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ABSTRACT

Control barrier functions (CBFs) is a novel feedback con-
trol strategy for enforcing safety constraints of mechanical sys-
tems. An appealing feature of the CBF method is that the safety
objective is defined and enforced independent of the underly-
ing control objective. This enables the merging of CBF-based
control with any existing nominal control strategy, by imposing
the safety objective as input constraints in a convex optimization
problem. CBFs are gaining popularity in the robotics commu-
nity, in particular for motion control of autonomous vehicles. Yet,
limited use of CBFs for mechanical devices such as wave energy
converters (WECs) are reported in literature. This paper mo-
tivates the use of CBF-based control for constraint satisfaction
of WECs, using the Bolt Lifesaver point absorber WEC devel-
oped by Fred. Olsen Ltd. as a case study. During initial sea
trials of Bolt Lifesaver, large force oscillations were observed in
the power take-off unit. The source of oscillations was identi-
fied as sudden saturation of the actuator force provided by the
generator. Mitigating the undesired response using conventional
feedback control is non-trivial, since any such control strategy
will attempt to cancel inertia forces, resulting in a reduced sta-
bility margin of the system. Using higher order CBF theory, we
design a robust controller that ensures safe operation of the de-
vice, while minimally interfering with the existing control law
optimized for power output. The theoretical results are verified
by numerical simulations.

FIGURE 1. Bolt Lifesaver pictured outside Falmouth Bay, England,
where she was deployed in 2012. Courtesy Fred. Olsen Ltd.

INTRODUCTION
The control problem for a wave energy converter (WEC) is

to maximize power production while maintaining structural in-
tegrity of the device [1]. Designing a controller with satisfactory
performance in both regards is often challenging. Of the more
popular solutions to the WEC control problem in recent years is
model predictive control (MPC) and MPC-like algorithms [2], as
evidenced by the contributions to the wave energy converter con-
trol competition [3]. An advantage of MPC-type controllers is
the ability to handle safety constraints, such as force or displace-
ment limitations. The disadvantage of MPC lies in the complex-
ity of the control system, and in general the non-convexity of the
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numerical optimization problem [1]. For this reason, feedback
controllers also remain popular, although they struggle with hard
safety constraints [1].

Control barrier functions (CBFs) [4] is a novel feedback
control strategy that is gaining popularity in the robotics commu-
nity, with successful application to areas such as obstacle avoid-
ance of autonomous vehicles [5–10], adaptive cruise control and
lane keeping [11], robotic grasping [12], and bipedal walking
robots [13–15]. Yet, limited use of CBFs applied to mechanical
devices such as WECS are reported in literature. An appealing
feature of the CBF method is that the safety objective is defined
and enforced independent of the underlying control objective. To
be precise, the CBF design requires no knowledge of the underly-
ing control objective. CBFs are used to define a state-dependent
set of admissible control inputs that maintains the system in a
safe state. The admissible input set may then be posed as input
constraints in a convex optimization problem that finds a safe in-
put that minimally interferes with the nominal control objective.
The resulting optimization problem has equally many decision
variables as control inputs, which for most applications means
it can be solved in real-time. Moreover, in the case of a sin-
gle safety constraint, the optimization problem admits a closed-
formed solution, avoiding the need for numerical optimization
altogether. Since the admissible input set is a function of the cur-
rent system states, as opposed to predicted future system states,
CBFs may be used to solve both the safety objective and nominal
objective using only feedback control, unless the two objectives
are directly in conflict - in which case the safety objective takes
presedence.

In this paper, we propose a CBF-based controller that miti-
gates force oscillations in the Bolt Lifesaver WEC developed by
Fred. Olsen Ltd. (see [17] and references therein), depicted in
Figure 1. A conceptual sketch of the device is shown in Fig-
ure 2. The device consists of a heaving body (referred to as
floater) and a power take-off (PTO) unit. The PTO unit con-
sists of a taut mooring line mounted on a drum, connected to a
generator through a gearbox. Bolt Lifesaver has undergone pre-
commercial sea trials outside Falmouth Bay, England, before re-
location to Hawaii. During the sea trials, large force oscillations
were observed in the mooring line, see Figure 3. The source
of oscillations was identified as transient inertia loads in the PTO
unit due to sudden saturation of the actuator force provided by the
generator. Various control strategies to mitigate the undesired re-
sponse were explored in [16]. Mitigating the undesired response
using conventional feedback control is non-trivial, since any such
control strategy will attempt to cancel inertia forces, resulting in
a reduced stability margin of the system [16]. Using higher order
CBF theory, we design a robust controller that ensures safe oper-
ation of the device, while minimally interfering with the nominal
control law.

FIGURE 2. Illustration of the Bolt WEC concept. The winch line is
in this paper referred to as mooring line. Courtesy Fred. Olsen Ltd.

FIGURE 3. Characteristic force oscillations recorded during testing
in rough sea [16]. Fmooring is the tension in the mooring line, while Fgen

is the actuator force provided by the generator.

Notation and preliminaries. R is the set of real num-
bers and Rn is the n-dimensional Euclidean space. The Lie
derivative of a scalar function B : Rn → R along a vector field
f : Rn → Rn is denoted L f B(x) := ∇B(x)⊤ f (x), where ∇ is the
gradient operator. F : Rn ⇒ Rm denotes that F is a set-valued
mapping from Rn to Rm. The time derivative of x is denoted ẋ.

Definition 1. A continuous function α : R → R is an extended
class−K function if it is strictly increasing and α(0) = 0.
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CONTROL BARRIER FUNCTIONS
CBFs ensure safety for affine control systems of the form

ẋ = f (x)+g(x)u, (1)

with state x ∈ Rn and input u ∈ Rm. Let B1 : Rn → R be a con-
tinuously differentiable function that defines a safe set

K1 := {x ∈ Rn : B1(x)≤ 0}. (2)

The evolution of B1 along the solutions of system (1) is given by

Ḃ1 = ∇B1(x)⊤ẋ = L f B1(x)+LgB1(x)u, (3)

where L f B1 and LgB1 are the Lie derivatives of B1 along f and
g, respectively. The key idea behind CBFs is to control the evo-
lution of B1 to maintain the system states inside the set K1. If
LgB1(x) ̸= 0, this is achieved by selecting u such that

L f B1(x)+LgB1(x)u ≤−α1(B1(x)), (4)

where α1 : R → R is an extended class-K function. Observe
that when the inequality (4) is satisfied, Ḃ1 must be negative if
B1(x)> 0, while Ḃ1 may be positive if B1(x)< 0.

If LgB1(x) = 0, that is, if the control input does not appear
in the first derivative of B1, the safety constraint may be enforced
by using higher order CBFs (HOCBFs) [18]. B1 is an HOCBF
candidate of order r if

LgLr−i
f B1(x) = 0, ∀x ∈ Rn, ∀i ≥ 2, (5)

LgLr−1
f B1(x) ̸= 0, for some x ∈ Rn. (6)

Given an HOCBF candidate of order r, we recursively define a
series of functions Bi : Rn → R, for i ∈ {2, ...,r}, as

Bi(x) :=L f Bi−1(x)+αi−1(Bi−1(x)), (7)

where αi−1 : R → R are sufficiently differentiable extended
class−K functions. Define the sets

Ki := {x ∈ Rn : Bi(x)≤ 0}, K :=
r⋂

i=1

Ki. (8)

Definition 2 (Adapted from [10, Definition 7]). Let B1 be an
HOCBF candidate of order r that defines the set K1 in (2). Let
Bi, for i ∈ {2, ...,r} be defined in (7), and let K be defined in (8).
B1 is an HOCBF of order r if there exists an extended class−K
function αr and an open set U containing K such that

inf
u∈U

[
L f Br(x)+LgBr(x)u

]
≤−αr(Br(x)), ∀x ∈ U . (9)

Admissible input set
Br and αr define an admissible input set UB : Rn ⇒ Rm,

UB(x) := {u∈Rm : L f Br(x)+LgBr(x)u≤−αr(Br(x))}. (10)

For each x, UB(x) is the set of control inputs such that Ḃr ≤
−αr(Br(x)) is satisfied. Definition 2 above states that B1 is an
HOCBF if UB(x) is nonempty for all x on a neighborhood of
the intersection K = K1 ∩ ·· · ∩Kr. Roughly speaking, a set K is
forward invariant if all solutions starting in K remain in K for
all future time. For any u ∈ UB(x), Br is non-increasing on the
boundary of Kr and strictly decreasing outside Kr, which implies
forward invariance and local attractivity of Kr. Since

Ḃr−1 = L f Br−1(x) =−αr−1(Br−1(x))+Br(x), (11)

and x ∈ Kr =⇒ Br(x) ≤ 0, solutions cannot leave Kr−1 while
inside the set Kr. Recursively applying similar arguments, we
arrive at the conclusion that any input u ∈ UB(x) renders the in-
tersection K forward invariant. Since K ⊂ K1, solutions starting
in K will then remain in the safe set K1 defined by B1.

Theorem 1 (Adapted from [10, Theorem 8]). If B1 is an HOCBF
for system (1), then K is forward invariant for the system

ẋ ∈ { f (x)+g(x)u : u ∈UB(x)}. (12)

Proof. See [10, Theorem 8]. □

CBFs are robust towards bounded disturbances, in the sense
that solutions of the disturbed system

ẋ ∈ { f (x)+g(x)u+w : u ∈UB(x)}, (13)

starting in K, remain close to K, for sufficiently small distur-
bances w. This result was shown in [19], in the context of first
order CBFs, while the extension to HOCBFs follows from the
results of [20].

Safety-critical controller
A CBF may be combined with any nominal control κ :Rn →

Rm, by solving an optimization problem [11],

κB(x) := arg min
u∈UB(x)

[u−κ(x)]⊤P[u−κ(x)], (14)

where P ∈ Rm×m is a diagonal positive definite matrix. In the
case of multiple safety-constraints enforced by individual CBFs,
e.g. both upper and lower bounds on allowed displacements, UB
becomes the intersection of the admissible input sets defined by
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the respective associated CBFs. For a single safety constraint,
and assuming LgB1(x) ̸= 0,∀x ∈ Rn, the control law (14) admits
a closed-form solution given by [10]

κB(x) =

{
κ(x), κ(x) ∈UB(x)

κ(x)− a(x)b(x)⊤

b(x)b(x)⊤
κ(x) /∈UB(x)

a(x) :=L f B(x)+LgB(x)κ(x)+α(B(x)),

b(x) :=LgB(x)P−0.5.

(15)

k2

x2

u

m2

m1

k1

x1

FIGURE 4. Illustration of control design model of Bolt Lifesaver.

CONTROL SYSTEM DESIGN FOR BOLT WEC
In this section, we design a safety-critical controller for Bolt

Lifesaver. To this end, we require a reduced order model of low
complexity, that qualitatively captures the WEC dynamics. In-
evitably, there will be significant modeling error. From a control
systems perspective, the modeling error is viewed as unknown
disturbances, and we rely on the robustness properties of CBFs
for disturbance rejection. We make use of the two degree of free-
dom control design model (CDM) proposed in [16], illustrated
in Figure 4. Let x1 denote the heave displacement of the floater,
defined positive upwards. The heave dynamics are modeled by

m1ẍ1 +d1ẋ1 + k1x1 = Fw −Fm, (16)

where m1 > 0 is the total inertia (including hydrodynamic added
mass), d1 > 0 is a linearized damping coefficient, while k1 is the
hydrostatic stiffness. The wave force Fw is defined positive up-
wards, while the mooring line force Fm is defined positive under

tension. Define x2 := L−L0, where L is the unstretched moor-
ing line length and L0 is the distance from drum to anchor point
when x1 = 0. Neglecting line dynamics, the mooring line force
becomes

Fm =

{
k2(x1 − x2) x1 ≥ x2

0 x1 ≤ x2
, (17)

where k2 is the axial stiffness under tension, assumed constant.
The dynamic relation between mooring force and generator force
Fg is given by

m2ẍ2 +d2ẋ2 = Fm −Fg, (18)

where m2 > 0 is the combined inertia of the drum and gearbox in
the linear coordinate system, and d2 > 0 is an equivalent friction
coefficient. Defining x3 := ẋ1 and x4 := ẋ2, we obtain the system

ẋ = f (x)+g(x)u+h(x)w, (19)

with control input u := Fg, disturbance w := Fw, and

f (x) :=


x3

x4

(−d1x3 − k1x1 − k2(x1 − x2))/m1

(−d2x4 + k2(x1 − x2))/m2

 ,

g(x) :=


0
0
0

1/m2

 , h(x) :=


0
0

1/m1

0

 .

(20)

Note that the system (19), with f , g and h defined in (20), can
be stated as a linear time-invariant system ẋ = Ax + Bu+ Ew.
System (19) is valid for positive mooring forces. Representative
parameters for Bolt Lifesaver are given in Table 1. The CDM ad-
mits two coupled eigenmodes with undamped periods Tn1 = 2.7s
and Tn2 = 0.48s. The force oscillations observed during sea trials
correspond to Tn2 , and is mainly associated with oscillations of
the drum and gearbox.

Nominal control
Energy is extracted from the waves when the rope velocity

is positive, i.e. when x4 > 0. When x4 < 0, energy is spent on
reeling in the mooring line. Net power extraction is achieved by
increasing the mooring line tension Fm for positive velocities,
and reducing the tension for negative velocities. To maintain
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TABLE 1. Model parameters

Description Symbol Value Unit

Floater mass m1 221 tonnes

Hydrostatic stiffness k1 1225 kN/m

Hydrodynamic damping d1 5 kN/(m/s)

Lumped PTO inertia m2 3 tonnes

Mooring line stiffness k2 500 kN/m

PTO friction coefficient d2 0.5 kN/(m/s)

structural integrity, Fm should be kept within [Fmin,Fmax], with
Fmax > Fmin > 0 to avoid slack in the mooring line. The con-
trol law used on Bolt Lifesaver during pre-commercial testing is
given by

u = κ0(x) :=


Fmin x4 ≤ 0,
Fmin +bx4, 0 ≤ x4 ≤ (Fmax −Fmin)/b
Fmax x4 ≥ (Fmax −Fmin)/b

, (21)

where b > 0 is the damping coefficient tuned to maximize power
extraction. The control law κ0 is a special case of the pas-
sive converter [21]. The nominal control strategy results in
large force oscillations in Fm whenever the generator force satu-
rates. Mitigating the force oscillations using a reference filter and
proportional-derivative feedback control was explored in [16].

We emphasize that Fmin and Fmax above include a safety mar-
gin with respect to the true structural capacity limits of the de-
vice. In control system design, they are viewed as tuning param-
eters.

CBF design
An elegant alternative solution for mitigating force oscilla-

tions is obtained using CBF theory. We first assign u= κ0(x)+ ũ,
where ũ is a perturbation in the control law used to maintain
Fm ∈ [Fmin,Fmax]. From this we define the system

ẋ = f0(x)+g(x)ũ+h(x)w, f0(x) := f (x)+g(x)κ0(x). (22)

We use two second order CBFs to enforce Fm ≥ Fmin and Fm ≤
Fmax, given by

Bl1(x) :=Fmin − k2(x1 − x2), (23)
Bu1(x) :=k2(x1 − x2)−Fmax, (24)

where the subscripts l and u denote lower and upper, respectively.
Bl1 and Bu1 define the sets

Ki1 :={x : Bi1(x)≤ 0}, i ∈ {l,u}, K1 := Kl1 ∩Ku1. (25)

Since x ∈ K1 =⇒ Fm ∈ [Fmin,Fmax], safety is achieved by render-
ing K1 forward invariant. Noting that LgBi1(x) = LhBi1(x) = 0,
we select an inverse time constant γ1 > 0, and define

Bi2(x) :=L f0Bi1(x)+ γ1Bi1(x), i ∈ {l,u}, (26)
Ki2 :={x : Bi2(x)≤ 0}, i ∈ {l,u}, K2 := Kl2 ∩Ku2. (27)

The input ũ enters the system through x4. We verify that, given
any value of x1, x2, and x3, there exists x4, such that x∈K2. Since

x ∈ Kl2 =⇒ k2x4 ≤ k2x3 + γ1k2(x1 − x2)− γ1Fmin, (28)
x ∈ Ku2 =⇒ k2x4 ≥ k2x3 + γ1k2(x1 − x2)− γ1Fmax, (29)

and Fmax > Fmin, this is indeed true. From this, it follows directly
that the intersection of K1 and K2 is nonempty. Differentiating
Bl2 and Bu2 along the solutions of (22), we obtain, for i ∈ {l,u},

Ḃi2(x, ũ,w) = L f0Bi2(x)+LgBi2(x)ũ+LhBi2(x)w. (30)

At this point, we assume the disturbance w is known, and select
an inverse time constant γ2 > 0 to obtain the admissible input set
UB(x,w) :=Ul(x,w)∩Uu(x,w), where Ul and Uu are given by

Ui(x,w) := {ũ ∈ R : Ḃi2(x, ũ,w)≤−γ2Bi2(x)}, i ∈ {l,u}. (31)

Since we are considering a single input system, the safety-critical
controller (14) becomes

ũ = κ̃(x,w) :=

{
0, 0 ∈UB(x,w),
∂Ui(x,w), 0 /∈Ui(x,w), i ∈ {l,u},

(32)

where ∂Ui(x,w) is the boundary of Ui(x,w),

∂Ui(x) =
−γ2Bi2(x)−L f0Bi2(x)−LhBi2(x)w

LgBi2(x)
. (33)

NUMERICAL SIMULATIONS
A small simulation study is performed on the CDM, with the

wave disturbance emulating an irregular sea state corresponding
to a peak excitation period of 10s. Since the CDM does not in-
clude an explicit transfer function from wave elevation to wave
excitation, the sea state is not further specified. The purpose of
the simulations are to verify the theoretical contributions pre-
sented above, and motivate the use of CBF-based control strate-
gies. Evaluating the controller performance on higher-fidelity
models is beyond the scope of this paper. Control system param-
eters are given in Table 2.
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TABLE 2. Control system parameters

Description Symbol Value Unit

Minimum mooring force Fmin 10 kN

Maximum mooring force Fmax 100 kN

Damping coefficient b 300 kN/(m/s)

Inverse time constant γ1 10 1/s

Inverse time constant γ2 20 1/s

Implementation of the CBF controller
Since w is unknown, it is not possible to implement the con-

troller ũ = κ̃(x,w). A tempting option is to simply disregard
w, by assigning ũ = κ̃(x,0). A better option results from rec-
ognizing that the floater dynamics are significantly slower than
the PTO dynamics. This, together with the fact that w is a
slowly varying process relative to the PTO dynamics, allows us
to make the quasistatic assumption ẋ3 ≈ 0 in the implementation
of the safety-critical controller. This is equivalent to assigning
ũ = κ̃(x,φ(x)), with φ(x) :=−d1x3 − k1x1 − k2(x1 − x2).

FIGURE 5. Mooring line force Fm (top) and generator force Fg (mid)
for a representative time period in an irregular sea state, using only the
nominal controller (blue) and the CBF-enhanced controller (red). The
constraints Fmin and Fmax are indicated by dotted lines. Bottom plot
shows the controller perturbation term ũ for the CBF controller.

Results
The CBF-enhanced controller is compared to the nominal

control law, where the CBF controller is implemented under the
assumption ẋ3 ≈ 0. Representative mooring line response and
corresponding generator force is shown in Figure 5, with a closer
view in Figure 6. The CBF controller virtually eliminates the
high-frequent oscillations, as desired. We say that the CBF con-
troller is active when the controller perturbation term ũ is non-
zero. When the CBF controller is active, the control system seeks
to exponentially stabilize Fm = Fmin or Fm = Fmax.

For both controllers, the mooring force also contains an os-
cillatory component with frequency corresponding to the natural
period of the floater, as shown in Figure 6. In the case of the
CBF-based controller, this is a result of the assumption ẋ3 ≈ 0,
meaning that inertial loads of the floater are not accounted for in
the control law. Yet, the mooring line force remains acceptably
close to the set [Fmin,Fmax].

Discussion
The main performance benefit of the CBF controller is the

ability to mitigate high-frequent PTO oscillations, which is im-
portant for reducing fatigue loads on the device. This result is
expected to hold also if the controller is implemented on the
physical device. Due to sufficient separation between PTO and
floater eigenperiods, the controller is expected robust towards un-
certainty in hydrodynamic added mass. The authors foresee two
main challenges that need to be solved before implementing the
CBF controller: 1) obtaining real-time estimates of the floater
heave position and velocity, 2) obtaining a good estimate of the
mooring line stiffness. A promising solution for solving item
1 is using the Kalman filter proposed in [16]. Item 2 may be
solved by recognizing that the time-averaged mooring line force
and generator force are approximately equal. This fact can be uti-
lized in a learning algorithm or adaptive algorithm that estimates
the mooring line stiffness in real time.

CONCLUDING REMARKS
This paper motivates the use of CBF-based control for

WECs and similar mechanical devices, considering the Bolt
Lifesaver as a case study. The resulting feedback controller
is appealing in its simplicity, robust towards disturbances and
maintains structural integrity of the device. The performance
of the control system is illustrated by numerical simulations on
the CDM. Further numerical simulation studies on higher-fidelity
models of the WEC are needed to fully verify the efficacy of the
control system.
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FIGURE 6. Closer view of a short time period from Figure 5. The
nominal control has sudden saturation of Fg, and then maintains Fg ≡
Fmin until the rope velocity becomes positive. The CBF controller uses
the perturbation term ũ to exponentially stabilize Fm = Fmin.
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