

Preface

The work presented was done as part of a Master’s thesis in Mechanical and Industrial
Engineering at the Norwegian University of Science and Technology (NTNU). The thesis
was developed in the spring of 2022. The thesis is about computer vision and machine
learning, and while some knowledge in these subjects is helpful, the necessary theoretical
basis is covered in the Preliminaries. The thesis aims to see how transfer learning can
be used on machine learning models to help reduce reflections that arise when a laser
is focused directly on a bright surface. It can be challenging to acquire a large enough
dataset to properly train a neural network. Therefore the convolutional neural network is
initially trained on a large simulated dataset, before the transition to a smaller real-world
dataset is studied in a transfer-learning approach.

Acknowledgements

We want to express our gratitude and thank our supervisor, professor Olav Egeland at
NTNU, for providing an exciting task, good support, and constructive feedback. We
would also like to thank Ph.D. candidate Ola Alstad at NTNU for sharing his insights,
good discussions and for providing us with materials and a simulated dataset.

Summary

Robotic welding automation necessitates precise and correct information about the weld-
ing environment. Laser scanning is one method of gathering this data, but the laser might
cause reflections on shiny materials, resulting in inaccurate data. This thesis explored the
use of transfer learning with U-net. The initial training was executed on an extensive
simulated dataset before transfer learning on a significantly smaller real-world dataset.
The real-world dataset contained reflections on both steel and aluminium. Overall the
transfer learning was successful, even with only a handful of real-world images. The mod-
els demonstrated that the learning rate and optimization algorithms are interconnected,
particularly because non-adaptive and adaptive optimizers employ the learning rate in
di�erent ways. There were smaller di�erences between the results on the two materials
than expected. The thesis discuss the reasons behind this, the main being the extensive
simulated dataset, the thickness of the laser beam and di�erences between the real-world
and simulated images. The success of the transfer learning models opens the possibility
for industry implantation, though research of potential users and their needs must be
conducted in order to customize the models. However, the promising results are exciting
for the potential of this type of transfer learning in the industry.

Sammendrag

Automatisering av robotsveising krever presis og korrekt informasjon. Laserskanning er
en metode for å samle relevant data om sveiseområde, men laseren kan forårsake re-
fleksjoner på skinnende materialer, som resulterer i unøyaktig data. Denne oppgaven
utforsket bruken av overføringslæring med U-net. Den første opplæringen ble utført på
et omfattende simulert datasett før læringen ble overført på et betydelig mindre datasett
med reelle bilder. Det reelle datasettet inneholdt refleksjoner på både stål og aluminium.
Totalt sett var overføringslæringen vellykket, selv med bare en håndfull reelle bilder. Mod-
ellene demonstrerte en sammenheng mellom læringsraten og optimaliseringsalgoritmene,
spesielt siden ikke-adaptive og adaptive optimaliseringsalgoritmer bruker læringsraten på
forskjellige måter. Det var mindre forskjeller mellom resultatene på de to materialene
enn forventet. Oppgaven diskuterer årsakene bak dette, og legger hovedvekt på det om-
fattende simulerte datasettet, tykkelsen på laserstrålen og forskjeller mellom reelle bilder
og simulerte bilder. Resultatene viser muligheten for implementasjon i industrien, selv
om undersøkelser av potensielle brukere og deres behov må utføres for å tilpasse mod-
ellene. De lovende resultatene er imidlertid spennende for potensialet til denne typen
overføringslæring i industrien.

Contents

1. Introduction 1

1.1. Motivation . 1
1.2. Problem Description . 1
1.3. Related Work . 2
1.4. Goal . 3

2. Preliminaries 5

2.1. Geometry in Multidimensional Space . 5
2.1.1. Geometry in 2D . 5
2.1.2. Geometry in 3D . 6

2.2. Computer Vision . 7
2.2.1. Camera Model . 7
2.2.2. Epipolar Geometry . 9
2.2.3. Homography . 10

2.3. Laser Triangulation . 12
2.3.1. Mapping from 2D to 3D . 12
2.3.2. Sub-Pixel Accuracy . 13

2.4. Convolutional Neural Networks . 13
2.4.1. Convolution . 14
2.4.2. Pooling and Downsampling . 16
2.4.3. Padding . 17
2.4.4. Non-Linear Activation . 17
2.4.5. Architecture of CNN . 18
2.4.6. Receptive Field . 18
2.4.7. Computing the Output Shape of Convolution Layers 19
2.4.8. Optimization . 20
2.4.9. Loss Function . 20
2.4.10. Optimization Algorithms . 21
2.4.11. Semantic Segmentation . 22
2.4.12. Dice Coe�cient . 22
2.4.13. U-Net . 23

2.5. Physically Based Rendering . 24
2.5.1. Models for Reflection . 24
2.5.2. Ray Tracing . 26

2.6. Transfer Learning . 27
2.6.1. Applications of Transfer Learning 27

x Contents

3. Machine Learning Networks 29

3.1. Loss Functions . 29
3.1.1. Cross-Entropy Loss . 30
3.1.2. Dice Loss . 30

3.2. Learning Rate . 31
3.3. Batch Size . 32
3.4. Epochs . 32
3.5. Optimization Algorithms . 33
3.6. Accuracy Metrics . 34

3.6.1. Pixel Accuracy . 34
3.6.2. Sensitivity and Specificity . 36
3.6.3. Dice Score . 36

4. Method 39

4.1. Dataset Generation . 39
4.1.1. Simulated Images . 39
4.1.2. Real-World Images . 41

4.2. Dataset Handling . 44
4.2.1. The Idun Cluster . 45

4.3. Dataset Splitting and Configuration . 45
4.4. Transfer Learning . 46
4.5. Agile Collaboration . 48

4.5.1. Software Development Collaboration 48

5. Results 51

5.1. U-Net . 51
5.2. Di�erent Optimizers . 52
5.3. Di�erent Batch Sizes . 55
5.4. Di�erent Loss Functions . 58
5.5. Transfer Learning on Di�erent Materials 59
5.6. Di�erent Dataset Compositions . 60

6. Discussion 65

6.1. Expectations . 65
6.2. Comparing Results . 66

6.2.1. Accuracy Metrics . 68
6.2.2. Optimizers . 70
6.2.3. Batch Size . 74
6.2.4. Loss Functions . 75
6.2.5. E�ects of Di�erent Materials . 77
6.2.6. E�ects of Dataset Composition . 79
6.2.7. Possible Errors . 80

6.3. Suitability for Industry Implementation 81
6.4. Future Work . 82

7. Conclusion 85

Contents xi

A. Accuracy Tables 93

A.1. Epochs . 93
A.2. Optimization Algorithms . 94
A.3. Transfer Learning on Di�erent Materials 95
A.4. Amount of Real-World Images vs Simulated Images used in the Transfer

Learning Training . 95

B. Connecting to the Idun cluster 97

List of Figures

1.1. Examples of a laser line projected on reflective simulated and real-world
surfaces. 2

2.1. (Above) Pinhole camera. (Below) pinhole camera model. Illustration [20]. 8
2.2. Camera 1 and 2 in a stereo arrangement. s1 and s2 are the normalized

image coordinates of point p in their respective images. e1 and e2 are the
epipoles, where e1 in image 1 is the image of the origin of frame 2, and
the other way around. The figure also shows the epipolar lines l1 and l2.
Illustration [20]. 9

2.3. A laser scanning setup, where the object scanned is moving along the y

axis relative to the camera and the laser. The laser line is projected onto
the object and the detector view that is formed is an image of a 2D pixel
array, p, for each scan. Illustration [21] 12

2.4. A zoomed in view of the laser line, where the rows of pixels are visible.
Illustration [33] . 14

2.5. Weighted center of mass, where the laser line center coordinate xic is esti-
mated using normalized pixel intensity Ĩil. Illustration [33] 14

2.6. (Above) Symbolic 2D convolution example using a 2 ◊ 2 Kernel. (Below)
2D convolution example using a 3 ◊ 3 kernel. Illustration [20]. 15

2.7. A convolution with multiple filters, more precise with four kernels making
four feature maps. Illustration [20]. 16

2.8. 2 ◊ 2 max pooling example with a kernel with stride two. Illustration [20]. 16
2.9. The same tensor with and without zero padding. Illustration [20]. 17
2.10. The Sigmoid and ReLU activation functions. 18
2.11. Typical architecture of layers in a CNN network. Illustration [20]. 18
2.12. (Left) Receptive field for tree layers with a 3 ◊ 3 kernel. (Right) Convolu-

tions increase receptive field. Illustration [20]. 19
2.13. A small computational graph. Illustration [20]. 20
2.14. An example of semantic segmentation of a street view picture, where the

input image is above and the segmented output is presented below. Illus-
tration [24]. 22

2.15. (Left) Showing the spatial overlap that is A
u

B. (Right) Visual represen-
tation of the Dice score equation (2.63). Illustration [20]. 23

2.16. Original U-net architecture. Illustration [45]. 24
2.17. The three basic reflections. Illustration [20]. 25
2.18. Combined reflections. Illustration [20]. 26

xiv List of Figures

2.19. Two di�erent convolutional networks. The top one is trained directly on
the dataset for houses, while the bottom network use transfer learning to
take a network already trained on cars to classify houses in stead. 28

3.1. Di�erent learning rates and how their loss develops over the course of iter-
ations. Illustration [20]. 31

3.2. (Left) Illustrating a too low learning rate, resulting in a very slow gra-
dient descent. (Right) Illustrating a too high learning rate, resulting in
overshooting. Illustration [20]. 32

3.3. Example of class imbalance, where the predicted model is a completely
black image. Illustration [56]. 35

3.4. Classification of pixels used to calculate accuracy. 37

4.1. Cycle and LuxCoreRender comparison. Illustration [4]. 40
4.2. Randomized model generation, Illustration [4]. 40
4.3. The setup used to take images. The camera and laser mounted on a tripod

to the left and the D-Link Desktop beneath it connected to both the camera
and the computer with the GenICam Browser. The metal profiles and parts
were placed on a desk in front of the setup. 41

4.4. The layout of the GenICam Browser application. 42
4.5. The metal parts that were used when generating unique images. The

smaller parts were placed in di�erent formations on top of the larger profiles
to simulate di�erent types of welds. 43

4.6. Images taken of laser reflection on steel and aluminum materials. 43
4.7. A real-world image taken of reflections on aluminium and its corresponding

ground truth generated in GIMP. 44
4.8. Visualization of how transfer learning is used in this thesis. 47

5.1. Plot of the loss function to a test-model showing the validation loss diverg-
ing from the training loss towards the end of training. 52

5.2. Graphs illustrating the Dice scores for di�erent optimizers and learning rates. 54
5.3. Plots of the loss functions for the models with the highest Dice score for

the di�erent optimizers, the models marked in blue in Table 5.1. 55
5.4. Dice scores for models using Adagrad as their optimizer, epochs of 4 on the

simulated dataset and 6 on the real-world dataset and with cross-entropy
loss function, varying the batch size between 2, 4 and 16. 57

5.5. Comparison of the input image, the ground truth and the model predictions
of two models using SGD as their optimizer algorithm, batch size of 2,
trained on 4 epochs on the simulated dataset and 6 on the real world-
dataset, but with either cross-entropy or Dice as their loss function. . . . 58

5.6. The input image, the ground truth and the model predictions of two models
with Adam as optimizer, where the transfer learning was trained on both
aluminium and steel, but validated against either aluminium or steel. . . . 60

5.7. Dice scores for validation on both simulated and real-world dataset during
training on the simulated dataset. 62

5.8. Model prediction after training on 3200 simulated images and 20 real-world
images, with optimal hyperparameters. 62

List of Figures xv

6.1. Visual representation of a prediction made by the best performing model. 66
6.2. Example of a model struggling to make predictions on very intense di�use

reflections in the bottom of an image, in the blue square. The model used
cross-entropy loss as loss function, SGD as optimizer, a learning rate of
0.001 and batch size 4. 67

6.3. Magnified visual representation of the predictions made by the two best
performing models, on two di�erent images to illustrate how individual
pixels of the weld line are predicted. Yellow are true positive, red are false
positive, and green are false negative of the weld line. 70

6.4. Comparison of a simulated input image, the ground truth and the model
predictions of the best scoring models for optimizers SGD and Adam at
the end of the last epoch of initial learning. 71

6.5. Comparison of the input image, the ground truth and the model predictions
of the best scoring models for optimizers SGD and Adam at the end of the
last epoch of transfer learning. 72

6.6. Comparison of a real-world input image, the ground truth and the model
predictions of the two best scoring models using RMSProp or Adam as
their optimizer algorithm. 73

6.7. Dice scores at the end of the initial learning and transfer learning for the
best scoring model with RMSProp as optimizer and varying batch sizes
between 2, 4 and 16. 75

6.8. Loss function plot illustrating the spikes in training loss of a model with
batch size 2. 76

6.9. Comparing the loss plots of two identical models with the single di�erence
that one uses cross-entropy loss while the other uses Dice loss. 77

6.10. Comparison of the input image, the ground truth and the model predictions
of a model trained on aluminium and validated on steel during transfer
learning. 78

6.11. Segmentation comparison of the predictions against the ground truths on
aluminium and steel. 79

6.12. Plot of the training and validation loss during training on the simulated
dataset and the validation loss on the real-world dataset. 80

B.1. Slurm-file example . 98

List of Tables

4.1. The datasets and splitting used during training. 46

5.1. Dice scores for models with di�erent optimizers and di�erent learning rates.
The batch sizes, epochs and cross-entropy loss function were consistent.
The models reaching the highest Dice score for their respective optimizers
are outlined in blue. 53

5.2. Dice scores for models where the hyperparameters of epochs and learning
rates are optimal, and the batch size vary between 2, 4 and 16. The models
reaching the highest Dice score for their respective optimizers are outlined
in blue. The gray rows where the optimizers are marked with (DL) use
Dice loss as their loss function. 56

5.3. Dice scores for models where the transfer learning was executed using dif-
ferent combinations of aluminium, steel or both in training and validation.
All the models were made using a batch size of 2, epochs of 4 and 6 and
cross-entropy as their loss function. The model reaching the highest Dice
score is marked in blue. 59

5.4. Dice scores on the real-world dataset for models, with optimal hyperpa-
rameters, where both the number of images in the simulated dataset and
the real-world dataset vary during training. 61

6.1. The four best performing models and their results on the real-world vali-
dation set. 68

A.1. Dice scores for di�erent models with Adam as optimizer, the optimal learn-
ing rate for Adam and a batch size of 4, but varying in epochs. Ranked
based on Dice score. 93

A.2. Dice scores for di�erent models with di�erent optimizer algorithms, learn-
ing rates, batch sizes and loss functions. Arranged after the learning rate.
The majority of the models utilized cross-entropy as their loss function
with weighted classes of [0.3, 0.7], except the ones outlined in a light gray
and marked with (DL) for Dice loss. The models reaching the highest dice
score for their respective optimizers are outlined in blue. 94

A.3. Dice scores for models where the transfer learning was executed using dif-
ferent combinations of aluminium, steel or both in training and validation.
All the models were made using a batch size of two and epochs of four and
six. The model reaching the highest dice score is marked in blue. 95

xviii List of Tables

A.4. Dice scores on the real-world dataset for models, with optimal hyperpa-
rameters, where both the number of images in the simulated dataset and
the real-world dataset vary during training. 95

Chapter 1.

Introduction

The motivation for this master thesis, the problems addressed, the goals the thesis sought
out to reach, as well as relevant literature, will be presented in this chapter.

1.1. Motivation
In the engineering and manufacturing sector, as in most other sectors, convolutional
neural networks are gaining acceptance and popularity as an e�ciency and automation
tool [15]. These networks can automate processes that would otherwise be manual and
time-consuming, such as welding. Industrial robotic welding is one of the most widely
used fields of robotics [53]. The ability to gather correct information concerning the
welding process is required of a robot to generate results on par with a highly competent
welder, according to Chen’s paper on intelligentized welding manufacturing [10].

Data established through laser scanning can be used in robotic welding trajectory plan-
ning, seam tracking feedback management, quality control monitoring after a completed
welding operation, and much more [26]. The ability to remove laser line reflections will
improve the robot’s ability to obtain this information, potentially expanding the range of
activities that can be performed. The rapid advancements in machine learning and the
rising use of artificial learning technology in engineering and manufacturing industries,
like welding automation, allow for exciting opportunities. The specialization project by
Kallseter and Holm [20] conducted in preparation for this thesis achieved promising re-
sults. The project presented machine learning models that minimized laser reflections
on the reflective surfaces of simulated images, leading one step closer to a completely
automated welding process. The next natural step would be to use transfer learning from
the simulated-based to a real-world environment.

1.2. Problem Description
When a laser is aimed directly at a shining surface, it reflects, creating the illusion of
several laser lines; examples are shown in Figure 1.1. Because the laser is designed to mark
where a welding junction should be, the reflections generate confusion. Eliminating this

2 Chapter 1. Introduction

ambiguity is time-consuming. The specialization project [20] managed to produce machine
learning models that removed the reflections with adequate accuracy on simulated images.
This master thesis will examine the task of transferring this machine learning knowledge
from a simulated, as seen in Figure 1.1(a), to a real-world environment, as seen in Figure
1.1(b).

(a) Simulated Laser Reflection. (b) Real-World Laser Reflection.

Figure 1.1.: Examples of a laser line projected on reflective simulated and real-world
surfaces.

1.3. Related Work
The use of various machine learning networks for image processing is a well-explored field,
while the removal of unwanted reflections in images of laser scanning is less explored.
This thesis use images generated by Ola Alstad during his thesis Convolutional Neural
Networks for Filtering Reflections in Laser Scanner Systems [4] as well as real-world
images generated during this thesis. One contribution listed by Alstad is a study executed
by Sebastian Grans and Lars Tingelstad in 2021, in which Blender was used to simulate
a laser scanner for use in neural network training [18]. They observed that the simulated
images made by Blender were promising for transferring knowledge to the real-world
domain.

An example of a study using machine learning methods to identify noise artifacts in im-
ages to be able to remove them was done in Washington in 2017 [3]. They trained a
convolutional neural network to locate and classify source and reflection artifacts. The
results showed that a network trained with only simulation data could distinguish exper-
imental, real-world, information and display it in an artificial-free image. The approach
highlights the potential for the elimination of reflection in images. In addition, they
performed experiments to determine the feasibility of transfer learning and training with
simulated data to identify and remove artifacts in real-world data. Though the percentage

1.4. Goal 3

of misclassification increased, they concluded that networks trained with only simulated
data could be transferred to experimental data and still maintain a high performance.

Another recent study from 2021 designed a U-Net that was trained on axial slices of
cone-beam computed tomography (CBCT) [46]. CBCT is a solution providing accurate
three-dimensional imaging of hard tissue structures with less exposure than regular CT,
making it an increasingly accepted alternative to CT for dentists, among others [29].
CBCT is a fast and versatile solution, but has its drawbacks. A study published in The
International Journal of Medical Physics Research and Practice sought to prevent these
drawbacks by using a U-Net combined with transfer learning [46]. The network’s weights
were trained on synthetic CBCT scans generated from a public data set and the deepest
layers of the network were trained again but then with real-world clinical data to fine-tune
the weights. The study showed that U-Net was flexible enough to adapt to disturbances
in the images. Their transfer learning successfully reduced prior knowledge in the network
training, making the geometry possible to use on new data sets.

1.4. Goal
The main goal of this thesis was to successfully remove laser reflections on real-world
images by transferring the knowledge obtained when initially training on simulated im-
ages. Additional goals were to develop the software further, include new accuracy metrics,
connect to the Idun cluster to access more processing power and increase the size of the
simulated dataset. To achieve the most successful transfer learning the results of models
with di�erent combinations of hyperparameters were compared. Furthermore, the thesis
wanted to study the e�ects of the various reflections real-world surfaces would produce
and the e�ects of the number of real-world images included in the transfer learning.

Chapter 2.

Preliminaries

The material presented in the preliminaries was also partly included in the preliminary
study reported in the specialization project [20].

2.1. Geometry in Multidimensional Space
Computer vision is built on mathematical concepts. To give a better understanding of the
mathematical foundation this section presents the geometry in multidimensional space.
This first section is based on the relationship of homogeneous projective geometry in 2D
and 3D as well as Plücker coordinates, from Potterman and Wallner [42] and Semple
and Kneebone [48] as explained by Olav Egeland in his paper on robot vision [14]. The
geometry will consist of points and lines in 2D and with the addition of planes in 3D.

2.1.1. Geometry in 2D
Points

A Euclidean vector p can be used to describe a point in the two-dimensional, 2D, Eu-
clidean plane R

2

p =
5
x

y

6
(2.1)

In this vector, x and y are the coordinates of the point. When operating with vision
algorithms it is useful to represent the Euclidean geometry in the projective space P

2.
Then the point is described in terms of the homogeneous vector x given by

x = ⁄

5
p

1

6
= ⁄

S

U
x

y

1

T

V (2.2)

In the equation above x represents the same point p œ R
2 for all ⁄ ”= 0, where ⁄ is a

non-zero real number.

6 Chapter 2. Preliminaries

Lines

In the Euclidean plane a line l is given by a set of points (x, y) satisfying the equation

ax + by + c = 0 (2.3)

The equation above (2.3) is a more general description than the following equation

y = Ax + B (2.4)

The latter description has the flaw that lines parallel to the y-axis are not defined.

In homogeneous coordinates lines are described by the homogeneous vector

l =

S

U
a

b

c

T

V (2.5)

2.1.2. Geometry in 3D
Points

Similarly to the 2D space, a point in the three-dimensional, 3D, Euclidean space R
3 can

be described by a coordinate vector p given by

p =

S

U
x

y

z

T

V (2.6)

This point can also be represented by the homogeneous vector x given by

x = ⁄

5
p

1

6
= ⁄

S

WWU

x

y

z

1

T

XXV (2.7)

The vector x will represent the same point p œ R
3 for all ⁄ ”= 0.

Lines

Plücker coordinates can be used to describe lines in 3D in terms of a six-parameter rep-
resentation. The geometric interpretation of Plücker coordinates consists of two vectors,
the direction vector a and the moment m. Considering two Euclidean points (p, p4) and
(q, q4), the Plücker line is represented by

(l, l
Õ) = (p4q ≠ q4p, p ◊ q) = (a, m) (2.8)

2.2. Computer Vision 7

Planes

A plane fi is represented by the set of Euclidean points (x, y, z) and complete the equation

ax + by + cz + d = 0 (2.9)

The plane can be described by the homogeneous vector

fi = ⁄

S

WWU

a

b

c

d

T

XXV (2.10)

The geometric interpretation is that the plane has a normal vector n = [a, b, c]T, and the
distance from the origin to the plane in the direction of n is given by ≠d/|n|. Together
this implicates that a plane fi can be constructed by a normal vector n and a point p on
the plane fi

fi =
5

n

≠n · p

6
(2.11)

A Point as the Intersection of a Line and a Plane

In Egeland’s paper on robot vision [14] it is shown that a plane is found from a line and
a point in the plane giving the intersection point between a dual line (lú

, l
Õú) and a plane

(u, u4) where l = l
Õú and l

Õ = l
ú

(x, x4) = (≠u4l + u ◊ l
Õ
, u · l) (2.12)

2.2. Computer Vision
This section will present some fundamentals in computer vision. It builds on the geometry
already presented, and is based on the textbooks of Hart and Zisserman [19], and Ma,
Soatto, Koöeká and Sastry [30], and explained in further depth in Egeland’s paper [14].

2.2.1. Camera Model
A camera model is the mapping from a point in the 3D Euclidean space scene to the
2D image plane. The pinhole model is the most widely used camera model in computer
vision, it captures the geometric transformations that are a part of the image formations
when using a camera.

In the pinhole camera model the light rays pass through a single point, called the optical
center, before reaching the camera. Figure 2.1 illustrate how the mathematics behind the
model is simplified by using a virtual image plane in front of the camera. Normalized
image coordinates s are often introduced, they are vectors where the z value is equal to

8 Chapter 2. Preliminaries

Figure 2.1.: (Above) Pinhole camera. (Below) pinhole camera model. Illustration [20].

one, making them on homogeneous form. To map the normalized image coordinates to
pixel coordinates p the camera parameter matrix K is used

K =

S

U
f

w
0 u0

0 f

h
v0

0 0 1

T

V (2.13)

By introducing the homogeneous form of the pixel p̃, the mapping is written as

p̃ = Ks̃ (2.14)

It is also possible to map the other way around, from pixel coordinates to normalized
image coordinates, by using the inverse of the camera parameter matrix

s̃ = K
≠1

p̃ (2.15)

The inverse camera parameter matrix is given by K
≠1.

2.2. Computer Vision 9

2.2.2. Epipolar Geometry
The image points of two cameras represented by the camera matrix, observing a scene
from two di�erent positions, have a geometrical relationship described by epipolar geom-
etry. Figure 2.2 shows two cameras where the vector r1 runs from camera 1 through the
normalized image plane to the point p in the scene. The intersection between r1 and the
normalized image plane is known as s1, when observed from the view of camera 1. The
length of r1 is unknown. This is the same for the corresponding relationships in camera
2. This arrangement is called a stereo arrangement.

Figure 2.2.: Camera 1 and 2 in a stereo arrangement. s1 and s2 are the normalized
image coordinates of point p in their respective images. e1 and e2 are the epipoles, where
e1 in image 1 is the image of the origin of frame 2, and the other way around. The figure
also shows the epipolar lines l1 and l2. Illustration [20].

The epipolar constraint results from the fact that the vectors r1 and r2 and the vector
between the two cameras, t21, are all in the same plane. A consequence of this is that
the triple scalar product of the vectors is equal to zero

r2 · (t21 ◊ r1) = 0 (2.16)

The triple scalar product can be presented on coordinate form, here in the context of
frame 2 !

r
2
2
"T !

t
2
21

"◊
R

2
1r

1
1 = 0 (2.17)

The essential matrix E is used to express the epipolar constraint between the vectors r1
and r2

E =
!
t

2
21

"◊
R

2
1 (2.18)

Then inserting the expression for the normalized image coordinates, r
1
1 = ⁄1s1 and r

2
2 =

⁄2s2, as well as the essential matrix gives the equation of the epipolar constraint

⁄2s
T
2 E⁄1s1 = 0 (2.19)

10 Chapter 2. Preliminaries

Since the essential matrix is independent of scaling the constants, ⁄1 and ⁄2, can be made
a part of it, simplifying the constraint to

s
T
2 Es1 = 0 (2.20)

The epipolar lines are defined by using the essential matrix and the normalized image
coordinates [14]

l1 = E
T

s2 (2.21)

l2 = Es1 (2.22)

The epipolar constraint can be used for pixel coordinates as well, by using the equation
of s1 = K

≠1
1 p1 and s2 = K

≠1
2 p2. Then the constraint between the pixel coordinates is

given by
p

T
2 F p1 = 0 (2.23)

Where F is the fundamental matrix and can be derived from the following equation

F = K
≠T

2 EK
≠1
1 (2.24)

The epipolar lines in pixel coordinates can be found in the same way as in normalized
image coordinates

l1 = F
T

p2 (2.25)

l2 = F p1 (2.26)

2.2.3. Homography
A homography is defined in the 3D space as an invertible transformation from a point x

to x
Õ

x
Õ = Hx (2.27)

The inverse transformation is given by

x = H
≠1

x
Õ (2.28)

Generally, a homography consists of nine elements which are only equivalent under scaling,
this means that there are eight independent elements. There is always a scaling factor,
µ, that will give the homography on its normalized form with the bottom right element
equal to one.

µH =

S

U
h11 h12 h13
h21 h22 h23
h31 h32 1

T

V (2.29)

2.2. Computer Vision 11

Planar Homography

Planar homography builds on the stereo arrangement presented in the last section. In-
troducing a new point x, which is given in each frame as x1 and x2. From [14] and [30]
the geometric relationship between the frames of each camera is given as

c = Rx1 + t (2.30)

Considering that all points lie in the same plane, this plane has a normal vector, n.
The distance to the optical center from camera 1 is given as d. The following equation
calculates the distance from the point in frame one, x1

d = n · x1 = n
T

x1 ≈∆ 1
d

n
T

x1 = 1 (2.31)

Then inserting the equation describing the relationship between the frames (2.30) into
the calculation of the distance

x2 = Rx1 + t
1
d

n
T

x1 =
3

R + t
1
d

n
T

4
x1 (2.32)

This gives the following homography

H = R + t
1
d

n
T (2.33)

The normalized image coordinates of x1 and x2 can be denoted as

x1 = ⁄1x1 (2.34)

x2 = ⁄2x2 (2.35)

This in term gives that
x2 = Hx1 ≈∆ x2 = H

Õ
x1 (2.36)

The fact that homographies are equivalent under scaling results in that H and H
Õ are

equivalent homography matrices. The scaling is expressed as

H
Õ = ⁄2

⁄1
H (2.37)

The mapping between the normalized image coordinates and the pixel coordinates can
be written by using the camera matrices for the two cameras, resulting in

p1 = K1x1 (2.38)

p2 = K2x2 (2.39)

12 Chapter 2. Preliminaries

By substituting this into equation (2.36) the mapping can be written as

p2 = K2HK
≠1
1 p2 = H

Õ
p1 (2.40)

The end result is the following homographic mapping between pixel coordinates for two
cameras viewing points in a plane, where the cameras have a known geometric relationship

H̄ = K2HK
≠1
1 = K2

3
R + 1

d
tn

T
4

K
≠1
1 (2.41)

2.3. Laser Triangulation
The principle of triangulation concerns the projection of a light pattern. A laser beam is
sent towards an object and captured by a camera. The distance from the object to the
system can be calculated by trigonometry, given the prior distance between the scanning
system and the camera [16].

2.3.1. Mapping from 2D to 3D
The goal of a laser scanning setup with a camera and a laser is to get an accurate 3D
point cloud of the object. As shown in Figure 2.3 the laser scanning setup has a constant
geometric relationship between the camera and laser while the object has a relative motion
in comparison to the two other parts, as the laser line is swept along the object surface.

Figure 2.3.: A laser scanning setup, where the object scanned is moving along the y axis
relative to the camera and the laser. The laser line is projected onto the object and the
detector view that is formed is an image of a 2D pixel array, p, for each scan. Illustration
[21]

2.4. Convolutional Neural Networks 13

To map the surface scanned from the 2D image into 3D, points the geometrical principles
described earlier in the preliminaries will be relevant. The plane made when projecting
the laser will be denoted as ũ. Then the normalized pixel coordinate of s is found by
using equation (2.15). The line in the camera frame going through the optical center of
the camera and the normalized image coordinate, s, is given by the following equation

¸ = (l, l
Õ) = (s, 0) (2.42)

The direction vector of the line is s, while the moment is 0. This is because the distance
from the line to the optical center is 0. From Egeland’s paper [14] the equation from the
calculation of the intersection between the line and the plane is the point x

x = ≠ u4
u · s

(2.43)

2.3.2. Sub-Pixel Accuracy
To analyze the accuracy it is necessary to study the laser line presented in equation (2.42)
up close. To be able to extract an accurate 2D coordinate for the measurement of the
laser plane, the accuracy of the sub-pixel must be determined. A method to calculate the
sub-pixel accuracy is to calculate the weighted center of mass for each row, i, of pixels
in the images, like the images in Figure 2.4. Figure 2.5 illustrate a plot of the calculated
weighted center of mass for a similar image [33]. The laser line center coordinate xic is
calculated with the following equation

xic =
q

e

j=s
jĨil (j)2

q
e

j=s
Ĩil (j)2 (2.44)

The normalized pixel intensity is given by Ĩil, where j is the row index, starting on s and
ending on e for each row. The laser intensity profile I (x) of each row in the image is
based on each unit, and is normalized using the following equation

Ĩ = I (x) ≠ min (I (x))
max (I (x)) ≠ min (I (x)) (2.45)

2.4. Convolutional Neural Networks
Convolutional neural networks, CNNs, are a subset of machine learning used to optimize
successive filters when given a dataset. This section explains relevant concepts and is
based on excerpts from the book by Goodfellow, Bengio and Courville [17], mainly from
the chapter Convolutional Networks. Though CNNs can complete a wide range of tasks,
this section will present them in the context of 2D visual imagery, with 2D images as
input.

14 Chapter 2. Preliminaries

Figure 2.4.: A zoomed in view of the laser line, where the rows of pixels are visible.
Illustration [33]

Figure 2.5.: Weighted center of mass, where the laser line center coordinate xic is esti-
mated using normalized pixel intensity Ĩil. Illustration [33]

2.4.1. Convolution
A tensor is a multidimensional array and often the input in a CNN. For example, this
tensor can be an image, given by height, width, and a number of channels. Looking at
an example with a 2D image and a kernel with indices i and j the convolution operation
would be

F (i, j) = (K ú I) (i, j) (2.46)

The output is given by F , referred to as a feature map. I is the input and K is the
kernel. The term convolution is widely used for this equation, even though the correct
mathematical term would be cross-correlation since mathematical convolution would have
the inDices i and j the other way around.

Due to the practical applications of filtering an image, looking for features such as lines,

2.4. Convolutional Neural Networks 15

a kernel can also be referred to as a filter. Each output, fi,j can be calculated by

F (i, j) = (K ú I) (i, j) =
ÿ

m

ÿ

n

I (i + m, j + n) K (m, n) (2.47)

Illustrating the calculation of one output, f1,1

f1,1 = t1,1k1,1 + t1,2k1,2 + t2,1k2,1 + t2,2k2,2 (2.48)

This operations is illustrated in Figure 2.6.

Figure 2.6.: (Above) Symbolic 2D convolution example using a 2 ◊ 2 Kernel. (Below)
2D convolution example using a 3 ◊ 3 kernel. Illustration [20].

Convolutions can also be used to calculate 3D inputs, this is illustrated in Figure 2.7. The
depth dimension is given as d, and must be the same on both the tensor and the kernel.
This will result in a collection of 3D feature maps, also illustrated in Figure 2.7. Each 3D
kernel is independently convolved with the input tensor and the output of each is stacked
in the output. In Figure 2.7 the four kernels are used to make four feature maps. The
equation for the 3D convolution with multiple filters is

F (i, j, d) =
ÿ

l

ÿ

m

ÿ

n

Il,j+m≠1,d+n≠1Kd,l,m,n (2.49)

16 Chapter 2. Preliminaries

Figure 2.7.: A convolution with multiple filters, more precise with four kernels making
four feature maps. Illustration [20].

2.4.2. Pooling and Downsampling
Pooling is the operation where the output becomes a summary statistic of the nearby
inputs. There are often pooling layers in CNNs, the most common of them is max
pooling. Max pooling outputs the maximum value within the neighborhood of the input.
The pooling layers are an e�ective way to downsample feature maps since they summarize
the presence of features in patches of the previous feature maps.

Max pooling is a good way to downsample since it keeps the highest activations, which
are the activations that can be interpreted as the most important. Figure 2.8 shows a
tensor where there is a two-by-two max pooling kernel with stride two in progress. The
stride is the horizontal or vertical steps the kernel is moving between each calculation of
a value from the input tensor.

Figure 2.8.: 2 ◊ 2 max pooling example with a kernel with stride two. Illustration [20].

2.4. Convolutional Neural Networks 17

It is possible to use a filter with a stride bigger than one, as an alternative to pooling when
downsampling. When a filter with a stride bigger than one is used, the weights of the
filter are turned optimally. Giving the interpretation that the filter learns the optimal way
to downsample an image. Where the pooling operations have no learnable parameters, a
filter’s weights will be tuned during optimization. In consequence, a pooling layer is more
computationally e�cient, without a significant drop in performance.

2.4.3. Padding
Up to this point, the convolutions included as examples have been what is called valid.
In other words, they have not used any padding in the input. The convolutions using
padding are called same convolutions. These are padded so that the spatial dimensions
of the input and output are the same. When the input is padded, the spatial resolution
is artificially increased by adding numeric values to the boundaries of the tensor. A
common way of padding is zero padding where there are added 0s around the tensor,
which is illustrated in Figure 2.9.

Figure 2.9.: The same tensor with and without zero padding. Illustration [20].

The dimensions of a subsequent layer l + 1 of a tensor is given as a function of the spacial
dimensions nl ◊ nl of the previous layer l as

nl+1 = nl + 2p ≠ k

s
+ 1 (2.50)

The padding is represented by p, the kernel size by k and the stride by s. For a same
convolution the spatial dimensions will be the same, nl+1 = nl, and the stride will be
s = 1. Solving (2.50) for the padding, p, results in a padding equal to

p = k ≠ 1
2 (2.51)

2.4.4. Non-Linear Activation
A network of convolutions consists of several convolution operations being applied step by
step to the input. These steps apply only linear operations to the input, making the output
linearly dependent on the input, and the whole network could, in theory, be reduced to a
single convolution. For the network to be able to learn non-linear relationships between

18 Chapter 2. Preliminaries

input and output, a non-linear activation function f is applied to the output in the
following manner

F̄ (i, j) = f (F (i, j)) = f (K ú I) (i, j) (2.52)

The non-linear function f is called an activation function and it is often computationally
e�cient to calculate the derivative from it. Two common activation functions are the
rectified linear unit, ReLU, and the Sigmoid, which are both illustrated in Figure 2.10.

Figure 2.10.: The Sigmoid and ReLU activation functions.

2.4.5. Architecture of CNN
The architecture of CNNs typically follow the same pattern shown in Figure 2.11. A
pattern of layers consisting of a convolution followed by a non-linear activation function
and then an optional pooling layer.

Figure 2.11.: Typical architecture of layers in a CNN network. Illustration [20].

2.4.6. Receptive Field
Convolutions are locally connected in a network, which means that each part of the output
is a function of a certain input region. The certain input region that each part of the
output relies on is called the receptive field. Considering a three-layer network with a
kernel of size 3◊3, as seen in Figure 2.12. Each pixel in the last feature map is a function

2.4. Convolutional Neural Networks 19

Figure 2.12.: (Left) Receptive field for tree layers with a 3 ◊ 3 kernel. (Right) Convo-
lutions increase receptive field. Illustration [20].

of a larger region of the input tensor. The receptive field in the previous network can be
written as

rl≠1 = slrl + (kl ≠ sl) (2.53)

In the equation above kl is the kernel size and sl is the stride of layer l. The equation can
be solved recursively for a whole single-path network [6], this would result in the following
equation

r0 =
Lÿ

l=1

A
(kl ≠ 1)

l≠1Ÿ

i=1
si

B
+ 1 (2.54)

A single-path network with the same kernel size and stride for all layers has tree parame-
ters that can vary to increase the receptive field, and those are the kernel size, the stride
and the number of layers. The most e�ective way to increase the receptive field is to
change the stride since it is a multiplicative term in the equation, while the kernel size is
an additive term.

2.4.7. Computing the Output Shape of Convolution Layers
The input image of a convolutional layer has the shape H1 ◊ W1 ◊ C1, where H cor-
responds to the height, W to the width and C to the channel. The output will be
H2 ◊ W2 ◊ C2, where H2 ◊ W2 depends on the size of the receptive field F of the
convolution filter and the stride S at which they are applied, in addition to the amount
of zero padding P applied to the input. The following equations can calculate the height

20 Chapter 2. Preliminaries

and width of the output
H2 = H1 ≠ FH + 2PH

SH

+ 1 (2.55)

W2 = W1 ≠ FW + 2PW

SW

+ 1 (2.56)

2.4.8. Optimization
When a network is set up, as explained in the previous sections, the filters only contain
random weights and are not able to solve meaningful tasks. The results the network
achieves depend on the dataset it is given. When working in the context of 2D visual
imagery, the dataset has a large number of images, usually in the range from 500 to
100000. Each image in the dataset must contain an associated ground truth, but it can
vary how this ground truth is defined in di�erent tasks.

Machine Learning methods are usually implemented in a framework, the two most popular
being TensorFlow [2] and PyTorch [40]. The main feature of these frameworks is the
automatic calculation of gradients for a model, which could contain millions of tune-able
parameters. To do this e�ciently, the model uses the relatively simple method of the
chain rule for derivatives. When considering a small computation graph, as Figure 2.13,
containing a series of functions, f , g and h, applied to the input a to produce the output
d. This leads to b = f (a), c = g (b) and d = h (c). In this context, the intrigue is to
calculate the gradient of each parameter with respect to the output d. If the interest
is to find the partial derivative of d for each of the variables, for instance a, the partial
derivative would be the following string of derivatives

ˆd

ˆa
= ˆd

ˆc

ˆc

ˆb

ˆb

ˆa
= f

Õ (c) g
Õ (b) h

Õ (a) (2.57)

Figure 2.13.: A small computational graph. Illustration [20].

2.4.9. Loss Function
The parameters, weights and biases, of a network are usually given by ◊. The optimization
problem in deep learning is tuning the parameters ◊ of a network, which corresponds to
reducing the loss function L (◊). The loss function summarizes the error between the
prediction and the ground truth of each guess the neural network performs. One of
the most straightforward loss functions is to average the least square error between the
predictions and the ground truths. When the network is solving problems where it has
to predict a distinct class, the loss function is often based on probabilities, being the
cross-entropy loss. To calculate the cross-entropy loss, the network’s outputs have to be

2.4. Convolutional Neural Networks 21

converted into probabilities through a function called the softmax function. Letting the
output of the network predicting a class, k, be given by zk, then the output of the softmax
function ŷ is interpreted as the probability of belonging to the class k. If there are K

classes, then the softmax function for a prediction of class k would look like

ŷk = e
zk

q
K

kÕ ezkÕ
(2.58)

When the output of the softmax function ŷk is calculated and the ground truth is denoted
as yk, the cross-entropy loss function Cn can be calculated by

Cn = ≠
Kÿ

k=1
yk log (ŷk) (2.59)

The cross-entropy loss function can be weighted for specific classes, this can be useful if
the training set is unbalanced. A training set is unbalanced if it has a large deviation in
the number of examples for the di�erent classes. When the cross-entropy loss function is
weighted, a specific weight for each class is introduced wk and it is multiplied with the
loss for the specific class

Cn = ≠
Kÿ

k=1
wkyk log (ŷk) (2.60)

The total cross-entropy loss C for multiple examples n is the average of the individual
losses Cn

C = 1
N

Nÿ

n=1
Cn (2.61)

2.4.10. Optimization Algorithms
The loss function must be minimized to minimize overall errors since it summarizes a
defined error. Gradient descent and related methods are the optimization methods that
have proved to be the most e�cient at this task for neural networks. These methods
iteratively update the parameters to minimize the error. When gradient descent is used
for updating weights, the partial derivative ˆ

ˆ◊1
concerning each weight, for instance ◊1,

and that weight’s loss function, J(◊1), has to be determined. These calculations are
e�cient because of the chain rule and partial derivative calculations, as explained above.
The intent is to adjust the weights to minimize the loss function. These adjustments are
made by modifying the next weight ◊1 based on the previous ◊1 with the following rule
for gradient descent

◊ := ◊1 ≠ –
ˆ

ˆ◊1
J(◊1) (2.62)

The learning rate is represented by –. Many di�erent optimization algorithms build on

22 Chapter 2. Preliminaries

the gradient descent method.

2.4.11. Semantic Segmentation
Semantic segmentation is the process where each pixel in an input image is predicted to
belong to a class [25]. Figure 2.14 shows an example of a semantic image segmentation.
This example shows a classification problem where the network has to identify the di�erent
components in a street view, separating the cars from the road, sidewalk, buildings, and
so on. In this example, there are eight classes, as the unlabeled is also a class.

Figure 2.14.: An example of semantic segmentation of a street view picture, where the
input image is above and the segmented output is presented below. Illustration [24].

2.4.12. Dice Coe�cient
The Sørensen-Dice coe�cient [63], also known as the Dice score, is a common metric for
determining the overlap between the ground truth and the predicted segmentation. The
Sørensen-Dice coe�cient, DSC, calculates the spatial overlap for two sets A and B

DSC = 2 ◊ |A
u

B|
|A| + |B| (2.63)

The equation times the area of overlap by two and divides it by the total number of pixels
in both images, it is visually presented in Figure 2.15.

2.4. Convolutional Neural Networks 23

Figure 2.15.: (Left) Showing the spatial overlap that is A
u

B. (Right) Visual represen-
tation of the Dice score equation (2.63). Illustration [20].

2.4.13. U-Net
U-net is a fully convolutional network. It was initially developed for biomedical image
segmentation [45], but is now widely used in many types of segmentation tasks. The
general idea behind the U-net is to have a wide receptive field for each spatial location in
the output, while simultaneously maintaining high-resolution information from the input
image.

To explain the motivation for using U-net, take the receptive field from Figure 2.12, then
consider stacking the convolution blocks after each other, without the pooling. Compared
to the input, the width and height of the receptive field of the output increase by two
for each convolution block. From the equation calculating the receptive field (2.54), it is
shown that if the input image has a size of, for example 1024 there must be a large number
of convolution blocks to produce a considerable receptive field. If the receptive field is
enlarged by pooling layers or convolutions with stride s > 1, the equation (2.50) resolution
of the output decrease, which could lead to a loss of finer-grained spatial information.
U-net is able to solve this problem by having two di�erent paths, one that decreases
the resolution for a large receptive field and another that increases the resolution and
concentrates finer-grained spacial information.

U-Net Architecture

Figure 2.16 shows the original U-net architecture. The network is formed as a U, thereof
its name. The left side of the U is the contracting path and the right side is the expan-
sive path. To be able to pass on the finer-grained spatial information, skip-connections
are made from the contracting to the expansive path, the gray horizontal arrows. The
contracting path consists of the following block being repeated:

• 3 ◊ 3 convolution

• ReLU

• 3 ◊ 3 convolution

• ReLU

• 3 ◊ 3 maxpool

24 Chapter 2. Preliminaries

Figure 2.16.: Original U-net architecture. Illustration [45].

This is a typical CNN architecture. The expansive path is constructed similarly, but
instead of downsampling with max pool, it runs a convolutional up-sampling, halving
the number of feature channels. Each block in the expansive path starts with concen-
trating the correspondingly cropped feature maps into the up-sampled feature maps of
the expansive path. Several variants of the U-net have been made, due to the impres-
sive performance in segmentation tasks. The several variants can di�er in their depth
of the contracting path, in addition to more advanced inner workings. The similarity
between the di�erent variants is the idea behind a contracting and expansive path, with
information flow between them.

2.5. Physically Based Rendering
Rendering is the process of generating an image given the description of a 3D scene. It is
used extensively in computer games, movies and simulation [31]. The di�erent computa-
tional complexity versus realism demands has resulted in di�erent rendering techniques.
Physically based rendering is the rendering technique that focuses most on realism, in
other words an attempt to simulate reality.

2.5.1. Models for Reflection
The theory of rendering an image is to choose the color and intensity of each pixel in the
image. The scene’s object, material, and light sources decide intensity and color. When
creating a realistic image from a scene, the most crucial factor is the accurate calculation
of light and how it interacts with the materials and surfaces in the scene. There are three
basic reflection models: specular, di�use and spread, all illustrated in Figure 2.17.

2.5. Physically Based Rendering 25

Figure 2.17.: The three basic reflections. Illustration [20].

Specular

To model surfaces as smooth metal mirrors, specular reflection is used. There are two
basic principles in specular reflection: the law of reflection and the Fresnel equation. The
law of reflection states that the angle of incident is the same as the angle of reflection, so
that the incident direction, surface normal and direction of reflection are co-planar. The
Fresnel equation describes the fraction of light reflected, and through this the fraction
that is absorbed [49].

Spread

Spread, glossy or imperfect specular, reflections are the reflections that in large scale
appear blurry because of the irregularities on a surface, even though the surface can have
a perfect specular reflection for a single light ray.

Di�use

A di�use, or Lambertain, surface is a surface that reflects light equally in all directions re-
gardless of the incident angle. In theory, a perfectly di�use surface would mathematically
conserve energy, but this surface does not exist in reality. In reality, di�use surfaces reflect
light unequally, but can reflect in all directions and represent the majority of surfaces.

Combined Reflection Models

In reality, most surfaces are a mixture of specular, di�use and spread reflections. In this
context, the most relevant combination is the combination of a strong spread or specular
reflection combined with a weak di�use reflection. The combinations of di�use/specular

26 Chapter 2. Preliminaries

and di�use/spread are illustrated in Figure 2.18. Both combined reflections have the
di�use lobe that comes from the di�use reflection.

Figure 2.18.: Combined reflections. Illustration [20].

2.5.2. Ray Tracing
Ray tracing is the technique of tracing the path of the light in photorealistic rendering.
The ray tracing algorithm follows a path of a ray of light through the scene as it interacts
with the objects in it. The algorithm’s goal is to make a realistic 2D image, and the only
tool to make this happen is the realistic simulation of the light in the scene. This makes
room for some simplifications, for example that the light that is certain not to hit the
camera can be discarded.

Forward Ray Tracing

Forward ray tracing calculates how the light from a source moves around the scene and
possibly hits the camera. The method simulates how light behaves in nature, however
it is very computational ine�cient. The light rays of interest are the ones that hit the
camera, while most rays calculated with forwarding ray tracing do not.

Backward Ray Tracing

Backward ray tracing is the reverse of forward ray tracing. Calculating the paths from
the camera, then how it interacts with objects in the form of reflections, before eventually
hitting a light source. This method is more computationally e�cient than forward ray
tracing, since it only calculates the rays that actually hit the camera. Since all optical
systems are reversible, the backward ray tracing method can theoretically reach the same
result as forward ray tracing.

Hybrid Ray Tracing

Several render engines only use backward ray tracing because of its computational ef-
ficiency. However, it comes short in terms of caustics. Caustics are the light that goes
through a specular reflection, then a di�use reflection before hitting the camera. The light
reflected for a di�use surface can have any incident angle, since the position of this light is
known, it is easy to trace it back to the source. On the other hand, if the light comes from

2.6. Transfer Learning 27

a concentrated specular reflection, this traceback is much harder, as the location of the
reflection is unknown. Hybrid ray tracing is the solution to the caustics problem. It uses
forward ray tracing to track one of the specular reflections from the source before they hit
the di�use surface, making the reflections easily accounted for since they now are known
in advance. Then the hybrid ray tracing combines this method with the computational
e�ciency of backward ray tracing.

2.6. Transfer Learning
Torrey and Shavlik define transfer learning as the improvement of learning a new task
through the transfer of knowledge from a related task that has already been learned, in
their work on the subject [57]. An intuitive example could be to transfer the knowledge of
riding a bicycle to driving a motorcycle. The creation of algorithms that facilitate transfer
learning is a topic of high interest in the machine learning field, as most algorithms are
built to address a particular task.

It is possible to categorize transfer learning problems as transductive, inductive or unsu-
pervised transfer problems, when viewing them from a label-setting view [62]. Situations
where the label information only appears in the source domain are categorized as trans-
ductive, while the situations where the label information of the target domain is available
are categorized as inductive. Situations where there label information is unknown for
both source and target domain are categorized as unsupervised.

2.6.1. Applications of Transfer Learning
The ability to transfer knowledge successfully would make the task of performing classi-
fication in a domain possible, even though the training data is not su�cient by utilizing
training data from another domain of interest [39]. Figure 2.19 illustrates a possible ex-
ample of this, where the bottom network utilizes transfer learning on a network trained
on cars. If the knowledge transfer is successful, it could improve learning performance
extensively by surpassing a large amount of expensive data labeling.

Transfer learning could be used when convolutional neural networks transition from train-
ing on simulated data to real-world data [39]. One advantage of transfer learning is that
the dataset containing the real-world data can be relatively small compared to the simu-
lated dataset since many of the features are learned through the training on the simulated
data.

28 Chapter 2. Preliminaries

Figure 2.19.: Two di�erent convolutional networks. The top one is trained directly on
the dataset for houses, while the bottom network use transfer learning to take a network
already trained on cars to classify houses in stead.

Chapter 3.

Machine Learning Networks

After the machine learning networks have been fully implemented, the learning process
can begin, also known as model training. The multiple hyperparameters in the networks
such as batch size, number of epochs, optimization algorithms, and loss functions can
be varied to train di�erent models. Di�erent accuracy metrics can be used to assess the
output of trained models. The di�erent variables used to tune models are presented in
this section.

The term network will be used in this thesis to refer to the neural network that was
employed. A single uniquely trained model with specified parameters and weights is
referred to as a model. Each model is created with a convolutional neural network.
The U-Net architecture, presented in the preliminaries 2.4.13, is widely used for image
segmentation in the medical field due to its ability for precise segmentation, outstanding
operational speed and need for fewer training images [51]. This thesis strives to achieve
the same features, making U-Net a natural choice of network.

3.1. Loss Functions
A deep neural network learns to map given inputs to given outputs through the training
data. The perfect weights for a neural network cannot be calculated because there are too
many unknown factors. As a result, the learning problem is approached as an optimization
problem, with an algorithm employed to discover the optimum feasible set of weights for
the model to make decisions. A loss function is a mathematical function that computes
a single numerical value that the algorithm tries to minimize. Ian Goodfellow stated the
following [17],

“The function we want to minimize or maximize is called the objective function
or criterion. When we are minimizing it, we may also call it the cost function,
loss function, or error function”

The purpose of training a model is to reduce both the training and the validation loss.
The loss can for instance be calculated as the di�erence between the predictions generated
by the model when fed an input and the corresponding ground truth of the input [50].
Optimally both the training and validation loss should be approximately the same value or

30 Chapter 3. Machine Learning Networks

within a reasonable amount, since this would mean that the model is learning generalized
features about the data. If the validation loss deviates upward from the training loss, it
indicates that the model improves on the training set, but deteriorates on the validation
set, the model may be overfitting. That is, instead of generalizing, the model memorizes
the desired output for the training set.

3.1.1. Cross-Entropy Loss
To ensure that a model produces adequate results, it is necessary first to define the search
aim and then select an error function that is appropriate for the task at hand. When
working with semantic image segmentation, pixel-wise cross-entropy loss is one of the most
often used loss functions, according to a publication by Stevens, Antiga and Viehmann
[50]. Cross-entropy loss examines each pixel in the image and compares the depth-wise
pixel vector, also known as the class predictions, to the ground truth vector. Because
cross-entropy loss assigns equal learning to each pixel in the image by assigning class
predictions, one by one, and then averaging over all pixels, it e�ectively assigns equal
learning to each pixel in the image.

An imbalanced class distribution can be a significant disadvantage because the most
extensive class can rapidly dominate the training. The dataset utilized in this thesis
contains images where the main part is the background, and just a small percentage is
the actual weld line. To minimize the impact of the imbalanced images, it is possible to
assign a weight to each output channel. Positive masks, which are used to define the weld
lines, will become more influential than negative masks, used to create backgrounds. Be
aware that when positive masks are favored to improve sensitivity, it is possible that a
more significant proportion of negative masks will be mispredicted, resulting in a higher
number of false positives, and by that a lower accuracy, which is discussed further in
Section 3.6. In this thesis, the background, the negative masks, was given a weight of 0.3
while the weld line, the positive masks, was given a weight of 0.7, based on the results
reached in the specialization project done in advance of this thesis [20].

3.1.2. Dice Loss
Dice loss is another popular loss function for semantic image segmentation. This loss
function is based on the Dice score, which was explained in Section 2.4.12. Dice loss is
assumed to be better suited to handle imbalanced class distributions than cross-entropy
loss. This is because the Dice loss function is formulated as 1 - Dice score, and the
Dice score is based on the ratio of properly predicted pixels to the sum of all predicted
pixels and the actual pixels. Equation (3.1), which corresponds to equation (2.63) in the
preliminaries, is a way of conceptualizing the Dice score. True positive (TP) are positive
pixels correctly predicted to be positives, false positives (FP) are negative pixels wrongly
predicted to be positives and false negatives (FN) are positive pixels wrongly predicted
to be negatives. The formula for Dice score can be presented as:

DSC = 2 ◊ TP

(TP + FP) + (TP + FN) (3.1)

3.2. Learning Rate 31

3.2. Learning Rate
The hyperparameter learning rate determines how much the weights in the model change
in response to the error of the predictions compared to the ground truth. Gradient
descent can be used to adjust the weight, with the newly adjusted weight equal to the
current weight minus the learning rate, multiplied by the gradient and the cost function
at the given point. The gradient descent for weights is significantly dependent on the
learning rate –, as seen in equation (3.2), equal to equation (2.62) in Section 2.4.10 in
the preliminaries.

◊1 := ◊1 ≠ –
ˆ

ˆ◊1
J(◊1) (3.2)

Figure 3.1.: Di�erent learning rates and how their loss develops over the course of
iterations. Illustration [20].

Equation (3.2) can be considered the step size for each iteration as the loss function
approaches its minimum. By using a low learning rate, the accuracy converges slower,
meaning that more iterations and time is needed for training, as can be seen in Figure
3.1. Furthermore, a low learning rate may cause the model to become trapped at a local,
rather than global, minimum of the loss function. As a result, the training process may
become stuck with less-than-ideal weights and biases. Choosing a learning rate that is
too high may result in unstable training. When the step size is too big, it can overshoot
the minimum, forcing a step back and overreach once more, resulting in the failure to
converge or even begin to diverge. Figure 3.2 illustrates this. Adaptive learning rate
approaches, which are further detailed in Section 3.5, are an upgrade to gradient descent
algorithms.

32 Chapter 3. Machine Learning Networks

Figure 3.2.: (Left) Illustrating a too low learning rate, resulting in a very slow gradient
descent. (Right) Illustrating a too high learning rate, resulting in overshooting. Illustra-
tion [20].

3.3. Batch Size
The hyperparameter batch size specifies how many photos should be processed before
updating the model parameters. It is crucial to consider how frequently the weights should
be changed when training a model. This will impact the training time of the model as
well as the final result. Mini-batch learning was employed for this thesis. The predictions
were compared to the ground truth after each batch, and an error was determined. The
model’s parameters were adjusted as a result of this inaccuracy.

The size of a batch can range from a single image to the complete training set. As a result,
a small batch size will result in numerous batches and updates per epoch, but a batch
the size of the entire training set will only result in one batch per epoch. Smaller batch
sizes have been shown to converge faster to a good, but not always the optimal, solution
empirically [27]. This is because the model does not need to complete the entire training
set before learning, but can begin to learn and make minor improvements much sooner. A
bigger batch size may be more e�cient in terms of gradient calculation by handling more
of the training set at once. However, because smaller batches begin learning sooner, they
may converge faster, requiring fewer epochs. Another disadvantage of utilizing a larger
batch size is that it may converge to a local optimum, resulting in poor generalization. A
bigger batch size is exposed to less unpredictability, or "noise", making it more challenging
to escape steep-sided local optimums. However, a too small batch size can also get stuck
in a local optimum, since it computes an approximation of the true gradient and not the
true gradient itself.

3.4. Epochs
An entire run-through of the dataset through the algorithm is referred to as an epoch.
Further discussed in Section 4.3, the number of epochs in a model is the number of cycles

3.5. Optimization Algorithms 33

the dataset is cycled through during the training phase. The model parameters of the
dataset are modified at each epoch [47]. The number of times the underlying model
parameters, such as weights, are updated grows as the number of epochs increases.

The number of epochs is tightly connected to the number of images in the dataset and
their diversity. Traditionally, the number is high to allow the learning procedure to run
until the model’s error has been reduced to a reasonable level. Typical examples are 10,
100 and 500, as well as even higher numbers of epochs. Other models, such as those
that use an adaptive optimization method, terminate after the loss has plateaued after a
certain number of epochs. Though the number of epochs varies, it is generally understood
that if a model has a relatively low number of epochs, the training process will take a
short time, but may not be very accurate. In contrast, a model with a traditionally large
number will take longer and could produce more accurate results as long as the model
does not experience errors, such as overfitting.

3.5. Optimization Algorithms
Adaptive and non-adaptive methods for optimizing neural networks are based on the
gradient descent idea for reducing the loss function. Section 2.4.10 about this topic in the
preliminaries and the section on loss functions 3.1 describe how the model is optimized
as the loss function is minimized. Adaptive approaches are becoming more popular for
various reasons, one of which is the quick learning time.

Stochastic gradient descent, SGD [60], is a popular gradient descent method since it only
employs a portion instead of the entire training set as in standard gradient descent, making
it significantly faster. To update the weights, SGD uses the equation (3.2) presented in
Section 3.2 about learning rate.

Adaptive gradient methods are di�erent from non-adaptive gradient methods in that they
include a local distance measure that is calculated using the whole sequence of weights
determined up to the current iteration k, w1, . . . , wk [60]. Adaptive methods try to match
the algorithm to the geometry of the data, whereas gradient descent uses the geometry of
the parameter space itself. The PyTorch framework includes several di�erent adaptation
algorithms; the three utilized in this thesis are Adagrad, RMSProp, and Adam.

Adagrad [13] adjusts the learning rate based on the parameters, resulting in smaller
updates. This makes it ideal for handling sparse data. Adagrad greatly enhances the
resilience of SGD, making it suitable for training large-scale neural networks. However,
the rapidly dwindling learning rates are one of Adagrad’s drawbacks.

RMSProp [55] was created in the course of addressing Adagrad’s declining learning
rates. It divides the learning rate by average squared gradients that decay exponentially.

Adaptive moment estimate, Adam [28], computes adaptive learning rates for each pa-
rameter. In addition to retaining an exponentially decaying average of past gradients, it
retains an exponentially decaying average of past squared gradients, similar to RMSProp.
It has been shown to minimize training time and give resilience in hyperparameter selec-
tion.

34 Chapter 3. Machine Learning Networks

For training a neural network, adaptive optimization methods have become increasingly
prominent. When tackling simple overparameterized problems in [60], Wilson, Roelofs,
Stern, Srebro, and Recht describe how these popular approaches often discover drastically
di�erent solutions than non-adaptive methods, such as stochastic gradient descent. SGD
is compared to adaptive optimization methods such as Adagrad, RMSProp, and Adam
in this research.

The binary least-square classification problem that is studied in [60] is used to solve the
minimization problem

min
w

Rs[w] := 1
2 ||Xw ≠ y||22 (3.3)

Here w is the best linear classifier, X is a matrix of features and y is a vector of labels.

Solving this classification problem will show both which solutions the algorithms identify
and how well they work on unseen data. They discovered that non-adaptive approaches
such as SGD converge to the minimal Euclidean norm solution with the most considerable
margin of all the following equation’s solutions

Xw = Y (3.4)

On the other hand, adaptive approaches converge on the notion that there is a solution
where Xw = Y is proportional to

sign(XT
y) (3.5)

When the solution described above exists, all adaptive gradient algorithms will converge.
The solution is easier to understand than the one reached using non-adaptive approaches.

Adaptive approaches find solutions that generalize poorer than non-adaptive methods,
according to the study. Adaptive algorithms tend to have fast initial progress on the
training set, but their performance quickly plateaus on the validation set. The study
suggests that the non-adaptive approaches are most e�cient, even though the adaptive
optimizer Adam remains one of the most used. They speculate that Adam’s appeal stems
from its compatibility with optimization-free iterative search techniques, but add that a
properly-tuned SGD might also function well in these applications. During this thesis,
all four optimizers were used to train models to compare their results in this particular
image segmentation problem.

3.6. Accuracy Metrics
The term accuracy, when working with image processing, refers to a measure of consis-
tency with accurate information in a spatial point with data [23].

3.6.1. Pixel Accuracy
Pixel accuracy, according to the article written by Ekin Tiu from the ML group at Stand-
ford University [56], may be the most intuitive measure for the accuracy of a model
prediction. It calculates the percentage of correctly classified pixels in an image. The

3.6. Accuracy Metrics 35

pixel accuracy is calculated by dividing the numbers of correctly classified pixels by the
total number of classified pixels in terms of true or falsely predicted positive or negative
pixels presented in Section 3.1.2:

PixelAccuracy = TP + TN

TP + TN + FP + FN
(3.6)

Class imbalance is a problem that might arise when calculating pixel accuracy. This hap-
pens when classes are largely imbalanced, in other words, if one or more classes dominate
the image, while others only make up a small portion. As seen in Figure 3.3, if the classes
only make up a fraction of the image, a high pixel accuracy does not always guarantee a
precise segmentation. The predicted image is pure black in this example, shown in Figure
3.3(b), despite the high accuracy of 0.95, this is an excellent example of class imbalance.

(a) (Left): Input image. (Right): Ground truth.

(b) Model prediction.

Figure 3.3.: Example of class imbalance, where the predicted model is a completely
black image. Illustration [56].

36 Chapter 3. Machine Learning Networks

3.6.2. Sensitivity and Specificity
Because the weld line is such a minor element of the image, losing a few pixels or even
the entire weld line could still result in a high pixel accuracy. This may give the wrong
impression of the model’s performance, as a partial weld line forecast will not be helpful.
Sensitivity, also known as recall, is vital for the segmentation in this thesis since it indicates
the number of correctly recognized weld line pixels. This can be seen as the true positive
rate. Specificity is the ability to categorize background pixels correctly, the true negative
rate. This metric is also essential in segmentation, but notice in this thesis that the
background pixels make up such a large part of the images that many background pixels
must be predicted wrong to get a noticeable change in the specificity. If focusing solely
on accuracy, it is easy to disregard sensitivity and specificity, oblivious to the possibility
of many false positives or negatives. To get a clear overview of how the di�erent models
perform, it is important to analyze and compare these metrics.

3.6.3. Dice Score
The Dice score or the Sørensen-Dice coe�cient explained in Section 2.4.12 is a typical
metric to determine the overlap between the ground truth and the predicted segmentation.
The equation multiplies the area of overlap and divides it by the total number of pixels
in the images, as illustrated in equation (2.63). The equation can also be described in
terms of the four possible outcomes of classification

DiceScore = 2 ◊ TP

2 ◊ TP + FP + FN
(3.7)

Figure 3.4 illustrates the classification of pixels, either as a weld line line pixel or a
background pixel. The number of pixels classified as each outcome is often gathered in a
confusion matrix, illustrated in Figure 3.4(c), to calculate the accurate Dice score.

Dice score is a favored accuracy metric by many as it only values the true positives, TP,
as correctly predicted pixels. By multiplying the number of the correctly predicted true
positives by two and ignoring the correct true negatives, the Dice score counters the class
imbalance problem that can occur in pixel accuracy. Though the issue of class imbalance
is addressed, neither pixel accuracy nor Dice score considers the distance from the wrongly
predicted scan line to the ground truth, which should be taken into account to evaluate
the degree of the wrong prediction.

3.6. Accuracy Metrics 37

(a) Comparison of an input image, its ground truth and the model prediction.

(b) The model prediction with the di�erent
possible outcomes of classification in
di�erent colors.

(c) Confusion Matrix of the entire last validation
epoch.

Figure 3.4.: Classification of pixels used to calculate accuracy.

Chapter 4.

Method

This chapter explains how the results were obtained. From the creation of datasets,
handling large datasets and the machine learning techniques used to extract findings
from the datasets, to the agile collaboration approaches.

4.1. Dataset Generation
4.1.1. Simulated Images
The initial training of all models was carried out on a simulated dataset. Ola Alstad cre-
ated the dataset, including the images and ground truths of fictitious welds, as a part of
his master thesis and this process is explained in detail in his thesis [4]. Because the simu-
lation of light interacting with both materials and objects was required, LuxCoreRender,
a physically-based render engine, was used to produce the images. Blender, a 3D creation
suite, was used with LuxCoreRender. Blender is an open-source 3D computer graphics
tool commonly used for visual arts and modeling. It has a Python API and a graphical
user interface, making it a suitable development platform.

To create a rendered image in Blender a scene must comprise objects, lighting, and at
least one camera. The render engine receives the scene data from Blender. Tracing the
light paths flowing into the chosen camera produces an image. Cycles is a fast physically-
based renderer, and the default ray tracer engine of Blender, but it only allows backward
ray tracing. Backward ray tracing struggles to calculate caustics, as mentioned in Section
2.5.2. LuxCoreRender, on the other hand, is compatible with hybrid ray tracing, which is
why it was selected as the render engine. The di�erence between the engines is crucial for
obtaining a true simulation, as seen in Figure 4.1 from Alstad’s thesis [4]. A scene with
a corner mesh, camera, and laser line is shown in 4.1(a). Cycles and LuxCoreRender are
used to render this scene in 4.1(b) and 4.1(c), respectively. Cycle, as seen, cannot calculate
the caustics in the scene, which accounts for a significant portion of the reflections, whereas
LuxCoreRender produces more realistic reflections.

The pinhole camera, discussed in Section 2.2.1, is already implemented in Blender and
LuxCoreRender. However, a wrapper class was created using the Python API for addi-
tional functionality and to simplify the initialization of the camera. To simulate the laser

40 Chapter 4. Method

(a) Scene setup (b) Cycle (c) LuxCoreRender

Figure 4.1.: Cycle and LuxCoreRender comparison. Illustration [4].

line a precise line was projected onto the center of an images with otherwise black pixels.
Using an image to project the laser line allows for controlling the line’s color, width, and
appearance. The parametric 3D CAD program CadQuery [59] was used to create the 3D
weld corner models. Python was able to produce 3D models with unique pieces due to
this. Alstad writes the following in his thesis [4]:

The parts were generated by defining a set of 2D modules which were assem-
bled to generate a corner cross- section as shown in 4.2(a). The cross-section
consists of a base defined by the constant lengths lb1, lb2, lb3, lb4 and a set of 11
sections s1, s2, . . . , s11. At each section sn, a random module is chosen. Each
module m is defined by vertical, horizontal, diagonal or curved lines with ran-
domized lengths. Modules were defined for the vertical sections, corner section
and horizontal sections respectively. 9 vertical modules, 4 corner modules and
4 horizontal modules were made. Three example modules of each type is
shown in 4.2(b), where the lengths l1, l2, . . . , ln are randomized in a uniform
interval. Once the cross-section was defined by the set of random modules, it
was extruded a constant length to get a 3D part as shown in 4.2(c).

(a) (b) (c)

Figure 4.2.: Randomized model generation, Illustration [4].

4.1. Dataset Generation 41

By assigning PBR texture pictures to the parts, the materials for the parts were created.
PBR is a two-dimensional picture creation technology that stores color and surface infor-
mation. The PBR materials in this example were images that described color, roughness,
normals, and metalness. A total of 40 PBR textures were downloaded from ambientCG,
a public domain resource for physically based rendering [5], and utilized on the dataset.

4.1.2. Real-World Images
The real-world images were taken by a Teledyne DALSA Genie Nano-GigE camera [52]
with a Computar MPZ Series Machine Vision Lens V1226-MPZ 1" 12 mm F2.6 [12].
According to Teledyne DALSA the scanning camera redefines low-cost performance with
its industry-leading Complementary Meta Oxide Semiconductor (CMOS) sensors. The
electrical semiconductor image sensors convert light into electrical signals [8] and are
a proprietary technology for break through speed and robust build quality. The setup
includes an industrial-grade laser of class 3B, which is considered to be a medium-powered
laser with a range from 5 to 499 milliwatts [33]. A module head glass lens was attached
to the laser to create the laser line. Figure 4.3 shows the entire setup of how the images
were taken.

Figure 4.3.: The setup used to take images. The camera and laser mounted on a tripod
to the left and the D-Link Desktop beneath it connected to both the camera and the
computer with the GenICam Browser. The metal profiles and parts were placed on a
desk in front of the setup.

42 Chapter 4. Method

To operate the camera Common Vision Blox (CVB) [11] was downloaded on a windows
machine. CVB is a high-speed and high-end vision library, allowing users to develop fast
and powerful applications. Using a D-Link DGS 1008P 8-port Gigabit PoE Unmanaged
Desktop Switch provided the functionality to operate the camera through the CVB appli-
cation called GenICam Browser. GenICam provided functionality to set the dimensions
and save the images, Figure 4.4 shows the layout of the application. The images were
uploaded to the GitHub repository containing the software, explained further in Section
4.5.1.

Figure 4.4.: The layout of the GenICam Browser application.

It was necessary to have a significant variation in the reflections to compare results ad-
equately. A variation of metal profiles in two di�erent materials, steel and aluminium,
were used to create reflections of di�erent types and intensities. Figure 4.5 displays the
di�erent parts used to generate unique images. A profile was used as the background
and the smaller parts were placed in varying formations to illustrate di�erent welds. The
tripod with laser and camera was pointed onto the formations from di�erent angles to
ensure that every image was unique.

The two di�erent metals were chosen because their surfaces result in various reflections.
Figure 4.6 illustrate these di�erences. Steel is a rougher material with a more matte
finish, and the profile and parts used in this thesis also include a degree of rust, resulting
in even more di�use reflections as shown in Figure 4.6(a). Aluminium is shinier and
has a smoother finish, leading to generally more reflections, in particular, more specular
reflections, illustrated in Figure 4.6(b).

4.1. Dataset Generation 43

(a) Steel parts. (b) Aluminium parts.

Figure 4.5.: The metal parts that were used when generating unique images. The smaller
parts were placed in di�erent formations on top of the larger profiles to simulate di�erent
types of welds.

(a) Steel. (b) Aluminium.

Figure 4.6.: Images taken of laser reflection on steel and aluminum materials.

Generating Ground Truth Images

The ground truth images corresponding to the real-world images were generated manually
by the use of GIMP, an image manipulation program [32]. GIMP allowed copying of each
image, layering a threshold and transforming the image to black and white, automatically
removing the majority of the laser reflections with low intensity before finally removing
all the remaining reflections manually. This resulted in a black and white ground truth
to be used in the transfer learning of the networks. An example of a real-world image
and its corresponding ground is illustrated in Figure 4.7.

44 Chapter 4. Method

(a) Real-world image. (b) Generated ground truth.

Figure 4.7.: A real-world image taken of reflections on aluminium and its corresponding
ground truth generated in GIMP.

After the ground truths had been generated, both the original images and their corre-
sponding ground truths had to be cropped into a format that would suit the algorithm.
The original images had a resolution of 500 ◊ 504 pixels, and the 4 bottom pixels were
therefore cropped from the image, resulting in an image of 500 ◊ 500 pixels. This was
done so the real-world images would have the exact resolution as the simulated dataset.

4.2. Dataset Handling
The simulated dataset received from Alstad was extensive, and the addition of real-world
images would increase its size even further. It would require a large amount of processing
power and memory to be able to train models with this dataset, more than that of a
standard personal computer with an ordinary graphics card.

For convenience, the algorithm were developed on personal computers during the imple-
mentation stage with only a few images in the training and validation sets to build a
functioning network. A significant increase in processing power was necessary to train
the models properly with a large enough training set. This demonstrated a fundamental
understanding of neural networks, the necessity for an extensive database to adequately
train a model.

In preparation for this thesis, a specialization project was conducted. The project utilized
physical computers at a computer lab at NTNU called Cybele. The computers used
NVIDIA GeForce GTX 1080 Ti graphics card, which was the fastest desktop consumer
graphics card when it was released in 2017. While these computers provided a lot of
processing power, one of the goals for this thesis was to increase the processing power
even further. This goal was reached by connecting to the Idun cluster.

4.3. Dataset Splitting and Configuration 45

4.2.1. The Idun Cluster
Personal computers often only have a central processing unit, CPU, while networks of
more extensive size, training on many images, require a graphic processing unit, GPU.
GPUs break complex problems into many separate tasks to work them out at once, which
is why they are ideal for processing graphics, and in this case, image segmentation. CPUs
race through a series of tasks requiring a large amount of interaction and restricting them
to only performing a few operations at a time, while the GPU can perform thousands at
the same time, making a GPU significantly faster and more e�cient than a CPU [7].

The Idun cluster is a project created at NTNU to provide rapid testing and prototyping
of high-performance computing software [36]. The cluster has access to several GPUs
that can run in parallel. The nodes used in this thesis are of type Dell PE730, and they
have two processors, 48 cores and ten GPUs. The GPUs are of the type NVIDIA A100
and have 40GB memory. Having ten GPUs of this strength is an enormous improvement
compared to only one NVIDIA GeForce GTX 1080 Ti GPU used in the specialization
project [20]. One A100 [38] has 3.6 times larger memory than the GeForce [37]. By having
ten of these GPUs, the memory would be 36 times larger, making a huge di�erence. An
in-depth explanation on how to connect to the Idun cluster can be found in Appendix B.

The increase in processing power allows for an increase in the number of images in the
training set, an increase in batch sizes and the number of epochs. In addition, the
increased power would decrease the network’s training time. On the other hand, the
A100 GPUs are expensive. The price lie around 100000 NOK, raising the question of
whether it is reasonable to assume companies have these GPUs at hand. If networks
that require this amount of processing power are suitable for industry implementation is
discussed further in Section 6.3.

4.3. Dataset Splitting and Configuration
Both datasets were divided into two di�erent parts: a training set and a validation set.
The training sets were the largest, and were used to train the model, while the validation
sets were used to assess the model’s correctness throughout training. The simulated
dataset was used for validation when training on the simulated dataset. Afterward, the
real-world dataset was used for validation when training on the real-world dataset. The
models were tested on the validation sets every second epoch of training, and this gave a
clear overview of the models development while saving some computational power.

Due to the increased processing power provided by Idun, explained in Section 4.2.1, it
was possible to utilize the entire repository of simulated images generated by Alstad in his
thesis [4]. This resulted in a dataset consisting of 4000 simulated images with a matching
ground truth set. 200 images were taken for the real-world dataset, 100 of these being
aluminum and 100 steel. Afterward, a matching ground truth set was created as explained
in Section 4.1.2.

The transfer learning was executed by first training a model on the simulated images for
a given amount of epochs, followed by a given amount of epochs of training on the real-
world images. When splitting the simulated and real-world datasets into their respective
training and validation sets a specifically chosen splitting fraction was used for both.

46 Chapter 4. Method

The training set fraction was set to 0.8 and the validation set fraction was set at 0.2 to
split the dataset. In the field, a split based on this proportion is common, it provides a
large amount of training data while yet allowing for enough unique data in the validation
set. The number of images in the training and validation sets are shown in Table 4.1.
Using the 0.8 training fraction, the simulated training set included 4000 images multiplied
by 0.8, for a total of 3200 images passing through the model per epoch. As mentioned
earlier, the models were tested every second epoch against a validation set. This consisted
of a 0.2 fraction times 4000 images, resulting in a validation set of 800 images running
through the model per validation round. The images of welds in various angles, materials,
and image-brightness were included in Alstad’s dataset. As explained in the preliminaries
in Section 2.5.1, these images displayed various forms of reflections, including specular,
spread, and di�use reflections.

To build the groundwork for an authentic model, a given dataset would be shu�ed at
random before being split into training and validation sets. An example as to why this is
important could be when using the real-world dataset, this would ensure that a model did
not only train on steel and only validate on aluminum. Instead, a random amount of steel
and aluminum for both the training and validation set ensures that a model learns both
spectral and di�use reflections. The random distribution was held for the entire training
phase, not only per epoch. This ensured that the images in the validation set stayed in
the validation set. Meaning they were never used during training, this guaranteed that
the validation score was based on images the model had not adjusted itself after.

Dataset Length of Dataset
Initial learning Total 4000

Training set 0.8 ◊ 4000 = 3200
Validation set 0.2 ◊ 4000 = 800

Transfer learning Total 200
Training set 0.8 ◊ 200 = 160

Validation set 0.2 ◊ 200 = 40

Table 4.1.: The datasets and splitting used during training.

4.4. Transfer Learning
Traditional learning is isolated and performs solely on specific tasks and datasets, training
individual models in their regard. There is no knowledge that can be transferred and used
afterward by other models. Transfer learning on the other hand, is utilizing knowledge
acquired from one task to solve related ones, as briefly explained in the preliminaries
in Section 2.6. It is typically used when the target dataset contains insu�cient data
to train a full-scale model from scratch. Transfer learning allows models to use features,
weights and more from previously trained models. This allows for more flexible and faster
learning, and resulting in lower generalization error. With possibly a more robust model
that can make sound predictions even when having less data for the newer assignment.
The reason being certain low-level properties such as edges, intensity, corners and forms

4.4. Transfer Learning 47

can easily be used across tasks in the computer vision domain giving a solid foundation
before tuning the model on the last dataset or task. However, it is essential to notice
that transfer learning should be used to improve rather than deteriorate target task
performance. Transfer learning does not always help a model to make better predictions,
it is possible for transfer learning to make a model worse, this is known as negative
transfer.

In this thesis the models were first trained on the simulated dataset for a given amount
of epochs. After this, the models’ hyperparameters and learnable parameters, such as
weights, bias and more, were saved as a .pt file. PyTorch convention is to save models
using either a .pt or .pth file extension [22]. This allowed for saving and loading of the
files, either for testing locally or as a full-scale run on Idun. The next step was the transfer
learning over to the real-world dataset. Before learning could take place on the real-world
dataset, the .pt file needed to be loaded so that the object files could be deserialized to
memory. Then the loaded model would have the same structure and learnable parameters
as the previously saved model, and learning on the real-world dataset could start. A
visualization of the process can be seen in Figure 4.8. This type of transfer learning is
known as inductive transfer learning, and it relates to a learning mechanism’s ability to
improve performance on a current task after acquiring a distinct, but related, skill on a
previous task.

Figure 4.8.: Visualization of how transfer learning is used in this thesis.

When performing transfer learning, it is also an optional step to freeze or delete some
layers of the loaded model before proceeding with the learning. Freezing a layer means
disabling learning on the specific weights and biases in that layer. Freezing a layer reduces
the computing time required for training while maintaining a high level of accuracy. It

48 Chapter 4. Method

is most common to freeze the earliest layers of the network since this removes the need
to use backpropagation for the gradient and update the weights in these layers. Suppose
one were to freeze one of the deepest layers, one would still have to use backpropagation
through the layer to get to the first layers, even if the deep layer does not need it. By
deleting layers, the risk of overfitting is minimized by reducing the complexity of the
network. It has been shown to allow highly deep networks to perform exceptionally
well even when only a small target dataset is supplied [61]. For this thesis, none of the
layers were frozen or deleted. This was decided to focus on the model’s hyperparameters
and to better understand how the U-Net architecture would behave. U-net’s depth and
complexity make it interesting to examine where the models would start to overfit when
going from a large dataset to a much smaller one.

Instead of freezing layers, it is possible to adjust the learning rate transferring from the
large dataset to the smaller. For example, looking at Figure 4.8 model A could use Adam
as an optimizer with a learning rate set to 0.0003, while model B could use a lower learning
rate set to 0.0001. The learning rate should be low because the U-net architecture is deep
and complex, while the real-world image dataset is small. This brings the increased risk
of overfitting and a low learning rate has the possibility of minimizing this outcome, as
explained in Section 3.2.

4.5. Agile Collaboration
The emphasis on collaboration, communication and feedback is one of the fundamen-
tal contrasts between agile and plan-driven software development [34]. Retrospectives,
pair programming and code reviews are all examples of collaboration. This thesis was
developed through agile collaboration, both during software development, planning and
implementation.

Regular updates with an academic advisor, ongoing team communication, presentation,
code sharing, pair programming, and task distribution contributed to the thesis’s natural
evolution.

4.5.1. Software Development Collaboration
It was decided to use GitHub to provide seamless collaboration for the software devel-
opment. GitHub includes capabilities like continuous integration, bug tracking and dis-
tributed version control [43], which make it ideal for collaboration and the reason behind
the choice as a host for the software development in this thesis. Including a website,
GitHub o�ers a desktop application that is simple to use and integrates with the source
code editor Visual Studio Code [35]. This, in combination with the previous familiarity
with the frameworks and that the development of the specialization project [20] was com-
pleted with this combination, made GitHub and Visual Studio Code a natural choice. As
with the specialization project [20], the development was done in the popular high-level
and open-source programming language Python [44], which is known for its extensive
machine learning tools.

The code developed during this thesis can be obtained in the following GitHub repository.

https://github.com/Kasperkall/Master

4.5. Agile Collaboration 49

The code was self-written, with guidance from Ola Alstad and resources from the available
online community of machine learning tools.

Chapter 5.

Results

The following sections present the results produced during this thesis. Numerous varia-
tions of U-Net models were used to conduct transfer learning to study and compare their
results. Complete tables of the results can be found in Appendix A.

5.1. U-Net
As explained in Section 3.1.1, the weights on positive and negative masks were decided
based on the results found in the specialization project [20] done in advance of this thesis.
The optimal weighting of cross-entropy according to [20] was found to be 0.7 for the
positive masks and 0.3 for the negative masks. During the project di�erent epochs were
also evaluated. This gave a solid foundation for this thesis to choose the number of
epochs based on empirical analysis. However, the simulated dataset was more extensive
in this thesis than in the previous project. In addition, transfer learning was now being
implemented. Therefore some initial trials were executed to find the optimal amount of
epochs for the simulated and real-world dataset in this thesis. It was decided to run
models on the simulated dataset for 4 epochs. This was fewer epochs than in the previous
project, but the number of training steps the models would run through would be about
the same as the best model of the prior project since the dataset was more extensive
this time. U-Net has several layers and as Section 2.4.13 explains, the architecture is
quite complex. This is reflected in the time it takes to train the models made with the
network. Furthermore, the complexity of the network means one must be cautious to
avoid overfitting. Especially since the goal of the thesis is to get the best real-world
prediction the network should learn the fundamentals from the simulated dataset, not
get too specialized. This could lead to the transfer learning degrading the pre-adjusted
weights in the model instead of developing them further towards the global optimum.
Since the real-world dataset only consists of 200 images, the deep neural network is
especially prone to overfitting.

As for the transfer learning, it was chosen to train for 6 epochs on the real-world images.
Beyond this point, the models would become very unstable, jumping between good and
poor predictions from one epoch to the next. These tendencies can also be seen by
examining the plot of the loss function in Figure 5.1. This model was first trained on 3

52 Chapter 5. Results

Figure 5.1.: Plot of the loss function to a test-model showing the validation loss diverging
from the training loss towards the end of training.

epochs with 3200 training images on the simulated dataset. This corresponds to the first
9600 global steps since each image is seen as a step during the model learning. Independent
of whether the weight-updating happens for every single image or the given batch size.
Then the model started transfer learning on the real-world dataset with 160 training
images for 12 epochs, a total of 1920 global steps. This corresponds to the global steps
between 9600 and 11520. Be aware that both the training and validation were executed
with the simulated dataset during initial learning, while during transfer learning, both
training and validation were executed with the real-world dataset. Towards the end of
the training on the real-world images, the orange validation loss diverges up and away
from the trending blue training loss, which is a clear sign of overfitting. Since this is a
sign that the model is learning the individual images in the training set and not learning
generalization, which is needed to make good predictions on unseen images, such as the
images in the validation set. The individual high peaks for the training loss during the
real-world dataset will be further discussed in Section 6.2.3 as these often are correlated
with the batch size and were seen in some other models as well. Additionally, potential
improvements to the algorithm and the training runs are discussed in Section 6.4. Dice
score was used as the primary accuracy metric to compare the results since it counters
the problem of class imbalance that occurs in pixel accuracy, as explained in Section 3.6.
The di�erent accuracy metrics and their use during the thesis are further discussed in
Section 6.2.1.

5.2. Di�erent Optimizers
Models were made using all four optimizers presented in Section 3.5: the non-adaptive
SGD and the adaptive, Adagrad, RMSProp and Adam. To better study the behavior of

5.2. Di�erent Optimizers 53

the di�erent optimizers, models were made with learning rates varying from 0.1 to 0.0001.
Table 5.1 shows the Dice scores of the di�erent models. From the table, it is interesting
to observe that the more adaptive the optimizers were, the lower learning rates achieved
the highest Dice score. The non-adaptive SGD performed best at the highest learning
rate, 0.1, while the two most adaptive being RMSProp and Adam performed best at the
lowest learning rates. RMSProp reached the highest dice score with a learning rate of
0.0001, and Adam with a combination of a learning rate of 0.0003 during initial learning
and 0.0001 during transfer learning.

Optimizer Learning Rate Batch Size Epochs Dice Score
SGD 0.1 4 4, 6 0.8057
SGD 0.01 4 4, 6 0.7634
SGD 0.001 4 4, 6 0.6109
SGD 0.0001 4 4, 6 0.4023

Adagrad 0.1 4 4, 6 0.8104
Adagrad 0.01 4 4, 6 0.8151
Adagrad 0.001 4 4, 6 0.8328
Adagrad 0.0001 4 4, 6 0.7723

RMSProp 0.1 4 4, 6 0.7643
RMSProp 0.01 4 4, 6 0.8225
RMSProp 0.001 4 4, 6 0.8364
RMSProp 0.0001 4 4, 6 0.8551

Adam 0.1 4 4, 6 0.7073
Adam 0.01 4 4, 6 0.7994
Adam 0.001 4 4, 6 0.8303
Adam 0.001, 0.0001 4 4, 6 0.8409
Adam 0.0003, 0.0001 4 4, 6 0.8426

Table 5.1.: Dice scores for models with di�erent optimizers and di�erent learning rates.
The batch sizes, epochs and cross-entropy loss function were consistent. The models
reaching the highest Dice score for their respective optimizers are outlined in blue.

The results presented in Table 5.1 are illustrated visually in Figure 5.2. The models with
SGD as optimizer have Dice scores that deviate most compared to the other optimizers.
An increase in learning rate increases the Dice score, resulting in twice the Dice score at
learning rate 0.1, in purple, compared to the Dice score at learning rate 0.0001, in blue.
RMSProp and Adam illustrate the opposite behavior, achieving their highest Dice score
for the lowest learning rate, though their di�erence in overall Dice score is smaller. RM-
SProp has a di�erence of less than 0.1 between the highest and the lowest score. Adagrad,
on the other hand, illustrates di�erent behavior than the other adaptive optimizers by
increasing until it achieves the best Dice score at the learning rate of 0.001, in green, be-
fore decreasing. Overall, RMSProp reaches the highest Dice score among the optimizers
with a Dice score of 0.8426.

Figure 5.3 illustrates the cross-entropy loss functions for the four models that achieved the
highest Dice score for their respective optimizers, the models marked in blue in Table 5.1.

54 Chapter 5. Results

SGD Adagrad RMSProp Adam
0.4

0.5

0.6

0.7

0.8

0.9

D
ic

e
Sc

or
e

lr = 0.0001
lr = 0.001
lr = 0.01
lr = 0.1

Figure 5.2.: Graphs illustrating the Dice scores for di�erent optimizers and learning
rates.

From the loss functions it is a clear di�erence between the adaptive optimizers and the non-
adaptive optimizer, SGD. The cross-entropy loss of SGD, seen in Figure 5.3(a), quickly
plateaus at a slight loss during the initial training process on the simulated dataset. When
the transfer learning begins, the loss spikes upwards before decreasing, but at a higher
loss than the adaptive optimizers. In addition, the validation loss uses more training steps
to decrease than the others. This could be a sign of overfitting, which will be discussed
further in Section 6.2. The adaptive optimizers also experience an increase in their loss
at the beginning of the transfer learning, but this is a much lower increase than SGD
and it decreases over fewer training steps. The low learning rate for the models with the
adaptive algorithms causes them to use more steps to converge. The adaptive optimizers
RMSProp in Figure 5.3(c) and Adam in Figure 5.3(d) have very similar cross-entropy loss
plots, while Adagrad in Figure 5.3(b) displays a higher and slower declining loss, which is
also reflected in a lower Dice score in Table 5.1, this might be due to Adagrad being the
least adaptive of the three adaptive optimizers. As explained in Section 3.5 Adagrad uses
more minor updates and one of the drawbacks is the rapidly decreasing learning rates
as a result of this. RMSProp and Adam are built to address this issue by dividing the
learning rate by average squared gradients.

5.3. Di�erent Batch Sizes 55

(a) SGD. (b) Adagrad.

(c) RMSProp. (d) Adam.

Figure 5.3.: Plots of the loss functions for the models with the highest Dice score for
the di�erent optimizers, the models marked in blue in Table 5.1.

5.3. Di�erent Batch Sizes
As discussed in Section 3.3 smaller batch sizes often converge quickly toward a good, but
not always the best, solution. To study this phenomenon the models reaching the best
Dice scores when studying the di�erent optimizers were run with batch sizes of 2, 4 and
16. The Dice scores of these models are presented in Table 5.2. From the table, where the
best models for each optimizer are marked in blue, it is clear that there was a correlation
between smaller batch sizes and higher Dice scores. For all the optimizers, the model
with a batch size of 2 reached the highest Dice score, confirming that the models with
the smallest batch size achieved the most accurate predictions.

56 Chapter 5. Results

Optimizer Learning Rate Batch Size Epochs Dice Score
SGD 0.1 2 4, 6 0.8443

(DL) SGD 0.1 2 4, 6 0.8176
SGD 0.1 4 4, 6 0.8057
SGD 0.1 16 4, 6 0.7074

Adagrad 0.001 2 4, 6 0.8551
(DL) Adagrad 0.001 2 4, 6 0.8421

Adagrad 0.001 4 4, 6 0.8328
Adagrad 0.001 16 4, 6 0.7742

RMSProp 0.0001 2 4, 6 0.8637
(DL) RMSProp 0.0001 2 4, 6 0.8609

RMSProp 0.0001 4 4, 6 0.8551
RMSProp 0.0001 16 4, 6 0.8269

Adam 0.0003, 0.0001 2 4, 6 0.8541
(DL) Adam 0.0003, 0.0001 2 4, 6 0.8508

Adam 0.0003, 0.0001 4 4, 6 0.8426
Adam 0.0003, 0.0001 16 4, 6 0.8120

Table 5.2.: Dice scores for models where the hyperparameters of epochs and learning
rates are optimal, and the batch size vary between 2, 4 and 16. The models reaching
the highest Dice score for their respective optimizers are outlined in blue. The gray rows
where the optimizers are marked with (DL) use Dice loss as their loss function.

Figure 5.4 illustrate the Dice scores during the training of models, with Adagrad as
optimizer and varying batch sizes, for each epoch. All models reach a similarly high
Dice score during the initial training process, the first 4 epochs, though the model with
batch size 2 starts with the highest score. The Dice score plots gave results based on
their current validation set, similarly to the cross-entropy loss plots already mentioned.
Meaning that the first 4 epochs used the simulated dataset for validation, and the last 6
used the real-world dataset for validation. The models di�ered when the transfer learning
was initiated. All models experienced a significant drop in Dice score, and the models
with smaller batch sizes continued to increase in Dice score after the fall. The model with
a batch size of 16, seen in Figure 5.4(c) increased for one epoch before decreasing again
in epoch number 7. The models with smaller batch sizes only experienced a less rapid
increase at epoch number 7 and continued to improve before they landed at a high Dice
score. On the other hand, the model with the batch size of 16 continued to di�er from
the others. After the sequential increase and decrease for 4 epochs, the model decreased
at the last epoch to a significantly lower Dice score than the other models. This might
be due to the weights being updated far fewer times, or poor generalization. Possibly as
a result of converging to a local optimum on the real-world dataset, which is one of the
disadvantages of larger batch sizes as presented in Section 3.3.

5.3. Di�erent Batch Sizes 57

(a) Bach Size 2.

(b) Bach Size 4.

(c) Bach Size 16.

Figure 5.4.: Dice scores for models using Adagrad as their optimizer, epochs of 4 on the
simulated dataset and 6 on the real-world dataset and with cross-entropy loss function,
varying the batch size between 2, 4 and 16.

58 Chapter 5. Results

5.4. Di�erent Loss Functions
Section 3.1 presented two di�erent loss functions, cross-entropy loss and Dice loss. Cross-
entropy was utilized as the loss function in the search for the best hyperparameters, with
the weighting set at 0.7 on positive masks and 0.3 on negative masks. After the optimal
parameters were found, the models were run with Dice-loss as loss function to compare
the results. These results can be found in Table 5.2.

The models outlined in gray in Table 5.2 are models that used Dice loss as their loss
function. They achieved a slightly lower Dice score compared to the models with identical
hyperparameters, except that they used cross-entropy as their loss function, outlined in
blue in the table. The di�erence in Dice score varies between the di�erent optimizers. The
di�erence was slightest for the models with RMSProp as optimizer algorithm, as small
as 0.0028. The most significant di�erence appears for the models with SGD as optimizer
with a di�erence of 0.0267, which is almost ten times bigger than the slightest di�erence.
Figure 5.5 illustrates the comparison between the model predictions for the two models
with the most significant di�erence. Even though they have the biggest di�erence, the
model predictions only present a marginal di�erence to the human eye.

(a) Cross-Entropy Loss.

(b) Dice Loss.

Figure 5.5.: Comparison of the input image, the ground truth and the model predictions
of two models using SGD as their optimizer algorithm, batch size of 2, trained on 4 epochs
on the simulated dataset and 6 on the real world-dataset, but with either cross-entropy
or Dice as their loss function.

5.5. Transfer Learning on Di�erent Materials 59

5.5. Transfer Learning on Di�erent Materials
The real-world dataset consisted of images of both aluminium and steel profiles, as ex-
plained in Section 4.1.2. Several models were made to study how the transfer learning
was a�ected by the di�erence in reflections due to the di�erent surfaces of the materials.
Models were initially trained and validated on the simulated dataset before being transfer
learned on a real-world image dataset, the results of these models can be found in Table
5.3. The models were made with the optimized hyperparameters found to be a batch size
of 2, epochs of 4 and 6, cross-entropy as loss function and either RMSProp or Adam as
optimizer algorithm.

Optimizer Training Validation Dice Score
RMSProp Both Aluminium 0.8361
RMSProp Both Steel 0.8861

Adam Both Aluminium 0.8317
Adam Both Steel 0.8985

RMSProp Aluminium Both 0.8332
RMSProp Aluminium Steel 0.8430
RMSProp Steel Both 0.8468
RMSProp Steel Aluminium 0.8041

Table 5.3.: Dice scores for models where the transfer learning was executed using di�erent
combinations of aluminium, steel or both in training and validation. All the models were
made using a batch size of 2, epochs of 4 and 6 and cross-entropy as their loss function.
The model reaching the highest Dice score is marked in blue.

During the transfer learning the first four models in Table 5.3 were trained on both
aluminium and steel, but only validated against one of them. From the table, it is clear
that the model validated on steel reached the highest Dice score, for both models with
Adam and RMSProp as optimizers. The model with Adam, marked in blue in the table,
achieved the highest Dice score, as high as 0.8965. Adam was the optimal optimizer when
the models were validated on steel with a Dice score of 0.0124 higher than the model with
RMSProp. When the models were validated on aluminium, the model with RMSProp as
optimizer reached a slightly higher Dice score, 0.0044 higher, than the model with Adam
as optimizer.

From Table 5.3 it is clear that the models were more suited to handle di�use reflections,
which often occur in steel, while it was a tougher challenge to handle the specular re-
flections that aluminium is known for, which are presented in Section 4.1.2. Though the
models achieved a higher Dice score when validated on steel, the di�erence between the
Dice scores when validated on steel or aluminium was much lower than expected, only
0.0668. This was confirmed by Figure 5.6 which shows the comparison of the input image,
ground truth and model prediction of a model validated on aluminium 5.6(a) and steel
5.6(b). The prediction on steel does not appear significantly superior to the prediction
on aluminium, at least not to the human eye.

Models were also made by only training on either aluminium or steel, their results are

60 Chapter 5. Results

(a) Aluminium.

(b) Steel.

Figure 5.6.: The input image, the ground truth and the model predictions of two models
with Adam as optimizer, where the transfer learning was trained on both aluminium and
steel, but validated against either aluminium or steel.

presented in the last four rows in 5.3. Surprisingly, all Dice scores were above 0.80. It
would be reasonable to expect that the models validated on steel would perform well due
to the reflections produced by the nature of the material. However, the model trained
on steel and validated on aluminium had a Dice score of 0.8041, which is more than
expected. This reassured the robustness of the models produced by the initial learning
on the simulated dataset, which is discussed further in Section 6.2.

5.6. Di�erent Dataset Compositions
As mentioned in Section 4.1.2 it is a time-consuming job to take real-world images and
generate a ground truth for every image in the dataset. It is more e�cient to make a
large quantity of simulated images. Therefore, investigating how many real-world images
are needed to get satisfactory predictions from the network is highly relevant. Several
models were trained using di�erent amounts of simulated images and real-world images.
The simulated dataset was trained using 1000 or 3200 unique images, while the real-world
dataset was trained using 0, 20, 60, 100 and 160 unique images for training. These results
can be found in Table 5.4. For these models, the batch size was set to 2. When training
on the simulated dataset, the learning rate was set to 0.0003 over 4 epochs. At the same
time, the learning rate after transferring to the real-world dataset was set to 0.0001 over 6
epochs. This does not include the models with 0 real-world images used for training, these

5.6. Di�erent Dataset Compositions 61

had no training on the real-world images, only validation. Every model used cross-entropy
loss, except the model marked in gray in Table 5.4 which used Dice loss.

Optimizer Simulated images Real-world images Dice Score
used for training used for training

RMSProp 3200 0 0.3807
Adam 3200 0 0.3147

(DL) Adam 3200 0 0.2342
Adam 3200 160 0.8541
Adam 3200 100 0.8376
Adam 3200 60 0.8223
Adam 3200 20 0.7842
Adam 1000 100 0.8152
Adam 1000 60 0.8135
Adam 1000 20 0.7818

Table 5.4.: Dice scores on the real-world dataset for models, with optimal hyperparame-
ters, where both the number of images in the simulated dataset and the real-world dataset
vary during training.

Only using the simulated dataset for training gave very poor results for validation on real-
world images. Surprisingly using Dice-loss as the loss function and Adam as optimizer
gave the worst performance, only achieving a Dice score of 0.2342 as seen in Table 5.4. The
two are commonly seen coupled for deep neural networks. All other models in the table
use cross-entropy loss. The best performance was when using RMSProp as optimizer,
which resulted in a Dice score of 0.3807 with a sensitivity of only 0.1859 after the fourth
and last epoch of training. These results were much lower than initially anticipated. The
model struggled to di�erentiate weld lines and reflections. The model using Adam as
optimizer was not far behind, with a Dice score of 0.3147. However, as seen in Figure 5.7
Adam reached a Dice score of 0.5875 on the second epoch. This was with a sensitivity
of 0.7767. Notice that this specific figure plots the Dice score for both the simulated and
the real-world images. The model was only trained on the simulated dataset with 3200
images and after every epoch of training the model was tested on a validation set of the
simulated images, shown in blue, and tested on a validation set of the real-world images,
shown in orange. The validation score of the simulated images can be used as a good
indication of the model’s improvements during its training. Since the thesis aims to get
an insight into how the models perform on real-world images, the validation score of the
real-world images is of most interest. Figure 5.7 shows that the model performed very well
on its own validation set. However, the model struggled on the real-world dataset and
only got a Dice score of half of the simulated dataset score. The fact that the Dice score
improves for every epoch on the simulated dataset while it deteriorates on the real-world
dataset is further discussed in Section 6.2.6.

Models trained solely on the simulated images gave poor results on real-world images,
but not many real-world images were needed for the transfer learning to get satisfying
results. Already when a model transfer learned on 20 real-world images after initial 3200

62 Chapter 5. Results

Figure 5.7.: Dice scores for validation on both simulated and real-world dataset during
training on the simulated dataset.

simulated images the Dice score made a big leap up to 0.7842, a doubling of the Dice
score. As seen in Figure 5.8 the model makes good predictions throughout the entire
weld line with some minor false positive predictions on reflections with particularly high
intensity. From here, the results from Table 5.4 steadily improved as models were trained
on more and more real-world images. The best reaching a Dice score of 0.8541 when
trained on 160 images. There were almost no false positive predictions of reflections at
such a high Dice score, and many of the wrongly predicted pixels were from imperfect
edge detection of the actual weld line. Either a couple of pixels too wide or too narrow
compared to the ground truth of the weld line. These individual pixels and their e�ect
on the numerical results are further discussed in Section 6.2.1. The di�erence between
20 and 160 images was 0.0699. This di�erence was smaller than expected and raised the
question of how accurate predictions the models have to make to be implemented in the
industry. This topic is considered in Section 6.3.

Figure 5.8.: Model prediction after training on 3200 simulated images and 20 real-world
images, with optimal hyperparameters.

5.6. Di�erent Dataset Compositions 63

Training on fewer simulated images got a lower Dice score as expected, but the di�erence
was small. Initially training on 3200 versus 1000 simulated images with transfer learning
on 60 real-world images, gave a Dice score of respectively 0.8223 versus 0.8135. When
using 100 real-world images, the results were 0.8376 for 3200 simulated and 0.8152 for 1000
simulated. The visual comparison revealed that all four models made good predictions on
weld line and specular reflections. The slight di�erence was on di�use reflections, where
the models with the smaller simulated dataset had a few more false positives around the
lightest intense corners. These results might show an upper limit of how many images
are necessary after reaching a certain level of precision. The size of the datasets and their
e�ect on the models’ performance are discussed in Section 6.2.6.

Chapter 6.

Discussion

This section will present the thesis’ expected results, and analyze and discuss the actual
results. Furthermore, the potential errors, the suitability for industry implementation
and future work that would be a natural continuation of the work already done in this
thesis are all discussed.

6.1. Expectations
Based on the conclusion in the specialization project [20] and the fact that Adam is the
most adaptive optimization algorithm, it would be reasonable to assume that Adam would
be the optimal optimizer. By examining recent trends in the machine learning community,
one would consider that models with Adam as optimizer combined with Dice loss as loss
function would be the highest achieving models. Section 4.1.2 presents the di�erence in
surfaces between steel and aluminum. Based on their di�erences, an expectation arose
that the models would perform better when removing the di�use reflections on steel than
the specular reflections on aluminum. The di�erences between the simulated images and
the real-world images decreased the expectations of the overall performance of the models.
Especially the expectation that the models would perform well with a limited amount of
real-world images included in the training process decreased, assuming that the models
would require all 200 images in the real-world dataset.

The overall expectations of the transfer learning were that it would be mediocrely suc-
cessful, that the predictions made by the models would precisely remove over half of
the reflections, but not much more. In addition, the transfer learning on the real-world
dataset was expected to require a lower learning rate than the initial learning performed
on the simulated dataset. In the future work presented in the specialization project [20]
the implementation of both Dice score and Dice loss into the convolutional neural network
was proposed and expected to be completed as a part of the thesis. The future work of
[20] also included accessing more processing power by connecting to the Idun cluster, a
process expected to require both time and e�ort.

66 Chapter 6. Discussion

6.2. Comparing Results

(a) Comparison of the input image, the ground truth and the model prediction.

(b) The model prediction with the di�erent
possible outcomes of classification in di�er-
ent colors.

(c) Confusion Matrix for the entire validation set.

Figure 6.1.: Visual representation of a prediction made by the best performing model.

The model with the best performance used RMSProp as optimizer, cross-entropy as loss
function, a batch size of 2, and a learning rate of 0.0001 for both the simulated and real-
world dataset. As a final result, it got 0.8637 in Dice score, 0.9971 in pixel accuracy, 0.9019
in sensitivity, and 0.9982 in specificity. Overall the results were beyond expectations,
an example of the predictions can be seen in Figure 6.1. It was quite interesting that
RMSProp had the best performance, as it was thought Adam would perform the best out
of the optimizers, this will be further discussed in Section 6.2.2. It is worth noting that,
while this was the model that performed the best, numerous other models performed
nearly as well. In fact six models got a Dice score above 0.85 when training with di�erent
optimizers, see Table A.2. Furthermore, three more models reached a Dice score within
only 0.01 lower than the best. These were Adagrad with cross-entropy, Adam with cross-
entropy, and RMSProp with Dice loss. All four models were quite similar when making
predictions. The fact that all used di�erent optimizers shows how di�erent combinations
of hyperparameters can be used to reach a global optimum. The robustness of the U-net

6.2. Comparing Results 67

architecture might be a factor that contributed to so many successful models. Because
of the solid basis provided by U-Net, the models were able to train successfully, perhaps
even when some hyperparameters were not optimal.

A model must handle both specular and di�use reflections to achieve good predictions. As
mentioned in Section 2.5.1, specular reflections are sharp and look similar to the original
weld line, while the di�use reflections light up a larger area around. Overall, the models
performed slightly better on di�use reflections than on specular reflections on both the
simulated and the real-world datasets. Some of the specular reflection lines, particularly
in the simulated dataset, had a striking resemblance to the weld line. Perhaps forcing
the network to a more significant degree di�erentiate the weld line and reflections by the
angles and connection of the lines to other lines in the image. One explanation could
be that di�use reflections generally had a lower intensity than the actual weld line. The
true weld line was more visible, while the di�use reflections were larger and less intense.
Since the local di�erences are a function of the surrounding pixels, they are well suited
for convolutional filtering. However, in some images, the di�use reflections could have
a powerful intensity, resulting in a large portion being bright red. An example of this
can be seen in the blue square on the bottom of Figure 6.2. This particular model only
obtained a Dice score of 0.6109. When a di�use reflection had such high intensity as in
the figure, it was di�cult for the models to predict what part of it was an actual weld
line.

Figure 6.2.: Example of a model struggling to make predictions on very intense di�use
reflections in the bottom of an image, in the blue square. The model used cross-entropy
loss as loss function, SGD as optimizer, a learning rate of 0.001 and batch size 4.

The reason behind why models performed so well in general, could be due to the large
simulated training set. The models were exposed to many di�erent scenarios by having
many images, including specular and di�use reflections on di�erent kinds of metals, dif-
ferent laser intensities, and the angle at which the laser hit the surfaces. This was one
of the many benefits of initial training on a simulated dataset before transfer learning
to a smaller real-world dataset. Since U-net is so advanced it can learn incredibly fast,
however this also makes it prone to overfitting. This was observed on a few of the ini-
tial training runs for the thesis before lowering the number of epochs, as mentioned in
Section 5.1. If U-net is trained on too few images over too many epochs, it could easily
memorize individual images instead of learning to generalize. By automating the process
of generating random and unique images, it is possible to achieve a far larger dataset

68 Chapter 6. Discussion

than a real-world dataset, and in a shorter time than it would take to do it by hand.
The simulations enable the use of such a large dataset that it is possible to use very few
epochs while still getting in enough training steps for the models. Another benefit of
using a simulated dataset is minimizing possible errors on the ground truths since this
is decided by true values and not on eyesight by humans. This is further discussed in
Section 6.2.7.

As expected, connecting to Idun 4.2.1 proved to be a challenge. There was no problem
connecting to the network drive to upload the necessary datasets and code. The tutorials
for this on the NTNU web pages were thorough and well-written. However, the next
step was unclear, specifically how the slurm-file should be written to run the code on the
cluster. The tutorials were perceived as sporadic, only giving partial instructions for what
was needed to run on the cluster and how to write the required slurm-file. As a result,
the thesis used a combination of the NTNU web pages and a specialization project with
an in-depth guide for connecting to and running code on Idun written by NTNU student
Jonas Strand Aasberg [1]. See Appendix B for a short guide on how to access the cluster
and how to write such slurm files.

6.2.1. Accuracy Metrics
The accuracy metrics obtained in this thesis were Dice score, pixel accuracy, sensitivity
and specificity. As explained in Section 3.6, they all have a unique way of evaluating a
model. Dice score was chosen as the primary accuracy metric to evaluate models. In the
preceding specialization project [20], pixel accuracy was the only accuracy metric used to
evaluate models trained on a dataset. However, it was argued that pixel accuracy alone
was insu�cient after evaluating the empirical data. Because the weld line is such a small
part of an image, losing a few pixels or even the complete weld line could still result
in a good pixel accuracy. This may give a misleading impression of a model’s ability,
as predicting partial weld lines is of no aid. When a model already has a good pixel
accuracy result, an improvement will only increase the pixel accuracy percentage by a
minimal amount. As a result, the significance of the alterations made to a model may be
underestimated. As noted in the previous Section 6.2, the four best performing models
were within 0.01 of each other in Dice score. These four models can be found in Table
6.1 with Dice score, pixel accuracy, sensitivity, and specificity. The models all used batch
size 2, over 4 epochs on the simulated dataset and 6 epochs on the real-world dataset,
but di�erent optimizers with their optimal learning rate. The one marked in gray used
Dice loss, while the rest used cross-entropy loss.

Optimizer Dice score Pixel Accuracy Sensitivity Specificity
RMSProp 0.8637 0.9973 0.9019 0.9982

(DL) RMSProp 0.8609 0.9974 0.8477 0.9988
Adagrad 0.8550 0.9971 0.8953 0.9981
Adam 0.8541 0.9971 0.8943 0.9980

Table 6.1.: The four best performing models and their results on the real-world validation
set.

6.2. Comparing Results 69

In comparison to the Dice score, the pixel accuracy for the four models only deviated by
0.003. It is also important to remark that the order would have changed if the models were
ranged based on pixel accuracy instead of the Dice score. The model with RMSProp and
Dice loss got a lower Dice score, but higher pixel accuracy, than the model with RMSProp
and cross-entropy loss. The main distinction between pixel accuracy and Dice score is that
pixel accuracy considers true negatives, whereas Dice score does not. The fact that the
models performed well on the two di�erent metrics raised the question of how the models
made their predictions. Sensitivity and specificity provided further insight. A higher
Dice score correlated with higher sensitivity, the true positive rate. In contrast, a higher
pixel accuracy correlated with higher specificity, the true negative rate. As expected,
sensitivity varied more than specificity since there are far fewer positive masks than
negative masks in the dataset. Due to the modest range in Dice score and pixel accuracy
outcomes, a visual inspection had to be done to detect any significant di�erences between
the approaches. There was no distinct di�erence in predicting the real-world dataset
reflections. When comparing the models based on the di�erent accuracy metrics, it was
expected that there would be a larger variation between them. Incorrect edge detection
accounted for a considerable portion of the error. Small mistakes like this were found
in all models. To highlight the di�erence, the predictions made by the two models were
magnified and are shown in Figure 6.3. The top row consists of two di�erent models
making predictions on the same input image. The bottom row consists of the same two
models making predictions on a second input image. The model to the left reached the
highest Dice score in this thesis and is marked in blue in Table 6.1. The model to the
right reached the second-highest Dice score, but the highest pixel accuracy and is marked
in gray in Table 6.1. To give an understanding of how magnified the images are: Figure
6.3(b) is a magnified part of Figure 6.1.

As seen in Figure 6.3(b) and 6.3(e), the model with the best Dice score and second-best
pixel accuracy had some false positives (red), predicting the weld line to be thicker than it
was. This is especially clear in Figure 6.3(e), where the weld line was particularly narrow
and with minor gaps. However, it has almost no false negatives. The model with the
second-best Dice score and the best pixel accuracy seen in Figure 6.3(c) and 6.3(f) has
very few individual false positives, but does have some larger areas that are false negatives
(green). In Figure 6.3(f) it misses the last part of the weld line in the top right corner of
the image. Both models performed exceedingly well, and choosing a single one would be
di�cult since they have di�erent strengths and weaknesses. The question arose whether
a complete, but too thick weld line should be prioritized over a thinner weld line with
minor gaps. This must be considered for each unique task when used in the industry.

Overall the models performed better than expected. With so many well-performing mod-
els, it was essential to di�erentiate them with multiple accuracy metrics. Sensitivity and
specificity gave a clearer insight into the performance of the models after initially in-
specting the Dice scores. However, as previously stated, visual inspection was required
to distinguish how the best-performing models made their predictions. For further clar-
ification, mean subpixel error or pixel outlier fraction could have been implemented as
accuracy metrics. Since wrong predictions of individual pixels on the weld line edge might
not a�ect the actual welding as much as wrong predictions of pixels far away.

70 Chapter 6. Discussion

(a) Input image 1. (b) The model with the best Dice
score on image 1.

(c) The model with the best pixel
accuracy on image 1.

(d) Input image 2. (e) The model with the best Dice
score on image 2.

(f) The model with the best pixel
accuracy on image 2.

Figure 6.3.: Magnified visual representation of the predictions made by the two best
performing models, on two di�erent images to illustrate how individual pixels of the weld
line are predicted. Yellow are true positive, red are false positive, and green are false
negative of the weld line.

6.2.2. Optimizers
The specialization project [20] discovered results in line with a study performed by Wil-
son, Roelofs, Stern, Srebro and Recht at Berkeley University of California and Toyota
Technological Institute in Chicago in 2017 [60], presented in Section 3.5. The models
with non-adaptive algorithms such as SGD may generate as precise, sometimes more
accurate, results as models with adaptive algorithms such as RMSProp and Adam. A
similar discovery appears in this thesis as well, in the initial learning stage. The best
scoring model with SGD as optimizer had a Dice score of 0.9728 at the end of the last
training epoch on the simulated dataset. In comparison, the best scoring model with
Adam as optimizer had a Dice score of 0.9767, which gives the adaptive optimizer only a
0.0039 higher score. In Figure 6.4 it is clear that both the model with SGD 6.4(a) and
the model with Adam 6.4(b) produce precise predictions without clearly visible di�erence
between their preciseness. The lack of di�erence agrees with the conclusions reached by

6.2. Comparing Results 71

both [20] and [60] that models can produce as precise predictions with SGD as with Adam
as their optimizer, at least in the initial learning executed on the simulated dataset.

(a) Initial Learning - SGD.

(b) Initial Learning - Adam.

Figure 6.4.: Comparison of a simulated input image, the ground truth and the model
predictions of the best scoring models for optimizers SGD and Adam at the end of the
last epoch of initial learning.

However, the di�erence between the non-adaptive and adaptive optimizers became more
significant when transfer learning was conducted. At the end of the last epoch of transfer
learning, the model with SGD had a Dice score of 0.8443 while the model with Adam had
0.8541, which was a di�erence of 0.0098. This was twice as high as the di�erence at the
end of the initial learning. Illustrating an advantage of using an adaptive optimizer such
as Adam when transfer learning, even though the di�erences were minor overall. The
di�erence is visually presented in Figure 6.5, where the prediction made by the model
with Adam in Figure 6.5(b) is more precise than the one made by the model with SGD
in Figure 6.5(a), even though the di�erences are less prominent than expected, which
coincides with their di�erences in Dice score.

72 Chapter 6. Discussion

(a) Transfer Learning - SGD.

(b) Transfer Learning - Adam.

Figure 6.5.: Comparison of the input image, the ground truth and the model predictions
of the best scoring models for optimizers SGD and Adam at the end of the last epoch of
transfer learning.

New studies similar to this thesis underline that adaptive optimizers are more suited
for transfer learning. Two di�erent studies were published in 2021, the classification of
tomato leaf disease [54], and volcanic rocks [41] from images using transfer learning with
convolutional neural networks. Both studies reached the same conclusion when comparing
SGD, RMSProp and Adam as optimizers in their networks. Their numbers were slightly
di�erent, but they both concluded that Adam was the optimal optimizer, with RMSProp
following closely behind and SGD coming in last, achieving a lower accuracy than the
adaptive optimizers. The study of tomato leaf disease experienced a more considerable
di�erence between the two adaptive optimizers than the study of volcanic rocks. This
di�erence might be due to the di�erent convolutional neural networks used in the two
studies. The tomato leaf disease study used Modified-Xception deep neural network,
while the study of the volcanic rocks used Dense-Net121 and ResNet50. In addition, they
used di�erent functions to calculate accuracy, but neither used Dice score. Both studies
present a very little di�erence between RMSProp and Adam, the accuracy di�erences
were as small as 0.0054 and 0.0036. These results are in line with the results presented in
Section 5.2, only that the di�erence was the other way around, with RMSProp achieving
the highest Dice score, and a slightly higher pixel accuracy as well, as seen in Table 6.1.

Based on the specialization project and literature concerning both U-Net and transfer

6.2. Comparing Results 73

learning, for instance, the two studies presented in the previous paragraph, an expecta-
tion for Adam to be the optimal optimizer was natural. Yet, the results in this study
contradicted this expectation. A possible reason for this contradiction might be that the
two studies presented used di�erent networks than U-Net. Most studies of transfer learn-
ing with U-Net only use Adam as optimizer. An interesting observation is that the results
in this thesis have a slightly higher di�erence in Dice score than in pixel accuracy between
RMSProp and Adam. RMSProp has a 0.0096 higher Dice score than Adam. However,
when comparing the models’ pixel accuracy, the di�erence is only 0.0002 in favor of RM-
SProp, which is even smaller than the accuracy di�erences detected in the two studies
[54] and [41]. Comparing the severely low pixel accuracy di�erence with the higher Dice
score di�erence is a reminder of the importance of the precision measuring method. This
might argue that both RMSProp and Adam are suitable for transfer learning with deep
convolutional neural networks. Figure 6.6 illustrate model predictions made on the same
real-world image by a model with RMSProp in Figure 6.6(a) and a model with Adam in
Figure 6.6(b). The visual di�erences between the model predictions are minimal, even
though they have a Dice score di�erence of 0.0096 in favor of RMSProp.

(a) RMSProp.

(b) Adam.

Figure 6.6.: Comparison of a real-world input image, the ground truth and the model
predictions of the two best scoring models using RMSProp or Adam as their optimizer
algorithm.

Overall the di�erences in both Dice scores presented in Table 5.1 and the visual model
predictions in Figures 6.5 and 6.6 are less significant than expected, which could be a

74 Chapter 6. Discussion

confirmation of the robustness of the network. A likely reason that a lot the models made
good predictions regardless of their optimizer and learning rate is the size of the simulated
dataset used in initial learning. With a dataset of 4000 images, all the models could adjust
their weights well before they proceeded to the transfer learning. Unexpectedly lowering
the learning rate from the simulated dataset to the real-world dataset had little e�ect on
the results. This may be because the changes in learning rate were to subtle. Therefor a
lot of models were trained with equal learning rates in initial and transfer learning.

6.2.3. Batch Size
Section 5.3 presents how the models with a batch size of 2 achieved the highest Dice
score compared to batch sizes 4 and 16, regardless of the optimizer used by the model. In
addition, the Dice score decreased as the batch size increased, with the batch size of 16
achieving the lowest Dice scores. Smaller batch sizes allow for more updates per epoch
and the possibility to learn and perform minor improvements more often and sooner than
larger batch sizes, as explained in Section 3.3. This is possibly why the smallest batch size
achieved the highest Dice score for transfer learning since the real-world dataset contains
so few images. Additionally, the smaller batch sizes also allow for more random noise. The
larger batch size is less exposed to noise and unpredictability, making it more vulnerable
to local optimums.

The relatively small real-world dataset can explain why the model with the smallest
batch size is the highest achieving, as the model with the highest batch size would need
more images to update enough times to reach a high Dice score. A possible action to
ensure that a model with a larger batch size has enough updates would be to increase the
number of epochs, but this would increase the possibility of more overfitting. To avoid
this a possibility could be to incorporate a break in the learning when the loss function
converges, this is further discussed in Section 6.4. Section 3.3 also motions that a bigger
batch size might be more e�cient since it can handle more of the training set at once,
which comes to an advantage when the training set is su�ciently large, which seems not
to be the case for the real-world training set of 160 images. On the other hand, the
simulated training set is extensive, with its 3200 images, resulting in the model with the
larger batch size reaching high Dice scores at the end of the initial training. Figure 6.7
illustrates the Dice scores for models with varying batch size at the end of initial learning
and transfer learning. The Dice scores reached by the transfer learning were as expected,
with the model with a batch size of 2 achieving the highest score and then a declining
score when the models increased the batch size. At the end of the initial learning it would
be reasonable to expect that the model with the largest batch size would have the highest
Dice score. That is because the dataset could be large enough to perform enough training
steps per epoch. At the same time, the use of more images per batch could adjust the
models towards an optimum of a more significant part of the dataset for every training
step. However, this is not the case, the model with batch size 4 reached the highest Dice
score at the end of initial learning. Notably, the overall di�erences between the scores at
the end of initial learning were slight, as seen in the figure, all scores were above 0.96,
with batch size 4 scoring 0.013 higher than batch size 16. The slight di�erence in initial
learning compared to transfer learning illustrate that the batch size has more influence
when the size of the dataset is smaller.

6.2. Comparing Results 75

2 4 16
0.8

0.85

0.9

0.95

1
D

ic
e

Sc
or

e

Initial Learning
Transfer Learning

Figure 6.7.: Dice scores at the end of the initial learning and transfer learning for the
best scoring model with RMSProp as optimizer and varying batch sizes between 2, 4 and
16.

Table 5.2 in Section 5.3 lists all the Dice scores for models with di�erent optimizers and
with varying batch sizes. By reading the table from top to bottom, gradually from the
non-adaptive optimizer SGD to the most adaptive optimizer Adam, it is observed that the
increase in batch size had less impact on the adaptive optimizers. SGD had the biggest
di�erence, 0.1368, while Adam and RMSProp had the smallest, 0.0397 and 0.0368. This
is another example of how these adaptive optimizers are a good fit for transfer learning
models.

Figure 6.8 illustrates the spikes in the loss function of a model with batch size 2. The
spikes are a consequence of mini-batch learning with such a small batch size. The spikes
result from some mini-batches containing noise and unfortunate, unpredictable training
data. It is possible that lowering the learning rate further could have minimized the
spikes. However, the plots are generally trending evenly, making batch size a likely cause
of the spikes. Smoother plots for the models with an increased batch size confirmed this
possibility. These spikes are even more prominent when using SGD. The model has to use
larger batch sizes to reduce or remove the spikes. A significantly larger batch size would
require substantially more processing power and probably more epochs as explained in
Section 3.3.

6.2.4. Loss Functions
As presented in Section 3.1.2 Dice loss is known for handling imbalanced class distribution,
which is prominent in the dataset used in this thesis. Dice loss was expected to provide
better learning than cross-entropy loss because the class imbalance advantage combined
with Dice loss allows for more responsive adjustments to the true positive predictions.
Dice loss has been superior in handling class imbalance for many similar studies. A
study published in Computerized Medical Imaging and Graphics in 2022 on generalizing

76 Chapter 6. Discussion

Figure 6.8.: Loss function plot illustrating the spikes in training loss of a model with
batch size 2.

Dice and cross-entropy based losses to handle class imbalance [58] found that the Dice-
based loss functions performed better with imbalanced data for all but one of their five
experiments. This thesis is another exception where Dice loss is outperformed, as seen
in Section 5.4. A possible reason for the deficient performance of Dice loss can be its
vulnerability to hyperparameters. The di�erent combinations tested may have caused
the learning to move towards a local optimum and not being able to traverse out, instead
of reaching the global optimum.

The study of class imbalance [58] found a clear visual di�erence between the segmenta-
tions generated by di�erent loss functions. They observed an association between cross-
entropy-based loss functions and a greater proportion of false negative predictions, which
contradicts the observations from this thesis. Figure 6.3(c) and 6.3(f) in Section 6.2.1 use
Dice loss and illustrate a greater proportion of false negative predictions than 6.3(b) and
6.3(e) which use cross-entropy loss and achieved the highest Dice score. This contradic-
tion might be due to the heavy weighting ratio of classes used in the cross-entropy loss
with 0.3 for the background and 0.7 for the weld line in this thesis. The heavy weighting
could be a reason for cross-entropy performing better than Dice loss.

The validation loss, the orange function, is lower for the model with Dice loss as loss
function, Figure 6.9(b), than for the model with cross-entropy loss, Figure 6.9(a). It
was unexpected that Dice loss, with its lower loss, did not achieve the highest Dice
score. Especially since Dice loss uses Dice score to calculate the loss, as seen in the
mathematical composition of the Dice loss function in Section 3.1.2. This could be due to
hyperparameter vulnerability, causing the model to fall into a local optimum from which
it is unable to escape in order to reach the global optimum. If the model gets stuck in a
local optimum, it gets harder to tune the weights continually. Another e�ect of this can
be seen in Figure 6.9. The figure illustrates how the model with Dice loss in Figure 6.9(b)

6.2. Comparing Results 77

(a) Cross-Entropy Loss.

(b) Dice Loss.

Figure 6.9.: Comparing the loss plots of two identical models with the single di�erence
that one uses cross-entropy loss while the other uses Dice loss.

has notably fewer and less prominent peaks than the model with cross-entropy in both
initial and transfer learning.

6.2.5. E�ects of Di�erent Materials
The Dice scores presented in Section 5.5 were much higher than expected. All models
reached a Dice score over 0.831 when trained on both aluminium and steel before being
validated on either material. This illustrated the robustness of the models established
through the initial training. As previously mentioned, the expectation was that the
di�erent reflections on the di�erent materials would have a greater impact. The models
exceeded expectations when removing specular reflections, this is especially evident in
the model trained on steel and validated on aluminium, reaching a Dice score of 0.8041.

78 Chapter 6. Discussion

Figure 6.10 show a prediction made by this model and how it successfully removed all the
specular reflections.

Figure 6.10.: Comparison of the input image, the ground truth and the model predictions
of a model trained on aluminium and validated on steel during transfer learning.

Overall the models with RMSProp as their optimizer algorithm reached the best Dice
score when hyperparameters were compared. However, when the models were tested on
either aluminium or steel, as presented in Section 5.5, the results varied. When the models
were validated on aluminium RMSProp achieved the best results, but when validated on
steel Adam was superior, even though the di�erences were minor. The minor variations
and the fact that the superior optimizer varied substantiated the arguments made in
Section 6.2.2, that both Adam and RMSProp are suitable and well-performing optimizers
for transfer learning tasks. Another reason for the variation may be the small validation
dataset used. In order to validate the models on either steel or aluminium the validation
set only contained 20 real-world images per material. The small validation dataset has
the vulnerability that one di�cult image could have a large impact on the total Dice
score, altogether making the models more sensitive.

The observations contradicted expectations. The fact that the models had high Dice
scores overall and the slight di�erence between the scores reached when validating on
aluminium with specular reflections or steel with di�use reflections can have several con-
tributing factors. Firstly, the reflections produced on steel were less di�use than expected,
making the di�erences between the two materials less prominent. Secondly, the models
seemed to generalize the di�erence between the actual weld line and the reflections in
other directions, as mentioned in Section 6.2.1. The more eminent contributor is the
pixels on the weld line. It seems that both aluminium and steel have relatively similar
thickness and intensity of weld lines in addition to similar transitions from the weld line
to the background. Therefore, it is probable that the U-Net models were able to produce
equally precise model predictions regardless of the material being aluminium or steel.
Figure 6.11 illustrates the similarities of the laser.

6.2. Comparing Results 79

(a) Aluminium. (b) Steel.

Figure 6.11.: Segmentation comparison of the predictions against the ground truths on
aluminium and steel.

6.2.6. E�ects of Dataset Composition
The results from Section 5.6 showed how using only simulated images for training gave
poor predictions on real-world images. The loss function plot for the best model when only
training on simulated images can be seen in Figure 6.12. This model only reached a Dice
score of 0.3807. The figure contains the loss on the training and validation set similarly
to the other loss plots throughout the thesis. In addition, this figure also incorporates
the validation loss for the real-world images. The di�erence in validation loss on the
simulated and real-world datasets provided information on how the Dice score could
become so low for the model. It was expected that the two validation losses would be
close to each other. However, the simulated validation loss stayed close to the training
loss, and the real-world validation loss was far higher. Because the simulated training and
validation loss had converged towards the end of the training, adding more epochs would
be ine�ective since the model had reached an optimum for this dataset. Another fact to
support this thought can be seen from the Dice score plotted throughout the training for
the same model. The figure was earlier shown in Section 5.6. Here, the Dice score of the
real-word dataset peaks early before falling while the Dice score of the simulated dataset
keeps climbing. Suggesting some critical learning points from the simulated dataset were
not always applicable to the real-world dataset. This can be a consequence of the fact
that the two datasets were so di�erent and is further discussed in Section 6.2.7.

Already when the initial training was on 3200 images and transfer learning on as few as
20 real-world images, the performance of the models rose significantly. The fact that the
models achieved good results after only transfer learning on 20 real-world images suggests
that the models learned weld line patterns in the simulated dataset and could adjust the
weights for properties more explicitly in the real-world dataset. Leaping from 0.3807 on
zero real-world images to 0.7842 on 20 real-world images. As expected, the Dice score

80 Chapter 6. Discussion

Figure 6.12.: Plot of the training and validation loss during training on the simulated
dataset and the validation loss on the real-world dataset.

improved further by adding additional real-world images. A larger dataset is advantageous
since the models can learn to generalize to a greater extent. This improvement kept going
up, but slowed down after 60 real-world images scoring 0.8223, only 0.0312 lower than
the model using 160 images which scored 0.8541. This is encouraging when looking
at suitability for the industry since real-world images are time-consuming to produce.
When the simulated dataset contained 1000 images and the real-world dataset contained
20 images, the Dice score was almost as high as the score reached by the model with 3200
simulated images. However, there was almost no improvement when adding a few more
real-world images. Perhaps being a sign that using too few images in the simulated dataset
limits the models understanding, since it has not experienced enough unique samples and
scenarios.

6.2.7. Possible Errors
Machine learning should be trained on the same data that it will be working with to
achieve the best outcomes. However, as earlier discussed, obtaining the necessary dataset
can be both resource- and time-consuming. Transfer learning can be seen as a compromise,
providing more samples to train on, though they are not specific for the task at hand.
For this thesis, the simulated and real-world images were more di�erent than expected.
The simulated weld lines were approximately 3 pixels wide, while the real-world weld
lines varied to a large degree and could be up to 12 pixels wide. The profiles used in the
datasets had di�erent modules, the notches and grooves, resulting in di�erent reflection
angles. Another aspect was the materials used, resulting in the reflections having a
more extensive spread on the real-world images. These di�erences would have negatively
a�ected the final result of the models since the weights would have di�erent optimums.

6.3. Suitability for Industry Implementation 81

The di�erence could be minimized by adjusting either of the datasets. For the simulated
dataset, the parameters for the materials, such as roughness, could be adjusted. The
laser thickness, or the size of the modules, could be set to match the real-world dataset
better. For the real-world dataset, possible adjustments could be having di�erent lighting
in the room, changing camera settings, using a weaker laser, or performing some pre-
processing on the images. Additionally, the camera could be fitted with a filter, known as
red interference bandpass, only allowing the light of particular wavelengths equal to the
laser through the lens. Modifying the simulated dataset could be more e�ective because
all the data and corresponding ground truth could easily be located and managed.

As discussed in Section 6.2.1, many of the incorrectly predicted pixels came as a result
of imperfect edge detection of the weld line. This was the case in both the simulated
and real-world datasets. However, it was the most significant in the real-world dataset.
One reason for the imperfect edge detection could be that the intensity of the laser was
strongest in the middle and faded a little towards the edges. In this case, it might be
possible to get a more precise cut edge by increasing the contrasts in pre-processing.
However, there will always be some roughness and imperfections in natural materials,
spreading a tiny amount of light around the weld line and its edges. Additionally, some of
the incorrectly predicted pixels may result from poorly made ground truths for the real-
world dataset. Since the ground truths were labeled by hand, there is always a possibility
of minor di�erences in what masks a person would choose as positives or negatives. The
ground truth is especially prone to faulty labeling when there is an intense di�use reflection
completely blocking the view of the weld line. In such circumstances, assumptions must
be made since it is impossible to distinguish the actual weld line.

In this thesis, all images have a form of reflection, usually multiple. The first impression is
that this is beneficial because the network can train on various scenarios with reflections.
In the thesis, the models performed admirably. However, it may be possible that it could
have a impact on the performance in industrial use. Not all images in real use will have
reflections, but since the network is constantly trained to eliminate something from an
image, the network may still want to predict some laser lines as negatives. This could
lead to a higher rate of false negatives than seen in the thesis when utilized in the real
world. In future work it would be interesting to compare the results of models validated
on a dataset containing images both with and without reflections.

6.3. Suitability for Industry Implementation
One of the main points discussed in the suitability for industry implementation in the
specialization project [20] that made the grounds for this thesis was the transition from
a simulated to a real-world environment. This thesis solved this obstacle using transfer
learning. The successful transfer learning exhibited in this thesis opens for more stan-
dardized and automatic use. The opportunity to use an already made model, including a
large set of simulated images with corresponding ground truths, pre-tuned neural network
architecture and a structured folder and file system, makes implementation possible and
much more seamless. One crucial step to make the implementation seamless would be to
automate the process of making ground truths. Section 4.1.2 explain how ground truths
were made manually through Gimp, which requires time and knowledge of the editing

82 Chapter 6. Discussion

program and is a possible source of manual errors. If this step were to be automated, the
user would only be required to place a set of real-world images into a specific folder and
have access to the processing power to run the model.

From the results with di�erent dataset compositions in Section 6.2.6 the models achieved
functional and even good results when transfer learning on as few as 20 real-world images.
This is another positive property when discussing the suitability for industry implemen-
tation, that a user would only need to take and upload a couple of dozen images. Another
promising result was that the same model with only 20 real-world images achieved al-
most the same Dice score with a simulated data set of only 1000 images as with a data
set three times the size. The robustness illustrated with a relatively stable Dice score is
promising and lowers the need for extensive processing power. This thesis trained models
using the Idun cluster, with A100 and a training time of approximately 15 minutes. The
same models had a training time of roughly 45 minutes when tested for comparison on
the GeForce Ti that was used in [20]. Even though the GeForce needs more time to run
the models, it is a more accessible and significantly less expensive GPU as explained in
Section 4.2.1. Therefore, it might be more reasonable to assume a user could have access
to a similar processing unit. However, whether these results and Dice scores are high
enough to qualify the models for industry implementation would be up to the potential
users. Investigating this would be a natural part of future work.

The implementation in the industry already discussed is based on the users receiving
the fully computed network and folder structure similar to this thesis. If a user were
to build a similar network from scratch, it would require the user to possess knowledge
and understanding of both machine learning and computer graphics. In addition, the
user would have to generate large enough simulated and real-world image datasets with
corresponding ground truths. It would be significantly more time-consuming to build
similar models from scratch than to receive an already complete network. However, it
is still possible and suitable, even though the most e�ective implementation would be to
obtain the already made and tuned network with folder and file structure.

To conclude, if the results presented in this thesis are adequate for implementation and
the process of making ground truths is automated, transfer knowledge models similar to
the once presented could most certainly be suitable for implementation and use in the
industry.

6.4. Future Work
There are several subjects that would be interesting to examine further. It would be
fascinating to train models with validation sets that include images without reflections,
as already mentioned. It would also be interesting to use other cameras, study the e�ects
of a regular camera or even a phone camera, or use images with more pixels. For example,
images of size 1024◊1024 might procure more accurate results, though this would require
more training time. It could be interesting to make an algorithm that automatically stops
the learning when the loss function plateaus to counteract overfitting during the training
process. This type of algorithm would also allow for more flexible learning and potentially
a larger number of epochs. The algorithm would only train for the necessary amount,
which again could counteract overfitting and potentially reduce the training time and

6.4. Future Work 83

increase results. It would be interesting to implement such an algorithm to explore the
consequences, if the results are significantly better it could improve the suitability for
industry implementation. Another possibility to test in the future could be to freeze
certain layers and place a linear classifier on top of the output probabilities. It would
likely yield similar results, but minimizing the risk of overfitting. There are also even more
combinations of hyperparameters that can be tested in future work to explore their impact
on the results. For instance, studies as [58] achieve promising results using compound
loss functions that use the benefits of both cross-entropy loss and Dice loss.

All the various computing possibilities presented would be interesting to study in the fu-
ture. However, the more pressing question is whether users would implement the transfer
learning models and the possible improvements to make them even more suitable for the
industry. The only ones suited to answer this question are the potential users. Therefore
it would be a natural next step to reach out to the industry and potential users to conduct
research and get an insight into their needs and the steps needed to make the industry
implementation a reality.

Chapter 7.

Conclusion

In this thesis, transfer learning was used to successfully transfer knowledge from a sim-
ulated to a real-world environment. Through semantic segmentation, the models were
developed to estimate the pixel-wise position of the correct weld line. U-net was used
with varying hyperparameters in order to produce an optimal model. Di�erent combi-
nations of batch sizes, epochs, loss functions, learning rates and optimizers were used to
compare results and analyze their e�ect on the overall performance of the models.

In general, the models achieved better results than expected. The models with the high-
est Dice scores used adaptive optimizers and low learning rates, though the di�erences
between the models were smaller than expected. The U-net architecture was the primary
reason why many models with such diverse hyperparameters performed so well. The deep
and complex architecture provided robustness, and it makes sense that U-net is so com-
monly seen in other semantic segmentation studies. However, the architecture comes with
its disadvantages, the complexity requires a lot of resources. The access to significantly
more processing power through the Idun cluster was pointed out as a contributing factor
to the overall high Dice scores, since this allowed for a drastic increase in dataset size.

Models were made with varying ratios of di�erent materials in the real-world images to
further study the abilities of the transfer learning models and their suitability for industry
implementation. Both specular and di�use reflections were handled well regardless of
material. Another important aspect when discussing the suitability for implementation
was the size of the real-world dataset, and that the transfer learning exceeded expectations
with small real-world datasets. The fact that the models performed well, after only
training on a handful of real-world images, showed that they learned a lot about weld
line patterns in the simulated dataset, and were able to further modify the weights for
attributes more specifically in the real-world dataset.

The di�erence in laser thickness between simulated and real-world images and imperfect
edge detection led to a slight decrease in Dice scores. E�orts should be made to achieve
as similar datasets as possible. Specifically, the simulated dataset should be modified
to match the real-world dataset. This is because the entire simulated dataset can be
regenerated easily by only adjusting some parameters.

The results obtained in this thesis agree with similar studies presented throughout the

86 Chapter 7. Conclusion

thesis, that the U-Net architecture used with an adaptive optimizer is suitable for transfer
learning tasks. The high Dice scores that these transfer models reach lay an exiting
foundation for further work and industry implementation.

References

[1] J. S. Aasberg. Machine learning using 3d data on a high performance computing
cluster. NTNU, 2021.

[2] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado, A.
Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving, M. Isard,
Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mane, R. Monga, S.
Moore, D. Murray, C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K.
Talwar, P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viegas, O. Vinyals, P. Warden,
M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng. Tensorflow: large-scale machine
learning on heterogeneous systems, 2015. URL: https://www.tensorflow.org/.

[3] D. Allman, A. Reiter, and M. A. L. Bell. A machine learning method to identify
and remove reflection artifacts in photoacoustic channel data. IEEE International
Ultrasonics Symposium (IUS):1–4, 2017. doi: 10.1109/ULTSYM.2017.8091630.

[4] O. Alstad. Convolutional neural networks for filtering reflections in laser scanner
systems. Department of Mechanical and Industrial Engineering, NTNU, 2021. doi:
https://hdl.handle.net/11250/2787885.

[5] Ambientcg, 2021. URL: https://ambientcg.com/.
[6] A. Araujo, W. Norris, and J. Sim. Computing receptive fields of convolutional neural

networks. Distill, 2019. doi: 10.23915/distill.00021.
[7] A. A. Awan, H. Subramoni, and D. K. Panda. An in-depth performance characteri-

zation of cpu- and gpu-based dnn training on modern architectures. Association for
Computing Machinery, 2017. doi: 10.1145/3146347.3146356.

[8] Canon science lab: cmos sensors, 2022. URL: https://global.canon/en/technology/

s_labo/light/003/05.html.
[9] CECI. Slurm quick start tutorial, 2022. URL: https://support.ceci-hpc.be/

doc/_contents/QuickStart/SubmittingJobs/SlurmTutorial.html.
[10] S.-B. Chen. On intelligentized welding manufacturing. 363:3–34, 2015. doi: 10.

1007/978-3-319-18997-0_1.
[11] Common vision blox, 2022. URL: https : / / www . commonvisionblox . com / en /

common-vision-blox-powerful-fast-modular/.
[12] computar. Mpz series machine vision lens v1226-mpz 1" 12mm f2.6, 2022. URL:

https://computar.com/product/1450/V1226-MPZ.
[13] J. Duchi, E. Hazan, and Y. Singer. Adaptive subgradient methods for online learning

and stochastic optimization. Journal of Machine Learning Research, 12(61):2121–
2159, 2011.

https://www.tensorflow.org/
https://doi.org/10.1109/ULTSYM.2017.8091630
https://doi.org/https://hdl.handle.net/11250/2787885
https://ambientcg.com/
https://doi.org/10.23915/distill.00021
https://doi.org/10.1145/3146347.3146356
https://global.canon/en/technology/s_labo/light/003/05.html
https://global.canon/en/technology/s_labo/light/003/05.html
https://support.ceci-hpc.be/doc/_contents/QuickStart/SubmittingJobs/SlurmTutorial.html
https://support.ceci-hpc.be/doc/_contents/QuickStart/SubmittingJobs/SlurmTutorial.html
https://doi.org/10.1007/978-3-319-18997-0_1
https://doi.org/10.1007/978-3-319-18997-0_1
https://www.commonvisionblox.com/en/common-vision-blox-powerful-fast-modular/
https://www.commonvisionblox.com/en/common-vision-blox-powerful-fast-modular/
https://computar.com/product/1450/V1226-MPZ

88 References

[14] O. Egeland. Robot vision. Department of Mechanical and Industrial Engineering,
NTNU, 2021.

[15] M. Ferguson, S. Jeong, K. H. Law, S. Levitan, A. Narayanan, R. Burkhardt, T. Jena,
and Y.-T. T. Lee. A standardized representation of convolutional neural networks
for reliable deployment of machine learning models in the manufacturing industry.
International Design Engineering Technical Conferences and Computers and Infor-
mation in Engineering Conference, Volume 1: 39th Computers and Information in
Engineering Conference, 2019. doi: 10.1115/DETC2019-97095.

[16] J. G. D. M. Franca, M. A. Gazziro, A. N. Ide, and J. H. Saito. A 3d scanning
system based on laser triangulation and variable field of view. IEEE International
Conference on Image Processing, 2005. doi: 10.1109/ICIP.2005.1529778.

[17] I. Goodfellow, Y. Bengio, and A. Courville. Deep Learning. MIT Press, 2016. http:

//www.deeplearningbook.org.
[18] S. Grans and L. Tingelstad. Blazer: laser scanning simulation using physically based

rendering. arXiv preprint arXiv:2104.05430, 2021.
[19] R. I. Hartley and A. Zisserman. Multiple View Geometry in Computer Vision. Cam-

bridge University Pres, 2nd edition, 2004. isbn: ISBN: 0521540518. doi: 10.1017/

CBO9780511811685.
[20] A. B. Holm and K. Kallseter. Machine learning for weld line laser-reflection removal.

Department of Mechanical and Industrial Engineering, NTNU, 2021.
[21] Image: laser triangulation. URL: https://imaging.teledyne-e2v.com/products/

applications/3d-imaging/laser-triangulation/.
[22] M. Inkawhich. Pytorch, saving and loading models, 2022. URL: https://pytorch.

org/tutorials/beginner/saving_loading_models.html.
[23] J. R. Jensen. Introductory Digital Image Processing: A Remote Sensing Perspective.

Chapter 8, Thematic Information Extraction: Image Classification. Upper Saddle
River, New Jersey: Prentice-Hall, second edition, 1996, pages 234–252.

[24] J. Jeong, T. S. Yoon, and J. B. Park. Towards a meaningful 3d map using a 3d lidar
and a camera. Sensors, 18(8):2571, 2018. doi: 10.3390/s18082571.

[25] E. S. Jonathan Long and T. Darrell. Fully convolutional networks for semantic seg-
mentation. IEEE Conference on Computer Vision and Pattern Recognition (CVPR):3431–
3440, 2015. doi: 10.1109/CVPR.2015.7298965.

[26] P. Kah, M. Shrestha, E. Hiltunen, and J. Martikainen. Robotic arc welding sensors
and programming in industrial applications. International Journal of Mechanical
and Materials Engineering, 10:13, 2015. doi: 10.1186/s40712-015-0042-y.

[27] I. Kandel and M. Castelli. The e�ect of batch size on the generalizability of the
convolutional neural networks on a histopathology dataset. ICT Express, 6(4):312–
315, 2020. issn: 2405-9595. doi: https://doi.org/10.1016/j.icte.2020.04.010.

[28] D. P. Kingma and J. Ba. Adam: a method for stochastic optimization. Published as a
conference paper at the 3rd International Conference for Learning Representations,
2015. doi: 10.48550/ARXIV.1412.6980.

https://doi.org/10.1115/DETC2019-97095
https://doi.org/10.1109/ICIP.2005.1529778
http://www.deeplearningbook.org
http://www.deeplearningbook.org
https://doi.org/10.1017/CBO9780511811685
https://doi.org/10.1017/CBO9780511811685
https://imaging.teledyne-e2v.com/products/applications/3d-imaging/laser-triangulation/
https://imaging.teledyne-e2v.com/products/applications/3d-imaging/laser-triangulation/
https://pytorch.org/tutorials/beginner/saving_loading_models.html
https://pytorch.org/tutorials/beginner/saving_loading_models.html
https://doi.org/10.3390/s18082571
https://doi.org/10.1109/CVPR.2015.7298965
https://doi.org/10.1186/s40712-015-0042-y
https://doi.org/https://doi.org/10.1016/j.icte.2020.04.010
https://doi.org/10.48550/ARXIV.1412.6980

References 89

[29] M. Kumar, M. Shanavas, A. Sidappa, and M. Kiran. Cone beam computed tomogra-
phy - know its secrets. PMC: US National Library of Medicine, National Institutes
of Health, 7(2):64–68, 2015.

[30] Y. Ma, S. Soatto, J. Koöecká, and S. S. Sastry. An Invitation to 3-D Vision: From
Images to Geometric Models. Springer Science Business Media, New York, USA,
2004. doi: 10.1007/978-0-387-21779-6.

[31] W. J. Matt Pharr and G. Humphreys. Physically based rendering: From theory
to implementation. Morgan Kaufmann Publishers Inc., third edition, 2016. isbn:
9780128006450.

[32] P. Mattis and S. Kimball. Gimp: gnu image manipulation program, 1995. URL:
https://www.gimp.org/.

[33] M. Mattsson. Laser line extraction with sub-pixel accuracy for 3d measurements.
Department of Mathematics, Linköping University, 2020.

[34] A. Meier, M. Kropp, and G. Perellano. Python experience report of teaching ag-
ile collaboration and values: agile software development in large student teams.
IEEE 29th International Conference on Software Engineering Education and Train-
ing (CSEET):76–80, 2016. doi: 10.1109/CSEET.2016.30.

[35] Microsoft. Visual studio code, 2015. URL: https://code.visualstudio.com.
[36] NTNU. Idun: high performance computing group. URL: https://www.hpc.ntnu.

no/idun/.
[37] NVIDIA. Geforce gtx 1080 ti, 2022. URL: https://www.nvidia.com/en- sg/

geforce/products/10series/geforce-gtx-1080-ti/.
[38] NVIDIA. Nvidia a100 tensor core gpu, 2022. URL: https://www.nvidia.com/en-

sg/data-center/a100/.
[39] S. J. Pan and Q. Yang. A survey on transfer learning. IEEE Transactions on Knowl-

edge and Data Engineering, 22(10):1345–1359, 2010. doi: 10.1109/TKDE.2009.191.
[40] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z.

Lin, N. Gimelshein, L. Antiga, A. Desmaison, A. Kopf, E. Yang, Z. DeVito, M.
Raison, A. Tejani, S. Chilamkurthy, B. Steiner, L. Fang, J. Bai, and S. Chintala.
Pytorch: an imperative style, high-performance deep learning library, 2019. URL:
http://www.deeplearningbook.org.

[41] Ö. Polat, A. Polat, and T. Ekici. Automatic classification of volcanic rocks from
thin section images using transfer learning networks. Neural Computing and Appli-
cations, Springer, 33:11531–11540, 2021. doi: 10.1007/s00521-021-05849-3.

[42] H. Pottmann and J. Wallner. Computational Line Geometry. Springer-Verlag, Berlin,
Germany, 2001. isbn: 3-540-42058-4. doi: 10.1007/978-3-642-04018-4.

[43] T. Preston-Werner, C. Wanstrath, P. J. Hyett, and S. Chacon. Github, 2008. URL:
https://github.com.

[44] Python software foundation, guido van rossum. python, 1991. URL: https://www.

python.org/.
[45] O. Ronneberger, P. Fischer, and T. Brox. U-net: convolutional networks for biomed-

ical image segmentation. in: international conference on medical image computing
and computer-assisted intervention (miccai). Springer. LNCS, 9351:231–241, 2015.

https://doi.org/10.1007/978-0-387-21779-6
https://www.gimp.org/
https://doi.org/10.1109/CSEET.2016.30
https://code.visualstudio.com
https://www.hpc.ntnu.no/idun/
https://www.hpc.ntnu.no/idun/
https://www.nvidia.com/en-sg/geforce/products/10series/geforce-gtx-1080-ti/
https://www.nvidia.com/en-sg/geforce/products/10series/geforce-gtx-1080-ti/
https://www.nvidia.com/en-sg/data-center/a100/
https://www.nvidia.com/en-sg/data-center/a100/
https://doi.org/10.1109/TKDE.2009.191
http://www.deeplearningbook.org
https://doi.org/10.1007/s00521-021-05849-3
https://doi.org/10.1007/978-3-642-04018-4
https://github.com
https://www.python.org/
https://www.python.org/

90 References

[46] M. Rossi, G. Belotti, C. Paganelli, A. Pella, A. Barcellini, P. Cerveri, and G. Baroni.
Image-based shading correction for narrow-fov truncated pelvic cbct with deep con-
volutional neural networks and transfer learning. MEDICAL PHYSICS: The Inter-
national Journal of Medical Physics Research and Practice, 48(11):7112–7126, 2021.
doi: 10.1002/mp.15282.

[47] A. Sarangam. Epoch in machine learning: a simple introduction, 2021. URL: https:

//www.jigsawacademy.com/blogs/ai-ml/epoch-in-machine-learning.
[48] J. G. Semple and G. T. Kneebone. Algebraic Projective Geometry. Oxford Classic

Series. Claredon Press, 1952.
[49] P. Shirley and R. K. Morley. Realistic Ray Tracing. AK Peters, Ltd, Massachusetts,

USA, second edition, 2008. isbn: 9781568814612.
[50] E. Stevens, L. Antiga, and T. Viehmann. Deep Learning with PyTorch. Manning

Publications Co., USA, 2020. isbn: 9781617295263.
[51] S. A. Taghanaki, K. Abhishek, J. P. Cohen, J. Cohen-Adad, and G. Hamarneh.

Deep semantic segmentation of natural and medical images: a review. Artificial
Intelligence Review,Springer, 54:137–178, 2021. doi: 10.1007/s10462-020-09854-

1.
[52] Teledyne dalsa genie nano-gige, 2022. URL: https://www.stemmer-imaging.com/

en/products/series/teledyne-dalsa-genie-nano/.
[53] M. Teulieres, J. Tilley, L. Bolz, P. Ludwig-Dehm, and S. Wagner. Industrial robotics.

Insights into the sector’s future growth dynamics. McKinsey and Company, 2019.
[54] R. Thangaraj, S. Anandamurugan, and V. K. Kaliappan. Automated tomato leaf

disease classification using transfer learning-based deep convolution neural network.
Journal of Plant Diseases and Protection, Springer, 128:73–65, 2021. doi: 10.1007/

s41348-020-00403-0.
[55] T. Tieleman and G. Hinton. Lecture 6.5—rmsprop: divide the gradient by a run-

ning average of its recent magnitude. COURSERA: Neural Networks for Machine
Learning:26–31, 2012.

[56] E. Tiu. Metrics to evaluate your semantic segmentation mode, 2019. URL: https://

towardsdatascience.com/metrics-to-evaluate-your-semantic-segmentation-

model-6bcb99639aa2.
[57] L. Torrey and J. Shavlik. Transfer learning. In Handbook of research on machine

learning applications and trends: algorithms, methods, and techniques, pages 242–
264. IGI global, 2010.

[58] Unified focal loss: generalising dice and cross entropy-based losses to handle class
imbalanced medical image segmentation. Computerized Medical Imaging and Graph-
ics, 95:102026, 2022. issn: 0895-6111. doi: https : / / doi . org / 10 . 1016 / j .

compmedimag.2021.102026.
[59] A. UrbaÒczyk, J. Wright, D. Cowden, I. T. Solutions, H. Y. ÖZDERYA, M. Boyd,

B. Agostini, M. Greminger, J. Buchanan, cactrot, huskier, M. S. de León Peque,
P. Boin, W. Saville, B. Weissinger, Ruben, nopria, C. Osterwood, moeb, A. Kono,
HLevering, W. Turner, A. Trho�, G. Christoforo, just-georgeb, A. Peterson, A.
Grunichev, A. Gregg-Smith, Bernhard, and D. Anderson. Cadquery/cadquery: cad-
query 2.1.

https://doi.org/10.1002/mp.15282
https://www.jigsawacademy.com/blogs/ai-ml/epoch-in-machine-learning
https://www.jigsawacademy.com/blogs/ai-ml/epoch-in-machine-learning
https://doi.org/10.1007/s10462-020-09854-1
https://doi.org/10.1007/s10462-020-09854-1
https://www.stemmer-imaging.com/en/products/series/teledyne-dalsa-genie-nano/
https://www.stemmer-imaging.com/en/products/series/teledyne-dalsa-genie-nano/
https://doi.org/10.1007/s41348-020-00403-0
https://doi.org/10.1007/s41348-020-00403-0
https://towardsdatascience.com/metrics-to-evaluate-your-semantic-segmentation-model-6bcb99639aa2
https://towardsdatascience.com/metrics-to-evaluate-your-semantic-segmentation-model-6bcb99639aa2
https://towardsdatascience.com/metrics-to-evaluate-your-semantic-segmentation-model-6bcb99639aa2
https://doi.org/https://doi.org/10.1016/j.compmedimag.2021.102026
https://doi.org/https://doi.org/10.1016/j.compmedimag.2021.102026

References 91

[60] A. C. Wilson, R. Roelofs, M. Stern, N. Srebro, and B. Recht. The marginal value
of adaptive gradient methods in machine learning. Curran Associates, Inc., 2017.
Berkeley University of California and Toyota Technological Institute at Chicago.

[61] W. Zhi, Z. Chen, Z. L. Henry Wing Fung Yueng, S. M. Zandavi, and Y. Y. Chung.
Layer removal for transfer learning with deep convolutional neural networks. at the
conference of international conference on neural information processing, 2017. URL:
https://www.researchgate.net/publication/320631663_Layer_Removal_

for_Transfer_Learning_with_Deep_Convolutional_Neural_Networks.
[62] F. Zhuang, Z. Qi, K. Duan, D. Xi, Y. Zhu, H. Zhu, H. Xiong, and Q. He. A com-

prehensive survey on transfer learning. 109(1):43–76, 2021. doi: 10.1109/JPROC.

2020.3004555.
[63] K. H. Zou, S. K. Warfield, A. Bharatha, C. M. Tempany, M. R. Kaus, S. J. Haker,

W. M. W. III, F. A. Jolesz, and R. Kikinis. Statistical validation of image seg-
mentation quality based on a spatial overlap index1: scientific reports. Academic
Radiology 11.2, 11(2):178–189, 2004. doi: 10.1016/s1076-6332(03)00671-8.

https://www.researchgate.net/publication/320631663_Layer_Removal_for_Transfer_Learning_with_Deep_Convolutional_Neural_Networks
https://www.researchgate.net/publication/320631663_Layer_Removal_for_Transfer_Learning_with_Deep_Convolutional_Neural_Networks
https://doi.org/10.1109/JPROC.2020.3004555
https://doi.org/10.1109/JPROC.2020.3004555
https://doi.org/10.1016/s1076-6332(03)00671-8

Appendix A.

Accuracy Tables

A.1. Epochs

Optimizer Learning Rate Batch Size Epochs Dice Score
Adam 0.0003, 0.0001 4 4, 6 0.8426
Adam 0.0003, 0.0001 4 2, 6 0.8226
Adam 0.0003, 0.0001 4 1, 4 0.8095
Adam 0.0003, 0.0001 4 3, 2 0.7860
Adam 0.0003, 0.0001 4 2, 10 0.7717
Adam 0.0003, 0.0001 4 4, 3 0.7665

Table A.1.: Dice scores for di�erent models with Adam as optimizer, the optimal learning
rate for Adam and a batch size of 4, but varying in epochs. Ranked based on Dice score.

94 Appendix A. Accuracy Tables

A.2. Optimization Algorithms

Optimizer Learning Rate Batch Size Epochs Dice Score
SGD 0.1 2 4, 6 0.8443

(DL) SGD 0.1 2 4, 6 0.8176
SGD 0.1 4 4, 6 0.8057
SGD 0.1 16 4, 6 0.7074
SGD 0.01 4 4, 6 0.7634
SGD 0.001 4 4, 6 0.6109
SGD 0.0001 4 4, 6 0.4023

Adagrad 0.1 4 4, 6 0.8104
Adagrad 0.01 4 4, 6 0.8151
Adagrad 0.001 2 4, 6 0.8551

(DL) Adagrad 0.001 2 4, 6 0.8421
Adagrad 0.001 4 4, 6 0.8328
Adagrad 0.001 16 4, 6 0.7742
Adagrad 0.0001 4 4, 6 0.7723

RMSProp 0.1 4 4, 6 0.7643
RMSProp 0.01 4 4, 6 0.8225
RMSProp 0.001 4 4, 6 0.8364
RMSProp 0.0001 4 4, 6 0.8551
RMSProp 0.0001 2 4, 6 0.8637

(DL) RMSProp 0.0001 2 4, 6 0.8609
RMSProp 0.0001 16 4, 6 0.8269

Adam 0.1 4 4, 6 0.7073
Adam 0.01 4 4, 6 0.7994
Adam 0.001 4 4, 6 0.8303
Adam 0.001, 0.0001 4 4, 6 0.8409
Adam 0.0003, 0.0001 2 4, 6 0.8541

(DL) Adam 0.0003, 0.0001 2 4, 6 0.8508
Adam 0.0003, 0.0001 4 4, 6 0.8426
Adam 0.0003, 0.0001 16 4, 6 0.8120

Table A.2.: Dice scores for di�erent models with di�erent optimizer algorithms, learning
rates, batch sizes and loss functions. Arranged after the learning rate. The majority of
the models utilized cross-entropy as their loss function with weighted classes of [0.3, 0.7],
except the ones outlined in a light gray and marked with (DL) for Dice loss. The models
reaching the highest dice score for their respective optimizers are outlined in blue.

A.3. Transfer Learning on Di�erent Materials 95

A.3. Transfer Learning on Di�erent Materials

Optimizer Training Validation Dice Score
RMSProp Both Aluminium 0.8361
RMSProp Both Steel 0.8861

Adam Both Aluminium 0.8317
Adam Both Steel 0.8985

RMSProp Aluminium Both 0.8332
RMSProp Aluminium Steel 0.8430
RMSProp Steel Both 0.8468
RMSProp Steel Aluminium 0.8041

Table A.3.: Dice scores for models where the transfer learning was executed using di�er-
ent combinations of aluminium, steel or both in training and validation. All the models
were made using a batch size of two and epochs of four and six. The model reaching the
highest dice score is marked in blue.

A.4. Amount of Real-World Images vs Simulated
Images used in the Transfer Learning Training

Optimizer Simulated images Real-world images Dice Score
used for training used for training

RMSProp 3200 0 0.3807
Adam 3200 0 0.3147

(DL) Adam 3200 0 0.2342
Adam 3200 160 0.8541
Adam 3200 100 0.8376
Adam 3200 60 0.8223
Adam 3200 20 0.7842
Adam 1000 100 0.8152
Adam 1000 60 0.8135
Adam 1000 20 0.7818

Table A.4.: Dice scores on the real-world dataset for models, with optimal hyperpa-
rameters, where both the number of images in the simulated dataset and the real-world
dataset vary during training.

Appendix B.

Connecting to the Idun cluster

As explained in Section 4.2.1, the cluster is a project created at NTNU. Therefore students
at NTNU may ask their supervisor to approve access to the cluster resources that their
department might have. Idun has a website on how to get access to Idun, where the
contact persons for each shareholder are listed and how the procedure to get access is
explained. All a�liations need to have a support agreement with NTNU IT in order to
access the cluster, this is because Idun is a shareholder machine. They have a website
explaining how to become a shareholder and partner in Idun.

After access has been granted, NTNU has websites with instructions to getting started on
Idun, including how to login. For NTNU students, the login requires the feide username
and password both during login in the terminal and when transferring data. For this
thesis, the network drives called Samba were used for mounting Idun’s home and work
directory to a local machine. This is described in transfer data for Windows, macOS, and
Linux users. The files were edited locally on a personal computer before being copied to
the desired folder in the samba home directory. It is also possible to connect Github to
the Samba drives, though this demands further configuration.

For a student to connect to Idun, the computer must be connected to the NTNU network.
If the computer is outside of the school perimeters, it has to connect to a virtual private
network, VPN. NTNU has a website that explains how to download and connect to a
VPN to access the NTNU network outside of the school grounds.

NTNU student Jonas Strand Aasberg has written an in-depth guide for connecting to
and running code on Idun as part of his student project [1]. A resource manager or job
scheduler often organizes this kind of resource sharing on high-performance computing
software such as Idun. Slurm is a Linux cluster management system that is open source.
It facilitates resource allocation and distribution among users, as well as job submission
queues in times of heavy resource demand. This job scheduler manages the scheduling
of the jobs users commit and the allocation of resources to complete these jobs, such as
GPUs and memory [9]. Slurm was the preferred job scheduler for this thesis. The slurm-
files used in the thesis can be found in the Github repository. For example, the slurm-files
allowed for detailed specifications of which programs to run, how many nodes to allocate,
and how many tasks each node should execute, setting time constraints, and requesting
notifications over email after each job was executed. Figure B.1 shows an example of a

98 Appendix B. Connecting to the Idun cluster

slurm-file with comments.

Figure B.1.: Slurm-file example

A slurm-file must initially be uploaded to the network drive to run a job. Then the user
must navigate to the correct folder in the directory containing both the slurm-file and
necessary code files. The slurm-file would run by writing the following command in the
terminal:

sbatch slurm-file.slurm

Then the user would receive a confirmation mail that the job was committed and when
the job was finished. The outputs would be saved in a file called slurm-job-number.out in
the same folder as the slurm-file.

