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Cascading activity is commonly observed in complex dynamical systems,

including networks of biological neurons, and how these cascades spread

through the system is reliant on how the elements of the system are

connected and organized. In this work, we studied networks of neurons as

they matured over 50 days in vitro and evaluated both their dynamics and

their functional connectivity structures by observing their electrophysiological

activity using microelectrode array recordings. Correlations were obtained

between features of their activity propagation and functional connectivity

characteristics to elucidate the interplay between dynamics and structure.

The results indicate that in vitro networks maintain a slightly subcritical

state by striking a balance between integration and segregation. Our work

demonstrates the complementarity of these two approaches—functional

connectivity and avalanche dynamics—in studying information propagation

in neurons in vitro, which can in turn inform the design and optimization of

engineered computational substrates.

KEYWORDS

neural computation, microelectrode arrays, in vitro electrophysiology, subcritical

dynamics, excitation–inhibition balance, network neuroscience, complexity

1. Introduction

Since the finding by Beggs and Plenz (2003) that cortical activity shows

hallmarks of criticality, a dynamic state recognized as conferring many computational

benefits to a system, there has been interest in understanding how critical or near-

critical dynamics relate to computation in the brain (Beggs, 2008). Among the

computational benefits of this state are a widened dynamic range (Kinouchi and

Copelli, 2006) and increased sensitivity to inputs (Bertschinger and Natschläger,

2004). Expanding the question of criticality to in vitro systems has shown that

neurons do not always organize into the critical state in vitro (Pasquale et al., 2008),
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though it may be possible to manipulate them to be closer to

criticality (Heiney et al., 2019). However, there is increasing

accord that the picture is more complicated than the cortex

simply organizing into a singular critical state, with evidence

showing the benefits of a “slightly subcritical” state (Priesemann

et al., 2014) and demonstrating that networks can dynamically

adjust their state depending on the nature of the task at

hand (Wilting and Priesemann, 2018). This expanded view

on criticality may give more insight into the behavior of

in vitro networks.

The dynamics that can be supported on a network

depend on how that network is connected. Because of this,

network connectivity plays an important role in the emergent

computational capabilities of a system; this is understood both

from the perspective of how the brain produces cognition

(Bressler and Menon, 2010) and from the more generalized

perspective of reservoir computing (Dale et al., 2021), in which

the physical properties of a dynamic system are exploited for

computation. Thus it is natural to investigate the features of

connectivity that accompany emergent dynamics considered

beneficial for computation.

The field of network neuroscience has progressed our

understanding of how neural systems are organized, from the

level of populations of neurons up to the scale of brain regions,

shedding light on the contribution of structural and functional

organization to cognition and brain function (Bassett and

Bullmore, 2017). In particular, such an approach can reveal how

neuronal systems balance integration and segregation (Sporns,

2013)—in such a balanced system, densely intra-connected

communities form (segregation) while global communication

is maintained (integration). In practice, this can manifest in

the form of hierarchical modules (Rubinov et al., 2011) or

small-world networks (Downes et al., 2012), with the former

characterized by self-similar clustered structures forming at

different scales and the latter by low path lengths and high

clustering. This type of balance in integration and segregation—

where the activity of nodes in a network is coordinated but

not entirely synchronous—also relates to the complexity of the

activity, as will be defined in Section 2.2.5 (Tononi et al., 1994).

Previous modeling studies have revealed connectivity

features that can facilitate the emergence of criticality in

neural systems (see Heiney et al., 2019 for a review),

such as scale-free-ness (Pellegrini et al., 2007) and small-

worldness (Pajevic and Plenz, 2009), with different connection

densities yielding different dynamics (Lin and Chen, 2005).

In particular, Massobrio et al. (2015) showed that, although

randomly connected networks can support critical dynamics,

their resultant firing rates are biologically implausible, whereas

scale-free and small-world networks are able to reproduce

behavior observed experimentally in vitro.

With this theoretical evidence that connectivity structure

plays such an important role in determining network dynamics,

it would be valuable to observe the connectivity features that

accompany different regimes of dynamic behavior in networks

of neurons to better understand how structure and dynamics

relate and influence one another. Furthermore, interplay

between dynamics and connectivity can give us insight into

how they relate to the emergent computation in a system, and

thus studying the two aspects of a neural system in tandem

can provide new insights into neural information processing. In

addition to advancing our understanding of neural computation,

this also opens the door to designing artificial intelligence

models with dynamics and connectivity features similar to those

observed empirically.

In this study, the electrophysiological activity of in

vitro neuronal networks prepared at two different seeding

densities (N = 3 high-density and N = 3 low-density

networks) was observed using extracellular recording with a

microelectrode array (MEA). The activity was characterized

using two analytical approaches: analysis of the characteristics

of neuronal avalanches and computation of graph theorymetrics

from extracted functional connectivity graphs. The relationship

between these two sets of metrics was evaluated for the two

different seeding densities as the networks matured over nearly

a month in vitro. This study demonstrates that computational

methods to study neuronal avalanche dynamics and network

connectivity can complement each other and provide greater

insight about the propagation of information in neuronal

networks (Heiney et al., 2021). Our results lay a foundation

upon which we can build a deeper understanding of how the

topological features of the functional connectivity of neuronal

networks in vitro relate to the emergence of different dynamical

regimes, as well as how self-organized dynamics and structure

relate to neural computation (Turnbull et al., 2018; Heiney et al.,

2020).

2. Methods

This section first describes the experimental details of this

study, then presents the computational methods used to analyze

the electrophysiological data. The analytical methods applied

here comprise two complementary approaches: the study of

activity propagation through the network through the lens

of cascades of activity termed “neuronal avalanches,” and the

extraction and analysis of functional connectivity graphs. The

former set of methods gives insight into the dynamics occurring

in the network; as none of the networks observed here were seen

to organize into the critical state, the focus of these methods

is on the branching ratio and a measure of the complexity of

activity, as other methods associated with neuronal avalanche

analysis (e.g., power-law fitting and shape collapse) are only

meaningful when the system is functioning very close to the

critical state. The latter set of methods allows us to describe

how the networks are organized to allow the propagation

of activity and information. We focus on evaluating and
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comparing various characteristics of these extracted functional

graphs and relating them back to the branching ratio and

complexity of the same networks. This approach provides the

foundations for understanding how functional connectivity

structure can support various dynamical regimes in networks of

neurons in vitro.

2.1. Experimental details

2.1.1. In vitro neuronal network preparation

Rat cortical neurons (A1084001, Thermo-Fisher

Scientific) were seeded on Cytoview 6-well plates coated

with polyethyleneimine (Polysciences) and natural mouse

laminin (Thermo Fisher Scientific) at a density of 900 cells/mm2

(low-density, 95,000 cells/well, N = 3 wells, hereafter referred

to as LD1–LD3) and 1,800 cells/mm2 (high-density, 187,000

cells/well, N = 3 wells, HD1–HD3), as shown in Figures 1A,B.

Co-cultures with rat primary cortical astrocytes (N7745-100,

Thermo Fisher Scientific) were established through concurrent

seeding at 90 and 180 cells/mm2 for low- and high-density

cultures, respectively. All cultures were maintained with

medium consisting of 95% Neurobasal Plus, 2% B27 Plus

Supplement (50X), 1% GlutaMax Supplement, and 2% PenStrep

(all from Thermo Fisher Scientific). Half of the culture media

was changed once per week during the course of the experiment,

except in the first week in vitro, when media change was

performed three times during the week, and immediately

following chemical perturbation (see Section 2.1.2), when the

media was exchanged twice. During seeding, rock inhibitor

(Y-27632, Sigma Aldrich) was added to the medium.

2.1.2. Electrophysiology

A CytoView MEA plate (M384-tMEA-6B, Axion

Biosystems) was used for all in vitro electrophysiology

recordings. Each well of the MEA plate consists of 64 PEDOT

electrodes (100 µm diameter, 300 µm inter-electrode spacing)

arranged in an 8×8 grid at the center of each well. Daily

recordings were performed with a Maestro Pro (Axion

Biosystems) at the same time each day, from days in vitro (DIV)

25–49. The cultures were allowed to equilibrate for at least 15

min prior to each recording and incubated during the recording

to ensure stable activity.

Activity was captured using AxIS 2.4 software (Axion

Biosystems). Spike detection was performed on the raw data

with the same software using the adaptive threshold method

with a threshold of ±7 standard deviations from the median of

the signal.

For the excitation-to-inhibition ratio (E/I) disruption

assay, γ -aminobutyric acid (GABA; A5835, Sigma-Aldrich)

was diluted in DPBS−/− and added immediately preceding

recording on DIV 50.

2.1.3. Immunocytochemistry

For immunocytochemistry, an IBIDI 8-well (80841, IBIDI)

was coated with poly-L-ornithine (Sigma Aldrich) and natural

mouse laminin (Thermo Fisher Scientific) and seeded with rat

cortical neurons and astrocytes at a density of 650 and 50

cells/mm2, respectively. Neurobasal medium was exchanged

50% every other day until fixing. All cultures were kept in

humidified incubator (37◦C, 5% CO2).

For imaging, cells were fixed with 4% paraformaldehyde

for 15 min before washing with D-PBS−/−, followed by 2 h

blocking with 5% goat serum 0.3% Triton X in D-PBS−/−.

Primary antibodies (neurofilament heavy (ab8135) at 1:1,000,

GAD65 (ab26113) at 1:500, GABA-A (ab94585) at 1:100, GABA-

B (ab55051) at 1:100, all primary antibodies from Abcam) were

diluted in 1% goat serum, 0.1% Triton X in D-PBS−/− and

left overnight at 4◦C. The following day, primary antibodies

were removed and the cells washed prior to staining with

secondary antibodies. Secondary antibodies (goat-anti-rabbit

647 Alexa Fluor, goat-anti-mouse 488 Alexa Fluor, Thermo

Fischer Scientific) were added in 1% goat serum, 0.1% Triton

X in D-PBS−/− at a dilution of 1:1,000 for 2 h. Hoechst was

added during the last 5 min of secondary incubation at a dilution

of 1:5,000. The cells were mounted and left at 4◦C overnight

before microscopy. Fluorescence microscopy was performed

with an EVOS Microscope M5000 Imaging System, while live

cell imaging was performed with Zeiss Axio Vert. 25. All images

were processed using Fiji software.

As shown in Figures 1C–E, immunocytochemistry results

confirmed the presence of GABA-A and GABA-B receptors,

as well as the GAD65 enzyme produced by GABA-ergic

interneurons, indicating that the network would be responsive

to E/I disruption by the addition of GABA.

2.2. Neuronal avalanche dynamics

The dynamics of the network activity were considered

by evaluating the size and duration distributions of neuronal

avalanches, the branching ratio, and a measure of the

complexity. The Neural Complexity and Criticality (NCC)

Toolbox was used to perform power law fitting, compute

the complexity, and obtain the conventional estimate of the

branching ratio (Marshall et al., 2016). The multiple regression

(MR) estimator proposed by Wilting and Priesemann (2018)

was also used to estimate the branching ratio to take into

consideration the effect of subsampling.

2.2.1. Avalanche detection

Neuronal avalanches were detected following the work by

Beggs and Plenz (2003) and Pasquale et al. (2008), as shown

in Figure 2A. Recordings were divided into time bins of width

1t, and a time bin was considered active if any of the recording
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FIGURE 1

Bright-field images of (A) high- and (B) low-density networks. Fluorescence images showing the presence of (C) GABA-A, (D) GABA-B, and (E)

GAD65. Green indicates neurofilament heavy.

channels showed spiking activity in that bin. Avalanches were

then detected as sequences of active time bins bounded before

and after by time bins with no activity. The size of an avalanche

can be defined in one of two ways: (1) the number of active

recording channels during the avalanche, or (2) the number

of spikes that occur during the avalanche; we here consider

the former definition. The duration of an avalanche is defined

as the number of active time bins spanning the avalanche.

Multiple time bin widths (1t = 1, 2, 4, 8, 12, 16, 24, and

32 ms) were considered when performing spike binning for

avalanche detection.

2.2.2. Size and duration distributions

The probability distributions of the avalanche size and

duration were then computed. In a network in the critical state,

these distributions should follow power laws of the form

P(S) ∝ S−α ,

P(D) ∝ D−β ,

〈S〉(D) ∝ D1/σνz ,

(1)

where P(·) is the probability distribution; S is the avalanche size;

D is the avalanche duration; 〈S〉(D) is the expectation value of

the avalanche size given its duration; and α, β , and 1/σνz are

the characteristic critical exponents of the system. For a network

in the critical state, 1/σνz = (α − 1)/(β − 1). Networks in

the sub- and supercritical states exhibit exponential and bimodal

distributions, respectively.

Using the NCC Toolbox (Marshall et al., 2016), power laws

of the form given in Equation (1) were fit to the empirical

distributions using maximum likelihood estimation (MLE). In

the method in this toolbox, truncated power laws are fit to the

largest range of size or duration values that yield a significant fit,

and the goodness of fit is computed using the method outlined

by Clauset et al. (2009).

2.2.3. Avalanche shape

The shape of the detected avalanches was also evaluated

using the NCC Toolbox (Marshall et al., 2016). The shape

of an avalanche is defined as its size over each time frame

of its duration, as shown in Figure 2C. Raw avalanche shape

profiles s(t) can be compared by rescaling their size and duration

according to the scaling function s(t,D) ∝ Dγ F(t/D) (Friedman

et al., 2012). For systems in the critical state, the scaled shapes

s(t,D)D−γ plotted against the scaled time t/D should collapse

onto the same profile F(t/D). Additionally, this scaling exponent

γ should relate to the exponent from Equation (1) as γ =

1/σνz − 1 for critical systems.

2.2.4. Branching ratio

As shown in Figure 2, the branching ratio m is defined as

the mean ratio of the number of “descendant” nodes (active
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FIGURE 2

Neuronal avalanche definitions. (A) Raster plot and schematic showing a typical MEA layout with active recording channels shown in blue. A

neuronal avalanche is defined as a sequence of active time frames bounded before and after by empty frames. (B) The branching ratio is defined

as the ratio of descendants to ancestors. (C) The avalanche shape is defined as the size of the avalanche as a function of time. Reproduced from

Heiney et al. (2021).

recording channels here) in time bin t + 1 to the number of

“ancestor” nodes in time bin t. In the conventional estimate,

descendant nodes are simply taken as the observed nodes that

are active in the time bin following the activity of the ancestor

nodes, and the mean is taken such that a “descendant” time bin

may contain zero activity but an “ancestor” may not (Haldeman

and Beggs, 2005). However, this approach does not yield an

accurate estimate in the face of subsampling.

The MR estimator method was developed to take into

consideration how subsampling greatly biases the estimate of

the branching ratio (Wilting and Priesemann, 2018). When

recording activity from neuronal networks, only a small

percentage of the network is being observed; in the present

experiment, each network contained approximately 100,000–

200,000 cells but only at most 64 active recording sites. This

subsampling obfuscates how activity spreads over the network,

but the MR estimator is able to give an accurate estimate of the

branching ratio even under strong subsampling.

In theMR estimator method, rather than consider the biased

regression of the activity between the activity at t and that at

t+ 1, multiple regressions rk are taken between times t and t+ k

for many lags k. Under subsampling, these regressions rk are all

biased by the same factor b, as rk = bmk, where m is the true

branching ratio. Thus, an estimate of the branching ratio m̂ can

be calculated by obtaining multiple regressions and fitting them

to an exponential model (Wilting and Priesemann, 2018).

2.2.5. Complexity

The complexity of the network activity was also computed

using the NCC Toolbox (Marshall et al., 2016), which uses the

metric developed by Tononi et al. (1994) modified to correct for

subsampling biases. This measure of complexity is based on the

entropy, which is given for a system of neurons as

H(X) = −
∑

p(xi)log(p(xi)), (2)

where xi is the joint state of all neurons and p(xi) is the

probability of that state occurring.

From this, the integration I(Xk
j ) of the jth unique set of k

neurons, Xk
j , is computed as

I(Xk
j ) =





∑

j′∈k

H(X1
j′ )



 −H(Xk
j ). (3)

The integration formulated in this way describes the degree of

coordination of the activity of the set of neurons Xk
j .
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The complexity of a system is low when all neurons are

coordinated but also when their activity is completely unrelated,

so the complexity measure should be high at intermediate values

of I. The complexity proposed by Tononi et al. (1994) is given by

c(X) =
1

N

N
∑

k=2

[(

k− 1

N − 1

)

I(X)− 〈I(Xk
j )〉j

]

. (4)

For more details on the computation and a graphical

interpretation of this measure, see the NCC Toolbox

documentation (Marshall et al., 2016).

2.3. Functional connectivity

To evaluate the relationship between the avalanche

dynamics observed in the networks and their toplogies, graphs

of the functional connectivity were obtained from the data and

analyzed. This section outlines the methods of extracting the

functional connectivity and characterizing the obtained graphs.

2.3.1. Generation of functional connectivity
graphs

Weighted functional connectivity graphs were extracted

from the spiking data as follows using the cross-correlation

between pairs of spike trains. Spike trains were obtained for

every recording channel by binning the spiking data with the

same time bin widths used for the avalanche detection (1t = 1,

2, 4, 8, 12, 16, 24, and 32 ms). The cross-correlation was taken

between all pairs of spike trains with a maximum lag of 100 ms.

The weight of the connection between two nodes was obtained

by first calculating the normalized correlation Rxy between their

binned spike trains x and y, as

Rxy(τ ) =
1

NxNy

Nx
∑

s=1

x(ts)y(ts − τ ), (5)

where Nx and Ny are the numbers of spikes in the binned spike

trains x and y, respectively; ts is the time bin containing spike

s in the spike train of x; and τ is the lag. The adjacency matrix

describing the weights wij of all connections was then obtained

by averaging the cross-correlation values Rxy up to a maximum

lag of 100 ms.

To eliminate spurious connections, any correlations with

p < 0.1 were considered insignificant and removed, and any

edges with weights below a hard threshold of R = 0.1 were

removed. Although it is a common approach to set the threshold

based on the correlations found for corresponding shuffled spike

trains, we chose to use a hard threshold for all networks to

avoid enhancing any between-group differences stemming from

the disparate thresholds that would arise from this approach

(van den Heuvel et al., 2017; Hallquist and Hillary, 2018).

Additionally, the relatively high threshold was used instead

of the more common 0.05 to reduce the number of false

positive or spurious connections in the networks and better

approximate the desired 2FN–1FP ratio discussed by Zalesky

et al. (2016); however, using thresholds of 0.05 and 0.02 for graph

extraction were found to yield similar results to the selected

threshold of 0.1.

The corresponding binary graphs were generated by setting

all non-zero weights to 1, and the analysis described in the

following section was also performed on the binary metrics to

evaluate the consistency in the results.

2.3.2. Graph analysis

The following metrics were calculated for each of the

functional connectivity graphs: clustering coefficient C,

characteristic path length L, network diameter D, maximum

degree kmax, and hub count Nhub. This section briefly describes

how each of these is computed.

The clustering coefficient C is defined as the fraction of a

node’s neighbors that are connected to another of that node’s

neighbors, as

C =
1

N

∑

i

ci =
1

N

∑

i

1

ki(ki − 1)

∑

j,k

(ŵijŵjkŵik)
1/3, (6)

where the local coefficient ci of each node is defined using the

method by Onnela et al. (2005) for weighted graphs, with ŵij =

wij/max(w) and ki the number of edges connected to node i.

The characteristic path length L is defined as the average of

the shortest path length between all possible pairs of nodes, as

L =
1

N(N − 1)

∑

i 6=j

dij, (7)

where dij is the shortest distance between nodes i and j.

The distance between a pair of adjacent nodes x and y

connected by an edge with weight wxy is defined as dxy =

1/wxy. The network diameter D is then defined as the longest

of these shortest path lengths between all pairs of nodes,

that is, the shortest possible path between the two most

distant nodes.

The degree k of a node in a weighted graph is defined as

the sum of the weights of the node’s edges, and the maximum

degree kmax is the highest degree occurring in a graph. The

number of hubs is then defined as the number of nodes with

degree exceeding one standard deviation above the mean degree

of the network.

2.3.3. Normalization of graph metrics with
small-world null models

Unsurprisingly, the extracted graphs had different numbers

of nodes and mean degrees, and because of this, many of
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the graph metrics described in the previous section cannot be

directly compared (van Wijk et al., 2010; Hallquist and Hillary,

2018). To enable comparison of all of the graphs, the metrics

were normalized by generating 200 null models, calculating the

corresponding metrics from those models, and normalizing the

empirical values with respect to the mean of the corresponding

value across the null models.

For the null model, a small-world model with the same

number of nodes, mean degree, and sparsity as the empirical

graph was selected, where sparsity is defined as the ratio of

the number of existing edges in the network to the number

of possible edges, i.e., edges in a fully connected network of

the same size. These were created by first generating binary

small-world graphs using the Watts–Strogatz model with β =

0.02 (Watts and Strogatz, 1998). All nonzero elements in the

adjacency matrix were then replaced by the weights from the

empirical adjacency matrix, retaining the order in which they

occur in the empirical model.

This null model was selected because the majority of the

extracted functional graphs were small-world, as evaluated using

the small-world propensity, which will be described below.

Specifically, for the high- and low-density networks, 68.7 and

61.7% of the graphs were small-world for the high- and low-

density networks, respectively, and their respective mean SWPs

were 0.72 and 0.61. These percentages and means were taken

across all considered DIVs and time bin widths for each density.

The SWP φ relies on the characteristic path length L and the

clustering coefficient C, which are both defined in the previous

section. The SWP is then defined as Muldoon et al. (2016)

φ = 1−

√

12
C + 12

L

2
,

1C =
Clatt − Cobs
Clatt − Crand

,

1L =
Lobs − Lrand
Llatt − Lrand

.

(8)

This metric introduces the ratios 1C and 1L to represent

the fractional deviation of the observed graph from the

corresponding null case, i.e., a lattice graph for the clustering

coefficient and a random graph for the characteristic path length.

On the basis of this metric, a graph is said to be small-world if

φ > 0.6.

2.4. Correlations between avalanche and
graph metrics

To assess the relationship between the avalanche dynamics

occurring on the networks and the topological structures of the

functional graphs, the correlation between pairs of avalanche

and graph metrics was evaluated. For this, the partial Spearman

correlation was used to eliminate the effects of confounding

variables. The following confounding variables were considered:

the numbers of nodes and edges in the graphs, the DIV, and the

number of days since the last media change.

3. Overview of network activity

Figures 3A,B shows example raster plots of the high- and

low-density network activity on DIV 40. The upper plots show

the activity over the entire observation duration (1 h), and the

lower plots show 30 s of activity, the timing of which is indicated

in the upper plots. As shown in this figure, the activity of both the

high- and low-density networks was dominated by large bursts

characterized a range of time scales. The duration and frequency

of these bursts varied network to network and day to day.

It should be noted that not all recording channels

in the MEA were active during every observation day.

The mean numbers of active recording channels for

the high- and low-density networks across all recording

days were approximately 50 channels (minimum: 33,

maximum: 58) and 28 channels (minimum: 17, maximum:

41), respectively, where a channel is considered active

if it has recorded at least 10 events. The widely variable

number of active channels across densities and DIVs

introduces some challenges in comparing their corresponding

computational measures.

The addition of 25 µM GABA on DIV 50 reduced

the amount of activity (mean firing rate) in all of the

networks, as expected. In some of the networks, the activity

was completely silenced; in particular one of the high-

density networks (HD1) and two of the low-density networks

(LD2 and LD3) did not produce any activity during the

hour following perturbation with GABA. Interestingly, in

those networks that continued to produce activity following

perturbation, the spatiotemporal structure of the activity was

not markedly different from that before perturbation—activity

remained fairly synchronized and continued to be dominated

by large bursts. Furthermore, the duration of these bursts

tended to be greater than those prior to the perturbation,

as shown in Figure 4—note the timescale of 55 s zoomed

in on singular burst patterns, as compared to that of 30 s

in Figure 3. The avalanche size continued to show bimodal

distributions; however, in the case of HD3, the peaks at larger

avalanche sizes were not as pronounced as they were prior

to perturbation.

The present results contrast our previous results

(Heiney et al., 2019), where perturbation with GABA was

able to break the synchrony of the network activity and

allow the networks to produce more complex patterns

of activity. This suggests that sensitivity to GABA may

vary from network to network and is likely dependent

on more factors than the seeding density and level

of maturation.
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FIGURE 3

Raster plots and avalanche size distributions on DIV 40. Raster plots of the entire 1 h recording period (upper) and indicated 30 s period (lower)

for (A) HD3 and (B) LD1. Avalanche size distributions and mean scaled shapes obtained with di�erent time bin widths for (C) HD3 and (D) LD1.

Distributions are normalized by the probability of size 1.
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FIGURE 4

Raster plots and avalanche size distributions on DIV 50 following perturbation by GABA. Raster plots of the entire 1 h recording period (upper)

and indicated 55 s period (lower) for (A) HD3 and (B) LD1. Avalanche size distributions obtained with di�erent time bin widths normalized by the

probability of size 1 for (C) HD3 and (D) LD1.
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4. Neuronal avalanche dynamics

The dynamics of the in vitro networks were first investigated

by analyzing the behavior of their neuronal avalanches. This

section first presents a brief overview of the size distributions

of the neuronal avalanches, which were generally found to

be bimodal across a range of time bins. Then, the branching

ratio and complexity results are presented. The branching

ratio indicated that the networks were generally subcritical,

with many in the slightly subcritical range (m ≈ 0.99). The

complexity of the high-density networks was much higher than

that of the low-density networks. Higher complexity tended

to occur at later maturation time points and correspond to

branching ratios closer to 1.

4.1. Avalanche size distributions and
shapes

Examples of the avalanche size distributions are shown in

Figures 3C,D for the high-density network HD3 and the low-

density network LD1, respectively, on DIV 40. The distributions

are shown for all considered time bin widths, ranging from

1 to 32 ms. The size and duration distributions of the

networks tended to show similar features across networks and

DIVs: bimodal at larger time bin widths and exponentially

decaying at smaller time bin widths. In some cases, as shown

in Figure 3D, the low-density networks showed only rapidly

decaying avalanche distributions, as the upper limit of the size

was limited by the low number of active electrodes.

The power-law fitting results did not yield significant fits for

any network on any DIV, nor after perturbation with GABA.

Because of this, the different estimates of 1/σνz described in

Section 2.2 could not be meaningfully compared.

The mean scaled avalanche shape (i.e., size vs. time over

the course of an avalanche; bottom panels in Figures 3C,D)

frequently showed the characteristic roughly parabolic shape,

with the size peaking near the middle of an avalanche; this can

be seen at intermediate time bin widths on DIVs 40 and 48 for

HD3. However, in many cases, the peak was skewed earlier in

the avalanche, suggesting a more rapid spread and gradual decay

in activity than what is characteristic of networks at criticality;

this can be seen on DIV 48 for both HD3 and LD1, particularly

at higher time bin width selections. Furthermore, at larger

time bin widths (>8 ms), some mean shapes were bimodal,

indicating multiple cascades of activity were combined into a

single detected avalanche. This was characteristic of activity

in all three of the high-density networks at earlier DIVs, as

shown on DIV 28 for HD3 with time bin widths of 24 and

32 ms. This suggests that the physiologically relevant timescale

for these networks was in the range of 1–8 ms; given the

interelectrode spacing of 300 µm in this study, these timescales

are in agreement with previous reports of propagation speeds in

vitro ranging from 30 to 300 mm/s (Jacobi and Moses, 2007).

4.2. Branching ratio

The mean branching ratio results for each of the networks

are shown in Figure 5 for mid-range time bin widths (1t = 2,

4, 8, 12, and 16 ms). The branching ratio estimate shown here

was obtained with the MR estimation method to account for

subsampling. A range of time bin widths was used to take into

account that systems near criticality should show branching

ratios near 1 regardless of time bin selection.

The branching ratio was almost always below 1, indicating

a subcritical state, and it was frequently very close to 1 (m ≈

0.99), representing the slightly subcritical regime (Priesemann

et al., 2014). The branching ratio fell in the range 0.98 ≤

m < 1 in 35%, 34%, and 53% of the observations for the high-

density networks and 32%, 53%, and 18% of the observations for

the low-density networks. This suggests that it is common for

networks to self-organize into the slightly subcritical regime in

vitro, though deviations also occurred with some regularity.

In particular, HD3 and LD2 appeared to remain close

to criticality for much of the observation time, whereas

the branching ratio results for LD3 indicated consistent

subcriticality. The high-density networks tended to show more

drastic deviations into the subcritical regime from day to day,

whereas LD1 and LD2 gradually moved, respectively, away from

and toward the slightly subcritical regime over time.

It is noteworthy that the subsampling-corrected branching

ratio estimate indicated a consistent subcritical or slightly

subcritical state for each of the networks over all observation

days, whereas the avalanche size consistently showed a

bimodal distribution (Figures 3C,D), which is indicative of

supercriticality, particularly in the high-density networks for

time bin widths of 4 ms and higher. These two observations

being at odds suggests either that bimodal size distributions

are not a definitive indicator of supercritical behavior when

considering strongly subsampled in vitro activity, or that

the MR estimate of the branching ratio does not accurately

capture the branching activity of networks with branching

ratios exceeding 1.

The conventional estimate of the branching ratio (results not

shown) yielded interesting cyclic behavior at the smallest time

bin width (1t = 1 ms) that aligned with the dates on which

the culture mediumwas changed. This suggests that information

propagation in the network may be sensitive to the availability

of metabolic resources and the presence of factors released by

the cells in the culture. The days on which the media were

changed are shown in the MR branching ratio estimate results in

Figure 5; however, while some of these time points correspond

to shifts to a more subcritical state immediately preceding or

following media change as indicated by this branching ratio
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FIGURE 5

MR estimate of the branching ratio calculated for di�erent time bin sizes plotted against DIV for (A) high- and (B) low-density networks. MC,

media change.

estimate, the media change did not affect the MR estimate of

the branching ratio in as consistent a manner as it did the

conventional estimate.

4.3. Complexity

The complexity is plotted against the branching ratio in

Figures 6A,B for the high- and low-density networks. Each

data point represents a single observation day with the values

computed for a single time bin width, with intermediate time bin

widths included (1t = 2, 4, 8, 12, and 16 ms), as in Figure 5 and

Section 4.2. The colors represent the different observation DIVs,

with darker colors corresponding to later time points in the

observation period, and the orange points represent the results

after perturbation with GABA.

As shown in Figure 6, the high-density networks tended

to have much higher complexity values than the low-density

networks (p < 1 × 10−50, two-sample T-test), with the peak

complexity in the high-density case reaching approximately

four times that in the low-density case. The fluctuations in the

complexity day by day for each bin width selection were quite

erratic, but the higher complexity results tended to occur at

later DIVs, especially for the high-density networks, as indicated

by the darker color of the higher points in Figure 6A. Higher

complexity values also tended to be accompanied by branching

ratios closer to 1, though the converse was not always true.

Perturbation with GABA tended to result in low complexity

values, while not greatly disrupting the branching ratio.

However, the drastically reduced level of activity in many of

the networks may affect the accuracy of the estimates of the

branching ratio.

5. Functional graph characteristics

A summary of the graph characteristics is shown in Figure 7,

with Figure 7A showing the small-worldness of each obtained

graph and Figure 7B showing the distributions of each of
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FIGURE 6

Complexity plotted against branching ratio for (A) high- and (B) low-density networks, obtained for mid-range time bin sizes

(1t = 2, 4, 8, 12, and 16 ms). Darker colors represent later DIVs, and the orange data points represent the activity after the addition of GABA. In

(A), two outliers with branching ratios exceeding 1 (m = 1.05 and 1.08) were removed for the sake of visualization.

the considered small-world-normalized graph measures for

the low- and high-density networks. The results in Figure 7A

demonstrate that the majority of both the low- and high-density

networks tend to organize into a small-world topology, though

the high-density networks are generally more small-world than

the low-density networks (p < 1 × 10−36, two-sample t-

test). This result motivated the use of small-world null models

for graph metric normalization, rather than using randomly

connected null models or non-normalized metrics.

As shown in Figure 7B, many of the normalized network

metrics tended to show somewhat different distributions for the

low- and high-density networks. The path length and network

diameter tended to be larger for the high-density networks

than the low-density networks, suggesting a greater separation

between nodes. This greater separation is also consistent with

the lower hub count (number of nodes of degree greater than

the mean degree) in the high-density networks, as fewer hubs

would generally lead to less connection between disparate parts

of the network.

It is also interesting to note that the normalized

characteristic path length always fell below 1 for both

networks, meaning the empirical networks consistently had

lower path lengths then their small-world null counterparts. A

similar trend in the hub count, excluding a few dozen outliers,

along with a consistently high maximum degree, suggests the

path length was reduced relative to the small-world case by the

presence of a few very highly connected nodes rather than a

large number of less-connected nodes.

5.1. Relating functional graphs to
avalanche dynamics

To evaluate the relationship between the characteristics of

the functional graphs obtained from the in vitro networks

and their avalanche dynamics, the partial correlation was

evaluated, as described in Section 2.4. The metrics used to

describe and compare the graphs were those described in

Section 2.3.2—the clustering coefficient C, the characteristic

path length L, the network diameter D, the maximum degree

kmax, and the hub count Nhub—and they were normalized

with respect to small-world null models, as described in

Section 2.3.3.

Figure 7 demonstrates that the majority of the functional

connectivity graphs could be considered small-world, justifying

the normalization by small-world null models to compare

networks of different sizes.

The correlation results are listed in Table 1. As shown in

the table, although significant, the correlations are fairly weak.

This is likely due to the small number of nodes in our extracted

graphs; graph metrics are notoriously challenging to calculate

for small graphs (van Wijk et al., 2010). It should be noted

that the results obtained for the corresponding binary graphs

were fairly consistent with the weighted graph results. In two

instances, significant correlations were found in the binary

case and not in the weighted case; for these, the correlation

from the binary case is reported in the table and denoted by

an asterisk.
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FIGURE 7

Graph properties of the high- and low-density networks. (A) Small-world propensity. Each data point represents a functional connectivity graph

obtained from network activity on a given day with a given time bin size; they are given random horizontal jitters for the sake of visualization.

The heights of the bars represent the mean small-world propensity across all such graphs. The horizontal dashed line represents the threshold

above which a graph is considered “small-world.” (B) Histograms of the small-world-normalized graph metrics considered in this study.

Histograms represent graphs obtained on all DIVs with all considered time bin sizes.

TABLE 1 Partial correlation of graph metrics with branching ratio and

complexity.

C L D kmax Nhub

HD

m NS 0.12 NS −0.17 NS

c 0.11∗ −0.42 −0.40 0.37 0.22

LD

m 0.20 0.14 0.10 −0.35 −0.11

c −0.14 NS −0.11 NS NS

∗Correlation reported for binary graph (NS for weighted); HD, high-density networks;
LD, low-density networks; NS, not significant; m, branching ratio; c, complexity; C, clustering
coefficient; L, characteristic path length; D, network diameter; kmax , maximum degree; Nhub ,
number of hubs.

5.2. Branching ratio and graph features

The branching ratio showed a positive correlation with the

characteristic path length and the network diameter, with the

correlation with path length arising in both the high- and low-

density networks. This suggests that networks are better able to

sustain activity when their nodes are more functionally distant

from one another. In the present case, larger branching ratios

were those that approached m = 1 most closely (see Figure 5),

meaning larger path lengths also correspond to cases where the

networks are closer to the critical point.

Similarly, higher branching ratios also showed

correspondence with lower maximum degrees and a greater

number of hubs (nodes with degree exceeding one standard

deviation above the mean degree). This is consistent with the

path length observations, as increasing the maximum degree

would reduce the distance between nodes, and reducing the

maximum degree can also reduce the mean and therefore may

increase the number of hubs. The clustering coefficient also

showed a positive correlation with the branching ratio in the

low-density networks.

Taken together, these results suggest that activity can be

better sustained in networks with functionally distant nodes that

tend to cluster together, without any major hubs in the network.

However, crucially, because the networks here are drastically

subsampled to obtain the corresponding functional graphs, it is

certainly possible that there exist hubs outside of the observation

zone and our analysis does not capture the contribution of these

hubs to the activity. Despite this, it is interesting that when

high-degree hubs are observed, these cases tend to also have

a lower branching ratio, suggestive of networks further from

criticality.

If a network of purely excitatory nodes is considered, the

above correlations are generally opposite what one would expect;

that is, more highly connected nodes and shorter paths between

nodes would be expected to give rise to more propagated

activity and thus a higher branching ratio. That a greater degree

of integration in the functional graphs would correspond to

reduced propagation suggests that the more highly connected

networks come along with higher levels of inhibition, halting the

spread of activity early in an avalanche.
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5.3. Complexity and graph features

The correlations between the complexity and each of the

graph features tended to be significant only for the high-density

networks, and so the focus of the discussion here will be for these

networks. The lack of significant correlations for the low-density

networks is likely due to the very little network-to-network

variability in their complexity (see Figure 6B).

The path length and network diameter were negatively

correlated with the complexity, indicating networks with closer

functional connection between pairs of nodes tended to produce

more complex activity. This suggests that greater integration

is needed to sustain complex activity, and a greater path

length likely reduces complexity by segregating the network

and lessening the coordination among nodes. The complexity

was also positively correlated with the maximum degree and

hub count, and weakly with the clustering coefficient. This

again suggests that a greater level of integration in the network

contributes to more complex activity.

The complexity correlations are more challenging to

definitively interpret than the branching ratio correlations. As

described in Section 2.2.5, the complexity is high when a

balance is struck between integration and segregation—when

nodes act together and allow activity to spread but not when

high synchrony is exhibited in the network. Thus, when the

complexity is low, it may be due to repetitive or non-propagating

activity, or to the network being overwhelmed. However, given

the trends described above and that the branching ratio estimate

tended to remain below 1, low complexity values in the present

study likely resulted from a network being too functionally

segregated, rather than too integrated. The results here then

together indicate that the high-density networks showed greater

complexity as they became more integrated.

6. Discussion

Although there is evidence that networks of neurons may

tend to self-organize to the critical state (Beggs and Plenz,

2003; Tetzlaff et al., 2010) or the slightly subcritical regime

(Priesemann et al., 2014) to optimize information processing

(Shew et al., 2009, 2011), not all in vitro networks reach

criticality during their maturation (Pasquale et al., 2008). In

the present study, none of the six networks, prepared with two

different plating densities, showed evidence of criticality after

maturing for 50 DIVs. However, their behavior still provided

some insight into the dynamics of their activity and how it

can be related to features of their functional connectivity. This

study demonstrates that analytical approaches of criticality and

connectivity are complementary and can provide greater insight

into network dynamics than either approach alone.

The branching ratio results indicate that the high-density

networks tended to maintain subcritical dynamics closer to

criticality (branching ratio closer to 1) than the low-density

networks, though their presumed higher metabolic activity

also may have made them more susceptible to variation

betweenmedia changes (see Figure 5); media changes would also

have produced variations in neurotransmitter concentrations.

However, it should be noted that the branching ratio results

were at odds with the observed bimodal avalanche distributions,

which are indicative of supercriticality. Thus, it is unclear if

the MR estimate of the branching ratio is able to accurately

capture the branching behavior of systems with branching

ratios exceeding 1, or whether the appearance of bimodality

in the size distribution is indeed a definitive an indicator of

supercriticality. Furthermore, a branching ratio below 1 may

also arise from a high probability of spontaneous activation; this

causes the susceptibility (the probability of a node’s activity being

affected by the activity of its neighbors; maximized at criticality

Williams-García et al., 2014) to peak at lower branching

ratios. This flexibility in how a system may be optimized for

computation underlies the concept of quasicriticality, whereby

systems deviate from criticality under the influence of external

stimuli, in order to maintain maximal susceptibility, but

maintain the same spatiotemporal scaling relationships seen at

criticality (Williams-García et al., 2014; Girardi-Schappo et al.,

2020; Fosque et al., 2021). The fluctuations in branching ratio

with media changes are also consistent with quasicriticality,

as the resources available to the networks influence how they

flexibly tune their dynamics around criticality.

The activity produced by the high-density networks was also

much more complex than that of the low-density networks (see

Figure 6, particularly at later DIVs). Timme et al. (2016) have

noted that complexity, quantified using the same metric applied

in the present study (Marshall et al., 2016), is maximized at

criticality and confirmed this finding both in experimental data

from dissociated hippocampal networks and a critical model.

Similar findings have also been reported by Lotfi et al. (2021)

for in vivo cortical spiking data using the Jensen disequilibrium

as a measure of criticality. Although we did not see evidence

of criticality in our networks, it is possible that the higher

complexity value in the high-density networks, especially at later

DIVs, point to the networks approaching a critical state.

The mean avalanche shape did not consistently show the

parabolic trajectory expected for systems at criticality. In many

cases, the shape exhibited a leftward skew (see bottom panels

of Figures 3C,D), indicating that more of the activity tended

to occur earlier in the course of an avalanche. This may be

suggestive of the networks exhibiting high levels of excitation

not well balanced by inhibition: activity at the start of an

avalanche setting off a sudden cascade that overwhelms the

network and quickly dies off as much of the system becomes

refractory. Nandi et al. (2022) observed a similar connection

between avalanche shape and E/I ratio in their simulations of

avalanche shape behavior; however, in their study, the observed

an increasingly rightward skew as the ratio of inhibitory neurons
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in the population was increased, with no leftward skew in

the case of pure excitation. This evidence of high levels of

excitation in our networks is also in line with our previous

finding that in vitro networks can be pushed toward criticality

by chemically manipulating the E/I ratio (Heiney et al., 2019),

despite this effect not being reproduced to the same degree in the

present study (see Figure 4). The importance of inhibition ratio

is also echoed in the model developed by Tetzlaff et al. (2010),

which relates criticality to known phases of morphological

development; they found that inhibition influences a network’s

ability to reach criticality, with purely excitatory networks

remaining in the slightly supercritical phase.

In terms of the functional connectivity features, the high-

density networks were more small-world and had longer

path lengths and higher clustering coefficients with slightly

lower maximum degrees. These features—longer path length,

higher clustering coefficient, and lower maximum degree—also

correlated with networks being closer to criticality (branching

ratio closer to 1) for both the high- and low-density networks.

The higher clustering coefficient points to greater integration,

whereas the longer path length and lower maximum degree

indicate less integration, suggesting the networks are working

to strike a balance in the level of integration in the network. It

has been suggested that clusteringmay support the emergence of

Griffiths phases (Moretti andMuñoz, 2013), which broadens the

range of parameters in a system that can give rise to criticality,

thus allowing less-precise tuning to reach a near-critical state.

This occurs because clustering enhances the spread of activity

at a smaller scale, among those neurons joined in a cluster,

while limiting the spread between clusters at a larger scale; thus,

heterogenous clusters will influence the scaling of avalanches in

a way that broadens the critical regime (Moretti and Muñoz,

2013).

Along the same lines, modularity may favor the emergence

of criticality; this is in line with previous theoretical findings

that modularity broadens the critical regime (Rubinov et al.,

2011; Wang and Zhou, 2012), which allows the fine-tuning of

dynamics near and within this regime. In particular, modules

in a network following these trends would be connected by

many small hubs rather than few major hubs—this kind

of topology would produce high characteristic path lengths

while maintaining a low maximum degree and many hubs.

Modularity is one way networks can strike a balance between

integration and segregation and produce coordinated—but not

entirely synchronous—activity, which in turn is beneficial for

the propagation and modulation of information in the network.

However, the small size of our networks precluded a more

rigorous investigation of the modularity.

Although the findings here demonstrate the

complementarity of the analytical approaches used, there

were a number of limitations. First, both the dynamics and

connectivity analysis would be improved by increasing the

number of recording channels. Spatial subsampling is known

to bias the measures used here, and network features are

challenging to reliably compute on small graphs (vanWijk et al.,

2010). Additionally, not observing self-organized criticality in

our networks limited the comparison of different dynamical

regimes, as only subcriticality could be identified from the

branching ratio. Had networks been observed in more varied

dynamical regimes, i.e., in critical and supercritical states with

branching ratios equal to and exceeding 1, perhaps different

network features would have been observed, allowing us to more

definitively identify features supporting criticality. Additional

analysis could also have been conducted in this case to evaluate

whether there was a correspondence between the dynamical

regime and the computational capacity of the network, by

electrically stimulating the networks and observing the response

following stimulation, as has been performed previously in slice

cultures (Shew et al., 2009, 2011).

Furthermore, including a greater number of networks would

have allowed a more thorough assessment of the relationships

among the studied characteristics and also improved our

chances of observing self-organized criticality, or of successfully

manipulating a network into the critical state by chemical

perturbation. This is particularly important in light of the effect

observed here of changing the culture media; the branching

ratio showed a reliance on the availability of nutrients, especially

in the higher-density networks. As stated in Section 4.2, the

conventional branching ratio estimate showed cyclic underlying

variability with cycle duration equal to the time between media

changes, and the MR estimate showed frequent deviations

to more subcritical regimes prior to media changes. This

suggests the importance of metabolic resources in the networks’

ability to maintain consistent levels of activity propagation

and complicates the evaluation of trends in the network

activity characteristics. Longer or more frequent recordings

may also have captured more of the dynamical behavior of

the observed networks, and additional GABA perturbations

at different points in the network maturity could also reveal

variations in the dynamic response to increased inhibition as the

networks mature.

This study represents a first step toward understanding

the interplay between connectivity and dynamic state that

occurs as networks of neurons prepared with different

plating densities mature in vitro. Studying neurons in vitro

allows us a level of observation and control not possible

in vivo, and observing what features arise from their self-

organization can give insight into whether information

propagation is a component driving the formation of networks

in the brain.
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