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a b s t r a c t

Classification of long sequential data is an important Machine Learning task and appears in many appli-
cation scenarios. Recurrent Neural Networks, Transformers, and Convolutional Neural Networks are three
major techniques for learning from sequential data. Among these methods, Temporal Convolutional
Networks (TCNs) which are scalable to very long sequences have achieved remarkable progress in time
series regression. However, the performance of TCNs for sequence classification is not satisfactory
because they use a skewed connection protocol and output classes at the last position. Such asymmetry
restricts their performance for classification which depends on the whole sequence. In this work, we pro-
pose a symmetric multi-scale architecture called Circular Dilated Convolutional Neural Network (CDIL-
CNN), where every position has an equal chance to receive information from other positions at the pre-
vious layers. Our model gives classification logits in all positions, and we can apply a simple ensemble
learning to achieve a better decision. We have tested CDIL-CNN on various long sequential datasets.
The experimental results show that our method has superior performance over many state-of-the-art
approaches. The model and experiments are available at (https://github.com/LeiCheng-no/CDIL-CNN).

� 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Sequence classification is the task of predicting class labels for
sequences. It is of central importance in many applications, such
as document classification, genomic analysis, and health informat-
ics. For example, classifying documents into different topic cate-
gories is a challenge for library science, especially for modern
digital libraries [1]. Genomic classification help researchers to fur-
ther understand some diseases [2]. Classifying ECG time series tells
if someone is a healthy person or a patient with heart disease [3].

Machine Learning, especially Deep Learning, becomes widely
used in end-to-end sequence classification, where a single model
learns all steps between the initial inputs and the final outputs.
Recurrent Neural Networks (RNNs), Transformers, and Convolu-
tional Neural Networks (CNNs) are three primary techniques for
analyzing sequential data.

RNNs use their internal states to process the sequence step by
step. Despite success for short sequences, traditional RNNs cannot
scale to very long sequences [4]. One reason is that they are chal-
lenging to train due to exploding or vanishing gradient problems
[5]. In addition, the prediction of each timestep must wait for all
its predecessors to complete, which makes RNNs difficult to paral-
lelize. Transformers are a family of models relying on self-attention
mechanism [6,7]. They have quadratic time and memory complex-
ities to the input sequence length because they compute pairwise
dot-products. Comprehensive approximations are required to
reduce the cost [8].

In contrast, CNNs are able to handle very long sequences. A con-
volutional layer uses sparse connections and no recurrent nodes.
Therefore, CNNs are easier to train and parallelize. In addition,
dilated convolutions can exponentially enlarge the receptive fields,
allowing CNNs to use fewer layers to capture long-term dependen-
cies. For example, Temporal Convolutional Networks (TCNs)
recently provide remarkable performance on sequence regression
tasks [9]. However, the performance of TCNs for classification tasks
is not satisfactory. TCNs use causal convolutions which implement
a skewed connection protocol. The asymmetric design causes a
tendency to focus on the latter part of a sequence.

In this paper, we propose a novel convolutional architecture
named Circular Dilated Convolutional Neural Network (CDIL-
CNN), which can scale to very long sequences and have superior
performance on various classification tasks. Unlike TCNs, we use
symmetric convolutions to mix information, and thus every posi-
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tion can receive both earlier and later information from previous
layers in a circular manner. Unlike traditional pyramid-like CNN
architecture, every position of the last convolutional layer in our
design has an equal chance to receive all information from the
whole sequence and gives its classification logits. Then a simple
average ensemble learning helps our model achieve better
accuracy.

We have tested our model on extensive sequence classification
tasks, including synthetic data, images, texts, and audio series.
Experimental results show that CDIL-CNN outperforms several
state-of-the-art models. Our method can accurately and robustly
classify across tasks with both short-term and long-term depen-
dencies for very long sequences.

The remaining of the paper is organized as follows. We review
some popular models for sequential data and their limitations in
Section 2. In Section 3, we present our model, CDIL-CNN, including
its connection protocol and network architecture. Experimental
tasks and results are provided in Section 4, and we discover that
the simple convolutional network has superior performance over
other models in various scenarios. Finally, we conclude the paper
in Section 5.
1 We used K ¼ 3 in all our experiments.
2. Related Works

A sequence x of length N is a list of elements ½x1; x2; � � � ; xN�,
where xt 2 RDð1 6 t 6 NÞ is the D-dimensional element at the t-

th position. Given a training set fxðiÞ; yðiÞgIi¼1 with I sequences and
their class labels, sequence classification uses the training set to
fit a model f : RN�D # C, where C is the space of class labels. The
fitted model can then be used to classify newly coming sequences.

Many deep neural networks have been proposed for various
sequence classification tasks. RNNs, Transformers, and CNNs are
three significant branches for learning from sequential data.

RNNs read and process inputs sequentially. At each timestep, an
RNN takes the current sequence element and the hidden state as
the input and outputs the next hidden state. The hidden state at
a timestep is expected to act as the representation of all its earlier
inputs. Because the prediction of each timestep must wait for all its
predecessors to complete, the sequential process is difficult to par-
allelize, which makes RNNs hard to handle very long sequences.
Moreover, basic RNNs suffer from vanishing and exploding gradi-
ent problems, making model training very difficult for long
sequences [5]. Gated RNNs, such as Long Short-Term Memory
(LSTM) [10] and Gated Recurrent Unit (GRU) [11], have been pro-
posed to relieve the gradient problems. They have many additional
gates to regulate the flow of information. The gated RNNs are used
in many sequence classification tasks, such as ECG arrhythmia [12]
and text [13,14]. However, they can process only short sequences
(about 500–1000 timesteps) [4].

Transformers, a family of models based on attention mecha-
nism, quantify the interdependence within the sequence elements
(self-attention). Originally, attention was used in conjunction with
recurrent networks and convolutional networks [15,16]. Later,
Transformer, an architecture based solely on attention mechanism,
was proposed. The vanilla Transformer computes pairwise dot-
products between all sequence elements, which leads to a quadra-
tic complexity w.r.t. the sequence length and makes it infeasible to
process very long sequences. Approximated attention methods
have been proposed to tackle this problem. Sparse Transformer
[17], LogSparse Transformer [18], Longformer [19], and Big Bird
[20] use sparse attention mechanism. Linformer [21] and Synthe-
sizer [22] apply low-rank projection attention. Performer [23], Lin-
ear Transformer [24], and Random Feature Attention [25] rely on
kernel approximation. Reformer [26], Routing Transformer [27],
and Sinkhorn Transformer [28] follow the paradigm of re-
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arranging sequences. However, their approximation quality is
questionable. Later in Section 4, we will show that their perfor-
mance is inferior for long sequence classification.

CNNs are good at processing data that has a grid-like topology.
Two-dimensional CNNs achieve great success in computer vision
[29–32], while one-dimensional CNNs are commonly used for
sequential data [33–35]. Among these models, TCNs which use
causal convolutions with skewed connections attempt to capture
the temporal interactions and have been applied to various regres-
sion tasks, such as action segmentation and detection [36,37], lip-
reading [38,39], and ENSO prediction [40]. The comparison of the
convolutional and recurrent architectures shows that a simple
TCN outperforms canonical RNNs across a wide range of sequence
modeling tasks [9].

3. Circular Dilated CNN

Although TCN is suitable for long sequence regression, their
performance for classification is not satisfactory. In this paper,
we propose a new convolutional model, named CDIL-CNN, to over-
come the TCN drawbacks in long sequence classification. More
details are described as follows.

3.1. Symmetric Dilated Convolutions

Our model uses symmetric convolutions that can receive both
earlier and later information from previous layers. Because no
information is allowed to be leaked from future to past in regres-
sion tasks, TCN uses causal convolutions that implement a skewed
connection protocol, meaning that the output at timestep t can
only receive information of t and earlier from previous layers.
However, classification tasks do not have the restriction because
the classification result depends on the whole sequence. Therefore,
symmetric convolutions help our model better capture
interactions.

Our model also uses increasing dilation sizes with the depth of
the network. Dilated convolutions (or atrous convolutions) were
originally introduced for dense image prediction, where they
helped the model to capture multi-scale information [41–45]. For
1D CNNs, dilated convolutions are generally used to enlarge the
receptive fields [33,34,37,9]. Following these works, we increase

the dilation sizes exponentially, i.e., dl ¼ 2l�1 where dl is the dila-
tion size at the l-th convolutional layer. The combination of deep
networks and exponentially dilated convolutions enables the
receptive fields to expand quickly, which makes our model scalable
to very long sequences. Our model needs dlog2

N
2e or Oðlog2NÞ layers

to achieve full receptive fields for sequence length N.
To avoid notional clutter, we start from the D ¼ 1 case. Let

½a1; a2; � � � ; aN� denotes an 1-dimensional input sequence of the l-
th convolutional layer. The convolutional output bt at the t-th

(1 6 t 6 N) position is computed by bt ¼
PK�1

k¼0w
ðlÞ
k � atþ k�K�1

2ð Þ�dl ,
where the kernel size K is usually an odd number1 and wðlÞ are
the convolution coefficients of the l-th layer. See Fig. 1 for an illustra-
tion of a 3-layer symmetric dilated convolutions with K ¼ 3. It is
straightforward to extend the convolution with the bias term and
for the D > 1 cases.

3.2. Circular Mixing

In traditional CNNs, zero-padding is often used for the boundary
positions where the subscripts of their convoluted input positions

t þ ðk� Kl�1
2 Þ � dl

h i
are smaller than 1 or larger than N. However, this



Fig. 1. Illustration of symmetric dilated convolutions. Blue nodes represent the sequence elements. Each layer keeps the same length as the input sequence. Symmetric
convolutions of kernel size 3 are used in all layers. Dilation sizes are increased exponentially.
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can cause boundary effect because signals near the boundaries
have to be mixed up with zeros and thus have less chance to be for-
warded. The boundary effect creates blind spots and makes CNNs
sensitive to absolute positions [46,47]. For example, CNNs with
zero-padding can fail to capture the useful patterns if translation
exists in the test data but not in the training data (see Section 4.4).

We use a circular protocol because its corresponding circular
padding can relieve the boundary effect [46,47]. In our model, a
signal on one end is no longer convoluted with zeros but with sig-
nals from the other end. Circular padding makes our model more
robust to data shift and less sensitive to absolute position informa-
tion. The circular dilated convolutions are shown in Fig. 2. The con-
volutional output bt becomes

bt ¼
XK�1

k¼0

wðlÞ
k � a tþ k�K�1

2ð Þ�dl½ �modN ð1Þ

Using circular dilated convolutions, our model can connect
boundary positions and learn long-term dependencies even in
the first layer, unlike lower layers of traditional CNNs which only
focus on local information. In our design, every position of the last
convolutional layer has an equal chance to receive all information
of the whole input sequence. Therefore, our model can apply a sim-
ple average ensemble learning as below.
3.3. Ensemble Learning

We use a simple average ensemble learning to achieve better
performance. RNNs and TCN assume that the last position contains
all information of the whole sequence and the class decision
depends only on the last position. In our model, every position of
Fig. 2. Illustrations of circular mixing. (a), (b), and (c) are the first, second, and third co
other end.
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the last convolutional layer can receive all information of the
whole sequence. A linear module RC # C, where C is the number
of convolution channels, is applied on each convolutional output
position, and each position gives its preliminary class logits. Then
a simple average pooling as ensemble learning aggregates the indi-
vidual logits. In the implementation, we can perform the average
first to speed up the network because the linear module and the
average pooling are exchangeable.

Our model also uses residual connections to facilitate the train-
ing and to improve the accuracy [48,49]. A residual block contains
a skip connection where the inputs are added before the block out-
puts. A schematic view of our model is depicted in Fig. 3.
4. Experiments

We have compared our model with many popular models:
Transformer [7], Linformer [21], Performer [23], LSTM [10], GRU
[11], TCN [9]. We have also included deformable convolutional net-
works (Deformable) that learn the adaptive receptive field using
additional offsets [50] and convolutional neural networks (CNN)
with dilation 1. We used stride 1 in CNN and left out the pooling
layers to ablate the effect of dilations in CDIL-CNN. In the supple-
mental document (Section 4), we also compared CDIL-CNN with
ResNet18, a popular convolutional architecture with striding and
pooling.

The compared models are tested on various long sequential
datasets in three groups of experiments. First, we used a synthetic
dataset with increasing sequence lengths to show the scalability of
our model. Then, we tested our model on the Long Range Arena
(LRA) benchmark suite which contains different dependencies.
Finally, we tried three time series classification datasets that con-
nvolutional layer, respectively. Red nodes represent convoluted positions from the



Fig. 3. Our neural network architecture for sequence classification. The model
comprises L blocks of CDIL-CNN and an average ensemble learning. Each block
outputs the same length as the input sequence. After the convolutions and the
linear transformation, each position gives its prediction logits, and the average
ensemble learning aggregates the logits.
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tain important local information and much noise. We used
PyTorch2 to implement our method. All experiments were run on
a Linux server with one NVIDIA-Tesla V100 GPU with 32 GB of mem-
ory. More details are given in the supplemental document.
4.1. Synthetic Task: XOR Problem

The XOR problem is a classical classification problem in artifi-
cial neural network research which cannot be solved by a single
perceptron [51,52]. We created more challenging XOR tasks with
increasing sequence lengths. For each length N, a sequence consists
of N pairs of numbers, where the first number, called value, is ran-
domly chosen from the interval ½0;1Þ, and the second number is
used as a marker. Most markers are 0 except two 1’s at randomly
selected positions. Let X1 and X2 denote the two values at the 1-
marked positions. A sequence belongs to Class 0 if the values
belong to the same half interval, i.e., ðX1 < 0:5 and X2 < 0:5Þ or
ðX1 P 0:5 and X2 P 0:5Þ. Otherwise, the sequence is labeled as
Class 1. Fig. 4 shows four examples of the XOR problem. We have
used N ¼ 2n, where n ¼ 4; . . . ;11. A larger N corresponds to a more
challenging task. For each N, training, validation, and testing sets
respectively have 10000 labeled sequences.
2 https://pytorch.org/
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We have compared our model with several popular approaches
(including RNNs, Transformers, and CNNs). All convolutional
networks use the n� 1 layers and 32 channels for a fair
comparison.

The results are shown in Fig. 5. Our model performs accurately
for all sequence lengths, where CDIL-CNN achieves less than 1%
error rate even when N ¼ 211. Transformer and its variants, RNNs,
and Deformable achieve comparable error rates for short
sequences. However, they turn inaccurate (� 50% accuracy) when
the sequences become longer than N ¼ 128. TCN and CNN perform
even worse, where they respectively have 50% and 20% errors
when N ¼ 32. The results indicate that CDIL-CNN is more scalable
than the other compared methods.
4.2. Long Range Arena Benchmark

Long Range Arena is a public benchmark suite for evaluating
model quality in long-context scenarios [53]. The suite consists
of different data types, such as images and texts. Many Transform-
ers have been evaluated on the suite [25,53–55]. We compared our
CDIL-CNN with other models on the following datasets:

� Image. This is a 10-class image classification task. The images
come from the gray-scale version of CIFAR-10 [56], where pixel
intensities (0–255) are treated as categorical values. Two exam-
ple images and their labels are shown in Fig. 6. Every image is
flattened to a sequence of length N ¼ 1024. The task requires
the model to learn the 2D spatial relations while using the 1D
sequences.

� Pathfinder. This is a synthetic image task motivated by cogni-
tive psychology [57,58]. The task requires the model to make
a binary decision whether two highlighted points are connected
by a dashed path. Two example images and their labels are
shown in Fig. 6. Similar to the Image task, every pathfinder
image is flattened to a sequence of length N ¼ 1024 with an
alphabet size of 256.

� Text. This is a binary sentiment classification task of predicting
whether an IMDb movie review is positive or negative [59]. The
task considers the character-level sequences which generate
longer inputs and make the task more challenging. We use a
fixed length N ¼ 4000 for every sequence, which is truncated
or padded when necessary.

� Retrieval. This is a character-level task with the ACL Anthology
Network dataset [60]. The task requires the model to process a
pair of documents and determine whether they have a common
citation. Like the Text task, every document is truncated or
padded to the sequence length of 4000, making the total length
N ¼ 8000 for the pair.

For a fair comparison, we followed the same data preprocessing
and training/validation/testing splitting in [53]. We quoted the
results of Transformer and its variants from the literature and
ran RNNs and CNNs for completeness. We used one layer with a
hidden size of 128 for RNNs and 64 channels for CNNs. All experi-
ments were run five times with different random seeds, where
means and standard deviations are reported in Table 1. We have
used paired t-test at the significance level of 0.05 to verify whether
CDIL-CNN is significantly different from RNNs or other CNNs.

Our model achieves the best mean accuracies in all tasks and is
significantly better than RNNs and other CNNs in 17 out of 20 com-
parisons. The significant wins over all other methods hold for the
Image and Pathfinder tasks. Especially for the Image task, CDIL-
CNN achieves substantially higher mean accuracies (20.25% better
than the best transformer variant, 20.09% better than the best RNN,
25.87% better than other CNNs). Deformable and CNN get compa-



Fig. 5. Error rate for the XOR problem with increasing sequence lengths.

Fig. 4. Examples of the XOR problem.

Fig. 6. Examples of Image (left two) and Pathfinder (right two).
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rable accuracies with CDIL-CNN for Text and Retrieval, probably
because the two tasks mainly rely on local patterns.

4.3. Time Series

The UEA & UCR Repository3 consists of various time series clas-
sification datasets [61]. Many time series classification problems can
3 http://www.timeseriesclassification.com/
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be solved by detecting local patterns [62–64]. These tasks require
the model to pick out important local information from long
sequences which contain much noise. We compared our CDIL-CNN
with other popular models on three audio datasets:

� FruitFlies. The dataset comes from the same optical sensor
which recorded the change in amplitude of an infra-red light
as it was occluded by the wings of fruit flies during flight. The
dataset contains 17259 training and 17259 testing sequences



Table 1
Classification accuracy (%) of different models on LRA tasks. N is the sequence length. The dash means the result is absent in the reference paper. Means and standard deviations
are computed across 5 runs. � denotes significant difference, and � denotes insignificance.

Model Image Pathfinder Text Retrieval
N=1024 N=1024 N ¼ 4000 N ¼ 8000

Transformer [53] 42.44 71.40 64.27 57.46
Transformer [55] 38.20 74.16 65.02 79.35
Transformer [54] - - 65.35 82.30
Local Attention [53] 41.46 66.63 52.98 53.39
Sparse Transformer [53] 44.24 71.71 63.58 59.59
Longformer [53] 42.22 69.71 62.85 56.89
Linformer [53] 38.56 76.34 53.94 52.27
Linformer [55] 37.84 67.60 55.91 79.37
Linformer [54] - - 56.12 79.37
Reformer [53] 38.07 68.50 56.10 53.40
Reformer [55] 43.29 69.36 64.88 78.64
Reformer [54] - - 64.88 78.64
Sinkhorn Transformer [53] 41.23 67.45 61.20 53.83
Synthesizer [53] 41.61 69.45 61.68 54.67
BigBird [53] 40.83 74.87 64.02 59.29
Linear Transformer [53] 42.34 75.30 65.90 53.09
Performer [53] 42.77 77.05 65.40 53.82
Performer [55] 37.07 69.87 63.81 78.62
Performer [54] - - 65.21 81.70
Nyströmformer [55] 41.58 70.94 65.52 79.56
Nyströmformer [54] - - 65.75 81.29
RFA-Gaussian [25] - - 66.0 56.1
Transformer-LS [54] - - 68.40 81.95
LSTM 32:99	 5:46� 61:26	 12:14� 85:80	 0:31� 77:18	 0:23�
GRU 44:40	 1:12� 85:45	 0:16� 86:70	 0:21� 77:08	 0:26�
TCN 38:62	 0:41� 85:48	 0:46� 60:54	 0:44� 76:85	 0:08�
Deformable 36:57	 3:03� 56:14	 0:48� 86:91	 0:22� 83:69	 0:97�
CNN 35:85	 0:62� 55:95	 0:06� 87:29	 0:13� 83:33	 1:59�
CDIL-CNN 64:49	 0:61 91:00	 0:37 87:61	 0:33 84:27	 0:76

Table 2
Classification accuracy (%) of different models on time series datasets. N is the
sequence length. A DCNN run cannot finish in two days for the MosquitoSound
dataset. Means and standard deviations are computed across 5 runs. All observed
differences are statistically significant according to paired t-test at the significance
level (p-value) of 0.05.

Model FruitFlies RightWhaleCalls MosquitoSound
N ¼ 5000 N ¼ 4000 N ¼ 3750

Transformer 55:26	 1:47 71:84	 0:65 32:92	 0:69
Linformer 81:80	 1:61 71:17	 0:84 60:44	 0:70
Performer 86:57	 0:98 73:57	 0:44 68:34	 0:88
LSTM 56:61	 2:50 61:39	 6:61 32:40	 1:10
GRU 61:47	 12:35 63:18	 8:54 42:44	 5:66
TCN 91:65	 0:74 86:92	 0:38 85:99	 0:28
Deformable 92:68	 1:70 82:70	 1:24 88:92	 0:43
DCNN 86:15	 4:27 69:98	 1:58 -
CNN 95:30	 0:27 78:34	 1:05 89:72	 0:12
CDIL-CNN 97:09	 0:08 91:99	 0:16 91:54	 0:22
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of length N ¼ 5000. The task requires the model to classify a
sequence as one of three species of the fruit fly.

� RightWhaleCalls. Right whale calls are difficult to hear due to
some low-frequency anthropogenic sounds. Up-calls are the
most commonly documented right whale vocalization. The task
requires the model to decide whether a sequence contains a set
of right whale up-calls or not. The training and testing sizes of
this dataset are 10934 and 1962, respectively. All sequences
have a fixed length N ¼ 4000.

� MosquitoSound. The dataset represents the wing beat of the
flying mosquito. Both training and testing sets have 139883
instances with sequence length N ¼ 3750. The task requires
the model to classify each sequence into one of six species.

We split every original training set into training (70%) and val-
idation (30%) parts, and used the original testing set for testing.

We have compared our model with Transfomer, its two popular
variants, RNNs, and CNNs. We also included dynamic convolutional
neural networks (DCNNs) [65,66], because it combines CNN and
dynamic time warping, a widely used component in many time
series classifiers. We used 32 channels for every convolutional
layer. The classification results are shown in Table 2.

Our model significantly wins all three tasks with mean accura-
cies of 97.09%, 91.99%, and 91.54%, respectively. Transformers and
RNNs struggle in the time series classification tasks. We found that
convolutional networks perform better, probably because local sig-
nals are more important in these tasks. However, other CNNs are
still inferior to our model.

4.4. Ablation Study: dilated convolutions and circular mixing

Compared with conventional CNN, the proposed CDIL-CNN has
two major contributed components: dilated convolutions and cir-
cular mixing (padding). In this section we performed an ablation
study to verify that both components are conducive to accurate
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and robust classifications. For this goal, we include a middle
method called DIL that contains only the dilated convolution com-
ponent but zero-padding. We then compare DIL with conventional
CNN and CDIL-CNN.

For comparison, we first designed a more challenging XOR
problem, where N ¼ 211 and the test data can have the same posi-
tion distribution as the training/validation data (Similar Test) or a
different distribution (Dissimilar Test). See Fig. 7 for illustration. In
training/validation datasets, the two marked values appear in the
first half for Class 0 and in the second half for Class 1. The test data
follows the same pattern in the Similar Test, while the halves flip in
the Dissimilar Test. The data shift brings an extra challenge, where
a non-robust model can wrongly classify the sequences by the
absolute positions of the markers instead of the required XOR pat-
tern from marked values.

The results are shown in Table 3. The CNN predictions are as
bad as random guessing on both test sets, probably because it can-



Fig. 7. Position distribution of Similar Test and Dissimilar Test. Similar Test has the same position distribution as the training and validation datasets. Dissimilar Test flips the
position distribution.

Table 3
Classification accuracy (%) of Similar Test and Dissimilar Test. Means and standard
deviations are computed across 5 runs.

Model Similar Test Dissimilar Test

CNN 50:79	 0:57 50:46	 0:54
DIL 99:99	 0:01 0:81	 0:42
CDIL-CNN 99:18	 0:22 98:91	 0:37

Table 4
Classification accuracy (%) of noisy RightWhaleCalls. Means and standard deviations
are computed across 5 runs.

Model Similar Test Dissimilar Test

CNN 78:20	 0:65 78:12	 0:97
DIL 91:20	 0:26 50:33	 3:87
CDIL-CNN 91:33	 0:33 91:39	 0:37
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not capture the long-range interaction between the marked posi-
tions. DIL, equipped with dilated convolutions, clearly improves
the performance in Similar Test. However, DIL performs poorly
on Dissimilar Test, which indicates that DIL overfits to training data
and does not classify sequences by the required XOR pattern. CDIL-
CNN differs from DIL by using circular padding instead of zero-
padding. This change doesn’t affect prediction performance in Sim-
ilar Test, while achieves nearly perfect predictions in Dissimilar
Test. The winning of CDIL-CNN shows that both dilated convolu-
tions and circular padding are needed for robust classification.

We also created a noisy time series classification task using
RightWhaleCalls, where the test data can have the same data shift
as the training/validation data (Similar Test) or different shift (Dis-
similar Test). We added the Gaussian noise of length 2000 at the
end of every sequence in the training/validation set. The test set
in Similar Test follows the same preprocessing, while in Dissimilar
Test, the Gaussian noise part is inserted in front of each original
test sequence. The mean and standard deviation of Gaussian noise
equal those of the original sequence. Fig. 8 shows examples of
noisy RightWhaleCalls.

The results are reported in Table 4, which leads to similar con-
clusions in the XOR problem. CNN gives mediocre accuracies in
both Similar Test and Dissimilar Test. Dilated convolutions endow
DIL better performance in Similar Test than CNN. However, zero-
padding makes DIL sensitive to the data shift and degrades its per-
formance close to random guessing in Dissimilar Test. Equipped
with both dilated convolutions and circular padding, CDIL-CNN
can robustly and accurately classify (higher than 91% accuracy)
the time series in both cases.

Next, we visualized an input sequence of the XOR problem and
its output features of CNN, DIL, and CDIL-CNN in Fig. 9. The visual-
ization helps us understand the difference among the methods in
terms of receptive field and boundary effect. In conventional
CNN, the important information is present locally even in the last
Fig. 8. Examples of noisy RightWhaleCalls. Blue is the
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layer, which can lead to a wrong prediction if the two markers
are distant. In contrast, the receptive field in DIL and CDIL-CNN is
much wider because they use dilated convolutions. It is known
that zero-padding can cause boundary artifacts [46,47]. As we
can see, here DIL has such artifacts in the left-most part of its visu-
alization. Consequently, DIL probably misses the left marked value
and thus gives wrong classification. In comparison, CDIL-CNN with
circular padding leads to more even output features across col-
umns and does not suffer from boundary artifacts.

In summary, both dilated convolutions and circular padding are
useful for robust and accurate classification. With the two compo-
nents, CDIL-CNN well mixes the signals from the input sequence to
every output position. As a result, the subsequent averaging and
linear classifier provide a good ensemble and do not lessen the
contributions of the important information.

4.5. Ablation Study: receptive fields and ensemble learning

Here we perform extra analysis on the relation between two
contributed components: 1) dilated convolutions that lead to full
receptive fields and 2) ensemble learning that aggregates logits
from all positions. We chose the Image task to verify their contri-
butions to the performance improvement.

First, we study the effect of different ensemble sizes. We picked
M positions, where M ¼ 1;21;41; . . . ;1021;1024 and averaged
their outputs to make the classification decision. The mean accu-
racy for eachM over five runs is reported in Fig. 10. We can see that
a larger ensemble size usually leads to a better accuracy.

Second, we find that both full receptive fields and ensemble
learning are needed for better performance. We recapitulate the
comparison among CNN, TCN, and CDIL-CNN. Similar to CDIL-
CNN, the CNN method also averages the outputs from all positions,
but it has only local receptive fields because it uses dilation size 1.
TCN applies dilated convolutions to achieve full receptive fields,
original sequence, and red is the additional noise.



Fig. 9. Normalized matrix plots of an example input sequence and its outputs by the last layer of CNN, DIL, and CDIL-CNN. Darker colors indicate larger values.

Table 6
Computational cost of three convolutional neural networks.

Model CNN TCN CDIL-CNN

FLOPs (M) 113.247 503.219 113.247
Time (s) 2.49 3.61 2.80
Memory (MB) 0.496 0.496 0.496

L. Cheng, R. Khalitov, T. Yu et al. Neurocomputing 518 (2023) 50–59
while the classification result comes only from the last position
without ensemble learning. From Table 5, we can see that using
only full receptive fields or ensemble learning leads to mediocre
accuracies. In contrast, CDIL-CNN, equipped with both compo-
nents, has a substantially better accuracy.

Finally, we compare the computational cost of CDIL-CNN with
previous convolutional networks CNN and TCN in the inference
Fig. 10. Accuracy for the Image task with increasing ensemble size.

Table 5
Ablation study on full receptive fields and ensemble learning for the Image task.

Model CNN TCN CDIL-CNN

Full receptive fields � U U

Ensemble learning U � U

Accuracy 35.85% 38.62% 64.49%
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stage. All models have the same size (128.78 K parameters) for a
fair comparison. We recorded their inference time for the test data-
set in terms of FLOPs and seconds. For space cost, we measured
their GPU memory consumption in MB. The results are shown in
Table 6. We can see that CDIL-CNN has the same FLOPs as CNN
and is just slightly slower than CNN due to the circular padding.
TCN has much higher FLOPs and requires more computational
time, probably because PyTorch does not provide causal padding.
Consequently, TCN has to use longer padding and cut off the redun-
dant right side, which is more expensive. For space cost, all com-
pared models used the same amount of GPU memory because
they used the same kernel size, the number of layers and convolu-
tion channels. In conclusion, using full receptive fields and ensem-
ble learning does not cause much extra computational cost
compared to conventional convolution networks.

5. Conclusions

We have proposed a novel convolutional model named Circular
Dilated Convolutional Neural Network (CDIL-CNN) for sequence
classification. Based on the characteristic of very long sequential
data, we have used a design that consists of multiple symmetric
and circular convolutions with exponential dilation sizes. There-
fore, our model can remove boundary effect and enlarge the recep-
tive fields quickly. In this way, every position of the last
convolutional layer has an equal chance to receive all information
of the whole input sequence. Finally, a simple average ensemble
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learning is applied to improve the accuracy. Experimental results
show that our model has superior performance over all other mod-
els on various long sequential datasets.

In the future, we could apply our model to other types of long
sequences, for example genome data that are known to have many
long-range interactions among the sequence elements. Our model
could also be used as the backbone for large-scale self-supervised
pretraining (e.g., infer the masked elements from the non-
masked) and then applied to few-shot or zero-shot learning, where
only a few supervised labels are required in training.
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