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Abstract—Wave-propelled autonomous surface vehicles are
becoming increasingly popular in oceanographic research due
to their ability to provide persistent observations of the ocean
environment. This type of vehicles are propelled purely by
environmental forces which greatly enhances endurance. How-
ever, unlike vehicles with motorized propulsion, the velocity of
wave-propelled autonomous surface vehicles cannot be controlled
actively, making mission planning routines depend on predictions.
In this work, we compare two methods based on linear regression
and Gaussian process regression for predicting the speed of
the wave-propelled autonomous surface vehicle AutoNaut. The
regression models are trained using onboard measurements gath-
ered during field operations, while the predictions are performed
using metocean (wind, wave and current) forecasts. The Gaussian
process regression model proves to be the most accurate way of
predicting the speed of the vehicle.

I. INTRODUCTION

Large scale climate changes make the ocean a continuously

evolving environment. This represents a threat to biodiversity,

and persistently monitoring the changes is a necessity. This

motivates science-driven oceanic exploration, where observa-

tion of the upper water column by means of robotic sys-

tems has already been demonstrated [1], [2], [3], [4]. Today,

ocean monitoring relies on robotic platforms or ship-based

platforms as a supplement to remote sensing, e.g. [5]. Ship-

based monitoring cannot scale over time or space and most

robotic platforms are heavily constrained due to, for example,

energy requirements and proximity to the shore or having the

need of support vessels to operate.

This motivates the use of long-endurance robotic platforms

with the capability of operating in harsh environments and

for longer periods of time. An example of such platforms are

green energy surface vehicles that harvest energy from the

environment to sustain themselves for long missions. Several

examples of these vehicles exist today, for example Liquid

Robotics’ Wave Glider [6], Offshore Sensing SailBuoy [7] and

AutoNaut [8]. The common factor for all these platforms is

that they rely on environmental forces such as wind and waves

to propel themselves. This makes them durable and suitable

of longer missions (e.g., weeks or months), but at the cost

of losing the controllability of the speed. Without accurate

prediction of the speed it will be impossible to accurately

determine or plan where the vehicle will be in the future.

Predicting the speed is therefore essential in scientific missions

whose objectives require that the autonomous surface vehicle

(ASV) is at the right place at the right time, e.g., missions

designed to map or track phytoplankton blooms at a given

place at a given time.

Various methods for predicting the speed of wave-propelled

vehicles have already been tested. In [9], [10], [11] the

speed is predicted with both linear and Gaussian process

regression for the Wave Glider. In this work we apply the speed

prediction techniques used in [9], [10], [11] on the AutoNaut,

a commercially available ASV whose propulsion is mainly

generated from surface waves [8]. We employ a version of the

ASV in which the control system is designed and built by the

Norwegian University of Science and Technology (NTNU),

as described in [12]. Unlike the Wave Glider, the AutoNaut is

equipped with submerged hydrofoils that are rigidly connected

to the hull to convert wave-induced pitching motion into

forward velocity.

II. METHOD

To predict the speed we aim to find a function f such that

y = f(x), where y ∈ R is the speed of the vehicle and

x ∈ R
n is a n-dimensional feature vector containing relevant

environmental variables. We try two different prediction meth-

ods, linear regression and Gaussian process regression.

A. Linear Regression

The linear regression model can be expressed as

y = f(x) = w
⊺
x (1)

where w is a vector containing a set of weights and x is a set

of known features. The vector w is found by minimising the

squared error between the matrix of training features X and

the corresponding matrix of output variables Y :

w = (X⊺
X)−1

X
⊺
Y (2)



B. Gaussian Process Regression

Gaussian process regression (GPR) is a non-parametric,

Bayesian prediction method. Instead of calculating the proba-

bility distribution for parameters from a specific function, the

GPR considers all smooth functions within a certain domain

that can fit the data. Then, the GPR computes the joint

probability distribution over functions that fit the data for a

set of points. It has the general form

y = f(x) ∼ GP (m(x), k(x,x′)) (3)

where m(x) and k(x,x′) are the mean and covariance func-

tions [13]. Similarly to [9], [10], [11], we let the mean function

be zero and use a Matérn-class covariance function, expressed

as

kmat(x,x
′) =

21−v

Γ(v)

(√
2v(x− x

′)

l

)2

Kv

(√
2v(x− x

′)

l

)

,

(4)

where v and l are positive parameters, and Kv is a modified

Bessel function [14].

C. Bootstrap Aggregation

Bootstrap aggregation is an ensemble learning method used

to combat over-fitting. The process involves generating T
different training set from the original training data by using

bootstrap sampling, that is random sampling with replacement.

The base learner is then trained by applying the learning al-

gorithm on each subset independently. The T outputs are then

aggregated to get the final results. For regression problems the

most common aggregation method is to take the average. For

further reading see [15].

D. Forecast

The forecast model used in this work is the Norwegian

NordKyst800m forecast model [16] based on the Regional

Ocean Modeling System [17]. The forecast model has a spatial

resolution of 800× 800 meters and a temporal resolution of 1

hour. The relevant information provided by the forecast model

is wind direction, wind speed, significant wave height, peak

wave frequency, current direction and current speed.

The vehicle is equipped with a differential GNSS (dGNSS)

receiver1 which provides measurements of the position, speed

over ground and heading. The heading is derived from the

differential position measurement using the moving base RTK

technique. The vehicle is also equipped with a weather sta-

tion2, hence measurements of the wind speed and direction

can be obtained directly. In addition, estimates of the wave

height and wave frequency can be obtained by processing the

height measurement, h, provided by the dGNSS receiver [18].

According to [19], we assume that the wave height follows a

Rayleigh distribution and that the significant wave height can

be estimated as

Hs = 1.416Hrmsm, (5)

1https://www.hemispheregnss.com/product/
vector-v200-gnss-smart-antenna/

2https://www.airmar.com/weather-description.html?id=152

where Hrms is the root-mean-square wave height given by

Hrms =

√

√

√

√

1

N

N
∑

i=1

h2i . (6)

By splitting the data into batches of N measurements the sig-

nificant wave height can be computed for each batch. The wave

encounter frequency ωe can be estimated by measuring the

time difference between the peaks in the height measurements.

The peak wave frequency can then be estimated by solving the

equation

ωe =

∣

∣

∣

∣

ωp −
ω0

g
U cos γwave

∣

∣

∣

∣

(7)

where ωp is the peak frequency, g is the gravitational accel-

eration, U is the speed over ground of the vehicle and γwave

is the wave angle of attack [20].

By comparing the forecast with its corresponding estimate

from the measured values onboard the vehicle we can val-

idate the accuracy of some of the forecast. Figure 1 and

2 show the forecast and measurement of the relative wind

and significant wave height for 3312 data samples of 5

minutes each, totaling a period of approximately 200 hours.

Measurements are collected at Frohavet on the north-west

coast of Norway in a period from April 2020 to April 2021.

The forecast is downloaded from the Nordkyst800m model for

the corresponding times and locations. Figures 1 and 2 show

a strong correlation between the measurement and forecast,

thus we expect that the forecast is reasonably accurate. The

forecast and estimate of the significant wave height show a

difference in magnitude. The estimate of the significant wave

height is computed using the raw heave measurement from the

dGNSS receiver, which can have a poor accuracy, due to, for

example, satellite geometry [21].

Further, Figure 3 shows how the relevant environmental

features from the forecast correlate to the measured speed over

ground of the vehicle.

E. Environmental Features

For a wave-propelled ASV the speed is a result of the forces

caused by the environment. We therefore use the properties of

wind, waves and currents as features in the speed prediction

models. The speed over ground (U) is available from the

dGNSS receiver onboard the vehicle. The wave height, wave

frequency, wave direction, current speed, current direction,

wind speed and wind direction are all obtained from the

forecasts. The forecasts of the wind, current and waves are

provided in a two-dimensional local coordinate frame with x-

axis pointing towards north and y-axis pointing towards east.

The effect of the environmental forces on the vehicle will

depend on their direction relative to the vehicle’s heading and

therefore it is necessary to introduce a body-fixed reference

frame. We denote the forecast’s reference frame as {n}.

Further, we define a body-fixed reference frame, denoted {b},

with its origin in the centre of mass of the vehicle, the x-

axis pointing towards the front, the z-axis pointing down and

the y-axis completing the right hand coordinate system. We
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Fig. 1. A comparison of the wind speed from the forecast (U
f
wind

) and
measurement (Um

wind
) (top) and a comparison of wind direction relative to

north from the forecast (β
f
wind

) and measurement (βm
wind

) (bottom).
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Fig. 2. A comparison of significant wave height from the forecast (H
f
s ) and

significant wave height estimated from measurements (Hm
s ).

only consider horizontal motion of the vehicle, then a vector

x
n =

[

xn yn
]⊺

in the forecast frame can be converted to

the body frame with the rotation
[

xb

yb

]

=

[

cosψ sinψ
− sinψ cosψ

] [

xn

yn

]

, (8)

where ψ is the heading of the vehicle measured by the

dGNSS receiver. For a velocity vector x
b =

[

u v
]⊺

in the

body frame, the angle of attack γ and magnitude U of an

environmental force are computed as

γ = arctan
( v

u

)

(9)

and

U =
√

u2 + v2. (10)

We expect the linear regression model to handle nonlinearities
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cos wave
U wind

cos wind U c
cos c

U

H
s

p

cos 
wave

U
wind

cos 
wind

U
c

cos 
c

0.1835

0.2867

0.3427

0.2237

0.343

0.1116

0.1046

0.1835

0.3077

0.06377

0.06779

0.06339

0.1807

0.2867

0.3077

0.1754

0.3604

0.1879

0.008804

0.1399

0.3427

0.06377

0.1754

0.09213

0.04844

0.1867

0.2237

0.3604

0.09213

0.08573

0.05493

0.2091

0.343

0.06779

0.1879

0.08573

0.04516

0.1811

0.1116

0.06339

0.008804

0.04844

0.05493

0.04516

0.232

0.1046

0.1807

0.1399

0.1867

0.2091

0.1811

0.232

1

1

0.9286

1

1

0.9788

0.9286

1

0.9788

1

1

1
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Fig. 3. Correlation matrix showing the absolute value of the correlation
coefficient for the environmental features used in the feature vector for the
GPR models and the speed over ground for the vehicle (U ).

poorly. Hence, we transform the wind and currents to {b} and

use only the velocity component in the x-direction as features.

The feature vector for the linear model is then given by

x =
[

Hs ωp cos γwave uwind uc 1
]⊺

, (11)

where Hs is the significant wave height, ωp is the peak wave

frequency, γwave is the wave angle of attack, uwind is the

wind velocity along the x-axis in {b} and uc is the current

velocity along the x-axis in {b}. The final term in the feature

vector is a bias term. By taking the cosine of the wave angle

we normalize the angle such that γwave ∈ [−1, 1].
It is expected that the GPR model is able to handle nonlin-

earities in the data better than the linear model. We therefore

alter the feature vector to

x = [Hs ωp cos γwave Uwind cos γwind Uc cos γc ]
⊺
, (12)

where Uwind is the wind speed, γwind is the wind angle of

attack, Uc is the current speed and γc is the current angle of

attack. By including the angle of attack and speed as features

directly instead of including them as body-fixed velocities we

include any effects the forces in the lateral direction on the

vehicle may have on the total speed as well.

The environmental forces (generated from wind, currents

and waves), usually show of a low frequency component and

a high frequency component. For the wind, the low frequency

component is due to the slowly varying wind speed, while the

high frequency component is due to gusts. We can assume

the speed of the vehicle is also going to be a sum of a

low frequency component and a high frequency component.

Predicting the high frequency variations in speed is of little

interest and we therefore remove it by averaging the data over

a period of 5 minutes.

III. RESULTS

Both prediction methods are trained using forecast data and

the measured speed over ground from the vehicle. The data



is collected during several field campaigns spanning a 1 year

period. The data is split into a training set (80%), validation set

(10%) and testing set (10%), where the validation set is used

when tuning and selecting the appropriate features to prevent

over-fitting the models to the test set. For the GPR model a

Matérn-class covariance function with v = 3/2 is used. The

trained models is then used to predict the speed based on

forecast data. For the training data the heading is known and

the correct angle of attack for wind, current and waves can be

computed directly. In the dataset used for testing, the heading

is considered unknown and the constant heading toward the

next waypoint is used instead.

Figures 4 and 5 show the predictions using linear regression,

Gaussian process regression and Gaussian process regression

with bootstrap aggregation for the testing set. The data is

collected over 3 days with varying conditions. Case 1 shows

a time series of approximately 20 hours of data and case 2

consists of approximately 13 hours. In both cases all three

prediction models manage to predict the major changes in

speed over ground for the vehicle. Figure 6 and 7 show the

cumulative velocity error (i.e., distance error) for all three

prediction models in both cases. We define the cumulative

velocity error as

CV E :=

N
∑

i=1

(

Ui − Ûi

)

, (13)

where U is the measured speed over ground and Û is the

predicted speed over ground. The models using GPR give

the smallest distance error and are thus the models that give

the most consistent prediction for both cases. In practice, this

means that when predicting the vehicle’s position in the future

using the predicted speed we will end up closest to the desired

point using the GPR model with bootstrap aggregation for case

2 and the GPR model without bootstrap aggregation for case

1. In both cases the linear model will give the largest distance

error at the end of the simulation.

We are also interested in how the magnitude of the CVE

develops as the total distance traveled increases. We therefore

define the normalized cumulative velocity error as

NCV E := 100%×
N
∑

i=1

(

Ui − Ûi

di

)

, (14)

where di is the distance traveled between two data samples.

Figure 8 and 9 show the NCV E for all three models in case 1

and case 2, respectively. Here we can see that the cumulative

velocity error for the GPR model with bootstrap aggregation

will get close to zero percent of the total traveled distance

in both cases. The two other models, on the other hand, will

not. This indicates the presence of a bias in the two simplest

models.

IV. DISCUSSION

We cannot expect all forecasts to be completely accurate at

all times. As mentioned, the spatial and temporal resolutions

of the forecast are 800× 800 meters and 1 hour respectively,

0 50 100 150 200 250

0.6

0.8

1

1.2

0 50 100 150 200 250

0.6

0.8

1

1.2

0 50 100 150 200 250

0.6

0.8

1

1.2

Fig. 4. Case 1: Predicted (Û ) compared to true (U ) speed over ground for a
period of approximately 20 hours using the liner model (top), Gaussian process
model (middle) and Gaussian process model with bootstrap aggregation
(bottom).
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Fig. 5. Case 2: Predicted (Û ) compared to true (U ) speed over ground for a
period of approximately 13 hours using the liner model (top), Gaussian process
model (middle) and Gaussian process model with bootstrap aggregation
(bottom).

thus any local variation in the ocean environment within these

boundaries are not captured. This can be observed in both

Figures 4 and 5, where all prediction models fail to account for

small local variations of the environmental conditions resulting

in an erroneous speed over ground prediction. In particular, we

expect the ocean current to show unpredictable local variations

due to, for example, variation in ocean depth, the vehicles

proximity to river outlets or small islands. Previous works have

shown that the ocean current has a large effect on the speed

for this type of vehicle [22], and errors in the forecast may

explain some of the inconsistencies in the predictions.

Even though the forward propulsion force of the vehicle

is primarily a function of the wave-induced motion, the

correlation matrix in Figure 3 shows that the current and

particularly the wind have a significant effect on the total
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20 hours for all models.

0 2 4 6 8 10 12 14
-400

-200

0

200

400

600

800

1000

Fig. 7. Case 2: Cumulative error for the speed prediction over approximately
13 hours for all models.

speed of the vehicle. The absolute value of the correlation

coefficient between the cosine of the wind direction and the

speed over ground is R = 0.343, thus having a favorable angle

of attack to the wind is equally important as the significant

wave height and wave period to achieve a high total speed.

The importance of the wind and current on the speed over

ground of the vehicle further complicate the prediction of the

local variations in speed, as particularly the current commonly

have a larger spatial variation compared to the wave height and

wave frequency [19].

Both cases shown in Figures 4 and 5 show poor accuracy

in the prediction whenever the speed is high, particularly

in case 1 where the speed is above 1.5m/s at times. The

AutoNaut has a nominal speed of 0.5m/s to 1.5m/s, but

rarely reaches speeds above 1m/s. Figure 10 shows the

distribution of the training data with respect to the speed.
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Fig. 8. Case 1: Normalized cumulative error for the speed prediction over
approximately 20 hours for all models.
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Fig. 9. Case 2: Normalized cumulative error for the speed prediction over
approximately 13 hours for all models.

The majority of the data shows that the vehicle moves at a

speed between 0.2m/s to 0.8m/s and only small amounts of

data are collected where the speed is above 1.5m/s. For this

reason, the poor predictions at higher speeds in the test data

can be explained by a lack of representative training data. We

also consider the possibility that the speed of the vehicle is

affected by additional properties of the environmental forces

not considered here, for example the directional spread of the

waves.

V. CONCLUSION

In this work, two different regression models have been

used to predict the speed of the AutoNaut. The models were

trained using a combination of forecast data and measurements

collected during field experiments conducted by the AutoNaut



0 0.2 0.4 0.6 0.8 1 1.2
0

0.02

0.04

0.06

0.08

0.1

0.12

Fig. 10. Distribution of the speed over ground measurements in the training
data.

ASV. A speed prediction was then obtained by predicting on

forecast data. Both models were successful in capturing the the

majority of dynamical behaviour of the speed. However, the

spatial and temporal scale of the forecast limits the accuracy

of the prediction on shorter horizons. The Gaussian process

model provides a more consistent prediction and is shown

to be the favorable model when the predicted speed is used

to determine an end-position for a vehicle navigation over a

known time interval.

ACKNOWLEDGMENT

This work was supported by the Research Council of

Norway (RCN) through the MASSIVE project, grant number

270959, and the center of excellence (AMOS) grant number

223254. The authors would like to thank Pedro De La Torre

for the support with the operations and logistics.

REFERENCES

[1] A. S. Ferreira, M. Costa, F. Py, J. Pinto, M. A. Silva,
A. Nimmo-Smith, T. A. Johansen, J. B. de Sousa, and
K. Rajan, “Advancing multi-vehicle deployments in oceanographic
field experiments,” Autonomous Robots, Oct 2018. [Online]. Available:
https://doi.org/10.1007/s10514-018-9810-x

[2] M. J. Costa and et.al, “Field report: Exploring fronts with multiple
robots,” in IEEE AUV, Porto, 2018.

[3] P. McGillivary, J. Borges de Sousa, R. Martins, K. Rajan, and F. Leroy,
“Integrating autonomous underwater vessels, surface vessels and aircraft
as persistent surveillance components of ocean observing studies,” in
2012 IEEE/OES Autonomous Underwater Vehicles (AUV), Sep. 2012,
pp. 1–5.

[4] J. N. Cross, C. W. Mordy, H. M. Tabisola, C. Meinig, E. D. Cokelet,
and P. J. Stabeno, “Innovative technology development for arctic explo-
ration,” in OCEANS 2015 - MTS/IEEE Washington, 2015, pp. 1–8.

[5] A. Dallolio, G. Quintana-Diaz, E. Honoré-Livermore, J. Garrett, R.
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