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Fluids confined in small volumes behave differently than fluids in bulk systems. For bulk systems, a compact sum-
mary of the system’s thermodynamic properties is provided by equations of state. For confined fluids, however, there
is currently a lack of successful methods to predict thermodynamic properties by use of equations of state, since the
thermodynamic state depends on additional parameters introduced by the enclosing surface. In this work, we present a
consistent thermodynamic framework that represents an equation of state for pure, confined fluids. The total system is
decomposed into a bulk phase in equilibrium with a surface phase. The equation of state is based on an existing, accu-
rate description of the bulk fluid, and uses Gibbs’ framework for surface excess properties to consistently incorporate
contributions from the surface. We apply the equation of state to a Lennard-Jones spline fluid confined by a spherical
surface with a Weeks-Chandler-Andersen wall-potential. The pressure and internal energy predicted from the equation
of state are nearly within the accuracy of properties obtained directly from molecular dynamics simulations. We find
that when the location of the dividing surface is chosen appropriately, the properties of highly curved surfaces can be
predicted from those of a planar surface. The choice of dividing surface affects the magnitude of the surface excess
properties and their curvature dependence, but the properties of the total system remain unchanged. The framework
can predict the properties of confined systems with a wide range of geometries, sizes, inter-particle interactions and
wall-particle interactions, and it is independent of ensemble. A targeted area of use is prediction of thermodynamic
properties in porous media, for which a possible application of the framework is elaborated.

I. INTRODUCTION

The behavior of fluids is known to change when confined in
small geometries. In porous materials for instance, a liquid-
phase can form through capillary condensation at pressures
below the saturation pressure.1–4 A popular example in the lit-
erature is confined water, where changes in both the dynamic
behavior and phase transitions have been observed.5–7 Molec-
ular dynamics (MD) and Monte Carlo simulations, as well as
density functional theory are popular tools that have been used
with great success to gain insight into how the fluid behavior
is influenced by confinement.8–13 There is, however, a need
for a compact and predictive thermodynamic description of
confined fluids that can be used to shed further light on the
intriguing findings from simulations.

Equations of state (EoS) provide a compact summary of a
system’s thermodynamic properties. For homogeneous flu-
ids in macroscopic systems, the temperature, mass density
and composition are usually sufficient to characterize the ther-
modynamic state of the fluid. In confined systems, addi-
tional knowledge about features such as the system’s geome-
try and wall-fluid interactions are needed since this can lead to
wall-adsorption, layering and disjoining effects.8–11 For sim-
ple systems, such as ideal gas systems14 or systems contain-
ing a small number of particles,15 the effects of confinement
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can be included in exact expressions for the thermodynamic
properties. For fluids with interacting particles, cubic EoS are
popular tools that have been used extensively in process sim-
ulations, optimization studies, and solubility predictions.16,17

There have been some efforts to develop cubic EoS for con-
fined systems. Zarragoicoechea and Kuz18 derived the van der
Waals (vdW) EoS for a square-section nano-pore of infinite
length18 that predicted a shift in the critical point.19 Traval-
loni et al. later introduced wall-fluid interactions to the vdW
EoS.20,21

One major challenge in the development of cubic EoS for
confined systems is that experimental characterization of flu-
ids in nano-geometries is difficult. Challenges associated with
validation of the EoS is an issue for all types of EoS that de-
pend on parameters obtained from experiments.22 Instead of
parametrizing the experimental properties of confined fluids,
it can therefore be advantageous to base the EoS on fluids
described by interaction potentials. This makes it possible
to test the EoS predictions by comparing them to properties
computed directly from molecular simulations in well-defined
geometries. For instance, the thermodynamic properties of
the hard-sphere fluid in a random porous medium have been
successfully represented by scaled particle theory.23 This de-
scription has later been applied in investigations of the proper-
ties of various fluids confined in a random porous media, such
as the Lennard-Jones (LJ) fluid,24 a poly-disperse square-well
chain fluid25 and a fluid of particles interacting through a hard-
sphere Morse potential.26

In this work, we formulate a general thermodynamic de-
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scription that applies to fluids of a wide variety of inter-
particle interactions confined in systems with a wide range of
wall-fluid interactions, geometries and sizes. Since the EoS
should return to the bulk description when the system is large
enough, we base the EoS on an existing bulk description and
show how surface contributions can be incorporated into the
description. The surface contributions arise from the interac-
tions between the fluid and the enclosing surface, which be-
come increasingly relevant as the number of particles and vol-
ume decrease. A consequence of this is that, for sufficiently
small systems, properties that are extensive in macroscopic
systems are no longer Euler homogeneous of degree one.27

The nanothermodynamic framework developed by Hill28 is a
consistent extension of classical thermodynamics that can be
applied to such systems. Nanothermodynamics has been used
in various efforts to understand the behavior of small systems,
like stretching and breaking of polymer chains29,30 and trans-
port in porous media.31–33 In addition, nanothermodynamics
has supported the analysis of size-scaling of thermodynamic
properties, which is crucial for computation of macroscopic
properties from sub-sampling techniques.34–36 In order to use
Hill’s28 framework to gain insight on the behavior of small
systems, the underlying physical description of the system is
required. In this work, we derive such a physical description
by employing the framework of excess variables developed by
Gibbs.37 We split the thermodynamic description of a small
system into a bulk phase and an excess, small-size contribu-
tion. The leading order small-size contribution usually comes
from the system’s surface area. We emphasize that line- and
edge-contributions could also be relevant38,39, but they are be-
yond the scope of the present work. For system sizes where
the total confined system can be described as a bulk phase and
its excess surface phase, the formalism presented here pro-
vides a consistent framework that represents an EoS for con-
fined systems. In particular, we show that the EoS reproduces
results from molecular simulations of confined fluids nearly
within the simulation accuracy.

II. THEORETICAL FRAMEWORK

In this section, we present a thermodynamic framework to
describe confined fluids. The thermodynamic description of
the system is split into a bulk phase and an excess surface
phase. We consider the case where there is local equilibrium
in both the bulk phase and the surface phase. In the following,
properties with no subscript refer to the total system, proper-
ties with subscript "b" refer to the bulk phase, while properties
with subscript "s" refer to the excess surface phase. We for-
mulate the internal energy, U , as a function of the entropy, S,
number of particles, N, and volume, V , for the bulk phase or
area, W , for the surface phase. The volume of the total sys-
tem is defined as the bulk volume, V = Vb, and the area of
the total system is defined as the surface phase area, W = Ws.
The entropy, number of particles and internal energy are split
into a bulk contribution and an excess surface contribution as

follows

N = Nb +Ns = Nb +G W , (1)
S = Sb +Ss = Sb +hW , (2)

U(N,V,S) =Ub(Nb,V,Sb)+Us(Ns,W ,Ss), (3)

where G is the excess number of particles per area, which is
also referred to as the adsorption, and h is the excess entropy
per area. The surface phase described by excess variables is
an autonomous thermodynamic system. This means that the
surface phase has its own temperature, Ts, and chemical po-
tential, µs. When the bulk phase is not in equilibrium with the
surface phase, the bulk temperature, Tb, and the bulk chemical
potential, µb, can differ from those of the surface phase. This
leads to the following expressions for the internal energy of
the bulk phase

Ub = TbSb � pbV +µbNb, (4)

and the internal energy of the surface phase

Us = TsSs + gW +µsNs, (5)

where p is the pressure and g is the surface energy.
In the following, we consider the situation where the bulk

phase is in equilibrium with the surface phase, meaning that
Tb = Ts and µb = µs. Under these circumstances, we define
the pressure and chemical potential in the system as

p ⌘ pb =�
✓

∂Ub

∂V

◆

Nb,Sb

, (6)

µ ⌘ µb =

✓
∂Ub

∂Nb

◆

V,Sb

, (7)

and the internal energy of the total confined system becomes

U = T S� pV +µN + gW . (8)

A central quantity for the framework presented in this work is
the bulk density

rb =
Nb

V
=

N �G W
V

, (9)

which for confined systems usually differs from the total den-
sity, r = N/V .

A key advantage with the formulation above is that inten-
sive properties of the total confined system can be determined
by considering the properties of the bulk phase as a function
of T and rb. In the formalism presented in this work, the bulk
density can be computed from Eq. (9) when the total num-
ber of particles, the adsorption and the system’s geometry are
known. To determine the total entropy and the total internal
energy of the confined fluid one also needs the excess entropy
and the surface energy.

We shall hereby refer to the framework for computation
of the properties of confined fluids as the "Nano-EoS". In
Sec. II A, we explain how the properties of the bulk phase
of the confined fluid can be computed from a bulk-EoS. In
Sec. II B, we explain how the properties of the surface phase
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of a confined fluid in equilibrium can be computed when the
adsorption is known. This "developer perspective" is demon-
strated in Sec. IV for a Lennard-Jones spline fluid confined
in a spherical container. In Sec. V, we demonstrate the "user
perspective" by applying the Nano-EoS in the way a future
user would, i.e. extracting the thermodynamic properties with
only T , rb and geometry variables as input. All thermody-
namic properties computed from either the Nano-EoS or the
bulk-EoS have superscript "EoS".

The Nano-EoS presented in this work is independent of
ensemble since Ub(Nb,V,Sb) and Us(Ns,W ,Ss) are both Eu-
ler homogeneous of degree one. The energy state functions
for various ensembles are therefore accessible from Legendre
transformations of the internal energy of each phase. Ensem-
ble dependence has been observed for both the pressure and
the chemical potential in small systems.14 However, we do
not consider ensemble effects here since, for the system types
we investigate, the Nano-EoS is expected to break down at
system sizes larger than those where ensemble effects are rel-
evant. See Bråten et al.

14 for a detailed discussion of when
ensemble dependence becomes relevant.

A. Bulk properties

For a given bulk density, the properties of the bulk phase
can be extracted from a bulk-EoS. The bulk internal energy is
therefore

U
EoS
b =U

EoS
b (Nb,V,T ). (10)

Other properties of the bulk phase, such as energy state func-
tions or entropy, can be computed from equivalent relations.
Note that the internal energy extracted from a bulk-EoS often
is normalized by the number of particles U

EoS
b (Nb,V,T )/Nb.

The bulk internal energy of the confined system is therefore
computed by multiplying the bulk prediction with Nb.

B. Surface excess properties

A prerequisite for computing surface excess properties is to
define the location of the dividing surface. There are many dif-
ferent choices available, and the location of the dividing sur-
face determines the value of V , and for curved surfaces it also
affects W . The choice of dividing surface influences the de-
composition into bulk and surface contributions. Some prop-
erties are invariant to the choice of dividing surface, such as
the total internal energy of the confined fluid. Details on how
the surface excess properties for different choices of dividing
surface are related to each other are presented in Sec. II B 2.

The surface phase is the excess with respect to a bulk phase
at rb and T . For equilibrium systems, the surface excess prop-
erties are therefore considered as functions of these two vari-
ables. Our starting point for computation of surface excess
properties is the adsorption, which is computed from

G =
N �rbV

W
. (11)

The adsorption is related to the other surface excess proper-
ties and the intensive properties of the total system through
Gibbs adsorption equation.37 For a given choice of dividing
surface at a fixed position relative to the total volume, Gibbs
adsorption equation is

dg =�G dµ �hdT. (12)

At constant temperature, Eq. (12) becomes

dg =�G dµ. (13)

When the adsorption and the chemical potential is known for a
range of different bulk densities, Eq. (13) can be used to com-
pute the differential surface energy. By using that the surface
energy is zero at zero density, the absolute value of the surface
energy can be computed.

At constant chemical potential, Eq. (12) can be rewritten as
an expression for the excess entropy per area

h =� ∂g
∂T

����
µ
. (14)

From Eq. (14) it is apparent that h as a function of bulk den-
sity can be readily computed from the temperature depen-
dence of the surface energy when one knows how the chemical
potential depends on the bulk density and the temperature.

The excess internal energy becomes

U
EoS
s = T hW + gW +µG W . (15)

1. Curvature dependence of surface properties

The surface excess properties depend on the geometry of
the surface. For non-planar surfaces, the surface properties
can be expressed as the surface properties of a planar wall
plus additional curvature corrections.38,39 The adsorption for
a spherical surface with radius R is expressed as

G (R) = G0 +
G1

R
+O

✓
1

R2

◆
, (16)

where G0 refers to the adsorption at a planar wall, G1 is the first-
order curvature correction to the adsorption and O

�
1/R

2�

refers to the higher order terms. Both the surface energy and
the excess entropy per area can be expressed by equations sim-
ilar to Eq. (16), and become

g(R) = g0 +
g1

R
+O

✓
1

R2

◆
, (17)

h(R) = h0 +
h1

R
+O

✓
1

R2

◆
. (18)

In this work, we only investigate the first-order corrections,
but higher order corrections are also possible.40,41 For the sys-
tems considered here, R is independent of T and µ . This
means that g0 and g1 can be computed from Eq. (13) when
G0 and G1 are known, and that h0 and h1 can be computed
from Eq. (14) when g0 and g1 are known.
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The capillary approximation (CA) states that the surface
properties of a curved surface are equal to those of a planar
surface. When the curvature corrections are small compared
to the planar-wall contribution, the capillary approximation
may provide a satisfactory description of the surface excess
properties. In Sec. V, we discuss when the capillary approxi-
mation holds for confined fluids.

2. Shifting the location of the dividing surface

For the system types we consider, the volume of the system
depends on the location of the dividing surface. Consequently,
G , h and g will also depend on the location of the dividing sur-
face.40,42 In this section, we show how the surface properties
of one dividing surface are related to those of another dividing
surface.

In simulations, the fluid particles are confined by a wall. For
spherical systems, this wall is located at the enclosing surface,
eW , at a distance eR from the center of the sphere. This enclos-
ing surface corresponds to the volume eV . For a box-shaped
system, with a wall located at one of the sides, the surface area
of this wall is independent of the dividing surface, eW = W ,
and the volume defined by the location of the wall is eV = eLW .
The location of the dividing surface can be specified as the
distance from the enclosing wall, dwall, which will be called
to as the wall-thickness. Its sign is as positive when V < Ṽ ,
cf. Fig. 1. For a wall-thickness dwall = 0, the volume and area
corresponding to the dividing surface are eV and eW . Surface
excess properties computed for this choice of dividing surface
are marked by a tilde.

For some expressions for surface excess properties, a divid-
ing surface located at dwall = 0 is implicit for the system types
investigated in this work. These are the excess functions for
the adsorption and the excess entropy, and the surface energy
computed from the Kirkwood-Buff43 (KB) equation. The re-
spective excess functions for the adsorption and the excess
entropy are

eG =
1
eW

Z
[r(x )�rb]deV , (19)

eh =
1
eW

Z
[s(x )� sb]deV , (20)

where x is the coordinate normal to the wall, r(x ) is the num-
ber density profile, s(x ) is the entropy density profile and sb
is the bulk entropy density. The KB equation utilizes the pres-
sure anisotropy close to the surface, and relates the surface en-
ergy to the pressure tensor profiles. For a box-shaped system,
the surface energy can be computed from the KB equation

eg =
Z eL

0
[pN(x )� pT (x )]dx , (21)

where pN and pT are the normal and tangential components
of the pressure tensor respectively. The normal component of
the pressure tensor is equal to the bulk pressure, pN(x )= pb

32.
The KB equation can also be defined for curved surfaces, but

correct computation of pressure tensors in vicinity of curved
surfaces remains an unresolved topic.11,44–47

The surface properties for dwall = 0 are related to the surface
properties for a dividing surface located at dwall 6= 0. For a
planar wall, these relations are

eG0 �G0 =�rbdwall, (22)
eg0 � g0 = pbdwall, (23)
fh0 �h0 =�sbdwall, (24)

and the relations for the curvature corrections of a spherical
surface are

eG1 �G1 = rbd
2
wall �2dwallG0, (25)

eg1 � g1 =�pbd
2
wall �2dwallg0, (26)

fh1 �h1 = sbd
2
wall �2dwallh0, . (27)

Equations (22)-(26) provide general relations between the
surface excess properties for two dividing surfaces separated
by a distance dwall. In this work, we apply them to the specific
case where where eG , eg and eh correspond to a dividing surface
located at dwall = 0. Further details about the derivation of
Eqs. (22)-(26) are given in the supplementary material.

3. Surface properties in the low-density limit

For low-density systems, computation of statistical aver-
ages from molecular simulations requires considerable com-
putational effort. Exact analytical expressions that provide a
consistent description of the system’s properties at low den-
sities are therefore useful. In the low-density limit, the prop-
erties of fluids with interacting particles can be approximated
by the properties of an ideal gas. In this section, we show how
the surface excess properties of a confined ideal gas can be
computed analytically.

The ideal gas particles do not interact with each other, but
they do interact with the enclosing wall. The interaction en-
ergy between the particles and the wall is given by the wall-
potential W (x ). In the region where the wall-potential is zero,
the potential energy of the system is zero, and the density is
equal to the bulk density. The density profile for the coordi-
nate normal to the wall is48

rIG(x ) = rb exp
✓
�W (x )

kBT

◆
. (28)

Combining Eq. (28) with Eq. (19) yields the expression for
the adsorption of an ideal gas

fGIG=
1
eW

Z
[rIG(x )�rb]deV

= rb
1
eW

Z 
exp

✓
�W (x )

kBT

◆
�1

�
deV . (29)

Since the integral in the above expression is independent of
density, the adsorption becomes a first-order linear function
of the bulk density, where the slope is

ea =
1
eW

Z 
exp

✓
�W (x )

kBT

◆
�1

�
deV . (30)
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This slope depends on the temperature and the geometry of
the system, but it is independent of the bulk density. The dif-
ferential of ea with respect to temperature is

dea
dT

=
1
eW

Z
exp

✓
�W (x )

kBT

◆
W (x )
kBT 2 dṼ . (31)

Further details about computation of a for different choices of
dividing surface are presented in the supplementary material.

The following equations are valid for any choice of dividing
surface and we therefore omit the tilde. The adsorption of the
confined ideal gas is

GIG = arb, (32)

and the surface energy can be obtained from Gibbs adsorption
equation at constant temperature

dgIG =�GIGdµIG, (33)

The integration variable µIG can be substituted for rb through
the expression for the chemical potential of an ideal gas

µIG = kBT ln
✓

rbkBT

p0

◆
+µ0(T ), (34)

where p0 is the pressure of the standard state and µ0 is the ref-
erence chemical potential. More details on choice of reference
state are presented in the supplementary material. The dif-
ferential chemical potential at constant temperaure becomes
dµIG = kBT r�1

b drb, and since the surface energy is zero at
zero density, integration of Eq. (33) yields

gIG =�kBT arb. (35)

Similar to the adsorption, the surface energy of the ideal gas
is a first-order linear function of rb. This implies the simple
relationship: gIG =�kBTGIG.

The excess entropy of the confined ideal gas is computed
from the Gibbs adsorption equation at constant chemical po-
tential, presented in Eq. (14). Differentiating the surface en-
ergy of the ideal gas with respect to temperature at constant
chemical potential yields

hIG =� ∂gIG

∂T

����
µIG

= rb

✓
kBT

da
dT

�a dµ0

dT

◆

�kBarb ln
✓

rbkBT

p0

◆
. (36)

In contrast to the adsorption and the surface energy, the excess
entropy is not a first-order linear function of the bulk density.
The excess entropy for a confined ideal gas consists of one
term that is linear in rb and one term that contains the non-
linearity rb ln(rbkBT/p0). The last term comes from the non-
linear relation between the density and the chemical potential.

III. COMPUTATIONAL DETAILS

We compute the thermodynamic properties of a confined
fluid directly from MD simulations. This includes the proper-
ties of the total system, the bulk phase and the surface phase.

To investigate the impact of curvature on the surface excess
properties, we compute the values for systems with a planar
wall and in spherical systems. In the following, all presented
values and results are given in reduced LJ units.

A. Simulation details

The MD simulations are performed with the simulation
package LAMMPS.49 The LAMMPS simulation input files
are openly available with download details given in the data
availability statement. For the inter-particle interactions, we
employ the Lennard-Jones spline (LJs) potential.50 See Haf-
skjold et al.

51 for a detailed discussion on the properties of
systems containing particles interacting via the LJs poten-
tial. The interactions between the fluid and the wall are de-
scribed by the Weeks-Chandler-Andersen (WCA) potential.52

The WCA potential is a purely repulsive potential that is equal
to the LJ potential truncated and shifted at rc = 21/6swall,
where we use swall = 1. The volume of the simulation box is
eV , which is defined by the location of the walls. We consider
one system with planar walls with dimensions eV = eLxLyLz,
where eLx = 40 and Ly = Lz = 20, and three differently sized
spherical systems with radius eR= 5,10,15. The spherical sys-
tems have a WCA-wall located at eR. The system with planar
walls have a WCA-wall located at each end of eLx and peri-
odic boundary conditions in the other directions. Both system
types are illustrated in Fig. 1. For all systems, we investi-
gate values of N/eV ranging from 0.05 to 0.80. The simula-
tions are run in five parallels, which consist of 20 million time
steps each for N/eV  0.45, and 2 million time steps each for
N/eV > 0.45. The size of the time step is Dt = 0.002. All den-
sities, geometries and sizes are investigated for five different
temperatures, T = 1.90,1.95,2.00,2.05,2.10. The pressure is
computed from the virial expression.

B. Bulk equation of state

The bulk equation of state for the LJs fluid used in
this work is the uv-theory of van Westen and Gross,53,54

accessed through the open-source thermodynamic software
Thermopack.22,55

C. Application of the Nano-EoS

The flowchart presented in Fig. 2. explains the procedure
for computing thermodynamic properties of a confined fluid
when N,T , the fluid’s bulk properties and the surface excess
properties are known. The procedure shown in the figure can
be used to predict the properties of confined fluids at equilib-
rium.
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𝑅 
~ 𝑅 

𝑑wall 

𝑑wall 

~ 

𝐿

𝐿

(a) 

(b) 

FIG. 1. Illustrations of (a) the spherical system and (b) a cross sec-
tion of the planar-wall system investigated in this work. The divid-
ing surface is located at R for the spherical system and at L for the
planar-wall system, while the WCA-wall is located at eR for the spher-
ical system and at eL for the planar-wall system. The wall-thickness,
dwall, is the distance between the dividing surface and the wall. (b)
illustrates the section between eLx/2 and eLx of the system investigated
by MD simulations, which means that eL in the figure corresponds to
eLx/2 in the simulations.

IV. RESULTS - MOLECULAR SIMULATIONS OF
CONFINED FLUIDS

In this section, we present the step-by-step procedure used
for computation and parametrization of the surface excess
properties. This represents the "developer perspective". When
the surface excess properties are computed and parametrized,
they can be utilized to predict thermodynamic properties of
systems of any density within the range of validity of the
Nano-EoS by following the procedure presented in Fig. 2.

 

Confined fluid 
with known 𝑁, 𝑇. 

𝑈sEoS = 𝑇𝜂𝛺 + 𝛾𝛺 + 𝜇𝛤𝛺 

𝑈EoS = 𝑈bEoS + 𝑈sEoS 

Compute the bulk density. 
solve: 𝜌 − 𝜌b −

𝛺
𝑉
𝛤ሺ𝜌bሻ = 0 

𝛺, 𝑉, 𝜌 =
𝑁
𝑉  

Define the location of the dividing surface.  

Compute intensive properties of 
the total system and the extensive 
properties of the bulk phase from 
the bulk EoS at the bulk density.  

𝜌b 

Compute the surface excess 
properties at the bulk density. 

𝑁b = 𝜌b𝑉 

𝑈bEoS = 𝑈bEoSሺ𝜌b, 𝑇ሻ  
𝜇 = 𝜇bEoSሺ𝜌b, 𝑇ሻ 

𝛤 = 𝛤ሺ𝜌b, 𝑇ሻ 

 𝛾 = 𝛾ሺ𝜌b, 𝑇ሻ 

𝜂 = 𝜂ሺ𝜌b, 𝑇ሻ 

Compute internal energy of  the surface phase 
and the total system. 

Surface 
excess 

properties. 

Bulk fluid 
properties. 

FIG. 2. Flowchart for computing thermodynamic properties of a con-
fined fluid when N,T , the fluid’s bulk properties and the surface ex-
cess properties are known. The initial input is shown in the blue
circles, explanations for each computation step are presented in the
yellow boxes and the computed properties are shown in the green
hexagons.

This represents the "user perspective", which is demonstrated
in Sec. V. The presented results have been computed using a
wall-thickness dwall = 1. In the presentation of the results, the
sphere sizes are referred to by the radius given by the location
of the wall, eR. In Sec. VI A, we discuss how the choice of
dividing surface impacts the computation of thermodynamic
properties from the Nano-EoS. Error bars corresponding to
two standard deviations are included in Figs. 4-5, 8 and 13-
16.

A. Computation of the bulk properties from simulations

To compute bulk properties from molecular simulations,
one needs the location of the bulk region. The bulk region

is here defined as the region of the system where the local
contributions from the wall are negligible, e.g. that thermody-
namic properties like the density and the pressure are locally
isotropic. When the location of the bulk region is known, the
bulk number density, bulk internal energy density and pres-
sure are easily computed from molecular simulations. Note
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that the bulk region in simulations is not the same as the bulk

phase in the Nano-EoS. The properties of the bulk phase in
the Nano-EoS framework are equal to the properties in the
bulk region extrapolated to the entire system volume.

The limits of the bulk region are identified from the sys-
tem’s density profiles. Figure 3 shows the density profiles
in the x-direction for the system with planar walls and in
the r-direction for the spherical systems. All systems show
oscillatory profiles close to the wall that become more dis-
tinct with increasing density. The oscillatory behavior is due
to structural changes close to the wall, which depend on the
type of confinement, the type of fluid and the size of the sys-
tem.33,56,57

For the system with planar walls, the density profiles are all
uniform for 20 < x < 30, which makes it possible to identify
one common bulk region for all the different total densities.
This is not possible for the spherical systems, since they do
not always have a well-defined bulk region. For the spheri-
cal systems, the limits of the bulk region are therefore defined
individually for each of the total densities investigated. The
limits of the bulk regions are displayed by the dashed lines
in Fig. 3. In computation of bulk density, bulk pressure and
bulk energy density, the data points in the region r  1 are dis-
carded due to the large degree of noise. While validation of
the Nano-EoS requires a bulk region, we will show in Sec. V
that its predictions extrapolate very well beyond this regime.
The parametrization of the surface excess properties presented
in Sec. IV B thereby allows us to compute the bulk and sur-
face properties of systems that do not have well defined bulk
regions.

B. Computation of the surface excess properties from
simulations

Surface properties are computed using the formalism pre-
sented in Sec. II B. For better readability, the surface proper-
ties are only presented for T = 1.9,2.0,2.1. Equations (32),
(35) and (36) show that the adsorption and the surface energy
do not depend on the reference state while the excess entropy
does depend on the reference state.

In order to extract the surface excess properties at ar-
bitrary densities, all the surface excess properties must be
parametrized. For the adsorption and the surface energy, we
use 5th and 9th degree polynomials respectively. For the ex-
cess entropy, we use a 9th degree polynomial plus the non-
linear term rb ln(rbkBT/p0) multiplied with a constant coef-
ficient. The constant term is set to zero for all polynomials in
order to ensure that all surface excess properties are zero at
zero density. At low densities, the first-order coefficients of
the polynomials will dominate, such that the surface proper-
ties of the LJs fluid can be approximated by those of the ideal
gas presented in Sec. II B 3. In the fitting process, the first-
order coefficients are therefore set to the predictions provided
by the ideal gas model. The first-order coefficients of the ad-
sorption and the surface energy curves are given by Eqs. (32)
and (35) respectively. For the excess entropy curve, both the
first-order coefficient and the coefficient of the non-linear term

are given by Eq. (36). The coefficients for the parametrized
curves of all the surface excess properties are available in the
supplementary material.

1. Surface properties of a planar wall

The adsorption is computed from Eq. (11) by combining the
bulk densities identified in Sec. IV A and the total densities
computed using the volume defined by the dividing surface.
Figure 4 shows the adsorption as a function of bulk density,
where the fitted curves are displayed by the full lines. The
adsorption for purely repulsive walls in contact with fluids in-
teracting through potentials containing both attractive and re-
pulsive parts have previously been studied in detail.8,11,56 For
such systems, the adsorption at low densities is governed by
the attractive inter-particle interactions, which favor accumu-
lation of the particles in the bulk region. At higher densities,
the repulsive interactions dominate, which favor accumulation
of the particles at the wall since this minimizes each particle’s
excluded volume. We emphasize that the values of the sur-
face excess properties depend on the location of the dividing
surface. Whether the computed adsorption curves reflect the
above described behavior therefore depends on the choice of
dividing surface. Figure 4 shows that a dividing surface at
dwall = 1 reflects this behavior since the adsorption is negative
at low densities and positive at higher densities for all investi-
gated temperatures.

When the parametrized adsorption is known as a function of
bulk density, the surface energy can be computed from Gibbs
adsorption equation (Eq. (13)). The surface energy is also
computed from the KB equation (Eq. (21)), combined with
Eq. (23) in order to extract the surface energy for a divid-
ing surface at dwall = 1. Figure 5 shows the surface energies
computed from Gibbs adsorption equation and from the KB
equation. With the exception of the data points at the two
highest densities, the prediction of the surface energy from
Gibbs adsorption equation are within two standard deviations
of the value computed using the KB equation. The increased
deviation between the two methods observed at higher densi-
ties probably arises from numerical integration of Gibbs ad-
sorption. This can be due to inaccuracies in the parametrized
adsorption or the bulk chemical potential predicted from the
bulk-EoS. The black dotted lines show the curves fitted to the
surface energies computed from Gibbs adsorption equation.
In the Nano-EoS, we use the surface energies computed from
Gibbs adsorption equation, since computing all the surface ex-
cess properties with the adsorption as a starting point results
in a more consistent framework. Comparison to the surface
energies computed from the KB equation works as a quality
check for the surface energies computed from Gibbs adsorp-
tion equation.

As shown in Eq. (14), the excess entropy is related to
the temperature dependence of the surface energy at constant
chemical potential. For most fluids, the relation between the
chemical potential and density is temperature dependent. We
therefore use the bulk-EoS to extract the bulk densities at dif-
ferent temperatures corresponding to a constant chemical po-
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FIG. 3. Density profiles for for a few selected total densities for a (a) planar wall and spherical systems with (b) eR = 15 (c) eR = 10 (d) eR = 5,
for T = 2.0. Since the planar-wall system is symmetrical around the center of the simulation box, the figure displays the average of the two
symmetrical parts. The left side of the profiles of the spherical systems corresponds to the smallest spherical bins in the center of the simulation
box.

tential. The surface energies at these densities are extracted
from the surface energy polynomial, since these states are not
represented by the discrete data points computed directly from
simulations. Figure 6 shows the surface energies as functions
of the temperature for a few selected chemical potentials. For
the small temperature range considered here, the surface en-
ergy can be approximated as a first-order linear function of the

temperature. This means that the excess entropy at T = 2.0
can be extracted from the negative slope of the dashed lines
in Fig. 6. The resulting excess entropy as a function of bulk
density is displayed in Fig. 7 where the dotted black line is the
curve fitted to the excess entropy computed from Eq. (14).
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FIG. 4. Adsorption as a function of bulk density for the LJs fluid
in contact with a planar wall with a WCA wall-potential. The fitted
curves are displayed by the full lines. The dividing surface is located
at dwall = 1.

FIG. 5. Surface energy as a function of bulk density for the LJs
fluid in contact with a planar wall with a WCA wall-potential. The
curves fitted to the surface energy computed from Gibbs adsorption
equation are displayed by the black dotted lines. The dividing surface
is located at dwall = 1.

2. Curvature dependence of surface properties

We will next investigate the magnitude of the curvature de-
pendence of the adsorption, surface energy and excess en-
tropy. Figure 8 shows the adsorption in the spherical sys-
tems and the parametrized planar-wall adsorption curve for
T = 2.0. The data points show no observable deviation from
the planar-wall curve, which suggests that the curvature de-
pendence of the surface excess properties is very small. This is

FIG. 6. Surface energy of the LJs fluid in contact with a planar wall
with a WCA wall-potential, as a function of temperature. The surface
energies at constant chemical potential are computed from the fitted
curves in Fig. 5. The dividing surface is located at dwall = 1.

FIG. 7. Excess entropy as a function of bulk density for the LJs fluid
in contact with a planar wall with a WCA wall-potential. The fitted
curve is displayed by the black dotted line. The dividing surface is
located at dwall = 1.

convenient, since it means that the surface properties of a pla-
nar wall can be used to describe properties of fluids confined
by highly curved surfaces. The curves fitted to the adsorption
of the small systems are also displayed in Fig. 8, but the devi-
ation from the planar-wall adsorption is barely visible. Since
only the two lowest densities for the spherical system with
eR = 5 have well-defined bulk regions, we do not parametrize
the adsorption for this size.

The first-order curvature correction of the adsorption, G1,
can be extracted from the adsorption as a function of 1/R. Fig-
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FIG. 8. Adsorption as a function of bulk density for the LJs fluid
confined in small spherical systems with a WCA wall-potential. The
fitted curves are displayed by the full lines. The temperature is T =
2.0 and the dividing surface is located at dwall = 1.

FIG. 9. Adsorption for the LJs fluid in contact with a wall with a
WCA wall-potential, as a function of the inverse radius. The adsorp-
tion for the differently curved surfaces are extracted from the fitted
curves in Fig. 8. The temperature is T = 2.0 and the dividing surface
is located at dwall = 1.

ure 9 shows the adsorption, extracted from the fitted curves,
for a few selected densities as a function of inverse radius.
The adsorptions for each system are extracted from the fit-
ted curves since they must be compared at constant density,
which is not represented by the discrete data points obtained
directly from the simulations. The system with planar walls
has infinitely large radius, which corresponds to 1/R= 0. Fig-
ure 9 shows that the adsorption can be approximated as a first-
order linear function of 1/R, which means that a first-order

FIG. 10. First-order curvature correction of the adsorption as a func-
tion of bulk density for the LJs fluid in contact with a wall with a
WCA wall-potential. The fitted curves are displayed by the black
dotted lines. The dividing surface is located at dwall = 1.

correction sufficiently describes the curvature dependence of
the adsorption for the spherical systems investigated in this
work. The first-order curvature corrections, extracted from the
slopes of the dashed lines in Fig. 9, are displayed in Fig. 10 as
functions of the bulk density.

All surface excess properties can be split into the planar-
wall contribution and the curvature corrections. This means
that g1 can be computed from Eq. (13), i.e. dg1 = G1dµ ,
and h1 can be computed from Eq. (14), i.e. h1 = ∂g1/∂T |µ .
The first-order curvature corrections of the surface energy and
excess entropy are displayed as functions of bulk density in
Fig. 11 and Fig. 12 respectively. For bulk densities below
rb = 0.4, the first-order curvature corrections to all the sur-
face excess properties have absolute values < 0.01, which
indicates that the capillary approximation is excellent in this
density range. The curvature corrections of the surface excess
properties are parametrized with the same functions as those
used for the planar-wall properties. We do not include predic-
tions from the ideal gas in the parametrization of the curvature
corrections of the surface excess properties.

V. RESULTS - VALIDATION OF THE NANO-EOS

We will next present the predictions of the Nano-EoS and
compare these to the values computed directly from the MD
simulations. Emphasis is placed on the internal energy and
the pressure. The surface internal energy, Us, is a combination
of all the surface excess properties, which means that it pro-
vides insight on the effect of confinement on the state of the
fluid. Accurate pressure predictions are key in analyzing the
driving forces of transport in porous media.31–33 Superscript
"sim" refers to properties computed directly from simulations.
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FIG. 11. First-order curvature correction of the surface energy as a
function of bulk density for the LJs fluid in contact with a wall with
a WCA wall-potential. The fitted curves are displayed by the black
dotted lines. The dividing surface is located at dwall = 1.

FIG. 12. First-order curvature correction of the excess entropy as a
function of bulk density for the LJs fluid in contact with a wall with
a WCA wall-potential. The fitted curve is displayed by the black
dotted line. The dividing surface is located at dwall = 1.

A. Pressure

The pressure computed from simulations and the predic-
tions of the Nano-EoS are presented in Fig. 13 as functions
of the total density. The large degree of overlap between the
predictions from the Nano-EoS and the simulation data con-
firms that the pressure of the confined system can be deter-
mined as a function of T and rb. The accuracy of the pressure
prediction therefore mainly depends on the accuracy of the

FIG. 13. Pressure as a function of the total density for the LJs fluid
confined in a small spherical cavity with a WCA wall-potential. The
colored full lines represent the Nano-EoS predictions including cur-
vature corrections while the dashed lines represent the predictions of
the capillary approximation. The gray line shows the pressure for a
bulk system with density r . The temperature is T = 2.0 and the di-
viding surface is located at dwall = 1.

predicted bulk density. The absolute error of the bulk den-
sity is the difference between predictions from the Nano-EoS
and the simulation results, Drb = |rEoS

b �rsim
b |. For all sys-

tem sizes and the whole range of densities considered in this
work, Drb < 0.001.

B. Internal energy

The bulk internal energy, U
sim
b , is computed by multiply-

ing the V with the internal energy density in the bulk region,
which can only be computed for systems with well-defined
bulk regions. Figure 14 shows the bulk internal energy nor-
malized by the number of particles as a function of the total
density. Similar to the pressure, the Nano-EoS predictions of
the bulk internal energy mainly depends on the accuracy of
the predicted bulk density. The accuracy of the predictions of
both the pressure and the bulk internal energy therefore indi-
cates that the parametrized adsorption presented in Sec. IV B
gives an accurate representation of the adsorption in the small
systems. However, the results presented in Figs. 13 and 14
give no validation of whether the curvature correction is valid
beyond the range of bulk densities available from simulations.

The surface internal energy, U
sim
s = U

sim �U
sim
b , is also

only accessible for systems with a well-defined bulk region.
Figure 15 shows the surface internal energy per number of
particles as a function of total density. Since the surface inter-
nal energy is normalized by the number of particles, the curves
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FIG. 14. Bulk internal energy (Eq. (4)) per number of particles as a
function of total density for the LJs fluid confined in a small spherical
cavity with a WCA wall-potential. The colored full lines represent
the Nano-EoS predictions including curvature corrections while the
dashed lines represent the predictions using the capillary approxima-
tion. The gray line shows the internal energy per number of particles
for a bulk system with density r . The temperature is T = 2.0 and the
dividing surface is located at dwall = 1.

approach zero abruptly at very low densities. The large degree
of overlap between the Nano-EoS predictions and the simula-
tion results indicates that the Nano-EoS framework correctly
represents the small size contributions of the confined fluid.
For the two largest spherical systems at total densities below
r = 0.5, the predictions of U

EoS
s /N from the capillary approx-

imation are almost indistinguishable from the predictions in-
cluding curvature corrections. For eR = 5, the prediction of the
capillary approximation is closer to the simulation results than
the prediction of the Nano-EoS including the curvature correc-
tions. This could be due to an overestimation of the curvature
correction of the surface excess properties. One factor that
could lead to this overestimation is that ideal gas predictions
are not included in the parametrization of the curvature cor-
rections. The fitting procedure is therefore more sentitive to
the inaccuracies of the curvature corrections computed at low
densities. One likely source of the inaccuracy in the curva-
ture correction of the surface internal energy is the excess en-
tropy. Figures 5 and 11 show that the surface energy and has
a very small temperature dependence at low densities. This
means that accurate computation of the excess entropy from
h = ∂g/∂T |µ becomes challenging at low densities. It is also
possible that higher order curvature corrections are needed to
accurately describe the surface excess properties for a system
this small.

The total internal energy, U
sim, is accessible for all system

sizes. Figure 16 shows the internal energy per number of parti-

FIG. 15. surface internal energy (Eq. (5)) per number of particles as a
function of total density for the LJs fluid confined in a small spherical
cavity with a WCA wall-potential. The colored full lines represent
the Nano-EoS predictions including curvature corrections while the
dashed lines represent the predictions of the capillary approximation.
The temperature is T = 2.0 and the dividing surface is located at
dwall = 1.

cles as a function of total density. The absolute error of U/N is
the difference between the Nano-EoS prediction and the sim-
ulation results, D(U/N) = |(U/N)EoS � (U/N)sim|. For the
whole range of densities considered in this work, the abso-
lute error is D(U/N) < 0.02 for all system sizes. This shows
that the parametrized surface excess properties and their cur-
vature corrections extrapolate well beyond the regime of sys-
tems with well-defined bulk regions. The overlap is surpris-
ingly good for eR = 5, given that no simulation data from this
system is included in the parametrization of the surface ex-
cess properties. Similar to the predictions of the surface in-
ternal energy, the capillary approximation remains a good ap-
proximation for U

EoS/N for the two largest systems at total
densities below r = 0.5.

VI. DISCUSSION - USE AND RANGE OF VALIDITY OF
THE NANO-EOS

In the following, we discuss how the choice of dividing sur-
face influences the applicability of the framework (Sec. VI A),
the expected range of validity of the Nano-EoS (Sec. VI B),
and its application to porous media (Sec. VI C).
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FIG. 16. Internal energy (Eq. (8)) as a function of total density for
the LJs fluid confined in a small spherical cavity with a WCA wall-
potential. The colored full lines represent the Nano-EoS predictions
including curvature corrections while the dashed lines represent the
predictions of the capillary approximation. The gray line shows the
internal energy per number of particles for a bulk system with density
r . The temperature is T = 2.0 and the dividing surface is located at
dwall = 1.

A. Impact of choice of dividing surface

The magnitude of both the planar-wall values and the cur-
vature corrections of the surface excess properties depend on
the choice of dividing surface.58,59 To get more insight on this,
we investigate how the choice of dividing surface impacts the
accuracy of the Nano-EoS. The adsorption computed from
one choice of dividing surface can easily be converted to an-
other, arbitrary choice. We use Eqs. (22)-(26) presented in
Sec. II B 2 to compute the surface excess properties for a di-
viding surface at dwall = 0. This definition of system volume
includes a region close to the walls with very low probability
of being occupied by particles. This is clearly visible from the
density profiles in Fig. 3, which are zero close to the wall for
all system shapes and sizes. As a consequence, the adsorption
becomes negative for the whole density range when dwall = 0.
From Eqs. (22)-(26) it is also clear that the absolute values
of the planar wall contribution and the curvature correction
of all surface excess properties are larger for dwall = 0 than
for dwall = 1. This means that the capillary approximation no
longer provides a satisfactory description of the surface excess
properties.

The total density is also affected by the choice of dividing
surface. Using dwall = 1 is a more convenient choice since it
provides a more realistic representation of the actual region
that the particles are most likely to occupy. This provides
more intuitive results for the adsorption and the total density,

e.g. a density that is closer to the actual density in the vol-
ume occupied by particles. The bulk density, pressure and
total internal energy predicted by the Nano-EoS, however, are
not affected by the location of the dividing surface. Figures
showing all surface excess properties, their curvature correc-
tions, the different internal energy contributions and the pres-
sure for dwall = 0 at T = 2.0 are presented in supplementary
material. Many other choices for dividing surface exist, prob-
ably including more optimal choices than dwall = 1, but we do
not further investigate the choice of dividing surface here.

B. Expected accuracy and range of validity

In the Nano-EoS framework, the effect of confinement is
included in the confined fluid’s internal energy. For ensemble
equivalent systems, the energy state functions for various en-
sembles are accessible from Legendre transformations of the
internal energy. When the energy state function of a system
is known, the full thermodynamic description of that system
is accessible. We therefore expect the accuracy of the pre-
dictions of the entropy, enthalpy and energy state functions
such as Helmholtz energy or Gibbs energy to be comparable
to the accuracy of the internal energy predictions presented in
this work. The intensive properties of the confined fluid de-
pend on the bulk density and the temperature. The accuracy
of the predictions of intensive properties, such as the chemical
potential and compressibility, is therefore expected to be com-
parable to the accuracy of the pressure predictions presented
in this work.

In this work, we consider pure fluids, but extension to mix-
tures is possible. The framework can also be extended to other
geometries by including the appropriate curvature corrections,
line contributions and edge contributions.39 However, if the
interactions between the wall and the particles cannot be ap-
proximated by a smooth potential, more complex shape ef-
fects e.g. inaccessible regions or energetically favored hot-
spots can arise, which are not so easily captured by size and
shape corrections.13 Such complex shape effects only come
into play when the confined system is small enough. This
lower size limit depends on both the inter-particle interactions
and the wall-particle interactions. Other effects that can occur
for very small systems are surface-surface interactions, which
lead to disjoining pressure effects.60 We expect that further
modifications of the framework and methodology are neces-
sary for the Nano-EoS to extrapolate well to these situations.

An alternative framework for thermodynamics of small sys-
tems is the nanothermodynamics developed by Hill.28 Instead
of introducing specific contributions from e.g. the surface
or the curvature, Hill’s formalism provides a general frame-
work for thermodynamics of a system influenced by small
size effects. For confined fluids, the thermodynamic func-
tions suggested by Hill therefore provide descriptions of the
whole system, with bulk and surface combined. A key part
of the derivation of Hill’s nanothermodynamics is that each
thermodynamic ensemble is considered separately. As a con-
sequence, new ensemble-specific properties that are unique to
small system arise. Hill showed how his framework can be
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FIG. 17. Illustration of a fluid (blue) in a porous media (gray). When
local equilibrium is assumed in the REV (red dash), the Nano-EoS
can be used to compute the state of the fluid for the number of par-
ticles, N, and temperature T . In the control volume, the volume of
the confined fluid is the blue region. The surface excess properties
represent to the area corresponding to the interface between the blue
and gray region. The exact values of V and W depend on the dividing
surface.

applied to spherical droplets in vapor in a way that does not
require a dividing surface. By introducing a dividing surface,
the formalism by Hill can be connected to Gibbs’ descrip-
tion.28 A possibility for future work is therefore to compare
Hill’s formalism with the framework presented here. This can
provide further insight into the ensemble-specific properties
introduced by Hill.

C. Use of the Nano-EoS in porous media

For systems with LJs particles in contact with a spherical
surface with a WCA wall-potential at T = 2.0, the functions
for the surface excess properties provided in the supplemen-
tary material can be used directly to predict properties of sys-
tems in equilibrium. A possible application of the Nano-EoS
is to predict thermodynamic properties in porous media. To
explain how the Nano-EoS can be used for this purpose, we
use the porous medium depicted in Fig. 17 as an example.
This example represents a single-component system with a
gradient in thermodynamic properties such as T and r in the
z-direction, but not in the x- and y-directions.

We consider a slab of width Dzi, which we refer to as a rep-
resentative elementary volume (REV). Across the REV, the
gradients in thermodynamic properties are sufficiently small
to invoke the assumption of local equilibrium. Local equilib-
rium in this context means that the thermodynamic properties
of the fluid in the slab can be described by the equations elab-
orated in Sec. II. This includes thermal and chemical equilib-
rium between the fluid, the solid and the surface between these
two phases within the slab. Discussions of criteria for defining
a REV in a porous medium can be found in Refs.61,62

We assume that the average number of particles, Ni, and the
temperature, Ti, inside the slab are available, which is usually

the case for porous media examined by molecular simulations.
After defining the dividing surface between the fluid and solid,
the volume, Vi, and the area, Wi within the slab as well as
the average curvature can be computed. With these variables
available, combined with the assumption of local equilibrium
in the REV, thermodynamic properties such as the local pres-
sure and chemical potential can be computed by using the al-
gorithm described in Fig. 2. Necessary inputs are a bulk-EoS
and a function for the adsorption. Use of the framework as
presented in Sec. II assumes that line and edge contributions
to the internal energy can be neglected. The results shown in
Sec. V indicate that at least for some types of wall-particle in-
teractions, the capillary approximation works well such that
the influence of curvature can be neglected.

VII. CONCLUSIONS

Equations of state (EoS) provide a compact way to describe
the thermodynamic state of a fluid. For bulk systems, the ther-
modynamic state of the fluid can be predicted from an EoS
when the temperature, mass density and composition are pro-
vided. When a fluid is confined in a small enough space, its
properties will deviate from bulk behavior due to the interac-
tions between the fluid particles and the wall. Hence, for flu-
ids under confinement, the impact of the enclosing surface on
the fluid properties must be included in the EoS. In this work,
we have presented a theoretical framework that describes the
thermodynamic state of a confined fluid at equilibrium. The
framework applies to a wide variety of inter-particle interac-
tions, wall-fluid interactions and system geometries, and is in-
dependent of the system’s ensemble. When the underlying
physical description of the fluid is provided, the framework
presented represents an EoS for confined fluids. We refer to
the proposed EoS for confined fluids as the "Nano-EoS". In
the Nano-EoS, the description of the total confined system is
split into a bulk phase and an excess surface phase. The prop-
erties of the bulk phase are provided by a bulk-EoS and the
properties of the surface phase are described by Gibbs’ frame-
work for excess variables. For equilibrium systems, these two
phases have the same temperature and chemical potential. In-
tensive properties of the total system such as chemical poten-
tial and pressure are therefore accessible from the properties
of the bulk phase at rb and T .

We have demonstrated the application of the Nano-EoS for
a LJs fluid in contact with spherical surface with a WCA wall-
potential. For this system, the Nano-EoS predicts values for
the internal energy and pressure nearly within the accuracy of
the values computed directly from MD simulations. Since the
framework is ensemble independent, the energy state func-
tions for any ensemble can be computed from Legendre trans-
formations of the internal energy. Potential applications are
therefore prediction of the properties in control volumes at lo-
cal equilibrium in a larger, non-equilibrium system.

The location of the dividing surface determines the vol-
ume of the system and for curved surfaces, it also deter-
mines the surface area. The magnitude of the surface ex-
cess properties are therefore highly dependent on the choice
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of dividing surface. We have investigated two choices of di-
viding surface, one located at the origin of the wall potential
(dwall = 0) and one located at the collision diameter of the
wall potential (dwall = 1). We found that a dividing surface lo-
cated at dwall = 1 returns lower absolute values for surface ex-
cess properties and their curvature dependence than dwall = 0.
Choosing a dividing surface that gives a small curvature de-
pendence is convenient since it means that properties of highly
curved surfaces can be accurately described by the properties
of a planar surface. In other words, the so-called capillary
approximation becomes increasingly valid.

In the low-density limit, the thermodynamic properties of
a confined fluid with interacting particles approach those of a
confined ideal gas. We have therefore derived exact analyti-
cal expressions for the surface excess properties of a confined
ideal gas. The surface properties of the ideal gas are included
in the Nano-EoS in order to ensure consistent extrapolation
to the low-density limit. However, for confined fluids at low
densities, the ideal gas predictions can also be used as an in-
dependent EoS to predict fluid properties.
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