuation points would be required to separate them and enhance
the movement capabilities of these AUs. Other correlations such
as AU07 (lid tightener) and AU17 (chin raiser) with both the nose
servo and to other action units, is also worth investigating. Since
the eyelids are not actuated in the presented results, the intensity
of AU07 is surprisingly high, suggesting additional anchoring
around the eyes could be required. AU17 on the other hand, has a
low intensity as seen in Figure 6, indicating that despite
correlation with other AUs, the observed movement might be
negligible. These findings suggest that either additional anchoring
or additional actuation points could be beneficial to mitigate
inseparable movements considering lower lips, jaw, and lower
eyelid, and thus achieving a broader span of individual face
actions. These are tradeoffs that should be evaluated alongside
the required movement capabilities, as additional actuation
modes would require additional actuators.

We can also identify which AUs are least represented in
Figure 6, and review their correlation to the servos and other
AUs in Figure 7. Here we highlight AU06 (cheek raiser), AU10
(upper lip raiser), AU12 (lip corner puller), AU14 (dimpler),
AU17 (chin raiser), AU25 (lips part), and AU26 (jaw drop).
These action units concern areas of the face located distant to the
actuation points, indicating that we can only obtain movement in
these areas by targeting nearby action units with a stronger
presence in the current prototype. This is however not the
case for AU25 and AU26, that shows modest intensities with
few and weak correlations. Because the prototype has a fixed jaw
and no lower lip actuation, these findings match our assumption
that little movement should be obtained in these areas. These
findings show that utilizing action unit data to describe and
evaluate robotic faces to obtain actionable design input is
purposeful.

5.2 Predicting Servo Positions Using Action
Unit Instructions and Residual Masking
Network
Six robot expressions were generated by predicting each servo
position using theMLPmodels, with the relevant AUsmaximized
for the input. An image of each expression was then analyzed with
RMN, resulting in the predictions shown in Table 3.

By sending instructions based on the FACS, we obtained a
performance indicator on how the rendered expressions compare
to sampled face expression images in the utilized dataset. These
results indicate whether we can control the robot through AU
instructions and render expressions that are recognized by ML.
Furthermore, we can inspect the least successful expressions and
correlate this back to the obtained AU data we have previously
reviewed. Amongst the top confidence scores, only the Surprise
and Happy expressions were correctly predicted. Disgust and
sadness expressed by the robotic face are predicted similarly by
RMN, both resulting in Angry and Surprise predictions with low
confidences, which may be explained by the few representative
AUs while sharing AU15. The limitations of the eyebrow
actuation and the eyelids (not being active) could also be
critical, since they impact the AUs for both anger, fear, and
sadness expressions. The overrepresentation of Surprise
predictions from RMN might be due to the underestimated
importance of the eyelids, affecting AU5 (upper lid raiser), in
combination with the non-articulated jaw affecting AU26 (jaw
drop). The static jaw also limits obtainable AUs concerning
mouth shapes and movement, which may explain why the
RMN is less successful at predicting the negative expressions
(where AUs around the mouth is particularly important). This
suggest that additional actuation around the mouth and jaw is
desirable to achieve a broader span of obtainable emotion
expressions.

5.3 Real-Time Reenactment Using
Recorded Action Units From Human Actor
as Input
The MLP models were further utilized to experiment with real-
time and automatic control of the robotic face. Here, we
attempted to mimic facial movements by capturing AUs from

FIGURE 8 | Learning curves showing the effect of training samples on validation and training error.
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a human actor using the same toolkit as previously described
(OpenFace 2.0). By tracking the actors face through a webcam, we
obtained and sent a stream of unfiltered AU intensities to the
trained MLP models which then predicted and adjusted the servo
positions in real time. A few frames from the face-tracking and
the corresponding robot actuation are shown in Figure 9,
including the raw input data (AU intensities) and the
predicted output (servo positions). Although we can extract
AUs at 20FPS, our application recorded at roughly 12FPS due
to storing each captured frame as images, both of the human actor
and robot simultaneously, where the robot face was updated at
approximately 2FPS due to the delay in moving the servos.

6 DISCUSSION

6.1 Using Open-Source Software for
Robotic Face Development
Our results demonstrate the use of open-source computer vision
and ML methods as tools for supporting the development and
evaluation of robotic faces. With careful consideration of how
OpenFace 2.0 is utilized, such as the processing sequence shown
in Figure 4 and the effect of person-specific normalization, it is
possible to reliably capture and utilize AUs to better understand

the capabilities and limitations of a robotic face. Furthermore,
since the approach is not reliant on the robot’s specific
characteristics or control parameters, it can be applied to any
robotic face resembling a human.

We have also shown that AUs can be used to predict the servo
positions for objectively controlling the robot, with errors as low
as 0.041–0.067 RMSE. However, in our specific case, the learning
curves and the correlation matrix reflect some limitations in the
captured data, indicating the absence of dispersed and complex
combinations of generated AUs. Since our robotic face can only
produce a limited set of variability on AU combinations and
intensities, the models may show low errors on test data using
relatively few training samples while being unable to predict the
servo positions appropriately for entirely different combinations
of AUs never before seen. Suppose the goal is to simulate specific
emotions (combinations of AUs). In that case, it is essential to
focus on the correlation between AUs and reduce their
interdependency through physical design choices, thus
allowing more complex AU combinations to occur. We were
nonetheless able to generate facial expressions by combining
relevant AUs, as demonstrated in Table 3, and using mimicry
to control the robot, showing generalizable tendencies of the
trained ML models. These results are especially promising when
considering the few actuators used in the robot design.

TABLE 3 | Generated face expressions with RMN predictions.

Expression Anger Disgust Fear Happy Sadness Surprise

Maximized AUs 4, 7, 23 9, 15 1, 2, 4, 5, 7, 20, 26 6, 12 1, 4, 15 1, 2, 5, 26

Resulting expression

Top RMN predictions with confidence Happy: 0.954 Angry: 0.401 Surprise: 0.900 Happy: 0.433 Surprise: 0.565 Surprise: 0.901
Surprise: 0.046 Surprise: 0.368 Angry: 0.064 Surprise: 0.421 Angry: 0.333 Happy: 0.099

FIGURE 9 | Real-time reenactment using recorded AUs from a human actor to predict the servo positions.
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While the RMN model provides a quick and easy way to
evaluate the expression of a robotic face, it may not be an accurate
representation of how experts or the public perceives it. The
model is trained on the FER-2013 dataset with labels corrected by
humans, which may introduce biases, as well as having an
unbalanced distribution of expressions. Interestingly, the
human accuracy was roughly 65% on FER-2013, according to
Goodfellow et al. (2013), which is about 9% lower than RMN. Due
to various factors such as location, perceived gender, and age
affecting people’s subjective judgment (Moosaei and Riek, 2013),
using an ML-based expression classifier may provide comparable
accuracies while being more efficient in terms of time and
resources. People should therefore be included in the
evaluation stage when the robot is sufficiently developed and
can be applied in the context it was created for.

6.2 Outlook, Further Work, and Limitations
Utilizing accessible AI tools has proven valuable in generating
and evaluating a functional robotic face prototype to be further
tested with users in intended use cases. The objective insights
presented were enabled by the speed and flexibility of generating
AU data to inform the design, train a specific control model, and
evaluate performance using the FER-2013 dataset. Based on the
acquired results, we see potential for this method to assist further
development steps. Firstly, from the iterative nature of early-stage
development, insights and elicited requirements (from users) can
be addressed by altering or generating new prototypes. This is
accommodated by quickly and cheaply generating a control
algorithm and obtaining objective evaluation not restricted by
hardware capabilities or appearance traits. Secondly, expanding
the portfolio of facial appearances is supported by the flexibility
and valuable feedback provided in the AU data. This implies that
each appearance can be tested and evaluated fast, and a model can
be trained to utilize the actuation capabilities of the given robot
face. These points highlight that rapid and objectively informed
design iterations are possible, even when addressing complex and
multifaceted problems, such as expressive humanoid robots. We
showcase this by the results and insights obtained for the current
iteration of our robotic face intended for medical simulations.

The presented results in this study indicate that the current
robot cannot generate strong AU intensities. This finding is
further scrutinized by relating the AU data to the hardware
setup and suggesting how to improve the design by looking at
the AU and servo correlations and the intensity of AUs in the
generated dataset. The weak AU intensities and strong
correlations could suggest that in addition to the range of
motion, more human artifacts such as particular wrinkles,
textures, and distinct landmarks such as marked eyebrows
could amplify the obtainable AUs. However, the current
performance of the robot is still sufficient to train a control
model, as previously discussed, and the robot can mimic a human
actor based on unfiltered AUs recorded using a fast and flexible
pipeline. These results are promising as ours and other robotic
faces can benefit from the presented support tools to inform and
speed up the design process. Development tools are also essential
as the complexity of the robotic setup increases, where both
manual operation and hardware evaluation become more

challenging and time-consuming. Thus, the data generated in
the form of both descriptive intensities of AUs and correlations
between actuation modes and generated output is purposeful
when pursuing more complex behaviors and expressions
rendered by robotic faces. In addition, our approach can
address the non-linear relations between obtained AUs and
actuation modes which is essential as increasing actuation
points would increase interdependencies and complex
behavior since the skin is a single deformable structure.
Concerning more complex hardware setups, the generated
data and correlations between input and output parameters
could be a helpful tool in addressing actuators not correlating
to detected action units or even interfering with other actuation
modes limiting the expression output of the robot. Our approach
should be applied on robot faces with varying degrees of freedom
to further validate these potential advantages.

Since OpenFace 2.0 is essentially made for analyzing the facial
behavior of humans (and now also of robots), it can additionally
be used in the control system of the robot itself to analyze humans
during interactions and adjust its non-verbal communication
approach accordingly. The utilization of OpenFace 2.0 can also be
scrutinized to advance the method further by incorporating facial
landmark detection to measure facial deformations or tracking
head pose and eye-gaze to analyze gaze behavior, which is
essential for improving human-robot interactions (Abubshait
and Wykowska, 2020). An approach for automatically finding
the most neutral expression of the robot should also be explored
to enhance the effect of person-specific normalization and
potentially increase the range of AU intensities.

As a proof of concept, the expressive capabilities of the robotic
face is tested by manually sending AU instructions to a trained
control model. Static emotional expressions are difficult to
evaluate, even for humans, so investigating dynamically
changing expressions is interesting (Mollahosseini et al., 2019).
Hence, the transition between expressions, actuation speed, and
mechanical noise are essential parameters. Since AUs can be used
as a transferal unit between humans and robots, facial responses
from humans can be automatically captured to simplify the
dynamic control of the robot. This approach could further be
leveraged to generate models to automatically control the speed,
onset, and offset of different expressions. Other examples for
controlling the robot using AUs include real-time reenactment by
operator, obtaining AU data sequence from video samples, or
allowing users to generate custom expressions by either saving,
mirroring, or manually adjusting AUs performed by the robot.
The experiment using an actor for real-time reenactment of face
movements suggests these possibilities to be promising. However,
even though OpenFace 2.0 can analyze AUs in real time, our
current robot design is limited by the actuator control unit
moving the servos one at a time. By implementing a controller
that can control several servos in parallel and with higher power
output, this bottleneck can be reduced or potentially removed to
increase response times and enable more nuanced motions
during dynamic interaction.

While we in this paper discuss the applicability of using fast
and accessible AI-based software to analyze robotic face
movements, we acknowledge the importance of human user-
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interaction and evaluations in this setting (Moosaei and Riek,
2013). Human perception is particularly important for robots to
be used in medical training scenarios, as the learning effects of
having facial movement capabilities, and users’ ability to respond
to these, is not possible to deduce in any other way. This is also
supported by users’ limited ability to evaluate expressions
rendered by alternative mediums or agents, suggesting that a
physical robot is required to get further design inputs (Hofree
et al., 2018). Concluding necessary design alterations, we want to
pilot the robotic face in training scenarios and explore
interactions and potentials for having expressive capabilities.
Furthermore, as medical simulation is performed in teams,
understanding the implications expressive cues of robots could
pose on team dynamics is crucial. Therefore, utilizing the robotic
face and control model to elicit requirements for expressions and
facial responses that can enhance medical simulation scenarios is
essential for future development.

The tests and insights showcased in this paper are obtained
using only the face portrayed in the current prototype, and thus,
limitations for using other appearances could be encountered. For
example, how realism and fidelity concerning the visual
appearance of the prototype influences AU data generated by
OpenFace 2.0 and distort the confidence scores from RMN. This
brings to question how closely the prototype needs to resemble a
generalized human face. Furthermore, to explore visual edge-
cases of the robotic face, appearance traits such as proportions,
complexion, texturing, hair, tattoos, or scarring could be
investigated. Further work would also be required to evaluate
the effects of age, gender, and ethnicity, evaluate the robustness
of the tools utilized, test for biases in the utilized data, and
expand the suite of available appearances for the robotic face. It
is also not evident how a generalized hardware setup accommodates
the various facial characteristics as this would suggest
anthropometric differences concerning size, proportions, and
landmark location. However, we believe that a standardized
setup would enable a sufficient design space to explore the
potentials and limitations of switching the appearance of
humanoid robots such as this one. As this is a crucial aspect of
ensuring inclusivity and training variance in medical simulation, we
see the approach utilized in this paper as effective for enabling faster
prototyping iterations when developing humanoid robots.

7 CONCLUSION

We have presented methods utilizing open-source AI tools for
supporting the development and evaluation of robotic faces. First,
dynamic AUs of the robotic face were automatically captured
through OpenFace 2.0 during random movements to find
correspondence between facial attributes and the servo

configuration. The correlations between AUs and servos
provided objective feedback on the possibilities and limitations
of the robot design. Next, a control model for the robot was
developed by estimating the relationship between AUs and servo
positions through regression analysis, enabling facial expressions
to be rendered using AUs as input. We then evaluated the
simulated expressions using a classifier trained on a large
dataset of human facial expressions, providing additional
assessment opportunities for the robotic design and control
model. The methods have proven to be beneficial during
early-stage development to rapidly gain actionable insights, in
addition to being low-cost and easy to use.
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