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Abstract

Topology in condensed matter is an exotic field that can have important implications for quantum

computing. The current implementations of quantum computers suffer from short coherence

times and high error rates. Topological phases are inherently non-local and can provide intrinsic

protection against noise. At the core of the topological qubit is the braiding of Majorana bound

states (MBSs), characterized by non-trivial exchange statistics.

We take a wholesome approach to topological quantum computing and start with a re-

view of topology in condensed matter. Then, we show how the topological qubit that operates

by braiding MBSs can realize standard quantum gates. We summarize the derivation of the

Bernevig-Hughes-Zhang model for spin-Hall insulators, to which we later add superconductivity

and ferromagnetism to serve as a model for a second-order topological superconductor, which we

use for analytical and numerical calculations.

It was shown by Zhang, Calzona, and Trauzettel (Phys. Rev. B 102.10 (2020)) that trian-

gular domains of a second-order topological phase constructed from a spin Hall insulator and

a superconductor by applying a magnetic field will have MBSs bound to two of the triangle’s

corners. Tuning the chemical potential within a limited range moves one of the MBSs back and

forth along the triangle’s diagonal. Assembling the triangles into a larger composite geometry,

it is possible to move the MBSs purely by electrical control.

When the triangular geometry is made concave on the diagonal, the topological gap increases,

which means that the device becomes more robust. Using the numerical solution of a lattice

tight-binding model, we examine the robustness of the triangular and composite geometries by

recording the topological gap for various configurations. We systematically consider the effect of

increasing curvature with and without random edge disorder on the triangles’ diagonals.

We show that a moderate amount of concavity enhances the topological gap, while the larger

concavities reveal significant finite-size effects and a significant probability that the gap closes.

Simulating 1500 lattices with randomly generated edge disorder, we show that weak edge disorder

can enhance the topological gap. For a subset of the generated disorder configurations, the gap

will close. However, in the remaining samples, the gap magnitude is likely to increase significantly.

Thus, the model has a disorder-enhanced topological gap if the subset of configurations where

the gap closes can be isolated and avoided by tuning the model parameters and the geometry.

In the composite geometry, the chemical potentials are controlled separately on each of six

constituent triangles. We transfer the concave edges to the composite geometry and demonstrate

that the favorable characteristics from the isolated triangles are not directly transferable to the

larger geometry due to the geometrical dependence of the second-order topological supercon-

ductor. Tuning the spatial dependence of the model parameters can provide a future path to

transfer favorable characteristics from the triangle to larger networks.

Finally, we have taken a naive approach to implementing a Hadamard gate by stepwise chang-
ing the potentials in the composite geometry. We use weakness in this approach to demonstrate
the importance of examining the transition between adjacent potential configurations in detail.
Some transitions contain the nucleation and annihilation of MBSs as well as hidden exchanges
of MBSs during the process, which are not shown when only coarse steps in the potentials are
considered. When the composite geometry is used to implement a qubit, both phenomena can
be detrimental to the operation of the device and should be avoided.
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Sammendrag

Topologi for faste stoffer er et eksotisk felt som kan f̊a viktige implikasjoner for kvantebereg-

ninger. Måten n̊aværende kvantedatamaskiner implementeres fysisk lider av korte koherenstider

og medførende høye feilrater. Topologiske faser er naturlig ikke-lokale og kan slik gi en iboende

beskyttelse mot støy. Den grunnleggende funksjonen til en topologisk kvantebit er å flette Majo-

rana bundne tilstander (MBTer). Disse kjennetegnes av en ikke-triviell statistikk ved ombytting.

Vi tar her en helhetlig tilnærming til topologiske kvanteberegninger ved å starte med en gjen-

nomgang av topologi i kontekst av faste stoffer. Deretter viser vi hvordan en topologisk kvantebit

som fungerer ved fletting av MBTer kan realisere standard kvanteporter. Vi oppsummerer utled-

ningen av Bernevig-Hughes-Zhang-modellen for spin-Hall isolatorer, og kombinerer modellen med

superledning og ferromagnetisme for å beskrive en annenordens topologisk superleder. Denne

modellen danner utgangspunktet for b̊ade analytiske og numeriske beregninger.

Zhang, Calzona og Trauzettel (Phys. Rev. B 102.10 (2020)) viste at triangulære domener av

en annenordens topologisk fase konstruert fra en spin-Hall isolator kombinert med superledning

og ferromagnetisme vil ha MBTer bundet til to av hjørnene i trekantene. N̊ar det kjemiske

potensialet endres, vil en MBT bevege seg frem og tilbake langs diagonalen p̊a trekanten. Ved

å sette sammen flere triangulære domener til en større geometri er det dermed mulig å flytte

MBTer ved å kun endre det elektriske potensialet.

N̊ar diagonalen til trekantene krummes innover, øker størrelsen p̊a det topologiske b̊andgapet

som betyr at tilstanden er mer robust. Ved å løse en gitter-“tight-binding”-modell numerisk

undersøker vi robustheten av b̊ade de triangulære og sammensatte domenene ved å registrere

størrelsen p̊a det topologiske gapet for ulike konfigurasjoner. Vi undersøker effekten av økende

krumning systematisk, b̊ade n̊ar diagonalen til trekantene er glatt og n̊ar diagonalen er deformert

av tilfeldig uorden.

Vi viser at en moderat krumning av diagonalen i trekantene forstørrer det topologiske gapet,

mens større krumninger gir betydelige endelig-størrelse-effekter og stor sannsynlighet for at gapet

lukkes. Gjennom simuleringer av 1500 gitre med tilfeldig generert kant-uorden viser vi at svak

kant-uorden kan øke det topologiske gapet. I en andel av gitrene lukkes gapet p̊a grunn av uorden.

I de resterende gitrene er det derimot stor sannsynlighet for at gapet forstørres. Modellen har

dermed et topologisk gap som forsterkes av uorden hvis konfigurasjonene hvor gapet lukkes kan

isoleres og unng̊as ved å endre modellparametre og geometri.

I den sammensatte geometrien kontrolleres det kjemiske potensialet separat for hvert av seks

triangulære domener. Vi overfører krumningen av diagonalene i trekantene til kantene i den sam-

mensatte geometrien. Fra dette viser vi at fordelaktige egenskaper fra de isolerte trekantgitrene

ikke kan overføres direkte til den større geometrien. Dette skyldes den geometriske avhengigheten

til annenordens topologiske superledere. Justeringer av geometri og modellparametre kan bidra

til å overføre de fordelaktige egenskapene til et større nettverk.

Gjennom en naiv tilnærming viser vi avslutningsvis hvordan en Hadamard-port kan imple-
menteres i den sammensatte geometrien ved å endre potensialet i ulike domener trinnvis. Vi
bruker deretter svakheter i denne tilnærmingen til å demonstrere viktigheten av å studere over-
gangen mellom ulike konfigurasjoner av potensialet i detalj. For noen overganger observerer vi
utilsiktet nukleering og annihilering, samt skjulte ombyttinger av MBTer som ikke vises n̊ar man
kun betrakter stegvise endringer i potensialet. Dersom den omtalte geometrien brukes til å imple-
mentere en kvantebit kan begge disse fenomenene være skadelige for operasjonen av kvantebiten
og bør derfor unng̊as.
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I love to think of nature as an unlimited
broadcasting station, through which God speaks to us

every hour, if we will only tune in.

George Washington Carver
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Chapter 1

Introduction

The concept of a quantum computer was launched by Richard Feynman in 1982, envisioning
a device that would perform computations by the exact mechanisms as nature itself functions
[1]. Actively exploiting the complexity of large quantum systems to simulate other quantum
systems would pave the way for a wide range of applications, including quantum chemistry and
materials science [2], optics [3], algebra and cryptography [4], and finance [5]. The existence of
such algorithms and the lack of classical algorithms that efficiently simulate quantum systems
demonstrates the potential power of quantum computing [6].

Despite the rich collection of quantum algorithms, quantum computing is limited by the
existing hardware. Small-scale qubit implementations have been demonstrated using supercon-
ducting circuits [7–10], photonic circuits [11], trapped ions [12, 13], spins on nitrogen vacancies
in diamond, [14] and electron spins in Si or Ge [15, 16]. Each physical system has advantages
and disadvantages, but the error rates are generally too high and the number of qubits too low
to perform useful calculations. The general thought is that quantum computers must implement
an error-correction routine on a subset of the physical qubits [6]. That leads to an overhead of
physical qubits being required for a given amount of logical qubits, which are the ones on which
the actual computation is implemented.

Certain specific applications in materials science may find short-term applications, but more
general applications are still far into the future. For example, in the well-known problem of
prime-number factorization to break the standard RSA data encryption, one will need the order
of 15,000 physical qubits [17] to implement quantum error correction while still having enough
logical qubits for the computation. On the contrary, the largest device reported to date has 127
physical qubits [18], clearly illustrating the need for increased scale and maturity in the quantum
computing industry.

The topological quantum computer is an alternative path that promises significant protection
against errors due to the intrinsic properties of the material in which it is realized [19]. While the
physical implementations mentioned above store the qubits locally, the topological qubit stores
the information in quasiparticle states referred to as a Majorana zero mode (MZM) or Majorana
bound state (MBS), and these have non-local properties like their statistical behavior under
exchange. As the noise in quantum systems is usually a local phenomenon, loss of information
due to noise is rare, and the system has intrinsic error protection. While the error rate will still be
finite, it will significantly reduce the number of errors and thus the overhead of physical qubits.
Comparing a topological quantum processor with a non-topological one with the same number
of physical qubits, the topological will have a larger number of logical qubits and, consequently,
enhanced scalability.

However, realizing topological qubits in experiments has proven to be an extremely difficult
task, and experimental reports have been surrounded by significant controversy [20, 21]. The
non-local nature of MZMs and the existence of multiple physical phenomena with very similar
experimental signatures [22] have fueled the controversy. Despite the experimental observation of
some of the expected signatures for MZMs, there is not sufficient rigor in the previous experiments
to conclude unequivocally that the signatures are due to the presence of a topological phase as
compared to other trivial phenomena [23].

As the search for realistic topological qubit platforms continues, we move on to consider a
novel topological qubit platform based on the second-order topological phase in which the spatial
symmetry and geometry of a device play central roles in the emergence of MZMs. Starting with
the proposal of Zhang, Calzona and Trauzettel [24], we examine the robustness of a triangular
geometry numerically in the presence of edge disorder and spatial variations in the chemical

1



2 Chapter 1. Introduction

potential. The model used by Zhang et al., and which we also use here, is expected to model
HgTe quantum wells with proximity-induced superconductivity as well as certain iron-based
superconductors.

In Chapter 2, we introduce topology in condensed matter and consider how topological phases
of matter can be classified after the presence or absence of symmetries1. We then show how the
symmetry-protected topological phases can be characterized by robust edge modes and generalize
the result to the recently discovered higher-order topological insulators and superconductors.
The Dirac equation is introduced and used to calculate the topological invariant for two example
models.

Topological quantum computation is based on highly non-trivial physics. In Chapter 3, we
review how one can perform calculations by braiding exotic non-Abelian quasiparticles and argue
that the topological qubit is computationally equivalent to other qubit implementations2. Central
properties for the non-Abelian anyons are reviewed to provide additional context to the subject.

Chapter 4 introduces the Bernevig-Hughes-Zhang (BHZ) model for quantum spin Hall in-
sulators. We establish the mathematical framework and notation we will in this work, while
providing an outline of the derivations of the BHZ model. We look at how quantum wells
made of HgTe and CdTe will have a band-ordering inversion that eventually leads to robust
edge modes. Furthermore, we review the kp-model used to derive the BHZ Hamiltonian and
emphasize approximations made in the derivations.

Additional background is provided in Chapter 5. We perform a Bogoliubov-de-Gennes trans-
formation where holes are introduced as separate particles as a redundancy in the notation and
argue that introducing superconductivity in the system will couple the electron and hole states.
Finally, we perform a Fourier transform of the BHZ Hamiltonian and show that it corresponds
to a model with nearest-neighbor hopping on the real lattice.

In Chapter 6, we follow the work of Zhang et al. [24] and derive in detail wave functions
for Majorana bound states on the edge of a disc geometry. Some details of the calculations are
found in appendix B. Based on topological properties from Chapter 2, we argue that there will be
four MBSs on the disc boundary and show that their positions depend on the chemical potential.
From the disc solution, we argue that MBSs will be found at the corners of a triangular geometry
by projection and that the MBSs move between different triangle corners by tuning the chemical
potential. We also examine how MBSs on two different discs behave when brought together for
fusion.

A numerical model is presented in Chapter 7 based on the lattice Hamiltonian derived in
Chapter 5. The model is a lattice tight-binding method that we solve for various lattice con-
figurations. In particular, we expand the model of Zhang et al. by systematically examining
the effect of concavity on the diagonal of the triangular lattice and make an assessment of the
device robustness when edge disorder is introduced on the triangle’s diagonal. Assembling six
triangles into a larger structure, MBSs can be braided by electrical control and we show that
the observed characteristics for an isolated triangle can not be transferred directly to the larger
composite geometry. We compute the wave functions for all possible configurations of the chem-
ical potential on the composite lattice and use a naive attempt to perform a Hadamard gate to
demonstrate the emergence of accidental braids and hidden nucleation and annihilation. Finally,
we summarize our findings in Chapter 8.

1 Parts of Chapter 2 and most of Chapter 3 were presented previously in an unpublished student project by
the author and has been adapted to fit the needs of this work.

2See footnote 1.



Chapter 2

Topology in Condensed Matter

Harnessing the power of topological phases in quantum computing starts with certain phases
of condensed matter. A precise definition of a topological phase is that it is a system that,
at long wavelengths and low energies and temperatures, has observable properties that remain
invariant under smooth deformations of the space-time manifold of the system [25]. In other
words, a local perturbation cannot affect the observables of the system as long as the conditions
above are satisfied; the system will remain in a given ground state even in the presence of local
perturbations. The system is thus invariant to adiabatic perturbations of the system. It is
key to the topological characterization that a finite gap separates the ground state from the
lowest excited states. In that case, excitations above the ground state by local perturbations
are exponentially suppressed at low energies. The topological gap is, therefore, central to our
treatment of topological phases.

The non-local nature of topological phases puts them outside the traditional framework for
characterizing condensed phases. The Landau symmetry breaking theory classifies matter in
terms of conservation laws and broken symmetries. A system is described by a local order
parameter where a phase transition is a change in the order parameter resulting from a spon-
taneously broken symmetry. Such a local order parameter could, e.g., be the magnetization
changing from a disordered paramagnetic phase to an ordered ferromagnetic phase by break-
ing spin rotation symmetry. Two topological phases, however, can be distinct even if the local
symmetries are equal [26]. These states are distinguished by topology, and a phase transition is
associated with a change in the topology while the local symmetries are not affected.

Before moving on to a classification of different topological phases, it is helpful to have an
intuitive picture of what topology and topological phase transitions mean. In mathematics,
topology is the characteristic that describes the difference between a sphere and a torus. Locally,
they can not be distinguished, being locally flat. On a global level, the difference becomes
evident in that only the torus has a hole through the middle. A local operator can deform the
two to some extent but never deform one into another without ”tearing” and ”gluing,” which
are considered global operators. The local deformation of the sphere and torus is analog to the
smooth deformation of the space-time manifold that defines topology; the properties remain the
same as long as the operators are local.

In this report, we will focus on topological band insulators (TBI) which includes the topologi-
cal insulators (TI) and topological superconductors (TSC). In that case, the topological quantities
are k-space properties related to the band dispersion in energy and momentum. The topological
phase describes an invariant of the system, i.e., an integer value that does not change by smooth
deformations of the bands. Only by a phase transition where the bulk band gap is closed and
reopened can the system’s topological invariant change. Hence, when the gap is sufficiently large,
the topological state of the system is topologically protected.

2.1 Topological Classification
Topological phases comprise a considerable landscape of phases among which the TBIs are

a relatively small subset. Referring to the treatment of Stanescu [26], we briefly review this
landscape, both as a means to put the work on topological quantum computation into a greater
context and to emphasize some central properties of the TBIs. The first distinction of topolog-
ical phases is between phases that possess intrinsic topological order (sometimes referred to as
topologically ordered phases) and those with symmetry-protected topological (SPT) order. The
defining property of topologically ordered phases is long-range entanglement. They have degen-
erate ground states and bulk excitations with fractional charge and quantum numbers. Systems

3



4 Chapter 2. Topology in Condensed Matter

displaying this behavior are strongly interacting systems; materials with the fractional quantum
Hall effect belong to this class. Topologically ordered phases are protected against arbitrary local
perturbations of the Hamiltonian as long as the system remains in its ground state protected by
the topological gap.

On the fundamental level, condensed matter consists of ions and electrons. Considering
that the bulk excitations in topologically ordered phases can have fractional charges, one might
suspect that these excitations are not local. Instead, they are superpositions of the fundamental
excitations and non-local by nature. Changing the state of the system requires an infinite product
of local operators. Thus, the system has a long-range order even though the local operators do
not show long-range correlations.

The SPT phases are characterized by short-range entanglement and are topologically non-
trivial only in the presence of certain symmetries, hence the name. The ground state is non-
degenerate and such phases are found in both interacting and non-interacting systems. Like
the topologically ordered phases, SPT phases are robust against adiabatic deformations of the
Hamiltonian. However, the robustness only holds for perturbations that preserve the symmetries
of the system. Another important distinction is that SPT-phases do not have fractional excita-
tions in bulk. Instead, the topological properties are found on boundaries between phases with
different topologies. This class of SPT phases is where we find, e.g., the quantum Hall insulator
(QHI) and quantum spin Hall insulator (QSHI).

For the sake of topological quantum computing, both topologically ordered and SPT phases
can, in principle, be used, and there exist suggestions for both [25, 27]. However, the approach
that has received the most attention is one making use of the quasiparticles known as Majorana
fermions that can exist on the boundaries of a TSC. When these are braided around each other,
they exhibit the fractional statistics characteristic for the topological phases, and their non-trivial
exchange statistics is the mechanism used to implement topological quantum computation.

As said, the topological physics in SPT-phases are contained in the boundary modes. As the
last entry in our brief classification, we will consider non-interacting topological phases. For in-
teracting phases, the interactions can lead to the emergence of new phases, merge existing phases
and give new boundary physics, and there is currently no unified classification of these. Here,
we focus on non-interacting TBIs, which are classified based on simple symmetry arguments.
For the latter, we can use the presence of robust boundary modes to characterize the topolog-
ical properties of the system equally well as using bulk properties. The connection between
the bulk topological properties and robust edge modes is what is known as the bulk-boundary
correspondence.

At first, treating superconductors and insulators in the same manner under the class of TBIs
may appear counter-intuitive. Superconductors have excitations that are fermionic Bogoliubov
quasiparticles, while the TI has electrons and holes as excitations. However, the key is that both
are gapped phases, and despite the different nature of the gaps, they are both sufficient to define
topological properties.

2.1.1 Topological Band Insulators

Topological insulators are materials with an insulating bulk, but metallic surfaces or interfaces
due to the mentioned boundary modes [28]. For a trivial (i.e., “non-topological”) band insulator,
we can imagine that we create a surface where there is an odd number of broken bonds per unit
cell. As a result, there will be half-filled bands and, therefore, a metallic state at the boundary.
In reality, the metallic state is rarely stable and may be easily destroyed by chemical reactions
with, e.g., hydrogen or water molecules or by pairing up with other broken bonds. Contrarily,
a topological insulator has metallic surface states that are“topologically protected” due to their
bulk properties; the stability is independent of interactions with the environment or surface
orientation. We will see this by considering an argument presented in Ref. [28].

By the bulk-boundary correspondence of TIs, we know that the presence of boundary modes
is somehow related to the material’s bulk properties. The origin of the stability of the metallic
surface states is indeed rooted in the bulk band structure. Assume we create a junction of two
slabs of some material; the energy bands will be joined according to the symmetry of the wave
functions. Explicitly, bands derived from s-type orbitals from one material will form bands with
the s-type bands from the other, and likewise with other symmetries. What distinguishes the TI
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from other band insulators is that it has an inverted band gap, i.e., the symmetry properties of
the conduction band (CB) and valence band (VB) are opposite of the trivial phase. In joining a
trivial and a topological insulator, the valence band on the trivial side will join the conduction
band on the topological side since these bands have the same parity, e.g., both are s-like bands
or both p-like bands. Likewise, the trivial insulator’s conduction band joins the topological
insulator’s valence band. The result of such a junction is shown in Fig. 2.1 with HgTe/CdTe
quantum wells as example material.

Figure 2.1: Illustration of the band inversion and resulting boundary modes for a HgTe/CdTe
quantum well of width L. CdTe has normal band progression with an s-type CB and p-type
VB while HgTe has the inverted band structure with a p-type CB and s-type VB. The bands
are drawn with red and green lines according to the parity of the bands. In proximity to the
junctions, the bands cross, and there will be metallic modes on the boundary while the bulk is
still insulating.

Due to the band inversion, the bands must cross through the Fermi level in the junction areas.
These crossings are exactly the robust boundary modes announced above, and it is clear that
small perturbations of the system cannot simply remove the metallic boundary modes. They
are protected since they rely on the bulk band structure of the material and cannot be removed
unless a perturbation is applied that is large enough to close the insulating gap in the center
region and reopen it with normal ordering. Moreover, the result also holds when the trivial
insulator is exchanged with air or the vacuum, being an insulator with stable metallic surface
states. The reason for using a quantum well in this particular case is that HgTe is a zero-gap
semiconductor and the spatial confinement is necessary to open a bulk insulating gap.

2.1.2 Symmetry Operations

We have limited the scope of topological phases to the non-interacting TBIs, which have a
complete classification according to three different symmetries. The presence or absence of these
symmetries will put a phase into a specific class, accompanied by topological numbers, and we
will see that only some combinations of these symmetries support topological phases.

Since we are looking for features that are robust against disorder, we consider phases that do
not depend on having translational symmetry; impurities that break the translational symmetry
would be detrimental to the topological properties. The Altland-Zirnbauer classes [29, 30] is a
ten-fold classification of systems possessing combinations of time reversal (T ), charge conjugation
(C), and chiral (S = CT ) symmetries and we now examine how each of these is used to classify
TBIs.

Time Reversal Symmetry

Following [31], time-reversal symmetry (TRS) is a discrete symmetry that reverses the direc-
tion of time,

T : t→ −t, (2.1)

which means that operating on the position operator leaves it unchanged, T x̂T −1 = x̂. On the
other hand, applying time reversal (TR) on the momentum operator will flip its sign T p̂T −1 =
−p̂. Through the commutator [x̂, p̂] one finds that T iT −1 = −i. In general, T can be written as
a unitary matrix U , and the conjugation operator, K as T = UK and is an antiunitary operator.
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A time-reversal invariant (TRI) Hamiltonian must be equal to its complex conjugate

T : U†
TH

∗UT = H (2.2)

up to some unitary rotation UT . Applying TR twice should leave the system invariant up to a
phase factor U∗

TUT = ±1, so T 2 = ±1.
For a system with total integer spin, one can choose T = K without loss of generalization

and get T 2 = 1. TR flips the spin for half-integer spin systems since it is a momentum, so the
TR operator must be different from the spinless (or integer spin) case. The convention is to use

T = −isyK (2.3)

where sy is the Pauli matrix in spin space. TR then corresponds to rotating the spin by π around
the y-axis, and, as a result, T 2 = −1. In a TRI system,

[H, T ] = 0, (2.4)

which means that an eigenstate |ψ⟩ at energy E must have a TR partner eigenstate T |ψ⟩ at
the same energy. For a spin- 12 system, it is then possible to show that an eigenstate |ψ⟩ and
its time-reversal partner T |ψ⟩ are orthogonal, making the spectrum doubly degenerate. This
double degeneracy for spin- 12 systems is known as Kramers’ theorem.

Particle-Hole Symmetry

The second important symmetry for the classification of TIs and TSCs is the particle-hole
symmetry (PHS), also called charge conjugation symmetry and denoted C. The rest of this
section is based primarily on [26, ch. 5]. C transforms a particle into its antiparticle by changing
the sign of the particle charge. It is an approximate symmetry in condensed matter systems
(contrary to particle physics) that can arise between, e.g., electrons and holes and holds only
within a certain energy range. PHS is intrinsic to superconductors when treated in the mean-field
theory regime, as seen in the following.

The mean-field Hamiltonian for s-wave pairing, the Bogoliubov-de Gennes (BdG) Hamilto-
nian, is

H =
1

2
Ψ̂†HBdGΨ̂ (2.5)

where

HBdG =

(
H0 −isy∆
isy∆

∗ HT
0

)
(2.6)

and the field operator is defined by

Ψ̂ =
(
ψ̂†
↑ ψ̂†

↓ ψ̂↑ ψ̂↓

)
, (2.7)

also known as the Nambu spinor. ∆ is the pair potential. The BdG theory now has a particle-hole
redundancy in that an eigenfunction Ψ at some energy E > 0 has a corresponding eigenfunction
τxΨ at −E where τx is the Pauli matrix acting in particle-hole space.

In a similar manner to TRS, charge conjugation symmetry requires that

C : U†
CH

∗UC = −H (2.8)

and C2 = U∗
CUC = ±1. The operator can be expressed as C = τxK which indeed squares

to C2 = 1. If the system has SU(2) spin symmetry, i.e., the spin polarization is conserved,
C can be expressed as C = iτyK which squares to C2 = −1. Thus, both the TR and charge
conjugation operators are anti-unitary operations that square to ±1 depending on the properties
of the system. If the system is translationally invariant, PHS implies an energy spectrum being
symmetric about zero, E−(−k) = −E+(k) while TRS implies a spectrum symmetric in k,
E(k) = E(−k) for half-integer spin systems.

Chiral Symmetry

By combining TRS and PHS to S = T C, a third unitary transformation arises, namely, a
chiral or sublattice symmetry. S is, however, not strictly speaking a symmetry since it anti-
commutes with the Hamiltonian. S always squares to +1 and implies a symmetry E−(k) =
−E+(k). A chiral symmetry can only be present when the system either has both TRS and PHS
or neither of the two.
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Altland-Zirnbauer Classes

With the three symmetries, there are ten classes for the generic Hamiltonian. TRS and PHS
can be present and square to ±1 or be absent (= 0), leaving nine classes. In addition, there can
be a chiral symmetry when both of the other two symmetries are absent, which defines the last
class. The classification of Altland-Zirnbauer (AZ) is listed in table 2.1 along with the topological
invariants that are supported in a subset of spatial dimensions. If a phase has a Z topological
invariant, it can take on any integer value by, e.g., counting the number of edge channels in a
finite geometry. In that case, there is an infinite amount of topologically distinct phases. The
Z2 invariant is a binary classification, i.e., it can only take on values 0 and 1; either non-trivial
edge modes exist or not.

Higher spatial dimensions can be relevant in cases where the Hamiltonian depends on external
parameters that change adiabatically and are interpreted as additional momentum components.
It suffices to consider dimensions 0 to 8 since the pattern will repeat itself for higher dimensions.
For each spatial dimension, there are precisely five distinct symmetry classes [32].

Table 2.1: The Altland-Zirnbauer classification for symmetry classes based on time-reversal
symmetry (T ), charge conjugation symmetry (C) and chiral symmetry (S). Qd denotes the
topological invariant for a system in d spatial dimensions. Empty fields means that the ground
states of the system are all topologically trivial. Adapted from [26, tab. 5.1, 5.3].

Class T 2 C2 S2 Q0 Q1 Q2 Q3

A 0 0 0 Z Z
AIII 0 0 1 Z Z
AI +1 0 0 Z
BDI +1 +1 1 Z2 Z
D 0 +1 0 Z2 Z2 Z

DIII -1 +1 1 Z2 Z2 Z
AII -1 0 0 Z Z2 Z2

CII -1 -1 1 Z Z2

C 0 -1 0 Z
CI +1 -1 1 Z

Considering the complete classification of topological phases, the localized zero-energy modes
of interest are only present in a small subset, most commonly in the class D TSC, where the
chiral p-wave superconductor is found. In addition, similar non-trivial zero modes are found in
classes DIII, BDI, and CII, with somewhat different properties corresponding to differences in
the symmetries of the system [33]. The DIII class, e.g., has a four-fold ground state degeneracy
and spinful zero modes, while class D has spinless zero modes. Nevertheless, one cannot simply
pick any topological material and expect it to be useful for a topological quantum computer.
Instead, a material system must be chosen carefully to produce the desired physical phenomena.

2.2 Non-Trivial Edge Modes
In topological quantum computing, energetically isolated and spatially localized zero modes

are of great interest, and it is necessary to find a tool to determine whether these can exist in a
given system. The AZ-classes in table 2.1 turn out to be exactly what we need. In the simplest
case, for a TBI of dimension d, we can make a topologically protected boundary mode in (d− 1)
dimensions by introducing a domain wall where the sign of the mass changes. An example is
finite-length 1D TSCs where 0D, i.e., point-localized, gapless modes are hosted at the ends of a
nanowire [34, 35].

In addition to the (d − 1)-dimensional boundary modes, there are two other approaches to
achieving non-trivial localized modes. The first is modes bound to defects like, e.g., vortices
being point defects in TSC thin films [36]. If we let δ be the dimension of the defect, then the
defect can host topologically protected boundary modes if the phase with the same symmetries
in (δ + 1) dimensions is topological [32]. Phrased differently, the δ-dimensional defect can have
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Figure 2.2: Table of higher-order TIs and TSCs. In 1D (d = 1) there is only a first-order
(n = 1) phase with the possibility of non-trivial end-modes. In 2D, there are both first and
second-order phases; the former has propagating edge modes, and the latter has localized corner
modes. Depending on the symmetries of the system, the edge modes can be spin-polarized
(Chern insulator) or TRI with opposite spins traveling in opposite directions (QSHI). In 3D,
the first-order modes are ”face”-modes. The second-order modes can have a range of different
configurations depending on the system symmetries, and two different examples are shown. 3D
third-order TBIs can have corner modes on all or a subset of the material corners. Figure adapted
from Refs. [40, 41].

protected boundary modes only if the defect can be regarded as a boundary mode of a non-trivial
(δ + 1)-dimensional system. Whether that is the case is found from table 2.1. Vortex defects
(δ = 0) can, e.g., have protected boundary modes in all symmetry classes that have non-trivial
Q1, i.e., 1D topological invariant. The most common example is symmetry class D, for which
MZMs are hosted at vortices in the 2D (px + ipy)-pairing superconductor.

In addition to MZMs bound to mass domain walls in 1D TSCs and at vortex defects in 2D
TSCs, it was shown recently [37–39] that MZMs can be hosted at the corners of a higher-order
topological superconductor (HOTSC) or in more general terms, an n-th order TBI has gapless
modes on (d − n)-dimensional boundaries as sketched in Fig. 2.2. The first-order 1D TBI is
the nanowire where the end modes are MZMs in class D. The first-order 2D TIs include the
Chern insulator and QSHI; we will use the former to demonstrate the Dirac Hamiltonian and
topological numbers in the next section and the latter also as part of our model for a second-order
topological superconductor (SOTSC) used for topological quantum computation.

Intuitively, a SOTSC can be understood by regarding the 1D boundary of a 2D TSC as a
gapped non-trivial phase. By introducing a different gapping mechanism on adjacent edges, the
corners behave as mass domain walls between different edges, and we end up with corner modes
[42]. Such a non-trivial gapping mechanism can be caused by a k-dependent superconducting
pairing like the s± pairing suggested for iron-based superconductors [43], antiferromagnetic layers
oriented along specific directions [44] or by designing the geometry and spatial symmetries of the
system [45].

Just like phase transitions from the trivial to first-order topological phases are accompanied
by the closing and reopening of the bulk gap, the transition to an n-th order topological phase
is accompanied by the closing and reopening of the gap of the (d−n+1)-dimensional boundary
[37]. In some sense, the edges of a TBI behave as separate systems that can themselves undergo
topological phase transitions, but a phase transition to a higher-order phase may still depend on
the closing and reopening of the gap in the bulk material.

In the higher-order TBIs, the number and position of boundary modes will depend on both
geometry and symmetry [42] providing new degrees of freedom in device design. Consider, e.g.,
the corner modes in a square 2D second-order TSC (SOTSC) with a uniform superconducting
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gap. An in-plane Zeeman field parallel to one of the edges gaps the edges perpendicular to the
field, while the other two edges remain unaffected and maintain the SC gap. Since the nature
of the gap changes between Zeeman and SC on all four corners, there are correspondingly four
corner modes. On the other hand, in a 2D TRI TSC where the SC gap has opposite signs at
inversion-symmetric points, an in-plane Zeeman field results in an effective mass that changes
sign but only on two of the corners, yielding only two corner modes.

2.3 Dirac Equation
In the mathematical treatment of topology in condensed matter, and specifically the TBIs,

the Dirac equation (DE) is a central and recurring model due to several reasons: Many TIs
have spin-orbit coupling (SOC) and the form of the non-relativistic DE conveniently describes
interactions of spin, momentum and external fields. As a function of the parameters in the DE,
we can assess when and for which parameters a material phase is trivial and topological [46].

Secondly, the structure of the Dirac Hamiltonian is the same as for 3D TIs and QSHIs.
The description of electrons and positrons in the original high-energy theory is equivalent to
the description of quasiparticle electrons and holes in the valence and conduction band of the
condensed phase. Thirdly, developing an effective low-energy Hamiltonian with k · p-theory or
an effective Hamiltonian in the proximity of a topological phase transition often results in a
Hamiltonian of the same form as the Dirac Hamiltonian.

The general mathematical formulation of the Dirac equation is

H = cp ·α+mc2β (2.9)

using c for the speed of light, p for momentum, and a mass m. α is an array of matrices αi

which together with the matrix β satisfy

{αi, αj} = 0 {αi, β} = 0 α2 = β2 = 1. (2.10)

For one- and two-dimensional models, we need two and three matrices, respectively, to satisfy
these relations according to the dimension of p. That requires matrices of dimension at least
2 × 2. Since the Pauli matrices σx, σy, σz satisfy the anticommutation relations, these will be
the obvious choice for the lower-dimensional systems. For 3D models, one needs at least four
independent matrices, meaning that αi and β must be at least 4 × 4 matrices. Still, one may
express the larger matrices as Kronecker products of the Pauli matrices, e.g., αi = σx ⊗ σi and
β = σz⊗σ0, using the notation σ0 for the 2×2 identity matrix. In that case, the system has four
bands, and the different Pauli matrices act in two different spaces, e.g., the spin- 12 and two-level
orbital space.

Using the anticommutation relations (2.10) we can easily obtain the energy eigenvalues by
squaring the Dirac Hamiltonian (2.9) where we get

E2 = c2p2 +m2c4 ⇒ E = ±
√
c2p2 +m2c4 (2.11)

describing the energy states of a particle and antiparticle. The spectrum has a gap with mag-
nitude 2|m|c2 for non-zero m. In the Dirac Hamiltonian, we also have that if the mass has the
opposite sign, the Hamiltonian remains invariant by letting β 7→ −β, still satisfying the anti-
commutation relations, so the theory does not distinguish topologically between positive and
negative masses. As the negative and positive mass equations are unitarily equivalent, we need
an additional vacuum benchmark to identify which phase is the non-trivial one.

Alternatively, we can add a quadratic correction −Bp2β to the theory where B is a constant
with unit inverse mass. It acts as a rest mass and breaks the mass symmetry in the DE so that
we can identify the topological phase without the vacuum benchmark. We will see below how
this plays out in two common model systems. With the correction, the Hamiltonian reads

H = vp ·α+
(
mv2 −Bp2

)
β (2.12)

where the additional term breaks the mass symmetry. When m changes sign, changing the sign
of β gives a different DE due to the quadratic term.
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In geometries with boundaries breaking momentum conservation, the momentum operator
perpendicular to the boundary is exchanged with the differentiation operator −iℏ∂i for the
appropriate direction i ∈ {x, y, z}. In lower-dimensional systems, we take the momentum to
have the dimension of the system, i.e., pz = 0 in a 2D system. We also note that in condensed
matter systems, the velocity is not the speed of light but some quasiparticle velocity v in the
material.

2.4 Topological Invariants
We have mentioned the existence of topological invariants and stated that they are numbers

that do not change under smooth deformations of the Hamiltonian. Due to the bulk-boundary
correspondence, the invariants can be derived from both the bulk properties and the edge modes.
The theory of topological invariants is itself a large subject with a range of different methods,
and we limit this treatment to more general ideas in addition to calculating invariants for the
Chern insulator and QSHI. More elaborate treatments are found in, e.g., [31, 46].

A topological number is a stable and robust quantity that can not change unless the bulk gap
is closed and reopened. The implication is the following: assume we have two material phases
and want to know whether they are topologically distinct. If we can deform the bands of one
phase into the other while maintaining the symmetries of the system, the phases are topologically
equivalent if the band gap does not close along the path.Moreover, if we can deform the bands
into the atomic insulator, i.e., where the material is simply a collection of isolated atoms, without
closing the band gap, the phase is topologically trivial.

Based on the DE, there is a simple way to see whether we have a trivial or topological phase.
If we interpret the αi and β as spins, then looking at the coefficients will tell the orientation of
the spin. We express the Hamiltonian now as

H = d1(k)α1 + d2(k)α2 + d3(k)β (2.13)

where the di’s form a vector
d =

[
vkx vky mv2 −Bk2

]
. (2.14)

If this vector winds around itself through the Brillouin zone (BZ), the phase is non-trivial and
otherwise trivial as is shown in Fig. 2.3. We see that When mB > 0, the spin rotates 2π moving
from −∞ to p = 0 and to ∞ again along kx, while this rotation does not occur for mB < 0.
That shows that the two phases are topologically distinct and exemplifies how the topological
number can be understood in terms of a winding number.

(a) Topological phase, mB > 0. (b) Trivial phase, mB < 0.

Figure 2.3: The figure shows d(kx, ky = 0) as defined in eq. (2.14) and centered around kx = 0.
Parameters are v = 2.5, B = 0.5 and m = ±0.5. When m and B have the same sign, d winds
an angle 2π (if continuing to infinity), while the trivial phase tilts slightly before it straightens
up as kx tends to infinity.

There are many topological invariants and which one describes a given system depends on
the symmetries that are present. Perhaps the most famous is the Chern number or the integer
Hall conductance that can take on any integer value. Explicitly, it is given by

σxy =
e2

h

1

2π

∫
dkFxy (2.15)

where Fxy is the Berry curvature which for the Hamiltonians we consider here is

Fxy =
1

2
ϵabcd̂a∂xd̂b∂yd̂c. (2.16)

The integration in eq. (2.15) is then integrated over the filled bands and all k. It is assumed

summing over repeated indices with ϵabc being the Levi-Civita tensor, d̂i = di/d, and d = |d|.
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Since d is given by the system model, we then have a method to determine which phase the

system is in. σxy = 0 corresponds to the the trivial phase, while any integer multiple of e2

h is a
separate topological phase.

2.5 Chern Insulator

To see the topological significance of the Dirac Hamiltonian, we will consider a specific model,
i.e., the Chern insulator which can have integer Hall conductance. It is described by a two-band
continuum Hamiltonian

H(k) =
∑
i

di(k)σi (2.17)

where σi are the Pauli matrices in spin space, and the coefficients di are the components of the
vector

d =
[
kx ky m

]
. (2.18)

The energy spectrum is

E =
√
k2x + k2y +m2 (2.19)

and has a gap of magnitude 2|m| wherem is a constant mass term. The spectrum is gapless when
m = 0, indicating that there may be a topological phase transition as m moves from negative to
positive.

All the Pauli spin matrices are odd under TR so the system is TRI if d satisfies

di(−k) = −di(k) (2.20)

which of course is only true in our model when m = 0. For m = 0, the gap closes, in which case
the Chern number also vanishes. Thus, we must have m ̸= 0 to have a topological phase.

In appendix A we start from eq. (2.17) and show that the Berry curvature has the specific
form of eq. (2.16) and find an expression for the Hall conductance σxy. Here we only repeat the
result

σxy =
e2

h

sgn(m)

2
, (2.21)

i.e, one-half of the conductance quantum. Taking this value for the true Hall conductance
of the system is an unphysical result since it is determined by the microscopic details of the
model. Neither should this value be surprising because, as we stated in the previous section, one
cannot distinguish the topological properties without either a quadratic correction that breaks
the mass symmetry of the DE or an additional vacuum benchmark. Moreover, moving from the
continuum to a lattice model will also allow the calculation of the true Hall conductance but will
make analytical calculations much more involved.

Calculating the Hall conductance from the continuum model, we do not get the actual value,
but we still obtain how the Hall conductance changes when moving through a topological phase
transition. The reason is the properties of the continuum model, which only captures a “half
fermion” compared to the lattice model. Comparing the continuum and lattice Hamiltonian, the
bands of the lattice version “bend down” away from k = 0 and contribute another “half fermion”
to the Hall conductance as illustrated in Fig. 2.4. To get the correct integer Hall conductance,
one must add a specific number of massive “spectator” fermions to the model [47]. These are
high-energy modes that are not affected by the topological phase transitions. If we know the
system’s state before a phase transition, we can find it after the transition by calculating the
change in the Hall conductance. It is possible to find the number of spectator fermions in the
model explicitly [47], but it suffices, for now, to use the continuum model around the transition
points along with adiabatic continuation from the vacuum. The vacuum is always trivial, so if we
deform the band structure from the vacuum into our actual model while calculating the change
in the Hall conductance each time the band closes and reopens, we can determine the true Hall
conductance of the system.

It remains to find when the topological phase transitions occur. As the the topological field
theories are low-energy theories, it is reasonable to believe that a lattice model that reduces to
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Figure 2.4: Illustration of the energy spectrum for the Chern insulator in eq. (2.19). Empty
conduction band (grey), lattice valence band (red and blue) from eq. (2.22), and continuum
valence band (green) from eq. (2.18). In the continuum model, calculating the Chern number

only captures half a fermion (σxy = ± 1
2 in unit e2

h ), i.e., the blue part. In the lattice version, the
bands bend upward (red) and add another half fermion, yielding an integer Chern number. The
half-fermion in the high-energy regime (red) is called a spectator fermion; upon a band closing
transition, only the low-energy part is affected while the spectator fermion remains in the same
”state.” Figure adapted from Ref. [48].

the DE for small k would have the same non-trivial physics. Such a Hamiltonian can, e.g., be
described by

d =
[
sin(kx) sin(ky) B(2 +m− cos(kx)− cos(ky))

]
. (2.22)

The gap closes at four points (kx, ky,m) = (0, 0, 0), (π, 0,−2), (0, π,−2) and (π, π,−4). Ex-
panding the lattice Hamiltonian around these four points and calculating the change in Hall
conductance gives two regions for m where the Hall conductance is finite.

2.6 Spin Hall Insulator
The second model we consider is the QSHI described by the Hamiltonian

H(k) =

[
H(k) 0
0 H∗(−k)

]
(2.23)

where H(k) is the DE with

d =
[
Akx Aky M −B

(
k2x + k2y

)]
(2.24)

which has the form of the Chern insulator with a quadratic correction. Since the two blocks of
the Hamiltonian are decoupled, i.e., one Dirac Hamiltonian for each spin, we can simply perform
the calculations separately and add the results (see appendix A). There are two key differences
compared to the simple Chern insulator. First, the quadratic correction means that we do not
need the vacuum benchmark and can calculate the Hall conductance directly. Secondly, the
Hamiltonian has TRS built into it since the two blocks are TR partners, T −1H(k)T = H∗(−k).
Since the two blocks then get Hall conductances of opposite sign, the QSHI will always have zero
Hall conductance.

Despite the vanishing Hall conductance, we can still use the result to characterize the QSHI.
Instead of adding up the result for the two blocks, we define a new topological number, the spin
Chern number or spin Hall conductance, as the difference between the Chern numbers for the
two spin blocks. The result is a topological number

Cspin =
1

2
(sgn(B) + sgn(M)) (2.25)

that takes on values Cspin ∈ {0, 1}. We can compare this with the AII class in table 2.1 for the
spinful TRI insulator and see that it is indeed characterized by a Z2 invariant as shown.
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Topological Quantum Computation

Topological quantum computation operates on very different physical principles than other
quantum computers in the way information is stored non-locally in topological properties. Never-
theless, one can show that performing computations via braiding of MZMs is equivalent to other
implementations because one quantum system can be simulated efficiently by another quantum
system [49, 50]. In this chapter, we review the mode of operation of a topological quantum com-
puter to clarify what we mean by “braiding” and “non-local properties”, and emphasize some
essential properties of the MZMs that form the basis of the physical implementation.

First, we establish the fundamental constituents of a general quantum computer based on the
work of Nielsen and Chuang [51]. From the information science perspective, the fundamental
building block of a quantum computer is the qubit. In the same manner that a classical com-
puter operates on bits with values of either ”0” or ”1”, a quantum computer operates on two
quantum states, |0⟩ and |1⟩, together forming a qubit. Contrary to their classical counterparts,
the quantum states can be in a superposition

|ψ⟩ = α |0⟩+ β |1⟩ (3.1)

for some complex amplitudes α and β. According to the fundamental rules of quantummechanics,
qubit state read-out is performed with a measurement that collapses the superposition into either
of its constituents, i.e., |0⟩ or |1⟩. At first sight, this fact may appear detrimental to performing
any calculations; it is, however, sufficient to perform a calculation multiple times, and then the
outcome will yield |0⟩ with probability |α|2 and |1⟩ with probability |β|2. The advantage is
maintained as long as the measurements are performed in a proper way.

Operating on a single qubit is not very useful, and the true quantum advantage appears when
multiple qubits are combined. Looking first at two qubits, the resulting superposition is

|ψ2⟩ = α |00⟩+ β |01⟩+ γ |10⟩+ δ |11⟩ (3.2)

which now has four complex amplitudes (the states are written in a compressed notation |mn⟩ ≡
|m⟩ ⊗ |n⟩). The general extension to N qubits is 2N amplitudes, whereas a classical computer
can only store N numbers (restricted to either ”0” or ”1”). The large number of amplitudes
stored in a small number of qubits reveals the real power of quantum computers; 270 qubits will
store more amplitudes than the number of atoms in the observable universe [52]. The next step
is to recognize that operations on the superposition of qubits perform a calculation on all the
2N components simultaneously, a phenomenon called Quantum parallelism [53]. On the other
hand, a classical computer would make the calculations sequentially for every component, making
obvious the potential advantage of quantum computers.

Running an algorithm on a quantum computer requires more than qubits. A quantum circuit
is comprised of several qubits along with quantum gates that manipulate the qubits. A gate
operating on one qubit is called a single-qubit gate and can be represented by a 2x2 matrix. For
each constituent of a state, the amplitude squares to the probability for that state; summing
the probabilities for all constituents must be unity. The result is that the gate matrix must be
unitary (U(2)), corresponding to an arbitrary rotation in the {|0⟩ , |1⟩} basis.

In addition to the single-qubit gate, one needs at least one two-qubit gate (entangling gate)
to perform universal quantum computation, i.e., implementing arbitrary quantum algorithms.
As the name says, the two-qubit gate operates on two qubits, e.g., by doing a conditional bit
flip on one qubit depending on the state of the other. Furthermore, universality does not require
a continuous set of gates as one may expect. With only a small subset of gates satisfying
certain requirements, one can always make an arbitrarily good approximation to any unitary

13



14 Chapter 3. Topological Quantum Computation

gate [54]. This fact is fortunate since the topological gates based on braiding of MZMs are
discrete operations, and it does not make sense to speak of, e.g., fractional rotations.

3.1 Abelian Anyons

Topological quantum computation is implemented using quasiparticles called non-Abelian
anyons, and we will now take a closer look at what defines these particles and their statistical
behavior. Physically, the non-Abelian anyons can be the localized boundary modes, i.e., Majo-
rana zero-modes, that we discussed in section 2.2. To provide a better intuitive understanding,
however, we first look at Abelian anyons.

In quantum mechanics, the fundamental particle types are bosons and fermions, differing in
the symmetry of the wave function and statistics under exchange. Interchanging two fermions
gives a phase factor eiπ = −1 while bosons gets a factor ei2π = 1. In (3+1)D, i.e., three spatial
dimensions and time fermions and bosons are the only possible excitations as long as we impose
some fundamental requirements like localization and the ability to create, merge and annihilate
particles [55]. As we shall now see, anyons are particles in (2+1)D exhibiting exchange statistics
that are neither fermionic nor bosonic.

The existence of anyons was first demonstrated theoretically by Leinaas and Myrheim in 1977
[56]. Considering a many-body system of indistinguishable particles, they showed that in (2+1)D
and (1+1)D, there is a global topological property that allows anyons to exist. When exchanging
two anyons, they acquire a phase factor eiθ where θ is any phase except 0 or π, which are the
bosonic and fermionic cases; hence, the name ”any-on” is used to describe these particles [57].

Intuitively, the difference between the (3+1)D and lower-dimensional systems can be un-
derstood by the double exchange of two particles as illustrated in Fig. 3.1. In three spatial
dimensions, adiabatically encircling one particle by another is topologically equivalent to the
zero-path, i.e., doing nothing. The path can always be lifted above the plane and shrunk to a
single point. Interchanging the two particles can thus only give a phase factor ±1, which squares
to unity under double exchange. These phase factors are, of course, the fermionic and bosonic
statistics.

Figure 3.1: Illustration of how interchanging two particles twice, or equivalently braiding one
around the other, can impact the wavefunction in two and three spatial dimensions. In (3+1)D,
the path can always be lifted using the third dimension (here ẑ) and compressed to a single point.
In (2+1)D, the particles are restricted to the plane, so encircling one particle with another is not
equivalent to the zero path.

For (2+1)D, the situation is qualitatively different. Since the encircling path is restricted
to the plane, the encircling path is topologically different from the zero path. Shrinking the
encircling path would require cutting through the other particle which is not physically allowed.
This winding of one particle around another is non-trivial in (2+1)D and the system can acquire
a phase factor eiθ that is not restricted to fermionic or bosonic. A double exchange

ψ(r1, r2) → eiθψ(r2, r1) → e2iθψ(r1, r2) (3.3)

leaves an arbitrary phase factor e2iθ by interchanging particles twice which need not square to
unity in (2+1)D.



3.2. Non-Abelian Anyons 15

3.2 Non-Abelian Anyons

The existence of anyonic particle statistics might be a surprising result, but topological quan-
tum computation relies on even more exotic particles, namely, the non-Abelian anyons. Under
exchange, these will not only acquire a non-trivial phase but be transformed by “any” uni-
tary matrix. The central property is that matrices do not commute; thus, the order by which
exchanges are performed becomes important. We refer to Ref. [25], to review the central charac-
teristics of the non-Abelian particle statistics and how these properties can be used in quantum
computation.

Assume we have an ensemble of N non-Abelian anyons and look at how they evolve with
time. The braid group BN is the set of trajectories that the non-Abelian anyons can follow with
the progression of time. The standard visualization represents each particle by a “world line,”
which shows the position at any given time. Fig. 3.2 shows how a set of world lines representing
five particles evolve with time. A crossing of the world lines represents an exchange of positions
of the respective anyons.

5

4

3

2

1

time

Figure 3.2: Illustration of the braid group B5. Five anyons are braided around each other in two
spatial dimensions and time. At any point in time, a horizontal intersection gives the positions of
the anyons in space, and this intersection always contains N = 5 strands as long as the particle
number is conserved. Two strands are colored to make the movements easier to follow, but the
particles can be of either the same or a different type.

To describe the time evolution, we define a set of elementary operators σi that exchanges par-
ticle i with i+1 in the counter-clockwise direction, and the inverse performs a clockwise exchange.
Both the order and direction become important for non-Abelian anyons since the operations gen-
erally do not commute. Operations including disconnected trajectories, however, do commute
and can be performed in parallel, which is important to the performance of computations.

The σi braiding operators satisfy the property that σ2
i ̸= I, i.e., a double exchange is not

equivalent to the identity operation. While the ordinary permutation group is finite for a fixed
number of particles, the braid group is infinite due to this specific property. Thence, the braid
group is an infinite discrete set of operations on the particles of the system.

In the world line representation, particle creation and annihilation correspond to a change in
the number of strands crossing an intersection at any fixed time. While unwanted creation and
annihilation of quasiparticles can cause errors in the system, it is also the basis of operation for a
topological qubit. A computational protocol initializes the system by creating a set of particles.
Braiding the particles performs the computations, and the final state is read out by bringing two
anyons together and measuring the result.

The process of bringing two anyons together is called fusion, and the possible outcomes of the
fusion is a set of fusion channels. Fusing two particles will result in the formation of another type
of particle or possibly the absence of a particle. The key for computations is that the braiding of
multiple non-Abelian anyons will change their fusion channel, which can be measured for state
read-out.

3.3 Majorana Fermions

The majority of the research on topological quantum computing is centered around a specific
branch of non-Abelian anyons called Majorana fermions. Originally, the Majorana fermions were
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described in 1937 as fundamental particles forming real solutions to the relativistic Dirac equation
[58]. A Majorana fermion is characterized by Fermi-Dirac statistics and is its own antiparticle.

Ettore Majorana proposed that the neutrino could be such a particle, but this has not been
confirmed experimentally to date [59]. In the context of quantum computing, it is, however, the
quasiparticle counterparts in condensed matter that are of interest. In condensed matter, the
physical degrees of freedom are electrons and holes, and Majorana fermions will be emergent
excitations that replicate the particle-antiparticle symmetry. Naturally, the Majorana fermions
must be a superposition of electrons and holes. Quasiparticles in superconductors are indeed
comprised of coherent superpositions of electrons and holes and governed by particle-hole sym-
metry, and Majorana fermions are thus predicted to exist in the topological superconductors
[27]. The presence of charge conjugation symmetry means that the zero-energy modes described
in section 2.2 are expected to exist in topological superconductors. In a metal or semiconductor,
electrons and holes are particle-antiparticle pairs, but since they have opposite charges, they
cannot be Majorana fermions.

3.3.1 Majorana Zero Modes

Majorana fermions can exist both as propagating and localized edge modes and are referred to
as Majorana zero modes since they are fixed at zero energy inside the bulk superconducting gap.
Based on Ref. [26], we summarize the properties of MZMs that are central to their application
in topological quantum computing.

1. MZMs are anyons following the non-Abelian statistics, and the exchange of a set of MZMs
has non-trivial statistics described by non-commuting operators.

2. The system’s state is independent of the dynamics of a braiding operation but relies only
on whether braiding operations are performed and their order.

3. MZMs are their own antiparticles, i.e., if an MZM has a real space operator, γi = γ†i .

4. The ground state is degenerate; the exchange of two MZMs is equivalent to a rotation in
the ground state space, and braiding operations will determine the state.

5. A pair of MZMs, γi form an ordinary fermion with creation and annihilation operators
c† = 1

2 (γ1 − iγ2) and c = 1
2 (γ1 + iγ2). The fermion parity determines the state of the

system.

6. The fusion channels for a pair of MZMs are particularly simple. Either they fuse into a
complex fermion, or they annihilate, i.e., a complex fermion with occupation number zero
or one.

7. When the total parity of the system is fixed, 2N MZMs can encode N − 1 qubits and has
a 2N−1-fold degenerate ground state.

8. MZMs appear in SPT phases and can be bound to topological defects like vortices, mass
domain walls, and phase boundaries.

9. The MZMs follow fermionic anticommutation relations, {γi, γj} = 2δi,j , which retrieves
the standard {ci, cj} = δi,j by substituting the relations to complex fermions above.

10. The spacing between the MZMs can be arbitrarily large while maintaining the system’s
state. This way, information is stored non-locally in two separated ”half-fermions,” meaning
that local perturbations cannot influence the system’s state.

Finally, we note that the MZMs survive provided that the bulk gap of the material remains
finite. A gap closing corresponds to a topological phase transition transforming the system to a
topologically trivial phase [34]. Since continuous deformations do not affect the topological prop-
erties, we can treat the exchange statistics for a much simpler model as long as it is topologically
equivalent. It also signifies the inherent error protection; local perturbations will not affect the
system as long as they are not large enough to force a gap closing and reopening transition.
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3.4 Topological Gates

It may appear mysterious how braiding the non-Abelian MZMs can perform valuable calcula-
tions equivalent to other qubits, but we shall now demonstrate how braiding sequences can give
the same result as the ordinary quantum gates.

For the sake of intuition, we will look at a specific system, namely, the braiding statistics of
MZMs bound to vortex cores [60]. Vortices in a 2D chiral TSC can host MZMs and these have
the property that winding the SC phase by 2π, e.g., by braiding one vortex around another1,
transforms

σi =


γi 7→ −γi+1

γi+1 7→ γi

γj 7→ γj i ̸= j ̸= i+ 1

(3.4)

where one of the MZM operators changes sign by exchange. σi is the operator for exchanging
γi with γi+1 for i = 1, ..., 2n − 1 (Ref. [60] uses Ti instead σi). The exchange operator can be
expressed explicitly as

τ(σi) =
1√
2
(1 + γiγi+1). (3.5)

Assume we have a system with two complex fermions with creation (annihilation) operators
a† (a) and b† (b) which can be decomposed into four Majorana operators γi as

a =
1

2
(γ1 + iγ2) a† =

1

2
(γ1 − iγ2) (3.6)

b =
1

2
(γ3 + iγ4) b† =

1

2
(γ3 − iγ4). (3.7)

The two complex fermions can be either occupied or unoccupied so we can define a four-state
basis

{|00⟩ , |11⟩ , |10⟩ , |01⟩} (3.8)

where the first number in each ket is the occupation number of the a-fermion and the second for
the b-fermion. In this basis, the matrix operators become

τ(σ1) =
1√
2
(ζ0ξ0 − iζzξz) (3.9)

τ(σ2) =
1√
2
(ζ0ξ0 − iζ0ξx) (3.10)

τ(σ3) =
1√
2
(ζ0ξ0 − iζ0ξz) (3.11)

where ζk and ξk are respectively the Pauli matrices in the fermion parity space and space of equal
parity states. τ(σ1) and τ(σ3) exchange Majorana operators corresponding to the same complex
fermion and only give an Abelian phase contribution. τ(σ2) exchanges Majorana operators from
different complex fermions, resulting in a non-Abelian contribution, but does not mix different
parities since it involves only the identity ζ0 in the parity basis. Due to the fermion parity, i.e.,
fermions are only created and annihilated in pairs, the ground state subspace has dimension
22n−1 for 2n Majorana fermions or n complex fermions.

The braiding matrices in eq. (3.9) are unitary matrices, as are the quantum gates for non-
topological quantum computers. In light of this, it seems reasonable to believe that quantum
computing based on braiding should be able to perform similar operations to quantum gates
implemented by other means. To see this more clearly, following Ref. [61], assume the system is
in a parity-conserving state and consider only a new basis

|00⟩ 7→ |0⟩ (3.12)

|11⟩ 7→ |1⟩ (3.13)

1We can take the phase to be single-valued, but introducing a branch cut where a vortex passing through the
branch cut gains a phase of 2π to obey the vortex statistics.
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in which we have (with a change in the unimportant global phase which is hereafter neglected)
the operations

τ(σ2) =
ei

π
2

√
2

(
1 −i
−i 1

)
(3.14)

and

τ(σ1) =

(
1 0
0 i

)
(3.15)

for braiding MZMs originating, respectively, from different and the same complex fermion.
Suppose now we perform a sequence of braids represented by the matrix product

UH = τ(σ1)τ(σ2)τ(σ1) (3.16)

and illustrated in Fig. 3.3. The resulting operation has the explicit form

UH =
1√
2

(
1 1
1 −1

)
(3.17)

which is exactly the Hadamard gate that appears frequently in quantum circuits to create entan-
gled states. Ref. [61] provides explicitly the braids to form other single-qubit gates in addition
to the CNOT gate, forming together a Clifford complete gate set. While the braiding statistics
were derived for the vortex-bound MZMs, parts of the derivations were first made for the Pfaffian
fractional quantum Hall state2(ν = 5/2) and will be similar for other systems with MZMs.

γ1

γ2

γ3

γ4

Figure 3.3: Braiding sequence for four vortex-bound MZMs equivalent to the single-qubit
Hadamard gate.

3.5 Anyons in Real Systems
Moving from the thermodynamic limit at zero temperature to experimentally realistic sys-

tems, we must adapt the theoretical models to account for new effects as described in Refs. [25,
26]. In an infinite system, e.g., a nanowire of infinite length, the Majorana operators commute
with the Hamiltonian, but in real systems, the commutator is exponentially small,

[H, γj ] ∼ e
L
ξ . (3.18)

It decays with the ratio of the separation of the MZMs, L, to a characteristic length of the
Hamiltonian, ξ, depending on the pairing potential, chemical potential, and Zeeman field. L can
be, e.g., the finite length of the nanowire.

Due to the finite spatial separation of the MZMs, they will hybridize and split away from
zero energy, breaking the ground state degeneracy. If every pair of MZMs is well-separated,
we can still, under certain conditions, treat the system as quasi-degenerate as long as L ≫ ξ.
An important detail for the experimental detection of MZMs is that the hybridization splitting,
δEM , decreases in an oscillating manner,

δEM ∼ cos kFLe
−L/ξ, (3.19)

with increasing separation [62]. The oscillating behavior provides a means of separating MZMs
from topologically trivial phenomena, for which the splitting falls off monotonically with the
spatial separation.

2This is a noteworthy result considering that the fractional quantum Hall systems are not SPT phases but
rather belong to the topologically ordered phases.
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In addition to well-separated MZMs, we can define a window for the time taken by braiding
operations, T , that ensures that the system is well behaved. In the quasi-degenerate system,
we require that the system be insensitive to the hybridization energy during braiding transfor-
mations. Braiding operations should thus be performed on a time scale much smaller than the
inverse energy splitting.

At the same time, the topological character of the system depends on a ground state that is
energetically separated from excited states by a gap, ∆. There may also be sub-gap excitations
from which the ground state should be separated. In general, we thus require that the braiding
time be much larger than the inverse energy δE of the lowest-lying non-zero excitation we want
to isolate from the ground state. The presence and nature of the excited states will depend on
the host system, but we should keep in mind that sub-gap states do not always interfere with
the MZMs even if they are not separated from the MZM by a sufficiently large braiding time
[63]. In total, we can now formulate the braiding time requirements as

∆−1 ≤ δE−1 ≪ T ≪ δE−1
M . (3.20)

While the hybridization splitting imposes a constraint on the braiding time, it can also help
determine the quantum state of the system. When MZMs are brought into proximity, the fusion
channels will split in energy, making it possible to detect the topological charge by the energy of
the fusion channel.

A source of error is the presence of unintended thermally excited quasiparticle-quasihole pairs.
Their opposite charges will favor a rapid annihilation, but on the other hand, entropy will favor
that they split fully apart first. Errors occur if the thermally excited quasiparticles braid around
two or more of the quasiparticles used in the computations before annihilating. Such events
are exponentially suppressed at temperatures below the energy gap. Concerning the gates, the
braiding operations are discrete, meaning that small imprecisions in the movement and positions
of MZMs are unlikely to affect the final state. Furthermore, initialization of a pair of MZMs
from the vacuum with subsequent braiding operations and finally detection of fusion channels
by annihilation ensure that the details of the evolution do not make a difference.





Chapter 4

BHZ Model

In Chapter 2, we found that the quantum spin Hall insulator has a Z2 topological invariant
and has helical edge modes within the bulk gap that propagate in opposite directions for op-
posite spins. Moreover, the calculation of the spin Chern number gave conditions for the Dirac
Hamiltonian parameters that realize a topological phase in the QSHI. Contrary to the integer
quantum Hall effect, the QSHIs carry dissipationless spin currents in the absence of an external
magnetic field [64]. Instead of the external magnetic field, an applied electric field combined with
strong spin-orbit interaction in the material generates an effective magnetic field that drives the
spin currents.

The first proposition for an experimentally realizable QSHI was the type III (broken gap)
semiconductor quantum well (QW) made from a CdTe/HgTe/CdTe heterojunction [65]. HgTe is
a zero-gap semiconductor with the distinct property that the heavy-hole (HH) and light-hole (LH)
bands have opposite signs of the mass [64]. To achieve an insulating phase, a gap can be induced
either by a uniaxial strain, or as we will consider here, by spatial confinement in a quantum well
as illustrated in Fig. 2.1. The Hamiltonian describing this system is the Bernevig-Hughes-Zhang
(BHZ) Hamiltonian [65],

H(k) = m(k)σz +A sin(kx)szσx +A sin(ky)σy, (4.1)

m(k) = 2m(cos kx + cos ky) +m0 − 4m, (4.2)

with m(k) being a mass term and m, m0 and A are parameters determined by the physical
system. We already saw in section 2.6 that the Hamiltonian has a topological phase when
sgn(m0B) > 0. The Pauli matrices in the spin and orbital spaces are represented, respectively
by si and σi. We emphasize that the different Pauli matrices act in different spaces and that the
product siσj in our notation describes the Kronecker product si ⊗ σj which is a 4 × 4 matrix
and not an ordinary matrix multiplication. Whenever a matrix is not included in the notation,
it is assumed to be the identity, i.e., si ≡ siσ0 in the given basis, using the subscript j = 0 for
the identity.

The Hamiltonian (4.1) describes a four-band system with two bands stemming from orbitals
and two from the electron spins. The full Hamiltonian

H =
∑

k ϱς ss′

c†kϱsH
ϱς
ss′(k)ckςs′ =

∑
k

Ψ†
kH(k)Ψk (4.3)

is expressed in terms of fermonic creation and annihilation operators, c†kϱs and ckϱs for momentum
k, orbital indices ϱ, ς ∈ {α, β} and spin s, s′ ∈ {↑, ↓}. Equivalently, we may write it in terms of
field operators

Ψk =
[
ckα↑, ckβ↑, ckα↓, ckβ↓

]T
(4.4)

for the right side of (4.3), consisting of an ordered set of fermion operators. The field operator
in eq. (4.4) also serve as the basis in which we write the four-band Hamiltonian. We continue to
motivate the BHZ-model, starting with the band inversion and then summarizing the kp-model
that is used to derive eq. (4.1) for the HgTe QW.

4.1 Band Inversion
The particular role of the HgTe layer is that it has an inverted band structure. Whereas most

II-VI semiconductors have the conduction band derived from s-type orbitals on the group-II
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atoms and the valence band from p-type orbitals on the group-VI atoms, HgTe has the opposite
order of the band symmetries [64]. The origin of the band inversion is the relativistic corrections
to the band structure as illustrated in Fig. 4.1, comparing HgTe with CdTe. There are three
significant corrections; the Darwin interaction, the relativistic mass-velocity interaction, and the
spin-orbit interaction [66]. Moreover, the bottom of the CB is originally derived from the s-states
of Hg or Cd, while the top of the VB is derived from the p-states of Te [67]. The mass-velocity
correction has a much larger effect on the heavier Hg than on Cd, so the CB in Hg is brought very
close to the VBs. On the other hand, SOC works on the p-type bands from the Te atoms and
is largely the same for HgTe and CdTe. In both cases, SOC separates the four-fold degenerate
VB from the two-fold degenerate split-off (SO) band. As the CB and VB are so close in Hg, the
splitting leads to the band inversion in HgTe, but not CdTe, where the CB and VBs are further
apart.

Figure 4.1: Sketch of the band ordering of CdTe and HgTe when progressively adding relativistic
corrections. On the left of both figures are the non-relativistic bands, and then the Darwin
interaction, mass-velocity (mv-interaction) and spin-orbit coupling are added to the bands. The
conduction band (green, Γ6) has s-type character originating from the Hg and Cd atoms, while
the valence band (blue, Γ7 & Γ8) has p-type symmetry originating from the p-type atoms. The
large mass of Hg combined with SOC leads to an inversion of the band ordering for HgTe, having
the Γ8 band above the Γ6-band. The figure is adapted from Ref. [67] and with additional data
from Ref. [66].

In addition to the reversed band ordering at the Γ-point, the conduction and valence bands
flip the direction of bending in HgTe as seen in the band diagram in Fig. 4.2. We can understand
this from a group theoretical perspective based on crystal symmetries [68, ch. 10]. There are
certain high-symmetry directions in reciprocal space at which the k-vector transforms into itself
under a set of symmetry operations; this is called the group of the k-vector. These high-symmetry
points are equal from a physical point of view and must therefore have the same energy. The
CB, LH, and SO bands have the same irreducible representation in high-symmetry directions
in the BZ. Therefore, there will be interactions between these bands; the bands will repel each
other and avoid band crossings. When the ordering of the bands at the Γ-point is inverted due
to the relativistic corrections above, the only way to avoid band crossings is that the conduction
band flips and bends downward. Likewise, the original valence band flips and bends upward due
to the repulsion from the original conduction band. The HH band has a different irreducible
representation and can be degenerate with the LH band at the Γ-point.

When a quantum well is formed by placing a HgTe layer between CdTe layers that have
the normal band progression, the bands from the two materials will connect in a way that
preserves the band parities. Due to the band inversion in HgTe, the bands must cross through
the insulating band gap at each junction, forming in-gap edge states as already demonstrated in
Fig. 2.1, and the quantum well effectively functions as a QSHI when the thickness is larger than
some critical thickness dc [70]. If the thickness is smaller than dc, the bands are dominated by
the normal-ordered CdTe layers, and there will be no band crossings with corresponding edge
states. Tuning the Fermi level to lie inside the insulating gap through an external gate potential,
one may confirm that there is zero conductance in the normal state (narrow well) and a finite
quantized conductance in the inverted state (wide well) [70].
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Figure 4.2: Band structures for Hg1–xCdxTe for different values of the composition x. In CdTe,
the Γ6 band is the CB and Γ8 the two-fold degenerate VB at the Γ-point. When Cd is replaced
by Hg, the band ordering is inverted so that the Γ8 band becomes the CB and the Γ6 band
becomes the VB. The bending of Γ6 and Γ8 are also opposite for CdTe and HgTe. Reprinted

figure with permission from D J Chadi and Marvin L. Cohen. In: Phys. Rev. B 7.2 (1973), pp. 692–699

[69] 1973©The American Physical Society

As we are interested in topological properties, the bands closest to the Fermi level are the
interesting ones; these are sufficient to find the topological properties even though more extensive
models are needed to find experimentally realistic values derived from the model. Then we may
describe the HgTe quantum well using six atomic basis states by the following. We know that
CdTe has a normal band progression where the s-type Γ6-band lies above the p-type Γ8-band
while HgTe has an inverted band progression where the Γ8-band lies above the Γ6-band. In
addition, there is a bulk SO band, Γ7, due to the SOC. However, the SOC is so large that the SO
band is well separated from the other bands and has a negligible effect on the band structure, at
least for discussions of topological properties. It is therefore discarded in this context. Two spin
degeneracies for Γ6 and four for Γ8 leaves six bands for the effective model. In addition, both
materials have the smallest gap around the Γ-point so that we can define a basis

Ψ =

{∣∣∣∣Γ6,
1

2

〉
,

∣∣∣∣Γ6,−
1

2

〉
,

∣∣∣∣Γ8,
3

2

〉
,

∣∣∣∣Γ8,
1

2

〉
,

∣∣∣∣Γ8,−
1

2

〉
,

∣∣∣∣Γ8,−
3

2

〉}
(4.5)

with six states per unit cell. Note that this six-band model contains the CB together with the
LH and HH bands and not the six valence bands as in the conventional six-band model.

In the QW configuration, the finite size effects leads to the six bands combining into three
two-fold degenerate subbands, E1, H1 and L1. When the in-plane momentum is zero, the spin
quantum number mJ is still a good quantum number and the E1 and H1 bands do not mix.
The L1 band is separated from the others and is discarded in the model. As derived below, the
resulting four-band model has |E1,mJ⟩ bands consisting of a linear combination of

∣∣Γ6,mJ = ± 1
2

〉
and

∣∣Γ8,± 1
2

〉
. The |H1,mJ⟩ bands are linear combinations of the

∣∣Γ8,± 3
2

〉
states. The model

can then be described in terms of the basis states

Ψ =

{∣∣∣∣E1, 12
〉
,

∣∣∣∣H1,
3

2

〉
,

∣∣∣∣E1,−1

2

〉
,

∣∣∣∣H1,−3

2

〉}
(4.6)

in which we may express the effective Hamiltonian as

H(kx, ky) =

[
H(k) 0
0 H∗(−k)

]
(4.7)

consisting of two blocks in the form of the Dirac Hamiltonian

H(k) = ε(k) + di(k)σi. (4.8)
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The upper and lower blocks are related by time-reversal symmetry acting in spin space, and ε(k)
is an orbital independent contribution. The off-diagonal terms between the blocks in eq. (4.7)
vanish when the axial rotation symmetry and spatial inversion symmetry is preserved. Even
though inversion symmetry is softly broken in real HgTe, these terms are small and do not affect
the topology of the system as long as they do not close the gap [31]. Therefore, the off-diagonal
terms are discarded.

We now deduce the form of the Hamiltonian by considering the effect of 2D spatial inversion.
The s-type

∣∣Γ6,± 1
2

〉
and thus

∣∣E1,± 1
2

〉
has even parity under spatial inversion, and the p-type∣∣Γ8,± 3

2

〉
and thus

∣∣H1,± 3
2

〉
has odd parity. Thence, the matrix elements coupling E1 and H1

must be odd in the in-plane momentum (k = − i
ℏ
dx
dt means that both position and momentum

are odd under spatial inversion). Therefore, the inversion operator must be

P = σz. (4.9)

When inversion symmetry is preserved, we require PH(k)P−1 = H(−k) leading to

PH(k)P−1 = ε(k) + σzd1(k)σxσz + σzd2(k)σyσz + σzd3(k)σzσz

= ε(k)− d1(k)σx − d2(k)σy + d3(k)σz

= H(−k)

(4.10)

by eq. (4.8). For this to hold, we must have that d1(k) and d2(k) are odd functions of k, and
d3(k) and ε(k) are even functions of k, i.e.,

−d1(k) = d1(−k), −d2(k) = d2(−k), d3(k) = d3(−k). (4.11)

If we assume that the area of interest is small k, we may in general expand the coefficients
di and ε as

d1 = Akx, d2 = Aky, d3 =M −B
(
k2x + k2y

)
, ε = C −D

(
k2x + k2y

)
(4.12)

with a set of expansion parameters A, B, C and D that will depend on the properties of the
physical quantum well design. In the case of HgTe, the small k approximation can be justified
by looking at the energy spectrum of the HgTe quantum wells as presented, e.g., in figure 3 of
Ref. [71]. Both the band minima and edge modes are located in a relatively small region around
k = 0 so looking only at small k still captures the main physics.

Assuming a square lattice with only nearest-neighbor hopping, we can also construct a Dirac
tight-binding Hamiltonian on the form of eq. (4.8) with coefficients

d1(k) = A sin kx d2(k) = A sin ky d3(k) = −2B
(
2− M

2B − cos kx − cos ky
)

ε(k) = C − 2D(2− cos kx − cos ky).
(4.13)

A, B, C, D and M are again expansion parameters that depend on the actual heterostructure
that is described. Expanding these coefficients around the Γ-point yields the previous expression
in eq. (4.12).

The parameters C and D do not affect topological properties and can be set to zero for
topological purposes. When we require TRI for the Hamiltonian (4.7), we must add the sz
spin matrix to the σx-term. The other two terms are already invariant under TR since m(k) is
quadratic in k and both ky and σy in d2(k) flip signs under TR. Furthermore, letting B = m
and M = m0 leads us back to the Hamiltonian stated initially in eq. (4.1).

4.2 kp-Model for Spin Hall Insulators

The Dirac Hamiltonian with the coefficients in eq. (4.12) is derived using the envelope function
approach for kp perturbation theory. Studying this derivation provides useful insight into the
validity of the BHZ, which we will later use, so we provide a summary of the derivations based
on Refs. [65, 72]. For more details, see also [73].

In the envelope function approach, we expand the wave function Ψ(r) in a set of Bloch
functions un(r) at k = 0 as

Ψ(r) =
∑
n

Fn(r)un(r) (4.14)
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with a set of envelope functions Fn(r) [72]. The Bloch functions un(r) are functions that have
the periodicity of the crystal and we assume these are known and derived from the atomic
orbitals. We are interested in a quantum well structure and let the growth direction be along
the ẑ-direction. In that case, the in-plane momenta kx and ky are good quantum numbers and
we can express the envelope functions with an index n as

Fn = ei(kxx+kyy)fn(z), (4.15)

i.e., plane wave functions in the growth plane and some function f(z) along the growth direction.

We use a Hamiltonian [74]

H(k) =
p2

2m
+ V +

ℏ
m
k · p+

ℏ
4m2c2

(∇V × p) · σ +
ℏ2

4m2c2
(∇V × k) · σ (4.16)

where p is the momentum operator, V is a potential and σ is the spin-1/2 operator. The
third term in the Hamiltonian is the k · p-interaction and the fourth and fifth terms are SOC
contributions written with the spin-1/2 operator σ. To simplify the problem, a solution is first
found for the case when k = 0, and the k-dependent terms are added as a perturbation later.
At k = 0, the Hamiltonian is

H(k = 0) =
p2

2m
+ V +

ℏ
4m2c2

(∇V × p) · σ (4.17)

with momentum operator p. The k-dependent SOC is small, but the operator SOC term is
included explicitly in the unperturbed Hamiltonian due to the strong SOC in the II-VI semi-
conductors. Inserting the envelope function expansion (4.14) into the Schrödinger equation with
this Hamiltonian gives a set of coupled differential equations corresponding to the number of
envelope functions. In the Kane model, one uses an eight-band representation which includes a
two-fold degenerate s-type conduction band, a four-fold degenerate p-type valence band, and a
two-fold s-type spin-orbit split band below the other valence bands. The model must include the
conduction band since the coupling between the conduction and valence band is strong in the
narrow gap semiconductors [74]. The band inversion in HgTe further means that treating the
conduction band as a perturbation would be insufficient.

Choosing an appropriate basis, we can express the Hamiltonian as an 8× 8 matrix operator.
The most obvious choice of basis is the bands inherited from the atomic orbitals of the species
in the II-VI semiconductor,

{|S ↑⟩ , |S ↓⟩ , |X ↑⟩ , |Y ↑⟩ , |Z ↑⟩ , |X ↓⟩ , |Y ↓⟩ , |Z ↓⟩} (4.18)

with |S⟩ being the conduction band inherited from s-type orbitals and the other states inherited
from the p-type orbitals in the corresponding directions. Increasing the number of basis functions
to include more bands would increase the model accuracy.

Due to the strong SOC, however, we should choose a basis that preserves the total angular
momentum and its projection along ẑ. Such basis is constructed from linear combinations of the
atomic orbitals [72],

u1 =

∣∣∣∣Γ6,
1

2

〉
= i |S ↑⟩

u2 =

∣∣∣∣Γ6, −
1

2

〉
= i |S ↓⟩

u3 =

∣∣∣∣Γ8,
3

2

〉
=

1√
2
|(X + iY ) ↑⟩

u4 =

∣∣∣∣Γ8,
1

2

〉
=

1√
6
|(X + iY ) ↓⟩ −

√
2

3
|Z ↑⟩

(4.19)
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u5 =

∣∣∣∣Γ8, −
1

2

〉
=− 1√

6
|(X − iY ) ↑⟩ −

√
2

3
|Z ↓⟩

u6 =

∣∣∣∣Γ8, −
3

2

〉
=

1√
2
|(X − iY ) ↑⟩

u7 =

∣∣∣∣Γ7,
1

2

〉
=

1√
3
|(X + iY ) ↓⟩+ 1√

3
|Z ↑⟩

u8 =

∣∣∣∣Γ7, −
1

2

〉
=− 1√

3
|(X − iY ) ↑⟩+ 1√

3
|Z ↓⟩

(4.20)

where the Γ8 bands have total angular momentum J2 = 3/2 and the other two have J2 = 1/2.
Since the SOC is very strong in HgTe, the spin-orbit split band Γ7 has only a small coupling
to the other bands and can be neglected in the case that we are interested in the topological
properties of the system. We are then left with a six-component basis. Applying the Hamiltonian
(4.17) on the six-component envelope function expansion (4.14) gives a 6× 6 Hamiltonian

H =

[
EcI2×2 +Hc T2×4

T †
4×2 EvI4×4 +Hv

]
(4.21)

where Ec and Ev are band offset energies for the CB and VB respectively. The conduction band
is described by a Hamiltonian

Hc =

[
ℏ2k2

2m∗ 0

0 ℏ2k2

2m∗

]
(4.22)

and the valence band is described by

Hv = − ℏ2

2m0

(
γ1 +

5

2
γ2

)
k2 +

ℏ2

m0
γ2(k · S)2 (4.23)

where S is the spin-3/2 operator (4 × 4 matrices), m0 and m∗ are real and effective electron
masses, and γ1 and γ2 are Luttinger parameters for the valence band. T is an interaction matrix
between the bands,

T † =


− 1√

2
Pk− 0√

2
3Pkz − 1√

6
Pk−

1√
6
Pk−

√
2
3Pkz

0 1√
2
Pk−

 (4.24)

in which k± = kx ± iky, and P = − ℏ
m0

⟨S|px|X⟩ is the coupling between the s-like conduction
band and the p-type valence bands. The parameters Ec, Ev, γ1,2,3, m

∗ are material parameters
assumed to be step-functions at the interfaces of the quantum well and have the values of the
respective materials in each of the three regions of the well.

We let the growth direction of the QW lie along ẑ and the center region of the well is the
region −d

2 < z < d
2 . We then solve the Hamiltonian (4.21) separately in each of the three regions

of the QW and couple the three eigenvalue equations by enforcing continuity at the interfaces.
The QW is a 2D structure so the in-plane momentum is a good quantum number. Then,

H(k)ψ(kx, ky, kz) = H(kx, ky,−i∂z)ψ(kx, ky, z) (4.25)

with the six-component spinor

ψ(kx, ky, z) = ei(kxx+kyy)


f1(z)
f2(z)
f3(z)
f4(z)
f5(z)
f6(z)

 (4.26)

assembled from the envelope function components.
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The approach to find an effective Hamiltonian is to find a solution for the in-plane momentum
k|| = 0 by making an ansatz for the wave function in each region. Acting on each ansatz with
the Hamiltonian and applying boundary conditions at the QW interfaces allows us to determine
the parameters in the ansatze and thus the wave functions at k|| = 0. Then we can add a
perturbation to get an effective Hamiltonian valid for small but finite k||. Inserting k|| = 0 in
eq. (4.21), we are left with

H(0, 0,−i∂z) =



T 0 0
√

2
3P (−i∂z) 0 0

0 T 0 0
√

2
3P (−i∂z) 0

0 0 U + V 0 0 0√
2
3P (−i∂z) 0 0 U − V 0 0

0
√

2
3P (−i∂z) 0 0 U − V 0

0 0 0 0 0 U + V


(4.27)

and letting A(z) = 1/m∗, the different variables are

T =Ec(z) + (−∂zA(z)∂z)
U =Ev(z)− (−∂zγ1(z)∂z)
V =2 (−∂zγ2∂z).

(4.28)

The form of the derivatives in T , U , and V are due to the symmetrization of products that do
not commute in such a way that Kramers doublets (TRS) are preserved [75].

In the junction areas of the QW, there will be a certain valence band offset Λ between the
two sides when the Fermi energies align between the two regions. Thus, there is a forbidden
energy region −Λ < E < 0 in which bulk electronic states are forbidden. Any states of the
Hamiltonian within this energy range must be evanescent [75]. Therefore, the envelope function
must be localized at the interfaces and exponentially decaying at each side of the interfaces.
When k|| = 0, there are no terms in the Hamiltonian (4.27) that couple f3 and f6 in eq. (4.26)
with the other components. In the designated basis, these are the spin-3/2 states and form the
two-fold degenerate H1 subbands. The other four components form the L1 and E1 subbands. The
L1 band is well separated in energy from the others and is, hence, discarded without changing
the qualitative properties of the model.

Considering first the f3 component, it decouples completely from all other components, so
we are left with a single-component Hamiltonian

Hf3(z) = Ev(z)− (γ1(z)− 2γ2(z))(−∂2z )f3(z) = Ef3(z) (4.29)

and the obvious ansatz for the wavefunctions in the three regions is

ΨI = C3e
βz, z <

d

2

ΨII = V3 cos(κz), |z| < d

2

ΨIII = C3e
−βz, z <

d

2
.

(4.30)

Requiring that the wave functions are continuous at the interfaces, β(z) and κ(z) can be deter-
mined, and setting C3 = 1 further gives an expression for V3(E). Probability current conservation
through the boundaries provides an equation that can be solved for the energy of the H1+ sub-
band. Repeating the procedure with f6 gives the H1− subband.

For the remaining components, f1 and f4 are coupled, as are f2 and f5. Again, we make an
ansatz for interface-localized states, but with two non-zero components,

ΨI =


C1e

αz

0
0

C4e
αZ

0
0

, ΨII =


V1
(
eδz + e−δz

)
0
0

V4
(
eδz − e−δz

)
0
0

, ΨIII =


C1e

−αz

0
0

−C4e
−αZ

0
0

 (4.31)



28 Chapter 4. BHZ Model

that will form the E1+ subband. Acting on the ansatz with the Hamiltonian (4.27) we get two
1D Schrödinger equations

Tf1(z) +

√
2

3
P (z)(−i∂z)f4(z) = Ef1(z) (4.32)√

2

3
P (z)(−i∂z)f1(z) + (U − V )f4(z) = Ef4(z) (4.33)

and when we again require that the wave functions are continuous across the interfaces, we are
left with two equations

E
(Cd)
c −A(Cd)α2(E)− E√

2
3
P
i α(E)

=

√
2
3
P
i α(E)

E
(Cd)
v + (γ

(Cd)
1 + 2γ

(Cd)
2 )α2(E)− E

(4.34)

E
(Hg)
c −A(Hg)δ2(E)− E√

2
3
P
i δ(E)

=

√
2
3
P
i δ(E)

E
(Hg)
v + (γ

(Hg)
1 + 2γ

(Hg)
2 )δ2(E)− E

(4.35)

that are solved to find α and δ as functions of E. As for the H1 bands, the continuity of the
probability current gives an equation

E
(Cd)
c −A(Cd)α2(E)− E

α(E)
= − tanh

(
δ(E)d

2

)(
E

(Hg)
c −A(Hg)δ2(E)− E

δ(E)

)
(4.36)

which is solved numerically to find the energy of the E1+ subband. The same procedure for f2
and f5 gives the energy of the E1− subband.

Now we can use kp-perturbation to derive an effective Hamiltonian by calculating the matrix
elements

Hij(kx, ky) =

∫ ∞

−∞
dz ⟨ψj |H6×6(kx, ky,−i∂z)|ψi⟩ (4.37)

of the finite-k Hamiltonian (4.21). Here, i, j run over the four-component basis{∣∣E1+〉 , ∣∣H1+
〉
,
∣∣E1−〉 , ∣∣H1−

〉}
(4.38)

since we the L1 bands are well-separated from the H1 and E1 bands and are discarded. The
integration in eq. (4.37) is split into the three sections of the quantum well where each uses the
parameters of the appropriate region. The matrix elements depend on the quantum well width
d and are calculated numerically for a given d.

The resulting effective Hamiltonian is

H(kx, ky) =


ϵk +M(k) Ak− 0 0

Ak+ ϵk −M(k) 0 0
0 0 ϵk +M(k) −Ak+
0 0 −Ak− ϵk −M(k)

 (4.39)

which is the BHZ Hamiltonian

H(kx, ky) =

[
H(k) 0
0 H∗(−k)

]
, H(k) = di(k)σi (4.40)

that was encountered earlier in eq. (4.7) when we express the d-vector explicitly. Summing up, we
have followed the derivation of the BHZ Hamiltonian using the envelope function approach in kp
perturbation theory which contains multiple approximations that preserve topological properties
but cannot be used to accurately predict values of experimental observables. The derivations
start with a relatively small basis of eight Bloch functions, and then discard both the SO band
and the L1 subband in the QW.
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Background

5.1 Bogoliubov-de Gennes Transformation
When we work with superconductivity, it is convenient to make a Bogoliubov-de Gennes

transformation. Rather than working with the electron Hamiltonians above, the BdG trans-
formation introduces redundancy in the notation by describing ”holes,” being the absence of
electrons, as independent particles. The annihilation operator, cλ for an electron with a set of
quantum numbers λ, now acts as the creation operator of a hole. This way, the basis for the
Hamiltonian is doubled, and when we introduce a superconducting interaction, the particle and
hole operators are coupled.

We now move to derive the form of the Hamiltonian in the presence of particle-hole symmetry
(PHS). In addition to the electronic Hamiltonian in eq. (4.1), we add a chemical potential, µ,
and a magnetic ordering term, M0sx, describing ferromagnetic ordering along the x-axis, which
will be useful at a later point. Thus, our starting point is the Hamiltonian

H(k) = m(k)σz +A sin(kx)szσx +A sin(ky)σy +M0sx − µ. (5.1)

The particle-hole redundancy is introduced in the notation in eq. (5.1) by using the anti-

commutation relation,
{
c†λ′ , cλ

}
= δλ′,λ where λ, λ′ represents any set of quantum numbers and

δx,y is the Kronecker delta. Since we are dealing with fermionic operators, we have to use the
full formulation of the Hamiltonian from eq. (4.3), but we will see that the field operators have
twice the number of components. Thus, we get

H =
1

2

∑
k ϱ ς
s s′

(
c†kϱsH

ϱς
ss′(k)ckςs′ +

(
δϱ,ςδs,s′Hϱς

ss′(k)− ckςs′Hϱς
ss′(k)c

†
kϱs

))

=
1

2

∑
k ϱ ς
s s′

(
c†kϱsH

ϱς
ss′(k)ckςs′ − ckςs′Hϱς

ss′(k)c
†
kϱs

)
+ const.

=
1

2

∑
k ϱ ς
s s′

(
c†kϱsH

ϱς
ss′(k)ckςs′ − c−kςs′Hϱς

ss′(−k)c†−kϱs

)
+ const.

=
1

2

∑
k ϱ ς
s s′

(
c†kϱsH

ϱς
ss′(k)ckςs′ − c−kϱsHςϱ

s′s(−k)c†−kςs′

)
+ const.

(5.2)

by splitting the Hamiltonian into two parts and flipping the momentum of one part of the sum
since we are summing over all momenta. In eq. (5.2), there are now two terms where one acts on
particles and the other on holes. Note that the particle-hole symmetry is a redundancy in the
notation rather than an actual symmetry, and the Hamiltonian with PHS is equivalent to the
original electron Hamiltonian up to a constant renormalization of the energy which we discard.

The difference between the particle- and hole contributions is the difference between Hϱς
ss′(k)

and Hςϱ
s′s(−k). In eq. (5.1) we treat this difference by introducing an additional set of Pauli

matrices, τi, to describe the behavior of the Hamiltonian in the particle-hole space in the same
way that σi and si describe the action in the orbital and spin spaces. The principles for the
notation extend to what is now an 8 × 8 Hamiltonian, where identity matrices and Kronecker
products for matrices in different spaces are assumed implicitly in the notation.

The first term in eq. (5.1), m(k)σz is diagonal in the spin and orbital spaces and is even in k,
and will thus have the opposite sign for holes identified by the τz matrix. In the second term, we

29
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have sin kx = − sin(−kx) which remains unchanged. szσx is diagonal in spin and has the same
sign independently of the order of the orbitals in the fermionic operators. The second term is
then equal for particles and holes and assigned the identity τ0 in the particle-hole subspace.

In the third term, sin ky = − sin(−ky) again remains unchanged, but σy has opposite signs
when exchanging the order of the orbitals and thus acquires the τz matrix. Finally, µ and M0

are constants and sz has the same sign for both combinations of spins, so both of these will also
have a τz matrix in the particle-hole space. The total Hamiltonian is then

H(k) = m(k)τzσz +A sin(kx)szσx +A sin(ky)τzσy − µτz +M0τzsx (5.3)

in the eight-component basis

Ψk =
[
ckα↑ ckβ↑ ckα↓ ckβ↓ c†−kα↑ c†−kβ↑ c†−kα↓ c†−kβ↓

]T
(5.4)

wherein the first four components are particle operators and the latter four are hole operators.

5.2 Superconductivity
When we introduce superconductivity, it couples the particle and hole blocks through the

off-diagonal Pauli matrices τx and τy, and we shall, in turn, find an explicit expression for the
addition H∆ to the Hamiltonian in eq. (5.3) that adds superconductivity to the quantum spin
Hall insulator. We will start with the Hamiltonian describing a Fermi liquid (electron gas) using
a mean-field approximation and find an explicit form for a translationally invariant H∆. The
discussion here is a brief summary of the parts that are relevant to our application here, but
more elaborate treatments of superconductivity can be found in standard textbooks like, e.g.,
Ref. [76].

We may describe a Fermi liquid with a Hamiltonian

H =
∑
kϱs

(εk − µ)c†kϱsckϱs +
∑

k1k2q
ss′ϱς

Veff(k1,k2)c
†
k1+q,ϱsc

†
k2−q,ϱs′ck2ςs′ck1ςs. (5.5)

where the first term is the single-particle Hamiltonian and the second term takes account for
interactions between electrons through an effective interaction potential Veff. The interaction will
include phenomena like Coulomb interactions between electrons and electron-phonon couplings.
In the context of superconductivity, the most significant contributions to the interaction term
occur when k1 = −k2 and electrons with opposite momenta and spin form Cooper pairs, which
we may understand as pairs of electrons being attracted to each other by the assistance of
lattice vibrations. Exactly opposite momenta maximizes the number of Cooper pairs formed
and should, hence, constitute the ground state. To account for this we introduce new summation
indices k = k2 and k′ = k1 + q, and get

H =
∑
kϱs

(εk − µ)c†kϱsckϱs +
∑
kk′

ss′ϱς

Vkk′c†k′ϱsc
†
−k′ϱs′c−kςs′ckςs. (5.6)

We now focus on the interaction term, i.e., the second sum in eq. (5.6) and look for a way to
simplify the four-operator interaction. If we have a general operator Ô that can be written as a
product of creation and annihilation operators, it has a contraction defined by

Ô• = Ô− : Ô : (5.7)

where : Ô : denotes the normal ordering of those operators. Normal ordering means that all
creation operators are found to the left of the annihilation operators. Thus, the normal ordered
operators always have expectation value 0 since acting on the vacuum |0⟩ just means

⟨0| c† = 0, c |0⟩ = 0. (5.8)

The normal ordered operator may be seen as a measure of fluctuations above the ground state.
In eq. (5.7), when : Ô : takes the role of fluctuations, the right side gives the true value with
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fluctuations subtracted, and the contraction will be an average or mean field value, which we

will denote by
〈
Ô
〉
. Wick’s theorem states that a product of operators can be written as the

normal ordered product plus the sum of all single pair contractions; all double pair contractions,
etc. To ease the notation, let

c†k′ϱsc
†
−k′ϱ′sc−kςs′ckςs = c†1c

†
2c3c4 (5.9)

in which case Wick’s theorem tells us that

c†1c
†
2c3c4 = : c†1c

†
2c3c4 : +

〈
c†1c

†
2

〉
: c3c4 : −

〈
c†1c3

〉
: c†2c4 : +

〈
c†1c4

〉
: c†2c3 : −

〈
c†2c3

〉
: c†1c4 :

−
〈
c†2c4

〉
: c†1c3 : + ⟨c3c4⟩ : c†1c

†
2 : +

〈
c†1c

†
2

〉
⟨c3c4⟩ −

〈
c†1c3

〉〈
c†2c4

〉
+
〈
c†1c4

〉〈
c†2c3

〉
. (5.10)

For superconductivity, we will keep only two of these terms by making an approximation

c†1c
†
2c3c4 ≈⟨c3c4⟩ : c†1c

†
2 : +

〈
c†1c

†
2

〉
: c3c4 :

= ⟨c−kςs′ckςs⟩ c†k′ϱsc
†
−k′ϱs′ +

〈
c†k′ϱsc

†
−k′ϱs′

〉
c−kςs′ckςs

(5.11)

assuming that the other terms are either close to zero or can be subsumed into the single-particle
energy εk. The selected terms are also non-zero only in the presence of superconductivity, con-
trary to the other terms. With this approximation, the full interaction term in the Hamiltonian
is ∑

kk′

ss′ϱς

Vkk′

(
⟨c−kςs′ckςs⟩ c†k′ϱsc

†
−k′ϱs′ +

〈
c†k′ϱsc

†
−k′ϱs′

〉
c−kςs′ckςs

)
(5.12)

and we note that the averages and “free” operators have different orbital and momentum indices.
Thus, we can sum over those variables by defining

∆†
ς,s′s(k) ≡−

∑
k′ϱ

Vkk′

〈
c†k′ϱsc

†
−k′ϱs′

〉
∆ϱ,ss′(k

′) ≡−
∑
kς

Vkk′ ⟨c−kςs′ckςs⟩ .
(5.13)

∆ ∈ C is a superconducting order parameter connected to the magnitude of the superconducting
gap. It is in general dependent on momentum and can have different values depending on
the spin and orbital structure of the model in question. While it can be determined through
self-consistent calculations, we simply treat it as a complex number that we may determine
experimentally. Substituting eq. (5.13) into eq. (5.12), we find a general expression

−
∑
kk′

ss′ϱς

(
∆ϱ,ss′(k

′)c†k′ϱsc
†
−k′ϱs′ +∆†

ς,s′s(k)c−kςs′ckςs

)
. (5.14)

Since k and k′ are decoupled in the two terms, and likewise s, s′ and ϱ, ς, we are free to relabel
the indices to be the same in both terms on the right side giving a general expression for the
superconducting pairing,

H∆ = −
∑
kϱss′

(
∆ϱ,ss′(k)c

†
kϱsc

†
−kϱs′ +∆†

ϱ,ss′(k)c−kϱsckϱs′
)
. (5.15)

5.2.1 Conventional Superconductivity

The simplest superconducting pairing is the conventional s-wave singlet pairing mentioned
initially, coupling fermions of opposite spins. In that case, the pairing must be an off-diagonal
matrix in spin space. Since the fermionic wave function must be overall anti-symmetric by defi-
nition, the anti-symmetric spin structure implies that the pairing should be even in momentum.
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The simplest option is that ∆ is independent of k and the orbital, giving a Hamiltonian of the
form

H∆ = −
∑
kϱ

(
∆c†kϱ↑c

†
−kϱ↓ +∆†c−kϱ↓ckϱ↑

)
. (5.16)

In the basis of eq. (5.4), we can then find an explicit form of the s-wave pairing expressed by
the Pauli matrices. Since there is no mechanism coupling the orbitals, we must clearly have the
identity. ∆ only couples opposite spins so the spin matrix must be off-diagonal. Anti-commuting
the particle operators leaves a negative sign c†kϱ↑c

†
−kϱ↓ = −c†kϱ↓c

†
−kϱ↑ so we must have isy to get

the appropriate signs.
Finally, for the contribution in particle-hole space, we will write the pairing as

∆ = |∆|eiϕ = ∆0e
iϕ (5.17)

dividing it into a magnitude ∆0 and a phase ϕ. If we neglect the orbital matrix, the remaining
form is 

0 eiϕ

−eiϕ 0
0 −e−iϕ

e−iϕ 0

 (5.18)

which we find to be τysye
iτzϕ including the spin matrix as found above. Thus, the pairing term

in the Hamiltonian can be written

H∆ = ∆0τysye
−iτzϕ. (5.19)

By a gauge transformation, we may further remove the phase factor in eq. (5.19) to be left with
a simple expression

H∆ = ∆0τysy (5.20)

describing the s-wave superconducting pairing within the same mathematical framework as we
used for the QSHI.

5.3 Lattice Hamiltonian
To understand the contribution of the separate terms of our model Hamiltonian, it is con-

structive to consider a lattice formulation by applying the Fourier transform (FT) to the fermion
operators in the full Hamiltonian (4.3). We will also use the real lattice Hamiltonian in the
numerical calculations in Chapter 7. On the lattice, the Hamiltonian consists of matrix elements
connecting wave functions localized on different lattice points corresponding to unit cells in the
physical material. We want to find the formulation of the full Hamiltonian that includes the
particle-hole symmetric QSHI Hamiltonian (5.3) and the superconductivity (SC) contribution in
eq. (5.20). The strategy is to consider one term at a time, insert Fourier transformed fermion
operators, and deduce how the prefactors must look. For the FT of the fermion operators, we
use the convention

cϱ↑k =
1√
N

∑
ri

cϱ↑rie
ik·ri , c†ϱ↑k =

1√
N

∑
ri

c†ϱ↑rie
−ik·ri (5.21)

for orbital ϱ ∈ {α, β} and labeling the N physical lattice sites with an index i and a vector ri
defining the position of lattice point i.

We first consider the terms of eq. (5.3) where the only k-dependence is in the operators. If
we take, e.g., the term

− 4m
∑
k

c†α ↑kcα ↑k (5.22)

coming from m(k)τzσz, exchanging the k-space operators with the FT of the lattice operators
gives

− 4m

N

∑
k,ri,rj

c†α ↑ ri
cα ↑ rje

−ik·(ri−rj) = −4m
∑
ri

c†α ↑ ri
cα ↑ ri (5.23)
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where we have used the property of the FT that∑
k

eik·(ri−rj) = Nδri,rj (5.24)

where δri,rj is the Kronecker δ function. Equation (5.22) contains only operators operating on
the same lattice site and is an on-site term on the lattice. For the other terms of eq. (5.3)
that have matrix elements that do not depend on k, we use exactly the same procedure which
simply exchanges the fermion operators to on-site lattice operators and all k-independent terms
correspond to on-site terms on the real lattice. Since the prefactor stays the same, the matrix
structure also does not change, so the lattice Hamiltonian has contributions

Hlat ∼
∑
ri

Ψri((m0 − 4m)τzσz − µτz +M0τzsx +∆0τysy)Ψ
†
ri (5.25)

from the constant terms. On the real lattice, the basis is similar to eq. (5.4), but there will be a
lattice index i instead of the k-index. The ordering of particle-hole, spin and orbital contributions
remain the same. Explicitly, we state the basis as

Ψri =
[
criα↑ criβ↑ criα↓ criβ↓ c†riα↑ c†riβ↑ c†riα↓ c†riβ↓

]T
(5.26)

residing on lattice site i.

For the k-dependent terms, the process is more involved but follows the same procedure.
Consider the term ∑

k

c†α↑kcα↑k 2m(cos kxa+ cos kyb) (5.27)

where we have included the lattice constants a and b in the x̂- and ŷ-directions respectively.
Setting the lattice constants to unity recovers the form of eq. (5.3). It turns out that rewriting
the cosines in terms of exponentials,

cos(θ) =
1

2

(
eiθ + e−iθ

)
, (5.28)

and then inserting the FT fermion operators gives a relatively simple formulation,

m

N

∑
k,ri,rj

c†α ↑ ri
cα ↑ rje

−ik·(ri−rj)
[(
eikxa + e−ikxa

)
+
(
eikyb + e−ikyb

)]
=
m

N

∑
ri rj δ

c†α ↑ ri
cα ↑ rj

∑
k

e−ik·(ri−rj−δ) (5.29)

where in the last sum we have introduced a vector δ ∈ {ax̂,−ax̂, bŷ,−bŷ} that connects nearest-
neighbor lattice sites on the square lattice. The sum over exponentials on the right is again a
δ-function, but with an additional vector δ and therefore ri = rj + δ. The result is a hopping
term

m
∑
ri δ

c†α ↑ ri+δcα ↑ ri , (5.30)

annihilating a fermion on site ri and creating a fermion on a neighboring site ri+δ. For different
bands, there is only an overall sign change so the term in the full Hamiltonian is

Hlat ∼
∑
ri δ

Ψri+δ(mτzσz)Ψri . (5.31)

In the remaining terms, we replace

sin(θ) =
1

2i

(
eiθ − e−iθ

)
(5.32)
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which will in turn lead to a spin-dependent hopping term. Starting with the c†α↑kcβ↑k contribu-
tion, we insert the FT of the operators and the sin(θ) identity to get∑

k

c†α↑kcβ↑kA(sin kxa− i sin kyb)

=
A

N

∑
k ri rj

c†α↑ricβ↑rje
−ik·(ri−rj)

[
1

2i

(
eikxa − e−ikxa

)
− i

2i

(
eikyb − e−ikyb

)]

= − iA

2N

∑
k ri rj

c†α↑ricβ↑rje
−ik·(ri−rj)

[
eikxa − e−ikxa − ieikyb + ie−ikyb

]
.

(5.33)

Substituting δ into the square brackets of eq. (5.33) and adding the appropriate phases ±iπ/2
and iπ to give all terms the same sign leaves us with

− iA

2N

∑
k ri rj

c†α↑ricβ↑rje
−ik·(ri−rj)

[
eikxa + e−ikxa+iπ + eikyb−iπ

2 + e−ikyb+iπ
2

]
= − iA

2N

∑
k ri rj

c†α↑ricβ↑rje
−ik·(ri−rj)

∑
δ

eik·δ−iθδ (5.34)

where θδ is the angle that δ makes with x̂. Applying the FT identity (5.24), we may rewrite
eq. (5.34) with the Kronecker δ-function,

− iA

2N

∑
ri rj δ

c†α↑ricβ↑rje
−iθδ

∑
k

e−ik·(ri−rj−δ) = − iA
2

∑
ri rj δ

c†α↑ricβ↑rje
−iθδδri,rj+δ (5.35)

leading again to a nearest-neighbor hopping term, but with an additional phase factor e−iθδ

depending on the direction of the hopping. We may further simplify,

− iA

2

∑
ri δ

c†α↑ ri+δcβ↑rie
−iθδ = − iA

2

∑
ri δ

c†α↑ ri+δcβ↑ri(cos θδ − i sin θδ) (5.36)

entering the full lattice Hamiltonian. For the similar expression

c†β↑kcα↑kA(sin kxa+ i sin kyb), (5.37)

the sign difference for the sin kyb term results in a negative sign for the θδ phase, but is otherwise
equal, so∑

k

c†β↑kcα↑kA(sin kxa+ i sin kyb) = − iA
2

∑
ri δ

c†β↑ ri+δcα↑ri(cos θδ + i sin θδ). (5.38)

For the opposite spin, the matrix elements have the opposite signs and thus∑
k

c†β↓kcα↓k (−A)(sin kxa− i sin kyb) =
iA

2

∑
ri δ

c†β↓ ri+δcα↓ri(cos θδ − i sin θδ), (5.39)

∑
k

c†α↓kcβ↓k (−A)(sin kxa+ i sin kyb) =
iA

2

∑
ri δ

c†α↓ ri+δcβ↓ri(cos θδ + i sin θδ). (5.40)

Lastly, the hole contributions on the form cc† will have the opposite sign for sin θδ because of
the τz-dependence in the sin kyb-term in eq. (5.3) along with the result for the particle terms.
That means that the lattice tight-binding Hamiltonian has a contribution

Hlat ∼ − iA
2

∑
ri δ

Ψ†
ri+δ(cos θδ szσx + sin θδτzσy)Ψri . (5.41)
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In the basis of eq. (5.26), we then have the full lattice Hamiltonian

Hlat =
∑
ri

Ψ†
ri((m0 − 4m)τzσz − µτz +M0τzsx)Ψri

+
∑
ri δ

Ψ†
ri+δ

(
mτzσz −

iA

2
(cos θδ szσx + sin θδτzσy)

)
Ψri (5.42)

consisting of an on-site contribution and a hopping contribution depending on the direction of
the hopping. The lattice Hamiltonian (5.42) now contains everything that is contained in the
k-space formulation (5.3) as all steps in the derivation are exact.





Chapter 6

Model for Majorana Bound States

A second-order topological superconductor (SOTSC) can be realized in a QSHI by introducing
s-wave superconductivity (SC) combined with in-plane ferromagnetism (FM) or antiferromag-
netism (AFM). We have already derived such a model in eq. (5.3) and added the SC pairing in
eq. (5.20), we get the Hamiltonian

H(k) = m(k)τzσz +A sin(kx)szσx +A sin(ky)τzσy − µτz +∆0τysy +HM (6.1)

in the basis of eq. (5.4) which is the Hamiltonian used by Zhang et al. [24]. We will follow
this work providing detailed calculations to show that the model (6.1) is indeed an SOTSC with
localized modes bound to the edge of a disc. We then argue that it follows that there will be
localized modes in the corners of an isosceles right triangle geometry as well. We recall that
m(k) is a mass term

m(k) = 2m(cos(kx) + cos(ky)) +m0 − 4m (6.2)

and µ is the chemical potential, ∆0 is the SC pairing strength and HM describes FM ordering
which we take to be

HM =M0τzsx (6.3)

for a field strength M0 oriented along the x-direction. A, m, and m0 are constants that can be
determined from the solution of the kp-model in section 4.2. The 2 × 2 Pauli matrices τi, σi
and si operate in the particle-hole, orbital and spin subspaces respectively. Kronecker products
between the different spaces are assumed implicitly, and identity matrices are neglected in the
notation such that all matrix terms in the Hamiltonian eq. (6.1) will be 8× 8 matrices.

What we aim to do in this chapter is to start with a 2D disc lattice and show that there
exist zero-energy eigenvalues corresponding to localized wave functions along the disc boundary.
Furthermore, we show that the positions of these localized modes depend on µ. The strategy
is as follows: we first set the SC and FM terms in the Hamiltonian (6.1) to zero, which will
decouple the spin contributions in the Hamiltonian so that it becomes a block-diagonal matrix
with 2 × 2 blocks on the diagonal. Focusing on one of the blocks, we solve for the boundary
modes using an ansatz for the wave function. As the spin blocks are related through time-reversal
and charge conjugation symmetries, we restore the full eight-component wave functions using
symmetry arguments. We then reintroduce the FM and SC contributions by projecting these
terms onto the wave functions resulting in an effective Hamiltonian for the boundary of the disc.

The next step is to find wave functions with zero energy at points on the disc boundary.
We make an ansatz for the Majorana bound state (MBS) wave functions and apply the effective
boundary Hamiltonian. Looking for mass domain walls on the boundary, we deduce the positions
of four MBSs with their respective wave functions.

6.1 Wave Functions on the Disc Boundary
For the assessment of topological properties, we have argued in Chapter 2 that it is sufficient

to study low-energy models around special points in the BZ. Rather than the lattice version
in eq. (6.1), we Taylor expand the Hamiltonian and examine the continuum model closer. As
announced we set ∆0 = M0 = 0 leaving a model Hamiltonian with only diagonal terms in spin.
Since the spins are decoupled, we pick one of the blocks,

he,↑ =

m0 −m
(
k2x + k2y

)
− µ A(kx − iky)

A(kx + iky) −m0 +m
(
k2x + k2y

)
− µ

 (6.4)
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which is the continuum formulation by a Taylor expansion of the block describing electrons with
spin up. The equation is also a Dirac Hamiltonian with A acting as a velocity and a rest mass in
the form of a quadratic correction mk2 as we introduced in eq. (2.12). Introducing a disc lattice
with radius R, the finite geometry means that the momentum is not a good quantum number.
Instead, we transform the problem to the real lattice using the transformation

kx → −i∂x ky → −i∂y (6.5)

which means that we can express the Hamiltonian as

he,↑ =

m0 +m(∂2x + ∂2y)− µ −iA(∂x − i∂y)

−iA(∂x + i∂y) −m0 −m(∂2x + ∂2y)− µ

 (6.6)

on a finite geometry. On the disc, it is convenient to work with polar coordinates (r, φ), and we
can make this transformation by replacing

∂x ± i∂y 7→ e±iφ

(
∂r ±

i

r
∂φ

)
(6.7)

∂2x + ∂2y 7→ ∂2r +
1

r2
∂2φ +

1

r
∂r (6.8)

(see details in appendix B.1) which inserted into eq. (6.6) yields

he,↑ =

m0 +m
(
∂2r + 1

r2 ∂
2
φ + 1

r ∂r
)

−Ae−iφ
(
i∂r +

1
r∂φ

)
−Aeiφ

(
i∂r − 1

r∂φ
)

−m0 −m
(
∂2r + 1

r2 ∂
2
φ + 1

r ∂r
)
 (6.9)

in polar coordinates.

6.1.1 Disc Eigenvalues and Eigenvectors

When there is no magnetic ordering, the angular momentum ν is a good quantum number,
so we make an ansatz

ψ(r, φ) = eiνφ
eλr√
r

[
α
βeiφ

]
(6.10)

for the wave function on the boundary of a disc of radius R≫ |m/A|. λ is a real-valued constant
that determines how a wave function located on the disc boundary decays in the radial direction.
The wave function has two components α and β that we will determine to find an explicit
expression for ψ. We note also that the periodicity of the angular coordinate φ constrains ν to
being integer-valued through ψ(r, φ) = ψ(r, φ+ 2π).

To determine λ, α, and β, we will solve the Schrödinger equation

he,↑ψ(r, φ) = εψ(r, φ) (6.11)

using the ansatz for the wave function and ε for the energy. We need the first and second

derivatives of ψ with respect to both r and φ. Let ψ =
(
ψa ψb

)T
, in which case the derivatives

are

∂φψa = iνψa ∂2φψa = −ν2ψa

∂φψb = i(ν + 1)ψb ∂φψb = −(ν + 1)
2
ψb

(6.12)

∂rψa/b =

(
λ− 1

2r

)
ψa/b

∂2rψa/b =

(
1

2r2
+

(
λ− 1

2r

)2
)
ψa/b =

(
λ2 − λ

r
+

3

4r2

)
ψa/b.

(6.13)

Inserting the derivatives into the eigenequation (6.11) gives an equation on the form[
h11 − ε h12

h21 h22 − ε

][
ψa

ψb

]
= 0 (6.14)
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where the matrix elements are given by

h11 = m0 +m

(
λ2 − ν2

r2
+

1

4r2

)
(6.15)

h12 = −iAe−iφ

(
λ+

(
ν + 1

2

)
r

)
= −iAe−iφ

(
λ+

ν′

r

)
(6.16)

h21 = −iAeiφ
(
λ− ν′

r

)
(6.17)

h22 = −m0 −m

(
λ2 − 3

4r2
+
ν2

r2
+

2ν

r2

)
(6.18)

where we have also introduced a helper variable ν′ = ν + 1
2 . From eq. (6.14), we can find an

expression for λ by setting the determinant of the matrix equal to zero. When we sort the terms
according to the order of λ, we get a fourth-order polynomial in λ,

0 =
(
h11 − ε

)(
h22 − ε

)
− h12h21)

= −m2λ4 +

(
−2mm0 +

2m2ν2

r2
+

2m2ν

r2
+
m2

2r2
+A2

)
λ2 +

(
ε2ν −m2

ν −A2 ν
′2

r2

)
= −m2λ4 +

(
−2mmν +A2

)
λ2 +

(
ε2ν −m2

ν −A2 ν
′2

r2

) (6.19)

where

εν = ε−m
ν′

r2
mν = m0 −m

ν′2

r2
. (6.20)

Applying the quadratic formula in λ, we get the general solutions

λ21/2 =
ν′2

r2
− 2mm0 −A2

2m2
±
√
A4 − 4mm0A2 + 4m2ϵ2ν

2m2
. (6.21)

There are two solutions for λ2 marked with subscripts and corresponding to the ± before the
square root.

To find the components α and β in the wave function, we consider one of the equations in
eq. (6.14), (

mλ2 +m0 +
m

4r2
− mν2

r2
− ε

)
α = iA

(
λ+

ν′

r

)
β. (6.22)

α and β are not independent, so we let

β = mλ2 +m0 +
m

4r2
− mν2

r2
− ε = mν +mλ2 − εν (6.23)

which implies that

α = iA

(
λ+

ν′

r

)
, (6.24)

and we can expand the wave function in the two eigenstates of different λj . The total wave
function is then

Ψe,↑(r, φ) =
∑
j=1,2

Cλj
eiνφ

eλjr√
r

[
iA
(
λj +

ν′

r

)(
mν +mλ2j − εν

)
eiφ

]
(6.25)

with expansion coefficients Cλj
.

6.1.2 Explicit Eigenvalue Expressions

When we impose open boundary conditions, Ψe,↑(r = R,φ) = 0 on the disc, we get a new
set of equations [

iA
(
λ1 +

ν′

r

)
iA
(
λ2 +

ν′

r

)(
mν +mλ21 − εν

)
eiφ

(
mν +mλ22 − εν

)
eiφ

][
Cλ1

eλ1R

Cλ2
eλ2R

]
= 0 (6.26)
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for the expansion coefficients, with a secular equation

iA

(
λ1 +

ν′

R

)(
mν +mλ22 − εν

)
= iA

(
λ2 +

ν′

R

)(
mν +mλ21 − εν

)
(6.27)

that we can solve to obtain an explicit expression for the energy ε. Note also that εν and mν

are now evaluated at r = R. The calculations (see appendix B.2) are tedious, but we find that
the energy is

ε = − sgn(m)|A|ν
′

R
+m

ν′

R2
. (6.28)

Furthermore, inserting the explicit expression for the energy back into λ21/2 allows us to
simplify. To see this, consider the relation

x = a±
√
b ⇒ x2 =

(
a2 + b

)
±

√
4a2b (6.29)

and rewrite the expression for λ21/2 to use this relation in reverse. We get

λ21/2 =− mν

m
+

A2

2m2
± 1

2m2

√
A4 −A2

(
4mm0 − 4m

ν′2

R2

)
=− mν

m
+

A2

2m2
± 1

2m2

√
A4 − 4mmνA2

=

(
A

2m

)2

+

(
A2

4m2
− mν

m

)
±

√
4

(
A

2m

)2(
A2

4m2
− mν

m

) (6.30)

which now has the form of eq. (6.29). We may then write

λ1/2 =

∣∣∣∣ A2m
∣∣∣∣±
√

A2

4m2
− mν

m
. (6.31)

We also note here that λ1 + λ2 > 0 (assumed in the derivations in appendix B.2) due to the
absolute value in the first term, confirming the sign in the expression for εν .

6.1.3 Disc Edge Wave Functions

To fully determine the wave functions for the boundary modes on the disc, it remains to
relate Cλ1

and Cλ2
in eq. (6.26). Solving each of the two equations in the matrix for Cλ1

, we get

Cλ1
= −Cλ2

e(λ2−λ1)R
λ2 +

ν′

R

λ1 +
ν′

R

= −Cλ2
e(λ2−λ1)R

mR
ν +mλ22 − εRν

mR
ν +mλ21 − εRν

(6.32)

using the superscript R to denote mν and εν evaluated at r = R. In the limit of a large disc,
R ≫ |m/A|, and considering the wave functions for the boundary modes where r ∼ R and

λ≫ ν′

R , we can safely approximate

λ1 +
ν′

r

λ1 +
ν′

R

≈ 1 and
mν +mλ21 − εν
mR

ν +mλ21 − εRν
≈ 1. (6.33)

By insertion of eqs. (6.32) and (6.33) into eq. (6.25), the total wave function is

Ψe,↑(r, φ) =
eiνφ√
r

[
iA
(
λ1 +

ν′

r

)
Cλ1

+ iA
(
λ2 +

ν′

r

)
Cλ2(

mν +mλ21 − εν
)
eiφCλ1

+
(
mν +mλ22 − εν

)
eiφCλ2

]

=
eiνφ√
r
Cλ2

[ (
−e(λ2−λ1)Reλ1r + eλ2r

)
· iA

(
λ2 +

ν′

R

)(
−e(λ2−λ1)Reλ1r + eλ2r

)
·
(
mR

ν +mλ21 − εRν
)
eiφ

]

=eiνφ
eλ1(r−R) − eλ2(r−R)

√
r

(
−e−λ2RCλ2

)[ iA
(
λ2 +

ν′

R

)(
mν +mλ22 − εRν

)
eiφ

]
.

(6.34)
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To simplify the expression further, we look at the ratio between the two components of the vector
in the last line of eq. (6.34),

A
(
λ2 +

ν′

R

)
(mν +mλ22 − εν)

=

A

(∣∣ A
2m

∣∣−√ A2

4m2 − mν

m + ν′

R

)
mν +m

(
A2

4m2 + A2

4m2 − mν

m − 2m
∣∣ A
2m

∣∣√ A2

4m2 − mν

m

)
+ sgn(m)|A|ν′

R

=

∣∣ A
2m

∣∣−√ A2

4m2 − mν

m + ν′

R(
|A|
2m − m

|m|

√
A2

4m2 − mν

m + sgn(m)ν
′

R

)
sgn(A)

= sgn(mA),

(6.35)

which allows us to write the total wave function as

Ψe,↑ = eiνφK(r)

[
sgn(mA)
−ieiφ

]
(6.36)

where

K(r) = N eλ1(r−R) − eλ2(r−R)

√
r

(6.37)

and N is a normalization factor.

6.2 Effective Boundary Hamiltonian
We now want to find an effective boundary Hamiltonian that includes the SC pairing and

FM ordering. For a large disc radius, we approximate a segment of the boundary as a straight
line with a spatial coordinate s and momentum pφ,

s = Rφ pφ =
ν

R
. (6.38)

With the large disc approximation, |A|/R≫ |m|/R2, the energy dispersion (6.28) is

Ee,↑ =− sgn(m)|A|pφ − µ Ee,↓ =sgn(m)|A|pφ − µ

Eh,↑ =− sgn(m)|A|pφ + µ Eh,↓ =sgn(m)|A|pφ + µ
(6.39)

where time-reversal and charge conjugation symmetries connect the dispersions for particles and
holes, and for different spins. Both symmetries flip the direction of momentum while the latter
also flips the sign of the energy. Applying these two symmetries, we can also express the wave
functions in the full basis through TRS, T = isyK, and PHS, C = τxK. Note that the prefactor
eipφs falls out of the projection; under both symmetries, the combined complex conjugation and
sign flip of the momentum cancel each other and since it is unchanged by the projection matrix,
the bra and ket contributions cancel. Then, the wave functions can be written

Ψe,↑ ∼



1
−ieiφ
0
0
0
0
0
0


Ψe,↓ ∼



0
0
1

ie−iφ

0
0
0
0


Ψh,↑ ∼



0
0
0
0
1

ie−iφ

0
0


Ψh,↓ ∼



0
0
0
0
0
0
1

−ieiφ


(6.40)

in the full eight-component basis in eq. (5.4).
The SC and FM contributions are added through a projection onto the four basis functions

in eq. (6.40),
H̃i,j = ⟨Ψi|∆0τysy +M0τzsx|Ψj⟩ = ⟨Ψi|HM,SC |Ψj⟩ . (6.41)
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Performing the calculation in two steps, we first act on the basis states with HM,SC , yielding
four vectors, 



0
0
M0

−iM0e
iφ

0
0

−∆0

i∆0e
iφ


,



M0

iM0e
−iφ

0
0
∆0

i∆0e
−iφ

0
0


,



0
0
∆0

i∆0e
−iφ

0
0

−M0

−iM0e
−iφ


,



−∆0

i∆0e
iφ

0
0

−M0

iM0e
iφ

0
0




, (6.42)

and left-multiplying by the basis states of eq. (6.40), the result of the projection gives an edge
Hamiltonian

H̃i,j =


0 M0

(
1− e−2iφ

)
0 −2∆0

M0

(
1− e2iφ

)
0 2∆0 0

0 2∆0 0 −M0

(
1− e2iφ

)
−2∆0 0 −M0

(
1− e−2iφ

)
0



=


0 −2iM0 sinφe

−iφ 0 −2∆0

2iM0 sinφe
iφ 0 2∆0 0

0 2∆0 0 −2iM0 sinφe
iφ

−2∆0 0 2iM0 sinφe
−iφ 0


=∆0τysy − M̃e−iτzszφsy

(6.43)

subsuming the factor 2 into ∆0 and M0 in the last step. The orbital contribution is projected
out and the edge Hamiltonian is a 4× 4 matrix in particle-hole and spin spaces. We also use

M̃ =M0 sinφ (6.44)

to simplify the notation in the following. The full disc-edge Hamiltonian also includes the energy
dispersions in eq. (6.39) on the diagonal, so in total we have

H̃(φ) =−Apφsz +∆0τysy − M̃e−iτzszφsy − µτz

=iA
∂φ
R
sz +∆0τysy − M̃e−iτzszφsy − µτz.

(6.45)

In the last equality, the momentum operator is replaced with pφ = −i∂φ/R.

6.3 Majorana Bound States
We now want to find wave functions for MBSs on the disc boundary by solving the boundary

Hamiltonian in eq. (6.45). Making an ansatz for the wave function and acting on it with the
boundary Hamiltonian, we find position-dependent energy eigenvalues that we use to determine
the positions of MBSs on the disc edge. The ansatz is

Ψ0 = eR
∫
ξ(φ) dφ

[
c1 c2 c3 c4

]T
(6.46)

describing MBSs localized around some position φi on the disc boundary and ξ(φ) is a localization
function that determines how much the MBS spread out in the angular direction. The cis are
placeholder functions giving an amplitude in each of the basis functions for the 4×4 Hamiltonian.
The cis will be expressed explicitly below. The localization of MBSs requires the wave function
to decay away from the localization center, which we achieve when the real part of ξ is positive
for angles smaller than φi and accordingly negative for angles larger than φi.

When we apply the Hamiltonian (6.45) to the ansatz (6.46), we get a matrix equation
iAξ − µ iM̃e−iφ 0 −∆0

−iM̃eiφ −iAξ − µ ∆0 0

0 ∆0 iAξ + µ iM̃eiφ

−∆0 0 −iM̃e−iφ −iAξ + µ

Ψ0 = ϵΨ0 (6.47)
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where iξA on the diagonal results from taking the derivative of the exponential in the ansatz.
The energy ϵ should be zero for MBSs by definition, but it is helpful to keep it in the derivation
to find the positions of the MBSs. The phase factors can be moved from the Hamiltonian to the
eigenstates, and the energy eigenvalues subtracted on the left side,

iAξ − µ− ϵ iM̃ 0 −∆0

−iM̃ −iAξ − µ− ϵ ∆0 0

0 ∆0 iAξ + µ− ϵ iM̃

−∆0 0 −iM̃ −iAξ + µ− ϵ



eiφ/2c1
e−iφ/2c2
e−iφ/2c3
eiφ/2c4

 = 0 (6.48)

without changing the problem. Setting the determinant of the matrix in eq. (6.48) equal to zero,
we find for the energy (see appendix B.3)

ϵ2 =
(
M̃2 + ∆̄2 +A2p2φ

)
± 2
√
M̃2∆̄2 + µ2A2p2φ. (6.49)

using

∆̄ =
√
∆2

0 + µ2 (6.50)

and we can also write the energy in terms of ξ by exchanging p2 → −ξ2. If there exist MBSs,
there must be a solution for ϵ = 0 in terms of pφ and φ. To find the conditions, set ϵ = 0 in
eq. (6.49), isolate the square root, and square both sides to get

M̃4 + ∆̄4 +A4p4 + 2M̃
(
∆̄2 +A2p2

)
+ 2A2p2∆̄2 = 4M̃∆̄2 + 4µ2A2p2

⇒ M̃4 + 2M̃2
(
2A2p2 − 2∆̄2

)
+ ∆̄4 +A4p4 + 2∆2

0a
2p2 − 2µ2A2p2 = 0.

(6.51)

Treating the expression as a polynomial in M̃2, we get that

M̃2 =∆̄2 −A2p2 ±
√(

A2p2 − ∆̄2
)2 − ∆̄4 −A4p4 − 2∆2

0A
2p2 + 2µ2A2p2

=∆̄2 −A2p2 ± 2|Ap|
√

−∆2
0

(6.52)

which is obviously imaginary as long as ∆0 is real, which was assumed when setting up the
model. M̃ = M0 sinφ must be real, i.e., φ ∈ (0, 2π), so a band crossing on the disc boundary is
only possible when p = 0. Inserting pφ = 0 back into eq. (6.49), the energy spectrum on the disc
boundary is

ϵ = ±
√
∆̄2 +M2

0 sin2 φ± 2

√
∆̄2M2

0 sin2 φ

= ±
(
∆̄± |M0||sinφ|

) (6.53)

having four bands by combination of the two “±”s as shown in Fig. 6.1.
We can understand the presence of MBSs on the disc boundary by a simple argument similar

to the QW argument in section 2.3. Assume we make a junction of an FM and an SC material.
The nature of the gap will be different in the two materials. At the junction, the bands will
connect in a non-trivial way to preserve the symmetries of the bands involved, in the same way
that bands originating from the same atomic orbitals will combine for the QSHI. On the disc,
we started with an anisotropic magnetic field that when projected onto the boundary, has a
magnitude that varies around the disc as M0 sinφ. Some parts of the edge will be dominated
by the magnetic terms, but when sinφ is small, the spectrum will be dominated by the SC
contribution. The circumference of the disc then acts as a series of junctions between magnetic
and superconducting materials with periodic boundary conditions. Each junction acts as a mass
domain wall, hosting bound non-trivial modes. The non-trivial modes are MBSs when they
appear at zero energy due to the particle-hole symmetry in the model.

Finding the position of MBSs on the disc edge means that we need to locate the positions φi

where the bands cross at ϵ = 0. From Fig. 6.1, there are four of these positions in our model.
∆̄ is defined by a square root, so setting eq. (6.53) equal to zero, the only option that gives a
solution is

|sinφ| = ∆̄

|M0|
. (6.54)
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Figure 6.1: The figure shows the energy spectrum for boundary modes on a disc as a function
of the angle φ around the disc according to eq. (6.53). Different colors represent different energy
bands and these are seen to cross at zero energy at four points along the disc circumference.
The crossings occur at angles φi in eq. (6.56), and are marked by black dots in the figure. The
parameters in the figure are ∆0 = 3.4, M0 = 9.9 and µ = 3.8.

Assuming M0 > 0, we may also write this as

sinφ = ± ∆̄

M0
(6.55)

which has four solutions in the range φ ∈ (0, 2π) since there is the combination of the “±” sign
and two complementary angles. The four solutions are

φ1/4 = ± sin−1

(
∆̄

M0

)
φ2/3 = φ4/1 + π (6.56)

given thatM0 > ∆̄. In the case thatM0 < ∆̄, there are no solutions and, hence, no MBSs. There-
fore, there is a topological phase transition for M0 = ∆̄ moving from second-order topological to
the trivial phase. The essential feature here, however, is that altering the chemical potential on
the disc, changes the positions of the mass domain walls where the MBSs are located. Topolog-
ical quantum computing can implemented by physically braiding MBSs around each other, and
the ability to move and manipulate MBSs purely by control of an applied electrical potential
makes this SOTSC a promising platform.

Having established that MBSs can exist along the disc boundary, we can determine the MBS
wave functions by first finding an explicit expression for the localization function ξ and then
solving eq. (6.48) for the ci functions. The full calculation is performed in appendix B.4 where
we show that the wave functions are

Ψ1 = β(ξ2)
[
−i −ie−iϑeiφ e−iϑeiφ 1

]T
Ψ2 = β(−ξ2)

[
i ieiϑeiφ −eiϑeiφ 1

]T
Ψ3 = β(ξ2)

[
−i ie−iϑeiφ −e−iϑeiφ 1

]T
Ψ4 = β(−ξ2)

[
i ieiϑeiφ eiϑeiφ 1

]T
.

(6.57)

where the vectors come from the components
[
c1 c2 c3 c4

]T
and β(±ξ2) = exp

(
±
∫
ξ2Rdφ

)
.

In eq. (6.40) we found how the wave functions transform between orbitals for the different
particle types and spins. Using these relations, we find the MBS wave functions in the full eight-

component basis. Moreover, we add a phase factor ei(±ϑ−φ±π
2 ) to get all components on the
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same form,

Ψ1 ∼



e−i(φ−ϑ+π
2 )/2

−ei(φ+ϑ+π
2 )/2

ei(φ−ϑ−π
2 )/2

e−i(φ+ϑ−π
2 )/2

ei(φ−ϑ+π
2 )/2

−e−i(φ+ϑ+π
2 )/2

e−i(φ−ϑ−π
2 )/2

ei(φ+ϑ−π
2 )/2


Ψ2 ∼



−e−i(φ+ϑ+π
2 )/2

ei(φ−ϑ+π
2 )/2

ei(φ+ϑ−π
2 )/2

e−i(φ−ϑ−π
2 )/2

−ei(φ+ϑ+π
2 )/2

e−i(φ−ϑ+π
2 )/2

e−i(φ+ϑ−π
2 )/2

ei(φ−ϑ−π
2 )/2



Ψ3 ∼



e−i(φ−ϑ−π
2 )/2

ei(φ+ϑ−π
2 )/2

−ei(φ−ϑ+π
2 )/2

e−i(φ+ϑ+π
2 )/2

ei(φ−ϑ−π
2 )/2

e−i(φ+ϑ−π
2 )/2

−e−i(φ−ϑ+π
2 )/2

ei(φ+ϑ+π
2 )/2


Ψ4 ∼



e−i(φ+ϑ−π
2 )/2

ei(φ−ϑ−π
2 )/2

ei(φ+ϑ+π
2 )/2

−e−i(φ−ϑ+π
2 )/2

ei(φ+ϑ−π
2 )/2

e−i(φ−ϑ−π
2 )/2

e−i(φ+ϑ+π
2 )/2

−ei(φ−ϑ+π
2 )/2



(6.58)

for the four MBSs. An additional property of the wave functions is that Ψ1 and Ψ3 are related
by inversion, Ψ3 = −PΨ1, where the inversion symmetry operator is

P = σzTφ→φ+π, Tφ→φ+π = e−iπτzszσz/2 (6.59)

where Tφ→φ+π produces a shift of π. In the same way, we have Ψ4 = PΨ2. The inversion
property inhibits scattering between the inversion partners and disallows fusion between them.

6.4 MBS Fusion Properties
Fusion is the process of bringing two MBSs together and observing their collective behavior. In

the process, the energies will split away from zero and the wave functions will overlap. Measuring
the MBS energy splitting is a possible way to perform read-out of an MBS qubit state. Since the
measurement is the means by which the qubit state is initialized and read out, it is interesting
to study the fusion properties under various conditions. Since the effective Hamiltonian is non-
interacting, i.e., there are only pairs of fermion operators in the full Hamiltonian, the only way
fusion can happen is by a hopping operator that connects wave functions on different lattice
sites.

To describe the fusion process, we define a fusion strength

Fγi:γj
= | ⟨Ψi|T̂ |Ψj⟩| . (6.60)

for two MBSs γi and γj , with indices corresponding to the wave functions in eq. (6.58) and T̂ is

the hopping operator. To find an explicit expression for T̂ , we start from the hopping term in
the lattice Hamiltonian (5.42) and add up the contributions of the hopping term along the +x̂-
and +ŷ-directions. mτzσz has the same contribution in both directions and gets a factor 2 while
cos θδ and sin θδ are both 1 in the +x̂ and +ŷ directions. Thus, the hopping operator will be

T̂ = − iA
2
(szσx + τzσy) + 2mτzσz. (6.61)

Fusing an MBS with itself is not possible so Fγ1:γ1
= 0, and we instead look for an explicit

expression for Fγ1:γ2
. Writing out all the terms is rather tedious; closer examination of the

structure of the wave functions does, however, provide a simpler path. The first observation is
that the particle and hole components of the wave functions in eq. (6.58) are complex conjugates
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of each other. The diagonal terms of T̂ then result in either the sum or the difference of two
complex conjugates depending on the entry in T̂ , which again corresponds to either a cosine or
a sine function. For, e.g., the contributions to Fγ1:γ2

from the first and fifth components of the
wave functions, we have

− ei(φ1−ϑ+π
2 )/2 2me−i(φ2+ϑ+π

2 )/2 − e−i(φ1−ϑ+π
2 )/2 (−2m) ei(φ2+ϑ+π

2 )/2 (6.62)

and by introducing φ± = (φ1 ± φ2)/2 we may rewrite it as

− 2m
(
ei(φ−−ϑ) − e−i(φ−−ϑ)

)
= 4im sin (φ− − ϑ). (6.63)

In the same way, we add up the second and sixth, third and seventh, and fourth and eighth
components, giving respectively

2m
(
e−i(φ−+ϑ) − ei(φ−+ϑ)

)
= 4im sin (φ− + ϑ) (6.64)

2m
(
e−i(φ−−ϑ) − ei(φ−−ϑ)

)
= 4im sin (φ− − ϑ) (6.65)

−2m
(
ei(φ−+ϑ) − e−i(φ−+ϑ)

)
= 4im sin (φ− + ϑ). (6.66)

Applying a trigonometric identity,

2 sinα cosβ = sin (α+ β) + sin (α− β), (6.67)

allows us to sum up and simplify the contributions,

4im[sin (φ− − ϑ) + sin (φ− + ϑ) + sin (φ− − ϑ) + sin (φ− + ϑ)] = 16im sinφ− cosϑ, (6.68)

and taking the absolute value yields
Fγ1:γ2

∼ cosϑ, (6.69)

focusing on the dependence on the chemical potential through ϑ = arctan(µ/∆0).
In addition, Fγ1:γ2 has a contribution from the off-diagonal terms in T̂ . We can apply the

same approach by considering the particle-hole symmetric contributions while keeping track of
the sign of the matrix elements in T̂ . That gives us four contributions:

A

2

[
(1 + i)ei(φ+−ϑ+π

2 ) + (−1 + i)e−i(φ+−ϑ+π
2 )
]
= A

(
i sin

(
φ+ − ϑ+

π

2

)
+ i cos

(
φ+ − ϑ+

π

2

))
(6.70)

A

2

[
(−1 + i)e−i(φ++ϑ+π

2 ) + (1 + i)ei(φ++ϑ+π
2 )
]
= A

(
i sin

(
φ+ + ϑ+

π

2

)
+ i cos

(
φ+ + ϑ+

π

2

))
(6.71)

A

2

[
(1− i)e−i(φ+−ϑ−π

2 ) + (−1− i)ei(φ+−ϑ−π
2 )
]
= −A

(
i sin

(
φ+ − ϑ− π

2

)
+ i cos

(
φ+ − ϑ− π

2

))
(6.72)

A

2

[
(−1− i)ei(φ++ϑ−π

2 ) + (1− i)e−i(φ++ϑ−π
2 )
]
= −A

(
i sin

(
φ+ + ϑ− π

2

)
+ i cos

(
φ+ + ϑ− π

2

))
.

(6.73)

Using eq. (6.67) along with another identity,

2 cosα cosβ = cos (α− β) + cos (α+ β), (6.74)

we add the components and simplify to

iA
[
sin
(
φ+ +

π

2

)
cosϑ− sin

(
φ+ − π

2

)
cosϑ+ cos

(
φ+ +

π

2

)
cosϑ− cos

(
φ+ − π

2

)
cosϑ

]
= 4iA(cosφ+ − sinφ+) cosϑ

(6.75)
and we have the same result as in eq. (6.69) up to a constant factor depending on φ±.
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The procedure can be repeated for all other combinations of MBSs to produce a fusion table,
but before we find those expressions, we generalize our model by considering the fusion of MBSs
originating from different islands (discs) with the possibility of a phase difference 2δϕ = ϕ − ϕ′

in the SC pairing. The chemical potential can also be different, and we have ϑ and ϑ′ describing
the two islands. In the previous treatment, we disregarded the phase of the SC potential, but
when we have multiple islands with a phase difference, we need to reintroduce the SC phase into
the treatment. The phase enters through eq. (5.19) in the full Hamiltonian and thus into the
wave functions in eq. (6.58) as an additional phase dependence eiϕ.

Since the wave functions are connected through the inversion operator P in eq. (6.59), i.e.,
Ψ3 = −PΨ1 and Ψ4 = PΨ2, it is, however, not necessary to calculate the fusion strength for all
combinations of MBSs. It is sufficient to find the fusion strength of γ1 with the four MBSs on the
other disc. The remaining fusion strengths are found through symmetry arguments. The first
notion is that it has no physical significance if we switch the order of the discs while everything
else remains the same. In general, therefore, we have Fγi:γ′

j
= Fγj :γ′

i
for i, j ∈ {1, 2, 3, 4}. For

the pairs with i = j, we can relabel the indices so all diagonal entries must be equal. The same
holds for i, j = (1, 3) and (2, 4), so these must also be equal.

The inversion operator commutes with T̂ ,[
P, T̂

]
= 0, (6.76)

and the squares to P2 = −1, so Ψ1 = PΨ3. On the anti-diagonal, the elements are then
connected through inversion symmetry,

⟨Ψ1|T̂ |Ψ4⟩ = (⟨Ψ3| P†)T̂ (P |Ψ2⟩) = ⟨Ψ3|P†PT̂ |Ψ2⟩ = ⟨Ψ3|T̂ |Ψ2⟩ . (6.77)

The i, j = (1, 2) and (3, 4) are likewise connected through inversion

⟨Ψ1|T̂ |Ψ2⟩ = −⟨Ψ3|P†T̂P|Ψ4⟩ = −⟨Ψ3|T̂ |Ψ4⟩ (6.78)

where the opposite sign which falls away in the absolute value. In summary, we have the relations

Fγ1:γ′
1
= Fγ2:γ′

2
= Fγ3:γ′

3
= Fγ4:γ′

4

Fγ1:γ′
2
= Fγ2:γ′

1
= Fγ3:γ′

4
= Fγ4:γ′

3

Fγ1:γ′
3
= Fγ3:γ′

1
= Fγ2:γ′

4
= Fγ4:γ′

2

Fγ1:γ′
4
= Fγ4:γ′

1
= Fγ2:γ′

3
= Fγ3:γ′

2

(6.79)

so we only need to calculate four different fusion elements. The fusion strengths for all four
combinations of MBSs on two discs are derived in appendix B.5 and the results are summarized
in table 6.1.

Table 6.1: The table displays the fusion strength of pairs of MBSs as calculated in appendix B.5
from eq. (6.60). The primes denote MBSs from a second island where the islands differ by a
SC phase 2δϕ and the chemical potential through ϑ± = (ϑ− ϑ′)/2 where ϑ = arctan (µ/∆0) as
before (alternatively expressed as in eq. (B.45)).

γ1 γ2 γ3 γ4

γ′1 sinϑ− sin δϕ cosϑ+ cos δϕ cosϑ− sin δϕ sinϑ+ cos δϕ

γ′2 cosϑ+ cos δϕ sinϑ− sin δϕ sinϑ+ cos δϕ cosϑ− sin δϕ

γ′3 cosϑ− sin δϕ sinϑ+ cos δϕ sinϑ− sin δϕ cosϑ+ cos δϕ

γ′4 sinϑ+ cos δϕ cosϑ− sin δϕ cosϑ+ cos δϕ sinϑ− sin δϕ





Chapter 7

Numerical Calculations

7.1 Numerical Method

To go beyond the simple disc geometry, we employ a numerical solution of the bulk Hamil-
tonian in eq. (6.1). A solution on the lattice requires, however, a real space formulation of the
Hamiltonian. The numerical method follows directly from the lattice Hamiltonian in eq. (5.42),
which was obtained by applying Fourier transforms to the fermion operators in the full Hamil-
tonian. The Hamiltonian we need to solve will be the expression in eq. (5.42) where we have an
eight-band basis for each lattice site. Writing out the sum over lattice directions explicitly for
the square lattice, the eigenequation for the lattice Hamiltonian gives a set of equations

(
m0τzσz − µi,jτz +∆0τysye

−iϕi,j +M0τzsx − 4mτzσz
)
Ψi,j +

(
− iA

2
szσx +mτzσz

)
Ψi+1,j

+

(
iA

2
szσx +mτzσz

)
Ψi−1,j+

(
− iA

2
τzσy +mτzσz

)
Ψi,j+1+

(
iA

2
τzσy +mτzσz

)
Ψi,j−1 = EΨi,j

(7.1)

using lattice point indices i, j and including the possibility for a spatially varying chemical po-
tential µi,j and superconducting phase ϕi,j . Eq. (7.1) here assumes a square lattice configuration
where {sin θ, cos θ} in eq. (5.42) are {0, 1} in the positive x-direction and {1, 0} in the positive
y-direction.

The system (7.1) of linear equations in Ψ can now be formed into a matrix problem with an
adequate choice of basis that will depend on the lattice configuration. If we choose to label the
lattice points by one index i running over all N lattice points, the basis will have the form

Ψ =
[
Ψ1

e↑α Ψ1
e↑β . . . Ψi

e↑α Ψi
e↑β Ψi

e↓α Ψi
e↓β Ψi

h↑α Ψi
h↑β Ψi

h↓α Ψi
h↓β . . . ΨN

h↓β
]T

(7.2)
where every eight entries correspond to the bands located on the same lattice point. The ordering
of the lattice points in the basis is a matter of preference and will depend on the geometry of the
lattice. As long as one keeps track of the ordering to map the solution back onto the lattice, the
particular ordering is unimportant. The basis vector has 8N components and the corresponding
eigenmatrix will be a sparse 8N × 8N matrix whose eigenvalues and eigenfunctions are solved
numerically.

The form and dimension of the lattice Hamiltonian can be seen intuitively by considering the
model sketch in Fig. 7.1 for a 1D lattice with nearest-neighbor hopping. It is easily transferred
to the 2D lattice problem by doubling the model to include hopping in two directions. If we look
at a specific state on a given lattice site, there are at most eight on-site terms representing band
transitions. Some of these will be zero, corresponding to the combination of Pauli matrices in
the Hamiltonian, but the on-site Hamiltonian will be represented by 8 × 8 matrices. Likewise,
the nearest-neighbor hopping will also be an 8 × 8 matrix for each direction. As a result, the
Hamiltonian for an 8-band system with N lattice points must have dimension 8N × 8N with on-
site terms represented by 8×8 block matrices along the diagonal, and off-diagonal block matrices
for hopping terms connecting different lattice sites. For each row of 8×8 block matrix rows, there
will be three non-zero block matrices representing the on-site and nearest-neighbor transitions.
In 2D, we can wrap the N lattice points onto a 2D lattice, yielding the same dimension for
the Hamiltonian, but with two additional non-zero block matrices in each block-row to include
hopping in both directions. Thus, the lattice Hamiltonian will be a large but sparse matrix, as
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Figure 7.1: Sketch of the lattice tight-binding model for a 1D system with nearest-neighbor inter-
actions. Each lattice point is represented by a gray disc and has eight bands each corresponding
to the basis defined in eq. (7.2). The possible transitions for a single state, e.g., the spin↑ hole
state in the β-band are illustrated with arrows. Red arrows represent on-site terms while the
black arrows represent hopping to any of eight bands on the two neighboring lattice sites. Each
arrow represents a different matrix element in the lattice Hamiltonian of eq. (5.42), and some of
these transitions will be forbidden corresponding to zero-entries in the Hamiltonian.

Figure 7.2: Plot of the absolute value of the Hamiltonian matrix for a square 5× 5 lattice. The
matrix has dimension (8 · 25)× (8 · 25) and each point in the figure represents the absolute value
of the Hamiltonian for the matrix element of the same index. The matrix is clearly sparse and
has five non-zero block matrices for each block-row and -column

is seen from Fig. 7.2 where the absolute value of the Hamiltonian is plotted for each lattice point
to reveal its structure.

The lattice solution and corresponding energy spectrum of the 8N × 8N lattice Hamiltonian
are found by diagonalizing it numerically using an existing eigensolver library implemented in
Matlab [77]. Appendix D contains the code that was used for the numerical solution. The
eigenfunctions are then restored back onto the lattice according to the ordering of the basis in
eq. (7.2) and the probability densities for MBSs are found by summing the absolute squares over
each band and as well as eigenfunctions corresponding to zero-energy solutions.

The above approach captures exactly the physics contained in the original model in eq. (4.1)
since the derivation in section 5.3 includes all the k-dependence by taking the Fourier transform.
However, there is a more naive approach to derive the lattice Hamiltonian that turns out to
give the same result, despite two important approximations. Since we are studying a low-
energy theory and the candidate material of HgTe quantum wells have the minimum band-gap
around the Γ-point [65], we make a Taylor expansion of the bulk phase-space Hamiltonian (6.1)
assuming that the low-energy subspace captures all of the important physics in the system.
Before performing the Taylor expansion, we note that eq. (6.1) implicitly assumes that the lattice
constants a, b in the x- and y-directions are unity. Using the same expansion as in eq. (6.4), only
for the full Hamiltonian and reinstating the lattice constants gives

H =
(
m0 −m(a2k2x + b2k2y)

)
τzσz +A(akx szσx + bky τzσy)− µτz +∆0τysy +M0τzsx +O(k3).

(7.3)

To solve the Hamiltonian on a lattice, we transform it to real space by making an exchange,
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kn → −i∂n, which by insertion yields a Hamiltonian

H =
(
m0 +m

(
a2∂2x + b2∂2y

))
τzσz − iA(a∂x szσx + b∂y τzσy)− µτz +∆0τysy +M0τzsx (7.4)

where ∂n is now a lattice derivative connecting different lattice points. To define the lattice
derivatives, we let Ψi,j be a fermionic wavefunction localized on some lattice point (i, j) where
i and j run over the lattice in the x- and y-directions respectively. Applying a finite-difference
approach to approximate the derivatives, the first lattice derivatives of Ψ are

∂xΨi,j =
Ψi+1,j −Ψi−1,j

2a

∂yΨi,j =
Ψi,j+1 −Ψi,j−1

2b

(7.5)

in the lowest-order approximation, and where the lattice constants a, b are assumed uniform over
the lattice. The second derivatives can similarly be approximated as

∂2xΨi,j =
Ψi+1,j − 2Ψi,j +Ψi−1,j

a2

∂2yΨi,j =
Ψi,j+1 − 2Ψi,j +Ψi,j+1

b2
.

(7.6)

Inserting the lattice derivatives (7.5) and (7.6) into eq. (7.4), the lattice constants cancel, leaving
the exact same form as eq. (7.1). As announced, the naive approach using a low-order Taylor
expansion and then a low-order approximation for the lattice derivatives yields the same result
as the rigorous derivation presented in section 5.3. The two approximations cancel, but using the
exact approach, we found that nearest-neighbor hopping is equivalent to cos(ki), so this is not a
surprising result. Increasing the accuracy of the lattice derivatives would include longer-distance
interactions, but since the original model only contains nearest-neighbor hopping, these longer-
range interactions can safely be discarded. Nevertheless, the exact model is the more rigorous
approach for the general case since it does not require arbitrary choices for the accuracy of the
expansions.

7.2 Solution for a Disc

In accordance with the analytical calculations, we solve the eigenequation (7.1) on a disc
for varying chemical potentials as shown in Fig. 7.3. We also keep track of how the energy
of the lowest-lying states changes with time, as shown in the right part of the figure. If the
system supports localized boundary modes at zero energy, i.e., MBSs, these appear as increased
probability densities along the disc boundary. The angular positions of the MBSs are observed
to change as a function of the chemical potential as demonstrated in Fig. 7.3 and there are in
total four degenerate MBSs for low chemical potentials.

Using a circular geometry is a useful geometry to perform the analytical calculations and
provide some intuition for the model, but a less appropriate approach in designing qubits with
scalability. Instead, we will consider other geometries by application of the same numerical
approach and argue that these should exhibit a similar behavior by simple conceptual arguments.
In particular, we may inscribe an isosceles right triangle in the disc as shown in Fig. 7.4. Starting
with the disc which was demonstrated analytically to have four MBSs on the edge, and projecting
those onto the triangle we are left with two MBSs as the progression in the potential in Fig. 7.4
shows clearly. When projecting the four MBSs onto the three corners of the triangle, there will
always be two MBSs that are projected onto the same corner. Those two will hybridize and split
away from zero energy, leaving only the MBSs that were projected onto separate corners.

The physical rationale for the projection comes from the understanding that non-trivial edge
states are hosted on mass domain walls as demonstrated for the Chern insulator in section 2.2.
We showed analytically that by projecting the bulk Hamiltonian onto the disc boundary (6.45),
the effective magnetic field varies as sinφ with the angle φ along the disc boundary. As a
result, there is a competition between the superconducting and effective magnetic field along the
boundary leading to specific points behaving as mass domain walls. In the triangular geometry,
the mass domain walls are still present, but are projected onto the triangle corners.
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Figure 7.3: Numerical lattice solutions of the Hamiltonian in eq. (6.1) on a disc with a radius of
25 lattice points, and for multiple chemical potentials. The black areas along the disc boundary
are the probability densities for MBSs (zero-energy states), and it is seen that their positions
change as a function of the chemical potential. On the right, the energies of the lowest-lying
excitations are plotted as a function of the chemical potential. There are four degenerate zero-
energy solutions as expected, and these are seen to split off when µ increases and the MBSs
are pairwise brought close to each other. The parameters for the simulation are m0 = 2, ∆0 =
0.25m0, m = A = 0.5m0, M0 = 0.4m0.

Central to the picture is that varying the chemical potential changes which triangle corners
the MBSs from the disc are projected on; thence, moving MBSs between different corners is
achieved simply by tuning the chemical potential. Having already derived expressions for the
positions of MBSs on the disc in eq. (6.56), we can also find the critical chemical potential µc at
which an MBS moves from the upper right corner of the triangle to the lower left as in Fig. 7.4.
The angle of the line separating regions II and III is at a right angle with the triangle diagonal
and at an angle −π

4 with the positive x̂ direction. When φ4 = −π
4 , the MBS passes from region

II where it is projected onto the lower-left corner, and into region III, being projected onto the
upper right corner.

From this we infer that there is a critical chemical potential associated with φ4 = −π
4 at

which one of the MBSs moves from one corner to another. Explicitly, we have

φ4 = − sin−1

(
∆̄

M0

)
= −π

4
⇒ µc =

√
M2

0

2
−∆2

0. (7.7)

In the numerical solution, there is a certain discrepancy between the analytical MBS positions
and the numerical ones. It is clear in Fig. 7.4 that the numerical solutions (in red) have some
ripples in the radial direction and are not strictly 1D along the edge. As the analytical solution
approximates the boundary modes as 1D, this is expected to cause some deviations in the results.

Examining the same concept of projection around µ = 0 reveals another critical chemical
potential very close to zero as shown in Fig. 7.5. The positions of the MBSs on the triangle
are, however, not consistent with how we argued for the positions based on projections from the
circle. We might argue that operation in this region requires significant fine-tuning and is not
desirable in a real device, but it is nevertheless a discrepancy in the description that deserves
attention. Furthermore, it is evident that the topological gap, i.e., the energy of the first excited
states, is very small around µ = 0 for the triangular geometry, which makes the topological
protection weak in this region. To exploit the benefit of topological protection, we should in
general avoid operating in this region, and will primarily direct the attention towards regions of
larger µ in the following sections.

7.3 Triangular Lattice Solutions

The triangle geometry introduced in the previous section can be a versatile approach to
creating a qubit operated by electrical control. As suggested by Zhang et al. [24], combining
six isosceles right triangles in the geometry displayed in Fig. 7.6, while controlling the chemical
potential in each triangle separately, provides a method to braid MBSs by electrical control.
Before we make further assessments of the composite device, we examine the isolated isosceles



7.3. Triangular Lattice Solutions 53

(a) µ = 0.2∆0 (b) µ = µc (c) µ = 0.8∆0

Figure 7.4: Overlay of numerical solutions of the bulk Hamiltonian (6.1) on a disc and triangle
lattice for three different chemical potentials. The MBSs on the triangle are colored blue while
the MBSs on the disc are colored red. Analytical positions for the MBS according to eq. (6.56)
are shown as black dots. Moreover the disc is split into three regions (roman numerals) separated
by dashed lines. When the disc is deformed into a triangle, two of the MBSs are forced to reside
on the same corner and will hybridize such that there will only be two MBSs on the triangle. In
the leftmost figure, the two lower disc MBSs (red) are both in region II and are projected onto
the same triangle corner, thus hybridizing. The other two MBSs are projected onto separate
corners and remain localized in regions I and III. When the chemical potential reaches a critical
value µc, the MBS in region III spreads out towards the corner in region II (µc = 0.5292∆0 with
the given parameters). When µ is increased above µc, the MBSs that was previously in region
III is now localized on the corner in region II and there are now two MBSs in region III. The
simulation parameters are the same as in Fig. 7.3.

right triangles and the state of the topological protection in the presence of edge and potential
disorder.

From the introductory chapters, it is clear that the system’s stability is intimately related to
the magnitude of the topological gap. The larger the gap, the less is the likelihood of excitations
above the ground state, which can be detrimental to the topological state of the system. A
second important device requirement is that the MBSs are sufficiently mobile to perform braiding
operations. Depending on the model parameters, the movement of MBSs is restricted within a
certain angular range on the disc, restricting the movement of MBSs also on the triangular
lattice. To assess device design requirements, it is essential to understand how the topological
gap and MBS mobility are affected by different lattice configurations and model parameters.

Using our numerical model, we consider multiple geometrical variations and examine how
the geometries affect the topological gap magnitude and MBS mobility. Except where otherwise
is explicitly stated, we use the same set of model parameters in table 7.1 for all simulations.
For reference, we start with the plain isosceles right triangles. For each lattice, the eigenstates

Table 7.1: Model parameters used in the numerical model corresponding to the lattice Hamilto-
nian in eq. (7.1).

m m0 A ∆0 M0

1.0 2.0 1.0 0.5 0.8

and energy spectrum are calculated for a range in the chemical potential, and a small subset of
the lattice wave functions are displayed to highlight important features. The energy spectrum
is shown for the whole range of µ, and we take the energy of the first excited modes away from
µ = 0 to be the topological gap of the system, as we already argued that the region around µ = 0
is not relevant for the purpose of moving and braiding MBSs.

Figure 7.7 shows the solution for a right triangle on a 70 × 70 lattice. From the energy
spectrum, we infer that the topological gap is just below 0.01∆0 as long as we move away from
µ = 0. By increasing the resolution in the energy, we confirm that there are two quasi-degenerate
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(a) µ = 0 (b) µ = 0.00023∆0 (c) µ = 0.003∆0

Figure 7.5: Numerical solutions on the disc (red) and triangle (blue) and analytical positions of
MBSs (black dots). When µ is decreased towards zero there is another critical chemical potential
at which an MBS moves from the triangle corner in region III to region I at approximately
µ = 0.00023∆0. There are two black dots in region II the whole time signifying that the MBS
should remain in region III, but numerical simulations on the triangle reveals otherwise.

Figure 7.6: Conceptual sketch of a SOTSC qubit based on six connected isosceles right triangles.
Superconductivity is induced in a QSHI (red) by placing it in proximity to a superconductor
(green) and adding a magnetic field B in the plane. The field could also be added as a ferro-
magnetic layer. The potential µi is controlled independently in each of the regions in the QSHI
marked by different shades of red.

MBSs separated by at most 1.5 · 10−7∆0 in energy for large µ and several orders of magnitude
smaller for small µ. The lattice solutions also show the two MBSs located in the lower corners
for small µ and that one MBS transfers to the upper corner at a critical chemical potential of
approximately 0.42∆0. As a remark, the gap is small but finite at µ = 0 (see appendix C.3); the
gap is several orders of magnitude larger than the MBS splitting.

7.4 Concave Diagonal Triangles
The first feature we add to the triangular geometry is making the diagonal of the triangle

concave. For a consistent definition of the concavity that is qualitatively the same for different
lattice sizes, we measure it by the angular span α of the diagonal as shown in Fig. 7.8, where α
is related to the curvature radius R and the lattice size L through

α = 2asin

(
L√
2R

)
. (7.8)

When the edge is straight, the curvature radius R goes to infinity and, hence, α→ 0 corresponds
to the straight edge.

Introducing a small concavity on the diagonal does not significantly affect the minimum gap,
but reduces the gap somewhat for larger chemical potentials. The effect is likely to be a disorder
effect occurring when the curved boundary is imposed onto the discrete square lattice. Naturally,
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Figure 7.7: Numerical solution of the bulk Hamiltonian on a right triangle with sides of 70 lattice
points. A critical chemical potential is located at µ ≈ 0.42∆0 where one of the MBSs smears out
on the diagonal and is located on different corners for smaller and larger µ. The energy spectrum
as a function of µ on the right shows that the minimum of the topological gap is approximately
0.01∆0.

Figure 7.8: The definition of concavity for a triangle refers to the angle α which is completely
determined by the curvature radius R and the triangle side length L through eq. (7.8).

the edge will have some “steps” acting like disorder. The wave functions for a range of concave
geometries are included in appendices C.1 and C.2.

For moderate α, a more interesting effect appears as demonstrated in Fig. 7.9. There is a
significant enhancement of the gap by approximately 3.5 times compared with the triangle of the
same size, but with a straight diagonal. Moreover, one MBS smears out and moves smoothly
along the diagonal for a relatively large range of µ before it localizes at the upper corner when
µ approaches 0.6∆0.

Figure 7.9: MBS wave function on a concave triangular lattice with α = 0.25π on a 70 × 70
lattice. The lower right MBS smears out on the diagonal and then moves smoothly towards the
upper corners as µ increases. The topological gap is 0.035∆0.

In addition to the above-mentioned, we also observe the following (additional figures are
presented in appendix C): (1) Making the diagonal concave generally increases the MBS splitting
away from zero energy. (2) When the concavity is too large, the gap decreases at one point in
the spectrum, just below µ = 0.6∆0, but remains large elsewhere. (3) The mobile MBSs are
distributed on the diagonal and do not localize entirely in the lower right corner. Adjusting the
model parameters will affect the localization. (4) There are significant finite size effects for the
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Figure 7.10: The dependence of the gap magnitude on the curvature. The left figure shows
the four lowest-energy bands for α in the range {0.05π, 0.475π}. Each set of bands are colored
according to the value of α in the colorbar. Lighter-colored bands tend to appear at somewhat
larger energies, indicating that larger curvatures increase the gap. The right figure shows the
minimum gap for the same range of α for the triangles with short sides of 50 and 70 lattice sites.
The trend is that moderate concavities enhance the gap while too small or too large concavities
can close the gap. The oscillations in the right figure indicate strong finite-size effects.

gap dependence on the curvature. Some of these effects are seen in Fig. 7.10 where the minimum
gap is found for a range of α for the 50× 50 and 70× 70 lattices. (5) Finally, we also observe in
Fig. 7.10 that the gap minimum moves towards larger µ.

Common for both lattice sizes is that a moderate α will increase the gap while small and
large α can give small or vanishing gaps. The fluctuations in the minimum gap as a function
of α are likely a disorder effect. For a completely smooth boundary, the minimum gap would
be a smooth function of α since the model does not contain contributions that can cause steep
oscillations in the gap magnitude. The curves for the two lattice sizes differ only by the lattice
size (and the number of points in α), and the peaks and valleys do not appear at the same
positions. For different lattice sizes, the resulting disorder effects from the lattice discreteness
will differ, and the fluctuations are expected to be smaller for the larger lattice. The steepness of
the valleys, particularly in the smaller lattice, also indicates strong discretization disorder effects.
Nevertheless, the overall trend with larger gaps at moderate µ remains in both cases.

In the discussions of the topological gap, we defined the gap as the energy of the lowest-lying
excited state. In some cases, however, the topological protection remains intact in the presence
of other low-energy modes as long as the different MBSs do not couple either directly or through
excited fermion states [78]. In the finite lattice geometry, there is, strictly speaking, not a bulk
gap anymore. Still, there will be an energy region around zero with a low density of states
separating high-energy high-density regions, as seen in Fig. 7.11.

When the states in the low-density region are well-separated from each other and the MBSs,
one might achieve topological protection with an effective gap equal to the energy range of the
low-density region instead of the energy of the first excited state. The topological protection
of the MBSs even in the presence of other excited fermions is a consequence of global fermion
parity conservation. It can be shown using only the particle statistics of complex fermions and
MBSs and assuming spatially well-separated MBSs.

If the separations between states in the low-density region are small, other challenges related
to the signal strength at readout can nevertheless arise. Furthermore, nucleated MBSs or nearly-
degenerate low-energy modes can couple to the MBSs and disturb the exchange statistics that
topological quantum computing relies on. Therefore, examining the behavior of the first excited
state is still helpful to the analysis. Dynamical temperature-dependent analysis of the system
can reveal whether the sub-gap excited states are detrimental to the topological protection and
braiding statistics.
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Figure 7.11: Distribution of the 500 smallest eigenvalues for the concave 70 × 70 triangle with
α = 0.15π. The eigenvalues were computed for µ = 0 and sorted into 70 equally sized bins.
There is a region around E = 0 with a low density of states (green background) that separates
two high-energy regions (blue background) with much higher density of states.

7.5 Triangles with Edge Disorder

Real systems will suffer from disorder. Building on the previous model of triangular islands,
we add edge disorder to the diagonal of the triangles while keeping track of the MBSs and
the magnitude of the topological gap. The specific geometry of our device will have direct
consequences for the excitations that are present. If the deviations from the smooth edge are
sufficiently large, nucleation of MBSs can occur. The MBSs are hosted at domain walls on
corners and boundaries, and if the disorder is significant, it can form structures that mimic the
phenomena in the triangle itself, i.e., the disorder leads to the formation of new corners where
MBSs are hosted.

7.5.1 Sine-Shaped Edge Disorder

A simple way to introduce some amount of disorder is to deform the diagonal of the triangles
either by simple analytical functions or by small random fluctuations. First, we consider the
effect of modulating the straight and concave diagonals by a sine function, providing a controlled
and predictable model to understand qualitatively the physical phenomena that appear in the
simulations. We assign an amplitude to the disorder measured in units of the lattice spacing in
the direction perpendicular to the edge and measure the frequency by the number of peaks along
the diagonal. A selection of results for the sine-disordered triangles is shown in Fig. 7.12.

When sine-disorder is introduced along the straight diagonal, the critical chemical potential
is moved towards smaller values, from approximately µc = 0.42∆0 to µc = 0.32∆0. Still, the
MBSs remain localized in the triangle corners. When the edge is made concave, the behavior is
similar to the smooth concave triangles in section 7.4. Moreover, the disordered concave triangles
have an enhanced gap, as seen in Fig. 7.12b, where the concavity counteracts the disorder effect.

For a large concavity, α = 0.38π, in Fig. 7.12c, the first excited modes cross through E = 0
around µ = 0.7∆0. A small gap persists when there is no disorder, but we observed in Fig. 7.10
that the gap can close for large α also for the smooth triangles, so the gap-closing is likely a
finite lattice effect, rather than caused by the disorder.

If the disorder is sufficiently large, new MBSs will nucleate on “corners” along the diagonal.
Each peak becomes a domain wall where the nature of the gap is different on the different sides
of the peaks and hosts MBSs in the same way as the triangle corners do. Fig. 7.13 shows an
exaggerated disorder configuration to demonstrate the MBS nucleation. In addition to the two
MBSs for the low-disorder triangles, there are 16 localized low-energy modes on the peaks of the
sine function. Furthermore, none of the MBSs are mobile by tuning µ. Despite the exaggerated
disorder amplitude, the qualitative phenomena of nucleation and demobilization will also appear
in geometries with smaller amplitudes and random disorder.
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(a) amplitude 1.8, straight edge, 29 peaks

(b) amplitude 1.8, α = 0.18π, 29 peaks

(c) amplitude 1.8 α = 0.38π, 29 peaks

Figure 7.12: Wave functions on sine-disordered 70 × 70 lattices with three different lattice con-
figurations. The disorder parameters are the same in all the three figures; the diagonals are
sine-shaped with an amplitude of 1.8 lattice points and in total 29 maxima perpendicular to the
diagonal. The wave function distributions are similar to the smooth concave triangles (see ap-
pendix C.2). (a) The straight disordered edge has a single-point gap closing and the gap remains
small for the larger µ. (b) With moderate concavity and disorder, the gap persists for all µ and
is enhanced compared to the straight edge without disorder. (c) In the case of large concavity,
the disorder leads to a single-point gap-closing close to µ = 0.7∆0, but the gap otherwise remains
large.

7.5.2 Random Edge Disorder

The sine-shaped disorder can provide an intuitive understanding of the effect of disorder in a
controllable and determined system. The nucleation of MBSs and reduced mobility of MBSs will
be detrimental to the functioning of a qubit by braiding and should be considered. However, a
more appropriate model is to introduce random disorder on the diagonal. We construct triangles
with random edge roughness along the diagonal in the following manner. (1) Define a straight
line by discrete lattice points and add a Gaussian random number to each point. (2) Smooth the
disordered line using a local smoothing function (in this case, the lowess function in Matlab). A
measure of frequency is obtained by adjusting the span of points used to calculate each smoothed
value. (3) Map the disordered line onto the diagonal of a triangle such that the amplitude is
directed perpendicular to the diagonal at all points. (4) Define a polygon with the disordered
line as diagonal and define the lattice as points lying within the polygon. An example of a lattice
generated by this method is shown in Fig. 7.14.

To control the disorder frequency and amplitude, the smoothing function’s span is adjusted
empirically to produce an average number of peaks along the diagonal. The amplitude is defined
by the average distance from the smooth diagonal measured in the lattice parameter. Neither
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Figure 7.13: Demonstration of nucleation induced by huge edge disorder. The results were
obtained on 70 × 70 concave triangles with α = 0.25π and sine disorder with amplitude 15
and 8 peaks along the diagonal. (a), (b), and (c) show the wave functions corresponding to
the first, third, and sixth-lowest eigenvalues (summed over the positive and negative symmetric
eigenvalues) at µ = 0. (d) The sum over all 18 low-energy modes at µ = 0.2∆0. The wave
functions show only minor changes by changing µ. (e) The 50 lowest energy eigenvalues as a
function of µ. There are 18 low-energy states close to zero whereof (a), (b), and (c) provides a
selection of the corresponding eigenfunctions.

Figure 7.14: Generation of a 50 × 50 triangle with edge roughness on the diagonal. The lattice
is defined by the points enclosed by a polygon that has a disordered diagonal. Points that have
the vacuum as nearest neighbors are defined as edges and colored in red. Parameters for this
lattice is α = 0.25π, roughness amplitude = 2.0 and number of peaks = 20.

of these numbers should be taken as deterministic since the exact number of peaks is not well-
defined, and the amplitude varies between samples.

Introducing edge roughness has multiple implications for device design. We take a qualitative
and quantitative path to examine these effects closer. Figure (7.15) shows a statistical treatment
of the edge roughness, and the results were produced in the following manner: (1) We isolate
a range in µ that allows the MBS on the diagonal to move between the two corners. It will
depend somewhat on the lattice configuration, but in general, tuning µ between 0.15∆0 and
0.63∆0 is sufficient. This range avoids the hybridization for larger µ where the gap becomes very
small and avoids the region around µ = 0. (2) One hundred lattices with different edge disorder
configurations are generated, and the energy as a function of µ is computed for each lattice in
the same way as the right-most part of Fig. 7.7. (3) For each lattice, the smallest energy of the
first excited state is recorded. For the result in Fig. 7.7, that would be just below 0.01∆0, which
occurs around µ = 0.42∆0. (4) The procedure is repeated for multiple values of the concavity α
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Figure 7.15: Statistical results for 50 × 50 lattices with random edge disorder on the diagonal.
One hundred lattices were computed for five different concavities (plain, α = 0.08π, 0.18π, 0.28π,
0.38π) and three different roughness amplitudes measured in the nearest-neighbor distance in
the lattice. Moderate α tends to give the largest gap. The left figure shows the mean gap
magnitude in solid lines and the standard deviation in dashed lines, both as a function of α.
The three figures on the right show the distribution of the underlying dataset where each dot
corresponds to one disorder configuration. Each color corresponds to a different α, and the three
figures have increasing roughness magnitudes towards the right. A significant fraction of the
disorder configurations enhances the gap at the expense of larger variations and the possibility
of gap-closings. In the concave triangles, the average gap is enhanced at the expense of greater
variations in the data. There are a fraction of gap closings for the two smaller amplitudes, but
the expected gap magnitude is larger if the gap closings can be avoided.

and the disorder amplitude.

The rationale for considering only a limited range of µ is a practical consideration. It is
central that the MBS that moves on the diagonal is sufficiently mobile to move between the
triangle corners since that will constitute the mechanism for braiding and thus computation.
Exceeding the point in µ where the MBS is located on a corner does not have favorable effects on
the device, and we thus choose to limit the range of µ to avoid the small-gap and hybridization
effects at smaller and larger µ. The sufficiency of the limited range will be seen explicitly in
section 7.6 where we demonstrate the exchange of MBSs by tuning µ within this range.

The general trend in the statistical treatment is that the gap magnitude increases when
the triangle diagonal is made moderately concave but decreases as α increases beyond 0.28π.
The trend coincides with the concavity dependence in section 7.4 in that the gap increases
for moderate α. Throughout, the gap is smaller for the disordered edges compared to the
smooth concave counterparts; for amplitude 0.7 only slightly and more significant for the larger
roughness amplitude. The fact that increasing the roughness at α = 0.08π increases the gap
is an interesting feature and indicates that the discreteness of the lattice may already cause a
disorder-effect replicating the result for the smooth concave edge.

Looking at the underlying data point at the right of Fig. 7.15, there are additional features
hidden in the mean values. Namely, the gap closes in some fraction of the generated lattices,
yielding values close to zero. They will not be exactly zero even when the excited modes pass
through zero due to the discrete series of µ. For the two smaller disorder amplitudes, the gap is
generally expected to be larger if effects from the gap-closing can be mitigated, but the enhanced
gap comes at the expense of increased variability. As discussed in section 7.4, the presence of
low-energy excited states need not always have detrimental effects on the topological protection
but further investigations for the specific system are necessary to conclude.

As the disorder increases to amplitude 2.0, the gap magnitudes are more evenly distributed
from vanishing to slightly lower than the smaller amplitude configurations. Only at the inter-
mediate α = 0.18π is there a region resembling a gap in the data between 0 and .01∆0. Large
edge roughness is thus detrimental to device behavior consistency. The lack of consistency be-
comes evident when we compare lattices generated with the same parameters, only different edge
roughness configurations. In some cases, the roughness will enhance the gap, while in others, it
will bring down the first excited states to close the gap entirely at some point in the spectrum
(see appendix C.5).
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Figure 7.16: Cavities in the boundary can obstruct the movement of MBSs in the case of large
disorder. The lattice is a straight edge 50×50 triangle with disorder amplitude 3.0 and 20 peaks.

Figure 7.17: The wave function on a disordered edge spreads out on the diagonal even when the
diagonal is straight, contrary to the smooth boundary case from Fig. C.2a. The gap magnitude
also decreases from the smooth case. The disorder amplitude is 2.0 with 20 peaks.

In addition to the gap magnitude, i.e., the energy difference to the lowest excited state, main-
taining highly mobile MBSs is crucial to performing braiding. When the roughness amplitude
increases, lattice “cavities” can form along the diagonal as seen, e.g., in Fig. 7.16. Rather than
moving between corners, the mobile MBS moves between the cavity and the upper corner and
never reaches the lower right corners. In the worst case, the MBS can be trapped entirely, as
illustrated with the exaggerated sine disorder in Fig. 7.13. Such edge cavities must be avoided
to ensure predictable behavior in an MBS braiding device.

There are two more effects that we observe for the case of random edge roughness: as shown
in Fig. 7.17, the mobile MBS is smeared out on the diagonal in a similar manner as for the
concave triangles, but the first excited states are still separated from the zero-energy states by
several orders of magnitude larger than the MBS splitting. Moreover, the MBS is still mobile
and moves between the triangle corners as µ changes. Secondly, the critical chemical potential,
i.e., where the mobile MBS moves from one corner to the other, differs depending on the lattice
configuration and is another reason to avoid large disorder on the boundary.

7.5.3 Lattice Potential Disorder

Until now, we have used a uniform chemical potential on the lattice, but small fluctuations in
µ would be expected in an actual device. In Fig. 7.18, we examine the effect of adding random
noise to the chemical potential. The approach is similar to the statistical treatment for edge
disorder. We have computed the energy spectrum for a limited range of µ where each lattice
point is assigned a small random Gaussian fluctuation dµi,j . This is repeated for 100 lattices for
eleven different amplitudes from 1% to 20% of ∆0.

Fluctuations up to 5% of ∆0 make only a minor difference to the gap magnitude. Beyond 5%,
the effect increases quickly by producing a large spread in the gap magnitude. Since the mean
value of the fluctuations is zero, the mean value of the gap decreases slightly, but the trend is that
fluctuations in µ will reduce the gap. The more significant effect, however, is on the variation of
the gap size, which is increased by orders of magnitude. The variability and unpredictability of
the gap size will pose a greater threat to creating a reliable device.



62 Chapter 7. Numerical Calculations

Figure 7.18: Statistical data for 50× 50 concave lattice with α = 0.18π and non-uniform µ. On
the left, each dot corresponds to one simulation where the random Gaussian fluctuation with
amplitude dµ is added to µ. For each amplitude dµ, there are 100 configurations of µi,j . The
right figure shows errorbars of the same data centered on the mean value of the gap and bars
giving standard deviations for each dµ. As dµ increases, the mean value decreases only slightly,
while the variation in the gap increases rapidly.

7.6 Qubit Geometry

Based on the isosceles right triangle, one can design a simple composite geometry in which
braiding of MBSs can be performed purely by electrical control as suggested by Zhang et al.
[24]. The geometry was shown in Fig. 7.6 and consists of six triangles for which the chemical
potential can be controlled independently. When the chemical potentials are changed between a
low and a high value, i.e., smaller and larger than the critical chemical potential, in a particular
sequence, the MBSs can be braided to perform computations. In Chapter 3, we saw how braiding
sequences could produce the effect of a quantum gate, and here we provide a connection to the
physical implementation.

The braiding is performed by changing the chemical potentials step-wise, and it turns out
that, for a two-particle exchange, we need to change only one of the six potentials for each step
as shown in Figs. 7.19 and 7.20. Moreover, it is sufficient to vary µ between a high potential µu

and a low potential µd. To make the presentation more streamlined, we use a binary notation by
denoting the low potential by “0” and the high potential by “1”. A given potential configuration
is then described by a six-component binary vector where the numbering is marked on the first
lattice in Fig. 7.19. To get a better overview of the chemical potential in different regions, we can

Figure 7.19: Step-wise demonstration of the exchange of two MBSs originally located in the
lower right and middle right corners. Each step is marked below by a six-component vector[
µ1 µ2 ... µ6

]
that gives the relative value of the chemical potential for each of the six regions

marked in the rightmost lattice. A “0” corresponds to a low chemical potential µd = 0.1∆0 while
a “1” corresponds to a high potential µu = 0.65∆0. The colored arrows follow the movement
of the two MBSs with a star at the end of the movement performed in the current step. The
potentials that change are also marked with colored numbers in the potential vectors. The qubit
lattice is created from six triangles with sides of 45 lattice points.
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Figure 7.20: Schematic overview of how µ is varied for the different regions of the qubit lattice
in Fig. 7.19 to produce the exchange of two MBSs. Each column corresponds to a separate step;
blue areas mean high µ = µu and green areas low µ = µd. The exchange procedure is the same as
is shown in Fig. 7.19, in which the numbering of the regions is also given in the leftmost lattice.

also represent the potential in a table like the one in Fig. 7.20 and see how it changes for each step.
In appendix C.8, the 32 wave functions for the subset of configurations with (µ1, µ2) ∈ {01, 10}
are provided, split into plain edge, concave edge and random concave edge geometries. The MBS
positions are the same in the three variations but differ in how the MBSs are spread out around
those positions.

We can assemble sequences from the table of wave functions in appendix C.8 to realize the
desired exchange operations. When we have assembled a given sequence of potentials like the
one in Fig. 7.19, we can make a linear interpolation for each step to study how the MBSs move
as the potentials change slowly. Then, it will be clear which MBSs move for each step. As long
as only one of the six potentials changes, as seen in Fig. 7.20, only one of the MBSs changes
position during that step. That allows us to monitor the gap between the MBSs and the first
excited states throughout an exchange operation. For the plain triangles in Fig. 7.19, the gap is
0.01∆0 or larger through the entire exchange (see details in appendix C.6).

Through the entire exchange operation above, there are four MBSs separated from excited
states. However, there are potential configurations where MBS fuse and leave only two MBSs on
the disc. If more than one µi changes at a time, performing the interpolation between steps and
observing the movement of MBSs, is important to detect unwanted excitations or exchanges.

7.6.1 Concave Qubit

When the edges of the qubit geometry are made concave, the MBSs spread out as for the
individual triangles, but the mode of operation is not changed. The particle exchange in the
concave-edge qubit is shown in Fig. 7.21. The smearing of one MBS on the triangle diagonal
does not inhibit movement between the same positions as for the straight-edge qubit.

A significant difference from the isolated triangles is that the MBSs cannot be moved smoothly
between all corners, which is apparent for the fourth step in Fig. 7.21. The MBS on the right
moves to the center position but in an abrupt manner similar to the straight-edge lattice. The
cause for the abrupt movement is seen from the previous step where the MBS is smeared out

Figure 7.21: Concave L = 65 qubit with α = 0.25π showing the exchange of the two MBSs on
the right side of the lattices. The exchange is the same as for the straight edge geometries in
Fig. 7.19.
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along the edge above the right corner; if it were to move smoothly to the center, it would be
smeared out along the edge below the corner. Studying the energy spectrum between the steps,
the gap to the first excited state vanishes between the third and fourth steps and remains very
small for the remaining steps (see appendix C.6). Surprisingly, while the concave edges enhance
the gap for the isolated triangles, the concave qubit geometry has low-energy modes that are
degenerate with the MBSs for parts of the braiding sequence.

7.6.2 Gate Implementation

With the table of wave functions in appendix C.8, we have, in principle, what we need to con-
struct a simple quantum gate like the Hadamard gate from Fig. 3.3 by three sequential exchanges
as demonstrated in Fig. 7.22 showing the major steps. By closer inspection, however, there is a
caveat when we assemble the sequence, and we can use that to acquire a deeper understanding
of the device. The complete scheme for the Hadamard braid is included in appendix C.7. It
requires at least 18 steps in the chemical potential, where the most steps change the potential in
only one region. A larger number of potentials must be changed between each exchange.

During the Hadamard gate braid, the MBSs start and end in the same positions for each of
the three exchanges. Nevertheless, the configurations in the second and third lattices in Fig. 7.22
are not the same. The first indication is that the MBS on the upper right corner is distributed
along different edges. This phenomenon is more apparent when we look at the concave geometries
(see appendix C.8) where the MBSs spread out more but the phenomenon can still be seen in the
straight edge geometry. When we connect the [0, 1, 0, 0, 0, 0] and [1, 0, 1, 1, 0, 0] configurations,
there is an additional movement of the MBSs depending on how we connect them, and it is
necessary to examine the transition in more detail.

In Fig. 7.23, we make a linear interpolation between the two configurations, [0, 1, 0, 0, 0, 0] and
[1, 0, 1, 1, 0, 0], with 20 intermediate steps. There is a low-energy mode that becomes degenerate
with the four other MBSs during parts of the transition. Moreover, the low-energy modes interact
with the MBSs and alter the wave function distribution by nucleation. In the qubit simulations,
the wave functions are summed over the four lowest-energy states, but the corresponding wave
functions typically contain parts of several or all four MBSs. When an intermediate step shows
the presence of six MBSs in the wave function despite summing over only the four lowest-energy
states, it means that the first excited states become degenerate with the MBSs and the wave
functions interact.

Since we already saw that the concave edges could diminish the gap, we make the same test
for the straight edge geometries in Fig. 7.24. In addition to the direct transition between the
configurations in Fig. 7.22, we can skip one of the (apparently) equal lattices, transitioning from
the last step of one MBS exchange to the second step of the next MBS exchange (see appendix C.7
for more details). That gives us three options for the transition with the energy spectra shown in
Fig. 7.24. It appears that it is possible to perform the transition while maintaining a finite gap,

Figure 7.22: Demonstration of the braid that produces the Hadamard quantum gate by three
sequential exchanges moving from left to right. Each step here corresponds to a series similar
to that in Fig. 7.19 with the full scheme included in appendix C.7. The potential configurations
shown here are the first (and last) steps of each exchange. The MBSs are marked with numbers
to keep track of how the MBSs move and each major step is also marked with arrows displaying
how the MBSs are exchanged.
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Figure 7.23: Results for interpolating between the [0, 1, 0, 0, 0, 0] and [1, 0, 1, 1, 0, 0] potential
steps with 20 linearly interpolated intermediate steps. (a) Wave functions at a subset of the
intermediate steps summed over the four lowest-energy eigenvalues. At some points during the
transition, there are six MBS (top lattices), indicating that two low-energy modes are interacting
with the four original MBSs and leading to nucleation. (b) The energy spectrum for the potential
interpolation shows that the first-excited state is brought down and becomes degenerate for a
large part of the procedure. The line appearing exactly at zero energy is made up of the four
MBSs that appear in the start and end steps.

Figure 7.24: The energy spectrum for interpolation between the exchange operations that consti-
tute the Hadamard gate braid. There are three ways to connect the different operations separated
by vertical blue dashed lines: direct (middle region) between the lattices appearing in Fig. 7.22,
or by skipping either of the two “equal” lattices (left and right). The potential configurations
are marked above the spectrum, and blue dashed lines and the intermediate steps are linearly
interpolated.

Figure 7.25: Comparison of two lattice configurations starting from the same potential config-
uration and transitioning to states where the wave functions appear equal, but the potential
configurations differ. The exchange in (b) contains an additional exchange of the MBS on the
top and upper right compared to (a), as demonstrated with arrows showing the movement of
MBSs.
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but an examination of the wave functions shows that the procedure either involves an additional
exchange, or the wave functions become undefined during the exchange. In Fig. 7.25, we compare
the two last steps in a single exchange operation with the case where we go from the second last
step in one exchange to the first step in the next. The wave functions in the end points appear
to be equal, but with different potential configurations. As a result, the procedure that connects
two different exchange operations involve an additional particle exchange of the top and upper
right MBSs compared to the case where the potential configuration returns to the initial one.

The additional MBS exchange occurring between the other “planned” exchanges is but an
example. More elaborate schemes may exist that connect different exchange operations without
such “hidden” exchanges. Nevertheless, the example demonstrates the crucial importance of
making a careful and detailed examination of the MBS movements beyond the potential steps.

7.6.3 Edge Disorder

Based on the result for the concave disordered triangles, we would expect that the qubit
geometry will also be stable with a finite gap for small amounts of disorder. In Fig. 7.26,
we demonstrate an MBS exchange in the qubit with moderately disordered edges. The MBSs
are connected to the same positions as before but located further away from their associated
corners than in the concave geometry. The decay length (“size”) of the wave functions appears
smaller in the presence of disorder but will depend on the particular configuration and requires
a systematic search to conclude. Most importantly, as the potentials change, the MBSs move in
the same pattern as in the case of straight and concave edges discussed previously.

Figure 7.26: Exchange procedure for qubit geometry with randomly disordered edges. The MBSs
are bound to the same positions as in the straight edge geometry, but the MBSs smear out on the
edges. In this particular example, the MBSs are also located further away from the corners than
in the smooth concave geometry. The disorder amplitude is 1.5 with 20 peaks and α = 0.25π.
The lattice was inspected to make sure the upper four triangles are connected with the lower
two.

7.7 Discussion
From the bulk BHZ Hamiltonian with added superconductivity and ferromagnetism, we have

shown by analytical and numerical calculations that MBSs are hosted at four points on the
boundary of a disc. In the effective Hamiltonian on the boundary, the magnetic field has a varying
amplitude. The superconducting pairing is constant and isotropic, so there will be regions where
the SC pairing dominates and other regions where the FM interaction dominates. Since these two
types of regions have gaps of different natures, there must be points along the boundary acting
as mass domain walls where the bands cross to bridge the FM- and SC-dominated regions. These
crossing points are the positions of MBSs. In extension of this argument, we would expect that
lattice structures caused by disorder can also act in the same way if they are formed in the way
that one part is dominated by SC and the other by FM. From the numerical simulations, this is
what we observed for triangles with both the sine-disorder and randomly disordered edges.

We have argued by simple arguments of projection and numerical calculations that the MBSs
can be hosted in two corners of an isosceles right triangle. If we imagine that the disc is deformed
into a triangle, the domain walls where the MBSs are bound will generally move to the triangle
corners. At one of the corners, there will be two MBSs, which will hybridize. On the triangle,
there will be only two MBSs, which are moved between different corners. The concept of projec-
tion gives the expected result for moderate chemical potentials. However, in a small region of µ
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around zero, the idea breaks down as the MBSs are found in two corners that are not predicted
from the projection, nor by the analytical calculations. The gap separating the MBS from the
first excited state is also very small but finite.

Transforming the BHZ Hamiltonian to a lattice formulation, we find the MBSs on the disc
boundary by numerical simulations. A difference between the analytical and numerical results
is that the analytical approach gives a strictly 1D system, while the numerical method has a
small radial component. It is seen clearly in, e.g., Fig. 7.4 that the MBS wave function has
a radial component. The discrepancy between the numerical and analytical results for µ ≈ 0
may be caused by approximations in the analytical calculations. In the numerical solutions,
the radial distribution of the MBS can lead to interactions and novel phenomena that are not
accounted for in the analytical 1D model for the disc boundary. It can also be a discretization
effect. Forming a disc geometry on a uniform square lattice means that the edges of the disc will
have a certain roughness; each lattice point interacts only with the nearest neighbors and does
not contain information on the global geometry of the boundary. The geometric dependence
of the topological excitations might lead to effects that are not well described by assuming the
boundary is smooth.

As the energy difference between the MBSs and the first excited states around µ = 0 is very
small in most cases, it is unfavorable to operate in this region. It is sufficient to tune µ in a
region µ ∈ {0.15∆0, 0.65∆0} to move one of the MBSs between different corners. Nevertheless,
the phenomenon indicates the presence of topological physics in the bulk Hamiltonian that the
analytical model does not describe well.

To measure the robustness of different geometries, we have primarily considered the energy
difference between the MBSs and the first excited states. We have identified this energy difference
as the topological gap and looked for configurations that maximize this energy gap. It has been
argued for MBSs bound to vortex cores in chiral SCs that the system’s state is still topologically
protected in the presence of a small number of localized states within the bulk SC gap. In the
confined geometries, there is, strictly speaking, no longer a bulk gap, but there is still a low
density of states in a region around zero, separating high-energy regions with a high density of
states.

While the robustness in the presence of low-energy excitations is a general result and only
requires fermion parity conservation, the distance to the first excited states is still important. In
the qubit geometry with concave edges, we showed that the first excited states became degenerate
and interacted with the MBSs for a range of µ. As a result, there were six MBSs on the
lattice during the intermediate steps, which can be detrimental to the exchange statistics. Such
interactions must always be avoided, even though some low-energy modes can be tolerated in
certain cases. A deeper analysis of the statistics when MBSs are exchanged under these conditions
is necessary to create a reliable topological qubit.

There are also practical reasons to consider the distance to the first excited state. Detection
of the system’s state is necessary to extract the information from a calculation. If there are
many low-energy states in the system, the signal will contain more than just the MBS signal
and diffuse the observed characteristics. MBS computing as a field is in its infancy, and it is still
disputed whether MBSs have been observed experimentally or not. As such, having a system
with MBSs well-separated from other states will help detect MBSs without encountering noise
from other low-energy excitations.

Making the diagonal of the right triangles concave, the general trend is that the topological
gap increases for moderate concavities, but decreases for the largest values. An angular span of
the diagonal between 0.25π and 0.30π appears to be the optimal curvature, but the simulations
revealed large finite-size effects. As the curvature is incremented slowly, there are certain points
where the gap drops or closes as the first excited states cross through zero energy. The sharpness
of the drops indicates that it is caused by the discreteness of the lattice, as explained above.
Imposing a curved boundary on a square lattice will impose some disorder giving rise to low-
energy excitations. The size of the finite-size disorder for the concave triangles is helpful for the
assessment of the disc geometry. It is likely that the unexpected positions of the MBSs on the
disc for µ = 0 can be caused by a large finite-size effect.

When we combine the triangles into a larger qubit geometry on which braiding can be realized,
the concave edges lead to less favorable characteristics due to the nucleation of MBSs and the
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presence of low-energy states. The MBSs are bound to a corner in the qubit geometry but are
also distributed along a specific edge. For movements along the opposite edge, the MBSs do not
move smoothly along the edge, but we observe nucleation and gap-closing. Adjustments to the
spatial dependence of the model are necessary to exploit the advantage of concave edges.

In the simulations, we have only varied the potential configuration. However, in the theo-
retical model, it is straightforward to include a spatially varying superconducting phase which
can be implemented by external flux loops. Moreover, the geometric dependence of the model
means that changing the direction of the magnetic field will affect the locations of the MBSs.
By examination of these additional degrees of freedom, it might be possible to take advantage
of the favorable characteristics that we observed for the isolated-triangle geometries.

The addition of disorder to the model shows some interesting features. Qualitatively, the
formation of traps inhibits the mobility of MBS. In some cases, the edge disorder can form
cavities that entirely trap MBSs or lead to the nucleation of more MBSs in the system. Reduced
mobility is detrimental to the movement of MBSs for braiding, and nucleation can result in
different exchange statistics. A moderate curvature can counterbalance the effect of disorder on
the diagonal. However, in the composite qubit geometry, concave edges led to nucleation, so
it cannot be used without tuning the spatially varying parameters in the model. For moderate
disorder amplitudes, the MBSs are bound to the same positions as the straight and concave edges
for any given potential configuration. We have also seen that the gap magnitude is insensitive to
small spatial fluctuations in the chemical potential with only minor differences for fluctuations
up to 5% of ∆0.

In the statistical treatment of disorder, we saw that when the disorder is small, i.e., amplitudes
of 0.7 and 1.1 lattice points, the sampled gap magnitudes can be divided into two categories.
For a fraction of the samples, the gap closes, meaning that the first excited states either cross or
become degenerate with the MBSs. The rest of the samples have a high probability of a larger
gap, i.e., if the gap does not close, the disorder will typically enhance the gap. As a general
trend, the effect is stronger for larger curvatures. When the disorder amplitude is larger, i.e.,
2.0, the sampled values are distributed evenly from gap-closing to relatively large.

From these observations, we can infer the following. (1) If one can identify when the gap
closes and adjust any part of the model to exclude these cases, small disorder will significantly
enhance the gap. (2) The gap is enhanced by concavity, but the probability of a gap-closing is
larger for the largest concavity, in agreement with the results for the concave triangles. (3) Even
a small concavity of α = 0.08π increases the probability that the gap will be enhanced, but also
the probability that the gap closes. (4) When the disorder is larger, the sampled gap magnitudes
are evenly distributed, and the probability of a gap decrease or closing is significant.

Conceptually, it is simple to construct a sequence of potential configurations that move MBSs
to produce quantum gates. In practice, however, there are a few caveats. When we make a
sequence of MBS exchanges, the intermediate steps between the exchanges need not be equivalent,
even if the wave functions at the start and end appear equal. Connecting the steps in a naive
manner can realize additional braiding operations or lead to nucleation and annihilation that
is detrimental to the measured exchange statistics. We can make two assessments from this
observation.

First, it is possible that more elaborate ways of connecting separate exchange operations can
produce the simple connection that makes the scheme valid. Such connections can include any
of the complete set of 64 configurations for the potential, contrary to the 32 we have used here.
As mentioned above, tuning additional degrees of freedom like the superconducting phase and
orientation of the magnetic field can also be helpful in achieving the desired effect. Secondly,
as long as the braiding operations are controlled and well-defined, the exact gates implemented
in the physical system are not important. Quantum computation is always implemented by
means of a discrete gate set; the specific set is determined by the physical implementation. The
Hadamard gate is merely an example, but the braiding sequence that includes the additional
exchanges in the connections can be an equally good quantum gate. In any case, it is crucial to
examine the detailed movements of any braiding sequences. Exchanges that are not accounted for
while performing a braiding algorithm will lead to errors in the calculations. These errors must
be avoided to fully exploit the intrinsic error protection that topological quantum computing
promises.
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Conclusion

Quantum computing is a field still in its infancy, suffering from susceptibility to external
noise leading to loss of information and, hence, high error rates. An alternative path to im-
plementing quantum computing is to use topological phases of matter where non-local storage
and manipulation of information provide intrinsic error protection. The experimental evidence
for the underlying physics that would be used for topological quantum computing has been sur-
rounded by controversy and is not yet unambiguously proven. By extending the search for a
physical platform with the appropriate topological physics, one can find novel physical systems
with favorable properties for experimental realization.

At the core of topological quantum computing is the Majorana bound states (MBSs). These
are zero-energy excitations with non-trivial exchange statistics; the sequential exchange of MBSs
is the most common physical realization of topological quantum computing. Recently, a class of
higher-order topological superconductors was predicted theoretically, in which MBSs can emerge,
e.g., bound to the corners of a 2D topological superconductor. Here, we build on the work of
Zhang, Calzona, and Trauzettel [24] who suggested that a network of MBSs can be realized by
combining a quantum spin Hall insulator with superconductivity and a magnetic field, allowing
movement of MBSs purely by electrical control.

In the first five chapters of the thesis, we have provided an extensive background to support
the discussion of the highly non-trivial physics involved in topological quantum computing. We
introduced the concept of topology in condensed matter and saw how the presence of robust
boundary modes can characterize topological insulators and superconductors. In Chapter 3, the
topological physics was connected to the theory of quantum computing, and we demonstrated
by a simple example how braiding MBSs can realize standard quantum gates. We introduced
a theoretical model for the spin Hall insulator in Chapter 4 and summarized the derivation of
the Bernevig-Hughes-Zhang (BHZ) model based on CdTe/HgTe quantum wells. The model was
extended in Chapter 5 by introducing particle-hole symmetry and superconducting pairing.

In Chapter 6, we follow the analytical derivations of Zhang et al., showing in great detail that
four MBSs can exist along the boundary of a disc geometry described by the BHZ model added
s-wave superconductivity and a ferromagnetic contribution. The locations of the MBSs are the
positions where the nature of the gap changes from magnetic to superconducting along the disc
boundary. We argue that the disc solutions can be transferred to right-isosceles triangles where
two MBSs are bound to two of the triangle’s corners.

Chapter 7 is devoted to numerical simulations. We first describe the lattice tight-binding
model used to compute the energy spectrum and wave functions of MBSs on various geometries.
Zhang et al. introduced a qubit geometry by combining six triangles in a specific manner, where
the potential in each triangle is controlled independently. Assembling sequences of potential
configurations provides a platform where MBSs can be moved around and braided by electrical
control.

We expanded the numerical search to include a systematic assessment of the contribution of
making the triangle concave on the diagonal and made qualitative assessments of the effect in the
larger qubit geometry. The general trend is that a moderate curvature enhances the robustness of
the device for the isolated triangle. In the larger qubit geometry, the concavity had the opposite
effect, leading to nucleation of MBSs and low-energy excitations that will be detrimental to
the stability of the device. As the MBSs are located at a subset of the geometry corners, the
device geometry and the magnetic field’s orientation are important. In a structure composed of
multiple triangles, a magnetic field oriented in a specific direction will be favorable for some of
the constituent triangles and unfavorable for others. Increasing the number of spatially varying
degrees of freedom can be a possible route to exploit the favorable characteristics observed in
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the isolated triangles. That could include the orientation of the magnetic field, a non-uniform
superconducting phase via external flux loops, or novel geometries.

To understand the model behavior under more realistic conditions, we introduced lattice
disorder on the diagonal of the isolated triangles. Starting with a sine-shaped disorder, we
demonstrated that large-amplitude disorder can lead to the nucleation of new MBSs and form
traps that inhibit the movement of MBSs. As the mobility of the MBSs is crucial to performing
computations by braiding, such traps must be avoided. We then introduced random lattice
disorder along the diagonal and performed a statistical assessment of 1500 randomly generated
lattices as a function of the curvature and amplitude of the disorder. The robustness for each
simulation was recorded as the magnitude of the topological gap.

For the disordered systems, we found that disorder can, under certain conditions, enhance
the gap. In a subset of the generated lattices, the topological gap will close in the presence of
edge disorder. When the gap does not close, however, we expect a significant gap enhancement.
The effect is larger for moderate concavities, and the probability of a gap-closing increases for
the largest curvatures in agreement with the results for the smooth concave geometries. If the
lattices where the gap closes can be identified and isolated, the remaining samples have a high
probability that the gap magnitude increases for small edge disorder.

In addition to the edge disorder, a systematical study of the effects of potential disorder
showed that spatial fluctuations of the chemical potential of up to 5% of the superconducting
pairing has little or no effect on the topological gap. On the other hand, for larger fluctuations,
the variability in the gap increases abruptly.

Having computed the wave functions for all configurations of the chemical potential on the
qubit geometry, we assembled sequences that form various braids. We observed that the MBSs
remain in the same positions independent of whether the edges are straight, concave, or weakly
disordered. In particular, we assembled a sequence that appears to realize the Hadamard quan-
tum gate and used it to emphasize the need for careful inspection of the movement of MBSs as
the chemical potentials change. Specifically, we considered the case where the potential in mul-
tiple regions changes simultaneously and showed by linearly interpolating the chemical potential
between subsequent steps that there is an additional exchange operation that is not revealed
when computing the wave functions only at the start and end points. Adjustments of the device
geometry as well as spatial dependence of the model parameters will also have an effect on the
positions and movement of MBSs and could be used for an advantage.

To conclude, a second-order topological qubit can be realized with a quantum spin Hall
insulator in junction with a superconductor and a magnetic field, but multiple obstacles must
be overcome. While it is conceptually simple to assemble triangles to a larger geometry, the
geometric dependence of the second-order topological phase means that the characteristics of
the smaller geometry are not directly transferable to the larger one. Together with the tuning of
spatially dependent parameters, we found that a detailed examination of the movement of MBS
is crucial to predicting the outcome of braiding operations, particularly when the potentials are
changed in multiple regions at once. Finally, weak disorder can improve the robustness of the
qubit if one can isolate a set of incidents where the topological gap closes.
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Appendix A

Calculation of Topological Numbers

Here, we show in detail, based on [31], the procedure to calculate the topological invariants
for the Chern insulator, i.e., the Chern number or integer Hall conductance. We then proceed to
perform the calculation for the quantum spin Hall insulator presented in eq. (4.1) in the main
text. The procedure we will take follows a series of steps: (1) Find the energy spectrum of
the Hamiltonian. (2) Find the eigenfunctions of the Hamiltonian corresponding to each energy
eigenvalue. (3) Use the eigenfunction for the occupied band(s) to calculate the Berry potential.
(4) Calculate the Berry curvature as the curl of the Berry potential. (5) Integrate the Berry
curvature over all k and all occupied bands.

A.1 Chern Insulator

The Chern insulator can be described by the Hamiltonian in eq. (2.13) with

d =
[
kx ky M

]T
(A.1)

where M is a constant mass term. The Hamiltonian has the spectrum

E = ±
√
d21 + d22 +M2 = ±|d| ≡ ±d (A.2)

where we introduce the convenient notation that E = ±d and defining d as the positive energy
eigenvalue. To keep the discussion general, we will keep di(k) in the expression and substitute
the model values at a later point.

We find the eigenfunctions |Ψ±⟩ of the Hamiltonian by expressing them as two-component
vectors

|Ψ⟩ =
[
c1
c2

]
(A.3)

with two complex numbers c1 and c2 for each k. Applying the Dirac Hamiltonian to the negative
energy eigenfunction, i.e., the occupied one,

H |Ψ−⟩ =
[

d3 d1 − id2
d1 + id2 −d3

][
c1
c2

]
= −d

[
c1
c2

]
, (A.4)

we can find an expression for the relation between c1 and c2. The two equations in this system
of equations are dependent, so it suffices to only look at one equation, e.g., the second one,

(d1 + id2)c1 − d3c2 = −dc2 (A.5)

and by rearranging the terms
c1
c2

=
d3 − d

d1 + id2
. (A.6)

A natural choice for the eigenfunction is

|Ψ−⟩ =
1

D

[
d3 − d
d1 + id2

]
(A.7)

where D ensures that the eigenfunction is normalized. We find D by enforcing normalization,

1 = ⟨Ψ−|Ψ−⟩ =
1

D2
= (d3 − d)

2
+ d21 + d22 =

2d(d− d3)

D2
⇒ D =

√
2d(d− d3), (A.8)
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and finally, the normalized wave function is

|Ψ−⟩ =
1√

2d(d− d3)

[
d3 − d
d1 + id2

]
. (A.9)

The positive energy eigenfunction can be calculated in a likewise manner, but it will not con-
tribute to the topological number since, in the end, we will integrate only over occupied bands.

We can now calculate the Berry potential

Ai = i ⟨Ψ−|∂ki
|Ψ−⟩ (A.10)

for i ∈ {x, y}. Before we proceed, we introduce two helping variables

G = 2d(d− d3) = D2, g = d2 (A.11)

to make the notation easier to follow. The Berry potential is

Ai =i
1

D

[
d3 − d, d1 − id2

]
·
(

1

D
∂ki

[
d3 − d
d1 + id2

]
+

[
d3 − d
d1 + id2

]
∂ki

1

D

)
=
i

G
[(d3 − d)∂ki(d3 − d) + (d1 − id2)∂ki(d1 + id2)] +

i√
G

(
(d3 − d)

2
+ d21 + d22

)
∂ki

1√
G
.

(A.12)
We split this expression in separate terms and start with the derivative of G−1/2, which is

∂ki

1√
G

=− 1

2G3/2
∂ki(2d(d− d3))

= − 1

2G3/2
(4d∂ki

d− 2d∂ki
d3 − 2d3∂ki

d)

= − 1

G3/2
((2d− d3)∂kid− d∂kid3),

(A.13)

and the derivative of d is

∂ki
d =∂ki

√
g

=
1

2
√
g
∂ki

(
d21 + d22 + d23

)
=

1

d
(d1∂ki

d1 + d2∂ki
d2 + d3∂ki

d3).

(A.14)

Inserting the derivatives back into eq. (A.12), we get

Ai =
i

G

[
d3∂ki

d3 − d∂ki
d3 −

d3 − d

d
(d1∂ki

d1 + d2∂ki
d2 + d3∂ki

d3)

+ d1∂ki
d1 + d2∂ki

d2 + id1∂ki
d2 − id2∂ki

d1

]
− i

G2
·G
[
2d− d3

d
(d1∂ki

d1 + d2∂ki
d2 + d3∂ki

d3)− d∂ki
d3

]
,

(A.15)

where most of the terms cancel, leaving only

Ai =
1

G
(d1∂kid2 − d2∂kid1) =

−1

2d(d− d3)
(d1∂kid2 − d2∂kid1). (A.16)

This is a general result for the two-level Dirac Hamiltonian, but we will now insert the param-
eters for our specific model to calculate the Berry curvature and eventually the Hall conductance
for the Chern insulator. Inserting the coefficients in eq. (A.1), the Berry potential is

Ax =
ky
G
, Ay =

−kx
G

. (A.17)

The Berry curvature is the curl of the Berry potential, and in 2D, it is

Fxy = ∂kx
Ay − ∂ky

Ax. (A.18)
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By insertion,

Fxy =−
(
1

G
+ kx∂kx

1

G

)
−
(
1

G
+ ky∂ky

1

G

)
= − 2

G
− kx∂kx

1

G
− ky∂ky

1

G
.

(A.19)

The derivative of G−1 is

∂ki

1

G
= − 1

G2
∂ki

(2d(d− d3))

= − 2

G2
((2d− d3)∂ki

d− d∂ki
d3)

(A.20)

and when d3 = m is independent of k,

Fxy = − 2

G
+

2(2d−m)

G2

(
kx∂kx

d+ ky∂ky
d
)

= − 2

G
+

2(2d−m)

G2d

(
k2x + k2y

)
= − 2

G
+

4d− 2m

G2d
k2

(A.21)

where k2 = k2x + k2y. The expression can be simplified further to yield

Fxy =
−4d(d−m)d+ (4d− 2m)k2

G2d

=
−4
(
k2 +m2

)
(d−m) + (4d− 2m)k2

G2d

=
m
(
4k2 − 4md+ 4m2 − 2k2

)
G2d

=
m
(
2d2 − 4md+ 2m2

)
G2d

=
m
(
d2 − 2md+m2

)
2d3(d−m)

2

=
m

2(k2 +m2)
3/2

.

(A.22)

The last step is to find the Hall conductance defined by

σxy =
e2

h

1

2π

∫
d2k Fxy. (A.23)

To solve the integral, we first make it isotropic and then substitute x = k2,

σxy =
e2

h

1

2π

∫
2πk dk

m

2(k2 +m2)
3/2

=
e2

2h

∫ ∞

0

dx

m2 + x
, (A.24)

then another substitution z = m2 + x and we get our result

σxy =
e2

2h

∫ ∞

m2

1

z3/2
dz =

e2

2h

m√
m2

=
e2

h

sgnm

2
(A.25)

for the Hall conductance in the Chern insulator.

A.2 BHZ model
Using the same method as for the Chern insulator, we find a topological invariant for the QSHI

given by the Hamiltonian in eq. (4.1) which consists of two decoupled spin-blocks where each
has the form of the Dirac Hamiltonian. To calculate the Chern number, we use the continuum
coefficients given in eq. (4.12) as it makes the analytical calculations much simpler. The mass
symmetry breaking term ensures that we find the true value of the Chern number also in the
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continuum model. In the previous section, we showed that the Berry potential has the same
form independent on whether it depends on k or not. Thus, we can jump straight to eq. (A.16)
and substitute the coefficients from the QSH model. The Berry potential has the same form,

Ax = A2 ky
G
, Ay = −A2 kx

G
, (A.26)

with

G = 2d(d− d3), d =
√
g =

√
A2k2 + (M −Bk2)

2
. (A.27)

The derivative of G−1 is here

∂ki

1

G
= − 2

G2
((2d− d3)∂ki

d− d∂ki
d3)

= − 2

G2

(
(2d− d3)

d
(d1∂kid1 + d2∂kid2 + d3∂kid3)− d∂kid3

) (A.28)

In the Berry curvature, we get additional terms compared to the simple Chern insulator since
the derivatives of d3 are no longer zero,

Fxy = A2
[
− 2

G
+

2kx
G2

(
2d− d3

d

(
A2kx − 2Bkxd3

)
+ 2Bkxd

)
+

2ky
G2

(
2d− d3

d

(
A2ky − 2Bkyd3

)
+ 2Bkyd

)]
,

(A.29)

but we can still simplify the resulting expression

Fxy = A2

[
− 2

G
+

2k2

G2d

(
(2d− d3)

(
A2 − 2Bd3

)
+ 2Bd2

)]
= −A2

[
4d2(d− d3)− 2k2(2d− d3)

(
A2 − 2Bd3

)
− 4Bk2d2)

G2d

]

= −2A2

[
2
(
A2k2 + d23

)
(d− d3)− k2(2d− d3)

(
A2 − 2Bd3

)
− 2Bk2d2

G2d

]

= −2A2

[
d3
(
−A2k2 + 2d3d− 2d23

)
+ 2Bk2

(
2dd3 − d23 − d2

)
4d3(d− d3)

2

]

= −2A2

[
−d3 − 2Bk2

4d3(d− d3)
2

]

= A2M +Bk2

2d3
.

(A.30)

The Hall conductance is again found by integrating Fxy over all k and occupied bands. We make
the integral isotropic and substitute x = k2 as for the Chern insulator,

σxy =
e2

h
A2

∫ ∞

0

dk k
M +Bk2

2d3
=
e2

h
A2

∫ ∞

0

dx

2

M +Bx(
A2x+ (M −Bx)

2
)3/2 . (A.31)

The integral is tedious to solve by hand, but can be looked up in a table to find

σxy =
e2

h

A2

4C

[
−B
d

((
A

2
−MB

)
x+M2

)
+
M

d

(
B2x+

A

2
−MB

)]∞
0

=
e2

h

A2

4C

[
1

d

(
2BM − A2

2

)
(Bx−M)

]∞
0

(A.32)

where

C = B2M2 − 1

4

(
A2 − 2BM

)
(A.33)
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was used as an intermediate variable to shorten the notation. Reinstating C and taking the
limits, the expression further simplifies to

σxy =
e2

h

A2
(
2BM − A2

2

)
4
(
B2M2 − 1

4 (A
2 − 2BM)

2
)
 Bx−M√

A2x+ (M −Bx)
2

∞

0

=
e2

h

1

2

(
B

|B|
+

M

|M |

)
=
e2

h
(1 + sgn (BM)),

(A.34)

which is indeed integer valued and σxy ∈ {0, e
2

h }.
Recall, however, that this result only holds for the upper spin-block in the original Hamilto-

nian. The Chern number for the system is therefore the sum of the value for the two spin-blocks.
The other block has the d-vector

d =
[
−Akx Aky M −Bk2

]
, (A.35)

i.e., d2 → −d2 and otherwise equal. We see that the only effect is that the Berry potential
in eq. (A.16) will have the opposite sign in this case. The direct implication is that the Hall
conductance will have the opposite sign and the contributions of the spin-blocks to the Hall
conductance cancel. It is a direct consequence of the time-reversal symmetry in the system that
the Chern number C = 0. However, the difference between the Chern numbers for the two
spin-blocks, i.e., the spin Chern number is non-zero and is exactly a topological invariant that
we can use to classify the quantum spin Hall insulators. Thus, the BHZ-model of the QSHI is
characterized by an invariant which is the spin Chern number, Cspin ∈ {0, 1}.





Appendix B

Supporting Analytical Calculations

B.1 Polar Coordinate Transformation

For the transformation of derivatives to polar coordinates, we have that x = r cosφ, y =
r sinφ and r =

√
x2 + y2, which we can also combine to tanφ = y

x . Thus,

∂x =
∂r

∂x
∂r +

∂φ

∂x
∂φ =

1

2

2x√
x2 + y2

∂r +
∂

∂x

(
tan−1 y

x

)
∂φ = cosφ∂r −

1

r
sinφ∂φ (B.1)

∂y =
∂r

∂y
∂r +

∂φ

∂y
∂φ =

1

2

2y√
x2 + y2

∂r +
∂

∂y

(
tan−1 y

x

)
∂φ = sinφ∂r +

1

r
cosφ∂φ (B.2)

Combining the two results, we can use the exponential representations of sinφ and cosφ to find
the expression

∂x ± i∂y =
1

2

[(
eiφ + e−iφ

)
∂r −

1

ir

(
eiφ − e−iφ

)
∂φ

]
± 1

2

[(
eiφ − e−iφ

)
∂r +

i

r

(
eiφ + e−iφ

)
∂φ

]
= e±iφ

(
∂r ±

i

r
∂φ

)
.

(B.3)
Next, we find expressions for the second derivatives in polar coordinates using an arbitrary
function u = u(r, φ) = u(x, y) along with the first derivatives derived above:

∂2u

∂x2
=

(
cosφ∂r −

1

r
sinφ∂φ

)(
cosφ∂ru− 1

r
sinφ∂φu

)
= cos2 φ∂2ru− cosφ∂r

(
1

r
sinφ∂φu

)
− 1

r
sinφ∂φ(cosφ∂ru) +

1

r
sinφ∂φ

(
1

r
sinφ∂φu

)
(B.4)

∂2u

∂y2
=

(
sinφ∂r +

1

r
cosφ∂φ

)(
sinφ∂ru+

1

r
cosφ∂φu

)
= sin2 φ∂2ru+ sinφ∂r

(
1

r
cosφ∂φu

)
+

1

r
cosφ∂φ(sinφ∂ru) +

1

r
cosφ∂φ

(
1

r
cosφ∂φu

)
(B.5)

Expanding all derivatives and sorting the terms, we end up with

∂2x = cos2 φ∂2r +
sin2 φ

r2
∂2φ − 2

cosφ sinφ

r2
∂2rφ + 2

cosφ sinφ

r2
∂φ+

sin2 φ

r
∂r (B.6)

∂2y = sin2 φ∂2r +
cos2 φ

r2
∂2φ + 2

cosφ sinφ

r2
∂2rφ − 2

cosφ sinφ

r2
∂φ+

cos2 φ

r
∂r (B.7)

sharing equal cosφ sinφ terms, but with opposite signs. The similar structures allows simplifying
to

∂2x + ∂2y = ∂2r +
1

r2
∂2φ +

1

r
∂r (B.8)

when combined in the same way that they appear in the main text.
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B.2 Energy Eigenvalue for the Disc
Here, we outline the details of the derivation of the energy eigenvalue ε for the secular equation

in eq. (6.27). First, expand the parentheses and sort terms with equal powers in λ1 and λ2,

(ϵν −mν)(λ2 − λ1) +m
(
λ1λ

2
2 − λ21λ2

)
+
mν′

R

(
λ22 − λ21

)
= 0 (B.9)

seeing that the terms independent of λi cancel in the expression. All terms now contain a factor
(λ2 − λ1) that can be factored out, leaving the equation

(εν −mν) +mλ1λ2 +m
ν′

R
(λ1 + λ2) = 0. (B.10)

The equation is more complicated than it may appear due to the form of λi derived in eq. (6.21).
It is easier to work with λ2i , so we reformulate the sum and product of the λis in the following
manner.

Using Vieta’s formulas, the roots of a polynomial can be related to the coefficients of that
polynomial. Specifically, if we have a polynomial in x

ax2 + bx+ c = 0 (B.11)

with roots x1 and x2, Vieta’s formulas states that x1 + x2 = − b
a and x1x2 = c

a . Substituting λ
2

for x and taking the coefficients from eq. (6.19), it is straightforward to find

λ21 + λ22 =− −2mmν +A2

−m2
= −2

mν

m
+
A2

m2
(B.12)

λ21λ
2
2 =

ε2ν −m2
ν −A2 ν′2

R2

−m2
= − ε2ν

m2
+
m2

ν

m2
+
A2ν′2

m2R2
. (B.13)

Together, these two expressions also provide the explicit form

λ1 + λ2 = ±
√
λ21 + λ22 ± 2

√
λ21λ

2
2 (B.14)

and

λ1λ2 = ±
√
λ21λ

2
2 (B.15)

In the final result for λ1/2, it will turn out that we must have λ1 + λ2 > 0 so we let the left
± → + in eq. (B.14).

Inserting the relations for λ2 in eqs. (B.12) and (B.13) back into eq. (B.10) results in

εν −mν +mλ1λ2 = −mν
′

R

√
A2

m2
− 2

mν

m
+ 2λ1λ2. (B.16)

We can now square both sides and isolate λ1λ2 on the right side,

(εν −mν)
2
+m2λ21λ

2
2 −

A2ν′2

R2
+ 2mmν

ν′2

R2
= λ1λ2

(
2
m2ν′2

R2
− 2m(εν −mν)

)
. (B.17)

Substituting λ21λ
2
2 and squaring both sides again gives(

2mν

(
mν +m

ν′2

R2

)
− 2ενmν

)2

=
1

m2

(
A2ν′2

R2
− ε2ν +m2

ν

)
m2

(
2m

ν′2

R2
+ 2mν − 2εν

)2

(B.18)

m2
ν(m0 − ϵν)

2
=

(
A2 ν

′2

R2
− ε2ν +m2

ν

)
(m0 − εν)

2
(B.19)

If εν ̸= m0, the solution for ε is

εν = ±|A|ν
′

R
. (B.20)
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Since we have squared the original equation multiple times, we must check whether the result
is indeed a solution and which sign is the correct one. To determine the correct sign, we insert
the solution back into eq. (B.10), allow both A and m to be positive or negative, and recall that

mm0 > 0 was assumed initially in the main text. Depending on whether |m0| < |m|ν
′2

R2 , mν can
have both signs. The resulting equation is

±s |A|
ν′

R
− sgn(mν)|mν | ± sgn(m)|m|

√
m2

ν

m2
+sgn(m)|m|ν

′

R

√
A2

m2
− 2

sgn(mν)|mν |
sgn(m)|m|

± 2

√
m2

ν

m2
= 0

(B.21)
using ±s for the sign in the solution for εν and the other two ±s corresponding to the sign of
λ1λ2 = ±

√
λ21λ

2
2. Moving the absolute values into the square roots, the equation simplifies to

±s |A|
ν′

R
− |mν |[sgn(mν)∓ sgn(m)] + sgn(m)

ν′

R

√
A2 − 2

[
sgn(mν)

sgn(m)
∓ 1

]
|mν ||m| = 0 (B.22)

It is now clear that teh second term and the last term under the square root cancel since any
combination of signs of m and mν can be canceled by choosing the appropriate sign for

√
λ21λ

2
2.

Thence,

±s |A|
ν′

R
+ sgn(m)|A|ν

′

R
= 0 (B.23)

and the there is only one valid solution for εν , namely,

εν = − sgn(m)|A|ν
′

R
(B.24)

or equivalently

ε = − sgn(m)|A|ν
′

R
+m

ν′

R2
. (B.25)

B.3 Energy Spectrum on the Disc Boundary
The energy spectrum along the disc boundary is found by setting the determinant of the

matrix in eq. (6.48) equal to zero. Expanding the determinant, we get

(iAξ − µ− ϵ)
{
(−iAξ − µ− ϵ)

(
A2ξ2 + (µ− ϵ)

2 − M̃2
)
−∆2

0(−iAξ + µ− ϵ)
}

+iM̃
{
iM̃
(
A2ξ2 + (µ− ϵ)

2 − M̃2
)
+ i∆2

0M̃
}

+∆0

{
∆0

(
−M̃2 +∆2

0

)
+∆0(iAξ + µ− ϵ)(iAξ + µ+ ϵ)

}
= 0(

A2ξ2 + (µ+ ϵ)
2
)(
A2ξ2 + (µ− ϵ)

2 − M̃2
)
−∆2

0

(
A2ξ2 − µ2 + ϵ2 + 2iµAξ

)
−∆2

0M̃
2 − M̃2

(
A2ξ2 + (µ− ϵ)

2 − M̃2
)
+∆2

0

(
∆2

0 − M̃2
)

+∆2
0

(
−A2ξ2 + µ2 − ϵ2 + 2iAξµ

)
= 0

(B.26)

To find the energy spectrum, we sort by powers of ϵ,

ϵ4 + 2ϵ2
[
A2ξ2 − M̃2 −∆2

0 − µ2
]
+

[(
A2ξ2 − M̃2 −∆2

0 + µ2
)2

+ 4∆2
0µ

2 − 4∆2
0M̃

2

]
= 0 (B.27)

and solve for the energy squared

ϵ2 =
(
M̃2 +∆2

0 + µ2 −A2ξ2
)
± 2

√
M̃2(∆2

0 + µ2)− µ2A2ξ2 (B.28)

through the quadratic formula for ϵ2. We can also write the spectrum in terms of the momentum
pφ starting from the Hamiltonian as it is written in eq. (6.45), giving us

ϵ2 =
(
M̃2 +∆2

0 + µ2 +A2p2φ

)
± 2
√
M̃2(∆2

0 + µ2) + µ2A2p2φ. (B.29)
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B.4 MBS Wave Functions

To determine the Majorana bound state wave functions, we first find an explicit expression for
ξ appearing in eq. (6.48) before we determine the placeholder functions ci in the same equation.
The equations in eq. (6.48) are dependent so we will find the functions in terms of c4 which we
then set to 1. We let ϵ = 0 in eq. (6.49) and insert p2 → −ξ2. Then we can solve for ξ by
isolating the square root and squaring both sides,(

M̃2 +∆2
0 + µ2 −A2ξ2

)2
= 4
(
M̃2
(
∆2

0 + µ2
)
− µ2A2ξ2

)
A4ξ4 − 2A2ξ2

(
∆2

0 +
(
M̃2 − µ2

))
+
(
∆2

0 −
(
M̃2 − µ2

))2
= 0

ξ4 − 2ξ2

((
∆0

A

)2

+
M̃2 − µ2

A2

)
+

((
∆0

A

)2

− M̃2 − µ2

A2

)2

= 0,

(B.30)
resulting in a fourth degree polynomial in ξ. A fourth-order polynomial function

f(x) = x4 − 2x2
(
a2 + b

)
+
(
a2 − b

)2
(B.31)

has roots x = ±a±
√
b, so we can immediately write the solutions for ξ as ±ξ1/2 where

ξ1/2 =
∆0

A
±

√
M̃2 − µ2

A
. (B.32)

ξ1 has a + before the square root, so the real part of ξ1 will always be positive. For ξ2, the real
part is positive when

sin2 φ <
∆2

0 + µ2

M2
0

=

(
∆̄

M0

)2

(B.33)

as is also seen in Fig. B.1. In other words,

φ4 = − sin−1

(
∆̄

M0

)
< φ < sin−1

(
∆̄

M0

)
= φ1, φ2 < φ < φ3 (B.34)

and the positions where ξ2 changes sign are precisely the band crossing angles φi from eq. (6.56)
in the main text.

Figure B.1: The real part of the localization functions ξ1 and ξ2, as functions of φ. The band
crossing angles from eq. (6.56) are marked with black dots.

We now have all we need to determine the MBS wave functions by solving eq. (6.48) for ci.
Since ξ2 = 0 at all φi, we first find general expressions for the wave functions to avoid division by
zero. It is also convenient given that we have multiple solutions for ξ that are valid in different
regions; we can then derive a general expression and insert the expression for ξ in the end.
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Writing out the matrix equation in eq. (6.48),

c1 =− iM̃

∆0
e−iφc3 −

iAξ − µ

∆0
c4 (B.35)

c2 =− iAξ + µ

∆0
c3 −

iM̃

∆0
eiφc4 (B.36)

c3 =
iM̃

∆0
eiφc1 +

iAξ + µ

∆0
c2 (B.37)

c4 =
iAξ − µ

∆0
c1 +

iM̃

∆0
e−iφc2, (B.38)

and substituting eqs. (B.35) and (B.36) into eq. (B.38), we obtain

c4 =
iAξ − µ

∆0

(
− iM̃
∆0

e−iφc3 −
iAξ − µ

∆0
c4

)
+
iM̃

∆0
e−iφ

(
− iAξ + µ

∆0
c3 −

iM̃

∆0
eiφc4

)
. (B.39)

Isolating c3 and c4, we get a new equation,

c3
c4eiφ

=
∆2

0 + (iAξ − µ)
2 − M̃2

2M̃Aξ
, (B.40)

expressing c3 only in terms of c4. A general expression that captures all possibilities for ξ is

ξ = ±

∆0

A
±1/2

√
M̃2 − µ2

A

 = ±ξ1/2, (B.41)

keeping track of the possible sign combinations separately using the subscript on one “±”. When
we insert eq. (B.41) into eq. (B.40), we get

c3
c4eiφ

=

∆2
0 +

(
±i
(
∆0 ±1/2

√
M̃2 − µ2

)
− µ

)2

− M̃2

±2M̃

(
∆0 ±1/2

√
M̃2 − µ2

)

=

∆̄2 − M̃2 −
(
∆0 ±1/2

√
M̃2 − µ2

)2

∓ 2iµ

(
∆0 ±1/2

√
M̃2 − µ2

)
±2M̃

(
∆0 ±1/2

√
M̃2 − µ2

)

=

(
∆̄2 − M̃2

)(
∆0 ∓1/2

√
M̃2 − µ2

)
−
(
∆̄2 − M̃2

)(
∆0 ±1/2

√
M̃2 − µ2

)
∓ 2iµ

(
∆̄2 − M̃2

)
±2M̃

(
∆̄2 − M̃2

)

=

(
∆0 ∓1/2

√
M̃2 − µ2

)
−
(
∆0 ±1/2

√
M̃2 − µ2

)
∓ 2iµ

(
∆̄2 − M̃2

)
±2M̃

=
∓1/2

√
M̃2 − µ2 ∓ iµ

±M̃

= (∓1/2±)

√
M̃2 − µ2(±±1/2)iµ

M̃
.

(B.42)
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For c1 and c2, we substitute the result for c3 in eqs. (B.35) and (B.36), respectively, to get

c2
c4eiφ

=−
±i
(
∆0 ±1/2

√
M̃2 − µ2

)
+ µ

∆0
·
∓1/2

√
M̃2 − µ2 ∓ iµ

±M̃
− iM̃

∆0

=
(±±1/2)i∆0

√
M̃2 − µ2 −∆0µ± i

(
M̃2 − µ2

)
∓1/2 µ

√
M̃2 − µ2 ± iµ2 ±1/2

√
M̃2 − µ2

±∆0M̃

=

(
±±1/2

)
i∆2

0 −∆0µ

±∆0M̃

= i
±1/2∆0 ± iµ

M̃

= ±1/2i
∆0(±±1/2)iµ

M̃
,

(B.43)

c1
c4

=− iM̃

∆0

∓1/2

√
M̃2 − µ2 ∓ iµ

±M̃

−

(
±M̃
±M̃

)±i
(
∆0 ±1/2

√
M̃2 − µ2

)
− µ

∆0

=
±1/2iM̃

√
M̃2 − µ2 ∓ µM̃ − i∆0M̃ ∓1/2 iM̃

√
M̃2 − µ2 ± µM̃

±∆0M̃

= ∓i.

(B.44)

By looking at each of the MBS positions one at a time, we find one localized wave function
in each position. For the MBSs to be localized, the wave function must increase for φ < φi and
decrease for φ > φi. Since the localization function ξ appears in an exponential in the wave
function ansatz (6.46), we require Re(ξ) > 0 for φ < φi and Re(ξ) < 0 for φ > φi for each of

the four positions. At φ = φ1, we have M̃ = M0 sinφ1 = ∆̄ and thus,

√
M̃2 − µ2 = ∆0. For

angles smaller than φ1, the appropriate solutions for ξ are ξ1 and ξ2 which both gives Re(ξ) > 0,
and likewise φ > φ1 requires us to use −ξ1 and ξ2. At this point, we set c4 = 1 without loss of
generalization, and we introduce an angle ϑ such that

eiϑ ≡ ∆0 + iµ

∆̄
(B.45)

to ease the notation. That requires that the right side has an absolute square of unity which we
easily see is fulfilled by our previous definition that ∆̄ =

√
∆2

0 + µ2.
For ξ1, we use two plus signs in eqs. (B.42) to (B.44), and the wave function components are[

c1 c2 c3 c4
]
=
[
−i ieiϑeiφ −eiϑeiφ 1

]
. (B.46)

Likewise, ξ = −ξ1 gives [
i ie−iϑeiφ e−iϑeiφ 1

]
(B.47)

and for ξ2, [
−i −ie−iϑeiφ e−iϑeiφ 1

]
. (B.48)

The general wave function is a linear combination of the expressions for ξ1 and ξ2,

Ψ1 =

{
α>(−ξ1)

[
i ie−iϑeiφ e−iϑeiφ 1

]T
+ β>(ξ2)

[
−i −ie−iϑeiφ e−iϑeiφ 1

]T
, φ > φ1

α<(ξ1)
[
−i ieiϑeiφ −eiϑeiφ 1

]T
+ β<(ξ2)

[
−i −ie−iϑeiφ e−iϑeiφ 1

]T
, φ < φ1

,

(B.49)
using α>(±ξi) = e±

∫
ξiRdφ. If we require continuity at φ = φ1, the wave function reduces to

Ψ1 = β<(ξ2)
[
−i −ie−iϑeiφ e−iϑeiφ 1

]T
, (B.50)
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and only ξ = ξ2 gives continuity. Similarly, we can find the wave functions for the other three
MBSs. Around φ2 = −φ1 + π we still have

M̃ =M0 sin (−φ1 + π) =M0 sinφ1 = ∆̄ (B.51)

and that −ξ2 is the value that gives continuity. At φ3 = φ1 + π and φ4 = −φ1,

M̃ =M0 sin (φ1 + π) = −M0 sinφ1 = −∆̄

M̃ =M0 sin (−φ1) = −M0 sinφ1 = −∆̄,
(B.52)

and ξ2 and −ξ2 are, respectively, the values required to make the wave functions continuous at
the MBS positions. Thus, the three remaining wave functions are

Ψ2 = β<(−ξ2)
[
i ieiϑeiφ −eiϑeiφ 1

]T
Ψ3 = β<(ξ2)

[
−i ie−iϑeiφ −e−iϑeiφ 1

]T
Ψ4 = β<(−ξ2)

[
i ieiϑeiφ eiϑeiφ 1

]T
.

(B.53)

It is worth noting that ξ = ±ξ2 are the solutions that make the wave functions continuous at
the angles φi. Precisely at those angles, ξ2 = 0, agreeing exactly with the result in the previous
section that we have band crossings at φi only when the momentum p = 0.

B.5 Calculation of Fusion Strengths
The fusion strengths of two MBSs are determined through

Fγi:γj
= | ⟨Ψi|T̂ |Ψj⟩| (B.54)

where T̂ is a hopping operator

T̂ =
1

2



4m A(1 + i)
−A(1− i) −4m

4m A(1− i)
−A(1 + i) −4m

−4m −A(1− i)
A(1 + i) 4m

−4m −A(1 + i)
A(1− i) 4m


(B.55)

equivalent to the expression in eq. (6.61). We first find explicit expressions for the wave function
basis similar to that in eq. (6.58), but including the phase of the superconducting pairing as
stated in eq. (5.19),

H∆ = ∆0τysye
−iτzϕ (B.56)

where ϕ is the SC phase and the sign differs for particles and holes due to the presence of τz in
the exponential.

Being initially left out and then reintroduced by a projection onto the boundary modes,
the SC pairing makes no difference in the derivation until the projection in section 6.2. The
projection operation now becomes

H̃i,j = ⟨Ψi|∆0τysye
−iτzϕ +M0τzsx|Ψj⟩ = ⟨Ψi|HM,SC |Ψj⟩ (B.57)

by introduction of the pairing phase e−iτzϕ. With the additional phase factor, applying HM,SC

on the basis states

Ψe,↑ ∼



1
−ieiφ
0
0
0
0
0
0


Ψe,↓ ∼



0
0
1

ie−iφ

0
0
0
0


Ψh,↑ ∼



0
0
0
0
1

ie−iφ

0
0


Ψh,↓ ∼



0
0
0
0
0
0
1

−ieiφ


(B.58)
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in the same manner as previously yields





0
0
M0

−iM0e
iφ

0
0

−∆0e
−iϕ

i∆0e
i(φ−ϕ)


,



M0

iM0e
−iφ

0
0

∆0e
−iϕ

i∆0e
−i(φ+ϕ)

0
0


,



0
0

∆0e
iϕ

i∆0e
−i(φ−ϕ)

0
0

−M0

−iM0e
−iφ


,



−∆0e
iϕ

i∆0e
i(φ+ϕ)

0
0

−M0

iM0e
iφ

0
0




(B.59)

and the boundary mode Hamiltonian is thus

H̃i,j =


0 M0

(
1− e−2iφ

)
0 −2∆0e

iϕ

M0

(
1− e2iφ

)
0 2∆0e

iϕ 0
0 2∆0e

−iϕ 0 −M0

(
1− e2iφ

)
−2∆0e

−iϕ 0 −M0

(
1− e−2iφ

)
0


=∆0τysye

−iτzϕ − M̃e−iτzszφsy.

(B.60)

Conveniently, when we insert iAsz − τzµ on the diagonal and set the determinant equal to
zero to determine ξ, the phase factors cancel and the spectrum and the localization function ξ
remain the same. In the determination of the components ci of the eigenfunctions, we quickly
find the difference due to the SC phase by looking at the dependence on ϕ only;

c4 ∼ e−iϕc1 + e−iϕc2 ∼
(
eiϕc3 + eiϕc4

)
+ e−iϕ

(
eiϕc3 + eiϕc4

)
, (B.61)

so c3 will remain the same since the SC phase cancels. For both c1 and c2, the phase eiϕ appear
in both terms and we may simply multiply the resulting expressions with eiϕ to get the new
eigenfunctions

Ψ1 ∼
[
−ieiϕ −iei(φ−ϑ+ϕ) ei(φ−ϑ) 1

]T
Ψ2 ∼

[
ieiϕ iei(φ+ϑ+ϕ) −ei(φ+ϑ) 1

]T
Ψ3 ∼

[
−ieiϕ iei(φ−ϑ+ϕ) −ei(φ−ϑ) 1

]T
Ψ4 ∼

[
ieiϕ iei(φ+ϑ+ϕ) ei(φ+ϑ) 1

]T
.

(B.62)

By extracting a phase factor (e.g., ei(φ−ϑ+ϕ−π
2 )/2 for Ψ1) and applying the result for the orbital

basis (6.40), the wave functions are



e−i(φ−ϑ−ϕ+π
2 )/2

−ei(φ+ϑ+ϕ+π
2 )/2

ei(φ−ϑ+ϕ−π
2 )/2

e−i(φ+ϑ−ϕ−π
2 )/2

ei(φ−ϑ−ϕ+π
2 )/2

−e−i(φ+ϑ+ϕ+π
2 )/2

e−i(φ−ϑ+ϕ−π
2 )/2

ei(φ+ϑ−ϕ−π
2 )/2





−e−i(φ+ϑ−ϕ+π
2 )/2

ei(φ−ϑ+ϕ+π
2 )/2

ei(φ+ϑ+ϕ−π
2 )/2

e−i(φ−ϑ−ϕ−π
2 )/2

−ei(φ+ϑ−ϕ+π
2 )/2

e−i(φ−ϑ+ϕ+π
2 )/2

e−i(φ+ϑ+ϕ−π
2 )/2

ei(φ−ϑ−ϕ−π
2 )/2





e−i(φ−ϑ−ϕ−π
2 )/2

ei(φ+ϑ+ϕ−π
2 )/2

−ei(φ−ϑ+ϕ+π
2 )/2

e−i(φ+ϑ−ϕ+π
2 )/2

ei(φ−ϑ−ϕ−π
2 )/2

e−i(φ+ϑ+ϕ−π
2 )/2

−e−i(φ−ϑ+ϕ+π
2 )/2

ei(φ+ϑ−ϕ+π
2 )/2





e−i(φ+ϑ−ϕ−π
2 )/2

ei(φ−ϑ+ϕ−π
2 )/2

ei(φ+ϑ+ϕ+π
2 )/2

−e−i(φ−ϑ−ϕ+π
2 )/2

ei(φ+ϑ−ϕ−π
2 )/2

e−i(φ−ϑ+ϕ−π
2 )/2

e−i(φ+ϑ+ϕ+π
2 )/2

−ei(φ−ϑ−ϕ+π
2 )/2


(B.63)

in the full basis of the Hamiltonian. We now calculate the fusion strength in eq. (B.54) for each
pair of wave functions, allowing the MBSs to come from different islands by marking all phases
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for the island of the second MBS with ′s. For the Fγ1:γ′
1
element,

⟨Ψ1|T̂ |Ψ′
1⟩ = ei(φ−ϑ−ϕ+π/2)/2

(
2me−i(φ′−ϑ′−ϕ′+π

2 )/2 − A

2
(1 + i)ei(φ

′+ϑ′+ϕ′+π
2 )/2

)
− e−i(φ+ϑ+ϕ+π/2)/2

(
A

2
(−1 + i)e−i(φ′−ϑ′−ϕ′+π

2 )/2 + 2mei(φ
′+ϑ′+ϕ′+π

2 )/2
)

+ e−i(φ−ϑ+ϕ−π/2)/2

(
2mei(φ

′−ϑ′+ϕ′−π
2 )/2 +

A

2
(1− i)e−i(φ′+ϑ′−ϕ′−π

2 )/2
)

− ei(φ+ϑ−ϕ−π/2)/2

(
A

2
(1 + i)ei(φ

′−ϑ′+ϕ′−π
2 )/2 + 2me−i(φ′+ϑ′−ϕ′−π

2 )/2
)

− e−i(φ−ϑ−ϕ+π/2)/2

(
2mei(φ

′−ϑ′−ϕ′+π
2 )/2 +

A

2
(−1 + i)e−i(φ′+ϑ′+ϕ′+π

2 )/2
)

− ei(φ+ϑ+ϕ+π/2)/2

(
A

2
(1 + i)ei(φ

′−ϑ′−ϕ′+π
2 )/2 − 2me−i(φ′+ϑ′+ϕ′+π

2 )/2
)

− ei(φ−ϑ+ϕ−π/2)/2

(
2me−i(φ′−ϑ′+ϕ′−π

2 )/2 +
A

2
(1 + i)ei(φ

′+ϑ′−ϕ′−π
2 )/2

)
+ e−i(φ+ϑ−ϕ−π/2)/2

(
A

2
(1− i)e−i(φ′−ϑ′+ϕ′−π

2 )/2 + 2mei(φ
′+ϑ′−ϕ′−π

2 )/2
)
(B.64)

where we may now combine exponential terms to trigonometric functions through

eix + e−ix = 2 cosx, eix − e−ix = 2 sinx. (B.65)

In eq. (B.64), the leftmost exponential in the first and fifth lines are complex conjugates, as are
the leftmost exponentials in the second and sixth, third and seventh, and fourth and eighth lines.
For brevity, define

δϕ =
ϕ− ϕ′

2
(B.66)

for the difference in the SC phase and likewise

ϑ± =
ϑ± ϑ′

2
, φ± =

φ− φ′

2
. (B.67)

Then,

⟨Ψ1|T̂ |Ψ′
1⟩ =2m

[
2i sin (φ− − ϑ− − δϕ) + 2i sin (φ− + ϑ− + δϕ)− 2i sin (φ− + ϑ− − δϕ)

− 2i sin (φ− − ϑ− + δϕ)
]
− A

2

[
2i sin

(
φ+ − ϑ− − δϕ− π

2

)
+ 2i sin

(
φ+ + ϑ− + δϕ+

π

2

)
+ 2i sin

(
φ+ − ϑ− + δϕ− π

2

)
− 2i sin

(
φ+ + ϑ− − δϕ− π

2

)]
− i

A

2

[
2 cos

(
φ+ − ϑ− − δϕ− π

2

)
+ 2 cos

(
φ+ + ϑ− + δϕ+

π

2

)
− 2 cos

(
φ+ − ϑ− + δϕ− π

2

)
− 2 cos

(
φ+ + ϑ− − δϕ− π

2

)]
,

(B.68)
which we may further simplify by applying the trigonometric identities

2 cosα cosβ =cos (α− β) + cos (α+ β) (B.69)

2 sinα sinβ =cos (α− β)− cos (α+ β) (B.70)

2 sinα cosβ =sin (α+ β) + sin (α− β) (B.71)

2 cosα sinβ =sin (α+ β)− sin (α− β). (B.72)



90 Appendix B. Supporting Analytical Calculations

Because we will eventually take the absolute value, we discard i appearing in all terms, and the
trigonometric identities can be used to write the fusion strength as

⟨Ψ1|T̂ |Ψ′
1⟩ =8m [sin δϕ cos (φ− + ϑ−)− sin δϕ cos (φ− − ϑ−)]

− 2A
[
cos (φ+ − ϑ−) cos

(
δϕ− π

2

)
+ cos (φ+ + ϑ−) cos

(
δϕ+

π

2

)
+ sin (φ+ − ϑ−) cos

(
δϕ− π

2

)
+ sin (φ+ + ϑ−) cos

(
δϕ+

π

2

)]
.

(B.73)

With cos
(
x± π

2

)
= ∓ sinx, we can isolate a factor sin δϕ and apply the identities in eqs. (B.69)

to (B.72) again to get

⟨Ψ1|T̂ |Ψ′
1⟩ = sin δϕ sinϑ−(−16m sinφ− − 4A sinφ+ + 4A cosφ+). (B.74)

The expression of interest is the fusion strength as a function of the tunable parameters δϕ and
µ through ϑ. In that case, we have

⟨Ψ1|T̂ |Ψ′
1⟩ ∼ sin δϕ sinϑ−. (B.75)

When we look at MBSs on a single disc, δϕ = 0 and µ = µ′ implying ϑ− = 0. Them, ⟨Ψ1|T̂ |Ψ1⟩ =
0 as expected.

For Fγ1:γ′
2
, we perform the same procedure, writing out the sum explicitly as

⟨Ψ1|T̂ |Ψ′
2⟩ = ei(φ−ϑ−ϕ+π/2)/2

(
−2me−i(φ′+ϑ′−ϕ′+π

2 )/2 +
A

2
(1 + i)ei(φ

′−ϑ′+ϕ′+π
2 )/2

)
+ e−i(φ+ϑ+ϕ+π/2)/2

(
A

2
(−1 + i)e−i(φ′+ϑ′−ϕ′+π

2 )/2 + 2mei(φ
′−ϑ′+ϕ′+π

2 )/2
)

+ e−i(φ−ϑ+ϕ−π/2)/2

(
2mei(φ

′+ϑ′+ϕ′−π
2 )/2 +

A

2
(1− i)e−i(φ′−ϑ′−ϕ′−π

2 )/2
)

− ei(φ+ϑ−ϕ−π/2)/2

(
A

2
(1 + i)ei(φ

′+ϑ′+ϕ′−π
2 )/2 + 2me−i(φ′−ϑ′−ϕ′−π

2 )/2
)

− e−i(φ−ϑ−ϕ+π/2)/2

(
−2mei(φ

′+ϑ′−ϕ′+π
2 )/2 +

A

2
(1− i)e−i(φ′−ϑ′+ϕ′+π

2 )/2
)

− ei(φ+ϑ+ϕ+π/2)/2

(
−A

2
(1 + i)ei(φ

′+ϑ′−ϕ′+π
2 )/2 + 2me−i(φ′−ϑ′+ϕ′+π

2 )/2
)

− ei(φ−ϑ+ϕ−π/2)/2

(
2me−i(φ′+ϑ′+ϕ′−π

2 )/2 +
A

2
(1 + i)ei(φ

′−ϑ′−ϕ′−π
2 )/2

)
+ e−i(φ+ϑ−ϕ−π/2)/2

(
A

2
(1− i)e−i(φ′+ϑ′+ϕ′−π

2 )/2 + 2mei(φ
′−ϑ′−ϕ′−π

2 )/2
)
,

(B.76)
contracting the exponentials to trigonometric functions,

⟨Ψ1|T̂ |Ψ′
2⟩ = −4im

[
sin(φ− − ϑ+ − δϕ) + sin(φ− + ϑ+ + δϕ) + sin(φ− − ϑ+ + δϕ)

+ sin(φ− + ϑ+ − δϕ)
]
+ iA

[
sin
(
φ+ − ϑ+ − δϕ+

π

2

)
+ cos

(
φ+ − ϑ+ − δϕ+

π

2

)
+sin

(
φ+ + ϑ+ + δϕ+

π
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(B.77)
and using trigonometric relations to simplify the resulting expression to

⟨Ψ1|T̂ |Ψ′
2⟩ = −8i

[
sinφ− cos (ϑ+ + δϕ) + sinφ− cos (ϑ+ − δϕ)

]
+2iA

[
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(
δϕ− π

2

)
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(
δϕ+

π

2

)
+sin (φ+ − ϑ+) sin

(
δϕ− π

2

)
− sin (φ+ + ϑ+) sin

(
δϕ+

π

2

)]
.

(B.78)
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The fusion strength between γ1 and γ′2 (on two different discs) is then

⟨Ψ1|T̂ |Ψ′
2⟩ =cosϑ+ cos δϕ(−16 sinφ− + 4A cosφ+ − 4A sinφ+)

∼ cosϑ+ cos δϕ.
(B.79)

For the remaining fusion strengths, we apply the same procedure by combining pairs of
exponentials that are complex conjugates. We repeatedly apply the trigonometric identities in
eqs. (B.69) to (B.72) to rewrite and simplify the result:

⟨Ψ1|T̂ |Ψ′
3⟩ =4im

[
sin
(
φ− − ϑ− − δϕ+

π

2

)
− sin
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π

2

)
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(
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2

)
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(
φ− + ϑ− − δϕ− π

2

)]
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[
sin(φ+ − ϑ− − δϕ) + cos(φ+ − ϑ− − δϕ)

− sin(φ+ + ϑ− + δϕ)− cos(φ+ + ϑ− + δϕ)− sin(φ+ − ϑ− + δϕ)

− cos(φ+ − ϑ− + δϕ) + sin(φ+ + ϑ− − δϕ) + cos(φ+ + ϑ− − δϕ)
]

=8im
[
− cos

(
φ− +

π

2

)
sin(ϑ− + δϕ)− cos

(
φ− − π

2

)
sin(ϑ− − δϕ)

]
+ 2iA

[
− cosφ+ sin(ϑ− + δϕ) + cosφ+ sin(ϑ− − δϕ)

+ sinφ+ sin(ϑ− + δϕ)− sinφ+ sin(ϑ− − δϕ)
]

= − 8im
[
sinφ− sin(ϑ− + δϕ)− sinφ− sin(ϑ− − δϕ)

]
+ 2iA

[
− cosφ+ cosϑ− cos δϕ− sinφ+ cosϑ− sin δϕ

]
= − (16im sinφ− + 4iA cosφ+ + 4iA sinφ+) cosϑ− sin δϕ
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⟨Ψ1|T̂ |Ψ′
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=(16im sinφ− − 4iA cosφ+ + 4iA sinφ+) sinϑ+ cos δϕ
(B.81)

Because of the inversion symmetry between the wave functions, it is sufficient with the four
calculated fusion strengths to deduce the fusion strengths for all combinations of MBSs on two
separate discs.





Appendix C

Supplementary Numerical Results

C.1 Small Concavity and Finite Size Effects

A moderate concavity of α = 0.07π decreases the minimum topological gap. A finite-size
effect is also seen by comparing the solutions on triangles with sides of 50, 70, and 90 lattice
points in Fig. C.1. The gap is slightly smaller for the two larger lattices than for the smaller one.
In addition, the higher excited states are shifted to lower energies as the lattice size increases,
leading eventually to an inversion of the excited states for the largest lattice. However, the exact
form of the excited states is unimportant as long as they remain well-separated from the MBSs.

(a) 50× 50 lattice, α = 0.07π

(b) 70× 70 lattice, α = 0.07π.

(c) 90× 90 lattice, α = 0.07π

Figure C.1: Comparison of small-concavity triangles on 50 × 50 and 90 × 90 lattices and to be
compared also with Fig. C.2b. All parameters are equal except for the lattice size. The smaller
lattice has a slightly larger gap for large µ than the larger lattices.

93
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C.2 Concavity on a 70× 70 lattice

The results for a series of 70 × 70 triangles with smooth concave diagonals are shown in
Fig. C.2. When the diagonal is made concave, the mobile MBS smears out along the diagonal
for a large range of µ. Moreover, for the largest α, the mobile MBS never localizes completely
in the lower right corner. The largest gap appears for α = 0.25π. For α = 0.45π, the gap is very
small in a small region around µ = 0.6∆0, but otherwise large.

(a) Straight triangle (α → 0).

(b) α = 0.07π.

(c) α = 0.25π.

(d) α = 0.45π.

Figure C.2: Numerical solutions on 70× 70 lattice with different α. By introducing concavity on
the diagonal, the gap first decreases for α = 0.07π before it increases for the moderate α = 0.25π
and decreases in a narrow region of µ for α = 0.45π.
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C.3 Triangle Wave Function at Zero Potential
When µ approaches zero for the triangular geometry in Fig. 7.7, the gap is small but finite,

as seen in Fig. C.3. By increasing the resolution in µ, we confirm that the gap is finite and on
the order of 1 · 10−7∆0 as seen in Fig. C.3. In comparison, the MBS splitting at µ = 0 is on the
order of 6 · 10−10∆0, several orders of magnitude smaller.

Figure C.3: Close-up simulation for small µ. The gap is finite and on the order of 2 · 10−7∆0 at
µ = 0.

C.4 Tuning of Model Parameters

Tuning the model parameters that enter in eq. (6.1) affects both the degree of localization of
MBSs and the topological gap as demonstrated in Fig. C.4 where A and ∆0 are slightly larger
than the standard parameters. With the standard parameters in table 7.1, the MBS on the
diagonal can be fully localized in the upper corner, but it never reaches the lower right corner
(see, e.g., appendix C.2). The localization is altered by tuning the model parameters, and the
MBS can reach both corners when A and ∆0 are made slightly larger than for the standard case.
The gap is also enhanced by tuning the model parameters.

Figure C.4: 70 × 70 concave triangle with α = 0.37π and model parameters m0 = 2, m = 1,
A = 1.2, ∆0 = 0.6,M0 = 0.8. The MBS on the diagonal moves equally far towards the upper and
lower left corners for high and low µ respectively. The topological gap is large, approximately
0.05∆0.

C.5 Edge Disorder Variability
The lattices with edge disorder on the diagonal yield vastly different energy spectra despite

all parameters being the same. An example is shown in Fig. C.5 where one configuration has
a large gap, and another disorder configuration generated with the same parameters has a gap
closing. The two differ in that the latter has a disorder-induced cavity in the boundary that
binds an MBS for a range of µ; when µ is sufficiently small or large, the MBS locates in the lower
right and upper corners, respectively.
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Figure C.5: Simulation of disordered 50× 50 triangles for two edge disorder configurations and
all other parameters equal. The edge is concave with α = 0.32π, and the disorder has amplitude
2.0 and 20 peaks. In the first configuration, the gap magnitude is decent, while in the lower
configuration, the gap closes entirely. Furthermore, the lower configuration has a cavity in the
edge that binds the MBS for a range of µ and reduces mobility. Despite the reduced mobility,
the MBS still moves between the triangle corners but is located on the defect cavity for a range
of µ.

C.6 Qubit Lattice Spectra

Fig. C.6 shows the energy spectrum for an MBS exchange on the qubit lattice with straight
edges. The potential configuration steps correspond to the exchange demonstrated in Fig. 7.19,
and the steps are connected by linearly interpolating the potentials between each step. The gap
remains finite through the exchange, but the first excited state has an energy of around 0.01∆0

for a significant part of the exchange. The same spectrum for the concave edge (α = 0.25π) qubit
is given in Fig. C.7. Between steps three and seven, the first excited state is very close to the
MBSs, and the gap appears to close at two points, indicating nucleation. Thence, the concave
geometry is unfavorable in the composite lattice in contrast with the isolated triangle case where
the concavity enhance the gap.

Figure C.6: Spectrum for the MBS exchange in Fig. 7.19 with potentials linearly interpolated
between each step (20 points between each step). The geometry is the qubit composed of 45×45
straight-edge triangles. There are four quasi-degenerate, isolated zero-modes in the middle of
the spectrum and one pair of low-energy excited states residing around E = 0.02∆0 for the first
four steps.
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Figure C.7: Spectrum for MBS exchange for a qubit geometry composed of concave 65 × 65
triangles with α = 0.25π corresponding to the exchange in Fig. 7.21. The first excited state is
degenerate with the MBSs between steps 3 and 4, and between steps 6 and 7.

C.7 The Hadamard Gate Braid

Fig. C.8 provides the complete scheme of potential steps that realizes a braiding similar to
the Hadamard gate braid in Fig. 3.3. There are four MBSs, of which one is passive and stays
in the top corner throughout the braiding procedure as seen in Fig. C.8. There is a minimum
of 18 steps of configurations for the chemical potential, changing only one at a time for each
exchange operation, but five out of six between different braiding operations. We emphasize that

Figure C.8: Full scheme to perform a Hadamard gate by tuning electrical potentials in different
regions. The MBSs are marked with numbers such that the exchanges replicate the exchanges
in Fig. 3.3. The sequence follows row by row, where each row exchanges two MBS in the way
marked in the rightmost lattices in the corresponding row. Note that the rightmost lattices in
the first and second rows have the same configuration as the leftmost lattices in the second and
third row, respectively, so one needs 18 steps in the potential configuration for the gate. The
triangles have sides of 45 lattice points.
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Figure C.9: A selection of the wave functions for the interpolation between the [0, 1, 0, 1, 0, 0] and
[1, 0, 1, 1, 0, 0] potential steps. The MBS on the upper right corner hybridizes with the top MBS
in the second step. this is also apparent by the energy splitting of the MBS seen in Fig. 7.24.
The wave function then spreads out around the upper square geometry before ending up with
localized MBSs on the top and upper right corners.

Figure C.10: Selection of the wave functions for the interpolation between the [0, 1, 0, 0, 0, 0] and
[1, 0, 1, 1, 0, 1] potential steps. Similar to Fig. C.9, the MBSs in the top and upper right positions
hybridize which is again seen in the spectrum in Fig. 7.24. The MBSs are not well-defined during
the process, but localizes in in the corners again in the last step.

due to the transitions between the exchanges where the potential changes in multiple regions,
the scheme does not precisely perform the Hadamard braid.

The transitions between the exchanges, i.e., the rows in Fig. C.8, can go directly from the
last configuration in the first row ([0, 1, 0, 0, 0, 0]) to the first configuration in the second row
([1, 0, 1, 1, 0, 0]) as demonstrated in Fig. C.9. It can also skip either the last configuration on
the first row, going from [0, 1, 0, 1, 0, 0] to [1, 0, 1, 1, 0, 0] (Fig. 7.25), or the first configuration
in the second row, going from [0, 1, 0, 0, 0, 0] to [1, 0, 1, 1, 0, 1] (Fig. C.10). As we demonstrated
in Fig. 7.25, the wave functions for [0, 1, 0, 0, 0, 0] and [1, 0, 1, 1, 0, 0] are in general not equal
and are connected by an additional exchange of the top and upper right MBSs. Moreover, the
MBSs hybridize in the transitions in Figs. C.9 and C.10, so that we cannot predict the exchange
statistics.

C.8 All Qubit Lattice Solutions
In Fig. C.11, solutions for all 16 potential configurations that have µ1 = µd and µ2 = µu

are shown and marked with the potential vector. The wave functions for the 16 lattices with
µ1 = µu and µ2 = µd are shown in Fig. C.12. The lattice geometries are distributed on qubits
with straight, concave and disordered concave edges, but the MBS positions are the same for all
the geometries.

We note that for some potential configurations, there are only three MBSs. Two MBSs can
hybridize and split away from zero, so there are only two MBSs left on the lattice. However, the
wave functions are summed over the eight bands and lowest four eigenvalues, so the hybridization
split MBSs still show up in the figures, even though they behave like the first excited states.
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Figure C.11: Wave functions on the qubit lattice for all combinations of µi that have µ1 = µd

and µ2 = µu. Each lattice is marked with a vector µ =
[
µ1 µ2 ... µ6

]
. On the second row,

there are only three localized states since two of the MBSs hyridize in these configurations. The
constituent triangles have sides of 45 lattice points.
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Figure C.12: Wave functions on the qubit lattice for all combinations of µi that have µ1 = µu

and µ2 = µd. (a) The first eight potential configurations are illustrated on the concave edge
with α = 0.25π and the constituent triangles have sizes 65× 65. (b) Second half of the potential
configurations, shown on the geometry with concave disordered edges made from triangles with
L = 55 and α = 0.25π. The disorder is random with amplitude 1.5 and 20 peaks.



Appendix D

Numerical Code

Here follows the Matlab code used in the numerical simulations. The first script is an example
script to demonstrate the interface of the code, while the central parts of the solution is performed
inside the solveLattice function. The code is written in Matlab R2021b.

1 %% Example model

2 A = 1;

3 m = 1;

4 m_0 = 2;

5 Delta_0 = 0.5;

6 M_0 = 0.8;

7

8 % Low and high potential

9 mu_d = 0.1*Delta_0;

10 mu_u = 0.55*Delta_0;

11

12 % Potential congurations in steps

13 muV=[1, 0, 0, 0, 1, 1

14 1, 0, 0, 0, 0, 1

15 1, 0, 0, 1, 0, 1

16 1, 0, 1, 1, 0, 1

17 1, 0, 1, 1, 1, 1

18 1, 0, 1, 0, 1, 1

19 1, 0, 0, 0, 1, 1]; % triangle numbers in rows

20 mu = muV*mu_u + (1-muV)*mu_d;

21

22 % Generate a lattice

23 M = qubitLattice(35,37,mu,overlap=2,displayPolygon="on",return_mu=true,disord ⌋

er="random");↪→

24

25

26 % Set up the Hamiltonian

27 Ham.dxy = {1i*A*kprod('0zx') , m*kprod('z0z'); -1i*A*kprod('z0y'),

m*kprod('z0z')};↪→

28 Ham.const = m_0*kprod('z0z') + Delta_0*kprod('yy0') + M_0*kprod('zx0');

29 Ham.mu = {-kprod('z00'),M{2}};

30

31 % Solve

32 [L2,E2] = solveLattice(M{1},Ham,sumResults="on",numOfEigval=20,sumEigval=4);

33

34 % Display results

35 E3 = eigenSort(E2',cost=[100,1650,650]);

36

37 % Set up indices for step labeling

38 for n = 1:length(L2)

39 L2{n,1} = n/2-1/2;

40 end

41

101
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42 plotLattice3(L2,E3,M{1},4,Delta_0,transparent="on",edgeAlpha=0.0,dotAlpha=0.2 ⌋

,alphaScale=0.3,showEdge="off")↪→

1 function [L2,E2] = solveLattice(lattice,H,args)

2 arguments

3 lattice double

4 H struct

5 %H.dxy % derivatives in Hamiltonian (cell array)

6 %H.const % constant parts of H (bands x bands)

7 %H.mu % spatially varying part of H

8 args.numOfEigval (1,1) double = 8

9 args.sumResults {mustBeMember(args.sumResults,["on","off"])} = "on"

10 args.sumEigval (1,1) double = 2

11 args.time {mustBeMember(args.time,["on","off"])} = "on"

12 args.waitbar {mustBeMember(args.waitbar,["on","off"])} = "on"

13 args.returnWf {mustBeMember(args.returnWf,[0,1])} = true

14 end

15 % [L2,E2] = solveLattice(lattice,H,parameters,args) solves a lattice

Hamiltonian↪→

16 % defined by the struct H on a matrix lattice.

17 % H must contain three fields

18 % dxy: the derivatives in the Hamiltonian in a cell array of the format

19 % {dx, ddx; dy, ddy}

20 % const: constant matrix terms

21 % mu: chemical potential. Either Nx1 or N x (dimension of lattice)

22 % numOfEigvals: the number of eigenvalues to compute. Default 8.

23 % sumResults ("on","off"): Sums eigenfunction probabilities over all bands

and given↪→

24 % number of eigenvalues. Default = "on"

25 % sumEigval: number of eigenvalues to sum over. Default = 2

26 % time: takes the time for the calculation

27 % waitbar: displays a waitbar with the progress according to the length of

28 % mu

29

30 if ~isfield(H,"dxy") || ~isfield(H,"const") || ~isfield(H,"mu")

31 throw("Hamiltonian does not contain required fields.");

32 end

33

34 bands = length(H.const);

35 [L_x,L_y] = size(lattice);

36

37 % Check if mu varies spatially and record the result

38 a = size(H.mu{2}); b = size(H.mu{1});

39 if ~(b(1)==bands && b(2) == bands)

40 H.mu = H.mu([2,1]);

41 a = b;

42 end

43 if length(a)==3 % series of varying mu

44 muSpatial = true;

45 b = size(squeeze(H.mu{2}(1,:,:)))==size(lattice);

46 assert(sum(b)==2);

47 elseif length(a) == 2

48 if a(1)==L_x && a(2)==L_y % if only one spatially varying mu

49 muSpatial = true;

50 a = reshape(a,1,a(1),a(2));

51 else
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52 muSpatial = false;

53 if a(1)==1

54 a = fliplr(a);

55 end

56 end

57 else

58 throw("mu has inappropriate dimensions")

59 end

60

61 % Create arrays to store eigenfunctions and eigenvalues

62 if args.sumResults == "on"

63 L = zeros(a(1),L_x,L_y);

64 else

65 L = zeros(a(1),L_x,L_y,args.numOfEigval,bands);

66 end

67 E = zeros(args.numOfEigval,a(1));

68

69 % Reduce impatience with a waitbar and time the simulation

70 if args.waitbar=="on"

71 w = waitbar(0);

72 end

73 t = tic;

74

75 % calculate for each mu

76 for n = 1:a(1)

77 if ~muSpatial

78 % Create the discretization matrix

79 C = H.const + H.mu{1}*H.mu{2}(n);

80 [M,gm] = sparse_discretizeH(lattice,bands,C,H.dxy);

81 else

82 spat = zeros(L_x,L_y,bands,bands);

83 for ma=1:L_x

84 for mb=1:L_y

85 spat(ma,mb,:,:) = H.mu{2}(n,ma,mb)*H.mu{1};

86 end

87 end

88

89 [M,gm] = sparse_discretizeH(lattice,bands,H.const,H.dxy,spatial=spat);

90 end

91

92 % update waitbar if on

93 if args.waitbar=="on"

94 waitbar(n/a(1),w,strcat("Discretizing:

",num2str(floor((n-0.5)/a(1)*100)),"%"));↪→

95 end

96

97 % Remove trivial equations to avoid bad behavior of solutions

98 gm = kron(gm,ones(bands,1));

99 [M,gm] = reduceM(M,gm,[]);

100 gm = gm(1:bands:end,:);

101

102 % Display progress

103 if args.waitbar=="on"

104 waitbar(n/a(1),w,strcat("Solving: ",num2str(floor(n/a(1)*100)),"%"));

105 end

106
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107 % Solve the eigenproblem

108 if args.returnWf == true

109 [V,En] = eigs(M,args.numOfEigval,"smallestabs");

110

111 % Put the solutions back on the lattice:

112 if args.sumResults=="on"

113 L(n,:,:) =

reconstructLattice(lattice,args.numOfEigval,V,gm,[],bands,...↪→

114 sum=args.sumResults,sumEigs=args.sumEigval);

115 else

116 L(n,:,:,:,:) = reconstructLattice(lattice,args.numOfEigval,V,gm,[ ⌋

],bands,sum=args.sumResults); % (Lx x Ly x s x

bands)

↪→

↪→

117 end

118 else

119 [~,En] = eigs(M,args.numOfEigval,"smallestabs");

120 end

121

122 % Get energies as 1D array

123 E(:,n) = En(1:args.numOfEigval+1:end);

124 end

125

126 % close the waitbar

127 if args.waitbar=="on"

128 close(w);

129 end

130

131 % Take the time

132 if args.time=="on"

133 toc(t)

134 end

135

136 % Put the results in a cell array {lattice solution, mu}

137 L2 = cell(a(1),2);

138 for n = 1:a(1)

139 if muSpatial

140 L2{n,1} = mean(H.mu{2}(n,:,:),"All");

141 else

142 L2{n,1} = H.mu{2}(n);

143 end

144 L2{n,2} = squeeze(L(n,:,:,:,:));

145 end

146 E2 = sort(E,1);

1 function [M,gm] = sparse_discretizeH(lattice, bands, const, dxy, opts)

2 arguments

3 lattice

4 bands (1,1) double

5 const

6 dxy

7 opts.spatial

8 opts.stencilOrder (1,1) double = 2

9 opts.hx (1,1) double = 1

10 opts.hy (1,1) double = 1

11 end

12 % [M,gm] = sparse_discretizeH(lattice, bands, const, dxy, opts)
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13 % generates a finite difference matrix M and returns the map, gm, between

lattice↪→

14 % points the matrix entries. The rows of gm are lattice point indices.

15 %

16 % lattice: ternary matrix with 0: outside, -1: boundary, 1: inside

17 % bands: number of bands in the problem

18 % const: constant terms in the Hamiltonian

19 % dxy: cell array with prefactors for derivatives, {dx,ddx; dy,ddy}

20 % const and each element of dxy are matrices of the same size

21 % opts:

22 % spat spatially varying part of the Hamiltonian

23 % stencilOrder: order of the finite-difference scheme

24

25 % Check that the size of the spatial term is correct if present

26 if isfield(opts,"spatial")

27 a = size(lattice)==size(opts.spatial(:,:,1,1));

28 assert(sum(a)==2);

29 end

30

31 % Pick the stencil of the desired order.(Default 2)

32 switch opts.stencilOrder

33 case 2

34 stencil = {[-1,0,1]/(2*opts.hx),[1,-2,1]/opts.hx^2 ;

[-1,0,1]/(2*opts.hy),[1,-2,1]/opts.hy^2 };↪→

35 case 4

36 stencil =

{[1/12,-2/3,0,2/3,-1/12]/opts.hx,[-1/12,4/3,-5/2,4/3,-1/12]/opts.hx^2 ;...↪→

37

[1/12,-2/3,0,2/3,-1/12]/opts.hy,[-1/12,4/3,-5/2,4/3,-1/12]/opts.hy^2 };↪→

38 case 6

39 stencil = {[-1/60,3/20,-3/4,0,3/4,-3/20,1/60]/opts.hx,[1/90,-3/20,3/2 ⌋

,-49/18,3/2,-3/20,1/90]/opts.hx^2;...↪→

40 [-1/60,3/20,-3/4,0,3/4,-3/20,1/60]/opts.hy,[1/90,-3/20,3/2,-49/18 ⌋

,3/2,-3/20,1/90]/opts.hy^2};↪→

41 otherwise

42 warning("Invalid stencil order. Using default (2).")

43 stencil = {[-1,0,1]/(2*opts.hx),[1,-2,1]/opts.hx^2 ;

[-1,0,1]/(2*opts.hy),[1,-2,1]/opts.hy^2 };↪→

44 end

45

46

47 % The matrix we want to solve in the gridMap basis

48 M_size = sum(abs(lattice),'All')*bands; % 1 means on the grid so just sum up

49

50 gm = gridMap(lattice); % map of the grid

51 [L_x,L_y] = size(lattice);

52

53 % Find the length of each stencil

54 stencil_length = [length(stencil{1,1}),length(stencil{1,2});length(stencil{2, ⌋

1}),length(stencil{2,2})];↪→

55

56 nzs = floor(M_size*sum(stencil_length,'All')*0.8);

57

58 m = zeros(nzs,1); % index #1 of entry

59 p = zeros(nzs,1); % index #2 of entry

60 s = zeros(nzs,1); % value of entry
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61 mt = 1; % number of non-zero entries

62

63

64 % For each lattice point in the map:

65 for n = 1:length(gm)

66 % Find the lattice position of the current map entry:

67 x0 = gm(n,1); y0 = gm(n,2);

68

69 %%%%%%%%%%% non-derivatives %%%%%%%%%%

70 if lattice(x0,y0) == 1

71 if isfield(opts,"spatial")

72 c1 = const + squeeze(opts.spatial(x0,y0,:,:));

73 else

74 c1 = const;

75 end

76 [a,b,val] = find(c1); % indices and value of non-zero entries

77 a = a + bands*(n-1);

78 b = b + bands*(n-1);

79 m(mt:mt+length(a)-1) = a;

80 p(mt:mt+length(a)-1) = b;

81 s(mt:mt+length(a)-1) = val;

82 mt = mt+length(a);

83 end

84

85 %%%%%%%%%%% x-direction %%%%%%%%%%%%%%

86 % 1st derivative

87 d = floor(stencil_length(1,1)/2);

88 for i = -d:d

89 % The point must be inside the lattice, i.e., valid index

90 if (x0+i)>=1 && (x0+i)<=L_x

91 if lattice(x0+i,y0)==1 % Only when the point is inside the lattice

92 [~,ind] = ismember([x0+i,y0],gm,'rows');

93 S = stencil{1,1}(i+d+1)*dxy{1,1};

94 [a,b,val] = find(S);

95 a = a + bands*(n-1);

96 b = b + bands*(ind-1);

97 m(mt:mt+length(a)-1) = a;

98 p(mt:mt+length(a)-1) = b;

99 s(mt:mt+length(a)-1) = val;

100 mt = mt+length(a);

101

102 end

103 end

104 end

105

106 %%%%%%%%%%

107 % 2nd derivative

108 d = floor(stencil_length(1,2)/2);

109 for i = -d:d

110 % The point must be inside the lattice, i.e., valid index

111 if (x0+i)>=1 && (x0+i)<=L_x

112 if lattice(x0+i,y0)==1 % Only when the point is inside the lattice

113 [~,ind] = ismember([x0+i,y0],gm,'rows'); % Index of given

point↪→

114 S = stencil{1,2}(i+d+1)*dxy{1,2};

115 [a,b,val] = find(S);
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116 a = a + bands*(n-1);

117 b = b + bands*(ind-1);

118 m(mt:mt+length(a)-1) = a;

119 p(mt:mt+length(a)-1) = b;

120 s(mt:mt+length(a)-1) = val;

121 mt = mt+length(a);

122 end

123 end

124 end

125

126

127 %%%%%%%%%%% y-direction %%%%%%%%%%%%%%

128 % 1st derivative

129 d = floor(stencil_length(2,1)/2);

130 for i = -d:d

131 % The point must be inside the lattice, i.e., valid index

132 if (y0+i)>=1 && (y0+i)<=L_y

133 if lattice(x0,y0+i)==1 % Only when the point is inside the lattice

134 [~,ind] = ismember([x0,y0+i],gm,'rows'); % Index of given

point↪→

135 S = stencil{2,1}(i+d+1)*dxy{2,1};

136 [a,b,val] = find(S);

137 a = a + bands*(n-1);

138 b = b + bands*(ind-1);

139 m(mt:mt+length(a)-1) = a;

140 p(mt:mt+length(a)-1) = b;

141 s(mt:mt+length(a)-1) = val;

142 mt = mt+length(a);

143 end

144 end

145 end

146

147 % 2nd derivative

148 d = floor(stencil_length(2,2)/2);

149 for i = -d:d

150 % The point must be inside the lattice, i.e., valid index

151 if (y0+i)>=1 && (y0+i)<=L_y

152 if lattice(x0,y0+i)==1 % Only when the point is inside the lattice

153 [~,ind] = ismember([x0,y0+i],gm,'rows'); % Index of given

point↪→

154 S = stencil{2,2}(i+d+1)*dxy{2,2};

155 [a,b,val] = find(S);

156 a = a + bands*(n-1);

157 b = b + bands*(ind-1);

158 m(mt:mt+length(a)-1) = a;

159 p(mt:mt+length(a)-1) = b;

160 s(mt:mt+length(a)-1) = val;

161 mt = mt+length(a);

162 end

163 end

164 end

165

166 end

167

168 if length(m) > mt

169 m = m(1:mt-1);
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170 p = p(1:mt-1);

171 s = s(1:mt-1);

172 end

173

174 % assemble the sparse matrix from the indices m and p, and entries s

175 M = sparse(m,p,s,M_size,M_size);

1 function [M,m] = reduceM(M,m,trivEq)

2 % [M,m] = reduceM(M,m,trivEq) recursively removes rows with zero or one

3 % entry and corresponding columns (trivial equations) and returns the

4 % reduced matrix M.

5 % trivEq = indices of trivial equations(<2 non-zero entries)

6 % m map from lattice to matrix indices - keeps track of remaining entries

7

8 M(trivEq,:) = [];

9 M(:,trivEq) = [];

10 m(trivEq,:) = [];

11

12 % Find zero-entries in the new matrix:

13 trivEq = find(sum(M~=0,2)<2);

14 if ~isempty(trivEq)

15 [M,m] = reduceM(M,m,trivEq);

16 else

17 trivEq = find(sum(M~=0,1)==0);

18 if ~isempty(trivEq)

19 [M,m] = reduceM(M,m,trivEq);

20 end

21 end

22

23 end

1 function L = reconstructLattice(lattice,s,V,gm,~,bands,args)

2 arguments

3 lattice double

4 s (1,1) double

5 V double

6 gm double

7 ~

8 bands (1,1) double

9 args.sum (1,1) string {mustBeMember(args.sum,["on","off"])} = "off"

10 args.sumEigs (1,1) double

11 end

12 % L = reconstructLattice(lattice,s,V,gm,ind,bands,args)

13 % Transfers 1D eigenvectors onto a series of lattice matrices.

14 % L: (size(lattice)-by-s-by-bands) matrix

15 % lattice: ternary matrix defining the lattice

16 % s: number of eigenvalues to sum over

17 % V: the eigenvectors (1D colum vectors)

18 % gm: map between lattice and eigenvector indices

19 % bands: number of bands in the Hamiltonian

20 % sum: ("on","off") sum over all bands and "sumEigs" eigenvalues. "off" by

default.↪→

21 % sumEigs: the number of eigenfunctions to sum over

22

23 [L_x,L_y] = size(lattice);
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24

25 % Retrieve the eigenfunctions:

26 L = zeros(L_x,L_y,s,bands);

27 for i = 1:s

28 % get an eigenvector:

29 v = V(:,i); % n bands*L*L

30 for k = 1:bands

31 L1 = zeros(size(lattice));

32 for j = 1:length(v)/bands % loop over lattice points

33 L1(gm(j,1),gm(j,2)) = v(bands*(j-1)+k);

34 end

35 L1(lattice==0) = NaN;

36 L(:,:,i,k) = L1;

37 end

38 end

39

40 % Check whether to sum (abs squares) or not

41 if args.sum =="on"

42 L2 = abs(L).^2;

43 L = sum(L2(:,:,1:args.sumEigs,:),[3,4]);

44 end

45

46 end

1 function map = gridMap(lattice)

2 % map = gridMap(lattice) creates a map from an arbitrary grid to an Nx2

3 % array when N is the number of lattice point inside the lattice.

4

5 % get the lattice size and create the empty map

6 [M,N] = size(lattice);

7 map = zeros(sum(abs(lattice),'All'),2);

8

9 % the map index

10 k = 1;

11

12 for i=1:M

13 for j = 1:N

14 if lattice(i,j) ~= 0

15 map(k,:) = [i,j];

16 k = k+1;

17 end

18 end

19 end

20

21 end

1 function M = triangularLattice(L_x,L_y,L,opts)

2 arguments

3 L_x (1,1) double

4 L_y (1,1) double

5 L (1,1) double

6 opts.disorder (1,1) string

{mustBeMember(opts.disorder,["none","sine","random"])} = "none"↪→

7 opts.shape (1,1) string {mustBeMember(opts.shape,["plain","concave"])} =

"plain"↪→
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8 opts.ang (1,1) double = pi/4

9 opts.amp (1,1) double = 0.5

10 opts.periods (1,1) double = 10

11 opts.curvature (1,1) double

{mustBeInRange(opts.curvature,1e-8,1.5707963268)} = 0.18*pi↪→

12 opts.displayPolygon (1,1) string

{mustBeMember(opts.displayPolygon,["on","off"])} = "off"↪→

13 end

14 % M = triangularLattice(L_x,L_y,L,opts) creates an L_x-by-L_y matrix M that

15 % defines a triangle with sides L defined by

16 % outside = 0

17 % inside = 1

18 % boundary = -1

19 %

20 % optional arguments:

21 % disorder ( "none","sine" )

22 % shape ( "plain","concave" )

23 % ang (diagonal angle). Only implemented for plain triangles.

24 % amp (disorder amplitude in lattice unit)

25 % period (number of sine periods along diagonal)

26 % curvature (angular span of diagonal in range (0,pi/2))

27 % displayPolygon( "on","off" ) Plots the lattice and defining polygon

28

29 % Check if disordered;

30 if opts.disorder~="none"

31 opts.amp = opts.amp/sqrt(2);

32 else

33 opts.amp=0;

34 end

35

36 % Create a polygon of the desired shape

37 if opts.shape=="concave"

38

39 % Get radius from curvature angle

40 R = sqrt(2)/2*L/sin(opts.curvature/2);

41

42 % curvature center

43 t0 = 1/2*(L+sqrt(2*R^2-L^2));

44

45 % angle between axes and triangle edges

46 b = acos(t0/R);

47

48 t = linspace(pi+acos(t0/R),3*pi/2-acos(t0/R),1e3);

49

50 % discrete wavenumber variables

51 m = 2*opts.periods; n=1;

52

53 % wavenumber and phase

54 k1 = pi*(m-n)/(pi/2-2*b);

55 k2 = pi*n-(pi+b)*k1;

56

57 if opts.disorder=="sine"

58 if floor(opts.periods)~=opts.periods

59 warning("Number of periods (" + num2str(opts.periods)+ ") is not

an integer. May yield unexpected results.");↪→

60 end
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61 dt = 0.5*sin(k1*t+k2)*opts.amp;

62 elseif opts.disorder=="random"

63 dt = randEdge(t,opts.periods)*opts.amp*1.4;

64 else

65 dt = zeros(1,length(t));

66 end

67

68 u = (R+dt).*cos(t)+t0;

69 v = (R+dt).*sin(t)+t0;

70

71 % Add straight lines to close the polygon.

72 u = [u(1),u,u(end),u(1)];

73 v = [0,v,0,0];

74

75 elseif opts.shape == "plain"

76

77 % length of diagonal

78 d = L/cos(opts.ang);

79

80 % wavenumber

81 k = pi*(2*opts.periods-1)/d;

82

83 % Get the line defining the diagonal

84 t = linspace(0,L,1e3);

85

86 % The wrap-on function

87 if opts.disorder=="sine"

88 dt = opts.amp * 0.5 * sin(k*sqrt(tan(opts.ang)^2+1)*t);

89 elseif opts.disorder=="random"

90 dt = opts.amp * randEdge(t,opts.periods) *1.4;

91 elseif opts.disorder=="none"

92 dt = zeros(1,length(t));

93 end

94 % Parametrized curves

95 u = t + dt * sin(opts.ang);

96 v = L*tan(opts.ang)-tan(opts.ang)*t + dt * cos(opts.ang);

97

98 % Add straight lines to get back to the origin.

99 u = [u(1),u,u(1)];

100 v = [v(end),v,v(end)];

101

102 end

103

104 % Create a grid:

105 [x1,y1] = ndgrid(1:L_x,1:L_y);

106

107 [in,~] = inpolygon(x1,y1,u,v);

108

109 M = double(in);

110

111 for x=1:L_x

112 for y = 1:L_y

113 if M(x,y) == 1

114 if y==1 || x==1 || y==L_y || x == L_x

115 M(x,y) = -1;

116 elseif M(x+1,y)==0 || M(x-1,y)==0 ||M(x,y+1)==0 ||M(x,y-1)==0
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117 M(x,y) = -1;

118 end

119 end

120 end

121 end

122

123 if opts.displayPolygon == "on"

124 figure

125 hold on

126 plot(u,v,'LineWidth',1.4)

127 plot(x1(M==1),y1(M==1),'k.','Color',[0.7,0.7,0.7])

128 plot(x1(M==-1),y1(M==-1),'r.')

129 grid on

130 axis equal

131 axis([0,L_x+1,0,L_y+1])

132 legend("Polygon","Lattice","Edge")

133 hold off

134 end

135

136 end

137

138

139 function f = randEdge(t,periods)

140 % function that creates a line with the length of the parameter variable t

141 % with random disorder and approximate number of periods

142

143 f = randn(1,length(t))*1.2;

144 f(1) = 0; f(end) = 0;

145 span = 1/periods*0.5;

146 f = smooth(f,span,'lowess',SamplePoints=t(2:end-1));

147 f(1) = 0; f(end) = 0;

148 f = f'/max(abs(f));

149

150 end

1 function M = qubitLattice(L_x,L,pot,opts)

2 arguments

3 L_x (1,1) double

4 L (1,1) double

5 pot (:,6) double

6 opts.disorder = "none"

7 opts.overlap = 2

8 opts.shape = "plain"

9 opts.periods = 20

10 opts.curvature = 0.25*pi

11 opts.amp = 0

12 opts.displayPolygon {mustBeMember(opts.displayPolygon,["on","off"])} =

"off"↪→

13 opts.return_mu {mustBeMember(opts.return_mu,[0,1])} = false

14 end

15 % M = qubitLattice(L_x,L,pot,...) generates a lattice from 6 triangles

16 % generated by triangularLattice(L_x,L_x,L,...).

17 %

18 % pot: Nx6 matrix where N is the number of steps with 6 regions for the

19 % potential for each step.

20 % return_mu: set to "on" to calculate potential lattice
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21 % other parameters are the same as for triangularLattice(L_x,L_x,L,...)

22

23 lat = cell(6,1);

24 for n=1:length(lat)

25 lat{n} =

triangularLattice(L_x,L_x,L,disorder=opts.disorder,shape=opts.shape,...↪→

26 curvature=opts.curvature,amp=opts.amp,periods=opts.periods,displayPol ⌋

ygon="off");↪→

27 end

28

29 l1 = fliplr(lat{1}); l3 = rot90(lat{2},2); l4 = rot90(lat{4}); l5 =

fliplr(lat{5});↪→

30 cr = opts.overlap;

31

32 l5 = l5(1:end-cr,1:end-1); l6 = lat{6}(1:end-cr,3:end);

33 l3 = l3(cr:end-1,1:end-1); l4 = l4(cr:end-1,3:end);

34 l1 = l1(3:end,1:end-1); l2 = lat{2}(3:end,3:end);

35

36 M = [l5,l6;l3,l4;l1,l2];

37

38 % plot the lattice?

39 if opts.displayPolygon == "on"

40 lsize = size(M);

41 [x,y] = meshgrid(1:lsize(2),1:lsize(1));

42 figure

43 plot(x(M==1),y(M==1),'k.'); hold on;

44 plot(x(M==-1),y(M==-1),'r.');

45 axis equal

46 xlim([0,lsize(2)+1]);

47 ylim([0,lsize(1)+1])

48 hold off

49 end

50

51 % potential distributions:

52 if opts.return_mu

53 [steps,N] = size(pot);

54 assert(N==6);

55 lsize = size(M);

56 mu = zeros(steps,lsize(1),lsize(2));

57

58 l1(l1==-1) = 0; l2(l2==-1) = 0; l3(l3==-1) = 0;

59 l4(l4==-1) = 0; l5(l5==-1) = 0; l6(l6==-1) = 0;

60

61 for n=1:steps

62 mu(n,:,:) = [l5 * (pot(n,5)),...

63 l6 * (pot(n,6));...

64 l3 * (pot(n,3)),...

65 l4 * (pot(n,4));...

66 l1 * (pot(n,1)),...

67 l2 * (pot(n,2))];

68 end

69

70 M = {M,mu};

71 end
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1 function M = kprod(u)

2 % M = kprod(u) assembles the 2x2 Pauli matrices defined by a char array u,

3 % e.g., 'z0y'. M has dimension 2^length(u). Identity matrix = 0. Maximum

4 % number of matrices: 3.

5 n = length(u);

6 switch n

7 case 1

8 M = Pauli(u);

9 case 2

10 M = kron(Pauli(u(1)),Pauli(u(2)));

11 case 3

12 M = kron(kron(Pauli(u(1)),Pauli(u(2))),Pauli(u(3)));

13 otherwise

14 M = 0;

15 end

16 end

1 function P = Pauli(c)

2 arguments

3 c (1,1) char {mustBeMember(c,['0','x','y','z'])}

4 end

5 % P = Pauli(c) returns the Pauli matrix with index c.

6 % Input must a char in {'0','x','y','z'}

7 U = {[1,0;0,1],[0,1;1,0],[0,-1i;1i,0],[1,0;0,-1]};

8 switch c

9 case {'0'}

10 P = U{1};

11 case {'x'}

12 P = U{2};

13 case {'y'}

14 P = U{3};

15 case {'z'}

16 P = U{4};

17 otherwise

18 P = 0;

19 end

20 end

1 function plotLattice3(L,E,lattice,S,Delta_0,opts)

2 arguments

3 L cell

4 E

5 lattice (:,:) double

6 S (1,1) double

7 Delta_0 (1,1) double

8 opts.transparent (1,1) string

{mustBeMember(opts.transparent,["on","off"])} = "on"↪→

9 opts.edgeAlpha (1,1) double = 0

10 opts.dotAlpha (1,1) double = 0.2

11 opts.alphaScale (1,1) double = 0.5

12 opts.colormap = kron(ones(1,3),[0,0,0]')

13 opts.showEdge string {mustBeMember(opts.showEdge,["on","off"])} = "on"

14 end

15 % plotLattice3(L,E,lattice,S,Delta_0,opts) plots a series of figures with

varying chemical potential↪→
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16 % L: cell{mu, L_x-by-L_y-by-s-by-bands} or cell{mu, L_x-by-L_y}

17 % E: Energies in a length(mu)-by-s

18 % lattice: ternary lattice matrix

19 % S: number of eigenvalues to sum over

20 % Delta_0 = SC strength for energy scale renormalization

21 % opts:

22 % transparent("on","off") - figure has Z-dependent transparency

23 % edgeAlpha: sets edgeAlpha property in surf()

24 % dotAlpha: sets color/alpa of dots in lattice

25 % alphaScale: the transparency scaling if transparent="on" (AlphaData =

26 % abs(L1).^opts.alphaScale)

27 % colormap: sets colormap of figure

28 % showEdge ("on","off"): plot the lattice edges if "on"

29 %

30 % See also plotLattice, plotLattice3, plotSeries

31

32 % Get lattice size, number of eigenvalues, number of bands

33 [M,N] = size(L);

34 if M == 2 && N ~=2

35 L = L';

36 M = N;

37 end

38 [~,Ey] =size(E);

39 if Ey == M

40 E = E';

41 end

42

43

44 [L_x,L_y,s,~] = size(L{1,2});

45 mu = cell2mat(L(:,1));

46

47 % Sum over all bands and S smallest eigenvalues

48 L_mu = zeros(L_x,L_y,M);

49 for m = 1:M % for each mu

50 if s ~= 1

51 L2 = abs(L{m,2}).^2;

52 L_mu(:,:,m) = sum(L2(:,:,1:S,:),[3,4]);

53 else

54 L_mu(:,:,m) = L{m,2};

55 end

56 end

57

58 % The number of pages to display

59 pages = min([ceil(M/4),21]);

60

61 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

62 % Make a fancy multi-page plot %

63 f = figure;

64 set(f,'Position',[10,50,800,680]); % Position of the figure

65 bg = uibuttongroup(f,'Visible','off',... % Set up the button group

66 'Position',[0 0.92 1 0.08],...

67 'SelectionChangedFcn',@bselection);

68 r = cell(1,21); % the maximum number of pages

69

70 % Create the buttons

71 b_num = 11; % number of buttons per row
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72 flag = 0;

73 for row = 1:2

74 for m = 1:11

75 b_count = m + (row-1)*b_num;

76 if b_count > pages

77 flag = 1;

78 break

79 end

80 if ~(row==2 && m == b_num)

81 name = strcat("Page ",int2str(m+(row-1)*b_num));

82 r{m} = uicontrol(bg,'Style',...

83 'radiobutton',...

84 'String',name,...

85 'Position',[10+70*(m-1) 25*(row==1) 60 30],...

86 'HandleVisibility','off');

87 end

88 end

89 if flag

90 break;

91 end

92 end

93 r{b_num*row} = uicontrol(bg,'Style',... % Energy

94 'radiobutton',...

95 'String','Energy',...

96 'Position',[10+70*(b_num-1) 0 60 30],...

97 'HandleVisibility','off');

98

99 bg.Visible = 'on';

100

101 % Default - page 1:

102 x = linspace(1,L_x,L_x);

103 y = linspace(1,L_y,L_y);

104 [x,y] = meshgrid(y,x);

105

106 C = opts.colormap;

107

108 mySubplot(1,x,y,L_mu,mu,lattice,C,Delta_0,opts);

109

110 % Callback:

111 function bselection(source,event)

112 page = event.NewValue.String();

113 if page(6) == 'y' % i.e., energy

114 subplot(1,1,1);

115 ax = gca;

116 ax.Position = [0.08 0.09 0.87 0.77];

117 [~,a] = size(E);

118 hold on

119 for n = 1:a

120

plot(gca,mu/Delta_0,E(:,n)/Delta_0,'k.-',MarkerSize=8,LineWidth=0.9);↪→

121 end

122 xlabel('\mu [\Delta_0]'); ylabel('Energy [\Delta_0]');

123 grid on

124 xlim([mu(1)/Delta_0,mu(end)/Delta_0]);

125 Em = min(E,[],'All'); Ep = max(E,[],'All');
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126 ylim([Em/Delta_0*(1.1*(Em<0)+0.9*(Em>0)),Ep/Delta_0*(0.9*(Ep<0)+1 ⌋

.1*(Ep>0))]);↪→

127 hold off

128 else

129 if length(page)==6 % Page 1-9

130 page = str2double(event.NewValue.String(6));

131 else

132 page = str2double(event.NewValue.String(6:7)); % Page 10-99

133 end

134 mySubplot(page,x,y,L_mu,mu,lattice,C,Delta_0,opts)

135 end

136 end

137 end

138

139 function mySubplot(page,x,y,L,mu,lattice,C,Delta_0,opts)

140 for a = 1:4

141 subPosx = [0.07 0.54 0.07 0.54];

142 subPosy = [0.49 0.49 0.05 0.05];

143

144 b = subplot(2,2,a);

145 set(b,'Position',[subPosx(a), subPosy(a) ,0.385,0.385]);

146

147 if 4*(page-1)+a <= length(mu)

148 L1 = L(:,:,4*(page-1)+a);

149

150 hold on

151 plot(x(lattice==1),y(lattice==1),'.','Color',[1,1,1]*(1-opts.dotA ⌋

lpha),'MarkerSize',4);↪→

152

153 if opts.showEdge=="on"

154 plot(x(lattice==-1),y(lattice==-1),'.','Color',[1,1,1]*(1-opt ⌋

s.dotAlpha),'MarkerSize',4);↪→

155 end

156

157 Z = abs(L1).^2;

158

159 s = surf(x,y,Z);

160

161 if opts.transparent == "on"

162 s.FaceColor = 'interp';

163 s.AlphaData = abs(L1).^opts.alphaScale;

164 s.FaceAlpha = 'interp';

165 s.AlphaDataMapping = 'scaled';

166 s.EdgeAlpha = opts.edgeAlpha;

167 colormap(flipud(C))

168 else

169 colormap(flipud(C))

170 s.FaceColor = 'interp';

171 s.EdgeAlpha = opts.edgeAlpha;

172 end

173

174 set(gca,'FontSize',14)

175 set(gca,'LineWidth',1.2)

176 title(strcat("\mu = ",sprintf("%.2f",mu(4*(page-1) +

a)/Delta_0),'\Delta_0'));↪→

177 xlabel('x');
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178 ylabel('y');

179 view(2)

180 xlim([0,x(end)])

181 ylim([0,y(end)])

182 hold off

183 else

184 cla;

185 end

186 end

187 end
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