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ABSTRACT

This work describes the onboard image processing pipeline
that is designed to be used onboard a CubeSat with a Hyper
Spectral (Imager/Image) (HSI), namely the HYPSO-1 satel-
lite. While the system itself supports both the use of a Field
Programmable Gate Array (FPGA) and CPUs for processing,
this work focuses on the latter. A reference to the source code
is also enclosed within the text. Some of the planned and de-
veloped modules are presented, along with the design choices
needed to accommodate the computationally constrained sys-
tem. The execution time of the pipeline on target hardware
with representative hyperspectral data is also shown. The re-
sults indicate that the modular pipeline framework is suitable
for deployment onboard HYPSO-1.

Index Terms— Hyperspectral, Image, Processing, Edge-
Computing

1. INTRODUCTION

CubeSats are small satellites that aim to provide easy access
to space. They follow the CubeSat design standard created
by California Polytechnic State University and Standford
University. The standardization of CubeSats enables the use
of mass-produced and commercial-of-the-shelf components,
which reduces cost. The standard also reduces launch costs
compared to custom-built satellites [1]. The CubeSat standard
defines the dimensions to be multiples of 10-by-10-by-10 cm
units, see 1.

The HYPer-spectral SmallSat for Ocean observation
(HYPSO) project aims to enable rapid and continuous cap-
turing and monitoring of algae blooms along the Norwegian

This work is supported by the Norwegian Research Council (grant no.
270959), the Centre of Autonomous Marine Operations and Systems (NTNU
AMOS, grant no.223254), the Norwegian Space Center, the European Space
Agency (PRODEX - 4000132515), and NO Grants 2014 – 2021, under
project ELO-Hyp, contract no. 24/2020.
Corresponding author: sivert.bakken@ntnu.no

(a) (b)

Fig. 1: CubeSats; 1a shows different form factors for Cube-
Sats, while 1b shows the actual flight model version of
HYPSO-1 prior to launch, which uses a 6U configuration.

coast by launching a 6 unit CubeSat equipped with a HSI [2].
The HYPSO-1 satellite was successfully launched on the 13.
of January 2022. HYPSO-1 is the first of several planned
satellites for ocean imaging in the HYPSO project. In Fig. 1
an illustration of different CubeSat sizes are given alongside
a photo of the Flight Model of HYPSO-1. The mission op-
eration plan aims for the satellite to stay operational for five
years. Currently, it orbits the earth and down-links raw and
processed hyperspectral data for further analysis. In-depth
analysis of initial in-orbit results and first images is a subject
for future publications. This work uses the target hardware of
the the satellite to estimate the computation time.

A central part of the HYPSO-1 concept is the onboard
processing pipeline. A typical hyperspectral datacube can
have a large data volume relative to the available downlink
bandwidth, which mainly relies on S-band radio communi-
cation. For HYPSO-1, the standard data cube after binning
is (l, f, b) = (956, 684, 120), i.e., lines, frames and bands.
Due to constraints in power usage and communication it is



desirable to do data processing onboard to reduce the size,
increase information throughput and enhance the data for fur-
ther analysis on the ground [2]. In order to facilitate flexi-
bility in the onboard image processing pipeline executable,
this work describes how it as been designed to allow config-
uration and toggling of the different pipeline modules while
in space. This modularity will allow for choosing between
different pipelines for data processing based on specific use
cases for the end-user and operational resources available.
The operational resources include time, memory, and power
currently available onboard the satellite. The software archi-
tecture design, made to support this re-configuration is de-
scribed in [3]. This is a partial implementation of the concept
discussed in [4].

2. BACKGROUND

Satellites equipped with HSIs are no longer novel in and of
themselves. There have been several successful missions in
the past, including the EO-1 Hyperion launched by NASA [5]
and the HyperScout imager onboard ESA’s GomX-4B Cube-
Sat [6].

In [7] a HSI is equipped onboard an aircraft to detect
methane gas. They process large amounts of data and detec-
tion in real-time by exploiting parallel detection on spatially
independent pixels in the pipeline. Their processing pipeline
is fixed to a single task, and the available processing power
on an aircraft is significantly higher than on a satellite. The
pipeline on board HYPSO-1 requires a more flexible imple-
mentation and has limited processing capacity. The bands of
the cube are processed in parallel in a modular pipeline de-
sign. The approach of HyperScout is similar to the design
described here [6]. However, as the HYPSO project wants to
utilize processing that exploits spectral patterns in spatial pix-
els, it is inherently inefficient and unwieldy to do processing
band by band. In [8] the synergies between compression and
anomaly detection are demonstrated and combined in a data
pipeline to increase performance. This exciting concept could
also be included in the pipeline proposed here.

With the proposed modular hyperspectral image process-
ing pipeline for CubeSats presented here, the goal is to in-
crease the information throughput. However, with the calcu-
lated performance of the imager onboard HYPSO-1, given in
[9], it is anticipated that the novel mission design can provide
end-users of ocean color data with new and novel data prod-
ucts, especially when used in a concert with other autonomous
water sampling agents as discussed in [2, 10].

The increased information throughput can come in many
forms. Initially, the concept of serving complete data products
computed onboard the satellite was discussed in [2]. From the
experiences of operating the satellite, it is evident that inter-
mediate data products, e.g., a panchromatic or regular RGB
image, can also be beneficial to get an early indication of the
image quality.

3. IMPLEMENTATION

The On-board Processing Unit (OPU) is a PicoZed 7030 Sys-
tem on Module, which has 1 GB of DDR3 SDRAM and is
based on the Zync-7000 System-on-Chip (SoC) provided by
AVNET [2]. The SoC features a Dual-core ARM Cortex A9
running at 667 MHz with 32 KB Level 1 cache for each Cen-
tral Processing Unit (CPU), as well as a shared 512 KB Level
2 cache. Both cores has the NEON architecture extension
for Single instruction, multiple data (SIMD) instructions [3].
Utilizing the NEON engines enables vectorizing data oper-
ations, significantly accelerating the image processing algo-
rithms. The software is developed to be run on ARM archi-
tecture; it is portable to other systems using ARM architecture
for hyperspectral image processing. The code can be made
available upon request [11].

This section describes the different processing modules
that are developed for HYPSO-1. An overview of the modules
can be seen in Tab. 1. More details can be found in [12].
Programmatically, the modules have a similar structure and
execution. It starts with parsing the module configuration file,
then allocates the memory needed by the data structures and
populates them with the model binary data from the disk as
specified by the configuration file. Then the given algorithm
is applied to the input cube, and subsequent results are stored
on an SD card, and the memory is freed.

The metric Spectrograms per Second (SpS) for the mod-
ules in Tab. 1 that are dependent on module configuration is
given as N/A.

Tab. 1: Overview of the different modules, their target im-
plementation and the maximum time of processed SpS during
nominal operations for the test setup, rounded down.

Module Target SpS
Lossless Compression CPU/FPGA 4780
Smile and Keystone Correction CPU 105
RGB Render CPU 373
Principal Components CPU N/A
Classification CPU N/A
Clustering CPU N/A

3.1. Lossless Compression

An implementation of the CCSDS123.1 standard, both for
CPU and FPGA is available on the HYPSO-1 satellite, and
has been since launch. A thorough description of the FPGA
implementation is given in [13]. This lossless compression
algorithm has been used to downlink data cubes of various
sizes more efficiently. As Indicated in [13], the algorithm is
not well suited to be run on CPUs, but smaller cube sizes
have still been compressed without pushing the limits of the
HYPSO-1 power budget. The SpS of this module is reported



in Tab. 1.

3.2. Smile and Keystone Correction

HSI cameras built from Commercial-Off-The-Shelf (COTS)
parts often suffer from optical distortions [14]. These distor-
tions are specific to the camera. The effects warp the image
along both the spatial and spectral axis. The spectral effect is
called “smile”, while the spatial effect is called “keystone”.
It is possible to correct these distortions in software post-
capture. This correction can improve subsequent processing
tasks.

Here, the correction is done by enumerating all the pixel
indices and calculating the intensity of a specific pixel by find-
ing the intensity of the corresponding pixel in the raw spec-
trogram. In [14], the intensity of the corresponding pixel is
found by estimating a mapping function fSnK : R2 → R2 of
the pixels between the raw and the desired spectrogram. This
function fSnK gives the indices (yr, λr) of the pixel in the
raw spectrogram as a function of the indices in the corrected
spectrogram (y, λ):

(yr, λr) = f(y, λ). (1)

Here, the mapping fSnK is approximated using a second-
degree polynomial. The values refer to an image coordinate in
between captured pixel values. Bi-linear interpolation gives
the final value of the pixel in the corrected image.

The implementation needs to accommodate the require-
ments for CPU and power usage of the system [2]. The data
is stored in Band Interleaved by Pixel (BIP) format, which is
ideal for the Smile and Keystone correction since all the data
for a single frame is sequential in memory. Pre-computing the
weights relevant for the HYPSO-1 spectrograms, used by the
bi-linear interpolation, an adaption form the approach found
in [14], leads to a significant performance improvement in
terms of execution time.

3.3. RGB Render

Experiences from early operations quickly indicated that it is
useful to be able to generate a true or false color composite
images from the captured image cubes. This module does
that and enables the user to configure spatial binning, center
wavelengths for the primary colors, and their bandwidth in
terms of surrounding bands to be included.

3.4. Principal Component Transform

The configuration file of the dimensionality reduction module
specifies the number of principal components d to be returned
by the projection using a transformation matrix data. Com-
monly principal component transform first centers the data
and then calculate the projection. Observe that

c = Px̃ = P(x− x)

= Px−Px

= Px− c. (2)

This operation is computationally cheaper as the projec-
tion subspace of c is lower than the dimension of the spectral
pixel vector x. Therefore, the binary file needs to contain the
projected mean c and the d × b projection matrix P. The
first 4 × m bytes of the binary file is c and the remaining
4 × d × b bytes is P. By using a transformation matrix that
is computed on ground to reduce the cube dimensionality, it
is possible to reduce the execution time of subsequent algo-
rithms as well. Here the dimensionality reduction is used in
together with classification to demonstrate this, see [12, 15],
and results in Fig. 2.

3.5. Classification

The module is executed by first evaluating the kernel K with
the new pixel and the support vectors S. The results are stored
as an array where the i-th entry in the array corresponds to
K(x, si). Pre-computing the kernel halves the execution time
needed as the kernel computation can be reused when a sup-
port vector is used in more than one classifier. As the support
vectors are sorted on class, the kernel values for the support
vectors of class k start at the offset

∑k
i=1 nsi from the start

at fathe array, where nsi is the number of support vectors for
class i.

The configuration file includes a definition of the trained
classifiers, the support vectors S and coefficients αy for the
classifiers. The first 4 × d × ns bytes are the support vec-
tors, followed by the coefficients for the 1v1 classifiers. With
k(k−1)/2 classifier comparisons, each requiring coefficients
for each support vector for a total of 4 × k(k − 1)/2 × ns

bytes. The number of classes, parameters for the kernel func-
tion, and the number of support vectors are also defined in the
configuration file.

3.6. Clustering

For each spectral pixel, the module enumerates all the nodes
and computes the distance to them. If this distance is lower
than the current lowest distance, it is set as the lowest dis-
tance, and the current label estimate is updated. After all of
the nodes have been checked, the label is assigned.

The module configuration file contains the Self-Organizing
Map (SOM) nodes and labels. The first 4×d×z2 bytes, with
d as dimension and z as clusters, are the floating-point node
values, while the remaining data are labels. Each label is only
stored as one unsigned byte. The number of unique clusters
are not expected to exceed 256 for any relevant application.
The size of the SOM grid is given by z2.



3.7. Planned Modules

The modular framework of both the HYPSO-1 satellite and
the On-board Image Processing (OBIP) pipeline discussed
here allows for further expansion and exploration. There are
modules under development, e.g., sub-sampling of cubes to
support compressive sensing, rudimentary atmospheric cor-
rection to retrieve approximations of measured reflectance
for further processing, and more dimensionality reduction
approaches for flexible lossy compression, and more. The
framework allows the modules to be developed decoupled
from other parts while determining their execution order
from the configuration files.

4. RESULTS

This section presents the results of the implemented pipelines
with their design considerations and their impact. This paper
focuses on the execution time of the different modules, not
the performance of the algorithms themselves.

4.1. Performance of Smile and Keystone Correction

In terms of performance, reducing computation time by pre-
computing the weights reduced the computation time by a
factor of 20. This design is a space-time trade-off as stor-
ing weights will increase memory usage. The datatypes of
the index and each of the weights take 4 bytes, so it totals 20
bytes per pixel. The max supported spectrogram resolution of
(l, b) = (1216, 1936) gives a memory overhead of ≈ 44MiB.
For a nominal capture resolution of (l, b) = (684, 120) is less
than 1.57 MiB. Since the data is binned before processing on
the satellite, this reduces memory overhead directly propor-
tional to the binning factor. From profiling the total mem-
ory usage will be ≤ 10MB, which is very feasible for the
OPU [12]. The execution time in terms of processed SpS is
given in Tab. 1.

4.2. Performance of RGB rendering.

The module can render color composite images from the cap-
tured cubes, both as raw images and after smile and keystone
correction. The resulting image is encoded to .png format.
A bandwidth of three bands was used with the performance
indicated in Tab. 1.

4.3. Performance of Principal Component Transform

The computational time of projecting a cube scales lin-
early with the number of projected components d, as seen
in Fig. 2a. On the target hardware with the nominal cube
dimensions, the resulting expected computational time in
seconds can be given as Epca = 0.8858d.

4.4. Performance of Classification

The SVM with the RBF kernel has desirable performance, is
relatively fast, and has low memory usage [12]. With Ssv =
105 support vectors the memory overhead is approximately
4 × Ssv × λ ≈ 4.8MB for the standard cube with λ =
120. Moreover, the use of the kernel provides an easy way
to modify and experiment with the algorithm without signifi-
cant modification due to the rest of the algorithm not chang-
ing. With d as the number of bands and ns as the number
of support vectors the Execution time can be approximated
as Esvm = 0.0235dns from the experimental data given in
Fig. 2b.

4.5. Performance of clustering

Clustering by the use of SOM is approximated to have
a quadratic run-time in the dimension z, i.e. the num-
ber of clusters, and also scales with the number of bands
d. The execution time can be expressed in seconds as
ESOM = 0.0104dz2, from the experimental data given in
Fig. 2c With d = 120, the upper limit of z ≈ 11, while taking
d = 10 allows for z ≈ 40.

5. DISCUSSION & CONCLUSION

The memory and computational overhead introduced by the
pipeline framework are adapted to the target hardware. It
keeps the hyperspectral cube in RAM and passes it by ref-
erence between modules to avoid expensive copies. The data
structures are lightweight and use pre-compute values when-
ever suitable. By keeping the pipeline as a separate process,
its development will not interfere with the software to oper-
ate the satellite. The execution times presented here are given
under regular operational load.

Future satellite software updates will include the pipeline.
The impact of this extension is expected to be beneficial for
information throughput and provide insight into how it can be
improved further.
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[3] S. Bakken, E. Honoré-Livermore, R. Birkeland, M. Or-
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