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Abstract

The research in the field of autonomous marine vessels has increased during the last
decade. In context with this, a company called Zeabuz is developing an autonomous
ferry system and is seeking to perform state-of-the-art safety validation of their system.
Such autonomous vessels operate in complex stochastic environments. As a consequence
of this complexity, failure cannot be eliminated entirely. Moreover, real-world testing can
be too dangerous to perform during development, and the use of formal verification is
often precluded. Simulation-based techniques resorting to statistical considerations can
be the solution to work around this issue. Moreover, work done with airborne collision
avoidance systems and autonomous vehicles shows successful safety validation by apply-
ing a stress testing framework called Adaptive Stress Testing (AST). The framework is
based on Reinforcement Learning (RL) techniques and adaptively finds the most likely
path to a failure event for the system under test in a simulated environment.

This thesis proposes an architecture called Maritime Adaptive Stress Testing (MAST),
which extends the existing AST architecture to be able to test a collision avoidance
system in the maritime domain, particularly the Single Path Velocity Planner (SP-
VP) used by Zeabuz’s passenger ferries. Two variants of the architecture are proposed,
namely the Gray-Box Maritime Adaptive Stress Testing (G-MAST) and the Black-Box
Maritime Adaptive Stress Testing (B-MAST), which are used for Gray-Box and Black-
Box simulators, respectively. The performance of these two architectures is found to be
similar in this work. However, testing with a Gray-Box simulator with G-MAST may
require more domain knowledge of the system than testing with a Black-Box simulator
with B-MAST.

Furthermore, MAST found several interesting failure events in the SP-VP system, which
might be useful for the safety validation of the collision avoidance system. It is, however,
debatable how realistic the failure events are in a real-world setting due to the irrational
behavior of the other vessels, referred to as obstacle vessels in this thesis. However, the
MAST architecture can be configured to test other scenarios, which can potentially find
more realistic failure events.
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Sammendrag

Forskningen innen maritime autonome fartøy har økt i løpet av det siste ti̊aret. I sam-
menheng med dette, utvikler et selskap kalt Zeabuz et autonomt fergesystem og ønsker
å utføre “state-of-the-art” sikkerhetsvalidering av systemet deres. Slike autonome fartøy
opererer i komplekse stokastiske miljøer. Som en konsekvens av denne kompleksiteten
kan ikke feil elimineres helt. Dessuten kan testing i den virkelige verden være for farlig
å utføre under utvikling, og bruk av formell verifisering (engelsk: formal verification) er
ofte utelukket. Simuleringsbaserte teknikker som tyr til statistikk kan være løsningen
for å omg̊a dette problemet. Arbeid utført p̊a antikollisjonssystemer (engelsk: collision
avoidance systems) av luftfartøy og autonome kjøretøy viser vellykket sikkerhetsvalid-
ering ved å bruke et rammeverk for stresstesting kalt adaptiv stresstesting (engelsk:
Adaptive Stress Testing / AST). Rammeverket er basert p̊a teknikker med forsterkende
læring (engelsk: Reinforcement Learning / RL) og finner adaptivt den mest sannsynlige
veien til en feil for systemet under test i et simulert miljø.

Denne oppgaven foresl̊ar en arkitektur kalt maritim adaptiv stresstesting (engelsk: Mar-
itime Adaptive Stress Testing / MAST), som utvider den eksisterende AST-arkitekturen
for å kunne teste et antikollisjonssystem i det maritime domenet, kalt SP-VP (engelsk:
Single Path Velocity Planner / SP-VP) brukt av Zeabuz sine autonome passasjerfer-
ger. To varianter av arkitekturen er foresl̊att, Gray-Box maritim adaptiv stresstesting
(engelsk: Gray-Box Maritime Adaptive Stress Testing / G-MAST) og Black-Box mar-
itim adaptiv stresstesting (engelsk: Black-Box Maritime Adaptive Stress Testing / B-
MAST), som brukes for Gray-Box og Black-Box-simulatorer, henholdsvis. Ytelsen til
disse to arkitekturene er funnet å være lik i dette arbeidet. Derimot, kan testing med en
Gray-Box-simulator med G-MAST kreve mer domenekunnskap om systemet enn å teste
med en Black-Box-simulator med B-MAST.

MAST fant flere interessante feil i SP-VP-systemet, som kan være nyttige for sikker-
hetsvalideringen av antikollisjonssystemet. Det er diskutabelt hvor realistiske feilene er
i virkelige omgivelser p̊a grunn av den irrasjonelle oppførselen til de andre fartøyene,
som oppfører seg som hindringer i denne oppgaven. MAST-arkitekturen kan imidlertid
konfigureres til å teste andre scenarier, som potensielt finner mer realistiske feil.
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Chapter 1

Introduction

In this chapter, the background and motivation for this thesis are introduced. Further,
the goal and research questions are stated and described. Then the research methodol-
ogy applied will be described and justified. Followed by a summary of the structured
literature review protocol and this thesis’ contributions. Finally, an overview of the
thesis and the remaining chapters are described.

1.1 Background and Motivation

Autonomous marine vessels have received much attention in recent years, and research
in the field has increased significantly in the last decade [30, 38, 43]. The research
on urban ferry transportation systems is one area in the field that is undergoing a
revival. The need for transportation in cities and urban areas increases as the population
grows. In many areas, ferry transportation is a suitable solution, as many cities are
built by historical waterways, which often remain largely unused [30]. A good way
of exploiting ferry transportation is by using autonomous marine vessels. Not only
might autonomous vessels have an obvious economic impact resulting from increased
efficiency and the replacement of human labor, but there is also a potential to eliminate
injuries and material damage caused by collisions. Almost half of the casualties at sea
from 2014 to 2019 were caused by “navigation in nature, including contact, collision,
and grounding or stranding” [1]. In order to solve this issue, autonomous vessels must
have a maritime autonomous collision avoidance system that provides the necessary
safety to operate in their environment. However, such autonomous vessels operate in
complex stochastic environments. As a consequence of this complexity, failure cannot
be eliminated completely [25]. Moreover, real-world testing can be too dangerous to
perform during development, and the use of formal verification is often precluded. Formal
verification is the procedure of proving that a system is safe from all possible failure
events [8]. In order to work around this issue, simulation-based techniques resorting to
statistical considerations can be the answer [9].

1



2 Chapter 1: Introduction

(a) milliAmpere. Image credit: Kai Dragland. (b) The Zeabuz design. Image credit: Zeabuz.2

Figure 1.1: Photograph of milliAmpere and Render of the Zeabuz Passenger Ferry.
Figure 1.1a shows a photograph of milliAmpere, the world’s first autonomous passenger ferry
prototype. In Figure 1.1b, a render of the Zeabuz ferry system design is shown.

One Norwegian company that has decided to investigate this area is Zeabuz. The com-
pany is a spinoff from the progressive research center for Autonomous Marine Operations
and Systems at the Norwegian University of Science and Technology (NTNU), who are
also a collaborating partner in the research done in this thesis. The company is develop-
ing a network of electric, autonomous passenger ferries enabled by Artificial Intelligence
(AI). Figure 1.1 shows different versions of the passenger ferry system; where Figure
1.1a shows a photograph of milliAmpere. The milliAmpere vessel is famous for being
the world’s first autonomous passenger ferry prototype1 [4]. In Figure 1.1b, the Zeabuz
design of the ferry system is shown. There are also ongoing trial operations of their
world’s first full-scale autonomous ferry, milliAmpere 2, shown in Figure 1.2, which
started in September 2022. The Zeabuz passenger ferry is the system under test in this
thesis and will be referred to as the milliAmpere vessel without any version number in
the rest of this thesis. The vessel is equipped with the maritime autonomous collision
avoidance system Single Path Velocity Planner (SP-VP), which is the specific part of
milliAmpere that is tested in this work.

The milliAmpere vessel will be used for transporting passengers in environments with
unpredictable maritime traffic. Therefore, the safety requirements and the reliability of
the collision avoidance system must be high [4]. This is important in order to build trust
in these complex, autonomous mobility systems. In context with this, Zeabuz wants to
perform state-of-the-art safety validation on their system. This is important in context
with the regulations by the Norwegian Maritime Authority (NMA), which includes the

1Prototype promo video of milliAmpere can be found on:
www.youtube.com/watch?v=z11Bk02OyXE

2The rendered image has been retrieved from the homepage of Zeabuz, where more renders and
information about their system can be found: www.zeabuz.com

https://www.youtube.com/watch?v=z11Bk02OyXE
https://www.zeabuz.com/


1.2 Goals and Research Questions 3

Figure 1.2: The milliAmpere 2 Passenger Ferry. This figure shows milliAmpere 2, the
world’s first full-scale autonomous passenger ferry. Image credit: Zeabuz.

need for conducting risk analysis for approval of the autonomous ferry. Furthermore,
since milliAmpere 2 is the only operating autonomous ferry in Norway while writing this
thesis, there is limited guidance on how to perform such risk analysis. There are many
challenges when working with safety-critical systems operating in complex stochastic
environments. Failures occur as a result of sequential interactions between the system
and its environment; because of this, the analysis must be done in a system that combines
both the system under test and the environment in which it operates. Scalability is also
a huge issue, and brute force methods considering all possible paths are often unsuitable.
Finding failure states in some safety-critical systems can also be challenging, as they are
built to avoid failure, especially systems with a large search space [25]. This brings us
to the next section, which defines this project’s goal and research questions.

1.2 Goals and Research Questions

The goal of the research in this thesis is to find a suitable safety validation method
for testing maritime autonomous collision avoidance systems. Our assumption is that
Reinforcement Learning (RL) based methods are suitable for finding failure events in
such systems. In particular, the framework Adaptive Stress Testing (AST), which has
promising results in the safety validation of aircraft collision avoidance systems [25], will
further be investigated. The goal can thereby be described as:
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Goal Investigate if AST is a suitable safety validation method for testing maritime
autonomous collision avoidance.

Further, four research questions were formulated to help reach this goal:

Research question 1 How should we set up the scenarios for testing the collision
avoidance system with AST in the maritime domain?

Research question 2 Is Black-Box or Gray-Box simulators best suited when testing
maritime autonomous collision avoidance systems with AST?

Research question 3 How useful are the failure events found with AST for safety val-
idation of the maritime autonomous collision avoidance system SP-VP?

Research question 4 How to interpret the failure events in the maritime autonomous
collision avoidance system found with AST?

The next section will describe the research method that this thesis uses to answer the
research questions and investigate the goal presented here.

1.3 Research Method

The research method in this thesis is comprised of three phases. In the first phase, a
literature review was performed. The existing literature was sorted and reviewed, and
will be discussed in more detail in Section 1.4. This was done to collect the necessary
knowledge about related work and existing solutions. A big part of the first phase was
done during the specialization project in the fall of 2021, during the course TDT4501
- Computer Science, Specialization Project. In the second phase, the chosen framework
AST was set up to fit the maritime domain. The necessary interfaces between the sim-
ulator and AST, and between the different programming languages were implemented.
This phase led to the proposed architecture in this thesis, namely the Maritime Adap-
tive Stress Testing (MAST), presented in more detail in Section 3.3. In the final phase,
the experiments were conducted using a simulator that consists of the system under
test and the environment in which it operates. The system under test is the maritime
autonomous collision avoidance system SP-VP, which milliAmpere use. Since real-world
testing can be too dangerous during development, a simulation-based method is pre-
ferred. In addition, real-world testing can be insufficient due to the complexity and
the number of possible failure events in the system. Using a simulator will allow the
opportunity to run many scenarios and iterations to test the system in an environment
close to the real-world setting. However, the simulator is an abstraction that simplifies
the real-world environment. Thereby, environmental disturbances, such as weather and
sea states, are absent. This should be taken into account when reading this thesis. The
results from the conducted experiments are presented and discussed in Chapter 4. Fi-
nally, the results from MAST were interpreted and analyzed in the end. The results are
presented in Section 4.7.
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1.3.1 Non-disclosure Agreement

Since this thesis has been performed with Zeabuz as a collaborating partner, a non-
disclosure agreement is signed to ensure that confidential information about their sys-
tem is protected. Therefore, the simulator details can not be fully disclosed. As a
consequence, the code base cannot be disclosed. However, in Section 3.1, the most
fundamental details of the simulator are explained to ensure that enough knowledge of
the system is presented to understand the problem. Furthermore, the confidentiality
requirements will not have a huge impact on the thesis itself, but it might, however, be
more difficult to reproduce the results due to the simulator not being revealed.

1.4 Structured Literature Review Protocol

The structured literature review protocol this thesis uses is described here. This pro-
tocol is used to search for and collect relevant literature necessary to accomplish the
thesis goal and answer the research questions in Section 1.2. The literature in this
thesis has been retrieved mainly from arXiv3, Google Scholar4, Oria5, and ScienceDi-
rect6. The AI-powered research tool Semantic Scholar7 is used to track cited articles.
The most important search words were: adaptive stress testing, autonomous, interpret
time series data, marine vessel dynamics, maritime collision avoidance, milliAmpere,
monte carlo tree search/mcts, reinforcement learning, safety validation, single path ve-
locity planner/sp-vp. Questions related to the literature research were:

Literature research question 1 What is the state-of-the-art of AST?

Literature research question 2 What is necessary domain knowledge when simulat-
ing marine vessels?

Literature research question 3 How is the maritime collision avoidance system SP-
VP working?

Literature research question 4 How to interpret time series data?

The main literature chosen in this thesis fulfills one of the inclusion criteria and all of
the quality criteria presented below:

Quality criteria 1 The literature has an explanation of their code if present.

Quality criteria 2 The literature has context with other studies.

Quality criteria 3 The literature has intuitive figures and explanations of their design
and architectures.

3arXiv: www.arxiv.org
4Google Scholar: www.scholar.google.com
5Oria: www.oria.no
6ScienceDirect: www.sciencedirect.com
7Semantic Scholar: www.semanticscholar.org

https://arxiv.org/
https://scholar.google.com/
https://oria.no/
https://www.sciencedirect.com/
https://www.semanticscholar.org/
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Inclusion criteria 1 The study’s focus on AST.

Inclusion criteria 2 The study’s focus is on interpreting time series data.

Inclusion criteria 3 The study’s focus on maritime collision avoidance.

Inclusion criteria 4 The study’s focus on Monte Carlo Tree Search (MCTS).

It is also worth mentioning that the structured literature review protocol was only used
to collect the main relevant literature used in this thesis. Literature for citing relevant
theories and assertions was retrieved continuously throughout the writing.

1.5 Contributions

The contributions of the work conducted in this thesis are summarized in the list below:

• The framework AST has been tested on a maritime collision avoidance system, in
particular, the SP-VP method that the milliAmpere vessel use.

• A simulator interface has been developed to make AST work in the maritime
collision avoidance domain. The interface is developed to support communication
between the AST software package AdaStress developed in Julia, and the Zeabuz
simulator, developed in Python.

• The MAST architecture for testing the maritime collision avoidance system, SP-
VP, is proposed. Here, two variants of the architecture are proposed, namely
the Gray-Box Maritime Adaptive Stress Testing (G-MAST) and the Black-Box
Adaptive Stress Testing (B-MAST), used for Gray-Box and Black-Box simulators,
respectively.

• Failure events in the collision avoidance system SP-VP have been found, which can
be investigated further by the Zeabuz team.

• The AST software package AdaStress developed in Julia has been tested. It has
been tested together with a simulator developed in Python. Feedback was given
to the maintainers of the software package at NASA.

• The extra functionalities of the Zeabuz simulator developed in this thesis will be
used by Zeabuz to continue the work on AST.

1.6 Thesis Structure

The layout of this thesis is as follows:

Chapter 2 - Background Theory: Describes the necessary domain knowledge about
the marine vessel dynamics and the collision avoidance system Single Path Velocity
Planner (SP-VP). Further, safety validation, Machine Learning (ML), Reinforcement
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Learning (RL), Monte Carlo Tree Search (MCTS) are described. Finally, the Adaptive
Stress Testing (AST) framework and its related work will be described.

Chapter 3 - Methodology: Describes the simulator used for testing in this thesis.
Further, it describes the proposed architecture in this work, Maritime Adaptive Stress
Test (MAST), and its two variants Black-Box Maritime Adaptive Stress Testing (B-
MAST) and Gray-Box Maritime Adaptive Stress Testing G-MAST.

Chapter 4 - Results and Discussion: Presents the results from the conducted ex-
periments in this thesis together with a discussion.

Chapter 5 - Conclusions and Future Work: Contains the conclusions and future
work related to this thesis.





Chapter 2

Background Theory

This chapter presents the necessary background theory for this research. The theory
includes important information on marine vessel dynamics, collision avoidance with SP-
VP, and safety validation. In addition to briefly describing Black-Box and Gray-Box
simulators. Next, Machine Learning (ML) and RL are described. Finally, the framework
AST will be introduced, and related work on this will be mentioned.

2.1 Marine Vessel Dynamics

This section will briefly introduce some concepts to better understand the dynamics of
marine vessels operating in environments with different complexity. Some simplifying
assumptions and how they are used in this thesis will also be introduced. These topics
are essential for simulating autonomous marine vessels.

2.1.1 Motion at Sea in Six Degrees of Freedom

Foremost, an introduction to marine vessels operating in more complex environments
will be introduced to provide a more complete understanding of the domain of this
thesis. In context with this, the dynamics of a marine vessel are often described using
Six Degrees of Freedom (6DOF), which are the set of independent displacements and
rotations that define the displaced position and orientation of the vessel. The 6DOF
consists of six components, where three are translational and three are rotational. This is
illustrated in Figure 2.1. The translational components are surge, sway, and heave, which
is longitudinal motion, sideways motion and vertical motion respectively. The rotational
components are roll, pitch, and yaw, which is the rotation about the longitudinal axis, the
transverse axis and the vertical axis, respectively. Equation 2.1 shows the mathematical
notation for the positions and orientations of a marine vessel in 6DOF in vector form,
represented by η:

9
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η = [x, y, z, ϕ, θ, ψ]T , (2.1)

where the first three components of the vector, (x, y, z), represents the position in the
surge, sway, and heave, respectively. The last three components, (ϕ, θ, ψ), represent
the orientation in roll, pitch, and yaw, respectively. Marine vessels operating in 6DOF
also have six velocity components, which can be divided into linear and angular veloc-
ities, represented by ν. These are illustrated in Figure 2.1. Equation 2.2 shows their
mathematical notation:

ν = [u, v, w, p, q, r]T , (2.2)

where the first three components (u, v, w) are the linear velocities in the surge, sway and
heave, respectively. The last components (p, q, r) are the angular velocities in roll, pitch,
and yaw, respectively [13].

xBody
yBody

zBody

Figure 2.1: Six Degrees of Freedom (6DOF). The x, y and z are the displaced positions
in surge, sway and heave, respectively. The ϕ, θ and ψ are the displaced orientations in roll,
pitch and yaw, respectively. The u, v and w are the linear velocities in surge, sway and heave,
respectively. The p, q and r are the angular velocities in roll, pitch, and yaw, respectively. The
figure is inspired by [13].

The mathematical notation for marine vessels in this 6DOF is The Society of Naval
Architects and Marine Engineers (SNAME) [36]. An overview of this notation can be
found in Table 2.1. This notation will be used throughout this thesis, but with the
adjustment of replacing x and y, with N and E, respectively, for readability. More
about this in Section 2.1.3.



2.1 Marine Vessel Dynamics 11

Table 2.1: SNAME notation for marine vessels. The table is based on [14].

Description
Positions and
Euler angles

Linear and
angular velocities

Motions in the x direction (surge) x u
Motions in the y direction (sway) y v
Motions in the z direction (heave) z w
Rotation about the x axis (roll) ϕ p
Rotation about the y axis (pitch) θ q
Rotation about the z axis (yaw) ψ r

2.1.2 Reference Frames

More complex systems also use a variety of reference frames, most of these are not used
in the work of this thesis, but are introduced to provide a better understanding of the
domain. Reference frames and the coordinate systems that are associated with them are
useful in the analysis of marine vessels in 6DOF. The types of reference frames can be
divided into two groups, the Earth-centered reference frames, and the geographic refer-
ence frames. Of this, two types of Earth-centered reference frames are used, the Earth-
Centered Inertial (ECI) frame and the Earth-Centered Earth-Fixed (ECEF) frame. The
ECI-frame is an inertial frame with the origin located at the Earth’s center of mass.
The x -axis is permanently fixed in a direction relative to the celestial sphere, which does
not rotate as Earth does. The x-y plane coincides with the equatorial plane of Earth,
with the z -axis extending through the North Pole [31]. In this non-accelerating reference
frame, Newton’s laws of motion apply. The ECEF-frame is fixed relative to the Earth,
not fixed to the celestial sphere, and is moving relative to the inertial frame with an
angular rate ωECEF with rotation about the z -axis [13]. Both of the Earth-centered
reference frames are depicted in Figure 2.2, where the figure also shows how they behave
relative to each other.

The geographic reference frames are the North-East-Down (NED) frame and body-fixed
frame. The NED-frame has its origin defined relative to the Earth’s reference ellipsoid,
and is defined as the tangent plane on the surface of the Earth moving with the vessel.
The x -axis points towards true North, the y-axis points towards East, and the z -axis
points downwards normal to the Earth’s surface. The NED-frame is located relative to
the ECEF-frame using longitude and latitude. The body-fixed reference frame has the
coordinate system fixed to the vessel, where the origin coincides with a point midship
in the water line. For marine vessels, the body axes are chosen to coincide with the
principal axes of inertia, where the longitudinal x -axis is directed from aft to fore, the
transversal y-axis is directed to starboard, and the normal z -axis is directed from top to
bottom. Both the NED-frame and the body-fixed-frame are depicted in Figure 2.2. The
position and orientation (η) of the vessel are described relative to the inertial reference
frame, which can be the ECEF-frame or the NED-frame, depending on the problem. The
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xECI

xECEF

yECI

yECEF

zECI zECEF
N

E

D

NED-frame

North

South

West EastωECEFt

ωECEF
xBody

yBody zBody

Figure 2.2: Reference Frames. This figure depicts the reference frames Earth-Centered
Intertial (ECI), Earth-Centered Earth-Fixed (ECEF), North-East-Down (NED) and the body-
fixed. The ECI-frame is an inertial frame that is fixed to the celestial sphere, while the ECEF-
frame is fixed relative to the Earth. The ECEF-frame moves relative to the ECI-frame with an
angular rate ωECEF with rotation about the z-axis. The NED-frame has its origin defined to
the Earth’s reference ellipsoid and it is defined as the tangent plane on the surface of the Earth
moving with the marine vessel. The body-fixed reference frame has the coordinate system fixed
to the marine vessel. The figure is based on [13].
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linear and angular velocities (ν) are expressed in the body-fixed-frame. There are also
some additional body-fixed coordinate systems and reference frames not presented here,
for example the seakeeping reference frame and the additional body-fixed coordinate
system when the system uses flow axes [13]. In this thesis, there are only two relevant
reference frames from the ones mentioned above: the NED-frame and the body-fixed
reference frame, the reason why is presented in the next section.

2.1.3 Flat Earth Navigation in Three Degrees of Freedom

For marine vessels that do not have actuation in all 6DOF and operate under certain
conditions, it is possible to simplify the simulation and use reduced-order models. This
is achieved by decoupling unnecessary motion components of the marine vessels and
considering a different reference frame than the ECI-frame to be inertial. This can
be achieved by a few simplifying assumptions presented in Fossen’s work [13]. The
simplifying assumptions are presented in Table 2.2, where (1) marine vessels operating
at relatively low speeds can neglect the Earth’s rotation, and thereby the ECEF-frame
can be considered to be inertial; (2) for marine vessels operating in a local area with
approximately constant longitude and latitude, an Earth-fixed tangent plane on the
surface of the Earth is used for navigation. Due to this, the NED-frame can be assumed
to be inertial. Finally, (3) for marine vessels that operate in the calm sea where one can
assume that the displaced orientations in roll ϕ and pitch θ are to be arbitrarily small.
Thereby, the components corresponding to heave, roll, and pitch can be neglected. The
rest of this section will show how these assumptions and simplifications are used in this
thesis.

Table 2.2: Simplifying assumptions for marine vessels [13].

No. Assumption Simplification

1
The marine vessel operates
at relatively low speed.

The ECEF-frame can be
considered to be inertial.

2
The marine vessel operates
in a local area.

The NED-frame can be
considered to be inertial.

3
The marine vessel operates
in calm sea.

Components corresponding
to heave, roll, and pitch can be neglected.

In Table 2.3, an overview of some reduced order models and their usage can be found.
The interesting ones for this thesis are the horizontal plane models in Three Degrees
of Freedom (3DOF). These can be achieved by using the simplifying assumption (3)
from Table 2.2. This simplification allow us to neglect the components corresponding
to heave, roll, and pitch, which makes it possible to rewrite the equations from Section
2.1.1 into Equation 2.3:
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η = [N,E,ψ]T , (2.3)

where we now have removed z, ϕ and θ. Also, note that x and y are replaced by N
(North) and E (East) for readability. In Equation 2.4:

ν = [u, v, r]T , (2.4)

we have removed w, p and q.

Table 2.3: Reduced-order models and their usage [13].

DOFs Usage State Components

1DOF
Forward speed controllers (surge)
Heading autopilots (yaw)
Roll damping systems (roll)

3DOF
Horizontal plane models (surge, sway, yaw)
Longitudinal models (surge, roll, yaw)
Lateral models (sway, roll, yaw)

4DOF
Formed by adding the roll
equation to the 3DOF
horizontal plane model

(surge, sway, roll, yaw)

6DOF

Fully coupled equations of
motion used for simulation
and prediction of coupled
vehicle motions

(surge, sway, heave, roll, pitch, yaw)

Using the simplifying assumption (2) from Table 2.2, the marine vessel operates in a
local area, it is possible to achieve what Fossen refers to as flat earth navigation [13].
The NED-frame is now considered to be inertial. However, as the NED-frame is now
considered to be inertial, we thereby do not have to consider assumption (1) from Table
2.2, that the ECEF-frame is considered to be inertial. In Figure 2.3, an illustration of
how the marine vessel’s positions, orientations, and velocities are represented in a NED-
frame. Since the z-axis in the NED-frame points downwards normal to the Earth’s
surface, it looks like the y-axis shows the North N position, and the x-axis the East E
position, but this is not the case. The North N is the true x-axis and East E is the true
y-axis. The yaw angle ψ represents the heading of the vessel relative to the North. The
vectors u⃗ and v⃗ represent surge velocity and sway velocity, respectively. The angular
velocity in yaw is represented by r⃗.

For horizontal plane models, the kinematic equations can be expressed as Equation 2.5,
when assuming calm sea and no weather such as wind:
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North

East

yBody 
(sway) 

xBody 
(surge) 

ONED

OBody

(yaw)

N

E

Figure 2.3: Flat Earth Navigation in 3DOF. The figure depicts flat earth navigation in
3DOF. This simplified version’s only necessary reference frame is the NED-frame. N and E
represent the marine vessel’s displaced positions in the reference frame, and ψ represents the
displaced orientation. u⃗ and v⃗ represents the linear velocities in surge and sway, respectively. r⃗
represents the angular velocity r⃗ in yaw. Notice that yBody is in the starboard direction. This
figure is based on [28].

η̇ = R(ψ)ν,

Mν̇ +C(ν)ν +D(ν)ν = τ ,
(2.5)

where M is the mass matrix, C(ν) is the centripetal and Coriolis matrix, and D(ν) is
the damping matrix. Since the only rotation is about the z-axis or yaw, we get R(ψ) in
Equation 2.6 expressed as:

R(ψ) =

cos(ψ) − sin(ψ) 0
sin(ψ) cos(ψ) 0

0 0 1

 . (2.6)

The marine vessels in the simulator provided by Zeabuz are based on these equations
for their dynamics.
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2.2 Collision Avoidance with Single Path Velocity Planner

SP-VP1 is a motion planning system that aims to ensure collision-free maneuvers from
the start to its goal waypoint. The system behaves as a maritime autonomous collision
avoidance system and was first introduced by Thyri et al. [40]. This section is also
based on Thyri’s master’s thesis [41] and the continued work on the method by Berget
in his master’s thesis [3]. The method is developed for the specific case of autonomous
passenger ferries operating in confined waters with high traffic, and was built in context
with the milliAmpere project. Confined waters, in the context of navigation, is referred
to as an area of the sea with a relatively small width of the waterway relative to the
marine vessel’s ability to maneuver. The collision avoidance system is provided with a
predefined waypoint mission, which must be collision-free with respect to static obstacles,
such as islets and breakwaters. The collision avoidance problem is a velocity planning
problem, which means that it only plans a velocity profile and does not change the marine
vessel’s route. In this context, the route is defined as a straight line from the start to the
goal of the waypoint mission. The SP-VP method tracks dynamic obstacles, which are
moving objects such as other vessels. These obstacles are represented as shown in Figure
2.4a. More details on this representation is found in Section 2.2.1. These obstacles are
transformed into a path-time space and are then constructed as a conditioned visibility
graph and traversed with Dijkstra’s algorithm [11], to find a collision-free velocity profile.
This path-time space is illustrated in Figure 2.4b, to give a better understanding of how
SP-VP work. However, this is outside the thesis’s scope and will not be further discussed.
A similar method of path-velocity decomposition has also been proposed by Kant et al.
[17].

The SP-VP method does not comply well with the International Regulations for Prevent-
ing Collision at Sea (COLREG) when maneuvering in sight of other vessels, according to
Brekke et al. [4]. The reason is that the rules in COLREG are weighted more on course
change maneuvers over speed change maneuvers to avoid a collision. Furthermore, the
fixed predefined waypoint mission makes compliance with the COLREG rules difficult
to adhere to.

2.2.1 Obstacle Representation

In SP-VP, a simplified obstacle representation is used for robustness and ease of com-
putation. Three regions surround the point considered to be the obstacle represented in
a northeast frame. The regions are shown in Figure 2.4a, where the Region of Collision
(ROC) is shown in red, the High Penalty Region (HPR) is shown in green and the Low
Penalty Region (LPR) is shown in blue. In yellow, we see the point that is considered
the obstacle together with its heading. All of the regions are diamond-shaped convex
polygons. The ROC is designed to include both the obstacle vessel’s dimensions and
the dimensions of the vessel using the system, which in our case is milliAmpere. By do-

1A video showing the SP-VP system as part of milliAmpere, retrieved from Brekke et al. [4]:
www.youtube.com/watch?v=Ry3-yxVaDuE

https://www.youtube.com/watch?v=Ry3-yxVaDuE
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Figure 2.4: SP-VP Obstacle Representation and Path-time Space. In Figure 2.4a the
obstacle representation of SP-VP is shown. In red is the Region of Collision (ROC), in green is
the High Penalty Region (HPR), and in blue is the Low Penalty Region (LPR). We can see the
obstacle as a point together with its heading in yellow. Figure 2.4b shows an obstacle represented
in a path-time graph together with its visibility graph.

ing this, the milliAmpere can be considered as a point when constructing the visibility
graph. The ROC can be calculated by the method described by Lozano-Perez in [27].
The regions for an obstacle can be calculated by Equation 2.7:

cf = [No + lf cos(ψo), Eo + lf sin(ψo)],
ca = [No + la cos(ψo + π), Eo + la sin(ψo + π)],
cs = [No + ls cos(ψo + π/2), Eo + ls sin(ψo + π/2)],
cp = [No + lp cos(ψo + π/2), Eo + lp sin(ψo + π/2)],

(2.7)

where No and Eo denote the North and East position of the obstacle, respectively. The
ψo denotes the heading of the obstacle. Moreover, cf , ca, cs and cp are the coordinates
of the vertices in the NED-frame, for fore, aft, starboard and port of the obstacle vessel
respectively. The lengths lf , la, ls and lp denote the distance from the obstacle point to
the vertices, for fore, aft, starboard and port respectively. The lengths should be assigned
with consideration of both the dimensions of the obstacle and the vessel using the system,
the lengths should also include some safety factors and perimeter size. Equation 2.8
shows how the lengths are calculated:
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lf = (lfo + lfs + lfregion),

la = (lao + las + laregion),
ls = (lso + lss + lsregion),
lp = (lpo + lps + lpregion),

(2.8)

where lfo , lao , lso and lpo are the lengths from center of the obstacle vessel to fore, aft,
starboard and port, respectively. And lfs , las , lss and lps are the lengths from center of
the vessel using the system to fore, aft, starboard and port, respectively. Lastly, lfregion ,
lfregion , lfregion and lfregion are the chosen safety factors and perimeter sizes, for fore, aft,
starboard and port respectively. All of the lengths discussed above must be set for all
of the regions with the condition lLPR > lHPR > lROC satisfied [40]. The equations
discussed in this section are used to implement the true ROC of an obstacle vessel in
addition to the SP-VP obstacle representation in this thesis. The true ROC differs
from the SP-VP ROC, because noise to the SP-VP-tracking system makes the position
estimated different from the true ROC. The SP-VP system updates with a given rate,
which also makes it differ from the true ROC of the obstacle vessel. More details about
this in Section 3.1.

2.3 Safety Validation

The best way to describe safety validation is to describe the meaning of each word; safety
and validation. This will be done here in the context of a software program:

• Safety can be described as a safety property, which specifies that “bad things”
do not happen during execution of a program. In contrast to a safety property,
we have a liveness property, which specifies that “good things” will eventually
happen. This distinction is useful, because proving that a program satisfies a
safety property, can be done by using a counterexample that shows that a bad
thing did happen. On the other hand, proving that a program satisfies a liveness
property requires formal argumentation. This knowledge is useful when deciding
how to prove these two types of properties [2]. The definition of a “bad”- or
“good-event” is domain specific.

• Validation is the process of showing that the product accomplishes the intended
purpose in the intended environment. Verification is the process of proving that
the product meets every requirement. The selection of the verification or validation
method is based on whether we want to prove the requirements of the system or
show that the system operates as intended [18]. In our case, the term validation
is chosen to emphasize that we are testing the system prototypes in a simulated
operational environment.

In other words, safety validation is described as the process of ensuring the correct and
safe operation of the system operating in an environment. The process is based on
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examination and testing in order to find if the safety validation goals are sufficient and
have been achieved in its operational domain [9].

2.3.1 Challenges with Safety Validation of Autonomous Systems

An autonomous system involves software and physical systems interacting over time.
Due to this, there are several challenges with the safety validation of these systems. In
work done by Corso et al. [9], some of the challenges were introduced. These can be
found in the list below:

• Subtle and emergent failures can go undetected due to autonomous sys-
tems often containing complex components where safety properties are hard to
understand. Especially ML components often have high complexity. Due to this,
we often get a tradeoff related to the complexity of our model and the model
interpretability [45].

• Autonomous systems are hard to model because of their interaction with
complex and stochastic environments.

• Safety validation must be performed over the combined system, consist-
ing of the system under test and the environment in which it operates,
this is due to safety properties being defined over both the system under test and
its environment.

• Computational efficiency because of the search space is combinatorially large
due to the sequential interactions between the system and the environment.

• Failure events can be rare because safety validation is applied late in develop-
ment when the autonomous safety systems are more mature.

Because of these challenges, traditional methods through safety processes, engineering
analysis, and conventional testing are insufficient, and more advanced techniques are
necessary to perform safety validation of these systems [9].

2.4 Black-Box and Gray-Box Simulators

The term Black-Box simulator is used when no knowledge of the system’s internals
is known or if it is too complex to reason about explicitly. Due to their complexity,
autonomous systems are often implemented as a Black-Box simulator. This contrasts
with a White-Box simulator where it is possible to describe it analytically or specify
it in a formal modeling language. There is also something in between, referred to as
Gray-Box simulators [9]. In this thesis, the simulator has been implemented as a Black-
Box and a Gray-Box. This was possible due to having access to the simulator code
base. In context with AST, these types of simulators will be used to try out the AST
architectures for Black-Box and Gray-Box simulators, which will further be explained
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in 2.8. These architectures will be extended to the proposed architectures in this thesis,
which are G-MAST and B-MAST, more details about these in Section 3.3.

2.5 Machine Learning

ML is a subfield of AI, which was defined by Tom M. Mitchell as the study of algorithms
that allow computer programs to automatically improve through experience [29]. These
algorithms are often categorized into four categories based on the amount of human
supervision in the learning process [32]:

• Supervised Learning: Here, the training data consists of input-output pairs,
normally called features and targets, respectively. The agent then learns a function
that maps from input to output.

• Unsupervised Learning: In the methods in Unsupervised Learning, the agent
learns patterns in the input without giving any output to train on, only the features
are available.

• Semi-supervised Learning: In this case, a combination of both labeled and
unlabeled data is used during training.

• Reinforcement Learning: The agent is now learning by doing actions in an
environment and learning from the feedback in the form of reward or punishment,
called reinforcements, to tell the agent if the action was good or not. RL should
not be confused with Unsupervised Learning because of the absence of labeled
data. We are not trying to learn patterns in the input but rather maximizing a
reward signal [37].

A more detailed introduction to the RL category will be given in Section 2.6. There will
also be introduced an Unsupervised Learning method in Section 4.7 used to interpret
the data from MAST in this thesis.

2.6 Reinforcement Learning

In RL, the basic idea is to let an agent interact with an environment over time to capture
important features of the problem to achieve a goal [37]. This is done by letting the
agent learn by receiving rewards or punishments, called reinforcements, as an outcome
for choosing an action in a given state in an environment [32]. This approach to learning
by interacting with an environment to achieve a goal contrasts with other categories in
ML. One more unique challenge that arises in RL and not in other categories of ML is
the trade-off between exploration and exploitation. Exploration is the act of trying new
actions in the action space to discover more optimal solutions to the problem. On the
other hand, exploitation is the act of exploiting actions already found that leads to the
optimal solution. Both exploration and exploitation are important, and neither can be
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precluded [37]. The rest of this section will introduce the Markov Decision Processes
(MDP).

2.6.1 Markov Decision Processes

MDP is a way of formalizing sequential decision making [44]. The formalization is the
basis for problems solved with RL. An illustration of the formulation can be found in
Figure 2.5. In this formulation, we have a decision maker called an agent. The agent
interacts with an environment sequentially over time. In each discrete time step t, the
agent will get some representation of the environment state st ∈ S, where S is the
state space, and then selects an action at ∈ A, to take, where A is the action space. The
action is selected randomly, or from its policy, this is called exploration and exploitation,
respectively. Next, the environment transition into the next state st+1 ∈ S based on
the action done by the agent. This next state is returned to the agent together with
a reward rt+1 calculated by a reward function R(st, at), where the reward is given for
taking action at in state st. The reward is used to tell the agent if it did good or badly
and make it possible for the agent to improve over time. This process creates trajectories
of states, actions, and rewards. The goal is to maximize the total amount of rewards
that it receives from taking actions in the environment [37].

action at
state st

reward rt

st+1

rt+1

Agent

Environment

Figure 2.5: Markov Decision Process. An agent interacts with an environment sequentially
over time. In each discrete time step t, the agent receives a state st ∈ S and a reward rt from
the environment calculated by a reward function R(a, s). In the given state st, it selects an
action at to take. The environment transitions into the next state st+1 ∈ S and returns this
state together with a reward rt+1. This process continues until it reaches a terminal state and
repeatedly happens until reaching satisfied learning goals. This figure is based on [37].

2.7 Monte Carlo Tree Search

Monte Carlo Tree Search (MCTS) is used in many AI search problems. For instance,
it is used in the core algorithm of the AlphaGo system [34]. A lot of research has been
done in MCTS algorithms, which shows that it is suitable for many different domains
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and is a field in AI that might have a bright future. There are also a lot of different
variations of the algorithm [5]. When working with MCTS, we have to keep track of
at least two different policies: the tree policy and the default policy. The tree policy is
used for traversing the tree, the default policy is used during rollouts. Figure 2.6 shows
an illustration of one MCTS iteration, where each node in the tree represents a state s
in the search space S. The first phase is the selection phase: The algorithm starts in
the initial state represented by the root node. Then child nodes are selected following
the tree policy until reaching a terminal state or a node that is not fully expanded. The
next phase is the expansion phase: Expands the tree by selecting an unvisited action
that transitions into the next state, represented by a newly added leaf node added to the
tree. The rollout phase: A simulation is run from the newly expanded leaf node until
reaching a terminal state or until the simulation time is finished, this depends on the
problem. The rollout phase uses the default policy, which is often a random policy. In
the terminal state, a reward value is produced, this value is then backpropagated in the
backpropagation phase to update the previously selected nodes in the current iteration
[5].

Follow  
Tree Policy

Follow  
Default Policy

BackpropagationRolloutExpansionSelection

Figure 2.6: Monte Carlo Tree Search Iteration. In this figure, one MCTS iteration is
illustrated. This figure is based on [7].

MCTS use the Upper Confidence Bound for Trees (UCT), to handle the exploration vs
explotation challenge that arises in RL, in Equation 2.9 the UCT is expressed:

UCT = Q(s, a) + c

√
log(N(s))

N(s, a)
, (2.9)

where N(s) is number of times the node s has been visited and N(s, a) is the number
of traversals of edge (s, a) and c is an exploration balance coefficient. The Q(s, a) is
the Q-value. The selection phase select the actions that maximizes the UCT, the UCT
makes the selection phase able to explore more instead of only selecting actions based
on previous results [19, 25].



2.8 Adaptive Stress Testing 23

In this thesis, a variant of MCTS that uses progressive widening is used. This variant
makes MCTS perform better in large and continuous action spaces. More about this
variant in Section 3.4.

It is also possible to do Deep Reinforcement Learning together with MCTS algorithms.
Silver et al. achieved good results when they applied deep neural networks as critics and
actors to evaluate states and select actions when they trained AlphaGo Zero [35]. This
is done by applying the critic for evaluation of leaf nodes, instead of/or in combination
with rollout simulations. The actor, on the other hand, is used as the default policy
during rollouts and is trained by the real states as features and the action probabilities
made by the MCTS algorithm as targets. However, this approach is not used in this
thesis.

2.8 Adaptive Stress Testing

AST is a framework that is used to search for the most likely path to a failure event in
a simulation. The problem is formulated as a sequential decision problem, and RL is
used to optimize it [21, 22, 24, 25]. Figure 2.7 depicts the general framework. The main
components of the framework are the RL-agent A and the simulator S. The simulator S
consists of the system under test M, and the environment E in which it operates. The
RL-agent A acts as an adversary to the system under test M by choosing disturbances
x so that the environment E is as challenging to the system under test M as possible.
This is done through repeated interactions with the simulator S. The agent A, then
learns to choose disturbances x that maximize the reward r it receives. By choosing a
reward function that rewards failure events and higher likelihood transitions, the agent
learns to optimize for the most likely failure path [25].

  Environment   System Under 
         Test

Simulator

  Reinforcement 
      Learner

disturbance x state s, 
reward r

Most Likely
Failure Path

Figure 2.7: Adaptive Stress Testing. This figure illustrates the basic idea of the AST-
framework. The framework uses a simulator S consisting of the system under test M and the
environment E in which it operates. An RL-agent A chooses a disturbance x and sends it to
the simulator’s environment to act like an adversarial to the system under test. The simulator
returns the simulator state s and a reward r. The goal is to find the most likely path to a failure
event. The figure is based on [25].
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When talking about the most likely path, it is important to know the difference between
likelihood and probability. Likelihood can be described as finding the best distribution of
the data given a particular value of a situation in the data. Probability can be described
as finding the chance of something given a sample distribution of the data [12]. Lee et
al. [25], define the most likely failure path in the context of AST, to be the path with
the highest likelihood subject to the constraint that a final state stend is an event, this
can be expressed as:

max
x0,...,xtend

tend−1∏
t=0

p(xt|st),

subject to stend ∈ E,

(2.10)

where the p(xt|st) is the transition likelihood and E ⊂ S is a subset of states in the state
space S that can be defined as a failure event e.

The disturbances x are stochastic variables in the simulation sampled from a probability
distribution of choice, the Gaussian distribution, for instance. These variables are influ-
encing the environment E in which the system under test M operates. In this thesis, the
disturbances are the surge speed u and heading ψ of the vessels that act like other actors
in the environment, together with the system under test M, which is the milliAmpere
vessel in our case. Noise to the SP-VP system is also used as a disturbance.

In Section 2.4, Black-Box and Gray-Box simulators was introduced. In the context with
AST, there are different types of architectures to fit these two types of simulators. These
will be introduced in the next subsection.

2.8.1 Adaptive Stress Testing for Gray-Box Simulators

If the system gives the agent access to the complete state at each point in time, we
say that the system is fully observable [32]. Because of this, we can say the Gray-Box
simulator is a fully observable system. When a system is fully observable, it is possible to
formulate the problem as an MDP, which was introduced in Section 2.6.1. If the system
is fully observable, and the problem is formulated as an MDP, standard RL algorithms,
such as MCTS and Q-learning, can be used [37]. Figure 2.8 shows the AST architecture
for Gray-Box simulators. In this architecture, the RL-agent chooses a disturbance x to
influence the environment E and acts like an adversary to the system under test M. The
simulator S, which is Gray-Box in this case, transitions into its next state s′ and returns
it to the RL-agent A. The simulator S also returns the event e and miss distance d to the
reward function. The reward function needs this information together with the current
state s and the disturbance x that was chosen in that state to be able to calculate the
reward. The reward is sent to the RL-agent to give feedback if it did good or bad.
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reward r

  Environment   System Under 
         Test

  Reinforcement 
      Learner

interaction

Reward
Function

event e, 
miss distance d

disturbance x 

current state s
disturbance x 

Simulator

next state s'

Figure 2.8: Adaptive Stress Testing for Gray-Box Simulators. This figure shows the
AST architecture for Gray-Box simulators. The RL-agent A chooses a disturbance x and sends
it to both the Gray-Box simulator S and the reward function. The reward function also receives
the current state s, this is necessary for the reward function to be able to calculate the transition
likelihood. The simulator S returns the next state s′ to the RL-agent A and a boolean indicating
if the next state s′ of the simulator is a failure event e or not. The miss distance d from a possible
failure event is also returned to the reward function. The reward is calculated and sent as feedback
to the RL-agent A. This figure is based on [25, 26].

2.8.2 Adaptive Stress Testing for Black-Box Simulators

If parts of the systems’ state are missing, the system is known as partially observable
[32]. This is the case for many types of simulators because they do not allow access
to all or any state information, which is the case for Black-Box simulators. In other
words, the simulator appears non-Markovian to external processes. AST for Black-Box
simulators differs from the Gray-Box approach because the simulator states are now
being maintained internally. Moreover, the RL-agent A now chooses a pseudorandom
seed to initialize the pseudorandom number generator of the Black-Box simulator S̄
instead of sampling the disturbances x for the environment E , which is the case for
the Gray-Box approach of AST. The random processes of the simulator S̄ are assumed
to be derived from the seed x̄, this makes the simulator deterministic given the seed.
Therefore, the seed x̄ is deterministically connected to a particular sample of disturbances
internally in the simulator S̄. Since the RL-agent no longer chooses the disturbances x,
these must be handled internally in the Black-Box simulator S̄. The transition likelihood
ρ must, therefore, also be handled internally in the simulator. Since the simulator
deterministically transitions given the seed, it allows previously visited states to be
revisited by replaying the sequence of seeds [25]. Figure 2.9 depicts the AST Black-
Box architecture and the interactions between the parts. The next state s′ is no longer
available to the RL-agent A, and the reward function is given the transition likelihood
ρ directly from the simulator S̄.
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Figure 2.9: Adaptive Stress Testing for Black-Box Simulators. This figure shows the
AST architecture for Black-Box simulators. The RL-agent A choose an action-seed x̄ that is set
on the Black-Box simulator S̄. Since the Black-Box simulator does not reveal its internals, the
environment disturbances are sampled internally in the simulator S̄, and the transition likelihood
ρ, therefore, needs to be calculated by the simulator. The transition likelihood ρ, event e, and
miss distance d are returned to the RL-agent A. The Black-Box approach does not return the
next state s′. This figure is based on [25, 26].

2.9 Related Work

In this section, work related to AST is presented. Here, we will focus on AST related to
airborne collision avoidance systems and autonomous vehicles.

2.9.1 Adaptive Stress Testing of Airborne Collision Avoidance Sys-
tems

AST was first proposed by Lee et al. [22] in 2015 to test airborne collision avoidance
systems. AST is used to stress test a prototype of the next-generation Airborne Collision
Avoidance System (ACAS X). Lee et al. [25] investigated this, where the goal was to
find the most likely path to a near mid-air collision. They had to work in a large search
space, in which exhaustive considerations were not suitable, and failure states could be
hard to find.

Different architectures were presented, and depending on whether the simulator was
fully observable or partially observable, this is what we refer to as Gray-Box and Black-
Box in this thesis, respectively. They proposed a variant of MCTS called Monte Carlo
Tree Search for Seed-Action simulators (MCTS-SA), which only requires access to the
pseudorandom number generator of the simulator to overcome partial observability, this
is what was presented in Section 2.8.2. The algorithm is based on progressive widening,
which is done due to the huge action space consisting of all possible pseudorandom seeds.
More about this variant in Section 3.4. This simulator has a deterministic behavior since
the same pseudorandom seed always leads to the same next state from the previous state.
Due to this, the transition behavior of the simulator is deterministic [25].
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Lee et al. [23], extended the AST framework to be able to apply regression testing to
find failures that occur in one system but not in another. This extended framework is
called Differential Adaptive Stress Testing (DAST). The framework is used to compare
ACAS X with Traffic Alert and Collision Avoidance (TCAS), to test the performance
of ACAS X relative to TCAS. DAST works by searching two simulators simultaneously
and maximizing the difference between their outcomes [23].

It is essential to understand how failures occur to be able to design, evaluate and certify
safety-critical systems. In context with this, AST and DAST helped to contribute to the
certification case of the ACAS X, which led to the acceptance of ACAS X by the RTCA
[25].

Lipkis et al. [26] also use AST to test airborne collision avoidance systems. In par-
ticular, the Airborne Collision Avoidance System for smaller UASs (ACAS sXu). The
purpose of their work is to provide detect-and-avoid capability for small unmanned air-
craft operating beyond line-of-sight. They use a different approach compared to Lee et
al. [25], where they apply Deep Reinforcement Learning (DRL) with a Proximal Policy
Optimization (PPO) algorithm [33], to be able to search more efficiently through the
large and continuous state space. The developed method in their work found several
failure events, which were useful for the development of the system.

2.9.2 Adaptive Stress Testing for Autonomous Vehicles

In order for a vehicle to become autonomous, it is crucial that the autonomous vehicle is
equipped with a decision-making system. Koren et al. [20], presents a method for testing
the decision-making system of autonomous vehicles. They formulate the problem as an
MDP, and use RL-algorithms to find the most likely failure scenarios. In their work,
they show that extending AST to use DRL has improved the efficiency of the original
AST, which use a MCTS variant. They simulated scenarios involving an autonomous
vehicle, as the system under test, which is approaching a crosswalk, with pedestrians as
other actors in the environment. The paper shows that DRL can find more-likely failure
scenarios than MCTS in addition to finding them more efficiently [20].
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Methodology

This chapter presents the methodology of this thesis. First, the collision avoidance
simulator used for testing in this thesis will be described. Second, the architecture and
methods used in this thesis will be presented.

3.1 The milliAmpere Collision Avoidance Simulator

The maritime autonomous collision avoidance system is tested by using a simulator pro-
vided by Zeabuz. The simulator is based on the collision avoidance system milliAmpere
uses, which is the SP-VP method presented in Section 2.2. The collision avoidance
system is part of a larger system that milliAmpere uses, but has been isolated from
the bigger system in this simulator to make it easier to test. Since milliAmpere is a
safety-critical system with several complex components, and operates in a complex and
stochastic environment, it is safer to perform the testing in a simulated environment.
The simulator also gives the opportunity to cover a bigger part of the state space than
real-world testing, which gives a higher chance of finding rare failure events.

The simulator uses the simplifying assumptions presented in Table 2.2 in Section 2.1.3.
To simplify the problem into flat earth navigation in three degrees of freedom where the
marine vessels operate in the NED-frame in 3DOF. The simulator provides two types
of vessels, the milliAmpere vessel and a vessel referred to as a first-order vessel. The
milliAmpere vessel operates with more complex dynamics than the first order vessel
and is always equipped with the SP-VP controller. The first-order vessels use first-order
differential equations for their dynamics and behave as obstacles to the SP-VP controller
in the milliAmpere vessel. The obstacles use a simpler controller referred to as the speed
heading controller, which we will get back to later in Section 3.1.1. The marine vessels’
heading ψ operates in the unit circle. The name “obstacle” is chosen to comply with
the same notation as Thyri et al. use in their work [40]. An alternative name could be
an “adversary”, for instance, which game theory with RL often use. The marine vessels’
dynamics are based on the kinematic equations discussed in Section 2.1.3.

29
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The simulator is built both as a Gray-Box and a Black-Box system in this thesis. These
were introduced previously in Section 2.4. The use of a Gray-Box simulator approach
would be sufficient to test the collision avoidance system in this thesis, but a Black-
Box approach is also built for comparing the ease of use and test results. The difference
between the two approaches is how the random processes in the simulator transition from
a state st to the next state st+1. In the Gray-Box approach, an initial simulator seed is
set and is re-set in each simulation; therefore, the states transition deterministically, and
the random processes will always have the same outcome from a given state st to the next
state st+1. In the Black-Box simulator, however, an initial seed is set in each simulation,
but new simulator seeds are also performed as actions by the RL-agent. From Section
2.8.2, we remember that the simulator then deterministically transitions given the seed,
which allows previously visited states to be revisited by replaying the sequence of seeds.
This is the same approach that Lee et al. [25], refer to as a seed-action simulator in his
article.

When the simulator was first received, it had features to simulate milliAmpere together
with multiple obstacles, and the dynamics of the vessels were already implemented. The
simulation visualizer was also in place and ready to use. The SP-VP controller was also
implemented together with tools to visualize the path-time graph and a SP-VP cost
function. However, the simulator was not ready to be used together with the AST-
framework, and additional features had to be implemented. The functions implemented
have similarities with the related work presented in Section 2.9. However, adjustments
had to be made to fit the maritime domain. The functions are presented below, due to
the non-disclosure agreement, the code can not be shared:

Function to make it possible for the RL-agent to steer the obstacle vessels.
The function is implemented by using the existing speed heading controller in the
provided simulator code base. The RL-agent chooses a reference for the surge
speed u and the heading ψ of the vessel, and the reference is used by the speed
heading controller to control the motions of the obstacle vessels. More about this
controller in Section 3.1.1.

Function to make it possible for the RL-agent to control the SP-VP noise. The
function is implemented by using the existing noise model in the provided simu-
lator code base. The RL-agent sample noise values from a Gaussian distribution
with mean µ = 0.0 and standard deviation σ = 1.0. The noise model use time
constants and gain parameters Tp, Kp, Tv, Kv, where subscript p is for the vessel
position and v is the vessel velocities.

Function to check if a failure event has occurred. The failure event function is
implemented to check if the milliAmpere vessel intersects with the obstacle vessel’s
true ROC, which is the ROC without any noise. In Section 2.2.1, equations for
calculating the true ROC is discussed. A failure event is therefore defined as
a collision between milliAmpere and one of the obstacles in the simulation, if
milliAmpere intersects one of the obstacle vessels’ true ROC.
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Function to calculate the distance between one or more obstacles. To calculate
the distance between two vessels in the NED-frame, the Euclidean distance formula
shown in Equation 3.1 is used:

d(p, q) =
√
(q1 − p1)2 + (q2 − p2)2, (3.1)

where p and q are points in with Cartesian coordinates (p1, p2) and (q1, q2), re-
spectively. When there are multiple vessels in the simulation, the average of all
distances between milliAmpere and the other obstacle vessels is returned.

Function to calculate the transition likelihood of the simulator. This function
calculates the simulator’s transition likelihood p(x|s).

Function to reset the simulator. This function resets the simulator to its initial con-
ditions and re-sets the initial seed of the simulator.

Function to step the simulator by providing an RL-action. The function takes
disturbances given by the RL-agent and performs the actions caused by the dis-
turbances. The simulator is then updated with a resolution of 0.1s time step and
returns the simulator state s back to the RL-agent with a resolution of 1s time step.
This means that the RL-agent only interacts with the simulator with a resolution
of 1s time step.

Simulator Data Extractor. The purpose of the data extractor was to extract all the
data needed to analyze the results manually and with the Soft-DTW algorithm.

To develop the functions, domain knowledge in marine vessel dynamics introduced in
Section 2.1 and about the collision avoidance system SP-VP, introduced in Section 2.2,
was needed. They are also fundamental for the architecture proposed in this thesis, more
about this architecture is in Section 3.3.

In Figure 3.1 an example simulation frame is shown, consisting of the milliAmpere vessel
and two first order vessels referred to as Obstacle 1 and Obstacle 2. The milliAmpere
vessel is illustrated by an orange solid circle representing the center of the vessel together
with the belonging trajectory as a solid line in the same color. The milliAmpere vessel’s
waypoint mission is shown as a dashed black line. The centers of the obstacle vessels
are also represented by solid circles with their corresponding colors, but the trajectories
differ from the milliAmpere because they also consist of markers showing their position
every second of the simulation. The solid red, green and blue lines, are ROC, HPR and
LPR of the SP-VP obstacle representation respectively, these are presented in Section
2.2.1. The diamond-shaped dashed lines surrounding the obstacles are the true ROC,
this differs from the ROC that SP-VP uses to represent obstacles by not being affected
by noise.

3.1.1 Obstacle Vessels with Speed Heading Controller

The obstacle vessels in the simulator also referred to as the first-order vessels, are first-
order control systems. These systems use a transfer function that is a first-order differ-
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Figure 3.1: Simulation Frame. This figure shows an example simulation frame. The mil-
liAmpere vessel is illustrated with an orange solid line, and the dashed black line is milliAmpere’s
waypoint mission. The solid red, green and blue lines, are ROC, HPR and LPR of SP-VP, respec-
tively. The obstacles are represented by lines with markers for every second of the simulation.
We have obstacle 1 in light blue with circles as markers and obstacle two in purple with diamonds
as markers. True ROC is a region of an obstacle that indicates an actual collision, it differs from
the SP-VP ROC due to noise given to the collision avoidance system.

ential equation. The vessels are based on Proportional Integral Derivative (PID), where
the proportional part is the Speed Heading Controller, where a reference surge speed u∗
and vessel heading ψ∗ are given to the controller. The controller use Equation 3.2:

r∗ = −Kψ(ψ∗ − ψ) (3.2)

where r∗ is the desired yaw angular velocity, Kψ is the proportional gain in yaw. The
reference heading ψ∗ and current heading ψ. Moreover, the feedback error term is the
(ψ∗ − ψ) part of the equation [42]. The Speed Heading Controller returns the desired
body velocity back to the vessel by Equation 3.3:

ν∗ = [u∗, 0, r∗]
T (3.3)

where ν∗ is the desired body velocity, and u∗ and r∗ are the desired body velocities
in surge and yaw, respectively. Another important part to mention about the PID
controller, is that it uses time constants to control how long it should take to reach



3.1 The milliAmpere Collision Avoidance Simulator 33

63.2% of the desired velocity in these first-order vessels. The time constants that the
first-order vessels use in this thesis are Tu, Tv, and Tr, which are the time constants
for surge velocity u, sway velocity v and yaw angular velocity r. In the experiments
conducted in this thesis, these are set to Tu = 3, Tv = 5 and Tr = 3.

3.1.2 The milliAmpere Vessel Configurations

Table 3.1 shows an overview of the milliAmpere configurations. These configurations
are used in all experiments conducted with the AST-framework. The regions in these
configurations have been chosen by Zeabuz, which is why they are used in this thesis.
Here, the vessel has an initial position of 10 meters North N and 0 meters East E with
a heading straight towards North, in the northeast frame. The initial position is the
start waypoint of the waypoint mission given to the vessel, and the goal waypoint is 200
meters straight North N . The SP-VP collision avoidance system is updated every fourth
second of the simulation and has the obstacle region margins ROC, HPR and LPR as
shown in the table.

It is important to remember from Section 2.2.1, why the large region margins are chosen
for the obstacles. The reason is that it includes the dimensions for itself together with
the vessel using the SP-VP collision avoidance system, which is milliAmpere in our case,
in addition to some safety factors and perimeter size. The regions are also larger towards
the starboard due to COLREG saying that you should stop for other vessels from the
starboard. The table also shows the gains and time constants in use by the SP-VP
noise model The time constants Tp and Tv are time constants for noise in position and
velocity, respectively. The gain parameters Kp and Kv are time constants for position
and velocity, respectively.

3.1.3 Infeasible Problem

The SP-VP method cannot always find a velocity profile that does not lead to a collision.
In these cases, the simulator provided by Zeabuz throws an infeasible problem exception.
The work in this thesis had to handle this exception to avoid the simulator crashing
during testing. As mentioned earlier, SP-VP is part of a bigger system that milliAmpere
uses, and other parts take control when this exception is present. For testing in this
thesis, the infeasible problem is handled by setting the next trajectory waypoint of
the milliAmpere vessel to the vessel’s current position in North N and East E, which
makes the vessel stop to avoid a collision. This behavior was evaluated as most safe for
milliAmpere. The adjustment was done to be able to easier test AST, and to be able to
find more failure events. Furthermore, the infeasible problem is also handled by setting
it as a terminal state in AST. This is done to be able to find even more realistic and
rare failure events. In most of the experiments conducted in this thesis, the infeasible
problem is handled by stopping the milliAmpere vessel. However, in Section 4.6, the
experiment conducted with infeasible problems handled as a terminal state is discussed.
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Table 3.1: The milliAmpere vessel configurations

Initial Positions and Velocities SP-VP Noise Parameters

North N East E Heading ψ Tp 30
10 0 0 Kp 100

Surge Velocity u Sway Velocity v Yaw Velocity r Tv 30
0 0 0 Kv 4.66

Max Velocity Min Velocity SP-VP Rate Waypoint Mission

1.2 -0.2 0.25 [N :10, E:0] → [N :200, E:0]

SP-VP Obstacle Region Margins

Fore lf Starboard ls Aft la Port lp
ROC 22.5 12.5 12.5 12.5
HPR 27.5 22.5 17.5 17.5
LPR 42.5 27.5 22.5 22.5

3.2 AdaStress

The software package AdaStress1 implements the AST-framework introduced in Section
2.8. AdaStress is developed by the Robust Software Engineering technical area, based
in the Intelligent Systems Division at NASA’s Ames Research Center. The software
package is based on the original AST formulation first introduced by Lee et al. [25]. It
is written in the Julia2 programming language and provides three primary services:

• Interfaces between simulators and the AST-framework.

• Different solvers based on RL.

• Tools for analyzing and visualizing the results from the AST.

When using AdaStress, it is possible to choose from two different types of simulator
interfaces, which are the Gray-Box and Black-Box interfaces. The Gray-Box interface is
used when the simulator’s environment is available to the solver, this makes it possible to
sample the random variables directly and apply them in the simulation. The Black-Box
interface, on the other hand, is used when the simulator does not reveal its environment.
In this case, the solver has to interact with the simulator by setting a random seed for
each step in the simulation.

To make use of AdaStress, the simulator has to provide methods that satisfy the AdaS-
tress methods below:

• AdaStress.reset!: Resets the simulator to its initial conditions.

1AdaStress
2The Julia Programming Language: https://julialang.org/

https://github.com/NASA-SW-VnV/AdaStress.jl
https://julialang.org/
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• AdaStress.isterminal: Checks if the current simulation state is terminal or not.

• AdaStress.isevent: Checks if the current state is a failure event or not.

• AdaStress.distance: Returns the distance to a failure event.

• AdaStress.step!: Transitions the simulator into its next state. If the simulator
is a Gray-Box it is done by performing a set of disturbances in the simulator. If
the simulator on the other hand is a Black-Box, it is done by setting a random
seed in the simulator. The function also returns the current state log probability
of the environment if it is a Black-Box.

• AdaStress.environment (Gray-box): This method is only needed when the
simulator is a Gray-Box, which makes the environment available to the solver.
The methods are used to set up the stochastic variables by sampling from a prob-
ability distribution. This method is not needed by the Black-Box interface due to
environment variables updating internally in the simulator.

• AdaStress.observe: This is an optional method that returns the current simu-
lation state.

AdaStress has been used in this thesis to perform AST on the milliAmpere simula-
tor discussed in Section 2.8. As mentioned previously, both Gray-Box and Black-Box
simulators have been implemented and tested.

3.3 Maritime Adaptive Stress Testing

This section presents the Maritime Adaptive Stress Testing (MAST) architecture pro-
posed in this thesis. This architecture is the one this thesis uses for testing the maritime
autonomous collision avoidance system SP-VP. The architecture consists of three main
parts, the AST-framework, the collision avoidance simulator, and a simulator interface
needed by the AST-framework to communicate with the simulator. Figure 3.2 shows
an abstract overview of the MAST architecture. Moreover, two different programming
languages are used in this work, the reason is that the simulator provided by Zeabuz is
written in Python3 and the AST-framework AdaStress developed by NASA is written
in the programming language Julia, the AdaStress software package was presented in
Section 3.2. The collision avoidance simulator was not ready to be used together with
the AST-framework when first received. Therefore, a simulator interface that provided
all the necessary communication between the AST-framework and the simulator had to
be implemented. The functions and extra features of the simulator were presented in
Section 3.1.

In the previous Section 3.1, there was briefly mentioned that the simulator is imple-
mented both as a Gray-Box and Black-Box simulator in this thesis. This section will
give a more detailed introduction to these simulators and how they fit in with the MAST

3Python: https://www.python.org/

https://www.python.org/
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Adaptive Stress Testing
(AST)

Collision Avoidance
SimulatorSimulator Interface

Figure 3.2: Maritime Adaptive Stress Testing. In this figure, an abstract overview of
the MAST architecture is shown. Two different programming languages are used; the simulator
provided by Zeabuz is implemented in Python, and the AST-framework, developed by NASA, is
implemented in Julia. In between, we have the simulator interface developed in this work and
implemented in Python, which helps the communication between the AST software package and
the simulator. The arrows indicate communication between the parts.

architecture. First, the Gray-Box approach will be discussed, and next, the Black-Box
approach will be discussed.

3.3.1 Gray-Box Maritime Adaptive Stress Testing

The Gray-Box Maritime Adaptive Stress Testing (G-MAST) is based on what we referred
to as AST for Gray-Box simulators in Section 2.8.1. The proposed architecture extends
the existing architecture by adapting it to the maritime domain. G-MAST is a suitable
solution when the simulator makes its environment variables and state available. The
RL-agent can then sample the variables, also referred to as disturbances, directly from
a modeled probability distribution for each type of disturbance. The chosen probability
distributions will be described in more detail in Section 3.6.

Figure 3.3 shows the G-MAST architecture. The architecture is an extended version of
Figure 2.8 in Section 2.8.1. Here, the RL-agent samples a set of disturbances, which is
further sent to the simulator. The disturbance handler then splits up the disturbances
vector and sends the correct disturbance into their belonging parts in the simulator.
The reference surge speed u∗ and heading ψ∗ are sent directly to the Speed Heading
Controller of the obstacle vessel. It is possible to simulate more than one obstacle,
but for simplicity, only one obstacle vessel is illustrated. The sampled noise is sent to
the SP-VP noise model, which generates some noise on the SP-VP tracking system,
which then returns the estimated position of the obstacles to the SP-VP controller of
the milliAmpere vessel. The simulator then transitions into its next state. The vessel
state for milliAmpere and the obstacle consists of the positions and orientations η and
the velocities ν of the vessels. Then the simulator checks if the state is a failure event
e, the distance to failure e, and formats the state to a one-dimensional vector which
is sent back to AST. The reward function calculates the transition likelihood in this
architecture and returns the reward r to the RL-agent.

3.3.2 Black-Box Maritime Adaptive Stress Testing

The Black-Box Maritime Adaptive Stress Testing (B-MAST) architecture is suitable for
simulators that do not reveal their environment variables and where all the updates of
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Figure 3.3: Gray-Box Maritime Adaptive Stress Testing. This figure shows a more
detailed architecture setup of G-MAST. The RL-agent chooses disturbances that are sent to the
simulator’s disturbance handler. The disturbance handler sends the disturbances to the right
parts of the simulator. The reference surge speed u∗ and heading ψ∗ are sent to the speed
heading controller. And the noise is given to the SP-VP tracker. The simulator then updates
and transitions into its next state, and the state of the vessels is given to the failure event checker,
distance measure, and state format handler. Then the simulator returns a boolean indicating if
the state is a failure state or not e, the distance to failure d, and the next state of the simulator.
The reward function calculates the transition likelihood in this architecture and the reward r is
sent to the RL-agent.

the simulator happen internally. This architecture is based on what we referred to as
AST for Black-Box simulators in Section 2.8.2. The RL-agent only interacts with the
simulator by setting the random seed. This differs from the Gray-Box approach because
the random stochastic disturbances are now sampled internally in the simulator instead
of by the RL-agent. In Figure 3.4, the architecture is shown. Only a random seed,
referred to as action-seed x̄, is chosen by the RL-agent and given to the pseudorandom
number generator of the simulator. The pseudorandom number generator is then used by
the Speed and Heading Reference handler to sample a random reference surge speed u∗
and heading ψ∗ for the obstacle’s Speed Heading Controller. The pseudorandom number
generator is further used to generate random noise in the SP-VP tracking system. The
simulator works the same way as in the Gray-Box approach, but the disturbances in the
environment are now sampled internally in the simulator. This means that the transition
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likelihood ρ has to be calculated internally in the simulator and returned to the reward
function, which is needed for the reward function to be able to calculate the reward
r. The Black-Box approach can also be suitable for simulators that are provided as a
software binary not revealing its state, which is the case in the work of Lee et al. [25].

Speed Heading
Controller

Simulator

SP-VP Controller

Obstacle

Pseudorandom
Number Generator

Reward
Function

SP-VP
Noise

true
position

estimated
position

Speed and
Heading

Reference

milliAmpere

action-seed

Adaptive Stress Testing

Reinforcement
Learner

reward r

Failure event
checker and

distance measure

transition likelihood   ,
failure event e,

distance to failure event d

Figure 3.4: Black-Box Maritime Adaptive Stress Testing. This figure shows the B-MAST
architecture. The RL-agent chooses an action-seed to be set on the simulator in each simulator
step. The pseudorandom number generator in the simulator is used to sample environment
disturbances internally. The disturbances are the reference surge speed u∗ and heading ψ∗ and
noise to SP-VP. The transition likelihood has to be calculated internally in the simulator for
B-MAST.

3.4 Monte Carlo Tree Search with Progressive Widening

In this thesis, the Monte Carlo Tree Search with Progressive Widening (MCTS-PW) is
used [7]. The progressive widening extends MCTS, introduced in Section 2.7, to be able
to handle large or continuous action spaces. This is the algorithm the software package
AdaStress offers [7]. The progressive widening variant of MCTS, is also what Lee et al.
[25], use in their proposed variant referred to as MCTS-SA.,

The MCTS-PW algorithm is used in the already visited state nodes to determine whether
to use existing disturbances already tried, or expand the node to try out new disturbances
by using the progressive widening criteria, expressed in Equation 3.4:
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|X(s)| < kN(s)α, (3.4)

where s is the traversed node, |X(s)| is the number of disturbances, also referred to as
children of the traversed node s. The N(s) is the number of times the node s has been
traversed. The parameters k and α are the tree expansion coefficient and exponent,
respectively. The tree expansion coefficient k and the tree expansion exponent α are
additional hyperparameters that control the rate of adding new nodes.

3.5 Reward Function

The G-MAST and B-MAST use different types of reward functions. Since the simulator
in the G-MAST architecture returns the state s, the reward function can calculate the
transition likelihood itself. The reward function for G-MAST is expressed in Equation
3.5:

R(s, x) =


RE if s is terminal and s ∈ E

−d if s is terminal and s /∈ E

log(p(x|s)) otherwise,

(3.5)

where RE is the reward when a failure event is found. This is set to be high enough to
outweigh the maximum cumulative unlikeliness.

Since the state is not returned in the B-MAST architecture and environment variables
are handled internally in the simulator, the transition likelihood must also be calculated
internally in the simulator. The transition likelihood is returned to the reward function
and can thereby be expressed as in Equation 3.6:

R(ρ, e, d, τ) =


RE if τ ∧ e
−d if τ ∨ ¬e
log ρ otherwise,

(3.6)

where the reward function no longer has the state s and the disturbance x available from
the simulator. Instead, the simulator returns the transition probability ρ, a boolean
indicating if it is a failure event e and a miss distance d, and a boolean indicating if the
simulator is a terminal state τ . If we compare the reward function for the Gray-Box
approach and the Black-Box approach, we see that the reward is calculated in the same
way; but the difference is that some of the parts needed in the equations are calculated
internally in the simulator for the Black-Box approach.

In this thesis, the reward is also marginalized when calculating the log probabilities.
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3.6 Representation of States and Disturbances

In the G-MAST architecture, a state is returned to the solver. The state s is then
represented as:

s = [Nm, Em, ψm, No1, Eo1, ψo1, ..., Non, Eon, ψon], (3.7)

where N , E, and ψ are the North position, the East position, and the heading of the
vessel, respectively. The subscriptm denotes the milliAmpere vessel, which is the system
under test. The subscript on denotes that the vessel is an obstacle o and the number of
the obstacle vessel n. The B-MAST architecture does not use the state due to handling
states internally.

The disturbances are sampled from the same types of distributions in both G-MAST and
B-MAST. The difference is that in B-MAST, the disturbances are sampled internally
in the simulator and not by the RL-agent as it is in the B-MAST. Three types of
disturbances are used in this thesis, which are the reference surge speed u∗ and the
reference heading ψ∗ of the obstacle vessel, and the noise to the SP-VP tracking system.
The vessel reference speed u∗ and reference heading ψ∗ are sampled from a truncated
normal distribution [6], which truncates the values returned from the distribution into
an interval. The reference surge speed u∗ use the truncated normal distribution with
a minimum allowed velocity umin and a maximum allowed velocity umax. The mean
of the distribution is set to the velocity that should be treated as most likely in the
given scenario. The standard deviation σ is set to be reasonably high so that it covers
the given interval such that it samples the minimum and maximum values with some
frequency. The same approach is done for the heading ψ, but here the mean is set to the
initial heading, which makes the initial heading of the vessel to be the most likely, which
makes deviation from this heading less likely. The noise is sampled using a Gaussian
distribution with the mean µ = 0 and standard deviation σ = 1.0.

3.7 Representation of Failure Events

In this section, the definition of a failure event is introduced together with the types
of maritime collisions used in this thesis. A failure event occurs when the milliAmpere
intersects with one of the other obstacle vessels’ true ROC. Maintenance and Cure4

classify four types of maritime collision types:

• Side collisions: when a vessel is struck on the side by another vessel

• Bow-on collisions: when two vessels strike each other head-on

• Stern collisions: when one vessel runs into the back of another.

4Maintenance and Cure, Maritime Collision Types: www.maintenanceandcure.com/maritime-
blog/types-of-maritime-collision-causes

https://maintenanceandcure.com/maritime-blog/types-of-maritime-collision-causes/
https://maintenanceandcure.com/maritime-blog/types-of-maritime-collision-causes/
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• Allisions: when a vessel strikes an object, such as a bridge.

These types of maritime collisions are used in this thesis to explain and group the failure
events. We will come back to these collision types in Chapter 4, except for allisions,
which is not relevant in this thesis.





Chapter 4

Results and Discussion

In this chapter, the results from G-MAST and B-MAST applied to the Zeabuz ferry will
be presented and discussed. In all of the experiments, the milliAmpere vessel is using
the configurations presented in Section 3.1.2. The most interesting failure events will be
presented together with the scenario setup and hyperparameters used to find them.

4.1 Hardware and Software

For reproducibility purposes, the hardware specifications of the computer used in this
thesis are presented here. The operating system is Arch Linux x86 64, with the kernel
version 5.19.5-arch1-1. The CPU is a Intel i7-6700K 4.2 GHz, the GPU is NVIDIA
GeForce GTX 980 and 32 GB RAM.

4.2 Scenarios Setup

It is common when testing maritime autonomous collision avoidance systems to check if
it is COLREG-compliant. But as mentioned earlier in Section 2.2, the SP-VP method
studied here does not comply well with these rules due to having a fixed path, and the
COLREG is weighted more on course change maneuvers. This thesis does, therefore,
not focus on checking if the SP-VP method is COLREG-compliant, but instead tries
to find rare events where the SP-VP tracking system gets confused, which makes the
algorithm plan dangerous velocity profiles. Three types of scenarios were designed to
do this, the first one is referred to as fast-moving obstacles, the second is referred to
as slow-moving obstacles, and the last one is referred to as multiple obstacles, which
includes two obstacles. In all of the scenarios, milliAmpere was configured the same
way, as presented in Table 3.1 in Section 3.1.2. The obstacle vessel’s initial position was
placed on the starboard side of milliAmpere, this is because vessels should not conflict
with the path of the vessels coming on their starboard side given rule 15 in COLREG.

43
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4.3 Fast-moving Obstacles

In the first experiments conducted, the obstacles steered by the RL-agent operate with
relatively large velocities. The reason why this was tested was not to look for the most
realistic scenarios, but instead to have a proof of concept and a base to work from.
In Table 4.1, the configurations for the obstacle vessel for the experiments performed
with fast-moving obstacles are presented. The initial position of the obstacle vessel is
150 meters North N and 200 meters East E with a heading ψ straight west towards
milliAmpere’s waypoint mission. The initial distance between the obstacle and system
under test might seem large, but it is important to remember that the system under
test is represented as a point in the northeast frame, but it takes more space in the real
world. The RL-agent has the freedom to steer the obstacle however it wants with the
constraint of the surge velocity u ∈ [−1, 10] and the heading ψ ∈ [−π, π]. The SP-VP
noise was sampled from a Gaussian distribution as presented in 3.6. In this experiment,
the infeasible problem is handled by stopping the vessel. The infeasible problem was
introduced in Section 3.1.3.

Table 4.1: Fast-moving obstacle scenario

Obstacle Vessel 1

Initial Positions and Velocitites

North N East E Heading ψ
150 200 −π/2

Surge Velocity u Sway Velocity v Yaw Velocity r
2.0 0 0

Velocity and Gain

Max Surge
Velocity umax

Min Surge
Velocity umin

Yaw Gain

10.0 -1.0 0.2

In Table 4.2 the hyperparameters for the MCTS-PW solver are presented. These hy-
perparameters are the default hyperparameters in the AdaStress software package. The
number of iterations could be set lower, but because of benchmarking the results from
G-MAST and B-MAST, a minimum of 50 000 iterations are set for all experiments. The
tree expansion coefficient k and the tree expansions exponent α are set to 1.0 and 0.7,
respectively. These are the parameters for the progressive widening part of the MCTS-
PW, which is presented in Section 3.4. The exploration balance constant c is for the
UCT in MCTS-PW.

In the rest of this section, interesting failure events found with one fast-moving obstacle
are presented. All of the results presented in this section are found with G-MAST.
However, all types of failure events presented here are also found with B-MAST. First,
the most common failure event found is shown in Figure 4.1. The collision occurs at
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Table 4.2: MCTS-PW hyperparameters

Hyperparameter Value

Number of iterations n 50 000
Tree expansion coefficient k 1.0
Tree expansion exponent α 0.7
Exploration balance coefficient c 1.0

time t 60 seconds, which happens while the milliAmpere vessel is standing still. The
results presented here show that the failure event found with G-MAST is a collision where
milliAmpere is not speeding when the collision occurs. One might argue that these types
of failures are not caused by the system under test but rather an apparent attack by the
obstacle vessel. Others might argue that it is a form of failure because it tells us that
the collision avoidance system favors stopping when it is uncertain. The obstacle vessel
should maybe be avoided instead by using other collision avoidance techniques where
the system under test will steer away from the situation. Due to legal reasons, the latter
option is often precluded because it is easier to argue that the system did not cause the
failure because it is not speeding. It also depends on the maneuverability of the obstacle,
and the argument of the obstacle is chasing the milliAmpere, and the collision would
occur anyway due to the obstacle being unavoidable in this case. However, these types
of failures are not failures in the SP-VP system due to it being designed to handle these
situations by stopping the vessel in these experiments.

Furthermore, this is a common failure event found in some autonomous systems, such
as autonomous vehicles, for instance. An example of this is shown in work by Koren et
al. [20], where the blame for the collision in some of the scenarios is on the pedestrian.
The pedestrians in their work behave a lot like the obstacle vessels in this thesis. It is
a common result because many autonomous systems have parts built in so that when
they are uncertain, they will slow down, as opposed to speeding up.

The next interesting failure event found with fast-moving obstacles, is the bow-on col-
lision shown in Figure 4.2. In this case, milliAmpere is, in fact, speeding when the
collision occurs at time t 60 seconds, with a speed of 0.73m/s. The interesting part here
is that it looks like the obstacle vessel tricks the milliAmpere into crashing by changing
its heading from almost straight west to straight south towards the milliAmpere vessel
at time t 53 seconds. When looking at the graph for the surge speed u for milliAmpere,
it shows that it has an almost constant speed over 10 seconds before the collision occurs.

Figure 4.3 shows a side collision at time t 53 seconds, where the milliAmpere vessel
contributes to the crash. It crashes into the obstacle vessel when it tries to cross. This
violates rule 15 of COLREG, which states that milliAmpere should stop for the obstacle
vessel coming on its starboard side. Figure 4.3b shows that the milliAmpere is speeding
when the collision occurs. Rule 19 in COLREG states that “every vessel should proceed
at a safe speed adapted to prevailing circumstances and restricted visibility. A vessel
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(b) Surge speed u and heading ψ.

Figure 4.1: The Most Common Failure Event Found. This figure shows the most common
failure event found. Figure 4.1a shows the trajectories for the milliAmpere vessel and the obstacle
vessel from their start position until the collision occurs at time t 60 seconds. The obstacle vessel
is steering right into the milliAmpere vessel in this case. Figure 4.1b shows the vessels’ surge
speeds u and headings ψ in each time step of the simulation. The key observation from this figure
is that the milliAmpere vessel stops for the rest of the simulation at time t 44 seconds and is not
speeding when the collision occurs. The obstacle heading ψ is towards the milliAmpere vessel.
The obstacle vessel has a surge speed u of 2.88 m/s when the collision occurs. This failure event
is found with G-MAST.

detecting by radar another vessel should determine if there is risk of collision and if
so take avoiding action”. When considering this rule, one can argue that the obstacle
vessel is not operating at a safe speed. However, as rule 19 states, the milliAmpere
should probably operate safer in these situations and thereby try to avoid the collision.

Figure 4.3c shows the last tracked SP-VP position of the obstacle vessel. In Table 3.1 in
Section 3.1.2, we introduced the SP-VP-rate, which was set to 0.25. This means that the
SP-VP-tracking system updates every 4 seconds. In the time between SP-VP updates,
a lot can happen, as shown in this figure. The key observation in this failure event,
is that the milliAmpere tracks the obstacle vessel to be further away than it is due to
noise. Figure 4.3d shows the distance measurement data, where the last seconds of the
figure show that the estimated distance is greater than the true distance. It is important
to mention that the estimated distance is not the distance SP-VP system tracks the
obstacle vessel at all times, as mentioned above, the SP-VP-tracker updates the position
every 4 seconds.
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(b) Surge speed u and heading ψ.

Figure 4.2: Bow-on Collision with Fast-moving Obstacle. The figure shows an example
of a bow-on collision with a fast-moving obstacle. In Figure 4.2a it is shown how the obstacle
vessel’s trajectory changes right before the collision occurs at time t 60 seconds. The change
in the obstacle vessel’s heading ψ is shown clearly in Figure 4.2b where the heading changes
almost from straight west to straight south towards the milliAmpere vessel at time t 53 seconds.
Another interesting observation in this failure event is that the milliAmpere vessel has almost
constant speed over 10 seconds before the collision occurs. The speed of the milliAmpere vessel
and the obstacle vessel is 0.73 m/s and 4.59 m/s, respectively, when the collision occurs. This
failure event is found with G-MAST.



48 Chapter 4: Results and Discussion

0 50 100 150 200
Position East E [m]

0

50

100

150

200
P

os
it

io
n

N
or

th
N

[m
]

Waypoint Mission

Obstacle 1 True ROC

milliAmpere

Obstacle 1

(a) Northeast plot.

0 10 20 30 40 50

0

2

4

6

8

S
u

rg
e

S
p

ee
d
u

[m
/s

]

milliAmpere Obstacle 1

0 10 20 30 40 50
Time t [s]

−2

−1

0

H
ea

d
in

g
ψ

[r
a
d
]

(b) Surge speed u and heading ψ.
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Figure 4.3: Side Collision with Fast-moving Obstacle. The figure shows an example
of a side collision with a fast-moving obstacle. Figure 4.3a shows that the milliAmpere vessel
contributes to the crash at time t 53 seconds. Figure 4.3b shows that milliAmpere is speeding
and that the heading ψ of the obstacle vessel is not changing much after time t 49 seconds.
Figure 4.3c shows the northeast plot with SP-VP data, the plot contains the trajectory with
tracked positions of the obstacle vessel and the last tracked obstacle position shown in yellow
together with the SP-VP regions. The SP-VP regions shown is updated at time t 52 seconds.
The key observation is that due to noise, it tracks the obstacle to be further away than it is. The
milliAmpere vessel is close to the LPR, but it crashed into the obstacle vessel before intersecting
with the region. Figure 4.3d shows the tracked distance of the obstacle vessel, referred to as
estimated distance, together with the true distance to the vessel. This data shows more clearly
that milliAmpere tracks the obstacle to be further away than it is. The failure event is found
with G-MAST.
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4.4 Slow-moving Obstacles

In Table 4.3, the configurations for the slow-moving obstacle vessel are presented. The
main difference in this scenario setup is the initial position and velocity interval of the
obstacle vessel. The initial North N position is changed from 150 meters to 50 meters,
and East E is changed from 200 meters to 100 meters, which places the vessel closer to the
milliAmpere vessel. The heading ψ is still straight west towards milliAmpere’s waypoint
mission. The surge velocity u ∈ [−1.0, 3.0] is the key difference in this experiment, this
is the reason why the vessel is referred to as slow-moving. The rest of the configurations
are the same as the fast-moving obstacle scenario. The same hyperparameters as Table
4.2 are also used in this experiment. The failure events presented in this section are also
found with G-MAST, but the same failure events are also found with B-MAST for the
same scenario. The infeasible problem, introduced in Section 3.1.3, is also here handled
by stopping the milliAmpere vessel.

Table 4.3: Slow-moving obstacle scenario

Obstacle Vessel 1

Initial Positions and Velocitites

North N East E Heading ψ
50 100 −π/2

Surge Velocity u Sway Velocity v Yaw Velocity r
2.0 0 0

Velocity and Gain

Max Surge
Velocity umax

Min Surge
Velocity umin

Yaw Gain

3.0 -1.0 0.2

The failure events found with the slow-moving obstacle scenario will be presented in
the rest of this section. First, a side collision with the slow-moving obstacle is shown
in Figure 4.4. This failure event is similar to the one in Figure 4.3 found with the
fast-moving obstacle scenario. However, this failure event shows that side collision also
occurs with slow-moving obstacles.

Figure 4.5 shows another interesting failure event where a stern collision occurs with a
slow-moving obstacle. In this failure event, we can see that the milliAmpere tries to
speed away from the collision but is followed by the obstacle vessel. Figure 4.5b shows
that the heading ψ of the obstacle vessel is changing towards the milliAmpere the last
seconds before the collision occurs, and the surge speed u of the vessels shows that both
vessels are speeding before the collision.
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Figure 4.4: Side Collision with Slow-moving Obstacle. This figure shows a side collision
with a slow-moving obstacle occurring at time t 52 seconds. Figure 4.4b shows that milliAmpere
is speeding when the collision occurs and that the heading ψ is not changing drastically in the
last seconds before the crash. This failure event is found with G-MAST.



4.4 Slow-moving Obstacles 51

−50 0 50 100 150
Position East E [m]

25

50

75

100

125

150

175

200

P
os

it
io

n
N

or
th
N

[m
]

Waypoint Mission

Obstacle 1 True ROC

milliAmpere

Obstacle 1

(a) Northeast plot.

0 10 20 30 40 50

0

2

4

S
u

rg
e

S
p

ee
d
u

[m
/s

]

milliAmpere Obstacle 1

0 10 20 30 40 50
Time t [s]

−2

−1

0

H
ea

d
in

g
ψ

[r
a
d
]
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Figure 4.5: Stern Collision with Slow-moving Obstacle. Figure 4.5a shows a stern
collision with a slow-moving obstacle occurring at time t 50 seconds. Figure 4.5b shows that the
obstacle is changing heading ψ towards the milliAmpere vessel in the last 5 seconds before the
collision. The surge speed u of milliAmpere shows that milliAmpere tries to speed away from
the collision but is followed by the obstacle. 4.5c shows the SP-VP data, here we can see that
milliAmpere tracks the obstacle vessel to be further behind than it is. The SP-VP regions shown
is updated at time t 48 seconds. Figure 4.5d shows the estimated distance together with the true
distance of the obstacle vessel. This failure event is found with G-MAST.
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4.5 Multiple Obstacles

A scenario setup with multiple obstacles is used to investigate how the milliAmpere
vessel behaves when exposed to multiple obstacles. Here, two obstacles are used, each
with a designated obstacle scenario as described in table 4.4. The surge velocities for
both obstacles were set to the same as the fast-moving obstacle scenario, u ∈ [−1.0, 10.0].
The main difference between the two obstacles is the initial positions, where obstacle
vessel 1 is positioned 75 meters North and 200 meters East, and obstacle vessel 2 is
positioned 150 meters North and -200 meters East. The same hyperparameters as Table
4.2 are also used in this experiment. The infeasible problem, introduced in Section 3.1.3,
is also here handled by stopping the milliAmpere vessel.

Table 4.4: Multiple obstacles scenario

Obstacle Vessel 1

Initial Positions and Velocitites

North N East E Heading ψ
75 200 −π/2

Surge Velocity u Sway Velocity v Yaw Velocity r
2.0 0 0

Velocity and Gain

Max Surge
Velocity umax

Min Surge
Velocity umin

Yaw Gain

10.0 -1.0 0.2

Obstacle Vessel 2

Initial Positions and Velocitites

North N East E Heading ψ
150 -200 π/2

Surge Velocity u Sway Velocity v Yaw Velocity r
2.0 0 0

Velocity and Gain

Max Surge
Velocity umax

Min Surge
Velocity umin

Yaw Gain

10.0 -1.0 0.2

Figure 4.6 shows an example of a collision in the multiple obstacle scenario. The failure
events that were found when multiple obstacles were used in the simulation, consisted of
the milliAmpere vessel standing still a long time before the collision occurred. In these
scenarios, the obstacles struggled to trick the SP-VP system.
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Figure 4.6: Collision in the Multiple Obstacles Scenario. This figure shows an example
of a collision occurring with multiple obstacles nearby at time t 44 seconds. Figure 4.6b shows
that the milliAmpere vessel is standing still a very long time before the collision occurs.
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4.6 Infeasible Problem as Terminal State

In Section 3.1.3, the infeasible problem was introduced. To recap, the SP-VP method
throws an infeasible problem exception in the provided simulator from Zeabuz if it
cannot find a velocity profile that does not lead to a collision. This exception must be
handled due to AST crashing otherwise. In the experiments conducted in this section,
the infeasible problem is handled by setting it as a terminal state instead of just stopping
the milliAmpere vessel, as done in the other experiments. The experiments aim to find
more rare failure events in the SP-VP system. The experiment use the fast-moving
obstacle scenario in Table 4.1 in Section 4.3. The hyperparameters for the MCTS-PW
is also set to the same as Table 4.2 in this section.

Figure 4.7 shows one of the most interesting failure events found when handling the
infeasible problem as a terminal state. Figure 4.7b shows that the milliAmpere vessel
has constant speed over 30 seconds before the collision occurs. This failure event is
similar to the side collision with fast-moving obstacles in Figure 4.3d in Section 4.3. The
milliAmpere vessel does not stop for the obstacle vessel on its starboard side, which might
be a violation of rule 15 in COLREG. As discussed earlier in the similar example above,
it depends on how the speed of the obstacle vessel is treated by rule 19 in COLREG.

Figure 4.8 shows a bow-on collision where the milliAmpere is speeding when the collision
occurs at time t 62 seconds. In Figure 4.8c, we can see that the last updated SP-
VP regions, which are updated at time t 60 seconds is not far away from the true
position. However, the collision occurs right before intersecting with the LPR region of
the obstacle.

Figure 4.9 shows the number of failure events found when handling the infeasible problem
as a terminal state versus handling it by stopping the milliAmpere vessel. It shows clearly
that the failure events are more difficult to find when the infeasible problem is handled
as a terminal state.
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Figure 4.7: Side Collision when Handling Infeasible Problem as Terminal State. The
figure shows a side collision with a fast-moving obstacle when the infeasible problem is handled as
a terminal state. Figure 4.7a shows that the milliAmpere vessel crashes into the obstacle vessel
at time t 52 seconds. Figure 4.7b shows that milliAmpere has constant speed over 30 seconds
before the collision occurs. Figure 4.7c shows that the milliAmpere vessel tracks the obstacle
vessel to be further away than it is. The SP-VP regions is updated at time t 48 seconds. Figure
4.7d shows the distance measure data of the SP-VP-tracker. This failure event is found with
B-MAST.
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Figure 4.8: Bow-on Collision when Handling Infeasible Problem as Terminal State.
The figure shows a bow-on collision with a fast-moving obstacle when the infeasible problem
is handled as a terminal state. Figure 4.8a shows that the milliAmpere vessel crashes into the
obstacle vessel at time t 62 seconds. Figure 4.8b shows that milliAmpere has a constant speed
over 20 seconds before the collision occurs and that the change in the obstacle vessel’s heading
ψ is the cause of the bow-on collision. Figure 4.8c shows that the milliAmpere vessel’s SP-VP
tracker does not track the obstacle vessel far from its true position in this case. The SP-VP
regions is updated at time t 60 seconds. Figure 4.8d shows the distance measure data of the
SP-VP-tracker. This failure event is found with B-MAST.
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Figure 4.9: Handling the Infeasible Problem Results. This figure shows the number of
failure events found over 50 000 episodes with B-MAST. When handling the infeasible problem
as a terminal state, the B-MAST was able to find 61 failure events, compared to handling the
infeasible problem by stopping the milliAmpere vessel, which found 3955 failure events. The
simulations are using the fast-moving obstacle scenario in Table 4.1.
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4.7 Data Interpretation with Soft-Dynamic Time Warping

Dynamic Time Warping (DTW) is useful to compare time series of variable size and
to shift across time dimensions [15]. This can be computed by solving a minimal-cost
alignment between the two time series using dynamic programming. A Soft-DTW can
be used to compute the soft-minimum of all alignment costs [10]. This is a differentiable
and less time-demanding extension of the DTW.

Hanna W. Hjelmeland used Soft-DTW to cluster her results from AST in her master’s
thesis [16]. This was a useful method to show clusters of obstacle trajectories that led
to failure events, and it is also used in this section to interpret the results from MAST.

Figure 4.10 shows the resulting clusters from Soft-DTW, with data consisting of North N
positions and East E positions of the obstacle vessel. Four clusters of obstacle trajectories
leading to failure events found with G-MAST using the fast-moving obstacle scenario
found in Table 4.1 in Section 4.3, are shown. The patterns of the different clusters might
be recognizable with the three types of maritime collisions discussed in Section 3.7, side
collisions, bow-on collisions, and stern collisions. However, all of the clusters seem to
include all types of maritime collision but rather cluster the trajectories pattern a long
time before the collision.

4.8 Rare Software Bug in the Simulator

During long runs with AST, the simulator crashed due to a software bug in the simu-
lator. A software bug is here referred to as an error that crashed the whole simulator.
The software bug appeared only now and then, once every 25 000 MCTS-iteration ap-
proximately. This is not a failure in the system found explicitly with AST, but rather a
positive side effect of using MCTS as a solver in AST, due to it searching a huge part of
the state space of the simulator. The reason why we are calling it a positive side effect
is that these types of errors could potentially be dangerous if they go undetected. The
error can be present in the system when deployed and might cause a dangerous situation
when operating in the real world.

One experiment was conducted with the purpose of finding the situations where the
software bug occurred. The way it was done, was by throwing an exception when the
error occurred, then a failure event was defined as this exception in the AST. This led
to the error being added to the priority queue and returned by the AST. The simulator
object containing this error could then be extracted and analyzed further. This approach
should not be confused with a normal search for finding failure events with AST. The
reason is that neither the transition likelihood or the distance measure is adapted to
find these rare software bugs easier, they are still implemented to find failure events in
the domain of collision avoidance systems. However, the transition likelihood and the
distance measure might help to find the error if it occurs due to the vessels behaving a
certain way. In this case, a total random policy would make it harder to reproduce the
error.
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Figure 4.10: Clusters of Failure Events. This figure shows the clusters produced with
Soft-DTW. At first glance, it may look like the trajectories fit with the three types of maritime
collisions. A closer look shows that all of the trajectory clusters seem to include all of the collision
types.

4.9 Failure Event Filtering

In the early stage of testing, AST only returned failure events where milliAmpere was
standing still when the collision occurred. This was due to the setup not being optimal at
the time. However, some investigation on how to find failure events where milliAmpere
is speeding at the time of the collision is conducted. This led to a method referred to as
failure event filtering in this thesis. This method is based on filtering out already found
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failure events, and searching for new failure events in the next AST run. Moreover,
this can be done by eliminating these types of failures in the function which defines the
failure event. Here, we are essentially filtering out these cases because we have already
found them. This can be done for the next found failures, and we can then continue to
make new failure event definitions relative to what we are looking for. The failure event
filtering process is done manually between AST runs.

4.10 Black-Box vs Gray-Box Maritime Adaptive Stress Test-
ing

In this section, the two variants of the MAST architecture will be discussed further,
namely the G-MAST and B-MAST architectures. Our personal experience with both of
these approaches will be discussed here. Much effort and time have been spent with the
simulator itself during this thesis. With a starting point of having almost no domain
knowledge about marine vessel dynamics and the maritime collision avoidance system,
it was time-consuming work. As mentioned earlier in Section 3.1, the simulator provided
was not ready to be used together with AST. The definition of what a failure event in
the system is, and the need for implementing the option for the RL-agent to steer the
obstacle vessels, were some of the challenges, to recap a few. Especially redefining the
failure event definition in iterations led to the need to rerun the experiments. However,
this experience led to a better understanding of the pros and cons of using the Black-Box
and Gray-Box approaches.

Furthermore, the most fundamental reason why one should choose one approach over the
other is when the simulator gives no choice to choose. If the simulator contains complex
parts that are too difficult to understand, or the simulator does not reveal its internal
variables or state, the Black-Box approach should be used. However, this does not mean
that a Gray-Box approach should be used otherwise. The Black-Box approach gives the
opportunity for the simulator designers to prepare everything for the one testing the
system with AST, by making it only necessary to provide an action-seed to step the
simulator. The only thing required by the simulator designers is to provide a boolean
indicating if the simulator is in a failure state or not, the transition likelihood from one
state to another, and preferable a distance measure to failure. If the tester is not the
same person as the one designing the simulator, and the tester does not have enough
domain knowledge, the Black-Box approach might be the most suitable.

However, the fact that the Black-Box simulator does not reveal its internals may lead to
limited options to configure it. The failure event filtering discussed in Section 4.9, may
be difficult to perform. It really depends on how isolated the internals of the simulator
is. In some cases, the simulator can be provided as a Black-Box in terms of the design,
but the code base is available to the tester. If that is the case, modifications can be
made to the Black-Box approach as well.

In an early stage of this thesis, the noise to the SP-VP system was overlooked when
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testing. The Gray-Box approach was used, and the initial seed was set on the simulator,
which led to the simulator behaving deterministically between states, with the same seed
every simulation. The noise was not added as a disturbance nor added to the calculations
of the transition likelihood. This could be avoided by providing the simulator as a
Black-Box, then, the lack of domain knowledge might not lead to this mistake. Another
problem with handling noise this way is that the simulator generates the same noise in
each simulation, and the state space of different types of noise is excluded. This might
lead to not finding important failure events in the system.

In Figure 4.11, we can see the performance of the Black-Box approach and the Gray-Box
approach. The two types of architectures returned almost the same number of failure
events.
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Figure 4.11: G-MAST and B-MAST Results. The figure shows the number of failure
events found over the episodes. Black-Box found 4035 failure events, and Gray-Box found 4493.
The Fast-moving obstacle scenario was used.





Chapter 5

Conclusions and Future Work

In this thesis, the MAST architecture is proposed. The architecture uses the framework
AST for testing a maritime autonomous collision avoidance system, in particular the SP-
VP method that is implemented in Zeabuz’s milliAmpere passenger ferry. The MAST
architecture is able to find interesting failure events in the system. In Section 1.2, the
goal and research questions of this thesis were introduced, and they are repeated and
answered here. First, the research questions will be answered, followed by a conclusion
if the goal has been reached. Finally, future work will be discussed.

5.1 Conclusions of Goal and Research Questions

Research question 1 How should we set up the scenarios for testing the collision
avoidance system with AST in the maritime domain?

Because the SP-VP method only plans a velocity profile for a predefined waypoint mis-
sion, and the fact that Brekke et al. [4], stated that it does not comply well with
COLREG, scenarios were not set up to check for COLREG-compliance in this thesis.
However, they were set up with rule 15 in mind, which states that a vessel that has
another vessel on its starboard side should not conflict with the path of that vessel.
However, for collision avoidance systems that are built to be more COLREG-compliant,
the scenarios might be preferred to be set up to check for adherence to the rules in
COLREG.

Research question 2 Is Black-Box or Gray-Box simulators best suited when testing
maritime autonomous collision avoidance systems with AST?

Which type of simulator is best suited for testing maritime autonomous collision avoid-
ance systems with AST really depends on how complex the different parts of the simu-
lator are and how much domain knowledge the tester has. The Black-Box approach is
preferred if the simulator is too complex to understand and if the tester does not have
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sufficient domain knowledge. Then the simulator should preferably be built by profes-
sionals in the field. Here with the requirements of returning the transition likelihood of
states, a boolean indicating if a failure has occurred, and a distance measurement that
tells how far away we are from a failure event. In addition to having the opportunity to
set a simulator seed in each step of the simulator. The Gray-Box approach might be the
best solution if the simulator does not consist of too complex parts, and the tester has
sufficient domain knowledge.

Research question 3 How useful are the failure events found with AST for safety val-
idation of the maritime autonomous collision avoidance system SP-VP?

In this thesis, several interesting failure events are found with AST. However, the obstacle
vessels’ behavior can be argued to be irrational due to their high speed in some of the
scenarios and the fact that they are chasing the milliAmpere vessel. Moreover, the cause
of the collision was often due to the SP-VP update rate combined with noise given to
its tracker. Furthermore, we think that the failure events found in this thesis are useful
enough to be analyzed further by the Zeabuz team for safety validation purposes.

Moreover, the search through the state space did lead to finding a rare failure in the
simulator implementation itself. This failure occurred approximately every 25 000 steps
of the simulator. This should be looked into as well, for the purpose of not having this
rare error in the system when operating in the real world.

Research question 4 How to interpret the failure events in the maritime autonomous
collision avoidance system found with AST?

The AST might return a high number of failure events, and it can be tedious to analyze
each result manually. It might therefore be preferred to analyze the results with a
clustering or classification algorithm, which supports time series data. In this thesis,
Soft-DTW is used to cluster the obstacle vessels’ trajectories to find patterns to classify
them into groups of failure event types. However, the results returned the patterns in the
trajectories long before the collision occurred and were, therefore, not easy to interpret.

Goal Investigate if Adaptive Stress Testing (AST) is a suitable safety validation method
for testing maritime autonomous collision avoidance.

After having investigated the AST framework, our conclusion is that it seems suitable
for testing maritime autonomous collision avoidance systems. However, to say this for
sure, the method requires more testing of other types of collision avoidance systems as
well. For the purpose of using AST for safety validation, the scenarios and the simulator
might need more detailed setup and environment variables than provided in this work.
For instance, environmental variables such as wind and flow in the sea could be added.



5.2 Future Work 65

5.2 Future Work

In this section, the future work for testing maritime autonomous collision avoidance
systems with AST in general and the SP-VP method specifically, will be proposed. First,
the future work for the SP-VP method is proposed here. Second, we suggest testing more
COLREG-compliant collision avoidance systems. Finally, comparing maritime collision
avoidance systems with a regression testing approach of AST is proposed.

5.2.1 Future Work for Testing the Single Path Velocity Planner

In this thesis, the obstacle vessels have been using a simple first-order control system
for motion control, it might be worth testing with a more realistic behaving motion
control of the obstacle vessels. The RL-agent was also able to steer the obstacle vessels
freely in work in this thesis, this lead to more unrealistic failure events in the system.
Therefore, scenarios built with obstacle vessels crossing with constant speed and head-
ing, not steered by the RL-agent, and by adding more environmental variables instead,
might be interesting to test. An example of environmental variables to add could be
snow variables which cause additional noise to the SP-VP system, and sea currents that
affect the vessels’ dynamics. The relevance of these extra variables should, of course,
be evaluated before testing. Foggy weather might also be an interesting environmental
variable to add.

5.2.2 Testing COLREG-compliant Collision Avoidance

Other types of maritime autonomous collision avoidance systems should also be tested
for the purpose of approving the AST method as a suitable safety validation method for
testing these systems. In particular, a COLREG-compliant collision avoidance system
would be interesting to test. When setting up the scenarios for these systems, we believe
that it is important to consider the rules in COLREG.

5.2.3 Differential Adaptive Stress Testing for Comparing Collision Avoid-
ance Systems

In work done by Lee et al. [23], a regression testing approach of AST called Differential
Adaptive Stress Testing (DAST) is proposed. It would be interesting to check if this
method can also be used to evaluate what type of maritime collision avoidance system
performs best in given scenarios. This idea could be used to compare the SP-VP method
with, for example, the more reactive method first described by Thyri et al. [39].
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