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A B S T R A C T

This paper analyzes the energy replacement potential for high-speed passenger vessels. Emphasis
is on whether better planning of services can mitigate technical and economic barriers to zero
emission transport. A novel Mixed-Integer Programming problem for battery electric vessel
services that jointly minimizes operator and passenger costs subject to strategic (fleet selection
and land-based infrastructure location), tactical (frequency), and operational decisions (sailing
pattern) is proposed. The planning problem is utilized to estimate technology replacement
potential and associated costs for two existing services/routes in Norway and based on four
hypothetical demand scenarios derived from the same two services. The results showcase that
constraints related to battery range and charging limit the replacement potential and make
energy conservation more pertinent. Abatement cost estimates range between 3 000 and 18
000 NOK per ton CO2, placing them well above the social cost of carbon calculated at 2 000
NOK per ton by 2030.

. Introduction

The transport sector is among the most polluting sectors worldwide, accounting for about 25 percent of greenhouse gas (GHG)
missions from energy in 2019 (IEA, 2022). It is consequently expected to deliver substantial emission cuts to meet emission targets
et the by the Paris agreement. Norway’s current targets under the agreement are to reduce its GHG emissions by at least 50 to 55
ercent relative to 1990 levels by 2030 and to become a low-emission society by 2050. Ambitious climate policies have already
ade it a front-runner in the diffusion of low and zero emission technologies for private cars (Wangsness et al., 2020). In 2021, the
orwegian Government launched its Climate Plan 2021–2030 to also halve domestic maritime transport emissions by 2030 relative

o 2005 emissions. This is ahead of International Maritime Organization’s (IMO’s) initial strategy to halve GHG emissions from ships
y 2050 relative to 2008 levels. Among key measures launched by the Climate Plan are low and zero emission requirements – where
easible – for ferries from 2023 and high-speed ferries from 2025. Moreover, more weight is placed on the Polluter-Pays Principle
y signaling increases in the carbon tax from 590 Norwegian Kroner (NOK = approx. 0.11 USD) per ton today to 2 000 NOK per
on in 2030.

Although Norway is among the countries with the longest coastline, it is small and many coastal communities are sparsely
opulated. Passenger vessels such as high-speed ferries are a common part of the country’s coastal transport system, with around
00 diverse passenger vessel services currently in operation. Due to low demand with around 70 percent of services transporting
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less than 100 passengers per day (Tveter et al., 2020), they are among the costliest (Aarhaug et al., 2017) and most emission
intensive (Eide et al., 2018) of public transport modes. Replacing the existing fleet of conventional diesel-fueled vessels by zero
emission technologies can therefore contribute to Norway’s GHG target, but can also carry abatement costs that substantially surpass
the planned carbon tax trajectory. This paper aims to provide new insights regarding technical and economic feasibilities of replacing
diesel by zero emission passenger vessels, considering both costs related to upholding existing services and changes in optimal
frequencies with change in energy technology.

Currently, there are 52 battery electric ferries in operation in Norway,1 but no zero emission high-speed vessel. However, the
nitiative, Transport: Advanced and Modular (TrAM) is in its final stages and aims to launch an electrical high-speed ferry in 2022. This
nitiative is coordinated by the Public Transit agency Kolumbus AS in the county of Rogaland, and has resulted in the construction of
he world’s first battery electric high-speed vessel named Medstraum. The vessel will accommodate 150 passengers and 20 bicycles,
ith a battery capacity of 1 500 kilowatt hour (kWh) and a maximum charging power of 2 000 kW. The vessel is designed for an
perating speed of 23 knots (Rogaland Fylkeskommune, 2021). Zero emission high-speed vessels are currently also being considered
or other connections, and several feasibility studies for technology replacement exist (see Sundvor et al. (2021) for an overview).

The energy replacement potential for high-speed passenger vessels is confined due to their demanding usage profile and limited
ime for charging/bunkering. Using Automatic Identification System (AIS) data to calculate energy use of the existing Norwegian
leet, Sundvor et al. (2021) estimate that 51 out of 73 vessels are suitable for hydrogen propulsion, while only 12 are also suitable
or battery electric propulsion. This is a hurdle because energy carriers such as hydrogen and ammonia are in their infancies, and
urrent uptake of zero emission technology in the maritime sector is primarily due to battery electric propulsion (Sundvor et al.,
021). With the introduction of zero emission criteria for passenger vessels just a few years away, this paper focuses on battery
lectric vessels under the overarching hypothesis that the replacement potential is excelled with better planning of services.

This paper advances the pioneering study of Sundvor et al. (2021) using optimization to strike the balance between costs and
enefits of transport provision. Key research questions examined herein concern to what extent new constraints related to charging
ffect optimal scheduling of battery electric vessels (compared to conventional vessels) and the size of economic gains from adapting
imetables. To study this, we define the Zero Emission Vessel Route Planning Problem (ZEVRPP), which deals with the optimal planning
f a route to be serviced by battery electric vessels. The ZEVRPP is a planning problem that is relevant for all coastal areas offering
passenger vessel service to their inhabitants. We develop a novel Mixed-Integer Programming (MIP) model for the ZEVRPP. The
odel includes strategic decisions regarding vessel characteristics and fleet size alongside charging infrastructure location, a tactical

decision in terms of determining service frequency, and operational decisions regarding the sailing speeds at different legs along the
route. The objective of the planning problem is minimization of system costs, comprising both operator costs and passenger waiting
and travel time costs.

The ZEVRPP is studied to estimate technology replacement potential and associated costs for two existing services in Norway,
as well as for four hypothetical and increased demand scenarios for these two services. The latter generalize the analysis to services
that are operated in more densely populated areas. The results showcase that constraints related to battery range and charging limit
the replacement potential and make energy conservation more pertinent with adoption of battery electric vessels. In most cases
analyzed, optimal frequency entails increasing the fleet size to uphold existing schedules, while in some cases it is optimal to reduce
frequency with battery electric propulsion. In latter cases, there are substantial costs savings from changing current timetables,
which in our experience is an abatement strategy that is overlooked by Norwegian decision makers. Cost estimates range between
3 000 and 18 000 NOK per ton of abated CO2, placing them well above the social cost of carbon calculated at 2 000 NOK per ton
by 2030.

The literature on optimization-based decision support for planning of zero emission passenger vessel services is scarce, and the
role that tactical decisions play in facilitating battery electric vessel services has received limited attention in service planning. This
paper contributes to filling these research voids, hence providing important new knowledge and decision support to steer the desired
sustainable transformation of the transport sector.

This paper is organized as follows. Section 2 provides a stylized characterization of key economic trade-offs in the diffusion of
zero emission vessels alongside the paper’s placement in the literature. Section 3 provides a general description of the optimization
problem, while Section 4 outlines the mathematical model. Section 5 presents the case studies, while Section 6 presents the numerical
results. Finally, Section 7 summarizes the study and provides recommendations for policy and further research.

2. Background and literature review

In the following, we provide a background and review of relevant literature.

Optimal frequency of zero emission public transport

Our personal communication with County Councils in charge of public transport in Norway reveals that emphasis is on replacing
vessels whilst upholding existing routes and schedules. This approach disregards that the cost structure can be fundamentally
changed with the introduction of new technologies, thereby leading to suboptimal allocation that makes technology swapping
excessively costly and hence limits transition. This can be illustrated by a simple model for optimal public transport supply, inspired

1 See https://energiogklima.no/elektriske-bilferger-i-norge/ (in Norwegian)
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Fig. 1. Optimal frequency for a hypothetical vessel service.

by Mohring (1972). Note that this section presents an independent stylized numerical example to convey the intuition behind key
results from the main optimization study. The simple model presented herein does not coincide with the complex optimization
problem developed in Section 4, but encompasses key elements of the complex problem. The stylized example in this section further
approximates the main results presented in Section 6 for consistency.

Let the stylized operator cost function be 𝐶 = 𝑎 + 𝑏𝑓 , where 𝑎 denotes fixed and 𝑏 denotes variable costs associated with providing
a passenger vessel service. 𝑓 denotes service frequency within a given planning horizon. In general, it can be assumed that the cost
of operation increases with the transition from diesel to battery electric propulsion because of added infrastructure costs and range
requirements.

Similar to the main optimization study, we assume a planning horizon of five hours for the stylized numerical example. Let
(5𝐶𝑃𝑊 /2𝑓 )𝐷 denote expected waiting time costs for the passengers, where 5 is the length of the planning horizon, 𝐶𝑃𝑊 denotes
the passengers’ value of time and 𝐷 denotes demand during the planning horizon (i.e., number of passengers per five hours). For the
stylized example, we assume 38 passengers to be transported within the planning horizon and a value of waiting time of 168 NOK
per hour. Operator cost functions mimic main results from Table 6, and assume as numeraire fixed costs of NOK 3992 and 3798
and variable costs of NOK 1500 and 1476 for battery electric and conventional vessels, respectively. We generate two numerical
examples for the zero emission case (i.e., ZE #1 and #2) that are distinguished by higher hypothetical operator cost increases in
frequency relative to base values for numerical example ZE #2 compared to #1. For transparency, costs related to transit time and
transport by alternative modes are ignored in this section.

Unlike public transport models based on Mohring (1972), we assume throughout that frequency within the planning period is
defined by an integer. In this case, small changes in the cost of frequency can amount to increases in system costs without affecting
service frequency. This is seen in Fig. 1, where the shift from conventional to ZE #1 leaves the optimal frequency (i.e., the frequency
that minimizes total costs) unchanged at three. More radical changes – e.g., with the shift from conventional to ZE #2 in Fig. 1 –
on the other hand can also affect optimal frequency (in the figure it goes from three to only two).

If the current optimal level of service (i.e., for conventional vessels) is three, maintaining this also for scenario ZE #2 leads to
economic losses because operator costs outweigh passenger benefits in terms of reduced waiting time costs. In the context of the
numerical example, total costs can be reduced by about three percent by reducing frequency from three to two in scenario ZE #2.
Furthermore, it is not only the frequency that impacts passenger costs—the transit time, and hence the passenger transit costs, is
affected by the selected sailing speed along the route. This is in contrast to a bus service where the buses must follow the traffic
and/or the speed limits. Thus, better planning of services can be a cost-effective strategy to curb emission, and should consequently
be considered in tandem with technical measures when applying the least-cost principle to reducing emissions from passenger vessel
services.

Literature review

There are not many papers in the literature, if any, providing optimization-based decision support models for zero emission
passenger vessel services. The optimization problem subsequently defined is positioned in the literature on public transport problems,
3
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but encompasses several sub-problems that have been sparsely studied in public transport planning. We are unaware of other studies
that jointly consider these sub-problems. Moreover, the literature on zero emission transport problems is currently scarce, and this
study makes advances by jointly considering technical and operational measures to lower costs of energy transitions.

There are, in general, two types of objective functions applied for comparable planning problems: Multi-objectives minimizing
oth operator and passenger costs, and the sole minimization of operator costs. Public transit problems typically consider the
ormer, which is aligned with the planning problem proposed in this study. According to Lai and Lo (2004), it is typical to consider
oth operator costs and passenger disutility in public transit network design studies because competing transport modes become
ore attractive when the passenger costs increase. Shang et al. (2019) consider both passenger waiting and transit time as part

f the objective function. Arbex and da Cunha (2015) add to previous work by considering a transit penalty, penalizing the
umber of transits in their network in addition to the waiting and travel times. Aslaksen et al. (2020), on the other hand, seek
o maximize customer service quality through rapid departures while minimizing excess transit time. The latter is operationalized
y the difference between actual transit time and the transit time on a direct link. The current study adds to these public transport
roblems by considering the cost of passenger transport by a substitute mode in addition to passenger vessel operator and disutility
osts.

Prominent studies on optimization of passenger vessel services include Lai and Lo (2004) and Aslaksen et al. (2020, 2021), none
f which focuses on zero emission vessels. Lai and Lo (2004) study the Ferry Network Design Problem considering the optimal
leet size, routing, and scheduling of two ferry services whilst minimizing operator and passenger waiting and transit time costs.
he model is formulated as a Mixed-Integer multiple Origin-Destination Network Flow Problem with ferry capacity constraints.
t incorporates two types of networks: a network describing the flow of passengers and a network describing the movement of
essels. Aslaksen et al. (2020) present a Ferry Service Network Design Problem for schedule generation for autonomous ferries.
hey study a set of homogeneous ferries, where each vessel repeats a cyclical sequence of port visits. To solve the problem, the
uthors propose a two-step approach, where they first generate routes and corresponding frequencies using a construction heuristic.
n the second step, the model determines the combination of routes and frequencies that maximizes perceived customer satisfaction.
he model by Aslaksen et al. (2020) requires a minimum frequency between ports, which is adopted in this study. In a proceeding
aper, Aslaksen et al. (2021) consider the Combined Dial-a-Ride and Fixed Schedule problem, seeking to determine the optimal
ssignment mix of vessels to dynamic and fixed schedules. Our paper focuses solely on scheduled transport.

A majority of comparable problems, including those presented in Lai and Lo (2004) and Aslaksen et al. (2020, 2021), assume
emand to be predetermined, thereby disregarding the impact the level of service can have on ridership. One exception is Klier and
aase (2015), who study a public transit network problem with flexible or endogenous demand. Their study predicts the expected

ravel time along the different paths in the networks and thereby the expected demand, which is subsequently used to maximize
he total number of expected public transit passengers subject to a budget constraint. The modeling approach proposed herein
ccommodates flexible demand, both by enabling endogenous demand among nodes and by joint optimization of maritime and
oad passenger transports.

The model subsequently developed advances planning problems on zero emission transport by jointly optimizing energy use and
nfrastructure location. Rinaldi et al. (2018) consider a Vehicle Scheduling Problem for electric and hybrid buses in a single depot
ase, where the charging infrastructure is installed at the depot. This study considers charging constraints as a part of the scheduling
roblem. Moreover, in contrast to our model, the problem by Rinaldi et al. (2018) does not capture the relationship between the
ime spent charging and the battery level. Sassi and Oulamara (2017) outline the Electric Vehicle Scheduling and Optimal Charging
roblem, in which the aim is to optimize the allocation of fixed tours to electric vehicles while minimizing charging costs. Similar
o our study, Sassi and Oulamara (2017) consider vessel range and battery capacity. However, Sassi and Oulamara (2017) do not
odel the interaction among speed and energy consumption, and infrastructure location is assumed exogenous. Zhang et al. (2021)

onsider assignment of electric buses to predefined routes and decide on the charging technology that should be installed at terminal
tations. In their study, the charging schedule depends on the charging technology installed at the terminal stations, which could
ither be fast or slow. In contrast to this study, Zhang et al. (2021) adopt discrete time periods rather than continuous time. The
se of discrete time periods is predominant when new aspects are introduced in the literature, whereas continuous time is used
or providing more realistic models. Zhang et al. (2021) further diverge from our approach by not considering the relationship
mong power prices and costs of vessel operations. Villa et al. (2020) introduce the Electric Riverboat Charging Station Location
roblem for rural areas with no electric grid connections, and where charging stations are supplied with solar power. Similar to
his paper, Villa et al. (2020) allow choosing different battery sizes, where larger batteries store more energy but are heavier and
esult in a higher energy consumption. However, boats are assumed to sail at a constant speed, meaning that energy consumption
etween nodes depends solely on battery size. Rogge et al. (2018) study the replacement of combustion engines with electric buses,
ddressing scheduling of bus routes using electrical buses while at the same time accounting for their range limitations, charging
imes, and charging infrastructure. Rogge et al. (2018) assume that charging only occurs in a given depot, while herein, the location
f charging facilities is a decision variable.

In contrast to the preceding studies on zero emission technology, we explicitly model interactions among speed choices and
nergy use. Similar approaches for conventional vessels include Fagerholt et al. (2010) and Andersson et al. (2015). Ritari et al.
2021) study the adoption of batteries as an energy carrier in hybrid vessels to explore how large-capacity batteries affect operational
easures such as routing, speed, and fleet deployment, compared to conventional vessels. This is thematically aligned with our study

n zero emission vessels.
While our paper advances the literature on planning problems for zero emission transport, it also leaves out some aspects
4
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et al. (2018), who develop a model for the planning of charging stations for a bus service subject to energy demand uncertainty
due to traffic conditions and demand uncertainties. We consider in particular energy uncertainty related to traffic conditions less
relevant for passenger vessel transport. Second, our study focuses only on a short planning horizon (i.e., the peak period for a given
day), and does therefore not consider time-of-use electricity pricing as e.g., in He et al. (2019, 2020).

3. Problem description

This section formally defines the ZEVRPP, which is a relevant problem for all coastal areas offering a passenger vessel service to
heir inhabitants. The problem is typically encountered by an operator, either already operating a connection served by conventional
essels, or designing a new one to be served by zero emission vessels. Even though the problem is relevant for most alternative
nergy carriers (e.g., conventional fuels, battery electric or hydrogen), we present it from a battery electric perspective. Section 3.1
escribes the assumptions made before a formal definition of the ZEVRPP is given in Section 3.2. Finally, Section 3.3 provides a
umerical example to highlight some important aspects of the problem.

.1. Assumptions

We consider a given cyclical high-speed vessel route visiting a given set of ports in a specific sequence, where each pair of ports
as a known demand for transportation. Moreover, each sailing leg between two ports has a known distance, enabling a calculation
f sailing times for different sailing speeds.

The given route is to be serviced by a number of high-speed vessels to be chosen among a set of candidate vessel types given
s input to the problem. We assume that each vessel of a given type has a known investment cost, passenger capacity, speed range
nd speed-dependent energy consumption. In the case of battery electric technology, which is our main focus in this paper, the size
f the battery is also given as input for each vessel type. Similar parameters could also be included for other (zero emission) energy
arriers, e.g., hydrogen, capturing the vessels’ ability to store energy on board. We assume that only one type of high-speed vessels
an be chosen for a given route in order to ensure that a realistic route plan where each departure from a port is serviced by similar
essels with the same capacity. This assumption is also reasonable because vessels are today often designed for a specific route.

For all relevant zero emission technologies, some onshore infrastructure must be installed. In the case of battery electric passenger
essels, infrastructure to charge the chosen vessels’ batteries must be installed in at least one port. We assume that an estimate of
he infrastructure investment cost in each port within the route is given as input, together with the available rate of energy transfer
i.e., charging speed) in the area.

Although we assume a fixed total, or upper bound for, demand for transportation between a port pair, we assume that the number
f passengers choosing the passenger vessel as their desired mode of transportation is influenced by the frequency of service. This
ives a frequency-dependent demand, similar to Klier and Haase (2015), who state that a higher frequency results in shorter waiting

time, which yields a higher demand. Here, we define the frequency of service as the number of roundtrips the route is sailed within
the given planning horizon. Passengers that do not choose the passenger vessel service due to too low frequency are assumed to use
alternative modes of transportation to satisfy their demands. Additionally, the capacities of the vessels used along the route may
restrict the number of passengers that can be transported. We assume there is a given cost per passenger for this unmet demand,
which may vary among different port pairs due to differences in the options for alternative transportation. For example, if the
passenger vessel service is the only means of transportation between two ports, the cost of unmet demand is set significantly higher
than if there also exists a bus service.

We assume that passengers have a value of time, both concerning time spent waiting prior to boarding a vessel (i.e., between
departures) and the transit spent on board. Even though, as discussed by Wardman (2001), the value of time may depend on many
factors and vary among different passengers, we assume there is a given conversion factor from passenger waiting time to a monetary
cost that enables a direct comparison of passenger and operator costs.

Finally, we assume Well-to-Tank emissions related to electricity consumption to be zero. Statistics from the Norwegian Energy
Regulator shows that close to all electricity consumed in Norway stems from renewable sources, and only less than two percent
of the electricity consumption stems from fossil fuels. Since we focus on the Norwegian case, we maintain the assumption of zero
emission vessel operations, albeit this may not hold in the global context.

3.2. Problem definition

The ZEVRPP considers decisions at the strategic, tactical and operational planning level. The strategic decisions include
determining how many vessels of which type to acquire and in which port(s) to install charging infrastructure. The tactical decision
of the problem is to determine the route’s service frequency. Within the given planning horizon, which can be a representative period
of a day, only one frequency can be selected to ensure predictable timetables for passengers. The decisions on the operational level
are the number of passengers to serve between any port-pairs along the route, as well as vessel speeds on each leg and time usage,
i.e., time spent sailing, charging and waiting in ports. The decisions of where and for how long to charge affect both the time
the vessels spend on a roundtrip and the vessels’ battery levels. If the vessels spend longer time charging, they will experience
an increased battery level on the roundtrip, but also a direct increase in roundtrip time. On the other hand, a greater battery
level enables sailing at higher speeds, since a greater speed necessitates a higher energy usage per distance unit. This makes the
5

operational decisions highly inter-dependent.
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Fig. 2. Input 1 – cyclical route (red arcs) with frequency-dependent demand (black arcs). (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)

Table 1
Frequency-dependent demand over the planning horizon for the example problem (𝑓 represents the candidate
frequencies)

1-2 1-3 2-3 2-1 3-1 3-2

f = 1 40 50 50 60 40 45
f = 2 50 52 52 68 43 46
f = 3 55 63 55 72 44 58
f = 4 62 70 57 73 55 63

These decisions must be made while ensuring that the number of passengers transported is restricted by the chosen vessels’
capacities and the (frequency-dependent) demand for transportation, and that the operation of the chosen vessels is restricted by
their battery capacities. Furthermore, a vessel’s battery level must at all times stay below a maximum and above a minimum level to
ensure safe operations and to prolong the lifetime of the battery. This is an important restriction to ensure that appropriate vessels
with a suitable battery capacity are chosen. Finally, the schedule of the route, given by the number of vessels, the service frequency
and the sailing speeds along the route, must respect the length of the given planning horizon.

The objective of the ZEVRPP is to minimize the total system cost. The system cost is defined as the sum of the operator and
passenger costs. The operator cost is the sum of 1) fixed cost related to acquiring (or chartering) the chosen vessel fleet, 2) investment
cost of the onshore charging infrastructure, 3) and variable energy cost related to the operations. The variable energy cost, which
amounts to the cost of electricity for battery electric vessels (and fuel cost for conventional ones), depends non-linearly on the chosen
sailing speed, where higher sailing speeds give higher energy consumption per distance unit. The passenger cost also comprises three
terms: 1) the cost of unmet demand, corresponding to the alternative cost of travel when demand is not met by the passenger vessels,
2) the cost of waiting between departures, and 3) the cost of excessive waiting on board the vessel in transit (e.g., if the vessels sail
at a low speed or spend long time in ports due to charging).

Even though the main focus of the ZEVRPP is to support the strategic and most important decisions, the tactical and operational
decisions may also play an important role. Strategic choices limit the solution space for the tactical and operational decisions,
and feedback from this limitation’s impact can be important to consider. Therefore, optimizing the decisions at all planning levels
simultaneously could lead to better overall solutions.

3.3. Numerical example

To further illustrate some aspects of the ZEVRPP, we present a simplified toy-sized numerical example. In order not to make
the example too extensive and complex, we do not show the operational decisions regarding sailing speeds and the number of
passengers transported along the route, and focus instead on the strategic and tactical ones. Similar to the stylized numerical example
in Section 2, the simple model presented here does not coincide with the complex optimization problem developed in Section 4,
but showcases key elements of the complex problem.

We consider a cyclical route with three ports to be visited in the sequence 1 – 2 – 3 – 1, as shown in Fig. 2, with a corresponding
frequency-dependent demand over a given planning horizon (e.g., five hours, as used in our case study presented in Section 6) as
given in Table 1. The numbers for the dependency between frequency and demand are arbitrarily chosen for illustrational purposes.
In this example, each port has a given potential rate of energy transfer as shown in Fig. 3. Furthermore, there is a set of different
types of candidate battery electric passenger vessels, each vessel type with given battery and passenger capacities, as well as cost
and (speed-dependent) energy consumption function.

A possible solution to this problem is illustrated in Fig. 4, where the light blue color of port 1 indicates that charging infrastructure
is installed here, implying that this is the only port where the vessels can charge. Furthermore, the solution consists of two vessels of
type 𝑣1, where each vessel sails the route’s roundtrip twice during the planning horizon, which means that the passengers experience
6

a service frequency of four.
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Fig. 3. Input 2 – charging power that is available in each port.

Fig. 4. Solution – charging infrastructure, vessel fleet and service frequency.

4. Mathematical formulations

This section presents the mathematical formulation of the zero emission vessel model in Section 4.3. However, we begin in
Section 4.1 by describing some modeling assumptions and choices, before we in Section 4.2 introduce the notation used. We
also develop a conventional vessel model which we use for comparing the solutions among zero emission and conventional vessels.
Appendix C explains how the zero emission model is adapted to conventional vessels.

4.1. Modeling approach and assumptions

As explained in Section 3, a predefined cyclical route is given as input to the problem. This route is described by the set , which
contains the ports in the route in the order they are visited. As each port is visited every roundtrip, the number of visits within the
planning horizon is the same for all ports and equal to the frequency of the route, which is, as explained in Section 3, a decision
in our model. The set of ports  also implicitly gives the set of sailing legs between the ports along the route. The modeling of
sailing time and speeds is important in the ZEVRPP, which follows the approach proposed by Andersson et al. (2015). The sailing
time along each leg is computed in advance for a discrete number of speeds. A vessel can then be assigned a speed which is a linear
combination of the discrete speed levels. Accordingly, a vessel may choose any speed level between its lowest and highest discrete
speed options. The energy consumption also depends on the speed. We introduce a parameter that defines the energy consumption
on each leg at each of the discrete speed levels. Hence, the option of choosing linear combinations of the speed levels, therefore,
also applies to the energy consumption.

The vessel’s battery must be charged in at least one of the ports along the given route. We assume for simplicity that the charging
occurs at constant power, i.e., there is a linear relationship between the time spent charging and the battery level. Furthermore,
as explained in Section 3, we assume that the passenger demand depends on the frequency of the service. We model frequency-
dependent demand through a parameter, 𝐷𝑖𝑗𝑓 , which is the demand from port 𝑖 to port 𝑗 with a service frequency of 𝑓 . This demand
parameter is bounded by a total demand, 𝐷𝑇

𝑖𝑗 , which equals the demand at the maximum frequency. The difference in demand for
varying frequencies is assumed to be caused by some passengers preferring alternative transportation due to a lower quality vessel
service. These passengers, along with the number of passengers inhibited from travel due to insufficient vessel capacity, result in
unmet demand in the model. We assume that the unmet demand is covered by alternative modes of transportation, and we include
a cost for this in the objective function.

Another frequency-dependent parameter is the passengers’ average waiting time in port. In general, from public transport
literature, e.g., Shang et al. (2019), the average waiting time is defined as half the length of the planning horizon divided by
the frequency. This approach is also adopted in our model.
7
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Table 2
Summary of decision variables.
𝛼𝑘 1 if charging infrastructure is built in port k, 0 otherwise
𝛿𝑣 1 if vessel type v is chosen, 0 otherwise
𝑧𝑓 1 if frequency f is chosen, 0 otherwise
𝑦𝑣 Number of vessels of type v used
𝑥𝑘𝑣𝑠 Weight variable for speed s for vessels of type v on leg k
𝑙𝑘𝑗𝑣 Number of passengers traversing leg 𝑘 with destination port 𝑗 with a vessels of type 𝑣
𝑞𝑘𝑗 Number of passengers picked up in port 𝑘 with destination port 𝑗
𝑢𝑖𝑗 Unmet demand between port 𝑖 and port 𝑗
𝑡𝑅𝑇𝑣 Total roundtrip time for a vessel of type v
𝑡𝐶𝑘𝑣 Charging time before traversing leg k with a vessel of type v
𝑤𝑇

𝑘𝑣 Time spent in port k per roundtrip excluding charging time for a vessel of type 𝑣
𝑡𝑖𝑗 Sailing time from port 𝑖 to port 𝑗
𝑏𝑘𝑣 Battery level when leaving port k for vessels of type v

4.2. Notation

Let each sailing leg along the route be represented by index 𝑘 ∈ , following the order of the legs along the route. Furthermore,
port 𝑘 corresponds to the origin of leg 𝑘. Let  be the set of available vessel types and let a set of discrete speed levels, 𝑣, be
associated with every vessel type 𝑣. Let  be the set of candidate service frequencies.

The length of the considered planning horizon is denoted 𝑇 . For each sailing leg 𝑘, vessel type 𝑣 and speed level 𝑠, let 𝑇𝑘𝑣𝑠 be
he corresponding sailing time. In addition to the sailing time, the parameter 𝑇𝑊

𝑘 represents the minimum waiting time in port 𝑘
for docking, embarking and disembarking. We define the parameter 𝑇 𝑈

𝑖𝑗 as the sailing time from port 𝑖 to port 𝑗 with the fastest
essel type sailing at its maximum speed level, with no waiting or charging time except from the minimum requirement 𝑇𝑊

𝑘 along
the route. This parameter is later used to calculate the passenger cost of excessive transit times. Moreover, let 𝑊𝑓 be the average
assenger waiting time at frequency 𝑓 , calculated as explained in Section 4.1.

The passenger capacity of a vessel of type 𝑣 is given by 𝑄𝑣, while 𝐸𝑘𝑣𝑠 represents the energy consumption on leg 𝑘 with a vessel
f type 𝑣 sailing at speed level 𝑠. Now, let 𝐵𝑣 and 𝐵𝑣 be the maximum and minimum battery levels of a vessel of type 𝑣, respectively.

Furthermore, let 𝑃𝑘 be the available charging power in port 𝑘.
The costs are represented by the following parameters: Let 𝐶𝐹𝐶

𝑣 represent the fixed cost of using a vessel of type 𝑣. This parameter
includes the investment cost. In addition, let 𝐶𝐼𝑁𝐹

𝑘 be the fixed cost of investing in charging infrastructure in port 𝑘. Both these
fixed costs are annualized and scaled to the length of the planning horizon, 𝑇 . Let 𝐶𝑉 𝐶

𝑘 be the energy cost per unit charged in port
𝑘. The cost per unit of unmet demand from port 𝑖 to 𝑗 is denoted 𝐶𝐴𝐿𝑇

𝑖𝑗 and reflects the passengers’ ability to choose different modes
of transportation between the port pairs. The cost parameter 𝐶𝑃𝑊 represents the passenger cost per time unit of waiting in a port,
whereas 𝐶𝑆𝑊 represents the cost per time unit of excessive sailing time.

The strategic and tactical decisions are given by the following variables: Let 𝛼𝑘 be a binary variable, which is equal to 1 if
charging infrastructure is built in port 𝑘, and 0 otherwise. Let 𝛿𝑣 be another binary variable, which takes the value 1 if vessels of
ype 𝑣 are chosen, and 0 otherwise. Let the integer variable 𝑦𝑣 be the number of vessels of type 𝑣 used. Finally, let 𝑧𝑓 denote yet
nother binary variable, which is equal to 1 if departure frequency 𝑓 is chosen, and 0 otherwise.

The operational decisions are given by the following: Let 𝑥𝑘𝑣𝑠 be a weight variable for the speed level 𝑠 for a vessel of type 𝑣
n sailing leg 𝑘, such that a linear combination of the speed levels can be determined independently on each leg for each vessel
ype. Let 𝑙𝑘𝑗𝑣 be the number of passengers traversing leg 𝑘 destined for port 𝑗 on vessels of type 𝑣. Furthermore, let 𝑞𝑖𝑗 be the
umber of passengers picked up in port 𝑖 with destination 𝑗 throughout the entire planning period, thus differing from 𝑙𝑘𝑗𝑣 by only
onsidering flow between port pairs and not passengers merely passing over a leg. The unmet demand, 𝑢𝑖𝑗 , is calculated as the
ifference between the total demand over the planning period, 𝐷𝑇

𝑖𝑗 , and the number of passengers served between port 𝑖 and 𝑗, 𝑞𝑖𝑗 .
et 𝑡𝑅𝑇𝑣 be the total roundtrip time for a vessel of type 𝑣. This variable includes sailing, charging, and waiting times along the route.
oreover, let 𝑡𝐶𝑘𝑣 be the charging time in port 𝑘 for each vessel of type 𝑣 per roundtrip. Let 𝑤𝑇

𝑘𝑣 be the time spent in port 𝑘 per
oundtrip for a vessel of type 𝑣. In addition to possible idling, this variable captures the time spent on docking, embarkment and
isembarkment. To consider the cost of passengers in transit, we define 𝑡𝑖𝑗 as the total transit time between ports 𝑖 and 𝑗. Finally,
et 𝑏𝑘𝑣 be the battery level of a vessel of type 𝑣 when leaving port 𝑘.

All decision variables are summarized in Table 2, while Appendix A provides a complete account of the notation of the model,
ncluding sets and parameters.

.3. Zero emission vessel model

In the following we present the zero emission vessel model, i.e., the model where we assume that battery electric vessels are used.
t should be noted that we have chosen to present the model including some non-linear terms, both in the objective function and
ome of the constraints, as this presentation is more intuitive and easier to understand. However, in order to later solve the model
8

y a commercial mixed-integer programming solver, we linearize these non-linear expressions as explained in Appendix B.
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Objective function
We define the following objective function.

min 𝑧 =
∑

𝑣∈
𝐶𝐹𝐶
𝑣 𝑦𝑣 +

∑

𝑘∈
𝐶𝐼𝑁𝐹
𝑘 𝛼𝑘 +

∑

𝑣∈

∑

𝑘∈

∑

𝑓∈
𝐶𝑉 𝐶
𝑘 𝑃𝑘𝑡

𝐶
𝑘𝑣𝑓𝑧𝑓

+
∑

𝑖∈

∑

𝑗∈
𝐶𝐴𝐿𝑇
𝑖𝑗 𝑢𝑖𝑗 + 𝐶𝑃𝑊

∑

𝑓∈
𝑊𝑓 𝑧𝑓 (

∑

𝑖∈

∑

𝑗∈
𝑞𝑖𝑗 )

+𝐶𝑆𝑊
∑

𝑓∈

∑

𝑖∈

∑

𝑗∈
(𝑡𝑖𝑗 − 𝑇 𝑈

𝑖𝑗 )𝐷𝑖𝑗𝑓 𝑧𝑓

(1)

The objective function (1) minimizes the total system costs of the high-speed vessel service. The first two terms represent the
nvestment cost of the vessels and the onshore charging infrastructure, respectively. The third term represents the variable sailing
ost based on the energy consumption. Together, the three first terms constitute the operator costs. The fourth term calculates the
otal cost of passengers using alternative modes of transportation, i.e., the cost of unmet demand. The last two terms are time costs
or the passengers, i.e., the passenger waiting costs in port and the cost of excessive transit time beyond what is minimum for all
assengers, respectively. Note that terms three, five and six are non-linear.

onstraints related to strategic and tactical decisions
Constraints (2) ensure that only the selected vessel type may be used, by connecting the 𝛿𝑣 and 𝑦𝑣 variables. 𝑀1

𝑣 in Constraints
2) is a big-M parameter that should be assigned a sufficiently large number. Constraints (3) and (4) guarantee that only one vessel
ype and frequency is chosen, respectively.

𝑦𝑣 ≤ 𝑀1
𝑣 𝛿𝑣, 𝑣 ∈  (2)

∑

𝑣∈
𝛿𝑣 = 1 (3)

∑

𝑓∈
𝑧𝑓 = 1 (4)

Time constraints
The following time constraints handle the relationships between roundtrip time, sailing speeds and frequency. Constraints (5)

define the total roundtrip time as the sum of the time spent traversing all the legs along the route and the total time spent charging
and waiting in each port. The non-linear Constraint (6) ensures that the chosen frequency multiplied with the sum of roundtrip
times is equal to the total available vessel time. Constraints (7) enable a minimum time in each port for docking, embarkment and
disembarkment of passengers. Constraints (8) force the time in port to be zero if the vessel type is not chosen. 𝑀2

𝑣 is another big-M
arameter. Constraints (9) ensure that the sum of the speed weights is equal to one if the vessel type is chosen, and zero otherwise.

𝑡𝑅𝑇𝑣 =
∑

𝑘∈

∑

𝑠∈𝑣

𝑇𝑘𝑣𝑠𝑥𝑘𝑣𝑠 +
∑

𝑘∈
(𝑡𝐶𝑘𝑣 +𝑤𝑇

𝑘𝑣), 𝑣 ∈  (5)

∑

𝑓∈

∑

𝑣∈
𝑓𝑧𝑓 𝑡

𝑅𝑇
𝑣 = 𝑇

∑

𝑣∈
𝑦𝑣 (6)

𝑤𝑇
𝑘𝑣 ≥ 𝑇𝑊

𝑘 𝛿𝑣, 𝑘 ∈ , 𝑣 ∈  (7)

∑

𝑘∈
𝑤𝑇

𝑘𝑣 ≤ 𝑀2
𝑣 𝛿𝑣, 𝑣 ∈  (8)

∑

𝑠∈𝑣

𝑥𝑘𝑣𝑠 = 𝛿𝑣, 𝑣 ∈  , 𝑘 ∈  (9)

Furthermore, Constraints (10) and (11) define the time passengers spend on board the vessel. The constraints are split in two
due to the route’s cyclical nature.

𝑡𝑖𝑗 =
∑

𝑣∈

[𝑗−1
∑

𝑘=𝑖

∑

𝑠∈𝑣

𝑇𝑘𝑣𝑠𝑥𝑘𝑣𝑠 +
𝑗−1
∑

𝑘=𝑖−1
(𝑡𝐶𝑘𝑣 +𝑤𝑇

𝑘𝑣)

]

, 𝑖 ∈ , 𝑗 ∈  | 𝑗 > 𝑖 (10)

𝑡𝑖𝑗 =
∑

𝑣∈

[

||

∑

𝑘=𝑖

∑

𝑠∈𝑣

𝑇𝑘𝑣𝑠𝑥𝑘𝑣𝑠 +
||

∑

𝑘̃

(𝑡𝐶
𝑘̃𝑣

+𝑤𝑇
𝑘̃𝑣
) +

𝑗−1
∑

𝑘′

(

∑

𝑠∈𝑣

𝑇𝑘′𝑣𝑠𝑥𝑘′𝑣𝑠 + 𝑡𝐶𝑘′𝑣 +𝑤𝑇
𝑘′𝑣

)

]

, 𝑖 ∈ , 𝑗 ∈  | 𝑗 > 𝑖 (11)

where
𝑘̃ = 𝑎𝑟𝑔𝑚𝑖𝑛{||, 𝑖 + 1}
′

9

𝑘 = 𝑎𝑟𝑔𝑚𝑎𝑥{1, 𝑗 − 1}
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Battery constraints
The battery constraints handle the battery level of the vessels and enforce the relationships between energy consumption,

harging power and charging time. Constraints (12) and (13) are balance constraints. They ensure that the battery level before
raversing a leg is consistent with the battery level before the previous leg, adjusted by the energy consumption of the previous leg
nd any charging in the port of departure. The constraints are again split in two due to the route’s cyclical nature. Constraints (14)
nd (15) ensure that the battery level of a vessel never exceeds its predefined minimum and maximum limits. Lastly, Constraints
16) make sure that charging only occurs at ports where charging infrastructure is installed, where 𝑀3

𝑣 is another big-M parameter.

𝑏𝑘𝑣 = 𝑏𝑘−1,𝑣 −
∑

𝑠∈𝑣

𝐸𝑘−1,𝑣𝑠𝑥𝑘−1,𝑣𝑠 + 𝑃𝑘𝑡
𝐶
𝑘𝑣, 𝑘 ∈ ∖{1}, 𝑣 ∈  (12)

𝑏1,𝑣 = 𝑏
||,𝑣 −

∑

𝑠∈𝑣

𝐸
||,𝑣𝑠𝑥||,𝑣𝑠 + 𝑃1𝑡

𝐶
1,𝑣, 𝑣 ∈  (13)

𝑏𝑘𝑣 ≤ 𝐵𝑣𝛿𝑣, 𝑘 ∈ , 𝑣 ∈  (14)

𝑏𝑘𝑣 −
∑

𝑠∈𝑣

𝐸𝑘𝑣𝑠𝑥𝑘𝑣𝑠 ≥ 𝐵𝑣𝛿𝑣, 𝑘 ∈ , 𝑣 ∈  (15)

𝑡𝐶𝑘𝑣 ≤ 𝑀3
𝑘𝑣𝛼𝑘, 𝑘 ∈ , 𝑣 ∈  (16)

Passenger flow constraints
Constraints (17) force all load variables to become zero for the vessel types that are not chosen, where 𝑀4

𝑣 is a big-M parameter.
Constraints (18) ensure that the vessels’ passenger load does not exceed the vessel type capacity multiplied with the departure
frequency.

𝑙𝑘𝑗𝑣 ≤ 𝑀4
𝑘𝑗𝑣𝛿𝑣, 𝑘 ∈ , 𝑗 ∈ , 𝑣 ∈  (17)

∑

𝑗∈
𝑙𝑘𝑗𝑣 ≤ 𝑄𝑣

∑

𝑓∈
𝑓𝑧𝑓 , 𝑣 ∈  , 𝑘 ∈  (18)

Constraints (19) and (20) ensure an appropriate conservation of passenger flow. They state that the number of passengers entering
the vessel in a port with a specific destination, is the difference between the previous and current load with the same destination.
The constraints are again split in two to account for the cyclical routes. Constraints (21) ensure that the number of embarking
passengers does not exceed the frequency-dependent demand.

𝑞𝑘𝑗 =
∑

𝑣∈
(𝑙𝑘𝑗𝑣 − 𝑙𝑘−1,𝑗𝑣), 𝑘 ∈ ∖{1}, 𝑗 ∈  | 𝑗 ≠ 𝑘 (19)

𝑞1,𝑗 =
∑

𝑣∈
(𝑙1,𝑗𝑣 − 𝑙

||,𝑗𝑣), 𝑗 ∈ ∖{1} (20)

𝑞𝑖𝑗 ≤
∑

𝑓∈
𝐷𝑖𝑗𝑓 𝑧𝑓 , 𝑖 ∈ , 𝑗 ∈  | 𝑗 ≠ 𝑖 (21)

Constraints (22) calculate the unmet demand as the total demand minus the transported passengers. Consequently, the variable
𝑢𝑖𝑗 covers both the unmet demand due to a too low frequency and the unmet demand stemming from insufficient vessel passenger
capacity. The two last passenger flow Constraints (23) and (24), split in two due to the cyclical route, make sure that passengers
leave the vessel at the correct ports.

𝑞𝑖𝑗 + 𝑢𝑖𝑗 = 𝐷𝑇
𝑖𝑗 , 𝑖 ∈ , 𝑗 ∈  | 𝑗 ≠ 𝑖 (22)

𝑙𝑘−1,𝑗𝑣 ≤ 𝑙𝑘𝑗𝑣, 𝑣 ∈  , 𝑘 ∈ , 𝑗 ∈  | 𝑗 ≠ 𝑘 (23)

𝑙
||,𝑗𝑣 ≤ 𝑙1,𝑗𝑣, 𝑣 ∈  , 𝑗 ∈ ∖{1} (24)

Non-negativity, binary, and integer requirements
The variable domains are given by Constraints (25)–(35).

𝛿𝑣 ∈ {0, 1}, 𝑣 ∈  (25)

𝛼𝑘 ∈ {0, 1}, 𝑘 ∈  (26)

𝑧𝑓 ∈ {0, 1}, 𝑓 ∈  (27)

+

10

𝑦𝑣 ∈ Z , 𝑣 ∈  (28)
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Fig. 5. The Florø route (FL).

𝑙𝑘𝑗𝑣 ∈ R+, 𝑘 ∈ , 𝑗 ∈  | 𝑗 ≠ 𝑘, 𝑣 ∈  (29)

𝑞𝑘𝑗 ∈ R+, 𝑘 ∈ , 𝑗 ∈  | 𝑗 ≠ 𝑘 (30)

𝑢𝑖𝑗 ∈ R+, 𝑖 ∈ , 𝑗 ∈  | 𝑗 ≠ 𝑖 (31)

𝑥𝑘𝑣𝑠 ∈ R+, 𝑘 ∈ , 𝑣 ∈  , 𝑠 ∈ 𝑣 (32)

𝑏𝑘𝑣, 𝑡
𝐶
𝑘𝑣, 𝑤

𝑇
𝑘𝑣 ∈ R+, 𝑘 ∈ , 𝑣 ∈  (33)

𝑡𝑅𝑇𝑣 ∈ R+, 𝑣 ∈  (34)

𝑡𝑖𝑗 ∈ R+, 𝑖, 𝑗 ∈  (35)

It should be noted that the model does not keep track of the exact timing of different vessel activities (i.e., sailing, berthing
and charging). This means that when the number of vessels is large, there might be a potential conflict at the charging station(s)
which we do not consider. However, we argue that for our real case study, this does not become a practical problem due to the low
number of vessels selected for operation.

5. Case study

We consider two real high-speed vessel services or routes in the Florø and Stavanger areas, located on the west coast of Norway.
The routes are shown in Figs. 5 and 6. Both these routes are currently operated with conventional vessels, but there are plans for
introducing battery electric vessels in the next years. The total lengths of the Florø and Stavanger routes are 24.2 and 16.5 nautical
miles, respectively. Section 5.1 presents the data used to generate the test instances, which are summarized in Section 5.2.

5.1. Input data

Vessel data
The data for the relevant battery electric vessels was provided by a maritime consultancy company involved in this project. Based

on this we defined 21 realistic vessel types ranging in passenger capacity (PAX) from 50 to 300, in line with existing passenger
vessels currently in operation in Norway. Table 3 summarizes these vessel types with their costs, lengths, passenger capacities,
battery capacities, sets of speed levels, as well as power demands for different speed levels. It should be noted that power demands
11
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Fig. 6. The Stavanger route (SV).

in practice depend on weather conditions, but since we are considering a strategic planning problem (i.e., determining vessel fleet
and charging infrastructure), we omit these operational aspects and use power demands under ‘‘normal’’ weather conditions. The
name of each vessel type referred to in the table consists of a number and a letter. The numbers, given in the range from 1 to 7,
indicate the size of the vessel, where larger numbers mean larger vessels. The letters in the vessel type name divide the vessels with
respect to battery size, where S, M and L correspond to Small, Medium and Large batteries, respectively. To remain within the scope
of realistic vessel types, the vessels of 30 m are combined with battery capacities of 1 000, 2 000 and 3 000 kWh, while the vessels
of 40 m are combined with batteries of 2 000, 3 500 and 5 000 kWh.

To ensure that the battery is used in a way preserving its lifetime, lower and upper limits of 40% and 90% of the battery capacity,
respectively, are set for the operational range the battery levels for all vessels. This follows the guidelines of the public transport
company Kolombus related to their new vessel Medstraum—the world’s first all-electric passenger vessel. There are two main reasons
for using such a high lower battery limit for high-speed passenger vessels: 1) it will contribute to preserving the battery’s lifetime,
and 2) since weather conditions will vary, such a high value makes the route operable also in bad weather where the vessel needs
more energy to maintain the schedule. A set of candidate speed levels of 10, 15, 20, 25 and 30 knots is set, similar for all vessel
types, each associated with a given power demand as shown in the table.

For the conventional vessels, we assume they have the same seven sizes and speeds as the zero emission vessels and that each
conventional vessel requires the same amount of power as the corresponding zero emission vessel with the same dimensions and
medium battery size. Based on this we obtain the same type of input data for the seven conventional as for the zero emission vessel
types shown in Table 3. In the following we denote a conventional vessel type by 𝑛𝐶, where 𝑛 refers to one of the same seven vessel
sizes, while 𝐶 just refers to ‘Conventional’.

Demand data
As described in Section 4, the model includes two different parameters as input for the demand, 𝐷𝑇

𝑖𝑗 and 𝐷𝑖𝑗𝑓 , i.e., the total
and frequency-dependent demand, respectively. In our test cases we assume 𝐷𝑇

𝑖𝑗 = 𝐷𝑖𝑗| |

, thus basing the maximum demand on the
demand corresponding to the highest frequency allowed. We consider a length of the planning horizon of five hours for all tests,
corresponding to the time period 05:00 to 10:00 in the morning. For the Florø route, which has a current frequency of only two
within the given five hour planning horizon, the demand was calculated based on ticket sales during the weekdays. For the Stavanger
route, which has a frequency of five in the same period (i.e., one per hour), the demand was obtained from actual passenger counts
including all departures in August and September of 2021. We use the demand of the morning operation since this time of the day
has high demand, and will as such be best for determining the strategic decisions (i.e., fleet and charging infrastructure). Obviously,
the tactical (i.e., frequency) and operational decisions (e.g., sailing speeds) might be different in other periods of the day when
the demand is different/lower. This approach of using the peak period to set the strategic investment decisions also follows the
suggestions by the counties in Norway that operate the two routes used for our case study.

The demand described above is obtained based on the actual frequency. To make the demand dependent on the frequency,
given by the parameter 𝐷𝑖𝑗𝑓 , we generate the available frequencies and scale the demand as follows. For the Florø case with a
current frequency of two, we introduce the available frequencies given by  = {1, 2, 3} and scale the demand based on the actual
12
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Table 3
Zero emission vessel types (VT) used in the test instances. NOK = Norwegian Kroner.

VT Length (m) PAX Cost (mill. NOK) Battery (kWh) Speed levels (nm) Power demand (kW)

1S 30 50 92.9 1000 (10, 15, 20, 25, 30) (115, 405, 703, 1079, 1637)
1M 30 50 99.8 2000 (10, 15, 20, 25, 30) (116, 447, 766, 1159, 1737)
1L 30 50 106.7 3000 (10, 15, 20, 25, 30) (121, 490, 833, 1239, 1841)

2S 30 100 93.9 1000 (10, 15, 20, 25, 30) (119, 472, 805, 1205, 1798)
2M 30 100 100.8 2000 (10, 15, 20, 25, 30) (125, 517, 873, 1287, 1904)
2L 30 100 107.7 3000 (10, 15, 20, 25, 30) (133, 564, 946, 1369, 2013)

3S 30 150 94.9 1000 (10, 15, 20, 25, 30) (129, 544, 915, 1335, 1967)
3M 30 150 101.8 2000 (10, 15, 20, 25, 30) (140, 593, 990, 1418, 2078)
3L 30 150 108.7 3000 (10, 15, 20, 25, 30) (153, 644, 1068, 1503, 2193)

4S 30 200 95.9 1000 (10, 15, 20, 25, 30) (147, 622, 1035, 1467, 2145)
4M 30 200 102.8 2000 (10, 15, 20, 25, 30) (162, 674, 1115, 1553, 2261)
4L 30 200 109.7 3000 (10, 15, 20, 25, 30) (179, 729, 1199, 1640, 2381)

5S 40 200 117.8 2000 (10, 15, 20, 25, 30) (104, 347, 954, 1416, 2225)
5M 40 200 128.2 3500 (10, 15, 20, 25, 30) (114, 374, 1019, 1513, 2350)
5L 40 200 138.5 5000 (10, 15, 20, 25, 30) (124, 404, 1087, 1613, 2477)

6S 40 250 118.8 2000 (10, 15, 20, 25, 30) (114, 376, 1023, 1518, 2357)
6M 40 250 129.2 3500 (10, 15, 20, 25, 30) (124, 406, 1091, 1618, 2484)
6L 40 250 139.5 5000 (10, 15, 20, 25, 30) (135, 438, 1163, 1721, 2614)

7S 40 300 119.8 2000 (10, 15, 20, 25, 30) (125, 408, 1095, 1624, 2491)
7M 40 300 130.2 3500 (10, 15, 20, 25, 30) (135, 440, 1167, 1727, 2621)
7L 40 300 140.5 5000 (10, 15, 20, 25, 30) (147, 474, 1241, 1833, 2752)

frequency to 80%, 100% and 120% for the three different frequencies, respectively. Similarly, for the Stavanger case, which has a
current frequency of five, we introduce the seven available frequencies given by  = {1, 2, 3, 4, 5, 6, 7} and scale the demand to
0% to 140% with steps of 20 percentage points.

osts and other relevant data
The model takes several other cost parameters as input. For the fixed cost of acquiring a vessel of type 𝑣, 𝐶𝐹𝐶

𝑣 , we use the
nvestment costs shown in Table 3 and scale it to the length of the planning horizon of five hours, assuming a yearly interest rate
f 5% and 18 h of usage per day. Based on data from an energy company, the port charging infrastructure investment cost is 12
illion NOK, and we assume it to be the same for all ports. We calculate the cost of installing charging infrastructure in a port

caled down to our planning horizon, 𝐶𝐼𝑁𝐹
𝑘 , following the same procedure as for the vessels. For all ports, both in the Florø and the

tavanger cases, we assign an available charging power of 2 000 kW, which is a reasonable approximation based on the electricity
rid in these areas. The energy cost per kWh for the zero emission vessels, 𝐶𝑉 𝐶

𝑘 , is set to 3.1 NOK/kWh based on data obtained
rom the energy company. For the conventional vessels, the energy cost per outputted kWh is estimated to 1.7 NOK, based on an
GO price of 700 USD/ton (Bergen Bunkers, 2021), a conversion rate of 8.93 NOK/USD, an MGO heating value of 42.7 kJ/g and
thermodynamic efficiency of 30% (Wild, 2005).

The alternative cost of transportation between ports can be challenging to set appropriately. We consider the different pair of
orts and assign a high value of 10 000 NOK if the high speed passenger vessel service is the only realistic public transportation
ption (e.g., on islands), and a lower value of 100 NOK if there exists alternatives (e.g., a bus connection).

Regarding the value of passenger time, we distinguish between time spent waiting between departures (i.e., due to low frequency)
nd excess travel time spent on board the vessel. For the excess travel time cost, 𝐶𝑆𝑊 , we use the value of 112 NOK/hour as estimated
y Flügel et al. (2020). For the value of time spent waiting for a departure, Wardman et al. (2016) state that this cost should be
.5 times higher than the cost of time spent on board. Hence, we set 𝐶𝑃𝑊 = 168 NOK/hour. The minimum time spent in each port
or docking and (dis-)embarking, 𝑇𝑊

𝑘 , is set to three minutes based on today’s timetable.

.2. Test instances

Based on the two routes for Florø and Stavanger and the data described in Section 5.1, we define the test instances FL1 and SV1
s our base case instances which describe the real demand for the two routes. Since both instances have low passenger demand,
hich is the case for most coastal areas in Norway, we also generate two additional instances based on the same routes, but with

ignificantly increased demand. This is to imitate services or routes in more densly populated areas. We do this by using the two
ase case instances, FL1 and SV1, and multiply the demand between each pair of ports with a given number. For the Florø case,
e multiply the demand by 10 and 100 and obtain the additional test instances FL10 and FL100, respectively. For the Stavanger

ase, which has somewhat larger real demand than the Florø case, we multiply by 7 and 12 and obtain the new test instances SV7
nd SV12, respectively. To obtain more reasonable frequencies to choose among for the new instances, we also increase these. The
requency-dependent demand is scaled as described in Section 5.1, i.e., 80%–120% for the FL instances and 20%–140% for the SV
13

nstances, all in steps of 20 percent points.
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Table 4
Overview of the test instances, where the frequencies represent the alternative number of departures over the
five-hour planning horizon.
Name Geographical area Demand multiplier Frequencies

FL1 Florø 1 {1, 2, 3}
FL10 Florø 10 {5, 10, 15}
FL100 Florø 100 {20, 25, 30}
SV1 Stavanger 1 {1, 2, 3, 4, 5, 6, 7}
SV7 Stavanger 7 {5, 10, 15, 20, 25, 30, 60}
SV12 Stavanger 12 {5, 10, 15, 20, 25, 30, 60}

Table 5
Overview of the solutions for all instances with optimal objective value (z*), vessel type (VT), number of vessels (#) and frequency
(f )
Instance Zero Emission Solution Conventional Solution

z* [NOK] VT # f z* [NOK] VT # f

FL1 17 869 1S 1 2 15 691 1C 1 3
FL10 72 738 1S 4 10 58 026 1C 3 10
FL100 277 352 5S 13 30 189 333 3C 7 30
SV1 45 851 1S 3 7 37 025 1C 2 7
SV7 158 266 2M 6 15 123 709 2C 8 30
SV12 464 142 7S 24 60 347 687 7C 15 60

Table 4 summarizes all six test instances along with the set of available frequencies. While the alternative cost for traveling
etween a given port pair is either set to 10 000 or 100 NOK for the two base case instances, the alternative cost for traveling
etween a port pair is set randomly between 50 and 200 NOK for the instances FL10, FL100, SV7 and SV12.

. Computational results

In this section, we present the computational study and analyzes. Section 6.1 presents the results for the different test instances.
e compare the zero emission solutions to the conventional ones in all the instances in order to estimate the abatement costs.

n Sections 6.2–6.4, we discuss key takeaways and insights from the results. The models were solved using the MIP-solver Gurobi
ersion 9.1.2 on a computer with Intel Core i7-10700 2.90 GHz processor. All instances were solved to optimality within a few
econds.

.1. Optimal results

When solving the six test instances using both the zero emission and conventional vessel models, we obtain the results
ummarized in Table 5. We observe that the cost of operating zero emission vessels is higher than that of conventional vessels in all
f the cases. It can be noted that both models’ solutions include the same vessel types with respect to length and passenger capacity
or any given instance, except for instance FL100. The optimal number of vessels vary between the zero emission and conventional
olutions for most instances, especially those with high demand. This is mainly due to the zero emission vessels’ limited reach and the
ime needed for charging. Therefore, a higher number of vessels is needed to operate with the same frequency. For the same reason,
e also see that the optimal frequency is higher in the conventional than the zero emission solution in two of the six instances. It

hould be noted that the percentage increase in costs for all artificial (high demand) scenarios relative to their base scenarios fall
hort of the corresponding increases in demand, suggesting increasing returns to scale in passenger vessel service production.

Table 6 shows the cost breakdown for instance FL1, while Table 7 presents the load factors (i.e., vessel capacity utilization) and
ailing speeds along the route for the same instance. We see in Table 6 that the zero emission solution has a lower vessel investment
ost than the conventional solution. This is because the chosen zero emission vessel has the smallest battery available. The cost
f energy, i.e., electricity or fuel, is also substantially lower in the zero emission case, mostly due to the lower sailing speeds.
owever, due to the lower frequency and sailing speeds, the passengers’ costs of waiting and transit time, which is a substantial
art of the total cost, is significantly higher in the zero emission solution. The varying speed along the route, as shown in Table 7,
s a seemingly surprising result given that using an even speed along the route would have resulted in lower energy consumption
nd cost. However, this result can be explained by that the vessel sails at a high speed when there are many passengers onboard
o reduce the transit cost, while sailing at a lower speed when there are few passengers onboard to reduce energy cost. We believe
hese results are quite interesting, especially since they suggest a change in planning and management of vessel operations that
urrently involve using an even speed.

Note that the cost of alternative transportation is the same in both solutions. The only customers choosing alternative modes of
ransportation, independently of the frequency, are the customers traveling between ports 1 and 5, due to a low alternative cost
f transportation (i.e., 100 NOK). This means that the same number of passengers is served in total in both solutions. However, as
hown in Table 7, a larger number of passengers are served per roundtrip (i.e., higher load factor) in the zero emission case, due
o the lower frequency.
14
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Table 6
Cost breakdown of the FL1 instance (ZE = Zero Emission solution)
Cost Term Zero Emission Solution Conventional Solution

Value [NOK] % of Total Value [NOK] % of Total % of ZE

Vessel Investment 3 535 19.8% 3 798 24.2% 107%
Infrastructure Investment 457 2.6% NA NA NA
Energy Cost 3 001 16.8% 4 428 28.2% 147%
Cost of Alt. Transport 1 542 8.6% 1 542 9.8% 100%
Cost of Waiting at Port 7 827 43.8% 5 218 33.3% 66.7%
Transit Cost 1 507 8.4% 706 4.5% 46.8%

Total Cost 17 869 100.0% 15 691 100.0% 87.7%

Table 7
Number of passengers (# of Pax), load factor and sailing speed on each leg per roundtrip for the FL1 instance.
Leg Zero Emission Solution Conventional Solution

# of Pax Load Factor Speed [kn] # of Pax Load Factor Speed [kn]

1 3.83 7.67% 10 2.56 5.11% 10
2 3.83 7.67% 10 2.56 5.11% 19.2
3 4.86 9.73% 10 3.24 6.48% 20
4 14.83 29.67% 20 9.89 19.78% 25
5 14.88 29.76% 20 9.92 19.84% 25

Similar results are obtained also for the other five test instances. However, the passenger costs are less substantial while the
perator costs become more important for these other five instances. This is especially the case for the instances with increased
emand. As an example, for instance FL100, the passenger costs constitute only 15.8% of the total costs compared to 60.9% for
L1. It should also be noted that whereas we see low vessel capacity utilization in FL1 (the load factor in Table 7) since this route
s servicing a sparsely populated rural area, these numbers are significantly higher for the five other instances with larger demand.

As mentioned in Section 4.3, we do not consider the potential conflict at charging stations, which can become a practical
onstraint when the number of vessels gets large, as for the artificial instances with the highest demand (i.e., FL100 and SV12).
herefore, the charging infrastructure costs might be too optimistic for these instances as there might be a need to have more
harging stations available to avoid a conflict among the vessels. However, as we can see from the cost breakdown in Table 6,
his cost component only constitutes 2.6% of the total cost for FL1, and actually much less than this for high-demand instances
i.e., 0.2% and 0.1% for instances FL100 and SV12, respectively). Therefore, investing in more charging infrastructure to avoid this
onflict would not change the results much and certainly not the main conclusions from our analyses.

The subsequent sections focus primarily on cases FL1 and SV1, which are based on real data and therefore most relevant for
orwegian stakeholders. Comparable results for the artificial cases are available from the authors upon request.

.2. Analyses of the abatement costs and value of optimizing frequency and sailing speeds

To analyze the value of optimizing frequency and sailing speeds, as well as further analyzing the abatement costs of introducing
ero emission vessels, we run the real world instances, FL1 and SV1, with fixed frequencies and sailing speeds. These variables
re fixed to their currently observed frequencies and speed levels in the corresponding geographical areas. By doing this, we can
ompare the abatement cost of introducing zero emission vessels when alterations to the current operations and service level are
llowed versus when this is assumed fixed. The observed speed is 25 knots for all legs in both Florø and Stavanger and the service
requencies are, as previously mentioned, two and five, respectively.

First, we study the impact on the abatement cost of going from conventional to zero emission vessels, both when the service
evel (i.e., frequency and sailing speed) is fixed and when it is optimized. The results are summarized in Fig. 7. For the FL1 test
nstance, the abatement cost of choosing zero emission over conventional vessels is 14% (2 178 NOK) when the service level is
ptimized and 21% (3 744 NOK) when today’s service level is kept or fixed. For the SV1 instance, the corresponding abatement
osts are 24% (8 826 NOK) and 13% (5 594 NOK), respectively, thus yielding no clear indication whether the cost of choosing zero
mission vessels is higher or lower when the service level is kept fixed or optimized. Note that the absolute numbers of the absolute
osts referred to above are scaled down to the length of the planning horizons in the test instances, amounting to five hours both
or FL1 and SV1.

If we rather consider the abatement cost from a situation with the fixed service level as of today to an optimized service level,
s shown in Fig. 8, we obtain a more interesting result. While the additional cost of choosing zero emission vessels for the FL1
nstance when the service level remains constant is 21% (3 744 NOK), the corresponding cost is only 2% (414 NOK) when we also
ptimize the service level. For the SV1 case, the abatement cost decreases from 13% to 7% (2 932 NOK) when going from fixed
o optimized service level. These results indicate a clear advantage of optimizing the service frequency and sailing speeds when
ransitioning from conventional to zero emission vessels.

To analyze the true value of optimizing the strategic, tactical and operational decisions at the same time, we extend our analysis
urther and evaluate the extra cost incurred by fixing the current service level. The results for the FL1 and SV1 instances are presented
15
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Fig. 7. Abatement cost (NOK) and relative increase when fixing service level to current level.

Fig. 8. Abatement cost (NOK) and relative increase when optimizing the service level.

in Fig. 9 and show that the value of optimizing the service level is substantial. One may still argue that complicating the model
with operational and tactical decisions is not necessary if the strategic decision variables take the same values when solving these
separately. To quantify this value, we follow the approach described in the paragraph above; solving the model again, fixing the
strategic decisions from the first solution. This is in fact the case for the conventional solutions of both the FL1 and the SV1 instance,
as shown in Fig. 10. Both the vessel type and the number of acquired vessels are equal when solving the model with fixed frequency
and sailing speeds, and when they are these decisions are optimized. For the zero emission solutions of the two instances, we do,
however, observe different strategic decisions when fixing the service level, compared to the optimized model. In other words, there
exists a significant gain in simultaneously optimizing the operational, tactical and strategic decisions. As seen in Fig. 10, these gains
are 17% (2 957 NOK) and 4% (1 827 NOK) for the FL1 and SV1 instances, respectively.

To summarize this analysis, we have presented three key results in relation to maintaining the current service level. Firstly, we
observe that the abatement cost when transitioning from a conventional passenger vessel service with a fixed service level to a zero
emission solution is significantly lower when the frequency and the sailing speeds also are optimized. This result is, as previously
mentioned, illustrated in Fig. 8. Secondly, we conclude there is a significant value of including tactical and operational decisions
when considering the zero emission solutions, even though we are primarily interested in the strategic investment decisions. This
was shown in Fig. 10. Thirdly, despite this, we see that the abatement cost is always positive and significant.

6.3. Impact of CO2tax

Market-based instruments to mitigate carbon dioxide emissions from maritime transports is high on the agenda of decision
makers. IMO’s initial strategy to reduce GHG emissions considers market-based measures as an intermediate-term measure, while
the European Union’s Green Deal proposes to extend the Union’s Emission Trading System to maritime transport. In this section,
we study the impact of carbon pricing for the transition to battery electric vessels.

A tax per ton CO2 emitted is an important political instrument for reducing emissions (The World Bank, 2014). Fig. 11 shows
the impact of an increasing CO tax on the abatement cost scaled by the length of the planning horizon (five hours) of changing
16
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Fig. 9. Difference in total system cost (NOK) and relative difference when comparing fixed service levels with optimal solutions for zero emission and conventional
vessels, respectively.

Fig. 10. Value (NOK) and relative difference when solving the operational, tactical and strategic decisions simultaneously.

Fig. 11. The abatement cost as a function of a CO2 tax.

to zero emission vessels for different CO2 tax levels for the six test instances. Here, the service level is also optimized. The CO2 tax
is not included directly in the fuel cost of the model, but the emission costs when using conventional vessels are computed ex post
based on the emissions from the optimal solutions, yielding a linear relationship between the CO2 tax and the cost of choosing zero
emission vessels. The emissions for the conventional vessels are calculated based on their fuel consumption, where each kilogram
of fuel equals an emission of 3.2 kilograms of CO2 (Statistics Norway, 2017).

Note that in Fig. 11, the abatement cost of the instances with the highest demand and therefore the most substantial CO2
emissions has steeper reductions compared to the instances with lower emissions. A more detailed analysis of the results from the
graph is listed in Table 8. The required break even tax is listed in the first row. For politicians and experts, a pronounced goal for
17
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Table 8
An overview of the effect of CO2 tax levels on the abatement costs of the different instances.
Instances FL1 FL10 FL100 SV1 SV7 SV12

Break even CO2 tax 3 198 17 710 6 956 6 172 4 537 4 991
Abatement Cost at 2000 NOK/ton 816 42 324 62 713 5 960 19 325 69 787
% Reduction in Abatement Cost 62.5% 11.3% 28.8% 32.4% 44.1% 40.1%

Table 9
Solutions for in the different values of 𝐶𝑃𝑊 , showing the optimal vessel type (VT), the number of vessels (#) and the frequency
(f ).
Instance 𝐶𝑃𝑊 VT # f Total cost Cost of Alt. Transport % of Total

FL1 5 1S 1 1 8 454 514 6.1%
50 1S 1 2 13 456 257 1.9%
100 1S 1 2 17 030 1 542 9.1%
168 1S 1 2 17 869 1,542 8.6%
225 1S 2 3 25 178 1 542 6.1%

SV1 5 2M 1 2 23 997 11 570 48.2%
50 1S 2 5 34 734 4 628 13.3%
100 1S 3 7 43 847 0 0.0%
168 1S 3 7 45 851 0 0.0%
200 1S 2 5 58 805 16 199 27.5%
250 1S 3 7 63 396 16 199 25.6%

the CO2 tax is 2000 NOK per ton by 2030 (Energi og Klima, 2021). Hence, the abatement cost for each test instance when the CO2
tax equals 2000 NOK/ton is shown in the second row of Table 8. The third row shows the reduction in abatement cost relative
to a tax rate of zero. The table clearly shows that a CO2 tax of 2000 NOK/ton is insufficient for the zero emission solutions to be
cost-competitive compared to the conventional ones.

6.4. Impact of passenger waiting cost

The cost of waiting in port, represented by the parameter 𝐶𝑃𝑊 , was, as described in Section 5.1 and based on (Flügel et al.,
020) and Wardman et al. (2016), set to 168 NOK/hour. However, it can be argued that this value is more suited for high-frequent
ervices where passengers do not plan their arrivals based on the schedule. Even though the solutions for the increased demand
nstances, i.e., FL10, FL100, SV7 and SV12, can be considered high-frequent services, this is hardly the case for the real instances
L1 and SV1, which have optimal frequencies of two and seven over a five hour planning horizon, respectively (shown in Table 5).
ecause of this, the costs of waiting in port also constitute as much as 43.8% ( Table 5) and 40.8% of the total costs for the FL1 and
V1 instances, respectively. However, in these instances it can be assumed that the passengers will schedule their arrivals closer to
he time of departure, reducing the inconvenience of the low frequency. Therefore, it is of interest to perform a sensitivity analysis
or different values of the cost of waiting in port.

The results of this sensitivity analysis are presented in Table 9. The table includes both strategic and tactical solutions for each
nstance, i.e., the chosen vessel type, the number of vessels and the service frequency, along with the total cost, as well as the cost
f alternative transportation in both absolute terms and as a percentage of the total costs.

We observe from Table 9 that for increasing values of 𝐶𝑃𝑊 , the optimal frequency for the FL1 instance increases. This can be
xpected as with increased values of 𝐶𝑃𝑊 , the optimal frequency should be increased to reduce average waiting time, which again
voids that the waiting cost becomes too dominant. We observe a similar trend for instance SV1, except for when 𝐶𝑃𝑊 = 200 NOK.
notable result from the FL1 instance is that it is not optimal to satisfy all the demand for any value of 𝐶𝑃𝑊 . For the SV1 instance

n the other hand, all demand is met when 𝐶𝑃𝑊 is equal to 100 and 168 NOK. We also observe that both the strategic and tactical
ecisions are highly sensitive to the perceived waiting cost of the passengers. If the passengers find the cost of waiting too high
ompared to the cost of alternative transportation, they will not use the vessel service.

. Conclusions

Climate and environmental policies target substantial emission cuts from transport. While road transports play a leading role,
ther modes including maritime transports are now receiving more attention. In Norway, the Government aims to halve domestic
aritime emissions by 2030 and to adopt zero emission standards for high-speed passenger vessels by 2025. This is by no means

n easy transition, and knowledge-based decision support is paramount to meet policy objectives in a cost-effective manner and to
nsure politically feasible transition. In this paper, we consequently study the Zero Emission Vessel Route Planning Problem, which
18

eals with the optimal planning of a route to be serviced by battery electric vessels. To provide decision support, we propose a novel
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Mixed-Integer Programming optimization model for the ZEVRPP, which jointly minimizes operator and passenger costs subject to
strategic, tactical, and operational decisions.

The planning problem is utilized to estimate technology replacement potential and associated costs for two existing services in
orway, as well as four hypothetical increased demand scenarios derived from these two services. The latter generalizes the analysis

o services that are operated in more densely populated areas, which also makes the study transferable to other countries. In all
ases considered, the total costs of operation increase with the adoption of zero emission technology. This is attributed to battery
ange and charging time that combined require a higher number of vessels compared to the number of diesel ferries to uphold
requency. Because of these constraints, the optimal frequency is reduced with adoption of zero emission technologies in some of
he cases considered, and the transition is generally accompanied by passenger discomfort from increased travel and waiting time.
hese are key trade-offs in the diffusion of battery electric vessels, which our paper presents in a clear way to decision makers.

In our experience, decision makers seek to replace existing vessels by zero emission technologies whilst upholding existing
ervices. This approach contradicts the least cost principle in abatement cost estimation, and our advice is consequently to seek
he optimal combination of technical and operational measures to reach emission targets. The results show economic advantage
f optimizing frequency and sailing speeds with adoption of zero emission technology. While changing existing schedules can be
npopular among the general public, making no alternations can conflict with welfare maximization subject to scarce public funds.
e believe the results presented herein provide important insights to decision makers and constituencies alike to facilitate a broader

nderstanding of the economic trade-offs involved in the diffusion of zero emission vessels.
Wangsness et al. (2020) identify a conflict among efficiency and effectiveness of Norway’s policies for electrifying road transport.

ur paper shows that the gap is further increased with policies to promote zero emission high-speed vessels. Estimated abatement
osts range between 3000 and 18 000 NOK/ton in the cases considered, thereby surpassing the Government’s estimate of the social
ost of carbon of 2000 NOK/ton in 2030. This might suggest that there is a potential for reducing emissions at a lower cost elsewhere.
he Norwegian Government’s investigation into measures for meeting emission targets set by the Paris agreement (Norwegian
nvironment Agency, 2020) applies abatement cost estimates ranging from 500 to 1500 NOK/ton for battery electric high-speed
essels. Our study suggests that these are substantially undervalued.

Our personal communication with County Councils in charge of service planning reveals that regional governments are motivated
o adopt zero emission technologies for their connections. However, major concerns are uncertainties related to the added costs of
ervice provision and the degree to which they will be compensated. Regional governments in Norway do not have the discretion to
xtract tax revenues and are consequently dependent on transfers from the central government. Currently, the key source of regional
overnment income known as the general grant scheme has no mechanisms implemented to offset costs related to adoption of zero
mission technology. Developing sound financing models will thus be a vital step towards diffusion of zero emission public transport.

While this study has provided novel insights into technical, economic and political feasibilities of zero emission technologies, we
cknowledge that some of the conclusions can change with subsequent analysis. First, maritime battery technology may improve
as seen from the rapid development of automotive applications – and other energy carriers such as hydrogen or ammonia that

ffer longer range can become viable. Second, we have not considered possibilities to alter or optimize routes to accommodate
ew energy systems. Indeed, omitting ports where substitute modes are readily available and where grid capacity is scarce can
e an unpopular yet welfare enhancing measure to diffuse battery electric vessels. Because of anticipated political constraints to
mplement major changes to the public transport system, we have considered route optimization out of scope for the current paper
hat aims to provide decision support for energy transitions in the short and intermediate terms. Third, extensions of the model to
ultiple planning horizons, e.g., by differencing among peak and off-peak, can provide further insights. Among others, this will

nable consideration of time-of-use electricity pricing for zero emission vessel services. We welcome additional contributions on
hese topics.
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Appendix A. Notation for the zero emission model

Sets
 Set of legs in route
 Set of available vessel types
𝑣 Set of discrete speed levels for vessel type v
 Set of frequencies
Param-
eters
𝑇 Length of planning period
𝑇𝑘𝑣𝑠 Sailing time of leg k with speed s and vessel type

v
𝑇𝑊
𝑘 Minimum waiting time in port 𝑘 to allow

passengers to enter and exit the vessel
𝑇 𝑈
𝑖𝑗 Travel time from port 𝑖 to port 𝑗 with the fastest

vessel type available,
sailing at its fastest speed level, following the
route with no charging or waiting
time beyond the minimum requirements

𝑊𝑓 Average waiting time at frequency 𝑓
𝐷𝑇

𝑖𝑗 Maximum demand from port i to port j
𝐷𝑖𝑗𝑓 Frequency dependent demand from port 𝑖 to port

𝑗, at frequency 𝑓
𝑄𝑣 Passenger capacity of vessel type v
𝐸𝑘𝑣𝑠 Energy consumption on arc 𝑘 with vessel type 𝑣

sailing at speed 𝑠
𝐵𝑣 Maximum battery level of vessel type v
𝐵𝑣 Minimum battery level of vessel type v
𝑃𝑘 Available charging power in port k
𝐶𝐹𝐶
𝑣 Fixed cost per vessel of type 𝑣

𝐶𝐼𝑁𝐹
𝑘 Fixed cost of investing in charging infrastructure

in port 𝑘
𝐶𝑉 𝐶
𝑘 Cost per unit of energy charged in port 𝑘

𝐶𝐴𝐿𝑇
𝑖𝑗 Alternative cost per passenger not transported

between port 𝑖 and 𝑗
𝐶𝑃𝑊 Value of passenger time while waiting at port
𝐶𝑆𝑊 Value of passenger time while sailing

Vari-
ables
𝛼𝑘 1 if charging infrastructure is built in port k, 0

otherwise
𝛿𝑣 1 if vessel type v is chosen, 0 otherwise
𝑧𝑓 1 if frequency f is chosen, 0 otherwise
𝑦𝑣 Number of vessels of type v used
𝑥𝑘𝑣𝑠 Weight variable for speed s for vessels of type v

on leg k
𝑙𝑘𝑗𝑣 Number of passengers traversing leg 𝑘 with

destination port 𝑗 with a vessels of type 𝑣
𝑞𝑘𝑗 Number of passengers picked up in port 𝑘 with

destination port 𝑗
𝑢𝑖𝑗 Unmet demand between port 𝑖 and port 𝑗
𝑡𝑅𝑇𝑣 Total roundtrip time for a vessel of type v
𝑡𝐶𝑘𝑣 Charging time before traversing leg k with a

vessel of type v
𝑤𝑇

𝑘𝑣 Time spent in port k per roundtrip excluding
charging time for a vessel of type 𝑣

𝑡𝑖𝑗 Sailing time from port 𝑖 to port 𝑗
𝑏𝑘𝑣 Battery level when leaving port k for vessels of
20
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Appendix B. Linearizing the non-linear terms of the zero emission model

In the objective function (1), the third, fifth and sixth term are non-linear since a continuous variable is multiplied with the
inary variable 𝑧𝑓 . This also applies to Constraints (6). Here, we explain how these terms can be linearized to obtain a mixed-integer
rogramming (MIP) model which can be solved by a commercial MIP-solver (e.g., Gurobi).

To linearize the third term in the objective function, which is the variable cost of charging, we introduce an auxiliary variable,
𝑓 , and the following additional constraints to be included in the model:

𝑣𝑓 ≥
∑

𝑣∈

∑

𝑘∈
𝐶𝑉 𝐾
𝑘 𝑃𝑘𝑡

𝐶
𝑘𝑣 −𝑀5

𝑓 (1 − 𝑧𝑓 ), 𝑓 ∈  (36)

where 𝑀5
𝑓 is a big-M parameter. The third term in the objective function (1) then becomes

∑

𝑓∈
𝑓𝑣𝑓 . (37)

Constraints (36) ensure that for the chosen frequency 𝑓 where 𝑧𝑓 = 1, the auxiliary variable will take the value of the first term
f the right-hand side since the objective function aims at minimizing 𝑣𝑓 . For the other frequencies (i.e., where 𝑧𝑓 = 0), the auxiliary
ariable 𝑣𝑓 will take the value 0 due to non-negativity requirement.

The same approach as above is used to linearize the other non-linear terms of the objective function, which we do not show
ere.

To linearize Constraints (6), another auxiliary variable 𝑠𝑓 is introduced. The 𝑠𝑓 -variable represents the product of 𝑧𝑓 and the
um of 𝑡𝑅𝑇𝑣 . It is equal to zero if 𝑧𝑓 equals zero, and equal to the sum of the roundtrip times when 𝑧𝑓 is one. Accordingly, the
ollowing constraints are included in the problem:

𝑠𝑓 ≥
∑

𝑣∈
𝑡𝑅𝑇𝑣 −𝑀8

𝑓 (1 − 𝑧𝑓 ), 𝑣 ∈  , 𝑓 ∈  (38)

After introducing (38), Constraints (6) from the original formulation in Section 4.3 can be replaced with Constraint (39) below.
∑

𝑓∈
𝑓𝑠𝑓 = 𝑇

∑

𝑣∈
𝑦𝑣 (39)

A problem with the linearization of Constraints (6) is that Constraints (38) allow the roundtrip time, 𝑡𝑅𝑇𝑣 , to be less than the
alue of 𝑠𝑓 . This is caused by the fact that the definition of roundtrip time, i.e., the right-hand side of Constraints (5), also define the
ransit time, 𝑡𝑖𝑗 , in Constraints (10) and (11). Since the transit time is minimized as a part of the sixth term in the objective function
1), the roundtrip time, 𝑡𝑅𝑇𝑣 , is minimized. We want 𝑡𝑅𝑇𝑣 to exactly represent the roundtrip time, because we seek to distribute the
aiting time in the ports, 𝑤𝑇

𝑘𝑣, in an economically efficient manner. To alleviate the issue described above, we reformulate the
efinition of the transit time, 𝑡𝑖𝑗 , in Constraints (10) and (11) as follows:

𝑡𝑖𝑗 =
∑

𝑓∈
𝑠𝑓 −

∑

𝑣∈

[

||

∑

𝑘=𝑗

(

∑

𝑠∈𝑣

𝑇𝑘𝑣𝑠𝑥𝑘𝑣𝑠+𝑡𝐶𝑘𝑣 +𝑤𝑇
𝑘𝑣

)

+
𝑖−1
∑

𝑘′′

∑

𝑠∈𝑣

𝑇𝑘𝑣𝑠𝑥𝑘𝑣𝑠

+
𝑖

∑

𝑘=1
(𝑡𝐶𝑘𝑣 +𝑤𝑇

𝑘𝑣)

]

, 𝑖 ∈ , 𝑗 ∈  | 𝑖 < 𝑗

(40)

where,

𝑘 = 𝑎𝑟𝑔𝑚𝑖𝑛{1, 𝑖 − 1}

𝑡𝑖𝑗 =
∑

𝑓∈
𝑠𝑓 −

∑

𝑣∈

[ 𝑖−1
∑

𝑘=𝑗

∑

𝑠∈𝑣

𝑇𝑘𝑣𝑠𝑥𝑘𝑣𝑠 +
𝑖

∑

𝑘=𝑗
(𝑡𝐶𝑘𝑣 +𝑤𝑇

𝑘𝑣)

]

, 𝑖 ∈ , 𝑗 ∈  | 𝑗 < 𝑖 (41)

As stated above, the actual roundtrip time is 𝑠𝑓 for the chosen frequency 𝑓 , and zero for all the other frequencies. Thus, we find
the transit time between ports 𝑖 and 𝑗 by subtracting the terms that do not define the time between the ports from the sum of 𝑠𝑓 .
Hence, the variable representing the waiting time in a port, 𝑤𝑇

𝑘𝑣, will take the actual waiting time, since Constraints (38) must be
satisfied.

Appendix C. Conventional vessel model

Here, we show how the model in Section 4.3 is adapted to the situation with fossil-fueled conventional (diesel) vessels. This
model is used for comparison so that we can evaluate the abatement cost of introducing zero emission solutions. The conventional
vessel model shares most of the characteristics with the zero emission model, so we therefore focus only on the differences in the
21
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Additional notation
The sets remain the same as in Section 4.2 (summarized in Appendix A), but the vessel types included in the set  are now

all conventional ones. Most of the parameters also remain the same as in Section 4.2, except some that become redundant. There
is no longer a need for charging infrastructure, which means that all parameters, variables and constraints related to this can be
removed from the zero emission model. Furthermore, the variables related to vessel battery level and time spent charging in port
are also no longer needed. The conventional model has one new variable compared to the zero emission model. The new variable
𝑒𝑅𝑇𝑣 represents the fuel consumption on one roundtrip of the route for a vessel of type 𝑣 and depends on the chosen sailing speed.

Mathematical model
The can now define the following new objective function for the conventional vessel model:

min 𝑧 =
∑

𝑣∈
𝐶𝐹𝐶
𝑣 𝑦𝑣 +

∑

𝑣∈

∑

𝑓∈
𝐶𝑉 𝐶𝑒𝑅𝑇𝑣 𝐹𝑓 𝑧𝑓

+
∑

𝑖∈

∑

𝑗∈
𝐶𝐴𝐿𝑇
𝑖𝑗 𝑢𝑖𝑗 + 𝐶𝑃𝑊

∑

𝑓∈
𝑊𝑓 𝑧𝑓 (

∑

𝑖∈

∑

𝑗∈
𝑞𝑖𝑗 )

+𝐶𝑆𝑊
∑

𝑓∈

∑

𝑖∈

∑

𝑗∈
(𝑡𝑖𝑗 − 𝑇 𝑈

𝑖𝑗 )𝐷𝑖𝑗𝑓 𝑧𝑓

(42)

The roundtrip time does no longer include the charging time and the following Constraints (43) replace Constraints (5). For the
same reason, Constraints (10) and (11) are replaced by Constraints (44) and (45), respectively.

𝑡𝑅𝑇𝑣 =
∑

𝑘∈

∑

𝑠∈𝑣

𝑇𝑘𝑣𝑠𝑥𝑘𝑣𝑠 +
∑

𝑘∈
𝑤𝑇

𝑘𝑣, 𝑣 ∈  (43)

𝑡𝑖𝑗 =
∑

𝑣∈

[𝑗−1
∑

𝑘=𝑖

∑

𝑠∈𝑣

𝑇𝑘𝑣𝑠𝑥𝑘𝑣𝑠 +
𝑗−1
∑

𝑘=𝑖−1
𝑤𝑇

𝑘𝑣

]

, 𝑖 ∈ , 𝑗 ∈  | 𝑗 > 𝑖 (44)

𝑡𝑖𝑗 =
∑

𝑣∈

[

||

∑

𝑘=𝑖

∑

𝑠∈𝑣

𝑇𝑘𝑣𝑠𝑥𝑘𝑣𝑠 +
||

∑

𝑘̃

𝑤𝑇
𝑘̃𝑣

+
𝑗−1
∑

𝑘′

(

∑

𝑠∈𝑣

𝑇𝑘′𝑣𝑠𝑥𝑘′𝑣𝑠 +𝑤𝑇
𝑘′𝑣

)

]

𝑖 ∈ , 𝑗 ∈  | 𝑗 < 𝑖

(45)

where,

𝑘̃ = 𝑎𝑟𝑔𝑚𝑖𝑛{||, 𝑖 + 1}

𝑘′ = 𝑎𝑟𝑔𝑚𝑎𝑥{1, 𝑗 − 1}

Since all constraints related to battery level and charging are redundant, Constraints (12), (13), (14), (15) and (16) of the zero
emission model are removed. The fuel consumption depends on the vessels’ sailing speeds, as it did for the energy consumption in
the zero emission model, and is calculated according to Constraints (46). Finally, we require non-negativity for the fuel consumption
variable in (47).

𝑒𝑅𝑇𝑣 =
∑

𝑘∈

∑

𝑠∈𝑣

𝐸𝑘𝑣𝑠𝑥𝑘𝑣𝑠, 𝑣 ∈  (46)

𝑒𝑅𝑇𝑣 ∈ R+, 𝑣 ∈  (47)

References

Aarhaug, J., Fearnley, N., Rødseth, K.L., Svendsen, H., 2017. Cost developments in Norwegian public transport (in Norwegian). TOI report 1582/2017, 1582,
Institute of Transport Economics.

Andersson, H., Fagerholt, K., Hobbesland, K., 2015. Integrated maritime fleet deployment and speed optimization: Case study from RoRo shipping. Comput. Oper.
Res. 55, 233–240.

Arbex, R.O., da Cunha, C.B., 2015. Efficient transit network design and frequencies setting multi-objective optimization by alternating objective genetic algorithm.
Transp. Res. B 81, 355–376.

Aslaksen, I.E., Svanberg, E., Fagerholt, K., Johnsen, L.C., Meisel, F., 2020. Ferry service network design for kiel fjord. In: Lecture Notes in Computer Science
(Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). 12433 LNCS, pp. 36–51.

Aslaksen, I.E., Svanberg, E., Fagerholt, K., Johnsen, L.C., Meisel, F., 2021. A combined dial-a-ride and fixed schedule ferry service for coastal cities. Transp. Res.
A: Policy Pract. 153, 306–325.

Bergen Bunkers, A.S., 2021. Daily market update. URL https://www.bergenbunkers.no/wp-content/uploads/2021/12/pdf-markets-bergenbunkers2-5.pdf,
(Accessed December 11th, 2021).

Eide, M.S., Endresen, Ø., Hagman, R., Mjelde, A., Pedersen, S., Aarhaug, J., 2018. Fylkeskommunenes klimagassutslipp fra lokale ruter (in Norwegian). Report
22/2018, Menon, 22.

Energi og Klima, 2021. Klimameldingen: Varsler kraftig økning i CO2-avgiften (in Norwegian). URL https://energiogklima.no/nyhet/dette-vet-vi-om-innholdet-i-
regjeringens-klimamelding/, (Accessed December 12th, 2021).

Fagerholt, K., Laporte, G., Norstad, I., 2010. Reducing fuel emissions by optimizing speed on shipping routes. J. Oper. Res. Soc. 61 (3), 523–529.
Flügel, S., Halse, A.H., Hulleberg, N., Jordbakke, G.N., Veisten, K., Sundfør, H.B., Kouwenhoven, M., 2020. Verdsetting av reisetid og tidsavhengige faktorer.
22

Dokumentasjonsrapport til Verdisettingsstudien 2018–2019. TOI report 1762/202, Institute of Transport Economics (in Norwegian).

http://refhub.elsevier.com/S1361-9209(22)00321-2/sb1
http://refhub.elsevier.com/S1361-9209(22)00321-2/sb1
http://refhub.elsevier.com/S1361-9209(22)00321-2/sb1
http://refhub.elsevier.com/S1361-9209(22)00321-2/sb2
http://refhub.elsevier.com/S1361-9209(22)00321-2/sb2
http://refhub.elsevier.com/S1361-9209(22)00321-2/sb2
http://refhub.elsevier.com/S1361-9209(22)00321-2/sb3
http://refhub.elsevier.com/S1361-9209(22)00321-2/sb3
http://refhub.elsevier.com/S1361-9209(22)00321-2/sb3
http://refhub.elsevier.com/S1361-9209(22)00321-2/sb4
http://refhub.elsevier.com/S1361-9209(22)00321-2/sb4
http://refhub.elsevier.com/S1361-9209(22)00321-2/sb4
http://refhub.elsevier.com/S1361-9209(22)00321-2/sb5
http://refhub.elsevier.com/S1361-9209(22)00321-2/sb5
http://refhub.elsevier.com/S1361-9209(22)00321-2/sb5
https://www.bergenbunkers.no/wp-content/uploads/2021/12/pdf-markets-bergenbunkers2-5.pdf
http://refhub.elsevier.com/S1361-9209(22)00321-2/sb7
http://refhub.elsevier.com/S1361-9209(22)00321-2/sb7
http://refhub.elsevier.com/S1361-9209(22)00321-2/sb7
https://energiogklima.no/nyhet/dette-vet-vi-om-innholdet-i-regjeringens-klimamelding/
https://energiogklima.no/nyhet/dette-vet-vi-om-innholdet-i-regjeringens-klimamelding/
https://energiogklima.no/nyhet/dette-vet-vi-om-innholdet-i-regjeringens-klimamelding/
http://refhub.elsevier.com/S1361-9209(22)00321-2/sb9
http://refhub.elsevier.com/S1361-9209(22)00321-2/sb10
http://refhub.elsevier.com/S1361-9209(22)00321-2/sb10
http://refhub.elsevier.com/S1361-9209(22)00321-2/sb10


Transportation Research Part D 113 (2022) 103495H.F. Havre et al.

H

I

K
L
L

M
N
R

R

R

R

S

S
S

S

T
T

V
W

W
W

W

Z

He, Y., Liu, Z., Song, Z., 2020. Optimal charging scheduling and management for a fast-charging battery electric bus system. Transp. Res. E: Logist. Transp. Rev.
142, 102056.

e, Y., Song, Z., Liu, Z., 2019. Fast-charging station deployment for battery electric bus systems considering electricity demand charges. Sustainable Cities Soc.
48, 101530.

EA, 2022. Greenhouse gas emissions from energy: Overview. URL https://www.iea.org/reports/greenhouse-gas-emissions-from-energy-overview, (Accessed March
22, 2021).

lier, M.J., Haase, K., 2015. Urban public transit network optimization with flexible demand. OR Spectrum 37 (1), 195–215.
ai, M.F., Lo, Hong K., 2004. Ferry service network design: optimal fleet size, routing, and scheduling. Transp. Res. A: Policy Pract. 38 (4), 305–328.
iu, Z., Song, Z., He, Y., 2018. Planning of fast-charging stations for a battery electric bus system under energy consumption uncertainty. Transp. Res. Rec. 2672,

96–107.
ohring, H., 1972. Optimization and scale economies in urban bus transport. Am. Econ. Rev. 62, 591–604.
orwegian Environment Agency, 2020. Klimakur 2030 (in Norwegian). 22.
inaldi, M., Parisi, F., Laskaris, G., D’Ariano, A., Viti, F., 2018. Optimal dispatching of electric and hybrid buses subject to scheduling and charging constraints.

In: IEEE Conference on Intelligent Transportation Systems, Proceedings, ITSC. 2018-November, pp. 41–46.
itari, A., Spoof-Tuomi, K., Huotari, J., Niemi, S., Tammi, K., 2021. Emission abatement technology selection, routing and speed optimization of hybrid ships.

J. Mar. Sci. Eng. 9 (9).
ogaland Fylkeskommune, 2021. Byggestart for verdens første hurtigbåt med nullutslipp. URL https://www.rogfk.no/aktuelt/byggestart-for-verdens-forste-

hurtigbat-med-nullutslipp.110237.aspx.
ogge, M., van der Hurk, E., Larsen, A., Sauer, D.U., 2018. Electric bus fleet size and mix problem with optimization of charging infrastructure. Appl. Energy

211, 282–295.
assi, O., Oulamara, A., 2017. Electric vehicle scheduling and optimal charging problem: Complexity, exact and heuristic approaches. Int. J. Prod. Res. 55,

519–535.
hang, H., Liu, Y., Huang, H., Guo, R., 2019. Vehicle scheduling optimization considering the passenger waiting cost. J. Adv. Transp. 2019.
tatistics Norway, 2017. Emission factors used in the estimations of emissions from combustion. URL https://www.ssb.no/_attachment/291696/binary/95503?

_version=547186.
undvor, I., Thorne, R.J., Danebergs, J., Aarskog, F., Weber, C., 2021. Estimating the replacement potential of Norwegian high-speed passenger vessels with

zero-emission solutions. Transp. Res. D: Transp. Environ. 99, 103019.
he World Bank, 2014. Pricing carbon. URL https://www.worldbank.org/en/programs/pricing-carbon, (Accessed December 12th, 2021).
veter, E., Rødseth, K.L., Rødal, J.H., Hoff, K.L., Thune-Larsen, H., 2020. Forslag til nye kriterier for båter i inntektssystemet for fylkeskommunene (in Norwegian).

Report no. 2003, Møreforskning Molde, 2003.
illa, D., Montoya, A., Herrera, A.M., 2020. The electric riverboat charging station location problem. J. Adv. Transp. 2020.
angsness, Paal Brevik, Proost, Stef, Rødseth, Kenneth Løvold, 2020. Vehicle choices and urban transport externalities. Are Norwegian policy makers getting it

right? Transp. Res. D: Transp. Environ. 86, 102384.
ardman, M., 2001. A review of british evidence on time and service quality valuation. Transp. Res. E: Logist. Transp. Rev. 37, 107–128.
ardman, M., Phani, V., Chintakayala, K., de Jong, G., 2016. Values of travel time in Europe: Review and meta-analysis. Transp. Res. A: Policy Pract. 94,

93–111.
ild, Y., 2005. Determination of energy cost of electrical energy on board sea-going vessels. URL http://www.effship.com/PartnerArea/MiscPresentations/Dr_

Wild_Report.pdf.
hang, L., Zeng, Z., Gao, K., 2021. Optimal design of mixed charging station for electric transit with joint consideration of normal charging and fast charging.

Smart Innov. Syst. Technol. 231, 85–94.
23

http://refhub.elsevier.com/S1361-9209(22)00321-2/sb11
http://refhub.elsevier.com/S1361-9209(22)00321-2/sb11
http://refhub.elsevier.com/S1361-9209(22)00321-2/sb11
http://refhub.elsevier.com/S1361-9209(22)00321-2/sb12
http://refhub.elsevier.com/S1361-9209(22)00321-2/sb12
http://refhub.elsevier.com/S1361-9209(22)00321-2/sb12
https://www.iea.org/reports/greenhouse-gas-emissions-from-energy-overview
http://refhub.elsevier.com/S1361-9209(22)00321-2/sb14
http://refhub.elsevier.com/S1361-9209(22)00321-2/sb15
http://refhub.elsevier.com/S1361-9209(22)00321-2/sb16
http://refhub.elsevier.com/S1361-9209(22)00321-2/sb16
http://refhub.elsevier.com/S1361-9209(22)00321-2/sb16
http://refhub.elsevier.com/S1361-9209(22)00321-2/sb17
http://refhub.elsevier.com/S1361-9209(22)00321-2/sb18
http://refhub.elsevier.com/S1361-9209(22)00321-2/sb19
http://refhub.elsevier.com/S1361-9209(22)00321-2/sb19
http://refhub.elsevier.com/S1361-9209(22)00321-2/sb19
http://refhub.elsevier.com/S1361-9209(22)00321-2/sb20
http://refhub.elsevier.com/S1361-9209(22)00321-2/sb20
http://refhub.elsevier.com/S1361-9209(22)00321-2/sb20
https://www.rogfk.no/aktuelt/byggestart-for-verdens-forste-hurtigbat-med-nullutslipp.110237.aspx
https://www.rogfk.no/aktuelt/byggestart-for-verdens-forste-hurtigbat-med-nullutslipp.110237.aspx
https://www.rogfk.no/aktuelt/byggestart-for-verdens-forste-hurtigbat-med-nullutslipp.110237.aspx
http://refhub.elsevier.com/S1361-9209(22)00321-2/sb22
http://refhub.elsevier.com/S1361-9209(22)00321-2/sb22
http://refhub.elsevier.com/S1361-9209(22)00321-2/sb22
http://refhub.elsevier.com/S1361-9209(22)00321-2/sb23
http://refhub.elsevier.com/S1361-9209(22)00321-2/sb23
http://refhub.elsevier.com/S1361-9209(22)00321-2/sb23
http://refhub.elsevier.com/S1361-9209(22)00321-2/sb24
https://www.ssb.no/_attachment/291696/binary/95503?_version=547186
https://www.ssb.no/_attachment/291696/binary/95503?_version=547186
https://www.ssb.no/_attachment/291696/binary/95503?_version=547186
http://refhub.elsevier.com/S1361-9209(22)00321-2/sb26
http://refhub.elsevier.com/S1361-9209(22)00321-2/sb26
http://refhub.elsevier.com/S1361-9209(22)00321-2/sb26
https://www.worldbank.org/en/programs/pricing-carbon
http://refhub.elsevier.com/S1361-9209(22)00321-2/sb28
http://refhub.elsevier.com/S1361-9209(22)00321-2/sb28
http://refhub.elsevier.com/S1361-9209(22)00321-2/sb28
http://refhub.elsevier.com/S1361-9209(22)00321-2/sb29
http://refhub.elsevier.com/S1361-9209(22)00321-2/sb30
http://refhub.elsevier.com/S1361-9209(22)00321-2/sb30
http://refhub.elsevier.com/S1361-9209(22)00321-2/sb30
http://refhub.elsevier.com/S1361-9209(22)00321-2/sb31
http://refhub.elsevier.com/S1361-9209(22)00321-2/sb32
http://refhub.elsevier.com/S1361-9209(22)00321-2/sb32
http://refhub.elsevier.com/S1361-9209(22)00321-2/sb32
http://www.effship.com/PartnerArea/MiscPresentations/Dr_Wild_Report.pdf
http://www.effship.com/PartnerArea/MiscPresentations/Dr_Wild_Report.pdf
http://www.effship.com/PartnerArea/MiscPresentations/Dr_Wild_Report.pdf
http://refhub.elsevier.com/S1361-9209(22)00321-2/sb34
http://refhub.elsevier.com/S1361-9209(22)00321-2/sb34
http://refhub.elsevier.com/S1361-9209(22)00321-2/sb34

	Cost-effective planning and abatement costs of battery electric passenger vessel services 
	Introduction
	Background and Literature Review
	Optimal frequency of zero emission public transport
	Literature review

	Problem Description 
	Assumptions
	Problem definition
	Numerical Example

	Mathematical Formulations
	Modeling approach and assumptions
	Notation
	Zero emission vessel model
	Objective function
	Constraints related to strategic and tactical decisions
	Time constraints
	Battery constraints
	Passenger flow constraints
	Non-negativity, binary, and integer requirements


	Case Study
	Input data
	Vessel data
	Demand data
	Costs and other relevant data

	Test instances

	Computational Results
	Optimal results
	Analyses of the abatement costs and value of optimizing frequency and sailing speeds
	Impact of CO2tax
	Impact of passenger waiting cost

	Conclusions
	CRediT authorship contribution statement
	Acknowledgments
	Appendix A. Notation for the Zero Emission Model
	Appendix B. Linearizing the Non-Linear terms of the Zero Emission Model
	Appendix C. Conventional Vessel Model
	Additional notation
	Mathematical Model


	References


