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Abstract

Healthcare research is an emerging field of application of machine learning
techniques to investigate complex health datasets. Patients are at the cen-
ter of any healthcare system. There is a growing realisation of the patient-
centred healthcare system and the notion is slowly changing the health-
care scenario from a one glove fits all approach to a more personalised ap-
proach. Data collected in population-based and intervention-based stud-
ies has immense potential in supporting primary caregivers in providing
patient-centred care by facilitating clinical decision-making. From identi-
fying patients at a high risk of post-surgical complications to forecasting
their quality of life, recent developments in healthcare informatics suggest
that leveraging the capabilities of machine learning techniques on complex
health data can have a significant impact on the decision-making process
in clinical settings. To this end, we explored supervised and unsupervised
machine learning methods, predominantly, Case-Based Reasoning (CBR)
methodology.

The overall theme of this research is exploring the potential of health-
care datasets using CBR methodology. We used two unique and innova-
tive datasets—a population-based dataset consisting of objectively measured
physical behaviour data collected using body-worn sensors in HUNT4 co-
hort study, and an intervention-based dataset comprising patient-reported
outcome measurements collected during clinical trials to test the efficacy of
tailored interventions in SELFBACK mobile app—and applied both super-
vised and unsupervised learning to glean valuable information.The goal is
to develop intelligent modules that can be incorporated into clinical deci-
sion support systems to support clinicians in the informed decision-making
process or as standalone systems. Focus is placed on applying the case-
based methodology to learn from the data without making assumptions.
The HUNT4 physical behaviour dataset was investigated to get insights
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into the physical behaviour characteristics of the population and identify
clusters of similar behaviour profiles using a new clustering approach. The
clustering approach was valuable in identifying groups of similar physical
behaviour, which can be used further by primary caregivers to underpin the
amount of physical activity tailored to the individual’s needs. The SELF-
BACK intervention datasets were explored to determine the predictors of
various patient-reported outcomes and investigate the predictive potential
of the patient-reported outcome measurements using case-based and con-
ventional machine learning methods. The methods used show the potential
to predict pain-related patient-reported outcomes.

Overall, our results indicate that a close liaison between healthcare data,
clinicians, and machine learning methods can promote a better understand-
ing of achieving patient-centred care through the addition of intelligent sys-
tems in clinical decision support. The results also provide grounds for fur-
ther research and development of evidence-based clinical decision support
systems.
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Chapter 1

Introduction

1.1 Context and Motivation

Increased use of information systems in health services and collection of
patient-specific information generates large amounts of healthcare data.
The data collected has immense potential for the provision of healthcare
services as well as quality improvement, research, public health, manage-
ment, and planning. The combination of colossal amounts of varied data, in-
creased computing power owing to the technological advancements, and the
use of intelligent methods provides a golden opportunity for analysing com-
plex health data to get deeper insights and build prognostic models that can
be incorporated into clinical decision support systems to facilitate informed
decision-making. Machine learning algorithms are increasingly being used
in various areas of healthcare research (Quazi, 2022; Krishnamoorthi et al.,
2022; Sanchez et al., 2022; Fryan et al., 2022). Technological developments
have begun having an impact on the public healthcare ecosystem but are yet
to show their full potential (Louw et al., 2017; Sarwar et al., 2018; Alanazi,
2022). These developments serve to improve the overall clinical workflow
from the preventive and diagnostic phase to the prescriptive and restorative
phase in healthcare. Healthcare data has immense potential in accelerating
the growth of clinical research, both objective and subjective measurements
provide an avenue for furthering patient-centred care with the assistance
of tools that can facilitate utilising their potential and supporting clinical
decision-making (Jensen et al., 2012; Wang and Gottumukkala, 2021). As
the healthcare sector becomes more proactive in using machine learning
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2 CHAPTER 1. INTRODUCTION

techniques, more research and development are necessitated to realise the
full potential of the technology for complex healthcare datasets.

Physical inactivity, a growing public health concern worldwide, is esti-
mated to be responsible for about 9% of premature mortality (Lee et al.,
2012) and contributes to a wide variety of chronic diseases and conditions in-
cluding low back pain, cardiovascular diseases, stroke, type 2 diabetes, and
cancer (Picavet and Schuit, 2003; Fox, 2004; Lynch and Leitzmann, 2017).
Health surveys globally reveal large fractions of the population not meeting
the physical activity levels recommended by the world health organisation
(WHO) (Guthold et al., 2008). To this end, activity recommendation systems
have the potential to promote physical activity and thereby contribute to the
improvement of public health (Smyth, 2019). With the growth in popularity
of wearable activity trackers, objective physical behaviour measurements in
population-based studies have opened new possibilities for public health and
computer science researchers alike. Body-worn sensors have helped in mak-
ing the shift from self-reported physical activity data to objectively measured
physical activity data, thereby eliminating the bias due to self-reporting.
The use of machine learning methods has further simplified the extraction
of and utilization of raw sensor data (Arif and Kattan, 2015). Population-
wide cohort studies collecting objective physical behaviour measurements,
such as the HUNT4 1 in Norway, provide an opportunity for assessing de-
tailed physical behaviour patterns. Investigating determinants of physical
activity behaviour can inform the development of interventions aimed at im-
proving physical activity level. An important step here would be to identify
groups with similar physical behaviour profiles (Marschollek, 2013; Kohl 3rd
et al., 2012).

Non-specific neck pain (NP) and low back pain (LBP) are another public
health concern and a leading cause of disability worldwide (Hurwitz et al.,
2018). Almost all the reported cases of neck and or low back pain (NLBP)
are non-specific, meaning that they cannot be attributed to any specific cause
such as a disease, infection, malignancy or fracture (Hartvigsen et al., 2018),
but have a high recurrence frequency (Côté et al., 2004; Andersson, 1999).
As many as 70-80% of all adults experience LBP and 20-70% experience
neck pain (NP) at some point in their life (Bovim et al., 1994; Brattberg
et al., 1989; Kelsey et al., 1980; Sinnott et al., 2017). These pain conditions
are the main cause of early retirement and are responsible for the great-

1www.ntnu.no/hunt/hunt4



1.1. CONTEXT AND MOTIVATION 3

est loss of productive life years in the workforce compared with other non-
communicable diseases (Briggs et al., 2018). Considering the vast impact on
individual well-being and public health, there is a need to develop scalable
and cost-effective interventions to improve outcomes in people with LBP and
NP. Designing such interventions requires insight into modifiable factors,
that are known to influence the prognosis of symptoms and allow for the
prediction of outcomes. Patient-reported outcome measurements (PROMs)
collected routinely in clinical settings to evaluate pain-related symptoms
of patients with LBP or NP provide an opportunity to examine short to
long-term predictors of outcomes that can support informed decision-making
(Baumhauer, 2017). PROMs are being increasingly given more importance
than any other outcomes like clinical, physiological, or clinician-reported
(Wang and Gottumukkala, 2021). Research indicates enhanced treatment
adherence and outcomes can be obtained by giving attention to patient feed-
back on healthcare outcomes and patient behaviour change (Carroll, 2002).

Literature suggests leveraging machine learning techniques for health-
care datasets can have a meaningful impact on the further development
of clinical decision support systems (CDSS) (Panch et al., 2018). Machine
learning methods are increasingly being applied in clinical studies to inves-
tigate complex healthcare datasets and predict outcomes such as comorbidi-
ties, drug efficacy, patient stratification, and quality of life among others
(Shi et al., 2012; Moonesinghe et al., 2013). Patients are at the center of
any healthcare system and there is a growing realisation of the need for a
patient-centred healthcare system (Louw et al., 2017). Predictive analyt-
ics is expected to play a key role for prevention of diseases at both individ-
ual and population-wide levels. Enabling the use of prognostic analytics on
patient-centred data can support caregivers and other involved parties to
dispense targeted interventions to prevent the occurrence of a worse clinical
outcome or improve physical activity levels.

Machine learning methods provide a promising approach to explore com-
plex health datasets (Adkins, 2017) and build models that can learn from
the data and generalise to facilitate evidence-based decision-making in clin-
ical practice (Vasquez-Morales et al., 2019). Case-based reasoning (CBR)
is a machine learning approach with a rapidly growing field of research
and development within healthcare informatics and broad applicability to
building intelligent systems in health sciences domains (Bichindaritz et al.,
2008; Bichindaritz and Marling, 2010). CBR has been demonstrated to be a
suitable methodology to apply in unstructured domains such as multidisci-



4 CHAPTER 1. INTRODUCTION

plinary medical services (Chuang, 2011). The value of CBR stems from cap-
turing specific clinical experience and leveraging this contextual, instance-
based, knowledge for solving clinical problems. CBR systems offer means of
abstracting and transferring specific domain expert knowledge into a self-
explanatory and user-friendly tool, which can be used to generate explain-
able solutions for problems ranging from simple daily life tasks to complex
issues (Weber et al., 2005; Vasquez-Morales et al., 2019).

CBR has been widely applied for classification of medical data (Yao and
Li, 2010; Campillo-Gimenez et al., 2013), physical activity data (Uddin and
Loutfi, 2013) and has also proven useful in clinical practice for decision
support, explanation, and quality control (Holt et al., 2005). To continue
this line of research in this doctoral work, we focused on data-driven re-
search to address different aspects of utilisation of healthcare datasets to
facilitate advancing the application of machine learning methods on these
datasets. Using CBR, we implement learning models that can be incor-
porated in decision support systems or public health research to discover
new knowledge or can even be used standalone to find new information. We
utilised two datasets in our research work—the first consisting of objective
measurements of physical behaviour from a population-based cohort study
called HUNT4 and the second comprising subjective clinical measurements
reported by patients with non-specific LBP or NP from intervention-based
clinical trials for the SELFBACK project. With new ways of capturing data,
these datasets present new challenges concerning their utilisation for creat-
ing intelligent systems that can add value to the current healthcare system.
HUNT4 provides a more unbiased setting for understanding the physical
activity aspect of a small population from an objective point of view. While
the subjective setting in SELFBACK , where we have an innovative inter-
vention to address a chronic health issue (LBP or NP), provides an avenue
to understand whether the intervention is helpful for the patients from the
patient’s perspective. Such unique healthcare datasets have immense poten-
tial to improve the quality of healthcare research and healthcare services
delivered to individuals. To this end, we used CBR to address several as-
pects of developing intelligent modules to better utilise healthcare datasets
including the development of similarity measures for CBR modelling in a
data-driven manner, utilisation of the data-driven similarities to cluster case
bases in CBR, and investigating approaches for selecting important clinical
measurements from subjective healthcare datasets that can facilitate pre-
diction of patient-specific outcomes. We used conventional machine learning
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methods in addition to compare the performance of the CBR models.

1.2 Research Questions
This section details the overarching objectives of this research. The re-
search goals are stated first, followed by three specific research questions.
The starting point for this doctoral research was to better utilize health-
care datasets for facilitating informed clinical decision-making. Are these
datasets sufficiently understood and utilized that we can begin using them
for decision making? Can we learn new, valuable insights by leveraging the
learning abilities of machine learning methods? From a clinical point of view,
a holistic perspective of how the different patient-centred data collected rou-
tinely can be incorporated into a decision-making tool that allows one to
identify population-wide similar behavior, follow the trajectory of the pa-
tients, predict individual outcomes, and support informed decision-making.
From a computer science standpoint, the clinical perspective allows us to
investigate how the knowledge in a healthcare dataset may be represented
in machine learning models and how the models may be utilized to support
informed decision-making. The research goals and research questions in the
thesis are motivated by these overarching perspectives.

Research Goal:
Advancing research within application of machine learning methods on
healthcare datasets and developing methods that can be used to further
the development of CDSS.

Addressing the research goal will further the understanding of what the
domain needs and push the boundaries to incorporate intelligent methods
into data-driven research and build evidence-based clinical decision-making
tools. To address the research goal, the work in this doctoral research has
been split into three research questions.

Research Question 1:
How to measure similarity among different individuals based on their
objective and subjective measurements?

The first research question addresses the development of a methodology
to build suitable similarity measures that represent the similarity between
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two given patients in any given healthcare dataset. The methodology should
be applicable on both objective and subjective measurements in any health-
care (or another domain’s) dataset.

Research Question 2:
How can machine learning methods be applied to subjective patient-
reported datasets to facilitate individualized patient-reported outcome
predictions?

The second research question addresses the utility of machine learn-
ing methods in analysing subjective healthcare datasets and investigates
whether the case-based methodology can be useful in building prediction
models that can make individualized predictions from the given healthcare
data.

Research Question 3:
What are the state-of-the-art of machine learning methods for investi-
gating patient-reported outcome measurement datasets?

When pursuing the second research question, it becomes natural to look
at the state-of-the-art. Therefore, the third and final research question looks
into the existing literature that involves the application of machine learning
methods to investigate healthcare datasets comprising (subjective) patient-
reported measurements.

Figure 1.1: Overview of the research conducted as a part of this thesis.
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1.3 Overview of the Research Conducted
This section provides an overview of the publications included in this thesis.
Seven papers, labeled A-F are included in this thesis and they can be found
in their entirety in the second part of this thesis. Figure 1.1 gives a visual
representation of the research questions and how the research papers relate
to them.

The first paper, A1, addresses the RQ1 by introducing a data-driven ap-
proach for local similarity modelling and demonstrating the similarity esti-
mation amongst individuals based on their objective physical activity mea-
surements. This paper is published in the proceedings of the International
Conference on Case-Based Reasoning (ICCBR 2018) .

• Paper A1: Deepika Verma, Kerstin Bach, and Paul Jarle Mork. Mod-
elling Similarity for Comparing Physical Activity Profiles - A Data-
driven Approach. In Michael T. Cox, Peter Funk, and Shahina Begum,
editors, International Conference on Case-Based Reasoning, pages 415-
430, Cham, 2018. Springer. ISBN 978-3-030-01081-2

The methodology introduced in this conference publication is later pub-
lished as a position paper in the 2019 symposium of the Norwegian AI So-
ciety (NAIS 2019). The position paper, Paper A2, includes the methodology
and background from the original paper A1 and extends on it by demon-
strating the validity of the proposed method on other datasets. The paper
underwent peer-review before being accepted and published.

• Paper A2: Deepika Verma, Kerstin Bach, and Paul Jarle Mork.
Similarity Measure Development for Case-Based Reasoning– A Data-
driven Approach. In Kerstin Bach and Massimiliano Ruocco, editors,
Norwegian Artificial Intelligence Society, pages 143–148, Cham, 2019.
Springer. ISBN 978-3-030-35664-4

The subsequent paper extends on the similarity measures developed in
paper A1 and presents a clustering algorithm to cluster case bases using
the similarity measure as the clustering metric and thereby supports RQ1.
This paper is published in the proceedings of the International Conference
on Agents and Artificial Intelligence (ICAART 2020).
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• Paper B: Deepika Verma, Kerstin Bach, and Paul Jarle Mork. Clus-
tering of Physical Behaviour Profiles Using Knowledge-intensive Sim-
ilarity Measures. In Ana Rocha, Luc Steels, and Jaap van den Herik,
editors, International Conference on Agents and Artificial Intelligence,
Volume 2, pages 660–667. INSTICC, SciTePress, 2020. ISBN 978-989-
758-395-7.

With the next paper, we move our investigation under RQ2 into health-
care datasets with a dataset that consists of subjective clinical measure-
ments or patient-reported measurements. In paper C, we explore the ap-
plication of a number of machine learning algorithms on subjective patient-
centred measurements and develop outcome prediction models. This paper
is published in the journal BMC Medical Informatics and Decision Making.

• Paper C: Exploratory Application of Machine Learning Methods on
Patient Reported Data in the Development of Supervised Models for
Predicting Outcomes. BMC Medical Informatics and Decision Making,
22(227), 2022. ISSN 1472-6947.

Continuing our research into the subjective healthcare datasets under
RQ2, we address some shortcomings of the machine learning models pre-
sented in Paper C, by looking into other methods of feature selection and
build case-based prediction models for predicting individualised patient-
reported outcomes. This paper is published at the conference British Com-
puter Society, Specialist Group on Artificial Intelligence (BCS SGAI 2021).

• Paper D: Deepika Verma, Kerstin Bach, and Paul Jarle Mork. Using
Automated Feature Selection for Building Case-based Reasoning Sys-
tems: An Example from Patient-Reported Outcome Measurements. In
Max Bramer and Richard Ellis, editors, British Computer Society, Spe-
cialist Group on Artificial Intelligence, pages 282–295, Cham, 2021.
Springer. ISBN 978-3-030-91100-3.

The next paper addresses the RQ3 and presents a literature review
to summarise the existing state-of-the-art application of machine learning
methods on PROM datasets for predicting individualised patient-reported
outcomes. This paper is published in the journal MDPI Informatics in late
2021.
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• Paper E: Deepika Verma, Kerstin Bach, and Paul Jarle Mork. Ap-
plication of Machine Learning Methods on Patient-Reported Outcome
Measurements for Predicting Outcomes: A Literature Review. MDPI
Informatics, 8(3), 2021. ISSN 2227-9709.

The final paper continues the investigation under RQ2 to address the
challenge of external validation of prediction models developed for patient-
reported outcomes. This paper extends on the prediction models presented
in Paper D and presents an external validation of the models using an ex-
ternal dataset. This paper has been accepted for publication in the Elsevier
International Journal of Medical Informatics.

• Paper F: External Validation of Prediction Models for Patient-
Reported Outcome Measurements collected using the SELFBACK Mo-
bile App. Accepted for publication in Elsevier International Journal of
Medical Informatics

1.4 Thesis Structure
This thesis is composed of two parts and is structured as follows:

• Part I: Research Overview
This part includes the introduction to the research work in chapter 1,
background and related work in chapter 2, a comprehensive descrip-
tion of the datasets in chapter 3, an overview of the research methodol-
ogy in chapter 4, results and evaluation of research questions in chap-
ter 5 and finally, discussion and conclusion of the thesis in chapter 6.

• Part II: Publications
This part contains full-length research papers included in this thesis.
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Chapter 2

Background and Related Work

As mentioned in the last chapter, we looked into different aspects of util-
ising healthcare datasets to facilitate advancement of research in the field
of clinical decision support systems and focus on leveraging the analytical
capabilities of machine learning methods on healthcare datasets. The first
aspect that we look into is development of similarity measures to measure
the similarity among patients in a given healthcare dataset, based on ei-
ther objective measurements such as sensor-based physical behaviour mea-
surements or subjective measurements such as clinical questionnaires. The
second aspect that we look into is unsupervised learning for CBR systems,
more specifically, clustering a case base while preserving the semantic re-
lationship between the cases. And finally, we investigated various machine
learning approaches to determine predictors of clinical outcomes and to fore-
cast patient-specific outcomes. This chapter addresses the background and
related work of each aspect and gives a brief introduction to myCBR, a
similarity-based system development and retrieval tool.

Before continuing further, we would briefly define some pertinent terms
in the CBR methodology to facilitate clarity in the sections ahead.

• Case-Based Reasoning: CBR is a methodology for intelligent reuse
of existing knowledge of already solved problems (called cases) to solve
new problems (Aamodt and Plaza, 1994). Each case contains a problem
description and a corresponding solution that can be used to solve a
future problem.

• Case Base: A case base is a memory that contains a collection of
solved problems as cases.

11
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• Similarity: The problem description of a case is said to be similar to
the new problem if its solution can be useful for adapting a solution
for the new problem. The term similarity refers to the utility of the
similar case for the new problem by a certain measure. This measure
is known as the similarity measure.

• Retrieval: Retrieval is the process of searching through the case base
to find cases that are similar to the new problem.

• Reuse: CBR aims to generate solutions for new problems by reusing
the solutions of similar cases from the case base. If a new problem is
the same as a case in the case base, then the solution of this case can
directly be reused to solve the new problem. However, if the case is
similar but not the same, then the solution must be adapted to suit
the new problem. This process of adapting the solution is called adap-
tation.

• Revise and Retain: Revise aims to evaluate the validity of an
adapted solution for a new problem. If the adaptation is valid and
revising generates a new case, it may be included or retained in the
case base.

• CBR cycle: The CBR cycle, introduced by Aamodt and Plaza (1994),
consists of the four Rs: Retrieve, Reuse, Revise and Retain. In the Re-
trieve step, the system searches for a subset of cases from the case base
that are similar to the new problem. In the Reuse step, the system
adapts the solution of the retrieved cases to the new problem. In the
Revise step, the system evaluates the correctness of the adapted solu-
tion. Finally, in the Retain step, the system decides whether or not to
include the new case in the case base.

2.1 Similarity Measures Development
The similarity measure, used to quantify the degree of resemblance between
a pair of cases, plays a central role in the retrieval of similar cases from the
case base. This is why CBR systems are also known as similarity searching
systems. The notion of similarity in CBR is useful for finding past experi-
ences in the knowledge base in order to solve a new problem. The local-
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global principle for development of similarity measures for a concept X com-
posed of atomic parts zi, also known as attributes of the concept, emphasises
that each concept must be compared locally at the atomic level as well as
globally on the concept level (Richter and Weber, 2013). This means that
similarity measured should first be constructed at the attribute level for
each attribute zi, known as local similarity measures, and then at the con-
ceptual level for the object X, known as global similarity measure, in order
to reflect a global view of the concept. However, similarity is a relative no-
tion rather than an absolute notion, in the sense that similarity is measured
relative to some aspect and is not fixed. There can be many possible simi-
larity measures to assess the similarity between the same two experiences,
each based on different aspects. Thus, the definition of a similarity measure
is also an important part of the entire problem-solving task in CBR. Fur-
thermore, similarity measures can be thought of as a heuristic that is used
to estimate the utility of the cases in the case base for solving a particular
problem, and therefore must approximate a utility function. The implication
is that while simple similarity metrics can measure the syntactic similarity
between two cases, they may not measure the semantic similarity. This is
because semantic similarity captures the domain knowledge while syntactic
similarity does not. The use of simple similarities or knowledge-poor sim-
ilarities may insufficiently approximate the utility of the cases and lead to
poor retrieval results (Stahl and Gabel, 2003).

Similarity measures are a crucial component in any CBR system and
therefore, a considerable portion of the existing literature on the devel-
opment of CBR systems focuses on the development of suitable similarity
measures. Not just within CBR, learning and adapting similarity mea-
sures is also an extensively studied theme in the field of traditional ma-
chine learning methods, especially automatic acquisition of similarity mea-
sures (Mountrakis et al., 2005; Kang et al., 2017). From the earliest days
of research in similarity assessment in CBR systems, the standard method-
ology had been to assess similarity based on the feature vector represen-
tation of the cases using metrics that utilised the feature values. More
novel mechanisms of similarity assessment arrived with further research
that used strategies other than the established techniques. Cunningham
(2009a) gave an overview of some of the novel similarity learning strate-
gies and proposed a taxonomy that organises these new mechanisms in
the context of the established techniques. This taxonomy organized the
similarity assessment strategies into four categories—direct metrics such
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as Euclidean distances, transformation-based such as graph edit distance,
information-theoretic such as compression-based distance, and lastly, emer-
gent measures such as web-based or cluster kernels. Stahl et al. have made
significant contributions to the field of learning similarity measures (Stahl,
2001, 2005; Stahl and Gabel, 2006). Stahl (2001) proposed a framework he
called "similarity teacher" that utilises the teacher (domain expert) feedback
on the quality of retrieval to automatically learn similarity measures. The
idea here is that if the teacher knows the correct order of cases in the re-
trieval, this feedback can be used to learn the feature weights and update
the similarity measures.

The existing literature often makes a distinction between learning sim-
ilarities in the problem space versus in the solution space. While most of
the existing literature almost exclusively focuses on similarity learning in
the problem space, attempts have been made to learn similarities in the
solution space. The idea was introduced by Stahl and Gabel (2003) who pro-
posed using an evolution program, a form of genetic algorithms, to learn sim-
ilarity measures that can sufficiently approximate the utility of cases. The
authors later used neural networks to learn the local similarity measures of
the attribute and the weights of the modelled similarity measures in global
similarity (Stahl and Gabel, 2006). Abdel-Aziz et al. (2014) proposed a learn-
ing method that adapts the similarity of the solution based on the gathered
experiences in a previously proposed preference-based CBR system (Hüller-
meier and Schlegel, 2011), showing that the data distributions and distances
in data sets can be used for learning similarity measures. The main idea was
to minimize the distance between the ideal solution to a new problem and
an existing solution to an existing problem in the case base. While an ideal
solution may not exist, the authors use the learning preferences collected
in a problem-solving episode to adapt the distance measure using Bayesian
learning. What is different in their approach is that they focus on similarity
in the solution space, and not in the problem space. The difference lies in the
idea that while the generated solution may not be the ideal one, it is expected
to be closest to the practically ideal solution. More recently, Mathisen et al.
(2020) presented a framework distinguishing four types of similarity mea-
sures to facilitate automating the development of similarity measures. The
authors analysed the existing similarity measure construction methods and
devised two novel designs that utilise machine learning methods to learn
similarity measures. One uses a siamese neural network classifier for mea-
suring similarity while the other uses a combination of static binary func-
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tions and neural networks to learn similarity measures. Gabel and Gode-
hardt (2015) had earlier proposed a neural network approach to automate
the learning of similarity measures by concatenating two data points into a
single input vector. The authors made use of a "black-box" approach to learn
neural network-based local and global similarity measures in so-called "sim-
ilarity clouds" and used these to induce human-readable and interpretable
similarity measures.

2.2 Case-Based Clustering
While supervised learning works on a pre-defined hypothesis about a given
dataset, unsupervised learning can be useful to look for patterns and clus-
ters to get insights that add value to the data without any guiding assump-
tions. In CBR systems, a case base is one of the most important knowledge
containers. A case base is, as the name suggests, a collection of cases storing
previously solved problems and their solutions. The case base is organized
to facilitate retrieval of the most similar cases in the event of the arrival
of a new problem. When a new problem arrives, the system searches its
case base to look for similar past cases. The solution of the retrieved past
case(s) provides a starting point for generating a solution for the new prob-
lem. A quality case base is critical for the success of a CBR system since,
without the prior problem-solving experiences (cases), the system becomes
vain. One of the active research problems in CBR is case organization and
retrieval when the case base is large or unlabelled, or when there is a need
for diversity in solutions. In such scenarios, partitioning the case base into
several clusters is helpful in identifying meaningful patterns, organising the
case base in a meaningful way and extracting valuable knowledge from the
clusters that can make the case retrieval process more efficient.

Several methods and algorithms for clustering have been introduced for
the organisation and maintenance of case bases in CBR systems. Self or-
ganizing maps (SOM) have found popularity in many of these methods and
algorithms proposed over the years in the developments of CBR systems.
SOMs were first introduced by Kohonen (1982) and are a neural network-
based tool that can be used for clustering of data and visualization. SOM can
uncover hidden semantic relationships in textual data owing to their ability
to create spatially organized representations of features in input signals and
their abstractions (Kohonen, 1990). Kim and Han (2001) used SOM and an-
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other clustering technique, learning vector quantization to produce adaptive
clusters in a cluster-indexing method for bond-rating prediction CBR sys-
tems. They compute cluster centroids using the two clustering techniques
and add the centroids as new artificial cases to represent information in
each cluster, and later use these centroids for case recall. Similarly, Zhuang
et al. (2009) used SOM to partition a case base consisting of pathology data
of patients into several clusters and presented a CBR system that can be
used to provide evidence-based decision support to general practitioners re-
garding ordering pathology tests for new cases. The authors successfully
demonstrate that such systems can be useful for clinical decision support by
easing the burden on the healthcare provider, stratifying the process based
on documented clinical experience and external evidence from systematic re-
search as well as reducing the risk of judgment errors posed by information
overload and time constraints on the practitioners. This has also been sup-
ported by Van Der Weyden (1999). Despite their outstanding abilities, the
traditional SOM suffer drawbacks, namely, they require a pre-defined topol-
ogy of the network and lack support for visualization of hierarchical clus-
ters. To overcome these shortcomings, Zhu et al. (2015) proposed a growing
hierarchical SOM (GHSOM) to partition the initial case base into smaller
subsets and organize the subsets into a flexible and hierarchical structure
that consists of multiple layers of independent SOM. The GHSOM structure
was found to lead to more efficient case retrievals in their case study on
ten open source datasets from the UCI machine learning repository. Müller
and Bergmann (2014) also presented a hierarchical cluster-based indexing
approach for process-oriented CBR systems, where they used the modelled
similarity measure to construct a hierarchical cluster tree that acts as an
index to improve retrieval of similar cases from subsets of the case base.
They found their approach to have higher retrieval quality and lower re-
trieval time of semantic workflows compared to a linear retrieval due to
faster traversal to find similar cases in the cluster tree. Other similar work
includes that of Lucca et al. (2018) that presented a framework to organize
large case bases into smaller sub-case-bases and developed an index on the
clustered sub-case-bases for efficient retrieval of relevant cases in agent sim-
ulation systems.

Clustering techniques have often been combined with CBR not only for
improving the efficiency of case recall and case base organization and main-
tenance but also for improving case-based classification, case generation,
labelling as well as adaptation (Clerkin et al., 1994; Arshadi and Jurisica,
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2005). Wiratunga et al. (2003) presented a framework that utilizes a cluster-
ing approach for labelling unlabelled cases . The authors proposed to clus-
ter the unlabelled problems within the case base into smaller subsets using
a decision tree index built over the case base, which can then be labelled
with appropriate solutions by the domain expert. Cunningham (2009b)
had previously suggested using similarity as a measure for selective sam-
pling and generating solutions for unlabelled cases in clustered case bases.
Fanoiki et al. (2010) proposed using a similar cluster-based approach to that
of Wiratunga et al. (2003) for solution generation by identifying relevant
cases for a given query not just in the problem space but also in the solution
space. In their work, they formulate a solution by first selecting the cluster
with the most similar problem description and then adapting the solution
to the cases within that cluster. Arshadi and Jurisica (2005) employed a
CBR ensemble approach they call "mixture of experts" to predict labels of
unseen high-dimension cases in several medical datasets. The authors first
employed spectral clustering to partition the dataset into k clusters followed
by feature selection for each cluster such that each cluster acts as an inde-
pendent case base for k CBR experts and the final label is determined based
on a gating network that computes a weighted average of the expert votes.

2.3 Machine Learning Methods in Healthcare
The topic of machine learning in healthcare is fairly broad and encompasses
several fields of application. In this thesis, however, we concern ourselves
with machine learning methods that find utility in driving patient-centred
research that could support informed clinical decision-making.

Increased use of technology and its integration in how patient data is
collected and stored has played an important role in making predictive ana-
lytics possible and useful, both for patients as well as healthcare providers
(Alharthi, 2018). Personalised treatment and recommendations represent
an approach that has the potential to transform patient-centred healthcare
(Giga, 2017). CDSS assimilate expert knowledge based on observations from
previous patients and use empirical findings to predict outcomes for a new
patient, taking into account their past observations (Velickovski et al., 2014).
Such a tailored and holistic approach enables capturing the complex inter-
actions of clinical factors pertinent to each patient to provide treatment that
suits the patient’s individual needs and symptoms (Bitton et al., 2014). Pri-
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mary practitioners and clinicians use their experience, clinical guidelines,
practices, and professional judgment to determine the most suitable course
of action for the patients. Predictive systems in clinical settings could assist
in decisions relating to the treatment and its response by assessing the ob-
servations of the patient and providing evidence-based information on the
best-suited treatment for a given individual since one glove does not fit ev-
eryone (Sepucha et al., 2018). Both supervised and unsupervised learning
techniques provide valid analytical outlets for such applications.

The existing literature has demonstrated the value and efficacy of ma-
chine learning methods on EHR datasets, all from scheduling surgeries
(Shahabi Kargar et al., 2014; Devi et al., 2012) to predicting the risk of
post-surgical mortality (Wong et al., 2017; Moonesinghe et al., 2013; Marufu
et al., 2016) among others. Despite the broad application of machine learn-
ing methods in the biomedical field, their utilisation in clinical research con-
cerning PROMs for patient-centred care and precision treatment/medicine
remains low. The last decade has seen a slow but steady surge in re-
searchers turning towards the inclusion of machine learning methods to
delve into the ever-growing patient-reported data and uncover hidden as-
sociations that are important in facilitating clinical decision-making (Giga,
2017; Buell, 2016), and exploring the potential of the methods for PROMs
and of PROMs for their predictive prowess. Harris et al. (2019) found three
machine learning algorithms—gradient boosting machines, logistic regres-
sion, and quadratic discriminant analysis—to provide modest results for
predicting post-surgical improvement in several patient-reported outcomes
based on pre-operative PROMs. Based on their observations, the authors
argued for higher integration of such models into shared clinical decision-
making to improve patient satisfaction. Fontana et al. (2019) found the
prediction models they built to perform modest-to-good (AUC: [0.60,0.89])
depending on the outcome predicted using pre- and post-surgical PROMs
collected at four different time-points. The authors also reported that the
features collected at two specific time points, i.e., before decision and before
surgery were enough as predictors, and the addition of more information did
not lead to an improved model performance. Polce et al. (2020) made similar
findings when predicting post-surgical patient satisfaction using a PROMs
dataset consisting of sixteen features. Using recursive feature elimination
with random forest, the authors arrived at ten features as the ideal feature
set and reported the best performance (AUC: 0.80) by the support vector ma-
chines model. The authors also incorporated the model into an open-access
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web application for individualized predictions and explanations. Similarly,
Shi et al. (2012) used pre-operative PROMs to predict the long-term qual-
ity of life of patients after breast cancer surgery using two machine learning
algorithms—artificial neural networks and linear regression—and found the
neural networks model performed better than the linear model .

Exploring the possibility of decision-support regarding the self-referral
of patients with low back pain to primary care, Nijeweme-d’Hollosy et al.
(2018) evaluated three tree-based machine learning methods—decision tree,
random forest, and boosted tree. The authors used fictive cases consisting
of baseline pain-related PROMs to build prediction models of referral advice
for the patients and found boosted trees gave the best performance (71%
accuracy). Rahman et al. (2018) used their pain self-management mobile
application "Manage My Pain" to collect a total of 130 PROMs from their mo-
bile app users and found that pain volatility reported by the users could be
predicted with an average accuracy of 70% using Random Forest. While the
performance is modest, the model does perform better than a well-estimated
clinical guess (Kattan et al., 2013). In their follow-up work, the authors re-
ported achieving similar prediction accuracy (68%) with only nine features
(Rahman et al., 2019). Schiltz et al. (2020) reported similar modest per-
formance using random forest (AUC: 0.61) for predicting the risk of 30-day
hospital readmission in more than six thousand older adults based on self-
reports of activities of daily living limitations, co-morbidities in addition to
patient demographics, socioeconomic and behavioural factors. The authors
used the random forest algorithm to rank features in terms of their ability
as predictors of hospital readmission and found activities of daily living lim-
itations to be the single most valuable predictor. The study highlights how
routine assessment of patient-reported data using machine learning meth-
ods can help identify patients at a higher risk of readmission.

Other clinical fields such as psychological disorders and dental care have
also found machine learning methods valuable in their research. Andrews
et al. (2017) evaluated the NANA toolkit they presented in their earlier
work to determine whether or not the future depression status of the users,
primarily older adults, can be predicted (Brown et al., 2018). The authors
used six self-reported mood scores collected from the users with the help of
the toolkit as features in a logistic regression (LASSO) model and achieved
good predictive ability (AUC: 0.88) with only two predictors—sadness and
tiredness. Kessler et al. (2016) reported modest accuracy in predicting long-
term (10-12 years) depressive disorders in patients based on self-reported
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depression-related measures using regression trees. The authors also found
that machine learning models performed better with fewer predictors (be-
tween 9 and 13) than the traditional methods (23 predictors). Wang et al.
(2020) explored two machine learning algorithms—extreme gradient boost-
ing and naive bayes—to predict oral health status outcomes of young chil-
dren based on self-reports and socio-demographics and reported modest pre-
diction performance during validation.

Modern machine learning approaches offer several benefits over tradi-
tional methods. However, for high-stake applications, it is recommended
that the models are externally validated to thoroughly evaluate their gen-
eralizability before being integrated into everyday clinical decision-making
(Riley et al., 2016). Few studies in the existing literature have externally
validated their machine learning implementations. This problem is often
attributed to the lack of suitable datasets, non-data sharing, and ethical
and legal constraints. Nijeweme-d’Hollosy et al. (2018) addressed the topic
of generalisability by externally validating their prediction models, trained
originally on fictive cases, using real-life cases, and found modest perfor-
mance during testing and validation ( 71% and 72%, respectively). Chekroud
et al. (2016) validated their machine learning prediction model using an-
other clinical trial cohort. The gradient boosting model predicts whether
or not a patient achieves clinical remission using anti-depressants based
on baseline PROMs and gave a 64.6% accuracy in internal validation and
59.6% in the external validation. Considering that model accuracy often de-
creases during external validation, the model’s performance is modest. In
their follow-up work, the authors employed unsupervised learning in ad-
dition to supervised learning on the same two clinical cohorts as before to
predict cluster-specific outcomes of anti-depressant treatment based on the
baseline PROMs (Chekroud et al., 2017). They first clustered the patient
profiles based on their baseline symptoms using a data-driven approach to
identify three symptom clusters and then predicted cluster-specific short-
term (10-12 weeks) treatment outcomes for patients. Upon external valida-
tion, the authors reported statistically above chance and clinically modest
predictions in all the three cluster models.

The application of CBR methodology in the medical domain has a long
history (Holt et al., 2005; Bichindaritz and Montani, 2009; Begum et al.,
2010). Recent developments in CBR application have forayed into person-
alised physical activity plans (Smyth and Cunningham, 2017; Smyth, 2019).
Smyth and Cunningham (2017) proposed a case-based approach to assist
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marathon runners achieve their best race time. In the presented approach,
the authors used the past race time of the runner and the race histories of
other similar marathon runners to build a tailored race plan and predict
their new personal best race time. They evaluated their approach using six
years of race data from the London Marathon and achieved favourable re-
sults indicating that such a case-based approach can be of value for predict-
ing and recommending activity routines. A sufficient description of the prob-
lem is also necessary for building robust CBR systems. Knowledge about the
significance of various features in a dataset plays a critical role in building
CBR systems. Unlike many other traditional machine learning methods
such as ensemble and linear, CBR does not have implicit feature selection
(Aamodt and Plaza, 1994; Weber et al., 2005). For clinical datasets that typ-
ically consist of many features and noise, building a CBR system elicits a
reduction in the dimensionality of the dataset for non-redundant yet suffi-
cient problem description and a reduction in computational costs. To that
end, a great deal of work has been done to assess approaches for feature se-
lection for building fuzzy rule-based CBR systems. Xiong and Funk (2006)
presented a framework for selecting features based on the performance of
fuzzy-rule-based CBR models. The authors later proposed a hierarchical
approach where they used individual cases to optimise the possibility dis-
tributions in the case base and selected features based on the magnitude of
their parameters in the similarity models (Xiong and Funk, 2010). A hybrid
wrapper-filter approach was presented by Li et al. (2009) where the authors
iteratively build CBR systems using feature subsets selected based on mu-
tual information as a preset criterion and evaluated the implemented sys-
tems using a metric to determine the best set of features. In their previous
work, the authors had used rough sets for feature reduction in large datasets
(Li et al., 2006). Similarly, Zhu et al. (2015) determined reduced feature sets
through neighborhood rough-set algorithm, which was applied in other sim-
ilar published work for feature and case selection in CBR systems (Salamó
and Golobardes, 2001; Salamo and Lopez-Sanchez, 2011).

2.4 myCBR
myCBR is an open-source tool for similarity-based retrievals, developed in a
joint effort between the Competence Centre CBR at German Research Cen-
ter for Artificial Intelligence (DFKI), Germany, and the School of Comput-
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ing and Technology at the University of West London, UK (Stahl and Roth-
Berghofer, 2008). myCBR includes a workbench that provides a powerful
graphical user interface (GUI) for developing rapid prototypes of similarity-
based retrieval systems and a software development kit (SDK) to easily inte-
grate the prototypes into independent applications (Bach and Althoff, 2012).
Bach et al. (2019) gave a demonstration of myCBR SDK functionality and
how it can be used for rapid development of CBR applications.

myCBR workbench has a case bases view and a modelling view. Figure
2.1 and 2.2 present the case bases and the modelling view of the myCBR
workbench. myCBR workbench supports importing cases from a csv file. In
the case bases view, the available case bases, stored cases, and the indi-
vidual case structure can be viewed. Figure 2.1 shows a case base named
CB_csvImport under the concept Participant which was populated by im-
porting cases from a csv file. Each case is represented by its attributes, as
shown by the example Participant0 which has six attributes of data type
float. Case structure and similarity measures can be created in the mod-
elling view of the workbench. Local similarity measures for each individ-
ual attribute can be created and defined in the workbench, as shown by the
example attribute cycling with a corresponding local similarity measure cy-
clingSim in figure 2.2. Once the local similarity measures for all the at-
tributes have been created, the global similarity measures can be defined.
Figure 2.3 shows the global similarity definition for the concept Participant,
a global similarity measure named ParticipantSim with equally weighted
local similarity measures.

myCBR has previously been used to build knowledge models for cook-
ing recipe recommendations (Bach et al., 2012), customer service support
for machine diagnosis (Bach et al., 2011), audio advisor (Sauer et al., 2013b)
and workflow recommendations for gold ore treatment (Sauer et al., 2013a)
among others. For the research in this thesis, we used myCBR workbench
to build CBR models for two healthcare datasets and myCBR SDK1 to inte-
grate the models into the JupyterLab2 python environment to carry out our
experiments.

1www.github.com/ntnu°ai° lab/mycbr° sdk
2www. jupyter.org
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Figure 2.1: The Case bases view of the myCBR workbench shows the open
projects, the case structure for concept Participant under a sample project
named Hunt on the top left pane, available case bases in the pane below,
and case instances on the right.
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Figure 2.2: The Modelling view of the myCBR workbench showing the avail-
able similarity measures for the selected attribute on the bottom left pane
and the definition of the selected similarity measure on the right.
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Figure 2.3: The global similarity definitions in the modelling view of myCBR
workbench.
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Chapter 3

Corpora

The research in this doctoral work focused on facilitating further develop-
ment of CDSS using data from population-based and intervention-based
studies by exploring the capabilities of predictive analytics using machine
learning methods and the evaluation thereof. We worked with two datasets:
(1) HUNT4 cohort data (objective physical behaviour data of the HUNT4
study) and (2) SELFBACK user data. Using these two datasets, we at-
tempted to drive our research towards exploring ways in which value can
be derived from these for future CDSS.

3.1 HUNT4

The first dataset used in this doctoral research work is the objectively mea-
sured physical activity data collected during the HUNT4 1 cohort study. The
HUNT study is carried out in mid-Norway and is one of the largest cohort
studies of its kind. The previous three studies (HUNT1 1984-86, HUNT2
1995-97 and HUNT3 2006-08) collected health data, mainly through ques-
tionnaires and clinical examinations which has been used extensively for
further epidemiological research. For the first time, HUNT4 also collected
objective physical activity data through body-worn accelerometers.

1www.ntnu.no/HUNT4

27



28 CHAPTER 3. CORPORA

Figure 3.1: The Axivity AX3 accelerometer

(a) Lower Back Placement (b) Upper Thigh Placement

Figure 3.2: Placement of the accelerometers on the participants

3.1.1 Equipment and Setup

The sensor used for collecting physical activity data was the AX3 Axivity2

accelerometer, as shown in figure 3.1. The device is a tri-axial accelerometer
weighing 11 grams with dimensions of 23 x 32.5 x 7.6 mm. The data was
recorded at a sampling frequency of 50Hz. Two of these accelerometers were
placed on every participant, one on the lower back and another on the upper
thigh, as shown in image 3.2. More information about the data collection
setup can be found in Reinsve and Bach (2018).

2www.axivity.com/product/ax3
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3.1.2 Data Collection

All residents in the Nord-Trøndelag county aged 13 year or above were in-
vited to participate in the study. Those who volunteered to participate in the
objective physical activity data collection were fitted with two tri-axial ac-
celerometers and wore them for a period of seven consecutive days. The sen-
sors record the vibrations, movement and orientation changes in the three
axes. Figure 3.3 presents a standard human activity recognition pipeline
using sensor data. The raw data is downloaded from the accelerometers and
classified into 17 different physical activities using two pre-trained machine
learning models- Support Vector Machines for synchronizing data from the
two sensors and Random Forest classifier to classify the activities (Vågeskar,
2017; Bach et al., 2021). The resulting data set contains the H4ID (unique
ID for each HUNT4 participant), number of minutes of each different ac-
tivity, the date and day of the week in a csv file. The physical activities are
later merged into six main categories, presented in table 3.1. The data col-
lection in HUNT4 spanned over 18 months and was concluded in February
2019. As a result, objective measurements of a total of 35449 participants
have been collected and basic physical activities have been assigned.

Table 3.1: Activity Descriptions.
Activity Description
Lying The person is lying down
Sitting When the person’s buttocks is on the seat of a

chair or something similar
Standing Upright, feet supporting the person’s body weight
Walking Locomotion towards a destination with one or

more strides
Running Locomotion towards a destination, with at least

two steps where both feet leave the ground during
each stride

Cycling The person is riding a bicycle
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Figure 3.3: Human Activity Recognition process using raw data from tri-
axial accelerometers.

3.1.3 Data Pre-processing

Personal identifiers of the participants are transformed using a hash opera-
tor and the original identifiers are removed in order to de-identify the data.
To prepare the dataset for further analysis, it is processed such that equal
amount of data is present across the participants. This is due to several
reasons. Firstly, even though all the participants were expected to wear the
sensors for seven consecutive days, some had to either remove the device due
skin irritation or the sensor malfunctioned, leaving the number of days of
collected data less than seven for some participants. Therefore, the dataset
was processed to obtain the same amount of data for each included partici-
pant and the decision was the number of days. It was decided to include only
the participants who have full six days of measured data, since this number
was much higher than the total number of participants with full seven days
of measured data. Further, to eliminate any classifications errors or sensor
malfunctions, any records containing zero minutes for lying, standing, sit-
ting and less than one minute for walking activity as well as records where
the sum of all activities exceeds 1440 minutes for a day (which represents
the total minutes in a day) were removed. Following the data processing, the
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number of participants in the dataset came down to 31,113 out of the 35,449
originally.

Figure 3.4 presents the distribution of the different physical activities in
the final dataset. The first boxplot shows the regular quartile distribution
and it becomes immediately evident that the activities running and cycling
are in much smaller quantity in the dataset and therefore are not visible on
the given scale. To invert this effect, log operator is applied before plotting
the dataset and subsequently, the second boxplot shows log distribution of
the physical activities.

3.2 SELFBACK
The SELFBACK 3 project was funded by the European Union Horizon 2020
research and innovation program (under grant agreement no. 689043) and
began in January 2016. The overall aim of the SELFBACK project is to pro-
vide digital interventions for self-management of pain-related symptoms to
patients with non-specific musculoskeletal disorders, specifically low back
pain (LBP). The project involves development, implementation and further
evaluation of effectiveness of the SELFBACK system, a mobile decision sup-
port system (DSS) application that can provide tailored self-management
plans for the users of the mobile application. The weekly self-management
plans are tailored based on questionnaires answered by the user at certain
time-points and include components of recommended amount of physical ac-
tivity (daily number of steps), strength and flexibility exercises as well as
education to motivate the users. The daily number of steps are recorded by
a wearable device while completion of the recommended exercises and edu-
cational readings are self-reported in the mobile application. Data collected
during two randomized controlled trials (RCT) has been used in this doctoral
research (Sandal et al., 2019; Marcuzzi et al., 2021).

3.2.1 Equipment and Setup
The SELFBACK project involved collection of both subjective and objective
data from the recruited participants. Physical activity measurements were
recorded using a wearable activity tracker (Mi Band 3, Xiaomi), as shown
in figure 3.5. The device recorded the number of steps achieved per day.

3www.sel f back.eu
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(a) Regular Distribution

(b) Log Distribution

Figure 3.4: Boxplots presenting the distribution of physical activity data of
the participants in the HUNT4 dataset based on the quartiles.
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Figure 3.5: Xiaomi Mi Band 3 used in the SELFBACK project for collecting
daily step count

Patients also filled several questionnaires, first at the time of recruitment
(web-based questionnaire) and then throughout using the SELFBACK mo-
bile application.

3.2.2 Data Collection
Figure 3.6 gives an overview for the data collection efforts in both the trials.

(a) RCT I
This single-blinded, two-armed RCT4 was aimed at testing the effective-
ness of the SELFBACK DSS with usual care (intervention) against usual
care only (control group) for patients with non-specific LBP. Care-seeking
patients with non-specific LBP were recruited through the referral of
their primary care clinician (i.e., physiotherapists, chiropractors, gen-
eral practitioners) in Trondheim, Norway and Odense, Denmark. Pa-
tients were screened for eligibility based on a preset inclusion/exclusion
criteria that can be found in Sandal et al. (2019). The eligible patients
were invited to participate in the RCT and those who accepted the invite
answered a baseline questionnaire. The participating patients were ran-
domized into either intervention group or control group. The interven-
tion group had access to the SELFBACK DSS mobile application and re-
ceived tailored self-management plans weekly whereas the control group
did not. The participants answered follow-up questionnaires at 6-weeks,
3 months, 6 months and 9 months, in addition to the baseline and weekly
tailoring questionnaires (only in the intervention group). A total of 461
participants were included in this trial.

4www.clinicaltrials.gov/ct2/show/NCT03798288
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(b) RCT II
This is a single-blinded, three-armed RCT5 aimed at evaluating the ef-
fectiveness of the SELFBACK tailored self-management interventions
against a web-based self-management intervention without tailoring or
usual care in people with low back and/or neck pain. The recruitment
was carried out in the multidisciplinary outpatient clinic for back, neck
and shoulder rehabilitation at the St. Olavs Hospital in Trondheim, Nor-
way. Referred patients that were accepted for treatment at the clinic
were screened for eligibility based on a preset eligibility criteria that can
be found in Marcuzzi et al. (2021). The eligible patients were invited to
the study and those who accepted were randomly assigned into one of the
three arms with equal allocations: 1) SELFBACK app with usual care, 2)
web-based intervention with usual care, and 3) usual care only. A total of
294 participants were included in this trial. Self-reported outcomes were
collected through web-based questionnaires at three follow-ups- 6 weeks,
3 months and 6 months, in addition to the weekly tailoring questions for
those who had access to the SELFBACK mobile app.

The questionnaires consist of various different self-reported measures of
pain intensity, pain self-efficacy, physical activity, functional ability, work-
ability, sleep quality, fear avoidance and mood. Additionally, the baseline
questionnaire also included patient sociodemographics such as age, height,
weight, gender, education, employment, living situation and family. Tables
3.2 and 3.3 summarise the information collected from the participants at
various time points in the clinical trials.

3.2.3 Data Pre-processing
Before using the patient-reported data for further analysis, personal identi-
fiers assigned to each participant are removed to anonymize the data. For
the scope of this doctoral work, only the baseline data and follow-up data was
used in the experimental analysis. The data is further processed to identify
and remove records with empty value in some or all fields, no or missing
baseline data, no or missing follow-up data. Following data processing, the
RCT I dataset consisted of PROMs from 376 participants (218 in interven-
tion, 158 in control) while RCT II consisted of PROMs from 75 participants
(only the SELFBACK app with usual care group).

5www.clinicaltrials.gov/ct2/show/NCT04463043
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Figure 3.6: Overview of data collection in the SELFBACK RCTs. The differ-
ent data components are indicated by the orange boxes.



36 CHAPTER 3. CORPORA

Table 3.2: Various Patient-Reported Outcome Measures in RCT I
Descriptive variables

Patient Characteristics Sociodemographics

Primary Outcome Measure

Roland Morris Disability Questionnaire

Secondary Outcome Measures

Pain Self-Efficacy Questionnaire Fear Avoidance Belief Questionnaire Pain Intensity

Brief Illness Perception Questionnaire Saltin-Grimby Physical Activity Level Scale

Global Perceived Effect

Other Outcome Measures

Workability Health-related Quality of Life Activity Limitation

Patient Health Questionnaire Perceived Stress Scale Sleep

Patient Specific Functional Scale Pain Duration and frequency Physical Activity

Exercise Volume Virtual Care Climate Questionnaire User ratings
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Table 3.3: Various Patient-Reported Outcome Measures in RCT II

Descriptive variables

Patient Characteristics Sociodemographics

Primary Outcome Measure

Musculoskeletal Health Questionnaire

Secondary Outcome Measures

Roland Morris Disability Questionnaire Neck Disability Index Pain Intensity

Health-related Quality of Life Pain Self-Efficacy Questionnaire

Brief Illness Perception Questionnaire

Other Outcome Measures

Fear-Avoidance Belief Questionnaire Perceived Stress Scale Sleep Problems

Patient Health Questionnaire-2 Patient Specific Functional Scale

Saltin-Grimby Physical Activity Level Scale Global Perceived Effect Work ability index

Patient Acceptable Symptom State Health care consumption Sickness absence
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Chapter 4

Methodology

Designing targeted interventions or personalised activity plans requires con-
siderable clinical expertise and evidence-based research to support clinical
decision-making. Patient-centred CDSS has the potential to support clinical
practice. Some of the most common and important questions a patient often
has are—"What is the cause of my health problems?", "What can I do to get
more active to achieve better health?", "Am I going to get better?", "When will
I get better?" —among others. While there are no black and white answers
to these questions, evidence-based research and patient-centred CDSS can
support the healthcare provider in keeping the patient in the loop (Harrell Jr
et al., 1996).

In the research leading up to this thesis, we undertook a data-driven
approach to address the matter of developing methods for patient-centred
systems that can utilise intervention-based and population-based health-
care datasets to facilitate the clinical decision-making process. With the ap-
plication of data-driven methodologies and access to expert knowledge, we
endeavoured to transform the information stored in intervention-based and
population-based healthcare datasets into case bases and develop case-based
models that can add value to the development of future patient-centred and
predictive CDSS. From developing case representations and similarities to
exploring different feature selection methodologies, we incorporated domain
expert knowledge into the steps involved in building a case-based model that
can efficiently utilise a healthcare dataset. We also explored various conven-
tional machine learning methods in addition to CBR to better comprehend
the differences in the working and suitability of the two approaches for our
problem domain. In this chapter, we describe the population of the case base,
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and the representation of each case in the case base in myCBR workbench,
the methodology for developing the local and global similarities, the feature
selection methodologies applied to the datasets presented in the last chap-
ter, and finally, the models developed. Figure 4.1 presents an overview of
the approach undertaken in developing learning models for better utilising
healthcare datasets in this work.

Figure 4.1: An overview of the process of developing learning models using
machine learning methods applied to the datasets in this thesis.

In the sections that follow, we describe the case base, case representation,
and the similarity measure development first and then the feature selection
methods for two reasons. First, the main focus of this doctoral research is
the development of CBR systems for healthcare datasets, and therefore, it is
logical to explain the said part first. Second, the similarity measures play a
significant role in the feature selection section.

4.1 Case Base and Case Representation
The case base is an essential component of any CBR system as the case base
forms the basis for any future problem-solving (Aamodt and Plaza, 1994;
Richter and Weber, 2013). The case base is, as the name suggests, a col-
lection of cases storing previously solved problems and their solutions. The
case base is organized to facilitate retrieval of the most similar cases in the
event of arrival of a new problem. When a new problem arrives, the system
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searches its case base to look for similar past cases. The solution of the re-
trieved past case(s) provide a starting point for generating a solution for the
new problem. A quality case base is critical for the success of a CBR sys-
tem since without the prior problem-solving experiences (cases), the system
becomes vain (Richter and Weber, 2013). The information stored in each in-
dividual case also impacts the performance of the system and to ensure that
only the most valuable information goes into each case and into the case base
as a whole, data pre-processing and feature selection are necessary steps.

As cases form the basis of a CBR system, representation of the cases is
an integral and important part of developing CBR systems. Case represen-
tation here refers to the way the data is represented in the CBR system,
and as any form of representing data can be considered as case represen-
tation, it comes in many different forms. The intended functionality of the
system and the ease with which the information can be acquired for repre-
senting the cases are two important measures that need to be considered
while deciding the information to be stored in the cases and a suitable case
representation. The simplest and the most commonly used way is by using
feature-value pairs (Richter and Weber, 2013).

Figure 4.2 presents examples of case base and case representation in my-
CBR workbench for datasets SELFBACK RCT I and HUNT4 , respectively.
The name field at the top left corner of each figure shows the name of the
case base, and below it, the name of the concept. Under the concept field is
a list of the individual cases stored in the case base. The right part of each
figure shows an individual case chosen at random. The name column shows
the name of each feature while value displays the value contained by the
respective feature.

4.2 Similarity Measure Development
Similarity measures, as discussed in the previous chapter (section 2.1), play
an important role in determination and retrieval of similar cases from the
case base. Therefore, considerable emphasis is put on the development of
suitable similarity measures in our research work. Modelling the similar-
ity measures for any specialised application domain can be a challenging
task. Firstly, the system developers have to balance the input from the do-
main experts and the available data. And secondly, they have to identify
important attributes to be included in the knowledge model to avoid includ-
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(a)

(b)

Figure 4.2: Examples of populated case base on the left and case represen-
tation on the right for CBR systems for the a. HUNT4 and b. SELFBACK
datasets.
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ing redundant information. The entire process requires close collaboration
with the domain experts. Having a criteria that can lead the knowledge
modelling process can ease the burden and be helpful for both the parties.
Using a data-driven approach can stratify this process. Keeping in mind the
local-global principle for similarity modelling (Richter and Weber, 2013), we
develop the local similarities first, followed by the global level similarities.

The similarity measures developed must capture the domain knowledge
and approximate a utility function such that it estimates the utility of the
cases and finds suitable cases from the case base for problem-solving. If
each case is represented using a numerical and a categorical attribute, the
assignment of similarity behaviour would be different for either attribute to
reflect the implicit knowledge stored in the attribute’s behaviour. A categor-
ical attribute, for instance, may have an implicit order in the values it can
take in each case and so, the order must be captured and preserved by the
similarity measure. On the other hand, setting the upper and lower limits
for a numerical attribute may be straightforward, assigning the similarity
behaviour, such that it captures the data distribution of the attribute, is not.

4.2.1 Local Similarity
We discuss the process of similarity modelling for the numerical attributes
first, followed by the categorical ones (the order is not relevant to the mod-
elling process), and assume that numerical local similarity measures are
polynomial distance functions. The goal then is to determine the degree
of the polynomial function such that it covers the entire similarity range
[0,1] while capturing the similarity behaviour of the attribute. Creating a
box-plot of the dataset that shows the data distribution of each individual
(continuous) numerical attribute allows modelling the similarity measure of
each individual attribute, as we can use the Inter Quartile Range (IQR) and
the range (min to max) for transferring the knowledge into modelling their
similarity behaviour. From the box plot, the quartiles Q1 and Q3, which in-
dicate the majority spread for the dataset, can be used as reference points
to set how steep the decline in the polynomial function, or alternatively, the
decrease in the similarity should be. IQR represents the difference between
upper (Q3) and lower (Q1) quartiles in the box-plot, that is IQR = Q3 °Q1.
Taking the example of HUNT4 dataset, figure 4.3 shows a box-plot at the
top presenting the distribution of all the attributes in the dataset. Eq. 4.1
describes how the reference points r1 and r2 relate to the IQR and range
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(determined using IQR*1.5 method) for each individual attribute.

r1 = IQR
r2 = range

(4.1)

Since the similarity functions are assumed to be symmetrical, the poly-
nomial degree of the similarity function y (red line on the graph in figure
4.3) can be adjusted such that

y(r1)º 0.30
y(r2)º 0

(4.2)

The bottom part of figure 4.3 shows how the similarity function varies
after applying the methodology in equation 4.1 and 4.2. The arrows present
how the quartiles for sitting relate to the decrease of similarity at a certain
distance. The bigger the polynomial degree, the steeper the similarity func-
tion and the more precise the attribute values in the retrieved cases. The
decline in the similarity function is steeper in the beginning until at r1 it
reaches close to y(r1) and then decreases gradually until at r2 it is approx-
imately close to y(r2). This step ensures that the similarity function covers
the entire attribute range and the similarity measure range [0,1]. The choice
of y(r1) and y(r2) depends on the domain expert’s knowledge and satisfaction
with the effect. We, however, experimented with different values and found
these best suited for our application domain. Furthermore, the symmetrical
function ensures that the similarity measures can later be used as a metric
for clustering the case base.

While the local similarity measures for numerical attributes can be de-
rived using their data distributions, assigning the similarity behaviour for
categorical attributes can be challenging since it depends on whether or
not there is an existing relationship between the values. The SELFBACK
datasets, for example, comprise categorical attributes and need to be han-
dled differently from the numerical ones. The local similarity measures for
categorical attributes must model and preserve the relationship amongst the
values (for ordinal attributes) while achieving the desired variation in the
similarity measure in the range [0,1], as shown in figure 4.4. The ordered
symbolic function, shown in figure 4.4a, ensures that the order between the
values is preserved, and the polynomial function ensures that the entire sim-
ilarity range is covered. In figure 4.4b, seeing as there is no specific order or
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Figure 4.3: Example for data-driven local similarity modelling: On the bot-
tom is a screenshot of a polynomial similarity function for the attribute sit-
ting.

relation in the attribute values, the similarity of one value to every different
value has been set to zero.
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(a)

(b)

Figure 4.4: Example of local similarity modelling for categorical attributes
in the SELFBACK dataset. a. Polynomial similarity function for ordinal at-
tribute Pain_current. b. Symbolic Similarity function for nominal attribute
Employment.

4.2.2 Global Similarity

The attribute-level similarity measures reflect only the local view. A compar-
ison of the entire concept, or participant in our datasets, requires a global
view. Using the weighted sum approach, the global similarity measure glob-
alSim for an object A with a set of n attributes a can be formulated as fol-
lows:



4.3. FEATURE SELECTION 47

globalSim(A)=
nX

i=1
!i localSim(ai) (4.3)

where localSim(ai) is the local similarity measure for attribute ai and
the weight !i represents the influence the attribute ai has over the global
similarity measure. The weights determine how much each attribute con-
tributes to the global view. Figure 4.5 shows an example of global simi-
larity measures where every individual local similarity measure is weighed
equally for the HUNT4 and SELFBACK datasets.

(a)

(b)

Figure 4.5: Example of global similarity measures for the datasets a.
HUNT4 b. SELFBACK

4.3 Feature Selection
One of the major goals in application areas of machine learning often is
to determine which features contribute the most to certain predictions. In
the healthcare application domain, it becomes clear why there is a need for
feature selection given that the data is vast and not all of it is necessary for
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decision making (Colaco et al., 2019). From machine learning perspective,
adding more information can also reduce the generalizability of the model(s)
by increasing the overall complexity and lead to reduced performance and
transparency (Jović et al., 2015). The existing methods for feature selection
are often categorized into one of the following three based on the restrictions
they impose on the machine learning methods: filter, wrapper and embedded
(Kira and Rendell, 1992). Linear and tree-based learning methods are one
of the most convenient and popular approaches of feature selection in the
existing literature.

During the course of research in this doctoral work, we explored with dif-
ferent approaches for feature selection. Figure 4.6 presents two such strate-
gies that were used in our work and found to be the most useful among oth-
ers following evaluation. On the left side of the figure is the feature selection
using embedded method feature importance using XGBoost regressor, while
on the right side of the figure is the proposed hybrid method which com-
bines correlation with data-driven similarities to drive the feature selection
process.

4.3.1 Importance-based Feature Selection
Feature Importance is one of several ways of feature selection and refers
to a calculated score indicating the relative importance of a feature in the
performance of a machine learning model (Zien et al., 2009). Tree-based al-
gorithms often compute feature importance scores based on gini impurity
where the relative importance of the features is assessed based on their rel-
ative rank (i.e. depth) in the decision tree (Nembrini et al., 2018; Pedregosa
et al., 2011). The features at the top of the decision tree contribute to the pre-
diction of a larger fraction of the input samples and therefore, have a higher
feature importance. Impurity-based feature selection is simple and fast to
compute, but suffers from flaws. This method is heavily biased in favour
of features with several possible split points and high cardinality, and can
produce biased results in case of high correlation amongst the features, that
is, in case of correlated features, the impurity-based method may select one
feature and ignore the other entirely.

The drawbacks of impurity-based feature importance can be overcome
by estimating the importance of each feature by shuffling its values and
computing the impact this action has on the model’s prediction performance
(Altmann et al., 2010). This method is known as Permutation feature impor-
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Figure 4.6: Feature Selection Process. MAE: Mean Absolute Error
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tance and is rather straightforward. First, a baseline model is trained with
all the features of the dataset and the prediction performance of the model is
recorded using an evaluation metric, say mean absolute error in prediction.
Then, the values of one feature in the dataset are permuted (or in simpler
terms, shuffled) and the model is re-trained and the error in prediction is
estimated for the modified dataset. The process is repeated one feature at a
time until all the features in the dataset have been permuted and the pre-
diction error has been recorded. As it is, the most important features would
be the ones that have the greatest impact on the model’s prediction error
when permuted.

As presented on the left part in figure 4.6, Permutation feature impor-
tance using XGBoost as the base regressor was used for estimating impor-
tance of various features in the SELFBACK dataset, and thereafter, select-
ing optimal feature sets based on the trade-off between mean absolute error
in prediction and the number of features. Figure 4.7 presents an exam-
ple of feature selection using the discussed approach for one of the target
outcomes—Global Perceived Effect (GPE) (input: baseline data, target: GPE
at follow-up 1)—from the SELFBACK RCT I dataset.

4.3.2 Correlation and Similarity-based Feature Selec-
tion

Correlation refers to the degree of linear relationship between two variables,
either positive or negative. Take for example housing prices. Price of a
house is determined by several factors and is positively correlated to the
number of bedrooms, while is negatively correlated to the crime rate in the
surrounding area (Raya et al., 2012). The more the number of bedrooms, the
higher the price is expected to be, the higher the crime rate, the lower the
price is expected to be. Correlation-based feature selection is a filter method
approach and as it is, independent of the type of learning algorithm used for
predicting the target.

To find a minimal feature subset for developing a CBR system, a proto-
type of the system can be used in the process, as this way, we know what
we are optimizing against. Our interest lies in maximising the utility of the
output. Therefore, in order to tailor the feature selection to the development
of CBR systems, a hybrid approach that uses correlation and data-driven
similarities can be applied to learn the minimal feature subset. Figure 4.6
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(a)

(b)

Figure 4.7: Importance-based Feature Selection. a. Features ranked by
their importance. b. Effect of feature permutation on the base regressor
XGB. The MAE (mean absolute error) on the y-axis in this plot is scaled to
fit the range [0,1].

(the right side) shows the proposed feature selection pipeline using a hybrid
correlation-similarity-based approach for selecting minimal feature subsets.
First, correlation is estimated between all the features and the target out-
come. Then based on their correlation coefficient and the computed p-value,
the top correlated features (significant at the 0.05 level and limited in num-
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ber to stratify the modelling process) can be filtered out for further devel-
opment of the CBR system in the myCBR workbench. Using a data-driven
similarity modelling approach (explained in section 4.2), local similarities
can be modelled for each feature individually. The local similarities play an
important role in capturing the value range of each individual feature and
subsequently, tailoring the similarity behaviour of the features included in
the CBR system. Therefore, attention is paid to the development of the lo-
cal similarity measures for each individual attribute before evaluating the
entire system. Figure 4.8 shows an example from the feature selection pro-
cess for the SELFBACK RCT I dataset. Right side of the figure presents the
ten most correlated features used to build the CBR model for predicting one
of the target outcomes Numeric Pain Rating Scale (NPRS) (input: baseline
data, target: NPRS at follow-up 2). np2 (eta-squared) is the squared corre-
lation coefficient. Graph on the left shows the MAE (mean absolute error)
variation with different sets of features in the corresponding CBR model for
predicting NPRS.

Figure 4.8: Correlation and Similarity-based Feature Selection. The x-axis
presents the n-neighbours used for generating predictions and y-axis pre-
senting the mean absolute error in the predictions for the entire dataset

4.4 Application of Machine Learning Methods
on Healthcare Datasets

Based on the requirement imposed by the intended task, we looked into dif-
ferent methodologies and pipelines. In this section, we describe the meth-
ods applied in our research to develop learning models that can utilise the
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intervention-based and population-based healthcare datasets for supporting
clinical decision-making.

4.4.1 Case-Based Regression
Regression learning is a widely used application of CBR systems. Due to
their transparency, case-based regression systems have gained popularity
for complex healthcare datasets over conventional machine learning systems
(Blanco et al., 2013). Rather than transforming the patient data into sec-
ondary representations as in tree-based learning or neural networks, CBR
uses the stored knowledge directly to adapt and generate a solution for the
new problem. Since a solution to a new problem is formulated by looking
at similar past cases, this method has the advantage of transparency in
the problem-solving process, thus making the system more comprehensible.
The standard method for regression in case-based systems uses the solution
S provided by n-nearest neighbours in the case base C determined using
a similarity measure sim to provide a solution Sp for the new problem P.
The solution S may be transformed using some transformation T in order
to adapt and improve Sp and the number of neighbours n may vary. In
this doctoral work, we applied the similar problem, similar solution prin-
ciple of CBR and implemented Case-based regression models. Using the
data-driven similarity modelling approach, we capture the inter-attribute
and intra-attribute relationships within the dataset, determine predictive
features using a tailored approach and adapt solutions from similar cases,
thereby enabling the predictions to be easily explainable and transparent.
Using a varied n-nearest neighbours approach and transforming the solu-
tions of the similar cases by using a mean operator to adapt the solution
to a new problem, we determine similar participant profiles in the HUNT4
dataset and predict patient-reported outcomes from the SELFBACK dataset.

• Participant profiles: HUNT4
In this experiment to create activity profiles for the participants in
the HUNT4 dataset, we first worked on developing a suitable sim-
ilarity measure. We used the data-driven local similarity modelling
approach, discussed in the last section, to model each physical activity
attribute individually based on the attribute range in the dataset, fol-
lowed by the global similarity where all the attributes were weighted
equally. The main objective of the experiment was to determine similar
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profiles and evaluate the quality of the similarity measures developed
using the data-driven methodology. The quality of the retrievals was
compared against that of the k-NN algorithm.

• Predict Patient-reported outcomes: SELFBACK
Different CBR-regression models were implemented for predicting six
hand-picked patient-reported outcomes at two follow-up time-points
(at six weeks and three months) using baseline data in the SELFBACK
RCT I dataset and evaluated their performance using an evaluation
metric (MAE). The main objective of these experiments was multi-
fold: (a) to build CBR systems for making individualized predictions
of patient-reported outcomes at different follow-up time points using
the baseline data in the SELFBACK datasets, and (b) to facilitate the
determination of optimal feature subsets for predicting the patient-
reported outcomes in RCT I dataset and finally, (c) evaluate the CBR
models developed using the SELFBACK RCT II dataset as the external
validation dataset.

4.4.2 Case-Based Clustering
Clustering is an unsupervised learning method used widely to find mean-
ingful structure, explanatory underlying processes, generative features, and
groupings inherent in a set of examples (Han et al., 2011). When selecting
clustering methods for healthcare datasets, it is important to consider that
the aim is to partition the dataset into coherent clusters so that patients in
any given cluster have a semantic relationship, more so than a syntactic
one. A challenge with the most state-of-the-art clustering methods is the
use of knowledge-poor similarity metrics or simple distance metrics such as
hamming distance and Euclidean distance, among others. These metrics
consider only the syntactic difference between two patient profiles, ignoring
the coherence of each attribute, thus leading to insufficient estimation of
the semantic similarity between them. It is necessary to build a similarity
measure for these patient profiles that preserves their semantic relationship
as much as possible and is also suitable for clustering the profiles since
a clustering method will operate on the similarities between profiles in a
given healthcare dataset. The similarity metric must allow the existing
knowledge to influence the assessment of the similarity behaviour. Data-
driven similarity offers a more versatile approach to handling clustering of
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complex datasets by employing a knowledge-based approach (Müller and
Bergmann, 2014). Focusing on the semantic similarity between attributes
rather than the syntactic similarity, the collective influence of each vari-
able’s importance on the final (global) similarity score can improve the
clustering quality by incorporating the existing knowledge in the dataset
(Adam and Blockeel, 2015).

Knowledge-intensive Similarity-based Clustering
To ensure that each cluster is semantically coherent, we utilize the data-
driven similarity measures discussed in the previous section 4.2 as the met-
ric for clustering the dataset. The proposed approach, which takes inspira-
tion from the working of the k-Means clustering algorithm (MacQueen, 1967;
Lloyd, 1982), uses knowledge-intensive similarity as the metric for cluster-
ing. The algorithm extends the conventional approach of similarity in CBR
by allowing the model to utilize the similarity measures aligned with do-
main expert knowledge and retains the semantic relationship between the
cases. Algorithm 1 presents the knowledge-intensive similarity-based clus-
tering algorithm for partitioning a case base into separate clusters.

Algorithm 1: Knowledge-intensive Similarity-based Clustering Al-
gorithm

Input : case base C, number of clusters n
Output: n clusters
initialization: assign n random cases as centroids-{cn}
Determine Cluster Membership
for each case k in C do

compute sim(k,cj), 8j 2 1, ...,n
assign k to most similar centroid

end
Update Cluster Centroids
for each cj in {cn} do

compute meanSimj= 1
|Sj|

P
8ki2Sj sim(ki, cj)

find case m in Sj such that
sim(m,cj) º meanSimj

assign m as the new centroid cj
end
Repeat until centroids converge

Sj denotes the set of cases in cluster cj.

Assigning n cases as centroids at random, the algorithm computes the
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clusters using the similarity score of each individual case to each centroid,
updating the centroids based on the average intra-cluster similarity (aver-
age similarity within a cluster). As our algorithm operates on the similarity
score between each case and each centroid to determine its cluster mem-
bership, it is independent of the data type. As a result, one advantage of
this clustering method is that it can easily be applied to different datasets
other than just numerical, such as categorical or mixed datasets, which oth-
erwise can be challenging when using the conventional clustering methods.
Once the similarity measures are in place, one gets free from the trouble of
taking care of the data types before applying the knowledge-intensive sim-
ilarity-based clustering method. Such knowledge-based clustering systems
would allow finding similar profiles in the same cluster and a similar yet
significantly different profile in a neighbouring cluster to help increase the
diversity of solutions.

Direct optimisation of algorithm 1 is an NP-hard problem and is, there-
fore, not always an option owing to high computational costs (Yang et al.,
2016). Instead, a greedy approach can be used that surveys s-steps in the
future to search for clusters with a higher average inter-cluster similarity
(average similarity of all the clusters) and declares convergence if and only
if no such clusters are found. To avoid falling into a local maxima, s needs to
be large enough to accommodate the variation in the average inter-cluster
similarity over multiple epochs. However, at the same time, s must be small
enough to be computationally inexpensive for large datasets. This presents
a challenge that is unique for each dataset.

As for estimating the optimal number of clusters n if it is not known be-
fore clustering a dataset, the most straightforward way is by plotting the
sum of squared errors (SSE) against the number of clusters. With the in-
crease in the number of clusters, SSE is expected to decrease, resulting in
a reversed elbow graph, similar to that of an elbow graphfor K-Means al-
gorithm optimisation, but instead reversed. The reason is that the mean
inter-cluster similarity is expected to increase with the number of clusters,
thus resulting in a reversed elbow graph. The "elbow" of the graph would
indicate the optimal number of clusters.

4.4.3 Conventional Regression
While CBR-based regression may be regarded as a lazy-learning approach
since no computation takes place until a solution is required, conventional
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supervised machine learning methods are quite the opposite. Conversely,
the primary concern in supervised machine learning is the "what" rather
than the "how", making conventional machine learning systems more con-
cerned about accuracy than comprehensibility. That said, supervised ma-
chine learning methods have been widely used in developing prediction sys-
tems in the healthcare domain (Aldahiri et al., 2021).

• Predict Patient-reported outcomes: SELFBACK
During the exploratory phase of the SELFBACK dataset, we investi-
gated application of various machine learning regression algorithms to
predict two patient-reported outcomes: Pain Intensity and Workability
Index. The algorithms evaluated were: Linear Regression (Driver and
Kroeber, 1932), Passive Aggressive Regression (Crammer et al., 2006),
Random Forest Regression (Svetnik et al., 2003), Stochastic Gradient
Descent Regression (Robbins and Monro, 1951), AdaBoost Regression
(Freund and Schapire, 1997), Support Vector Regression (Boser et al.,
1992), XGBoost Regression (Chen and Guestrin, 2016). Most of the al-
gorithms gave similar performance, although two of them performed
better than the rest: support vector machines and XGBoost. Subse-
quently, it was decided to only use these two algorithms for further
experiments to build prediction models for six patient-reported out-
comes selected from the RCT I dataset using features selected by the
methodology described previously in section 4.3. We further evaluated
the validity of these prediction models in a new (and final) experiment
where we used the RCT II dataset as the external validation dataset
and evaluated both the features selected as well as the prediction mod-
els. The main objective of these last two experiments was to evaluate
the potential of the machine learning models and compare the perfor-
mance of the support vector machines and XGBoost models to that of
the corresponding CBR models (section 4.4.1).
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Chapter 5

Research Results

This chapter presents an overview of the research papers, followed by a brief
summary indicating how the papers relate to each other and finally, a sum-
mary of the research contributions. The research papers are included in full
length in Part II of this thesis.

5.1 Overview of the Research Papers
The publications included in this thesis comprise three peer-reviewed con-
ference papers, three journal papers and one peer-reviewed symposium pa-
per. Six of these are already published, while the last one has been accepted
for publication in a journal. The subsequent sections provide a summary of
main findings and core contribution of each of the research papers including
their title, author name and contributions, and the publication venue.

5.1.1 Paper A1
Title: Modelling Similarity for Comparing Physical Activity Profiles - A
Data-Driven Approach

Author Names and Contributions: Deepika Verma, Kerstin Bach, Paul
Jarle Mork

Verma was the main author and led the experiments, data analysis and
wrote the paper. Bach provided expert knowledge for developing the method-
ology and contributed to the study design and experiments and writing the
paper. Mork provided guidance on the results and analysis and feedback on
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the paper.
Published In: International Conference on Case-Based Reasoning, pages

415-430, Cham, 2018. Springer. ISBN 978-3-030-01081-2
Summary of main findings: This paper describes the foundational work

for this thesis, that is, similarity modelling for CBR systems. A data-driven
methodology is presented for modelling the local similarities of continuous
numerical attributes. The methodology utilises the information stored in
the data, that is, quartiles of each attribute to adjust the behaviour of their
polynomial similarity function such that the entire similarity range is en-
compassed. The utility of the proposed methodology is successfully eval-
uated by using the HUNT4 dataset to create a CBR model which can be
used to compare physical activity profiles of the participants and comparing
the performance of the thus created CBR model with an analogous k-NN
model by retrieving the most similar profiles. Using MAE as the evaluation
metric, it was found that the profiles retrieved by the CBR model had the
least error as compared to their k-NN counterpart. This effect is due to the
CBR model’s ability to capture the variation in each attribute owing to the
data-driven local similarity modelling, which is not the case for the k-NN
model. Furthermore, while the contents of this paper are domain-specific,
the methodology presented is general and can be applied to other datasets
with numerical attributes.

Core contribution: The paper contributes a data-driven methodology for
modelling local similarity measures for continuous numerical attributes to
build CBR systems. The methodology is not domain specific and ensures
that the intra-attribute variance for each of the attributes in a given dataset
is preserved, and the entire similarity range [0,1] is utilised when modelling
the local similarity measures.

5.1.2 Paper A2

Title: Similarity Measure Development for Case-Based Reasoning – A Data-
Driven Approach.

Author Names and Contributions: Deepika Verma, Kerstin Bach, Paul
Jarle Mork

Verma was the main author and led the experiments and wrote the pa-
per. Bach provided supervision for the study design and experiments and
provided feedback on the paper. Mork provided feedback on the paper.
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Published In: Norwegian Artificial Intelligence Society, pages 143–148,
Cham, 2019. Springer. ISBN 978-3-030-35664-4

Summary of main findings: This short paper builds on the data-
driven similarity modelling approach presented in Paper A1 and empirically
demonstrates the generalizability of methodology by using an open-source
dataset with an application domain other than healthcare as an example.
The data-driven similarity modelling approach was as effective for the new
dataset for estimating similarity among the users as for the participants in
the HUNT4 dataset in paper A1.

Core Contribution: The paper demonstrates the applicability of the data-
driven approach for modelling local similarities, presented in paper A1, on
datasets with application domains other than healthcare.

5.1.3 Paper B
Title: Clustering of Physical Behaviour Profiles using Knowledge-intensive
Similarity Measures

Author Names and Contributions: Deepika Verma, Kerstin Bach, Paul
Jarle Mork

Verma led the research and paper writing and was the main author. Bach
contributed towards the study design, evaluation of experiments and writing
the paper. Mork provided general supervision for the research and feedback
on the paper.

Published In: International Conference on Agents and Artificial Intelli-
gence, Volume 2, pages 660–667. INSTICC, SciTePress, 2020. ISBN 978-
989-758-395-7

Summary of main findings: This paper presents a clustering algorithm
for CBR models that uses the similarity measure as the metric for cluster-
ing the case base into coherent clusters such that intra-cluster similarity
is maximized. The similarity measure is developed using the data-driven
methodology presented in Paper A, and is the reason the algorithm is called
knowledge intensive similarity-based clustering algorithm since the similar-
ity measure used for clustering the case base takes into account both the
knowledge contained in the dataset and the expert knowledge required to de-
velop the similarity measures. The algorithm uses the knowledge-intensive
similarity to partition the case base into separate clusters while preserving
the intra-cluster semantic similarity. The algorithm gets evaluated using
the HUNT4 dataset by analysing the generated clusters. The evaluation
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addresses the maximum optimal number of clusters in the given case base
and coherency of the clusters obtained using intra-cluster mean similarity as
the evaluation metric. On comparing the results with the k-Means cluster-
ing algorithm, the proposed clustering algorithm generated more coherent
clusters with higher intra-cluster similarity amongst the cases. While the
knowledge used for creating the CBR model and evaluation of the proposed
clustering algorithm in this paper is domain-specific, the clustering method
itself is general and can be used on datasets of other domains.

Core contribution: The main contribution of this paper is a knowledge-
intensive similarity-based clustering method that uses data-driven similar-
ity as the metric for clustering a case base to maximise the intra-cluster
similarity and increase the diversity of solution.

5.1.4 Paper C
Title: Exploratory Application of Machine Learning Methods on Patient Re-
ported Data in the Development of Supervised Models for Predicting Out-
comes

Author Names and Contributions: Deepika Verma, Duncan Jansen, Ker-
stin Bach, Mannes Poel, Paul Jarle Mork, Wendy Oude Nijeweme d’Hollosy

Verma led and coordinated the paper writing and was the main author.
Verma and Jansen conducted the experiments and contributed to writing
the paper. Bach and d’Hollosy contributed to the study design, paper writing
and provided supervision for experiments. Mork and Poel provided general
supervision for the research and feedback on the paper.

Published In: BMC Medical Informatics and Decision Making, 22(227),
2022. ISSN 1472-6947.

Summary of main findings: This paper was a joint effort with re-
searchers in the Netherlands, wherein exploratory experiments were con-
ducted to explore traditional machine learning methods on two datasets
consisting of PROMs collected from patients with neck and/or low back
pain in separate clinical trials. The main aim of this paper was to in-
vestigate whether and to what extent different machine learning methods
can predict and classify patient-specific "target" outcomes based on patient-
reported data. Feature selection strategies were discussed to determine
which patient-reported measurements are most descriptive of the target out-
comes. The prediction models built for the first dataset wherein the baseline
measurements recorded for the associated target outcomes gave promising
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results. Moreover, the baseline measurements were the most useful pre-
dictor of the associated target outcome. On the other hand, the classifiers
built for the second dataset performed poorly due to the lack of appro-
priate/valuable predictors of the target outcome. The results presented a
promising potential for using machine learning for predicting or classifying
PROMs, provided that PROMs hold enough predictive power.

Core Contribution: Emphasis on the utility of machine learning meth-
ods for the exploration of PROMs and determination of supervised machine
learning methods suited for the task of predicting outcomes from PROMs
datasets.

5.1.5 Paper D
Title: Using Automated Feature Selection for Building Case-Based Reason-
ing Systems: An Example from Patient-Reported Outcome Measurements

Author Names and Contributions: Deepika Verma, Kerstin Bach, Paul
Jarle Mork

Verma led the research and paper writing and was the main author. Bach
contributed towards the study design, evaluation of experiments and writing
the paper. Mork provided general supervision for the research and feedback
on the paper.

Published In: British Computer Society, Specialist Group on Artificial
Intelligence, pages 282–295, Cham, 2021. Springer. ISBN 978-3-030-91100-
3.

Summary of main findings: This paper presents a two-fold hybrid ap-
proach for selecting features from a subjective intervention-based healthcare
dataset to build CBR model(s) that can predict patient-reported outcomes.
In the two-fold approach, correlation is used first to filter out the most cor-
related features, followed by building a CBR model using the data-driven
knowledge modelling presented in Paper A to derive the optimal feature sub-
set. The optimal feature subset is decided based on the trade-off between the
number of features used and the error (MAE) in predicting the target out-
come. The quality of features selected using this two-fold approach is com-
pared with another method, permutation feature importance using XGBoost
as the base regressor, for deriving feature selection. Based on the prediction
error (MAE), it was found that the results produced by the CBR prediction
models built using features selected by either of the methodologies are sim-
ilar. However, considering the time and effort trade-off, the latter method
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may be the more preferred option, notwithstanding the utility of the former.
From a clinical perspective, the baseline measurements of the associated
target outcomes were their most important predictors, a result supported by
similar findings in other studies in the literature. Further, the performance
of the CBR prediction models was comparable to the traditional machine
learning regression models—Support Vector Machines and XGBoost.

Core Contribution: An approach for selecting optimal feature sets for
various outcomes in a PROMs dataset for the purpose of developing CBR
models to predict the outcomes as well as a comparison of the predictive per-
formance of CBR models and two supervised machine learning algorithms.

5.1.6 Paper E
Title: Application of Machine Learning on Patient-Reported Outcome Mea-
surements for Predicting Outcomes: A Literature Review

Author Names and Contributions: Deepika Verma, Kerstin Bach, Paul
Jarle Mork

Verma led the literature review and paper writing and was the main
author. Bach provided guidance for the review design and contributed to
writing the paper. Mork provided expert domain knowledge for the study
design and supervision for the research and provided feedback on the paper.

Published In: MDPI Informatics, 8(3), 2021. ISSN 2227-9709.
Summary of main findings: This paper is a literature review that sum-

marises the recent trends in the application of machine learning methods
on PROM datasets for predicting clinical outcomes. The review analyses the
articles based on their year of publication, domain of intervention, length
of prediction (in terms of weeks or months, or years), source of the dataset
used, use of external validation dataset, feature selection strategy, and the
machine learning methods applied. All the included articles were published
in peer-reviewed journals and could be broadly categorized into five inter-
vention domains which include post-surgical improvements or limitations,
depression, pain management, hospital readmission, and oral health. Post-
surgical and depression interventions were the dominant theme in the in-
cluded articles. An emerging trend was discovered with an increase in the
use of machine learning methods for patient-reported datasets for feature se-
lection and patient-specific outcome prediction. Ensemble and linear meth-
ods were the most commonly used methods both for selecting features and
predicting outcomes. One of the major gaps identified was the lack of ex-
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ternal validation, as only four of the fifteen included articles included an
external validation of the models. This gap could be due to either lack of
or unavailability of an appropriate external validation dataset, as complete
and readily available datasets for research purposes are rare to find and is
one big challenge in themselves. Another gap was the inconsistency in re-
porting essential elements of the development of machine learning models
such as the selected features, method of hyperparameter tuning, and hyper-
parameters used, which makes result reproducibility and further research a
challenge.

Core Contribution: A review of the existing state-of-the-art for applica-
tion of machine learning methods on PROMs datasets to predict individu-
alised patient-reported outcomes.

5.1.7 Paper F
Title: External Validation of Prediction Models for Patient-Reported Out-
come Measurements collected using the SELFBACK Mobile App

Author Names and Contributions: Deepika Verma, Kerstin Bach, Paul
Jarle Mork

Verma led the experiments and paper writing and was the main author.
Bach provided guidance for the study design and approved the experimen-
tal analysis and contributed to writing the paper. Mork provided general
supervision for the research and provided feedback on the paper.

Published In: Accepted for publication in Elsevier International Journal
of Medical Informatics.

Summary of main findings: This paper presents an external validation
of the prediction models built during an experimental work to select rele-
vant features for and predicting individualised patient-reported outcomes
using baseline PROMs, the results of which were presented in Paper D. The
prediction models were trained using a dataset that consisted of PROMs
collected in the RCT I for the evaluation of the SELFBACK mobile applica-
tion. Since internal validation on smaller datasets is generally not optimal
enough for evaluating generalisability of the models, external validation is
essential. The dataset used for external validation consisted of the same
type of PROMs as in the training dataset, collected in the RCT II as a part
of evaluating the efficacy of the SELFBACK mobile application. Overall, the
predictive power was low, except for prediction of one of the outcomes. The
results indicate that the models show ability to generalise and predict out-
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comes for a new dataset and highlight the need for external validation in
healthcare-oriented studies for the further development of patient-centred
healthcare systems.

Core Contribution: The paper contributes toward external validation of
individualised outcome prediction models built for PROM datasets to facili-
tate further development of CDSS.

— — —

With paper A1, we established a data-driven methodology that can be
employed to model attribute similarities for building CBR systems and
demonstrated our results on the HUNT4 dataset. Paper A2 later builds on
paper A1 to demonstrate the generalisability of the data-driven methodology
on a dataset of an unrelated domain. The encouraging results from these
two publications subsequently led to paper B where we used the data-driven
similarities as the clustering metric, documenting a favourable effect on the
HUNT4 dataset. With paper C, we moved onto the SELFBACK datasets
and did exploratory work with conventional machine learning methods for
PROM datasets, which acted as the basis for subsequent research with the
SELFBACK dataset. Building on the findings of the previous papers (A1-C),
papers D and F build and evaluate CBR prediction models and feature selec-
tion strategies that include data-driven similarities of CBR models and per-
mutation feature importance of ensemble methods. The papers also present
a performance comparison of the case-based prediction models with conven-
tional machine learning models. Paper E summarised the existing state-
of-the-art forming the basis for papers C, D, and F. The following section
describes how the papers relate to the research questions and the main con-
tributions from the research question.

5.2 Summary of research contributions
This section summarizes the main research contributions of this thesis. The
summary below references the related publications pertaining to each of the
three research questions, as set out in the introduction chapter (section 1.2)
individually.
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5.2.1 Research Question 1: How to measure similarity
among different individuals based on their objec-
tive and subjective measurements?

• Section 4.2 describes the data-driven methodology for developing
the similarity measures for building CBR models using healthcare
datasets. By utilising the spread of the values in each attribute and
defining strong initial values with the help of strategic markers (quar-
tiles for numerical attributes), similarities measures can be developed
which can be used to measure similarity among individuals based on
their objective or subjective measurements.

• Paper A1 and B address this research question. Paper A1 presents the
data-driven methodology for modelling local similarities of attributes
in the HUNT4 dataset containing objective physical behaviour mea-
surements from participants of a cohort study. By using the method-
ology on the objective measurements, we built individual physical ac-
tivity profiles in a CBR system and using the constructed similarity
measure, measured the similarity among the individual profiles in the
case base. In paper B, we used the methodology presented in paper
A1 to build the individual physical activity profiles on an extended
HUNT4 dataset, measured similarity among the individual profiles
and further utilised the constructed similarity measure to cluster the
profiles into coherent clusters. We demonstrated that the data-driven
similarity functions we build can be used to measure similarity among
different individuals.

• Paper A2 relates to this research question. In this paper, the data-
driven local similarity modelling methodology presented in paper A1
is applied on an open-source dataset of a different application domain,
to estimate similarity between individual profiles. By doing so, we also
demonstrated the generalizability of the methodology.

• Paper D and F address this research question. In both these pa-
pers, individual patient profiles of the participants in the SELFBACK
RCTs are built based on their subjective measurements using the data-
driven similarity modelling methodology described in paper A1 (the
paper describes the methodology only for the numerical attributes) and
in section 4.2.
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• The proposed case-based clustering approach in paper B is the first
in the literature utilising purely data-driven similarities for cluster-
ing activity profiles of participants of a population-based cohort study.
Smyth (2019) previously proposed a case-based approach to recom-
mend pacing plans for marathon runners, albeit without any cluster-
ing.

5.2.2 Research Question 2: How can machine learn-
ing methods be applied to subjective patient-
reported datasets to facilitate individualized
patient-reported outcome predictions?

• Section 4.3 describes the feature selection strategy for selecting opti-
mal feature set from a PROM dataset that can best predict a selected
patient-reported outcome. The two-fold hybrid feature selection ap-
proach described later in the section helps determine a set of features
targeted specifically for building CBR prediction models, though can
be used for general machine learning as well. While the other ap-
proach, permutation feature selection, provides feature sets that are
more general.

• Papers C and D address this research question. Paper C explores a
number of machine learning algorithms with the goal of determining
the most suited algorithms for the task of predicting individualized
patient-reported outcomes based on patient-reported measurements
in PROMs dataset. The paper presents the results of feature selec-
tion strategies and subsequent prediction models for predicting pain-
related outcomes, thereby contributing towards feature selection and
model selection for predicting pain-related outcomes. Paper D builds
on paper C and presents the two-fold feature selection approach and
its utility in comparison to a traditional feature selection approach.

• Paper F relates to this research question. The paper broadly addresses
the challenge of external validation of models for predicting patient-
reported outcomes to verify the generalisability of such models. Using
an external dataset, we evaluated the generalisability of the predic-
tion models presented in paper D and by doing so, also emphasised the



5.2. SUMMARY OF RESEARCH CONTRIBUTIONS 69

importance of external validation of prediction models intended for fa-
cilitating clinical decision support.

• The CBR models developed and presented in our work are the first
where CBR has been applied exclusively on PROM datasets and for
predicting patient-reported outcomes using PROMs alone. We also
demonstrated that data-driven similarities can be utilised to success-
fully drive feature selection with CBR models.

5.2.3 Research Question 3: What are the state-of-the-
art of machine learning methods for investigating
patient-reported outcome measurement datasets?

• This research question is addressed by paper E which provides an
overview of the existing literature on application of machine learning
methods on PROM datasets during the last decade. The paper sum-
marizes findings from fifteen articles and presents a comprehensive
analysis of several aspects such as the intervention domain, time pe-
riod between measuring the predictor(s) and the outcome, feature se-
lection methods, machine learning methods, optimization techniques,
and external validation, among others. Ensemble and linear methods
were the most commonly used machine learning methods on PROM
datasets for feature selection and outcome prediction.

• No published articles were found that concern the use of CBR systems
on PROM datasets, thereby highlighting a gap in the existing litera-
ture. This gap presents a unique opportunity to delve into the utility
of CBR systems for subjective patient-reported clinical datasets, and
our work provides a basis for further exploration of this area of CBR
application.

• Ours is the first literature review focusing solely on the state-of-the-art
concerning applied machine learning on PROMs datasets for predict-
ing individualized patient-reported outcomes.
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Chapter 6

Discussion

The research for this thesis was motivated by the overarching goal of ad-
vancing research in the utilisation of case-based methods for healthcare
datasets to underpin and facilitate further development of patient-centred
care through CDSS. In our investigation into the research questions, we
implemented supervised and unsupervised case-based learning methods
for both population-based and intervention-based datasets that can facili-
tate decision-making in tailoring physical activity plans for population sub-
groups and monitoring pain-related outcomes of patients with LBP or NP.
Our research started with analysing the objective physical behaviour mea-
surements of participants in the HUNT4 dataset to get insights into the
activity distribution and characteristics of the population sample in the
dataset. We created activity profiles of the participants, modelled the simi-
larity among them using a data-driven approach, and built a CBR model in
myCBR workbench to determine similar activity profiles (published in pa-
per A1). Based on the results so far, we decided to utilise the data-driven
global similarity in the CBR model to cluster a case base with more partic-
ipant activity profiles from the HUNT4 study to identify groups with simi-
lar physical behaviour that can facilitate tailoring of physical activity plans
(published in paper B). We then moved on to explore the subjective mea-
surements collected in the SELFBACK project and analysed the utility of
different machine learning methods in investigating the predictive poten-
tial of PROMs. Doing so can support several aspects of clinical decision-
making process such as identifying baseline PROMs with predictive power
to condense clinical questionnaires, moderating the information burden on
clinicians, and monitoring the follow-up of patients to identify those at a
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higher risk of a worse outcome. Based on the existing literature in the
application domain (later published in paper E), we examined several con-
ventional machine learning methods to identify predictors of two patient-
reported outcomes (in paper C). Based on our findings, we experimented
with a hybrid approach for feature selection which included utilising a com-
bination of data-driven similarities (modelled for the patient profiles in the
CBR model in myCBR workbench) and correlation to determine predictors
of patient-reported outcomes and built case-based prediction models (pub-
lished in paper D). Finally, we evaluated the validity of both the predictors
and the prediction models using an external validation dataset (paper F).

While the research done in our work has been driven towards facilitat-
ing the development of CBR-based decision support systems, the methods
applied and developed in this thesis may not be limited in their application
to any particular domain. We hypothesise, based on the nature of the ap-
proaches undertaken and methods developed, that our work in this thesis
can be generalised and be of use in other domains. That said, the work pre-
sented in this thesis has several limitations, and more work is necessary
to address these limitations and carry forward the research. In the sections
ahead, we discuss the limitations of this thesis, further research possibilities
that may be addressed in future work, and finally, conclude this thesis.

6.1 Limitations

Similarity The global similarities developed for the CBR models have
some limitations regarding completeness and weight distributions. We
mainly covered the numeric and symbolic similarity measures in our re-
search. More complex data types can likely not be modelled by the proposed
data-driven method. Among the CBR models developed in our work, all the
features were weighted equally. The features may be weighted differently
since every feature may not contribute equally to a model, which might have
led to a different performance. However, we did investigate several differ-
ent methods to determine feature weights and estimated the model perfor-
mance, though it was found to not be any better than with equally weighted
features. Nevertheless, there may be other approaches for feature weighing
that may yield better results.
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Adaptation The case-based prediction models for the SELFBACK
datasets have a limitation that a rudimentary transformation approach
has been used for adapting the solutions—an average over the n-nearest
neighbours—for the mere reason that for any given query, there is no guar-
antee to find a case that fits the problem description. Advanced adaptations
would require the involvement of domain experts or revision steps to check
for the validity of the adaptations. Another limitation concerns the num-
ber of cases n chosen for reuse, which was not fixed and varied significantly
due to high variability in the reported outcome among the similar profiles.
Other advanced adaptation approaches may be explored in future studies to
address these limitations.

Algorithm convergence and Optimisation Firstly, the knowledge in-
tensive clustering algorithm described in section 4.4.2 may not yet produce
an optimal convergence. Since optimisation of such an algorithm is an NP-
hard problem, a greedy approach was employed that considers s-steps in the
future before declaring convergence. The step size s may vary depending on
the dataset and application requirements and is, therefore, not a fixed en-
tity. There might, however, be other better or more optimal ways to achieve
convergence. Secondly, grid search was employed for optimising the hyper-
parameters of the machine learning algorithms used in the papers. Grid
search may not be the most optimal method of tuning the hyperparame-
ters, both in terms of time and hyperparameter. Other approaches such as
Bayesian optimisation may produce better results at a fraction of the time
cost.

Physical Activity The possibility of making tailored physical activity
plans cannot yet be analysed. There is a need for a holistic 24-h analysis of
the physical behaviour data and associations with various health outcomes
to capture more relevant information that may be necessary to get a better
understanding of their dynamics.

Validity The validity of the features selected for the corresponding target
outcomes is difficult to assess since most clinicians have a hard-time hand-
picking meaningful features from the entire pool. While the features chosen
are statistically relevant, whether or not they are informative in a clinical
setting could not be assessed. Furthermore, features deemed important in
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one model may not necessarily be equally important in another model. As
such, variation in the choice of features selection strategy and the features
eventually used in the models will inevitably produce different results. To
this end, further research is necessary. Regarding external validity, which
concerns the generalization of the prediction models, our experiments in pa-
per F presented promising results, indicating some degree of generalisabil-
ity. However, the results were not entirely exemplary, and there is likely
some scope for improvement in further research.

Literature Search The literature review may have some limitations con-
cerning the choice of search string and database used to identify relevant
articles. Some important works may have been missed due to differences in
keywords used in the published articles and databases. Furthermore, the
literature search did not include CBR altogether and, therefore, may not
represent a comprehensive overview of the extent of literature available in
the application domain.

6.2 Future Directions and Conclusion
The following future directions could provide an avenue for further investi-
gation as an extension to the doctoral research presented in this thesis.

Exploring other methods Further research could involve investigating
other schemes for similarity measure development, case representation,
case adaptation and clustering in CBR systems. For the clustering algorithm
(presented in section 4.4.2), other criteria or methods for convergence must
be explored and analysed. Alternative methods for feature selection and pre-
diction should also be explored and compared with the results in this thesis
to get better insights into the potential of the SELFBACK datasets. It may
also be of interest to compare our results with new prediction models built
using features selected by the domain experts to get a better understanding
of how they compare with the ones chosen by the machine learning methods.
Another possibility to explore would be to cluster the SELFBACK datasets
using the clustering algorithm (section 4.4.2) and then apply feature selec-
tion cluster-wise, followed by patient-specific outcome prediction, similar to
the approach taken by Chekroud et al. (2017). Further, other approaches for
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case adaption may be explored and analysed to determine their suitability
for the task.

Evaluation studies for validation The models developed in this doc-
toral research work are still in the early stages, and additional work is neces-
sary for thorough evaluation. Further studies may involve designing exper-
iments with larger sample sizes and perhaps using other datasets collected
in different settings to address the validity of the results.

Involving the clinicians and patients To evaluate the usefulness and
benefit of this research work, future work may involve clinicians and pa-
tients. Collaborative research with domain experts would be necessary to
investigate the adequacy of the chosen features for clinical decision-making.
And, the clinicians would be able to assess the potential of the developed
methods and systems for decision support in the clinical settings. Engaging
the patients in the decision-making process might help in improving their
acceptance of the system and possibly, adherence to the treatment (Bitton
et al., 2014). It will also allow to validate and improve on the instrumen-
tal concepts, analyze the added value of the tool for the primary users, and
elucidate more detailed policies for designing and implementing CDSS.

Prototyping and testing The proposed clustering approach in Paper B
is motivated by multiple elements of existing research for identification of
groups with similar patterns of physical activity (Marschollek, 2013) and
using that knowledge along with a case-based approach to recommending
activity plans (Smyth, 2019). That said, our work in this thesis is limited to
the steps leading up to building a case-based approach for creating physical
activity plans based on individual profiles, and thus, requires more work
that may be addressed in future studies to implement and test the concepts,
ideally in collaboration with the domain experts. Future research could also
include refining and extending the prediction models for SELFBACK after
thorough validation to implement a working prototype that can be tested in
real-world settings in collaboration with clinicians and patients. This step
would be essential to assess the utility and impact of such decision support
systems on the care of patients with low back pain and bring us one step
closer to incorporating them in clinical practice.
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In conclusion, the work in this doctoral research began with the basic
building block of devising a methodology for the development of similarity
measures to build CBR models and ventured gradually towards implement-
ing case-based learning models for identifying groups with similar physical
activity patterns in population-based studies and forecasting individualised
patient-reported outcomes based on PROMs in intervention-based studies
using the same building blocks. The lack of any literature applying CBR for
only PROMs also highlights a gap that may be addressed in future stud-
ies. Further, our results have demonstrated the expedience of the data-
driven similarity measures developed, both for case retrieval and clustering,
and the potential of using a case-based approach for subjective healthcare
datasets, providing a proof of concept suggesting that CBR systems accord
an ideal platform for harnessing the knowledge stowed away in healthcare
datasets. The results also indicate that a close liaison between patients
(through the data), clinicians, and case-based methods can bring about a
better understanding of patient-centred care and, thus, provides grounds
for further research and development of more transparent, evidence-based
decision support systems for healthcare settings.
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Abstract
Objective measurements of physical behaviour are an interesting research
field from the public health and computer science perspective. While for
public health research, measurements with a high quality and feasible
setup is important, the analysis of and reasoning about the data is what
we will present in this work. Our focus in this work is the comprehensive
representation of physical behaviour throughout consecutive days and
allowing to find sub-groups in the population with similar physical activity
levels.

We have a unique data set of 4628 participants wearing tri-axial
accelerometers for six days and will present a case-based reasoning (CBR)
system that can find and compare similar activity profiles. In this work, we
focus on creating a CBR model using myCBR and do initial experiments with
the resulting system. We will introduce a data-driven approach for modelling
local similarity measures. Eventually, in the experiments we will show that
for the given data set, the CBR system outperforms a k-Nearest Neighbor
regressor in finding most similar participants.

A Introduction
Physical inactivity and poor sleep are considered global health problems
(Kohl et al., 2012; Raitakan et al., 1994) that contribute substantially to poor
health and premature mortality. It is estimated that physical inactivity is
responsible for about 9% premature mortality (Lee et al., 2012), which is
similar to the effect of smoking (Wen and Wu, 2012) and obesity (A et al.,
2017).

CBR has become more popular over the last few years, especially in
an area where continuous measurements become more and more available
(Canensi et al., 2017; Plis et al., 2014). It offers a way for abstracting and
transferring specific domain expert knowledge into a self-explanatory and
user-friendly tool, which can be used to generate solutions for problems
ranging from simple daily life tasks to complex issues (which otherwise
necessitate expert help), with an appropriate reasoning behind them. Not
only is it being applied for finding similar cases to provide solutions, but also
for the classification of medical (Yao and Li, 2010; Campillo-Gimenez et al.,
2013) and activity data (Uddin and Loutfi, 2013). In Uddin and Loutfi (2013),
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the authors propose a CBR method to classify different physical activities of
elderly based on their pulse rate.

In this paper, we focus on the knowledge engineering process of creating
a CBR model and present a data-driven approach for modelling local
similarity measures for physical activity data in the myCBR workbench
(Bach and Althoff, 2012; Stahl and Roth-Berghofer, 2008). We will show in
our experiments that a CBR system comparing physical activity profiles
is less erroneous than a k-Nearest Neighbour (k-NN) regressor model.
In our experiments, both approaches are used to find groups of similar
activity profiles and their performance is evaluated statistically. The second
contribution of this paper is a method for modelling the local similarity
measures utilizing data driven methods. We will showcase how a data set can
lead to strong initial definitions for numerical value ranges and therewith
easen and stratify the knowledge modelling process.

The remaining of this paper is divided into sections as follows: in section
B, we discuss related work on reasoning about physical activity behaviour
using various approaches within machine learning and artificial intelligence.
In section C, we discuss the importance of objective measurements of physical
activity behaviour from both public health and computer science perspective.
Section D is dedicated to similarity modelling for the data set in myCBR. In
section E, we present the experiments performed to evaluate the CBR model
generated and compare it with that of k-NN model. Section F and G are for
discussion and conclusion respectively.

B Related Work
The amalgamation of sensors, Internet of Things (IoT) and Artificial
Intelligence (AI) provides a unique opportunity not only for health
researchers, but also for AI researchers to perform objective measurements
and utilize raw data recordings to generate physical activity profiles of a large
number of participants and determine similar physical activity profile groups.
With the help of AI techniques, it is possible to perform objective analysis of
sensor data stream to not only identify different physical activities uniquely
(Bulling et al., 2014; Arif and Kattan, 2015; Willetts et al., 2018), but also
find out groups of similar activity profiles. Finding and clustering similar
physical activity profiles is crucial in facilitating the understanding of health
and activity characteristics of a population and identifying different activity
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phenotypes1. In Marschollek (2013), the author proposed an ATLAS index
to cluster and identify four activity phenotypes using NHANES2 data set.
Similarly, in Willetts et al. (2018), authors proposed a statistical machine
learning model to identify different sleep and physical activity phenotypes.
Further, the authors in Howie et al. (2018) apply latent class analysis to
identify five different activity phenotypes among young adults in a cohort
study where data was collected using hip-worn accelerometers for seven days.
Our long term goals and target data are similar to these studies, however the
approach differs slightly.

Similar to the preference-based CBR framework presented by Hüllermeier
and Schlegel (2011), we are presenting a framework for modelling local
similarity measures based on the data set available. Therewith we can tailor
each similarity measure to the application domain. In the continuation of
their work Abdel-Aziz, Strickert and Hüllermeier (Abdel-Aziz et al., 2014)
show that the data distributions and distances in data sets can be used
for learning similarity measures. While the authors focus on learning
preferences, we show with the work presented here that the data-driven
view can be carried over to general knowledge engineering tasks. Using a
data-driven approach for automatic similarity learning and feature weighting
has been presented by Gabel and Godehardt (Gabel and Godehardt, 2015). In
their work they trained a neural network to induce local and global similarity
measures. While we are not automatically assigning the similarity measures,
we also use existing cases to derive them. In Smyth and Cunningham (2017),
the authors explored a case-based approach for recommending 5km times for
marathon runners in order to achieve their personal best. The approach they
apply is similar to the one presented in this paper as they use timing profiles
as basis for the similarity-based assessment. In a slightly different approach,
Sani et al. (2017) explored using k-NN for detecting physical activities from
wrist worn sensors. In their work they show that applying k-NN for detecting
movement patterns is very successful for creating personalized models. Even
though the approaches differ, our work is similar in terms of comparing
physical activity profiles with raw data coming for accelerometers.

1https : //www.biology° online.org/dictionary/Phenotype
2https : //wwwn.cdc.gov/nchs/nhanes/def ault.aspx
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C Physical Activity Analysis for Public Health
Application Scenarios

Regular physical activity is important for people of all age groups, including
the elderly. It can significantly reduce the risk of various health problems
such as stroke, diabetes, various types of cancer, depression, as well as
hypertension and improve bone and muscle health3. Physical inactivity
is one of the most important public health problems of this century and
has a strong negative impact on the physical and mental well being of an
individual. It is estimated that about 23% adults and 81% adolescents globally
are physically inactive. The figures are alarmingly high for adolescents.
Moreover, being physically active is not just about moving around in the
house or walking at a slow pace, they must include some form of Moderate to
Vigorous Physical Activity (MVPA) such as brisk walking, dancing, running,
cycling, or moving/lifting heavy load.

Over the last few years, researchers in public health domain have
moved rapidly from using self-reported subjective activity data to objectively
measured activity data with the use of body-worn sensors (Arif and Kattan,
2015; Lee and Shiroma, 2013; Li et al., 2017). Not only are the sensors
a more viable option due to the simplicity of extracting and utilizing raw
data, but also eliminate the problem of bias due to self reporting (Prince
et al., 2008; Lagersted-Olsen et al., 2013), which has been a major concern
among researchers as it leads to inaccuracy and uncertainty. Moreover, the
accelerometers directly measure the subject’s physiology motion status to
indicate the motion pattern within a given time period, which is helpful in
activity recognition and are much more energy efficient.

The physical activity data used for this work is primarily based on
accelerometer data collected during the HUNT44cohort study. The Nørd-
Trøndelag Health Study (HUNT)5 in Norway is one of the largest health
studies of its kind. The study consists of a large amount of health data
collected through questionnaires and clinical examinations during three
intensive previous studies (HUNT1 1984-86, HUNT2 1995-97 and HUNT3
2006-08). In the ongoing study HUNT4 (2017-19), each participant is offered
to participate in the objective measurements data collection. If accepted,

3http : //who.int/ f eatures/ f act f iles/physicalactivity/en/
4https : //www.ntnu.no/hunt4/
5https : //www.ntnu.no/hunt/
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they are fitted with two wearable tri-axial accelerometers, placed at their
thigh and lower back, which are used to collect activity data for one week.
The raw sensor data is then classified into 17 different physical activities
using Support Vector Machines (for the synchronization of sensor data) and
Random forest classifiers (for the prediction of activity classes). Afterwards,
these activities are grouped into six main physical activities: lying, sitting,
standing, walking, running, cycling, which is the basis data set for our work6.

By determining the variation among participants in different activity
clusters through similarity, it is possible to provide activity recommendations
to less active profiles in order to make them more active. Every person
has different activity characteristics and finding a group of activity profiles
most similar to that person with respect to the duration of every activity
is a challenging task and we aim to address this task using Case-Based
Reasoning (CBR), because it offers the flexibility and transparency in its
reasoning process.

D Data-driven Knowledge Modelling
In this section, we explain how we implement a CBR system that can
be applied to find and compare similar activity profiles from objectively
measured population data. We are using the local-global-principle (Richter,
1995) for creating similarity measures and thereby build a knowledge model
that tailors the similarity measure for each attribute. Once the local
similarity measures are defined, we continue to use weighted sum for defining
the global similarity.

While the HUNT4 data set is unique in the world, the challenges for
utilizing it for developing a CBR system are very common such as the
identification of suitable data set context for the problem at hand, definition
of initial similarity measures, representation of cases and determination of
valuable cases for populating the casebase. In this work we will introduce a
method for utilizing a given data set to model similarity measures. Further we
will take into account the effect of growing case bases and show a methodology
that can help to visualize and understand how a CBR system learns.

This section is further divided into subsections as follows: First, we
describe how we populate the casebase and generate cases in the developed
case representation. Second, we describe our data-driven approach to model

6Since the study is ongoing, we have used the data available by March, 12 2018.
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the local similarity measures for the numerical activity attributes. Once the
model is in place, we then query the casebase and compare the most similar
activity profiles retrieved.

D.I Case Generation
Developing a case representation is the first part of the system development.
Depending on the domain and the available data this can be a challenging
process on its own (H. El-Sappagh and Elmogy, 2004; Bergmann et al., 2005;
Khamparia and Pandey, 2017). For our application domain we utilize the
pre-processed HUNT4 data. While HUNT4 collects a very comprehensive set
of data, we are only focusing on the objective measurements. The sensor data
is collected over a period of seven days per participant and the overall data
collection in the cohort stretches over 18 months, starting from the autumn
of 2017 until February 2019. It is an ongoing study and until March 2018,
data for 17409 participants has been automatically classified and for each
participant aggregated into the six main physical activities. In Table 1 we
present the description of the six activity types used in our data set.

Activity Description

Lying The person lies down
Sitting When the person’s buttocks is on the seat of the chair,

bed or floor
Standing Upright, feet supporting the person’s body weigh
Walking Locomotion towards a destination with one stride or

more

Running
Locomotion towards a destination, with at least two
steps where both feet leave the ground during each
stride

Cycling The person is riding bicycle

Table 1: Activity Descriptions

Each participant is fitted with two tri-axial accelerometers, AX3 Axivity7,
one on the thigh and second on lower back. The sensors are used to detect
vibrations, movement and orientation changes in the three axes. The

7https : //axivity.com/downloads/ax3
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sampling frequency of the sensors is set at 50Hz. After the participant
has worn the sensors for seven days, they are returned to the HUNT research
center where the raw data is downloaded, extracted and classified using
Support Vector Machines and Random Forest algorithms. The resulting data
set contains the H4ID (unique ID for each HUNT4 participant), number of
minutes of each different activity, the date and day of the week in a csv file.

When preparing the data for the CBR system, we further process it by
removing the records where we assume the sensor was taken off or the
prediction failed. Those are very long times of the same activities. Records
are removed based on the following criteria:

• sum of all the activities for a single record exceeds 1440, which is the
total minutes in a day

• records containing zero minutes for lying, sitting, standing and walking

• data set for one participant has less than seven days of data

Eventually, we chose to keep records where exactly six days of data per
H4ID was present, while the rest of the records were removed. For each
unique H4ID, the total minutes of each activity were summed up for six days.
We experimented with different knowledge representations including mean,
maximum and sum of duration of each activity per H4ID and found the sum
representation to suit best since it captures the overall physical behaviour
of the participants over the days as well as the variance of the similarity
measure over its’ entire range. At this point, after pre-processing, the data
set contains 4628 rows, each record containing sum of each activity over six
days for a single participant. Table 2 gives a brief account of the data set.

Lying Sitting Standing Walking Running Cycling

count 4628 4628 4628 4628 4628 4628
mean 3090.49 3322.82 1401.22 790.67 6.86 26.45
min 7.35 253.25 56.50 1.55 0 0
max 7513.80 7846.10 4247.10 2101.65 172.70 719.10

Table 2: Data set Statistics

Cases are populated from the previously described data set by loading
into the previously defined case representation using the myCBR tool. A
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single case in myCBR is represented as shown in Fig. 1, where Participant is
the name of the concept which consists of six attributes namely cycling, lying,
running, sitting, standing and walking.

Figure 1: Case representation in myCBR

D.II Data-driven Similarity Measures Development
The local-global-principle requires that both types of similarity measures, the
local one on the attribute level and the global one on the conceptual need to
be defined.

Modelling the local similarity measures for different attributes in myCBR
can be challenging as researchers have to balance the input from the domain
experts and the available data. Having criteria which can lead the knowledge
modelling process is helpful for both parties. We therefore suggest to make
use of the existing data in this process. As we assume that the collected
data set covers the scope of what type of problems (cases) we have seen
before, this is a useful departure point. In the following, we would have a
reality check with the domain experts that discusses whether the defined
value ranges cover the domain well. While setting upper and lower limits is
straight forward, assigning the similarity behaviour is not. Consecutively,
we assume that numerical local similarity measures are distance functions
and the question is how steep of a similarity decline should be chosen. We
use polynomial functions to model similarity measure since they are more
flexible and provide better convergence when using continuous numerical
data. Therefore, we will focus on the polynomial function of the similarity
measure and our goal is to determine their degree.
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Taken this task in our application domain, we see an activity variation
among different profiles, but also in the aggregation of activities over all
profiles. We use box plots for visualizing the distributions and variations in
our data set and transfer this into modelling local similarity measures.

Figure 2: Example for Data-driven Local Similarity Modelling: On the left
there is a screen shot of a polynomial similarity function for a value range
between 0 and 7500. With the arrows we depict how the box-plot for sitting
relates to the decrease of similarity at a certain distance. IQR§1.5 method
has been used for the box plots.

Fig 2 shows an example of a numerical local similarity measure. In the
example, it is the total amount of sitting during six days. From there we look
into the Q1 and Q3 which indicated the majority spread for the data set. We
decided to take these values as reference points for determining the decrease
of similarity.

Hence, creating a box-plot of the data set will allow modelling each activity
attribute since we only take the Inter Quartile Range (IQR) and the range
(min to max) into account:

r1 = IQR
r2 = range

(1)

It represents the difference between upper (Q3) and lower (Q1) quartiles
in the box-plot, that is IQR =Q3 °Q1.
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We assume that all similarity functions are polynomial and adjust the
polynomial degree of the similarity function such that

y(r1)º 0.30
y(r2)º 0

(2)

We can observe in fig 2 how the similarity function varies after applying
the methodology in equation 1 and 2. The bigger the polynomial degree,
the steeper the similarity function and more precise the attribute values
in retrieved cases. The decline in the similarity function is steeper in the
beginning until at r1 it reaches close to y(r1) and then decreases gradually
until at r2 it is approximately close to y(r2). This way, the similarity function
covers the entire attribute range as well as the similarity measure range [0,1].
While the choice of y(r1) and y(r2) depends on the domain-expert’s knowledge
and satisfaction with the outcome, we however experimented with different
values and found these best suited for our application domain. We use this as
the initial definition of similarity measures. If required, the function can of
course be further customized if the relevant domain knowledge is available.

Figure 3: A Query and its retrieval result in the myCBR workbench

D.III Comparing Physical Activity Profiles
Once the casebase and similarity measures are in place, the model can be
used to find similar profiles. Fig 3 shows the result of one such query retrieval
in myCBR. The figure shows that the retrieved cases are sorted by similarity
value in descending order, that is, most similar case are displayed at the top
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while least similar are at the bottom. On the lower part of the screen shot
the four most similar profiles are shown in a detailed view. The tool marks
closer matches darker.

While the myCBR workbench indicates that we can do a similarity-based
retrieval, it is hard to judge how the CBR system works with increasing
casebase or changing similarity measures. In the next section we will
investigate how the casebase size and different retrieval methods perform in
our application domain.

E Evaluation of Increasing Casebase Sizes and
Retrieval Methods

A performance evaluation of the CBR model has been conducted using
holdout-repeat cross-validation in which 200 random cases were held out to be
used for testing. Therewith for each run our casebase consisted of 4428 cases.
A test set, comprising of ten randomly selected cases from the held out set of
200 cases, represents a single epoch in the experiments and performance is
reported using Mean Relative Error (MRE) as a measure of precision. Each
experiment is repeated five times and the results are averaged over all the
epochs.

For each query instance qi in the test set, the number of similar cases
retrieved r from the casebase is 20. The relative error of each activity is then
computed between qi and r for one case at a time. The errors are averaged to
obtain MRE of each activity for qi. The process is repeated for every qi in
the test set, that is, for i = [1,10].

The MRE of the six activities are added to get the total relative error
for each qi. MRE is then calculated by averaging the relative errors for the
entire queried test set.

The total relative error T for each queried instance is calculated as:

T =
6X

i=1
MRE(Ai)

where A is the activity type as they were introduced in section D.I. MRE
for the each test set is calculated as:

MRE =
P10

i=1 Ti

10
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The experiments in this evaluation are performed in two ways: First, by
calculating the MRE of retrieved instances against each queried test instance
with increasing casebase size. Second, by comparing the different results
obtained using the CBR model and k-NN regressor model.

E.I Increasing Casebase Size
This experiment focuses on the variation observed in MRE with the increasing
size of the casebase. The CBR model was implemented using myCBR,
however the tool does not support batch queries, which was the need of
the hour for conducting the experiments for our work. To overcome this
limitation, we used a myCBR Rest API 8 for batch querying the casebase
using POST calls and the implementation was done in Python (version 3.6.3).

In this experiment, a test set is passed as a query using POST call when
the casebase initially has 500 instances. Subsequently, MRE for that test set
is calculated. 500 cases are then added to the casebase and the process is
repeated until the casebase consists of the entire data set. The experiment is
repeated five times, each with a different random test set. The average MRE
of all the epochs for the given casebase size is shown in Fig 4.

Figure 4: MRE comparison between the CBR model and k-NN regressor
model with increasing casebase sizes (MRE is calculated for k = 20 retrieved
cases)

8https : //github.com/kerstinbach/mycbr° rest° example
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In order to have a comparison of the performance of the CBR model,
the same experiment was conducted using k-NN regression model (with
k = 20). The implementation of the k-NN regressor was done using Scikit
learn (Pedregosa et al., 2011) library (version 0.19.1) in Python (version 3.6.3).
The results obtained with the k-NN model are presented along with the
results of the CBR model in Fig 4, where x-axis shows the size of the casebase
(or size of data set for k-NN) and y-axis shows the MRE averaged over five
epochs.

It can be observed from the results that MRE decreases steadily with
increase in size of the casebase in the CBR implementation. However, the
same cannot be said for k-NN, as the results show uncertain response to the
increase in size of the data set. Even after introducing the entire data set,
no improvement is observed. This decline in performance in k-NN is caused
by the presence of outliers in the test set. CBR is able to estimate closest
similar cases with respect to every activity for outliers very well, whereas
k-NN cannot estimate the nearest neighbors with respect to every activity
when presented with outliers. For instance, if there is an instance in the test
set which has some or all attributes with values either below 25% or above
75% of the data range for those attributes in the data set, it leads to the k-NN
algorithm computing nearest neighbors which are closer to the non-outlier
attributes but farther from the outlier attributes. Thus, resulting in higher
MRE even with an increased size of the data set.

E.II Selection of k
Selecting an appropriate value of k is crucial in determining the success
or failure of a k-NN regressor model. To see how the error varies, we
experimented with different values of k in the range [3,100]. Fig 5(b) shows
the variation in MRE with the change in value of k. Here, x-axis shows the
value of k and y-axis shows the MRE.

Although the determination of the closest similar profile in the CBR model
is independent of n (number of retrieved cases), it is interesting to see how the
MRE changes by varying n progressively. This allows us to further compare
and contrast the performance of CBR model with that of k-NN model. Fig
5(a) shows the variation of MRE with increasing value of n in myCBR, where
the x-axis shows the value of n and y-axis shows the MRE. It is clear from the
results that the value of k in k-NN (refer Fig 5(b)) has a huge impact on the
MRE for each epoch. The implication of this graph is that with an increase



PAPER A1

Figure 5: Number of closest cases: On the left is the graph depicting the
variation in MRE with the number of most similar cases retrieved (n) in CBR
implementation. On the right is the graph for k-NN model depicting the
variation in MRE with different values of k.

in k, more neighboring cases are taken into consideration which are either
less similar altogether or less similar with respect to a subset of activities,
resulting in the sudden variation in errors. Whereas the CBR model has
a relatively smoother response in creating the number of retrieved similar
cases. It can be argued from the results that lower values of k would have
been more suitable due to less MRE. However, our aim in this work is not to
predict using k-NN, but to find a number of nearest neighbors of the queried
profile, which is why we chose k = 20 for our experiments. As our data set
is large, k = 20 is reasonably acceptable for this application domain. Also,
from CBR perspective, considering more neighboring profiles helps in making
improvements to the similarity measure to a greater extent than considering
just one neighbor profile.

E.III Composition of Error
As we are using activity data to find other similar profiles, it is important to
know the error observed in the approximation of each activity in the similar
profiles.

Fig 6 shows the MRE (in log) for each activity using both the approaches
when introduced with the entire data set. The figure underlines that
for inactive time (lying, sitting, standing) - which is the majority for the
participants (see Table 2 and Fig 2) - the k-NN approach produces less of an
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error. For moderate activities, like walking, both approaches are very close,
while for rigorous activities, which we see only limited in the data set, the
CBR approach produces much better results. This is very important for our
overall aim of this work, as we eventually want to identify beneficial physical
activity phenotypes.

Figure 6: MRE per activity for the entire data set by the k-NN regressor and
the CBR model

This observation is undermined by Fig 7, which shows the distribution of
MRE for each of the activity calculated for both approaches after introducing
the entire data set. It can be observed that in both k-NN and CBR, most of
the error is attributed to the approximation of activity running (approx. 79%
and 51% respectively). On the other hand, it is far lower in CBR, the result
of which is relatively higher error composition of other activities as compared
to those in k-NN. However, since these are compositional parts and convey
only relative information, rather than concrete information, we must take
into consideration the actual MRE, refer to Fig 4, which is significantly lower
in case of CBR.

F Discussion
The experimental results shown in Fig 4 demonstrate that the CBR model
performs well in finding similar physical activity profiles. While k-NN is
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(a) CBR (b) k-NN

Figure 7: Error Composition for the CBR (a) and k-NN (b) model

able to well approximate four out of six physical activities when finding the
nearest neighbours, however it fails miserably in finding with respect to the
other two activities, which results in higher MRE. On the other hand, the
CBR model is able to determine the most similar physical activity profiles
with respect to every activity more closely, resulting in far lower MRE as
compared to the k-NN model. Furthermore, k-NN is susceptible to outliers,
which is the cause of increase in MRE even after introducing the entire
data set. Whereas this is not an issue with the CBR model. In Fig 5 we
observe very minor increase in MRE with increasing number of retrieved
instances using CBR model, whereas the variations are more pronounced
when using the k-NN model. These experiments demonstrate that the
similarity modelling approach presented is working successfully for our
application domain. Consequently, the CBR model significantly outperforms
the k-NN algorithm and is more robust in finding similar physical activity
profiles in a population. CBR approach can be applied to find and cluster
similar activity groups, which will further be helpful in determining activity
phenotypes.
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G Conclusion and Future Work
In this paper, we presented an approach to model the local similarity
measures for physical behaviour data in myCBR in a data-driven manner.
This model can be applied on physical behaviour data acquired using wearable
sensors to find, group and compare similar activity profiles. We have
demonstrated through experiments and statistical evaluation how the CBR
model outperforms the state-of-the-art k-NN regressor model. Thus, it can be
concluded that CBR approach is a suitable and viable option for application
such as this in the public health domain. It can further be utilized in
determining activity phenotypes in order to provide personalized activity
recommendations to participants and help slowly transform an inactive into
a more active lifestyle. We have also demonstrated through experiments the
effectiveness of similarity modelling approach presented in this paper for the
public health domain and it will be safe to conclude that it can be transferred
to other similar domains dealing with continuous numerical data.

The method presented can further be enhanced to automatically assign
the local similarities based on the attributes’ values in the casebase using
machine learning techniques, similar to what (Gabel and Godehardt, 2015)
presented in their paper. It can significantly reduce the efforts required to
create new CBR models using different data sets from scratch.

In the future, we aim to extend our research towards compositional data
analysis (Aitchison and Egozcue, 2005) on the HUNT4 data and applying
CBR on the resulting compositional data. Compositional data analysis has
been applied by researchers (Dumuid et al., 2017) for estimating the effect
of change in physical activity behaviour for daily activities. Whether a
change in one type of behaviour is beneficial or harmful for health depends on
the compensatory shifts in other behaviours. The compositional nature
of the HUNT4 data has therefore important consequences for both the
analytical approach undertaken and interpretation of effects on health
outcomes. Utilizing CBR for compositional data analysis will facilitate
(i) getting insights into the behavioural characteristics between similar
profiles in a population, (ii) understanding the association and co-dependency
among various behaviours in different profiles, and (iii) identifying physical
behaviour phenotypes.
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Abstract
In this paper, we demonstrate a data-driven methodology for modelling the
local similarity measures of various attributes in a dataset. We analyse the
spread in the numerical attributes and estimate their distribution using
polynomial function to showcase an approach for deriving strong initial value
ranges of numerical attributes and use a non-overlapping distribution for
categorical attributes such that the entire similarity range [0,1] is utilized.
We use an open source dataset for demonstrating modelling and development
of the similarity measures and will present a case-based reasoning (CBR)
system that can be used to search for the most relevant similar cases.

A Introduction
CBR has gained popularity in the recent years due to its novel approach to
abstract and transfer domain-specific expert knowledge into a user-friendly
tool which offers appropriate reasoning for solutions to problems ranging
from simple daily life tasks to complex tasks which otherwise necessitate
expert guidance.

Modelling the local similarities of attributes while preparing a CBR model
can be a challenging task for small and simple, and large and complex data
sets alike. In this paper, we direct our attention towards the knowledge
engineering process of creating a CBR model and present a data-driven
approach for modelling local similarity measures using the openly available
User Knowledge Modelling dataset1 in the myCBR workbench (Bach and
Althoff, 2012; Stahl and Roth-Berghofer, 2008). The main contribution of this
paper is a methodology for modelling the local similarity measures using a
data-driven approach. We will showcase how the knowledge stored in a data
set can be leveraged to define strong initial value ranges for both numerical
and categorical attributes and therewith moderate and stratify the knowledge
modelling process.

The remainder of this paper is organised into sections as follows: in section
B, we discuss related work about the use of data-driven similarity measure
development and its application in CBR, followed by section C wherein we
present our similarity modelling approach. Finally, section D concludes the
work presented in this paper.

1https : //archive.ics.uci.edu/ml/datasets/User+Knowledge+Modeling
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B Related Work
Similar to the preference-based similarity measure development framework
presented by authors in Hüllermeier and Schlegel (2011); Abdel-Aziz et al.
(2014), we are presenting a framework for modelling local similarity measures
based on the data set available. Therewith we can tailor each similarity
measure to the application domain. Using a data-driven approach for
automatic similarity learning and feature weighting has been presented
by Gabel and Godehardt (2015) where they trained a neural network to
induce local and global similarity measures (Richter, 1995). While we are not
automatically assigning the similarity measures, we use the existing cases to
derive them.

C Data-driven Knowledge Modelling
In this section, we explain how we implement a CBR system that can be
applied to find the most similar and relevant cases. We use the local-global-
principle for tailoring the similarity measure for each attribute and thereby
build a knowledge model (Richter, 1995). Once the local similarity measures
are defined, we continue to use weighted sum for defining the global similarity.

Some of the most common challenges for utilizing any dataset for
developing a CBR system are the identification of suitable dataset context for
the problem at hand, definition of initial similarity measures, representation
of cases and determination of valuable cases for populating the case base. In
this section, we first describe how we populate the case base and generate
cases in the developed case representation. Then we present our method
for utilizing a given dataset to model the local similarity measures for both
numerical as well as categorical attributes.

C.I Case Generation
Developing a case representation is the first step of the CBR system
development. Depending on the domain and the available data this can
be a challenging process on its own. For presenting our data-driven modelling
technique, we use the User Knowledge Modelling dataset, which comprises
of six attributes, five numerical and one categorical. The description of all
the attributes is presented in table 1.
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Attribute Description

STG The degree of study time for goal object materials
SCG The degree of repetition number of user for goal object

materials
STR The degree of study time of user for related objects with

goal object
LPR The exam performance of user for related objects with

goal object
PEG The exam performance of user for goal objects
UNS The knowledge level of user

Table 1: Description of attributes in User Knowledge Modelling dataset

The categorical attribute USN has four permitted values: Very Low, Low,
Middle, High. Table 2 shows the data statistics of the numerical attributes in
the dataset.

STG SCG STR LPR PEG

count 403 403 403 403 403
mean 0.3531 0.3559 0.4576 0.4313 0.4563
min 0 0 0 0 0
max 0.99 0.90 0.95 0.99 0.99

Table 2: Data set Statistics

The case base is then populated by loading the dataset into the previously
defined case representation in the myCBR workbench. A single case in
myCBR is represented as shown in figure 1, where User is the name of the
concept which comprises of six attributes present in the original dataset.

C.II Data-driven Similarity Measures Development
The local-global-principle requires both the local similarity measure on the
attribute level and the global one on the conceptual to be defined.

Researchers in CBR domain face the challenge of balancing the input



PAPER A2

Figure 1: Case representation in myCBR

from the domain experts and the available data while modelling the local
similarity measures for different attributes in myCBR. Having a criteria
which can lead the knowledge modelling process is helpful for both parties.
We therefore suggest to make use of the existing data in this process. While
setting upper and lower limits for numerical attributes is straight-forward,
assigning the similarity behaviour is not. Consecutively, we assume that
local similarity measures for continuous numerical attributes are polynomial
distance functions (due to their flexibility and better converging ability) and
the question is how steep of a similarity decline should be chosen. Therefore,
we focus on the polynomial function of the similarity measure for numerical
attributes and our goal is to determine their degree. We use box plots for
visualizing the distributions and variations in the data set and map this into
modelling local similarity measures.

Figure 2 shows an example of a local similarity measure for a numerical
attribute. From there we look into the Q1 and Q3, which indicate the majority
spread of the attributes in the data set. In line with Abdel-Aziz et al. (2014);
Verma et al. (2018), we decided to take these values as reference points for
determining the decrease in similarity.

Hence, creating a box-plot of the data set will allow modelling each
attribute since we only take the Inter Quartile Range (IQR) and the range
(min to max) into account:

r1 = IQR
r2 = range

(1)

It represents the difference between upper (Q3) and lower (Q1) quartiles
in the box-plot, that is IQR =Q3 °Q1.
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Figure 2: Example for Data-driven Local Similarity Modelling: On the left
there is a screen shot of a polynomial similarity function for a value range
between 0 and 1. With the arrows we depict how the box-plot for attribute
STR relates to the decrease in similarity at a certain distance.

We assume that all similarity functions are polynomial and adjust the
polynomial degree of the similarity function such that

y(r1)º 0.30
y(r2)º 0

(2)

We can observe in figure 2 how the similarity function varies with respect
to the attribute value after applying the methodology in equation 1 and
2. The bigger the polynomial degree, the steeper the similarity function
and more precise the attribute values in retrieved cases. The decline in the
similarity function is steeper in the beginning until at r1 it reaches close
to y(r1) and then decreases gradually until at r2 it is approximately close
to y(r2). This way, the similarity function covers the entire attribute range
as well as the similarity measure range [0,1]. We use this as the initial
definition of similarity measures.

While the local similarity measures for numerical attributes can be
derived using their data distributions, assigning the similarity behaviour
for categorical attributes can be challenging as it depends on whether or not
there is a pre-existing relationship between the categorical values. In our
dataset, the categorical attribute UNS has four permitted values which have
an implicit relationship amongst each other. The local similarity measure for
such an attribute can be modelled such that the relationship amongst the
values is preserved while achieving the desired variation in the similarity
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measure in the range [0,1], as shown in Figure 3. In case of no relationship
amongst the values, the similarity of one value to every different value can
be set to zero.

Figure 3: Similarity measure modelling for non-overlapping categorical
attribute

C.III Retrieving Similar Cases
Once the casebase and similarity measures are in place, the model can be
used to find similar cases. Figure 4 shows the result of one such query
retrieval in myCBR. The retrieved cases are sorted by similarity value in
descending order, that is, most similar case are displayed at the top while
least similar are at the bottom. On the lower part of the figure, the four most
similar Users are shown in a detailed view. The tool marks closer matches
darker.

Figure 4: A Query and its retrieval result in the myCBR workbench



PAPER A2

D Discussion and Conclusion
In this paper, we have presented an approach to model the local similarity
measures of a given dataset in myCBR in a data-driven manner. Our
approach can be applied on any dataset to model the similarity measures.
A more detailed evaluation of our approach can be found in Verma et al.
(2018) where we statistically evaluated its effectiveness using a public health
domain dataset and showed that the CBR model created using our approach
outperforms the k-NN regressor model in finding the most similar cases. The
approach presented in this work can significantly reduce the efforts required
to create new CBR models using different data sets from scratch. Therefore,
it is safe to conclude that the approach works well on the used dataset and
may also be applicable to other domains.
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Abstract
In this paper, we reuse the Case-Based Reasoning model presented in our
previous work (Verma et al., 2018) to create a new knowledge-intensive
similarity-based clustering method that clusters a case base such that the
intra-cluster similarity is maximized. In some domains such as recommender
systems, the most similar case may not always be the desired one as a user
would like to find the closest, yet significantly different cases. To increase the
variety of returned cases, clustering a case base first, before the retrieval is
executed increases the diversity of solutions. In this work we demonstrate a
methodology to optimize the cluster coherence as well to determine the
optimal number of clusters for a given case base. Finally, we present
an evaluation of our clustering approach by comparing the results of the
quality of clusters obtained using our knowledge-intensive similarity-based
clustering approach against that of the state-of-the-art K-Means clustering
method.

A Introduction
With the unprecedented growth in popularity of wearable activity trackers,
acquiring reliable and objective physical behaviour data from users over a
long period of time has become feasible. Activity trackers provide objectively
measured basic activity statistics such as daily step count, miles run, heart
rate among others while some selective trackers additionally provide activity
recommendations to help user stay active throughout the day. While the
validity and reliability of the activity trackers remains a topic of research
(O’Driscoll et al., 2018), we conduct our research on the very premise
of physical behaviour measured objectively, as opposed to self-reported
(subjective) and that shall be the point of departure for our work ahead.
Such objectively measured data present the opportunity to identify groups
of people (or clusters) with similar physical behaviour (Marschollek, 2013;
Howie et al., 2018). Further, this may provide a foundation for gaining new
insights into the driving forces of physical behaviour in a population.

Clustering methods provide a simple yet powerful way to reveal
underlying structure of the data and statistically understand the relationship
between different data points. K-Means clustering is one of the most
commonly employed state-of-the-art unsupervised machine learning method
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for partitioning a given dataset into k clusters (MacQueen, 1967). Simple
similarity metrics are used for calculating the similarity of the assigned
cluster centroids to any given data point in the dataset in order to determine
the cluster membership of each data point. The process repeats until no more
changes in the position of centroids are observed. However, there are certain
limitations to K-Means. It has a tendency to overlook data complexity (Yang
et al., 2016) and moreover, is sensitive to outliers (Singh et al., 2011) and
therefore can fail to give meaningful clusters in presence of many outliers in
the dataset.

The challenge for most state-of-the-art clustering methods is the use
of knowledge poor similarity metrics or simple distance metrics such as
Hamming distance and Euclidean distance, among others. These metrics
take into consideration only the syntactic difference between two data
points, ignoring the coherence of each attribute or variable of a data point,
thus leading to insufficient estimation of the similarity between them. In
datasets where each variable takes on a value within a specific range elicits
a requirement for modelling the local dependency for each variable. The
similarity metric used must allow the existing knowledge to be brought to
use for the assessment of similarity between data points in a dataset. Simple
distance metrics can render the clusters incoherent in a complex dataset as
opposed to cohesive clusters wherein the data points within a cluster are more
similar to each other than to data points in another cluster. A solution to this
problem can be formulated using Case-Based Reasoning (CBR) (Aamodt and
Plaza, 1994), which employs a more knowledge-driven approach. Focusing
on the semantic similarity between attributes rather than the syntactic
similarity, the collective influence of each variable’s importance on the final
(global) similarity score will improve the clustering quality significantly by
incorporating the existing knowledge in the dataset (Adam and Blockeel,
2015) and that CBR offers a more versatile approach to handle clustering of
complex datasets (Müller and Bergmann, 2014).

In the sections that follow, we will use both knowledge-intensive as well
as knowledge-poor similarity measures for cluster computation. We now
hypothesize in this paper that using knowledge-intensive similarity measure
as the metric for clustering the cases in a case base would create clusters
wherein the cases within each cluster are semantically more similar to each
other than to cases in the other clusters. The main contribution of this paper
is a knowledge-intensive similarity based clustering method that can be used
for any case base to compute clusters with high intra-cluster similarity. For
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brevity sake, any mention of the term similarity from this point onwards
shall be taken as a reference to the knowledge-intensive similarity, unless
otherwise stated. The terms have also been used interchangeably.

This paper is organized into sections as follows: section B discusses the
related work on similarity-based clustering, section C presents the application
domain and elaborate on how similarity based clustering can be applied to
identify clusters of physical behaviour profiles from the objective physical
behaviour data; section D is dedicated towards our similarity based clustering
algorithm; section E describes the dataset we use to test our algorithm;
section F presents a set of experiments to evaluate our clustering approach,
followed by section G discusses and conclude our work.

B Related Work
Application of clustering methods has played a major role in discovering
the underlying patterns in public health data sets and understanding the
characteristic differences among clusters. Identifying different clusters of
similar physical behaviour patterns is similarly pivotal in understanding
the physical activity characteristics of a population and will facilitate
identification of different physical behaviour phenotypes1. Clustering has
been previously applied by Marschollek (2013) on objectively measured
physical behaviour data to identify four activity phenotypes using regularity,
duration and intensity of activities as the pivotal attributes. Similar
to their work, we aim at applying clustering, albeit knowledge-intensive
similarity-based, on objectively measured physical behaviour data to identify
phenotypes. Using a more probabilistic approach, Howie et al. (2018)
identified five activity phenotypes for each gender using sex-specific latent
class analysis. Although our approach differs from the one taken in their
work, our long term goals and the target data are quite similar.

Similar to the self-efficacy based activity recommendation approach
adopted by Baretta et al. (2019) to promote physical activity among
adults, we aim to underpin activity recommendations based on the activity
profile-assessed efficacy using a case-based approach in order to promote
achievement of recommended physical activity goals2. A case-based

1www.sciencedirect.com/topics/neuroscience/phenotype
2https : //www.who.int/ncds/prevention/physical ° activity/guidelines ° global °

recommendations° f or°health/en/
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marathon profile recommendation approach has been presented by Smyth
and Cunningham (2017) to help marathon runners achieve their personal
best. Using a different approach for improving the similarity-based retrievals
in CBR, Müller and Bergmann (2014) presented a cluster-based indexing
approach to make retrieval of most similar cases more efficient. While they
use the similarity measure to construct a hierarchical cluster-tree which is
used as an index for efficient retrieval, we use the similarity measure to
create the clusters which can then be used as an index for retrieving relevant
cases. Lucca et al. (2018) presented a framework for developing an index on
clustered cases for improving query accuracy in agent simulation systems and
making retrieval of relevant cases more efficient by organizing a large case
base into smaller sub-case bases. Similarly, Cunningham (2009) introduced
using similarity as a valid measure for selective sampling and generating
solutions for unlabelled cases in clustered case bases.

Furthermore, Fanoiki et al. (2010) presented a cluster-based approach
which facilitates the identification of relevant cases for a given query problem
by considering the similarity relation among the cases within the case base
with respect to their problem space as well the solution space. Their guiding
principle being that the solutions of the most similar cases are likely to
be similar if their problem descriptions are also similar. They formulate
the solution by first selecting the cluster with the most similar problem
description and then adapting the solution of the cases within that cluster.
This is similar to what we intend to achieve for recommending activity goals.

C Clusters of Physical Behaviour Profiles
Real-time activity tracking and systematic physical activity recommendations
remind users to help them stay active throughout the day. This is especially
useful for sedentary individuals (Lagersted-Olsen et al., 2013). Prolonged
uninterrupted bouts of sedentary behaviour are known to be detrimental to
health (Saunders et al., 2012). In addition to the type of physical activity, the
intensity of the moderate to vigorous activity performed also has an impact
on the overall health outcomes (Ekelund et al., 2019).

The importance of enough sedentary behaviour has also been
acknowledged since both high as well as low ends of the activity spectra
are necessary in the right balance in order to promote good health (Coenen
et al., 2018). However, the existing state-of-the-art trackers provide
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approximately the same recommendations with slight variation to every
user. Recommending activity goals to an individual which are challenging,
yet achievable is more beneficial for improving their health as opposed to
recommending either unachievable or not challenging enough activity goals
(Baretta et al., 2019). Using an example from our dataset, we demonstrate
how a CBR system can be used to identify unique clusters of physical
behaviour profiles and how evidence-based experience of other similar profiles
can be used to underpin activity recommendations for an individual.

Figure 1: Example: A potential set of similarity-based clusters and how they
can be utilised to recommend achievable activity goals to a user. The x-axis
and y-axis show total sedentary duration and active duration (in minutes),
respectively, over a period of six days.

Suppose we identify four clusters of physical behaviour profiles, as shown
in figure 1 (we use a small subset of the original dataset for clarity in
the visualization), in our dataset (see section E. The aim is to provide a
user a diverse set of adapted most similar profiles from other clusters as
recommendations, ranked by their similarity (such that lower similarity
indicates more challenging goal). For instance, to recommend activity goals
to case 20, the system can select one most similar case from each cluster
other than its’ member cluster and return the set of adapted profiles ranked
by similarity to offer a diverse set of options for the user to choose their goal
from. The most similar profile, case 67 appears to be a challenging as well
as an achievable goal for case 20. Therefore, it might be advisable for case
20 to try and get closer to the adapted activity profile of case 67 if they wish
to challenge themselves while at the same time achieve the recommended
activity goals. Similarly for case 85, case 12 appears to be a challenging and
achievable goal. Therefore, in this case, it might be advisable for case 85 to
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try and get closer to the adapted activity profile of case 12 in order to become
more physically active.

Large and complex datasets such as the objective measurements for the
HUNT43 (see section E) study require pre-processing and organization of the
case base to improve the overall performance of a CBR system. We address
this topic by identifying unique clusters of different physical behaviour
within the HUNT4 dataset using our similarity-based clustering method.
We direct our attention solely towards understanding the behavioural
characteristics of a sample population that contribute to differences in
physical activity and sedentary behaviour which could allow for designing
improved recommendations tailored to each phenotype for an innovative,
yet effective active lifestyle management intervention. To elicit greater
improvements in the existing infrastructure of activity recommendations,
radical shift in the use and application of the existing methodologies may be
required.

D Knowledge-intensive Similarity-based
Clustering

Unsupervised machine learning methods provide a way of inferring
underlying patterns or structure in a given dataset without any reference to
known outcomes and therefore, is a viable option for our problem. We have a
dataset consisting of 9034 physical behaviour profiles and look for clusters
that represent meaningful physical behaviour types. Each cluster should be
semantically coherent. While the state-of-the-art clustering methods such as
K-means do provide a set of clusters, the profiles within each cluster are not
guaranteed to be very semantically similar to each other since these methods
use knowledge-poor similarity measures or simple distance measures.

As we have shown in our previous work (Verma et al., 2018), CBR
outperforms the k-NN method in finding the most similar physical behaviour
profiles. We therefore use the similarity score as the measure for clustering
the profiles in our dataset. Our approach for using similarity as the metric for
clustering extends the conventional approach of similarity in CBR by allowing
to model and further utilize the similarity measures which are aligned with
domain expert knowledge. Algorithm 1 introduces the knowledge-intensive

3https : //www.ntnu.no/hunt4
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similarity-based clustering algorithm used in our work.

Input : case base C, number of clusters n
Output : n clusters
initialization: assign n random cases as centroids-{cn}
Determine Cluster Membership
for each case k in C do

compute sim(k,cj), 8j 2 1, ...,n
assign k to most similar centroid

end
Update Cluster Centroids
for each cj in {cn} do

compute meanSimj= 1
|Sj|

P
8ki2Sj sim(ki, cj)

find case m in Sj such that
sim(m,cj) º meanSimj

assign m as the new centroid cj
end
Repeat until centroids converge
Sj denotes the set of cases in cluster cj.

Algorithm 1: Knowledge-intensive Similarity-based Clustering
Algorithm

The algorithm initially assigns n cases as centroids at random and then
computes the clusters using the similarity score of each case to each centroid.
As the similarity-based clustering method operates on the similarity score
between each case and each centroid to determine its’ cluster membership, it
is independent of the data type. As a result, one advantage of this method is
that it can be applied to different types of data sets other than just numerical,
for example categorical or mixed datasets, which otherwise proves to be
challenging when using the conventional clustering methods. Once the
similarity measures are in place, the user is freed from the trouble of taking
care of the data types before applying this knowledge-intensive similarity-
based clustering method.

E Dataset
The data set used in this work is the objectively measured physical activity
data collected during the fourth round of the HUNT4 cohort study. The data

4https://www.ntnu.no/hunt
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collection in HUNT4 spanned over 18 months and was finished in February
2019. Each person who volunteered to participate in the objective physical
activity data collection was fitted with two tri-axial accelerometers, AX3
Axivity5, one on the lower back and another on the thigh and wore them
for a period of seven consecutive days. Objective measurements of a total
of 35449 participants have been collected and basic physical activities have
been assigned (see Table 1).

Table 1: Activity Descriptions.
Activity Description
Lying The person is lying down
Sitting When the person’s buttocks is on the seat of a chair or something

similar
Standing Upright, feet supporting the person’s body weight
Walking Locomotion towards a destination with one or more strides
Running Locomotion towards a destination, with at least two steps where

both feet leave the ground during each stride
Cycling The person is riding a bicycle

Before populating the CBR system, we pre-process the data to obtain the
same amount of data per participant. Therefore we decided to only include
participants who have full six days of measured data. Furthermore, we
remove any record containing zero minutes for lying, standing, sitting and
less than one minute for walking activity as well as records where the sum
of all activities exceeds 1440 minutes for a day (which represents the total
minutes in a day). Due to various reasons including discomfort, sensor failure,
loss or removal of sensor, our dataset reduced to 31113 participants, out of
which we randomly sample 9034 participants while maintaining the overall
distribution of activities for our experimental evaluation. Figure 2 shows the
distribution of the six activities in the dataset.

F Experimental Evaluation
We implemented the knowledge-intensive similarity-based clustering
algorithm in Java (version 1.8) using the java implementation of myCBR
tool6. The CBR model for our dataset has been created in the myCBR

5https : //axivity.com/downloads/ax3
6https : //github.com/ntnu°ai° lab/mycbr° sdk
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Figure 2: Summary of test dataset (9034 participants): Distribution of
minutes spent per activity category over a period of six days

workbench (Stahl and Roth-Berghofer, 2008) by importing the data from
a csv file. Similarity modelling of each activity attribute has been carried
out in the same data-driven manner as we have presented in our last work
(Verma et al., 2018). We then used the CBR model in our java implementation
of the algorithm to compute any desired number of clusters.

F.I Coherent Clusters
A new set of centroids in the knowledge-intensive similarity-based clustering
algorithm may or may not give better mean similarity of clusters than the
previous centroids. We can observe in figure 3, the mean similarity of clusters
varies to a large degree with each progressive round of clustering, wherein
each round represents a new set of centroids. These variations occur due to
change in cluster membership of the cases. As the membership of cases in
the case base evolves over several rounds, the movement of cases, especially
the edge cases from one cluster to another may result in increase in the mean
similarity of the exiting cluster and decrease in that of the joining cluster or
vice-versa, thereby introducing positive as well as negative variations in the
cluster mean similarity. These variations make it challenging to determine
the optimal centroids and clusters at any given point in the algorithm.

Direct optimization of similarity-based clustering is an NP-hard problem
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Figure 3: Variation in average similarity of ten clusters over multiple rounds

(Yang et al., 2016). To overcome this challenge, we employ a strategy where
the algorithm looks s steps or rounds to the future to check if it finds a set
of centroids with a higher mean similarity than the current set of centroids.
It declares convergence only when it does not find any new set of centroids
with a higher mean similarity than the current maximum mean similarity
after s steps. The objective now is to determine the step size s. It can be
observed in figure 3 that the mean similarity undergoes considerable amount
of variation over multiple rounds. Therefore, s must be set large enough to
foresee enough number of rounds before declaring convergence, but small
enough to be computationally inexpensive for large datasets. The hypothesis
here is that the probability of falling into a local maxima is less if the step
size s is large enough to accommodate the variation observed in the mean
similarity of clusters over multiple rounds, wherein each round consists of a
new set of centroids.

We can observe in the figure 4, with the increase in the number of clusters,
there is a decrease in the difference between the mean similarity achieved
at any given s and the maximum mean similarity. This indicates an inverse
relation between step size s and the number of clusters n. The value of s may
differ depending on the size of the dataset and the number of clusters chosen,
however, for our dataset, s = 50 seems to give a fair trade-off between time
complexity and cluster coherency.
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Figure 4: Relative difference in the mean similarity of clusters with the step
size s for number of clusters n in the range [2,100]: The y-axis of the graph
represents the difference between the maximum mean similarity and mean
similarity achieved at s, displayed by the x-axis, for each n

F.II Number of Clusters
Clustering allows you to split a given data set into clusters according to
a similarity metric, but one must specify the desired number of clusters
in advance. Determining the optimal number of clusters in unsupervised
clustering is a fundamental challenge and can be a daunting task. One way
to determine the optimal number of clusters in K-Means is the elbow method,
which involves plotting the sum of squared errors (SSE) against the number
of clusters. As SSE decreases with the increase in number of clusters, the
optimal number of clusters is observed by noting the elbow in the graph. In
our case however, as we are operating on the mean similarity of clustering
which is expected to increase with the increase in the number of clusters, we
will have a reverse elbow graph.

To determine the optimal number of similarity clusters we plot the
mean similarity of clusters against the number of clusters. With s = 50,
we computed n clusters in the range [2,100] in order to learn the optimal
number for our dataset. Five epochs were computed with n randomly chosen
cases as initial centroids, wherein each epoch consists of reassignment of
cases and recomputing the centroids until the clusters converge. Afterwards,
an average was computed from the mean similarity values of all the five
epochs. The results are shown in figure 5, where it can be observed that the
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Figure 5: Similarity within clusters for the knowledge-intensive, similarity-
based clustering(step size s = 50)

Figure 6: Similarity within clusters for the K-Means clustering method

mean similarity increases gradually until 20 clusters, followed by a slow but
steady increase. This indicates the maximum optimal number of clusters
for our dataset is 20 or less. We need a more detailed analysis in order to
uniquely identify the different phenotype clusters from our dataset and aim
at achieving this goal using similarity-based clustering.

F.III Assessment of Cluster Quality
We now evaluate the quality of the computed clusters within our dataset
using our similarity-based clustering approach. We present an evaluation
by comparing the performance of the proposed similarity-based clustering
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method with that of state-of-the-art K-Means clustering method. The
implementation of K-Means clustering algorithm was done using Scikit Learn
library in Python (version 3.6.3) (Pedregosa et al., 2011) .

For comparing the results for both methods, we needed a common metric
to base the comparison on. Since our aim is to have clusters with high
degree of intra-cluster similarity, we decided to take the mean, minimum
and maximum similarity as the metric for comparing the methods. However,
K-Means does not compute semantic similarity between two given data points.
To overcome this hurdle, we implemented a Rest API function in the myCBR
java package which allows us to compute the similarity of any two given
cases, provided that the attribute values are within their respective range as
defined in the CBR model. We then used POST calls to calculate the similarity
between each case and its cluster centroid for each cluster obtained using
K-Means implementation. Five epochs were computed for both K-Means and
similarity-based clustering methods. Each epoch consisted of reassignment
of cases and recomputing the means until the clusters converge. An average
was then computed of all the five epochs. The number of clusters n computed
in each epoch were in the range [2,100].

Figures 5 and 6 show the minimum and maximum similarity for all the
clusters in addition to the mean similarity for both similarity-based clustering
and K-Means clustering. It can be observed from the results that the mean
similarity and the minimum similarity for each number of clusters n are
higher in similarity-based clustering, however there is not much difference
in the maximum similarity. To further verify the difference in the results
obtained by our algorithm and K-Means, we performed a t-test at significance
level Æ = 0.01 and Æ = 0.05 for the mean similarity values of the clusters
obtained using both the methods. The result is: t-value = 2.87, p-value=
0.008; which is significant at both Æ.

Although the measurable difference between results obtained using K-
Means and similarity-based clustering appears to be small, the t-test results
show that the results obtained are significantly different. Moreover, the
difference lies in the quality of the clusters obtained using both the methods.
As stated previously, our objective in this work has been to create clusters
wherein the cases within each cluster are more similar to each other than
to cases in other clusters. In other words, if we were to query for m similar
cases for a particular case, say Participant 8921, we would expect the most
similar cases to be in the same cluster as the queried case rather than in
some other cluster(s), except perhaps for the edge cases. We can examine
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this by querying the case base in the myCBR workbench and then verifying
the cluster labels of the m most similar cases in the clusters obtained using
both K-Means and similarity-based clustering methods. We choose n = 20
and make retrievals using two randomly chosen cases with m = 6. Figure 7
presents the results.

Figure 7: Examples showing the quality of clusters for k-Means vs similarity-
based clusters. [Part.: Participant, Sim: Similarity]

Taking as reference the top most record, which is the queried case itself,
we can now compare and contrast the difference in the quality of the clusters
obtained using both the methods. In both the examples, the most similar
cases in the similarity-based clusters are placed in the same cluster. On the
other hand, most of the similar cases are placed in different clusters in the
K-Means clusters. The examples presented in figure 7 support our hypothesis
that the quality of clusters achieved using our approach is much superior.

G Discussion and Conclusion
In this paper, we have presented a clustering algorithm which uses knowledge-
intensive similarity as the metric for computing clusters in a case base. We
presented an evaluation using the clustering method in a CBR application
built for the HUNT4 physical behaviour dataset. The method computes
clusters and demonstrates how coherent clusters can be obtained using an
optimization strategy (see section F.I). The experimental results shown in
figures 5 and 6 along with the examples presented in figure 1 inevitably
demonstrate the coherence as well as the diversity of the clusters obtained
using our similarity-based clustering approach.

As stated previously, the conventional clustering methods such as K-
Means have certain limitations which can be overcome using CBR. K-Means
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tends to overlook the complexity of the data and puts emphasis on the
attributes which have a dominant presence in the data (such as lying) while
ignoring the smaller (such as running) but significant attributes. While a
small-scale change in the small attributes may not result in a very large
difference in the similarity score, it can however change the order of the
similar cases. And thus, even though the cases in each K-Means cluster have
a fairly high similarity to their cluster centroid, they are not necessarily very
similar to each other.

We have demonstrated experimentally the clusters obtained using our
similarity-based clustering approach have higher intra-cluster similarity
amongst the cases as opposed to the clusters obtained using the state-of-the-
art K-Means clustering method. The difference in the results obtained has
been found to be statistically significant. Therefore, it is safe to conclude
that our hypothesis is correct and the proposed similarity-based clustering
algorithm provides better clusters than the K-Means clustering method. The
proposed algorithm is a suitable and viable option for our application and
gives the desired coherent clusters. The proposed similarity-based clustering
method can nevertheless be applied to other datasets as well, including mixed
datasets since the method is independent of the data types.

In future, we will investigate the physical behaviour profiles in more
detail and use sequential physical behaviour data for clustering profiles by
adding on information such as the intensity, frequency and duration of the
activity bouts. The guidelines on physical activity make it evident that there
is a necessity to develop recommendations that address the links amongst the
type, duration, intensity, frequency and the total amount of physical activity
necessary to be done by an individual in order to prevent non-communicable
diseases and general health issues. We will extend our work to address this
challenge by using similarity-based clustering to determine more specialized
clusters and attempt to steer towards identifying the physical behaviour
phenotypes in our dataset.
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Abstract
Patient-reported outcome measurements (PROMs) are commonly used in
clinical practice to support clinical decision making. However, few studies
have investigated machine learning methods for predicting PROMs outcomes
and thereby support clinical decision making. Using two datasets consisting
of PROMs from 1) care-seeking low back pain patients in primary care
who participated in a randomized controlled trial, and 2) patients with
neck and/or low back pain referred to multidisciplinary biopsychosocial
rehabilitation, we investigate data science methods for data prepossessing
and evaluate selected regression and classification methods for predicting
patient outcomes. The results show that there is a potential for machine
learning to predict and classify PROMs. The prediction models based on
baseline measurements perform well, and the number of predictors can
be reduced, which is an advantage for implementation in decision support
scenarios. The classification task shows that the dataset does not contain
all necessary predictors for the care type classification. Overall, the work
presents generalizable machine learning pipelines that can be adapted to
other PROMs datasets. This study demonstrates the potential of PROMs in
predicting short-term patient outcomes. Our results indicate that machine
learning methods can be used to exploit the predictive value of PROMs and
thereby support clinical decision making, given that the PROMs hold enough
predictive power

A Introduction
While the application of machine learning (ML) methods is expanding into
new clinical areas, both in medical research and clinical practice (Jiang
et al., 2017; Yu et al., 2018), these methods have rarely been used on patient-
reported outcome measurements (PROMs). PROMs are used commonly for
health conditions that are difficult to assess with objective measurements,
such as non-specific musculoskeletal pain and mental disorders. The
predictive capabilities of ML methods, combined with clinical expertise,
may increase the precision of clinical decision-making and thereby improve
patient outcomes in these conditions (Holmes et al., 2017). To the best of
our knowledge, no prognostic models based on ML methods are currently
in clinical use for predicting outcomes among patients with non-specific
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musculoskeletal conditions, such as neck pain and low back pain. These
conditions are among the leading causes of disability worldwide (Hurwitz
et al., 2018) and improving the precision of clinical decision-making to
improve patient outcomes will likely have a substantial impact on their
disability burden.

Predicting outcomes from PROMs in patients with neck and/or low back
pain (NLBP) is a challenging task owing to the subjective nature of the
data. Nevertheless, some recent studies have shown promising results in
applying ML methods. In a study by Nijeweme-d’Hollosy et al. (2018), binary
classification models trained on PROMs data were used to predict whether low
back pain patients should be referred to a Multidisciplinary biopsychosocial
rehabilitation (MBR) program or undergo surgery. The authors concluded
that the ML models show small to medium learning effects. Another study
showed that a ML least shrinkage selection operator approach performs well
in predicting pain-related disability at 2-year follow-up among older adults
with NLBP (Fontana et al., 2019).

The current study continues this line of research, intending to investigate
to what extent different ML methods applied to PROMs data can identify
predictors of outcomes and predict outcomes among patients with non-specific
NLBP. The research question addressed in this work is: Can Machine
Learning methods make predictions using patient-reported data to facilitate
the shared decision-making process for patients with NLBP?.

B Background
Early and thorough assessment of non-specific low back pain is recommended
to support a clinician’s treatment planning for patients at increased risk
of poor outcome (Lin et al., 2020). MBR is a commonly used treatment
approach that targets biological, psychological, and social influences on low
back pain (Saragiotto et al., 2015). However, this treatment approach is
costly and time-consuming and the decision on whether a patient should start
an MBR program is challenging. Supported self-management via web or
mobile application is another alternative treatment approach that has gained
popularity in recent years (Machado et al., 2016). One such decision support
system (DSS) delivered via mobile application has been implemented in the
selfBACK project (Mork and Bach, 2018). selfBACK DSS was developed
to facilitate, improve, and reinforce self-management of non-specific LBP.
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The core idea is to empower patients to take control of their symptoms and
treatment.

PROMs are a valuable source of information but few studies have
exploited PROMs in the context of applying ML methods. Rahman et al.
(2018) performed a study, aimed at predicting pain volatility among users of a
supported self-management delivered via a mobile application (“Manage My
Pain”). Unsupervised ML methods were used to cluster the users followed by
supervised ML methods to predict pain volatility levels at 6-month follow-up
using in-app PROMs (130 in total). The best accuracy was 70%, achieved
using Random Forest. In a follow-up study, Rahman et al. (2019) addressed
the topic of identifying the most important predictors of pain volatility using
different feature selection methods and found that similar prediction accuracy
(68%) can be achieved using only a few predictors (9 features). In another
study, Harris et al. (2019) compared the performance of four supervised
ML models including Logistic, LASSO, Gradient Boosting Machines, and
Quadratic Discriminant Analysis for predicting whether or not a patient
achieves a minimal clinically important difference (MCID) in several pain
and function related outcomes at 1-year post knee arthroplasty. Using
preoperative PROMs as predictors, they found that similar performance
can be achieved across different models for various outcomes by varying the
number of inputs. None of the models was found to be superior for all the
outcomes. In contrast, Fontana et al. (2019) found that LASSO performs
better than Gradient Boosting Machines and Support Vector Machines in
predicting MCID at 2-year follow-up among patients undergoing knee or
hip arthroplasty. Similarly, Huber et al. (2019) compared the performance
of eight supervised ML models for predicting MCID at six months among
patients undergoing knee or hip replacement. Preoperative PROMs were
used as predictors, and the results showed that Gradient Boosting machines
yielded the most accurate prediction.

C Datasets
In this section we describe the two datasets used in this work to build
classification and regression models for PROMs.
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Figure 1: Overview of data collection in the selfBACK randomized controlled
trial. The different data components are indicated by the orange boxes.

C.I Dataset 1
Dataset 1 consists of PROMs collected from LBP patients recruited in the
intervention group of the selfBACK randomised controlled trial (RCT) 1,
which aimed at facilitating self-management among patient with non-specific
LBP.

Figure 1 shows the data collection in selfBACK. The data is categorised
into Baseline, Tailoring and Follow-Up (FU) data. Patients were recruited
through the referral of their primary care clinician, followed by screening
for eligibility based on a set criteria. Eligible patients who accepted to join
the study answered questionnaires at different time points: (1) at the time
of intake: Baseline questionnaire (Baseline Data), (2) at the end of every
week: Tailoring questionnaire (Tailoring Data), (3) at the end of 6-weeks,
3-months, 6-months, 9-months: Follow-Up questionnaire ((FU Data)). The

1https : //clinicaltrials.gov/ct2/show/NCT03798288
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questionnaire measures are:

• Pain level

• Pain self-efficacy

• Physical activity

• Sleep quality

• Fear avoidance

• Functional ability

• Work-ability

• Mood

The baseline questionnaire also included demographics (education,
employment and family). The tailoring and follow-up questions are subsets
of the baseline questions. A comprehensive overview of the data collection
can be found in Sandal et al. (2019).

Based on the patients’ responses at baseline, the selfBACK mobile
application recommends an exercise plan and educational elements along
with tracking their number of steps everyday from a wearable device (Xiaomi
Mi Band 3). Exercise completion and educational readings were self-reported
in the app. From this dataset, we only use the Baseline and FU-1 data for
the experiments.

Target Outcomes
The average pain (last week) and work-ability reported by the patients in
the FU-1 dataset were chosen as target outcomes from dataset 1, referred to
as P A f and W AI f respectively. Average pain is self-assessed using the
Numerical Pain Rating Scale (Hartrick et al., 2003), ranging from 0(no
pain) to 10((disabling) severe pain). Pain rating scales are commonplace
in the medical and healthcare context and are used widely in different
medical environments as a tool of communicating or expressing level of
pain experienced by an individual. Work Ability Index (WAI) is a self-
assessment measure used in workplace and occupational health surveys
and uses the Numerical Rating Scale ranging from 0(completely unable to
work) to 10(workability at its best) (Tuomi et al., 2002). It is widely used
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in occupational health and research to facilitate understanding different
dimensions of a working individual including their current ability to work
compared with their lifetime best, self-prognosis of their work-ability in the
last two years, their ability to work with respect to the demands of the job,
the number of sick leaves taken in the last year, among others.

The dataset for predicting P A f contains completed data from 218 patients,
while for predicting W AI f contains data from 159 patients. The number of
patients is less in W AI f due to the exclusion of patients who did not answer
the baseline WAI, among them are the retired patients as this measure does
not apply to them. The final dataset comprises of 47 self-reported measures,
which form the predictor variables.

C.II Dataset 2
Data was collected by the Roessingh Center of Rehabilitation (RCR),
Netherlands, between 2012-2019. The data consists of PROMs collected
from NLBP patients referred to MBR using questionnaires administered at
four time points: 1) before intake, 2) at the start, 3) at the end, and 4) after 3
months of pain rehabilitation, see figure 2. Patients gave consent to use their
data for scientific research.

The questionnaires contain self-reported measures commonly used in
pain rehabilitation,

• Hospital Anxiety and Depression Scale (HADS) (Bjelland et al., 2002)

• Multidimensional Pain Inventory (MPI) (Verra et al., 2012)

• Pain Disability Index (PDI) (Soer et al., 2013)

• Psychological Inflexibility in Pain Scale (PIPS) (Trompetter et al., 2014)

• Rand-36 Health Survey (RAND-36) (Saimanen et al., 2019)

The responses on the 121 questions were used to calculate 23 scores,
shown in table 1. These scores are used as features in the ML experiment.

Target Outcome
The targets were the referral advice, which were given after the eligibility
assessment (figure 2). The data set contained 1040 patient records. These
records were labelled according to 4 possible referral advises:
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Figure 2: Overview of the assessment moments with questionnaires at
the pain rehabilitation centre RCR, Enschede, the Netherlands. MBR:
Multidisciplinary Biopsychosocial Rehabilitation.

Table 1: The PROMs included in Dataset 2

HADS
Anxiety Depression Total score
MPI
Pain severity Interference Life control
Affective distress Solicitous responses Distracting responses
Punishing responses Support Household chores
Outdoor work Social activities General activities
PDI
Total score
PIPS
Avoidance Cognitive fusion Total score
RAND-36
Physical functioning Role limitations Vitality
Mental health
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Table 2: Referral combinations the classification algorithms were trained on.

Model Class A Class B # of cases
1 Clinic RCR Polyclinic RCR 529
2 Clinic RCR Reject 606
3 Polyclinic RCR Reject 665
4 Polyclinic RMCR Clinic RCR 375
5 Polyclinic RMCR Polyclinic RCR 434
6 Polyclinic RMCR Reject 511

– Clinic RCR (n=235): accepted for MBR at the RCR and advised to follow
a clinical treatment path.

– Polyclinic RCR (n=294): accepted for MBR at the RCR and advised to
follow a polyclinical treatment path.

– Polyclinic RMCR (n=140): referred to Roessingh Medinello Center of
Rehabilitation (RMCR), which is similar to Polyclinic RCR but provides
treatment paths for less complicated patients.

– Reject (n=371): referred to the RCR from primary or secondary care,
but rejected after intake by clinician at RCR because they were not
eligible.

This labelling resulted into an unbalanced dataset. The final dataset is
shown in Table 2. The column # of cases shows the total number of cases
(Class A + Class B) in Dataset 2 per combination.

D Methods
This section describes the ML tasks and the steps undertaken in the
experiments. The ML pipeline used in this work is illustrated in figure
3.

D.I Regression
This task explores the application of different methods to determine which
PROMs are optimal for predicting the target outcomes in dataset 1 and
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Figure 3: The workflow of the Machine Learning pipeline used in this study.

different supervised ML methods to determine the predictability of the
outcomes and the best suited algorithm for this task.

Seven algorithms were used to estimate the target outcomes: Linear
Regression (Driver and Kroeber, 1932), Passive Aggressive Regression
(Crammer et al., 2006), Random Forest Regression (Svetnik et al., 2003),
Stochastic Gradient Descent Regression (Robbins and Monro, 1951), AdaBoost
Regression (Freund and Schapire, 1997), Support Vector Regression (Boser
et al., 1992), XGBoost Regression (Chen and Guestrin, 2016). The algorithms
were chosen based on the existing literature applying machine learning
methods on PROM datasets in a bid to predict patient-specific outcomes
(Rahman et al., 2018, 2019; Huber et al., 2019) and a number of experiments
carried out previously where several algorithms were evaluated for their
ability to predict patient-reported outcomes, including the ones mentioned
above along with Neural Networks, k-NN, Gradient Boosting Machines
among others, on similar regression tasks. The evaluation resulted in the
selection of the above-mentioned seven algorithms, identified as most suitable
for this task.

D.II Classification
We explored different ML methods to determine which PROMs are most
useful for both referral of patients in- and to MBR using dataset 2. We
used the clinician’s decision as ground truth. Two classifier algorithms: 1)
Balanced Random Forest (RF) classifier (Chen et al., 2004) and 2) Random
Under-sampling Boosting classifier (RUSBoost) (Seiffert et al., 2009) were
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chosen because of their ability to deal with class imbalance, handle small
data sets and ease of interpretability. Both algorithms create an ensemble
of models with a Decision Tree (Loh, 2011) as base estimator, which is also
a classifier that has often been used in related work (Gross et al., 2013;
Mamprin et al., 2020; D’Alisa et al., 2006). In addition, the respective
classifiers were chosen because of their (1) integrated solution to deal with
class imbalance; (2) ability to handle mixed data types; (3) ability to perform
well with a small sample size (nº1000); (4) high level of model interpretability;
and (5) resemblance of thinking compared to a multidisciplinary team of
health care professionals (Chen et al., 2004; Loh, 2011).

Binary classification tasks were created for the different referral
combinations of the 1040 labelled samples, as shown in Table 2. Therefore,
each classifier led to six models corresponding to the referral combinations. A
nested cross validation was used to evaluate the performance of the models
(Raschka, 2018). The nested cross-validation is a nesting of two k-fold cross-
validation loops, with k representing the number of folds. The number of
folds for both outer and inner loop was chosen to be 5, which is a very common
number of folds for cross-validations. In other words, in every loop and for
each binary classification task, data was divided into a training dataset with
80% of the samples, and a testing or validation dataset with 20% of the
samples.

D.III Feature Selection
Feature selection becomes necessary for datasets with a large number of
features to reduce the dimensionality without the loss of any important
information. Reducing the dimensionality of the dataset before applying
ML methods enables the algorithms to train faster by removing redundant
information, thereby reducing the complexity and risk of overfitting the
model(Chandrashekar and Sahin, 2014). Feature selection methods are
broadly divided into three types: filter, wrapper, and embedded. Filter
methods use the principal criteria of the ranking technique for selecting
the most relevant features. Features are ranked based on statistical scores,
such as correlation, to determine the features’ correlation with the outcome
variable. These methods are computationally efficient and do not rely on
learning algorithms that can introduce a biased feature subset due to over-
fitting (Chandrashekar and Sahin, 2014). However, a disadvantage of the
filter method is that it does not consider the co-linearity among features in
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the subset. Furthermore, it is difficult to precisely determine the dimension
of the optimal feature subset (Chandrashekar and Sahin, 2014). Wrapper
methods use the model’s performance metric, for example accuracy, as an
objective function to evaluate the feature subset (Chandrashekar and Sahin,
2014). These methods consider the association among features but are often
too computationally expensive to perform an exhaustive search of the feature
space. In Embedded methods, feature selection is integrated with the training
progress of the model to reduce computational time compared to wrapper
methods, while still considering the association among features (Guyon et al.,
2008; Chandrashekar and Sahin, 2014). These methods iteratively extract
features that contribute the most to the training for a particular iteration
of a model during the training process. Regularisation methods (Santosa
and Symes, 1986; Tibshirani, 1996) are commonly used embedded methods
that penalise a feature based on a coefficient threshold. Feature Importance
with ensemble methods is another method to determine impurity-based
important features in tree-based algorithms 2. Based on the trends observed
in the existing literature, it was decided to use mutual information (only in
classification task) (Ross, 2014) and impurity-based methods (Wittkowski,
1986; Fratello and Tagliaferri, 2018) in this work for selecting feature subsets.

D.IV Hyperparameter Optimization
Hyperparameter optimization is useful to find a set of hyperparameters that
optimizes the performance of the algorithm (Claesen and De Moor, 2015). We
considered model-based as well as model-free methods for hyperparameter
optimization. Model-based optimization methods like Bayesian optimization
use a surrogate model and an acquisition function to find the optimal set of
hyperparameters (Yao et al., 2018; Hutter et al., 2019). We did not choose
model-based optimization since the surrogate model is prone to overfitting on
the hyperparameters (Lévesque, 2018) and this approach is more suitable
to models that are computationally expensive to train, such as Deep Neural
Networks (Hutter et al., 2019). Model-free methods can be categorized
as heuristic and simple search approaches. Heuristic search approaches
maintain a number of hyperparameter sets and use local perturbations and
combinations of members in these sets to obtain an improved hyperparameter
set (Yao et al., 2018; Hutter et al., 2019). Two common model-free simple

2https : //scikit°learn.org/stable/auto_examples/ensemble/plot_ f orest_importances.htm
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search approaches are grid and random search (Yao et al., 2018). Grid search
is one of the several ways of hyperparameter tuning and entails an exhaustive
search through a defined set of hyper-parameter space of a learning algorithm.
Random search selects the parameters at random instead of performing an
exhaustive search over the hyperparameter space. We used random search
in the classification task and grid search in the regression task to tune the
hyperparameters of the algorithms.

D.V Evaluation Metrics
The evaluation metrics are different for each task owing to the very nature of
different approaches undertaken. The evaluation metrics in the regression
task are Mean Absolute Error (MAE), R-squared score (R2) and Mean
Residual (MR), while for the classification task are Matthews Correlation
Coefficient (MCC) (Boughorbel et al., 2017), Balanced Accuracy (BAC)
(Brodersen et al., 2010), Sensitivity (SEN) and Specificity (SPE) (Sammut and
Webb, 2017). MAE is the average of the absolute errors, that is the difference
between the observed value and the predicted value. R2 is a goodness-of-fit
metric to measure the proportion of variance explained by the independent
variable(s) for a dependent variable in a regression model with values in
the range [0,1], where 0 implies no observed variance and 1 implies 100%
variance in the dependent variable with the movement of the independent
variable(s). MR is the average difference between the predicted values and
the observed values and is used to determine whether the models are likely
to underestimate or overestimate the target value. MCC has a value in
the range [-1,1] and produces a high score only when the predictions obtain
good results in all of the four confusion matrix categories, which is useful for
imbalanced classes (Chicco and Jurman, 2020). The value of BAC lies in the
range of [0,1] and is a recommended metric for imbalanced classes (Brodersen
et al., 2010). The values of SEN and SPE metrics lie in the range of [0,1]
and are used widely to test the performance of binary classification models,
where SEN is a measure of the proportion of correctly identified positives
(true positive rate) while SPE is a measure of the proportion of correctly
identified negatives (true negative rate).
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E Experiments & Results
The experiments were done in Python (Oliphant, 2007) using Scikit-learn
(Buitinck et al., 2013) and Imbalanced-learn (Lemaître et al., 2017) (only
in classification task). k-fold cross validation is used in the experiments to
reduce overfitting and increase the generalizability of the models, with k = 5
for classification and k = 10 for regression task.

E.I Regression Task
We used the embedded feature importance method of Random Forest
algorithm to select the relevant features. Four and two features were selected
for P A f and W AI f , respectively, which were then used to train the ML
algorithms mentioned in the Methods section. The results are summarised
in Table 3.

Table 3: Impurity-based feature selection using Random Forest for predicting
P A f (3a) and W AI f (3b). The best performing model are highlighted in bold
letters.

(a) P A f

Model MAE±SD R2 MR

LR 1.54±1.18 0.25 0.050

PAR 1.54±1.19 0.25 -0.087

SGDR 1.55±1.17 0.25 0.143

RFR 1.57±1.13 0.25 0.199

ABR 1.60±1.14 0.23 0.0

SVR 1.53±1.15 0.27 0.102

XGB 1.55±1.13 0.26 -0.015

(b) W AI f

Model MAE±SD R2 MR

LR 1.16±1.12 0.27 0.003

PAR 1.10±1.14 0.28 -0.288

SGDR 1.10±1.13 0.29 -0.243

RFR 1.09±1.20 0.25 -0.246

ABR 1.21±1.20 0.18 -0.090

SVR 1.11±1.15 0.27 -0.221

XGB 1.18±1.12 0.25 0.016

E.II Classification Task
We used the embedded feature selection method in both classifiers to select
optimal features. For each classifier, six binary classification models were
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Table 4: Results for the Balanced Random Forest (RF) classifier (± standard
deviation).

Train Test

MCC MCC BAC SEN SPE

Model 1: C-P 0.22 ± 0.02 0.14 ± 0.08 0.56 ± 0.04 0.66 ± 0.13 0.47 ± 0.17

Model 2: C-R 0.26 ± 0.01 0.20 ± 0.08 0.60 ± 0.04 0.73 ± 0.11 0.47 ± 0.05

Model 3: P-R 0.22 ± 0.03 0.19 ± 0.06 0.60 ± 0.03 0.59 ± 0.06 0.61 ± 0.02

Model 4: M-C 0.54 ± 0.01 0.46 ± 0.05 0.73 ± 0.03 0.86 ± 0.13 0.59 ± 0.11

Model 5: M-P 0.42 ± 0.02 0.42 ± 0.05 0.70 ± 0.03 0.99 ± 0.03 0.42 ± 0.07

Model 6: M-R 0.53 ± 0.01 0.49 ± 0.06 0.77 ± 0.03 0.98 ± 0.04 0.57 ± 0.05

trained on different referral combinations, as shown in Table 2. The results
are presented in Table 4 and Table 5.

The following observations were made based on the results:

• The overfit is low based on the MCC scores (both classifiers), except for
the case Clinic RCR – Polyclinic RCR.

• The cases Polyclinic RMCR - Clinic RCR, Polyclinic RMCR - Polyclinic
RCR and Polyclinic RMCR - Rejected show sub-optimal performances
with their MCC’s ranging between [0.42, 0.49] for RF and [0.43-0.50]
for RUSBoost. Furthermore, their BAC scores are ranging between
[0.70, 0.77] for RF and [0.71, 0.78] for RUSBoost.

• The cases Clinic - Rejected, Clinic RCR - Polyclinic RCR and Polyclinic
RCR - Rejected all show very poor performances with their MCC’s
ranging between [0.14, 0.20] for RF and [0.11, 0.21] for RUSBoost.
Furthermore, their BAC scores are ranging between [0.56, 0.60] for RF
and [0.55, 0.60] for RUSBoost.

F Discussion
Our experiments on dataset 1 indicate that ML methods and data science
techniques can be used to identify relevant PROMs features and enhance
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Table 5: Results for the Random Under Sampling Boosting (RUSBoost)
classifier ± standard deviation.

Train Test

MCC MCC BAC SEN SPE

Model 1: C-P 0.22 ± 0.02 0.11 ± 0.07 0.55 ± 0.03 0.72 ± 0.10 0.39 ± 0.13

Model 2: C-R 0.24 ± 0.01 0.21 ± 0.08 0.60 ± 0.04 0.59 ± 0.16 0.61 ± 0.10

Model 3: P-R 0.20 ± 0.02 0.19 ± 0.06 0.60 ± 0.03 0.59 ± 0.06 0.61 ± 0.02

Model 4: M-C 0.55 ± 0.02 0.49 ± 0.10 0.74 ± 0.05 0.94 ± 0.13 0.54 ± 0.10

Model 5: M-P 0.43 ± 0.01 0.43 ± 0.05 0.71 ± 0.03 1.00 ± 0.00 0.42 ± 0.07

Model 6: M-R 0.52 ± 0.01 0.50 ± 0.05 0.78 ± 0.03 0.98 ± 0.03 0.57 ± 0.06

the prediction of patient outcomes, such as pain and work-ability. While in
experiments using dataset 2, we found that the classifiers perform poorly in
predicting treatment referral. These contrasting findings may be attributed
to the different predictors available in the two datasets, their strength of
association with the target outcomes or the fact that dataset 1 had the target
outcomes measured at baseline while dataset 2 does not since it’s a one time
outcome given by the clinician.

F.I Clinical Relevance
To support shared clinical decision making, it is necessary to build prognostic
models that can provide information to clinicians and patients of likely
outcomes related to a certain treatment or symptoms profile.

In dataset 1, the baseline measurements of the associated target outcomes
were their first most important predictors. The superior predictive value
of baseline measurements of target outcomes has also been confirmed in
other similar studies, such as by Fontana et al. (2019) and Huber et al.
(2019). In dataset 2, the PROMs had low predictive power with regards to
referral advises, which is similar to findings in our previous work (Nijeweme-
d’Hollosy et al., 2018; Oude Nijeweme - d’Hollosy et al., 2020). Our results
again emphasize the difficulty of referring NLBP patients based on PROMs
and the need for more research on PROMs to include them in decision support
on treatment referral.
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F.II Data Science Relevance
From a data science perspective, PROM-based analytics is relatively
uncharted territory, posing a unique challenge and presenting an opportunity
for more research to test the existing methods and develop new ones that
can facilitate furthering our comprehension of subjective datasets and their
utility in improving patient-centred care. Building a comprehensive view of
the patients using data-driven methods and evidence-based research can help
clinicians and patients alike get practical insights from the available data
to make shared strategic decisions. There is a need to increase awareness,
availability, and understanding of subjective patient-centred data to build
more sustainable and secure data ecosystems and facilitate a shift towards
targeted interventions with the development of diagnostic and prognostic
learning models.

G Conclusion and Future Work
The results presented in this work support our premise that the analytical
abilities of ML methods can be leveraged for making predictions using
PROMs, given that the PROMs hold predictive power. With better predictors,
further development, and thorough validation, ML models can facilitate a
shared decision-making process for patients with musculoskeletal disorders
in clinical settings. Support Vector Machines, Random Forest, and Random
Under-sampling Boosting methods delivered the best performance in the
experiments and present promising potential for adaptability and utility in
clinical practice. The biggest strength of ML methods is their ability to handle
big data and their adaptability to different clinical setups where a certain
level of accuracy is required to predict outcomes. There is, however, a need
for the development of a standard ML pipeline to guide further research on
developing as well as reporting results of ML models that can predict PROMs
in other clinical or healthcare datasets with patient-reported outcomes.
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Abstract
Feature selection for case representation is an essential phase of Case-
Based Reasoning (CBR) system development. To (semi-)automate the feature
selection process can ease the knowledge engineering process. This paper
explores the feature importance provided for XGBoost models as basis for
creating CBR systems. We use Patient-Reported Outcome Measurements
(PROMs) on low back pain from the SELFBACK project in our experiments.
PROMs are a valuable source of information that capture physical, emotional
as well as social aspects of well-being from the perspective of the patients.
Leveraging the analytical capabilities of machine learning methods and data
science techniques for exploiting PROMs have the potential of improving
decision making. This paper presents a two-fold approach employed on
our dataset for feature selection that combines statistical strength with
data-driven knowledge modelling in CBR and compares it with permutation
feature selection using XGBoost regressor. Furthermore, we compare the
performance of the CBR models, built with the selected features, with two
machine learning algorithms for predicting different PROMs.

A Introduction
Patient-reported outcome measurements (PROMs)1 are collected routinely in
clinical settings and are designed to capture the patients’ perception of their
own health through structured questionnaires. By utilising machine learning
methods and data science techniques, there is a large potential for PROMs to
inform and improve clinical decision making (Wu et al., 2013). In the current
work, we use PROMs on low back pain (LBP) as an example. Among patients
seen in primary care, a specific cause of LBP can rarely be identified and
the symptoms are most often diagnosed as being “nonspecific”. This also
highlights the multi-factorial nature of LBP, i.e., both genetic, physiological,
social and psychological factors are likely to contribute to LBP. While an early
and thorough assessment of LBP is recommended (for example, to detect
cases at high risk of poor outcome) (Lin et al., 2020), there are currently no
clinical decision support systems (CDSS) in use in clinical practice that can
assist or improve such detection or predict the likely outcome for a patient.

1https : //www.hss.edu/proms.asp
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Case-Based Reasoning (CBR) systems are well suited for the task of
CDSS (Bichindaritz and Marling, 2010) since the PROMs of the patients can
be described in a case-base, a knowledge repository that can aid decision
making (Andritsos et al., 2014). However, clinical datasets with PROMs
usually contain several clinical measures, all of which may not necessarily
be required for decision making and it is therefore necessary to be able to
select optimal subset of features that can be used for building CBR systems
to predict the patient outcomes and facilitate decision making (Floyd et al.,
2008).

Retrieval of similar cases is an important phase in CBR systems, which
relies on the case representation and similarity measures. Hence, the
selection of the most relevant and important features can easen and simplify
the development of the entire CBR system. The focus of this paper is the
feature selection phase for building CBR systems from PROMs to predict
patient outcomes. While the overall method can be applied to other domains,
we will present our evaluation using a dataset with PROMs (described in
section C) in this work.

We employ a two-fold approach on our dataset for feature selection that
combines statistical strength with data-driven knowledge modelling in CBR
and compare it with permutation feature selection using XGBoost regressor.
Additionally, we compare the performance of the CBR models, built with
the selected features, with two machine learning algorithms for predicting
different PROMs.

B Related Work
PROMs are a valuable source of information and present opportunities for
highly sophisticated analysis, but has only been exploited by a few studies in
the context of leveraging analytical capabilities of machine learning methods.
Rahman et al. (2018) used a total of 130 PROMs collected via their pain
self-management mobile application ("Manage My Pain"). Using Random
Forest, they showed that pain volatility levels at 6 months follow-up could
be predicted with a 70% accuracy. In their followup work, Rahman et al.
(2019) showed that similar level of accuracy (68%) could be obtained with
just 9 features. In another study, Harris et al. (2019) used preoperative
PROMs to predict whether or not a patient achieves a clinically important
improvement in several pain- and function-related outcomes at 1-year post
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knee arthroplasty. Using several supervised machine learning algorithms,
they showed that similar performance can be achieved across different
algorithms for the outcomes by varying the number of inputs.

Using the CBR methodology for clinical datasets has already proven useful
in decision making (Holt et al., 2005). For building robust decision support
CBR systems, sufficient description of the problem is necessary. Knowledge
about the importance of various features in the dataset plays an important
role in problem description for building CBR systems (Aamodt and Plaza,
1994). Xiong and Funk (2006) proposed an approach wherein they assessed
the feature subset selection based on the performance of CBR models. Later
on, the authors proposed a hierarchical approach to select feature subsets
for similarity models (Xiong and Funk, 2010). They used individual cases
to optimise the possibility distributions in the case base and features were
selected based on the magnitude of their parameters in the similarity models.
Similar to the feature-selection approach proposed by Li et al. (2009), we
identify optimal feature subsets for our CBR system by iteratively building
CBR systems with different feature subsets and evaluating the performance
based on the predictions. While Li et al. used mutual information as a
preset criterion for selecting feature subsets and evaluating the subsequent
CBR systems, we used correlation. In their previous work, Li et al. (2006)
combined feature reduction using rough set with case selection for handling
large datasets. Similarly, Zhu et al. (2015) selected reduced feature sets
through neighborhood rough set algorithm, a method that has been used
widely for feature and case selection in CBR (Salamó and Golobardes, 2001;
Salamo and Lopez-Sanchez, 2011).

C SELFBACK Dataset
The dataset consists of PROMs collected during the randomised controlled
trial (RCT)2 that tested the effectiveness of the SELFBACK 3 DSS (Sandal
et al., 2019).

Care-seeking patients in primary care with non-specific LBP were
recruited to the study. Patients were screened for eligibility based on a set of
criteria. The eligible patients were invited to participate in the RCT and those
who accepted the invite answered a baseline questionnaire. The participating

2https : //clinicaltrials.gov/ct2/show/NCT03798288
3http : //www.sel f back.eu
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patients were randomized into either intervention group or control group. The
intervention group had access to the SELFBACK DSS mobile application and
received tailored self-management plans weekly whereas the control group
did not. The participants answered questionnaires at different time-points:
(1) (only intervention group) at the end of every week: Tailoring questionnaire,
and (2) at the end of 6-weeks, 3-months, 6-months and 9-months: Follow-up
questionnaire. The questionnaires consist of measures of pain intensity, pain
self-efficacy, physical activity, functional ability, work-ability, sleep quality,
fear avoidance and mood. Additionally, the baseline questionnaire included
patient sociodemographics (education, employment and family). Table 1
summarises the information collected from the participants at various time-
points. We use the Baseline, Follow-up 1 (after 6 weeks) and Follow-up 2 (after
3-months) PROMs in our evaluation. A detailed account of data collection for
the RCT can be found in Sandal et al. (2019).

Table 1: The SELFBACK dataset created consists of participant
characteristics collected at different time points and includes a selection
of PROMs.
Descriptive variables
Patient Characteristics Sociodemographics
Primary Outcome Measure
Roland Morris Disability Questionnaire
Secondary Outcome Measures
Pain Self-Efficacy Questionnaire Fear Avoidance Belief Questionnaire Pain Intensity
Brief Illness Perception Questionnaire Saltin-Grimby Physical Activity Level Scale
Global Perceived Effect
Other Outcome Measures
Workability Health-related Quality of Life Activity Limitation
Patient Health Questionnaire Perceived Stress Scale Sleep
Patient Specific Functional Scale Paint Duration and frequency Physical Activity
Exercise

From the dataset, six outcomes were selected as target outcomes: Roland
Morris Disability Questionnaire (RMDQ, range: [0,24]), Numeric Pain Rating
Scale (NPRS, range: [0,10]), Work-ability index (WAI, range: [0,10]), Pain
Self Efficacy Questionnaire (PSEQ, range: [0,60]), Fear Avoidance Belief
Questionnaire (FABQ, range: [0,30]) and Global Perceived Effect Scale (GPE,
range: [-5,+5]). The primary outcome, RMDQ, is used to evaluate the effect
of the self-management app in the RCT. The other outcomes were chosen to
elucidate the variation in LBP symptoms amongst the participants.

The intervention group dataset consists of PROMs from 218 participants
while the control group dataset contains PROMs of 158 participants. Each
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participant is initially described by 47 features. Only the participants who
completed at least the first two follow-up questionnaires were included in
this work.

D Feature Engineering for CBR systems
Feature selection is an important step in the process of developing CBR
systems. Reducing the dimensionality of the data enables the algorithm(s)
to train faster by removing redundant information, thereby reducing
model complexity, risk of overfitting, better generalisation and aiding
interpretability of the models (Chandrashekar and Sahin, 2014). This is
especially pertinent for building CBR systems for datasets with a high
dimensionality, such as healthcare-oriented datasets, to ensure focus on the
relevant attributes and enhance explainability of the models. Nonetheless,
the methodology we present can be used for other domains for feature
selection since the principle here is determining the best representation
of a dataset in order to learn a solution to a given problem. While we use a
healthcare domain dataset, the methodology itself has a broader application.

We use both filter and embedded methods in this work to determine
reduced sets of predictors for the target outcomes. Filter methods use the
principal criteria of ranking technique to select the most relevant features.
Features are ranked based on statistical scores, correlation in our case, to
determine the features’ correlation with the outcome variable. This method
is computationally efficient and does not rely on learning algorithms which
can introduce a biased feature subset due to over-fitting (Chandrashekar and
Sahin, 2014). However, correlation-based feature selection has shortcomings
if there is a high degree of mutual correlation in the feature set. Embedded
methods on the other hand are algorithm-specific, iteratively extracting
features which contribute the most to the training of a particular iteration of
a model during the training process. Impurity-based feature selection using
tree-based algorithms4 is a commonly used embedded method. Permutation
feature importance determines the influence of random permutation of
each predictor’s values on the model performance while still preserving the
distribution of the feature (Fisher et al., 2019).

We experimented with two methodologies for selecting optimal predictors
for each target outcome:

4https : //scikit°learn.org/stable/autoexamples/ensemble/plot f orestimportances.html
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1. Correlation and CBR: Using a two-step hybrid method that combines
statistical strength with data-driven case modelling, we attempted
to derive optimal predictors of the target outcomes by computing
correlation and iteratively building CBR models using features
derived from correlation. Here, similarity measure development and
building case representation are important factors in evaluating the
performance of the CBR models for each set of features.

2. Permutation feature importance using XGBoost: Features are
selected by computing permutation feature importance (PFI) with
XGBoost (XGB) algorithm based on an evaluation metric.

Both methodologies aim to select optimal feature sets based on the trade-
off between model performance and model simplicity, that is, fewer features.

D.I Feature Selection and CBR System Optimization
To determine the optimal set of predictors for developing CBR systems, we
experimented with two methodologies for selecting features: correlation-
based and based on the feature importance of a XGBoost model. The features
selected by both methodologies were used to build CBR systems for all
the outcomes at both follow-up time-points. Additionally, we implemented
Support Vector and XGB Regression models to compare and contrast the
performance of the CBR systems. Figure 1 illustrates the process of feature
selection methods we used.

The modeling of the CBR systems was done with the myCBR workbench
(Bach and Althoff, 2012). The experiments were run using myCBR Rest API5

(Bach et al., 2019) for batch querying the CBR systems and python packages
such as Scikit learn (Buitinck et al., 2013) and XGBoost (Chen and Guestrin,
2016) (python version 3.6.7) were used for building regression models and
Pingouin for the statistical correlation (Vallat, 2018). For each target outcome
we created datasets with the baseline data as input features and the PROMs
of follow-up 1 and follow-up 2 as target values. These datasets were used
to build CBR systems in a data-driven manner and as training data in the
other two regression algorithms. In all the CBR models built for various
target outcomes in this work, local similarity modelling of the attributes has

5https : //github.com/ntnu°ai° lab/mycbr° sdk
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Figure 1: Flowchart of the feature selection process

been done in the same data-driven manner as presented in our previous work
(Verma et al., 2018, 2019). The individual features are weighted equally in
the global similarity function. Figure 2 showcases examples of local similarity
measure modelling for numerical and categorical (ordinal) attributes (using
correlated features of NPRS at follow-up 2 as an example). We urge the
reader to refer to the previous work to fully grasp how the local similarity
measures have been developed, as it is not possible to include the details in
this work. Figure 3 shows the case representation of the same target outcome
(NPRS) in myCBR workbench with 10 most correlated features.

To predict the target outcomes for a given participant using CBR model,
we exploit the "similar problems have similar solutions" principle of CBR.
While the query participant has been left out (leave-one-out cross validation),
we determine their n-nearest neighbours (most similar case) with n in range
[1,20] and compute mean of the target value reported by the n-neighbours,
which is assigned as prediction for the given participant. The process is
repeated for each participant and each target outcome dataset at both follow-
up time-points for both the intervention and control group. The mean absolute
error (MAE) is used as the metric to evaluate the predictive performance of
the models.
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(a) Baseline NPRS (b) EQ5D Pain

Figure 2: Modelling of Local similarity measures for numerical (a) and
categorical (b) attributes in myCBR workbench.

Figure 3: Case representation in myCBR for NPRS (at follow-up 2, control
group dataset) with 10 most correlated features

D.II Correlation-based Feature Selection
Figure 1 shows that we we first compute correlation between the baseline
features and each target outcome to select features. Since the dataset
comprises of both numerical and categorical features, we use Pearson for
numerical features and one-way ANOVA for categorical features to determine
correlation between the baseline features and the target outcomes. Features
with absolute correlation greater than the average correlation of the feature
set and p < 0.05 were selected. For several reasons including simplified
process of modelling in myCBR and based on experience from earlier
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Figure 4: On the right side of the figure are the top ten correlated features
used to build the CBR model for predicting NPRS (input: baseline data,
target: NPRS at follow-up 2). Features were added progressively one at
a time in the given order, starting with the most correlated feature. np2
(eta-squared) is the squared correlation coefficient. Graph on the left shows
the MAE variation with different sets of features in the corresponding CBR
model for predicting NPRS, with x-axis presenting the n-neighbours used for
generating predictions and y-axis presenting the MAE in the predictions for
the entire dataset.

experiments, it was decided to include only the top ten correlated features
for building CBR systems. Previous experiments on the intervention group
datasets showed that no more than ten features are necessary to predict any
of the chosen target outcomes without any loss in the model performance.
To build each CBR model, the casebase is populated with cases imported
from a csv file in the myCBR workbench. Local similarity measures are
developed for each attribute individually. Instead of building a new CBR
model for each set of features, we build one model with the ten most correlated
features and use ten different global similarity functions to progressively
add more features. Once both the local and the global similarity measures
are in place, we batch query the casebase using POST calls in the python
implementation to generate predictions for the target outcome. The MAE is
calculated between the reported outcome and the predictions for the entire
dataset.

Figure 4 gives an example for one target outcome, NPRS. It shows the
result of the correlation (left) and the MAE when predicting the NPRS
using the baseline data (right). We can see that the progressive addition
of correlated features improves the prediction by the CBR system already
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by using the most similar case. Further, we observe that adding neighbors
generally reduces the error and for the final model we choose the combination
with the lowest MAE.

D.III Feature Importance using XGBoost
In this approach, we select features by computing the permutation feature
importance using the XGBoost Regressor and compare the MAE of the
predictions to determine the optimal feature set. The permutation feature
importance is determined by the difference between the modified (permuted)
dataset and a baseline model based on the MAE. First, a baseline model with
all the features is trained and its MAE is computed. Next, the values of one
feature in the dataset are permuted and then the model is re-trained and the
MAE is computed for the modified dataset. The process is repeated for all the
features in the dataset. The optimal number of features are selected based
on the trade-off between model performance and number of features.

Figure 5a shows the feature importance for predicting the GPE and figure
5b shows the development of the MAE while adding the features. To select
the best configuration, we choose the set with the lowest number of features
that has the lowest MAE as shown in figure 5b. We favor the lowest number
of features to build simpler model that requires minimal data collection and
can be better explained. The selected features are then used to build CBR
model in exactly the same way as described in the previous section and the
prediction results are noted.

E Experimental Results
To compare the performance of the CBR systems, we implemented two
regression algorithms, XGB and Support Vector Regression (SVR) for each
corresponding CBR system to predict the target outcomes. The algorithms
were selected based on previous experiments with the intervention group
data where we evaluated the performance of XGB and SVR along with other
algorithms, including Linear Regression, Passive Aggressive Regression,
Stochastic Gradient Descent, AdaBoost, Random Forest, and found SVR and
XGB to lead to the best results. For the simplicity of comparison and clarity,
it was decided to keep only SVR and XGB for further evaluation. To optimize
the hyperparameters, we used grid search (Hutter et al., 2019). Tables 2
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(a)

(b)

Figure 5: Feature Selection using permutation feature importance with XGB
for predicting GPE (input: baseline data, target: GPE at follow-up 1). a.
Features ranked by their importance. b. Effect of feature permutation on the
XGB model: The MAE on the y-axis in this plot is scaled.

and 3 summarise the results of predicting target outcomes using the CBR
models, SVR and XGB for the intervention and control group participants,
respectively.

F Discussion
A number of inferences can be made based on the results. We see in figure 4
that the baseline measurement (listed as BT_pain_average) of the associated
target outcome NPRS is its’ first most important predictor. This is a trend
observed for all the target outcomes, except GPE which does not have an
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Table 2: Results of Prediction of Target Outcomes using different Feature
Selection Methodologies and Regression Methods for the Intervention Group
(size of dataset: 218 participants). Numbers in bold letters are lowest MAE.
FU1: Follow-up 1, FU2: Follow-up 2, n: number of features

Feature Selection Methodology
Correlation+CBR PFI+XGBoost

Target Follow-Up n CBR SVR XGB n CBR SVR XGB

RMDQ
FU1 4 2.98 3.19 3.32 5 2.78 2.69 2.71

FU2 8 2.90 2.83 2.85 4 3.17 3.92 3.02

NPRS
FU1 7 1.38 1.45 1.50 3 1.50 1.49 1.52

FU2 9 1.48 1.33 1.38 3 1.46 1.41 1.42

WAI
FU1 5 1.16 1.98 1.98 2 1.14 1.96 2.01

FU2 4 1.14 2.16 2.21 1 1.24 2.19 2.24

PSEQ
FU1 1 5.50 16.9 17.0 2 5.45 17.2 17.3

FU2 3 5.95 16.6 16.6 2 5.95 16.4 17.1

FABQ
FU1 3 3.87 3.74 3.76 6 3.90 3.50 3.67

FU2 1 3.9 3.60 3.84 6 3.83 3.64 3.86

GPE
FU1 1 1.37 2.73 2.76 2 1.39 2.82 2.78

FU2 2 1.54 2.51 2.43 3 1.49 2.54 2.46

associated baseline measurement (see figure 5b). This is an important
observation from clinical perspective, since baseline measurements of the
associated outcomes have previously been found to be their most important
predictor (Fontana et al., 2019; Huber et al., 2019), and our experiments
support these findings.

Selecting optimal features, especially for healthcare datasets, is one of
those application domains where no one particular method prevails and one
must decide based on application domain knowledge and experience, among
others. From the results in table 2 and 3, we see that the features selected by
either of the methodologies give similar results with respect to the error in
predictions. There is no clear winner here. However, taking into consideration
the time and effort required, XGBoost permutation feature importance
methodology requires minima and provides a more streamlined process for
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Table 3: Results of Prediction of Target Outcomes using different Feature
Selection Methodologies and Regression Methods for the Control Group (size
of dataset: 158 participants). Numbers in bold letters are lowest MAE. FU1:
Follow-up 1, FU2: Follow-up 2, n: number of features

Feature Selection Methodology
Correlation+CBR PFI+XGBoost

Target Follow-Up n CBR SVR XGB n CBR SVR XGB

RMDQ
FU1 2 3.11 2.99 2.97 4 3.07 2.92 2.75
FU2 2 3.11 2.97 3.14 3 3.22 2.97 3.14

NPRS
FU1 6 1.41 1.77 1.85 2 1.49 1.73 1.85

FU2 7 1.56 1.49 1.7 1 1.72 1.56 1.71

WAI
FU1 1 1.02 1.02 1.01 1 1.02 1.02 1.01

FU2 2 1.14 1.12 1.17 1 1.19 1.15 1.18

PSEQ
FU1 7 6.68 19.2 19.6 1 7.01 19.4 19.8

FU2 3 6.23 19.0 19.5 5 5.94 19.1 19.3

FABQ
FU1 1 3.47 3.27 3.58 1 3.47 3.27 3.58

FU2 2 3.77 3.69 3.80 2 3.82 3.58 3.93

GPE
FU1 7 1.22 2.55 2.52 1 1.26 2.61 2.49

FU2 1 1.33 2.65 2.58 2 1.39 2.67 2.56

selecting optimal feature sets as compared to the two-fold approach, which
requires estimating correlation, building several similarity measures and
CBR systems for the target outcomes and comparing the MAE for determining
optimal feature sets. As for a concrete time comparison, it is not possible
since the modelling of local and global similarity measures for building a
CBR model requires manual input. On the other hand, this comparison also
establishes the utility of the two-fold approach for building tailored CBR
systems.

All the three regression methods give fairly similar results when it comes
to predicting the outcomes. However, for an outcome with a relatively large
range (PSEQ) or no baseline measurement of the target outcome (GPE),
both SVR and XGB fall short in comparison to the results we get from the
CBR models. This is similar to our findings in our previous work (Verma
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et al., 2018) where we found CBR model built with our data-driven modelling
approach to be more sensitive and robust to the data-distribution of individual
features, thereby, furthering our premise that both data-driven similarity
modelling and CBR are better suited for this task. Moreover, outcomes
generated by CBR models are more explainable, which is a pre-requite for
any CDSS where explainable systems are preferred over complex ones.

G Conclusion and Future Work
In this paper, we presented a two-fold approach for feature selection wherein
we used the correlation coefficient as a pre-processing step to select ten
most correlated features and build the CBR models with progressively
more features for predicting PROMs. We examine the performance of the
predictions generated using CBR systems to determine optimal feature
subsets for the outcomes. Through evaluation and comparison with tree-based
feature selection methods (permutation feature importance with XGBoost), it
can be concluded that although the presented two-fold approach is feasible
and gives results similar to the other approach undertaken, it is however
more time and effort intensive and therefore, feature selection using XGBoost
permutation feature importance appears to be a more promising option.
Predictive performance of the CBR systems is at par with and many a times
better than the traditional algorithms such as SVR and XGBoost.

From a clinical perspective, building prognostic models that can provide
necessary information to clinicians and patients of possible outcome(s)
pertaining to a specific treatment is a necessity to support informed clinical
decision making. Access to individualized predictive analytics for different
outcomes may be the next step in the management of pain and related
symptoms for patients with LBP. The results we get from our dataset confirm
the predictive value of baseline measurements of associated target outcomes,
similar to other studies such as by Fontana et al. (2019) and Huber et al.
(2019).

In future work, it may be worthwhile to compare performance of the CBR
models built with features selected by an expert with the approach presented
in this work.
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Abstract
The field of patient-centred healthcare has during the recent years adopted
machine learning and data science techniques to support clinical decision
making and improve patient outcomes. We conducted a literature review
with the aim of summarising the existing methodologies that apply machine
learning methods on patient-reported outcome measures datasets for
predicting clinical outcomes to support further research and development
within the field. We identified 15 articles published within the last decade
that employ machine learning methods at various stages of exploiting
datasets consisting of patient-reported outcome measures for predicting
clinical outcomes. Furthermore, we discuss the gaps and challenges that can
potentially be addressed in the future studies.

A Introduction
There is growing interest and support for the utility and importance of
patient-reported outcome measures (PROMs) in clinical care. PROMs are
commonly defined as reports or questionnaires completed by patients to
measure their view on their functional well-being and health status (Kingsley
and Patel, 2017). Thus, PROMs may capture the patient’s perspective on both
social, physical, and mental wellbeing. Shifting the focus from disease-specific
factors towards the patient’s perspective may provide a useful basis for shared
medical decision-making between a clinician and a patient (Bingham III et al.,
2017; Barry and Edgman-Levitan, 2012). Recent evidence indicates that
shared decision-making has a positive impact on quality of decision-making,
satisfaction with treatment, and patient-provider experience (Coronado-
Vázquez et al., 2020). Likewise, well-informed patients agreeing upon their
course of treatment with their caregiver have better outcome, and satisfaction
(Sepucha et al., 2018).

PROMs may play an important role in shared decision-making, however,
there is currently an unused potential in both collecting and utilising PROMs
in clinical practice. Notably, digital innovations can facilitate delivery, storage,
processing, and access to PROMs using third-party or electronic health record
(EHR)-based outcome measurement platforms. Intelligent methods can also
support shared decision-making through digital decision aids and patient
engagement platforms comprising high-quality educational material, and
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patient-provider communication portals (Jayakumar et al., 2017; Sepucha
et al., 2018). In this context, utilising machine learning and artificial
intelligence provide a promising avenue for enhancing the usefulness of
PROMs (Giga, 2017).

Several recent studies demonstrated the predictive prowess of machine
learning models utilizing EHR datasets for scheduling of surgeries
(ShahabiKargar et al., 2014; Kargar et al., 2013; Devi et al., 2012), risk
stratification (Wong et al., 2017; Moonesinghe et al., 2013; Marufu et al., 2016)
among others. Singal et al. (2013) in their work found the machine learning
models to outperform conventional models in predicting the development
of hepatocellular carcinoma among cirrhotic patients. The application
of machine learning methods on PROMs datasets can allow exploration
of associations in the data that are important for predicting different
outcomes and thereby inform a shared decision-making process (Mansell
et al., 2021). Currently, PROMs data is widely used in explanatory research,
where researchers typically test hypotheses using a preconceived theoretical
construct by applying statistical methods (for example, low back pain is
associated to lower quality of life and depression (Krismer et al., 2007; Waljee
et al., 2014). In contrast, PROMs in predictive research can be used to predict
outcomes in the future by applying statistical or machine learning methods
without any preconceived theoretical constructs (for example, predicting the
risk of depression (Andrews et al., 2017)), and is therefore an important
step towards patient-centred care with a shift in focus towards the patient’s
perspective (Wang and Gottumukkala, 2020).

While prediction models exist that utilize a combination of PROMs and
objective clinical data or EHR data for individual predictions (Baumhauer,
2017), models that utilise solely PROMs data to make individual predictions
are rare. Despite the broad area of application of machine learning and data
science techniques in the biomedical field, the utilisation of these techniques
in clinical practice remains low, especially concerning the utilization of
PROMs. A few machine learning applications utilizing PROMs data in
biomedical research have emerged during recent years; however, the potential
for utilising PROMs data to improve clinical care appears under-explored,
especially from the perspective of supporting shared decision-making.

The main of aim of this literature review was therefore to provide a
summary of existing methodologies that apply machine learning methods
on PROMs for predicting clinical outcomes and building prognostic models.
In Section B, we introduce the process of article selection and present an
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analysis of the selected articles in terms of their publication year, intervention
domains, length of outcome prediction, data source, feature selection strategy
and the machine learning methods used. Furthermore, we discuss the gaps
and challenges in Section C that can be addressed in future work to utilise
machine learning methods on PROMs datasets. The main contribution of this
work is firstly, identification of scientific articles applying machine learning
methods on PROMs data for predicting clinical outcomes and secondly,
augmenting the utility of machine learning methods for healthcare datasets
for building clinical decision support systems to better facilitate decision
making for patient-centred care and precision medicine.

B Methods

B.I Review Design and Search Strategy
This literature review identifies scientific articles that focus on the application
of machine learning methods in the process of predicting short or long-term
clinical outcome(s) using PROMs data.

A structured literature search was performed in September 2020 using the
following search string in the PubMed and Scopus database: (((self reported
measures) OR patient reported measures)) AND ((artificial intelligence) OR
machine learning) AND ((outcome prediction) OR outcome assessment). The
results were filtered to include journal and conference articles written in
English and published within the last decade (2010–2020).

B.II Article Selection
The following inclusion criteria were used to identify articles relevant for the
current review:

• Data: The dataset consists of structured questionnaires administered to
patients or participants either in-person or via web application before,
during and/or after a treatment. Articles that involved objectively
measured data or data gathered from online patient forums were
excluded from this study.

• Machine Learning: Application of machine learning methods with
the intent of data analysis or clustering of patients or assessment
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of features with prognostic value for one or more target outcomes or
building prognostic models for short or long term prediction of one or
more outcome.

• Full text availability (including institutional access)

• Written in English

Articles not meeting the inclusion criteria following the abstract and full
screening were excluded from this study.

B.III Search Outcome
Figure 1 presents a flowchart of the article selection process. Based on the
structured literature search, a total of 319 records were identified: PubMed (n
= 314) and Scopus (n = 5). Further, we screened the references of the articles
that met the inclusion criteria along with relevant review articles and books
to identify additional articles (n = 4). Finally, after duplicates were removed,
we screened 322 articles. After screening of title/abstract and assessing the
eligibility, a total of 15 articles were included in the qualitative synthesis.

B.IV Sources of Evidence
All the included articles were published in peer-reviewed journals. Eight
out of the 15 articles were published in the years 2019 and 2020 (excluding
October–December 2020); see Figure 2. Fourteen articles were published the
second half of the decade 2016–2020, while only one article was published in
the first half of the decade, in 2012.

B.V Intervention Domains and Length of Prediction
Articles stratified by the intervention domain (Figure 3), can be broadly
categorized as post-surgical improvements or limitations, depression, pain
management, hospital readmission, and oral health.
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Figure 1: Flowchart of the article selection process.

Figure 2: Publication year of included articles.
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Figure 3: The included articles categorised by their intervention domains.
The length of the predictions are indicated, categorised into short- and long-
term. The time period of the data collection is indicated to the right. Red
asterisks indicate studies that utilized external validation datasets to test
the generalizability of the machine learning models.

The first category includes six articles, focusing on outcomes relating
to post-surgical limitations or improvements such as quality of life after
cancer surgery (Shi et al., 2012) and (walking) limitations or improvements
(minimal clinically important difference (MCID)) after total joint arthroplasty
(Huber et al., 2019; Pua et al., 2019; Fontana et al., 2019; Polce et al., 2020;
Harris et al., 2019). The second category includes four articles, focusing on
identifying patients with depression based on self-reports (Kessler et al., 2016;
Andrews et al., 2017) and prognosis of outcome of anti-depression treatment
(Chekroud et al., 2016, 2017). The third category includes three articles
focusing on predicting pain volatility amongst users of a pain-management
mobile application (Rahman et al., 2018, 2019) and self-referral decision
support for patients with low back pain in primary care (Nijeweme-d’Hollosy
et al., 2018). The fourth category includes one article that focused on the risk
of hospital readmission (Schiltz et al., 2020), while the fifth and last category
includes one article that focused on oral health outcome among children aged
2–17 years (Wang et al., 2020b).

Eleven articles presented machine learning models for predicting short-
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term outcomes (12 months or less), see Figure 3, while four articles presented
machine learning models for predicting long-term outcomes (over 12 months).
Two articles focused on immediate outcomes, such as referral decision
(Nijeweme-d’Hollosy et al., 2018) and oral health scores (Wang et al., 2020b).
Four articles, marked with red asterisk in Figure 3, utilized external
validation datasets to test the generalizability of the machine learning models.
None of the articles with long-term outcomes utilised external validation
datasets. The prediction timelines also appear to be domain dependant.
Outcomes from interventions like depression treatment or surgeries seem to
be predicted over long-term, likely due to the nature of the treatment and
associated outcomes in the two intervention domains.

B.VI Sources of Data and Availability
Table 1 presents a summary of the included articles. Few articles utilized
open-source or available-on-request datasets from national registries such
as National Institute of Mental Health (NIMH) or National Health Service
(NHS). The size of datasets vary, from 37 patients (Andrews et al., 2017) to
64,634 patients (Huber et al., 2019). Seven articles utilized training datasets
with less than 1000 patients.

B.VII Feature Selection
The methods of feature selection were either statistical, algorithm-based or
manual, based on expertise or availability of data (Table 1). In the table,
‘Algorithm implicit’ implies that the features were selected by the algorithm(s)
used for the prediction task and no other explicit feature selection was carried
out, while ‘Manual’ implies that the features were selected manually based
on experience or expert knowledge or data availability.

Ten articles used supervised learning algorithms to extract relevant
features from the dataset, while in four articles, features were selected
manually, without any statistical or algorithmic assistance. One article (Shi
et al., 2012) applied statistical methods to extract and select relevant features.
Among the four articles that employed manual feature selection, two articles
(Wang et al., 2020b; Fontana et al., 2019) manually divided all the features
into sets and added the sets incrementally into the training dataset to train
the model(s). In comparison, in the other two articles (Pua et al., 2019; Harris
et al., 2019), features were selected manually based on clinical expertise
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(Pua et al., 2019) and previous experimental evaluation (Harris et al., 2019).
Ten articles employed algorithmic approach for extraction and selection of
relevant features from the datasets. Andrews et al. (2017) used LASSO,
Schiltz et al. (2020) and Rahman et al. (2019) used Random Forest, Polce et al.
(2020) used recursive feature elimination with Random Forest, Chekroud
et al. (2016, 2017) used Elastic nets, while Huber et al. (2019), Rahman et al.
(2018), Nijeweme-d’Hollosy et al. (2018) and Kessler et al. (2016) employed no
separate feature selection but relied on the implicit feature selection ability
of the algorithms used. Random forest and linear models such as Elastic nets
and LASSO appear to be the preferred algorithm choice for feature selection.

B.VIII Trends in the Application of Machine Learning
Methods

Table 2 presents an overview of the different machine learning methods used
in the included articles. Ensembles and linear methods appear to be the
most commonly applied methods to PROMs datasets, with all the included
articles employing at least either one, likely due to their ability to extract
features implicitly. While supervised learning methods are the go-to methods
for prediction tasks, three (20%) articles apply unsupervised methods as a
pre-step to the supervised methods to determine and predict cluster-specific
outcomes (Rahman et al., 2018, 2019; Chekroud et al., 2017). Examples
of commonly used linear algorithms in the included articles are logistic
regression, logistic regression with splines, elastic nets, Poisson regression,
LASSO, linear kernel-based Support Vector Machines, among others. The
most commonly applied ensemble algorithms are Random Forest, Boosted
Trees, Gradient Boosting Machines (GBM), stochastic gradient boosting
machines, extreme gradient boosting (XGBoost), and SuperLearner.

Thirteen (87%) articles used binary classification to predict whether the
targeted outcome(s) are above or below a specified threshold (for instance,
whether or not a patient achieves MCID in their post-operative outcomes
(Fontana et al., 2019)). One article used ternary classification to predict
the self-referral outcome among people with low back pain in a primary
care setting (Nijeweme-d’Hollosy et al., 2018). In contrast, three (20%)
articles used regression (Shi et al., 2012; Chekroud et al., 2017; Wang et al.,
2020b), one of which used both regression and binary classification to predict
continuous and categorical outcomes (Wang et al., 2020b).
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B.IX Study Design and Model Evaluation
To reduce the risk of overfitting the models and improve their generalizability,
k-fold cross-validation scheme was used in eleven articles, either during
the hyperparameter tuning phase or the model evaluation phase (Table 1).
Out of these eleven, only one article used k-fold cross-validation scheme
in both phases (Andrews et al., 2017). Three articles (Wang et al., 2020b;
Nijeweme-d’Hollosy et al., 2018; Pua et al., 2019) employed a holdout (70,30)
validation approach: 70% of the dataset used for training the model and
30% for validation, while four articles employed a holdout (80,20) validation
approach (Schiltz et al., 2020; Polce et al., 2020; Fontana et al., 2019; Shi
et al., 2012). While the holdout validation approach is useful due to its speed
and simplicity, it often leads to high variability due to the differences in the
training and test datasets, which can result in significant differences in the
evaluation metric estimates (accuracy, error, sensitivity etc, depending on the
machine learning task the metric used).

External validation datasets were used in four articles to test the
generalizability of the models (Wang et al., 2020b; Nijeweme-d’Hollosy et al.,
2018; Chekroud et al., 2016, 2017). While external validation is generally
recommended to validate the models generated since prediction models
perform better on the training data than on new data, internal validation
appears to be more common, likely due to either lack of or unavailability
of appropriate external validation dataset. However, to correct the bias
in the internally-validated prediction models, bootstrapping methods are
recommended (Bleeker et al., 2003; Steyerberg and Harrell Jr, 2016). Only
one article used bootstrapping to internally validate the models where
external validation dataset was not used (Harris et al., 2019).

B.X Model Performance
While it’s difficult to provide a concrete result comparison among the included
articles due to utilisation of various metrics, most articles did report at
least above chance (fair to moderate) predictive performance of the machine
learning models. Amongst the articles that compared the performance of
conventional linear models with machine learning models, most found the
machine learning models to perform better for predicting the outcomes (Shi
et al., 2012; Huber et al., 2019; Kessler et al., 2016), while one article found
the conventional method to perform equally well as the machine learning
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methods (Pua et al., 2019). Despite the above chance predictive performance
reported in most articles, the limitations posed by the small size of training
datasets used to develop the models and the lack of external validation
datasets has been widely acknowledged (Wang et al., 2020b; Shi et al., 2012;
Polce et al., 2020; Andrews et al., 2017).

C Discussion
Our review identified 15 articles focusing on utilization of PROMs for
predicting outcomes by leveraging the analytical abilities of machine learning
methods. Over the last decade, machine learning methods have received
more attention in clinical research and are increasingly being adopted for
furthering research in clinical analysis, modeling and building decision
support systems for practitioners. The included articles presented promising
research, demonstrating that as more and more healthcare data becomes
available for developmental research, personalized treatment and medicine
becomes more feasible with the help of machine learning-based decision
support systems. Mobile applications allowing faster collection of PROMs
data, as shown by (Rahman et al., 2018, 2019), is a promising way to collect
more data frequently as well as utilise the collected data for further research
and development. Thus, the application of machine learning methods
on PROMs data for predicting patient-specific outcomes appears to be a
promising avenue and warrants further research.

C.I Gaps and Challenges
The lack of external validation and non-availability of datasets used in
the majority of the articles poses a major gap in data availability for
machine learning research. To drive the field forward, access to and open
research questions in suitable datasets is a prerequisite. Datasets that are
both comprehensive, complete, and readily available for research purposes
such as machine learning model development are rare. Such datasets
can facilitate the external validation by researchers in different disciplines
and potentially inter-disciplinary collaboration. In other medical domains,
opening pre-processed and experiment-ready datasets have shown that they
draw attention to machine learning researchers and practitioners to explore
different methods and benchmark the results (Xu et al., 2019; Wang et al.,
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2020a; Feng et al., 2018). As for the size of the datasets, eight of the fifteen
articles included in this review used training datasets with more than 1000
patients (see Table 1), highlighting the sparsity of decent sized healthcare
datasets for machine learning modelling. Furthermore, data collected with a
different intent originally cannot automatically be used for machine learning
due to uncertain or missing informed consents from participants. Most
datasets collected from patients requires their consent for utilisation of their
data for various other purposes which may not have been foreseen at the time
of data collection. This may limit the ways patient data can be stored, used
or distributed as well as the scope of the data.

Explainability and trustworthiness of the machine learning models are
important challenges when it comes to developing clinical decision support
systems. While a lot of attention has been given to developing accurate
machine learning models, it is crucial to build systems that are trustworthy
and interpretable. The users of such systems, for example medical researchers
or clinicians, should be able to interpret the output of the machine learning
models. Interpretations can be facilitated either through visualizations
or explanations. This is an important aspect for clinicians such that they
can focus on addressing the medical concerns rather than struggling with
comprehension of the system’s results.

Moreover, inconsistency was observed in reporting the development of
the machine learning models in the articles. Only six articles reported the
essential aspects of machine learning model development such, as feature
selection and hyperparameter tuning, whereas in nine articles this was either
unclear or not stated at all, which can limit the reproducibility of results and
further research.

Despite the progress in the development of machine learning models
aimed at facilitating informed decision-making, there is still some more
progress needed before these tools can be used in clinical practice. In
specific, external validation on large datasets of specific cohorts and thorough
evaluation of the prediction tools would be necessary before these tools can
be integrated in clinical practice.

C.II Limitations
The limitations of this review were that it was not possible to perform a
meta-analysis of the results in the included articles due to various reasons,
including, but not limited to, the heterogeneous study design, data non-
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availability, and study results, as summarised in Table 1 and discussed in
Section B.X. Out of the fifteen articles included in the analysis, only four
articles reported their data source (national registry datasets) and one article
stated that their dataset may be available on a reasonable request. However,
none of the datasets were available during this literature review process for
a meta-analysis. Further, we acknowledge that the articles retrieved in this
literature review include only those articles that were retrieved during our
search and met the inclusion criteria. As stated in the inclusion criteria, we
included only those articles that focus solely on PROMs.

D Conclusions
In summary, this literature review resulted in two main findings. First,
there has been an increase during recent years in applying machine
learning methods in exploring PROMs datasets for predicting patient-specific
outcomes. Second, although the included articles have reported promising
results and improvements (Chekroud et al., 2016; Shi et al., 2012; Pua et al.,
2019), lack of data availability, inconsistent reporting of machine learning
model development as well as the use of different evaluation metrics prevents
effective result reproduction and comparison. To conclude, utilising machine
learning methods on PROMs datasets have the potential for assisting in
clinical decision making and thereby, further research focusing on thorough
validation is needed.
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Abstract
External validation is essential in examining the disparities in the training and
validation cohorts during the development of prediction models, especially when the
application domain is healthcare-oriented. Currently, the use of prediction models
in healthcare research aimed at utilising the under-explored potential of patient-
reported outcome measurements (PROMs) is limited, and few are validated using
external datasets. To address the issue, we validate the machine learning prediction
models based on three methods—Case-Based Reasoning, Support Vector Regression,
and XGBoost Regression—developed in our previous work (Verma et al., 2021a) for
predicting pain-related patient-reported outcomes from the SELFBACK datasets.
Overall, the predictive power was low, except for prediction of one of the outcomes.
The results indicate that the models show ability to generalise and predict outcomes
for a new dataset and highlight the need for external validation in healthcare-oriented
studies for the further development of patient-centred healthcare systems.

A Introduction
Use of technology to support self-management of musculoskeletal pain is a feasible
and promising approach (Marcuzzi et al., 2021; Sandal et al., 2019). In the
SELFBACK project, a mobile app was developed to make weekly tailored self-
management plans for users to help them manage back pain and other pain-related
symptoms (Mork and Bach, 2018). The self-management plans are tailored to each
user based on a set of variables reported by the user in the mobile application. Tools
like SELFBACK enable the effective use of technology for bridging the gap between
patient-reported outcome measurements (PROMs) and patient-centred care. PROMs
serve as a tool to assess and evaluate the health status of a patient from the patient’s
perspective at any given time point (Nelson et al., 2015). They may be recorded before,
during or after a healthcare intervention and can help in measuring the impact of
the intervention given to the patient. From a clinical perspective, the addition of
predictive analytics to such healthcare tools could serve to further improve patient-
centred care by detecting early signs of deteriorating outcomes, and warning primary
caregivers to proactively prevent their occurrence (White et al., 2020; Verma et al.,
2021b). This can therefore help caregivers to optimise the treatment approach for a
given patient.

Previous research has shown that integrating technology with healthcare data can
support preventive treatment (Chekroud et al., 2016; Andrews et al., 2017), hospital
re-admissions (Schiltz et al., 2020), and prevention of post-surgical complications
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(Harris et al., 2019). To make further advancements in this field, it is important
to have a clear understanding of what factors should be considered when deciding
the treatment approach for a given patient (Giga, 2017). From both clinical and
machine learning points of view, this translates to deciding features from the available
data that may be valuable in predicting a future outcome. Furthermore, external
validation is essential to assess the generalisability of the prediction models (Moons
et al., 2006; Cabitza et al., 2021).

Most studies that address the prediction of PROMs using machine learning
methods have only validated their models internally (Verma et al., 2021c).
Bootstrapping may be an approach suitable for internal validation to compensate for
the lack of external validation due to the bias-corrected estimation of the prediction
models (Steyerberg and Harrell, 2016). However, the bootstrapping method cannot
replace external validation since models often perform better on the dataset they were
trained on compared to validation on a different dataset (Bleeker et al., 2003). This
effect is often attributed to the overfitting of the model caused by the high variance.
Furthermore, since clinical datasets tend to be relatively small, it is unlikely that
internal validation would be sufficient as prediction models are prone to overfitting
when using small datasets (Luedtke et al., 2019).

This paper presents an evaluation of the prediction models developed in our
previous work (Verma et al., 2021a) using an external dataset. In our previous work,
a two-fold feature selection approach that combines correlation and data-driven
similarities in Case-Based Reasoning (CBR) was used to identify relevant features
for predicting a set of PROMs in the SELFBACK dataset. The features selected
were used to build prediction models using three methods—CBR, Support Vector
Regression (SVR), and XGBoost Regression (XGB).

B Methods

B.I Dataset
The dataset used for external validation consists of PROMs collected from patients
with non-specific neck and/or low back pain in a randomised controlled trial (RCT
II1) with the help of questionnaires to evaluate the effectiveness of the SELFBACK
decision support system (DSS) in a secondary care setting (Marcuzzi et al., 2021). The
dataset used for training the models consisted of PROMs collected from patients with

1https://clinicaltrials.gov/ct2/show/NCT04463043
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Figure 1: Overview of data collection in two RCTs that evaluated the SELFBACK
DSS. The different data components are indicated by the orange boxes. Only data
from baseline and the 3-month follow-up (FU-2 data) is used to train and evaluate
the prediction models.

non-specific low back pain during an earlier RCT (I2) with the help of questionnaires
to evaluate the SELFBACK DSS in a primary care setting (Sandal et al., 2019).

Figure 1 shows how the data collection was carried out in the two RCTs. The
collected data is categorised into Baseline, Tailoring, and Follow-Up (FU). Only data
from baseline and the 3-month follow-up 2 (FU-2 data) is used to train and evaluate
the prediction models. In total, the training dataset includes 218 patients while the
external validation dataset includes 75 patients that completed at least the FU-2
questionnaire. The external validation dataset is a subset of the data collected in
RCT II. A detailed account of the data collection in the two RCTs can be found in
Sandal et al. (2019) and Marcuzzi et al. (2021).

During data collection (for the external validation dataset), eligible patients
who accepted to join the study answered questionnaires at different time points:
(1) at the time of intake: Baseline questionnaire (Baseline Data), (2) at the end of
every week: Tailoring questionnaire (Tailoring Data), (3) at the end of 6-weeks,
3-months, 6-months: Follow-Up questionnaire ((FU Data)). The questionnaires
include validated clinical measures of pain level, pain self-efficacy, work-ability,
mood, physical activity, sleep quality, functional ability, and fear avoidance. In
addition to the clinical measures, the baseline questionnaire also includes questions
regarding patient demographics such as age, height, weight, education, employment
type, and family. Based on the patients’ responses at baseline, the SELFBACK
mobile application recommends an exercise plan and educational elements along

2https://clinicaltrials.gov/ct2/show/NCT03798288
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with tracking their number of steps every day from a wearable device (Xiaomi Mi
Band 3). Exercise completion and education readings are self-reported in the app
(Sandal et al., 2021).

Target Outcomes
The training dataset originally comprised 47 features. In our previous work, we
focused on six target outcomes. However, due to exclusion of one outcome in
RCT II, two outcomes—Roland Morris Disability Questionnaire and Numeric Pain
Rating Scale—had to be removed from this experimental evaluation due to feature
dependency. Instead, we focus on the four secondary outcomes that were chosen to
represent a diversity of domains; Workability index (WAI, range: [0,10]), Pain Self
Efficacy Questionnaire (PSEQ, range: [0,60]), Fear Avoidance Belief Questionnaire
(FABQ, range: [0,30]) and Global Perceived Effect Scale (GPE, range: [-5,+5]). We
use the features previously selected for each target outcome based on the training
dataset (Verma et al., 2021a) and evaluate the generalisability of the models using
the external dataset. Table 1 gives a brief summary of the various features used
in this work. Marcuzzi et al. (2021) give a more comprehensive summary of all the
features collected at various time points in the RCT II.

B.II Prediction Models
Prediction models using three machine learning methods were trained on the
completed PROMs collected in RCT I—CBR, SVR, and XGB—to predict the four
target outcomes reported by patients in RCT II.

Table 1: Summary of the SELFBACK RCT I & II dataset features used in this work.
Abbreviated feature names in the bracket include the specific sub-scale scores used
in this work either as a predictor or as a target outcome. Features predicted at FU-2
are marked with an asterisk (*).

Feature Description

Age Age of the participant in years

Body Mass Index (BMI) Calculated using reported weight and height

(continued on next page)
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Feature Description

Workability Index
(WAI*)

Used to assess work-ability of an individual using
an 11-point numeric rating scale

Pain Self-Efficacy
Questionnaire (PSEQ*,
PSEQ_2)

Used to assess the participants’ level of confidence
in carrying out specific activities despite their pain
using ten items, each measured on a 6-point scale

EuroQoL 5-dimension
(EQ5D, EQ5D_mobility)

Used to assess health-related quality of life using
five items, each scored 0-5

Brief Illness
Perception
Questionnaire
(BIPQ_life,
BIPQ_pain_continuation,
BIPQ_concern,
BIPQ_symptoms)

Used to evaluate participants’ illness perception
using eight items on an 11-point numeric rating
scale

Pain Intensity
(Pain_1year, Pain_worst)

Perceived intensity of low back and/or neck pain
measured by a 11-point numerical rating scale

Sleep (Sleep_wakeup) Sleep problems assessed by four self-report items
which provide information needed to diagnose
insomnia according to the DSM-V criteria

Fear-Avoidance Belief
Questionnaire (FABQ*)

Physical activity sub-scale used to measure
participant’s beliefs about how physical activity
affects their low back and/or neck pain using five
items, each scored 0-6

Patient-Specific
Functional Scale
(PSFS)

Used to evaluate changes in participant’s ability to
perform up to two self-selected activities regarded
as important by them using an 11-point score

Global Perceived
Effect (GPE*)

Used to investigate the effect of the intervention as
perceived by the participant using one item scored
-5 to 5
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B.III Feature Selection
Two feature selection approaches were applied in the previous work to select features
from the baseline dataset for each of the chosen outcomes to be predicted: i) a two-fold
hybrid approach that uses statistical correlation (Pearson and Galton, 1895) to filter
out the most correlated features, followed by a final selection of features based on
CBR model built using data-driven local similarity modelling approach (Verma et al.,
2018) (similarity modelling carried out in myCBR workbench (Bach and Althoff,
2012)) and ii) an ensemble approach that uses permutation feature importance to
select features with XGBoost as the base regressor (Fisher et al., 2019).

B.IV Hyperparameter Optimization
Before the two machine learning algorithms—SVR and XGB—were trained on the
training dataset, their hyperparameters were tuned using grid search to optimize
their performance on the dataset. Grid search was used to perform an exhaustive
search through a pre-defined set of hyperparameter space for each learning algorithm
to identify their optimal hyperparameters (Hutter et al., 2019). Regarding the CBR
models, as there are no hyperparameters involved, this step was not required.

B.V Evaluation Metrics
The metrics used to evaluate the results in the experiments are Mean Absolute Error
(MAE) and Normalized Mean Absolute Error (NMAE). MAE is the average of the
absolute errors, i.e., the difference between the observed and predicted value. While
there are several ways to normalize error, we normalized the MAE using the max-min
method (see eq.2) for each outcome to get NMAE in the range [0,1]. This brings
the results on the same scale and simplifies comparison across different models and
outcomes.

MAE =
µ

1
n

∂ nX

i=1
| ŷi ° yi| (1)

NMAE =
µ

MAE
ymax ° ymin

∂
(2)
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C Experiments & Results
The methods were implemented in Python (Oliphant, 2007) in jupyterLab notebook3

using Scikit-learn (Buitinck et al., 2013) and myCBR Rest API4 (Bach et al., 2019)
was used for querying the CBR models developed in myCBR workbench. SVR and
XGB models were 10-fold cross-validated during the training phase.

Table 2: Results of Prediction of Target Outcomes at Followup-2 using different
Feature Selection Methodologies and Regression Methods for the Intervention Group
(size of dataset: 75 participants). Values are MAE/NMAE pairs. Numbers in bold
letters highlight lowest MAE/NMAE pair. n: number of features.

Feature Selection Methodology

Correlation+CBR PFI+XGBoost

Outcome [range] n CBR SVR XGB n CBR SVR XGB

WAI [0,10] 4 2.04/0.204 1.68/0.168 1.94/0.194 1 1.90/0.190 1.91/0.191 1.92/0.192

PSEQ [0,60] 3 9.97/0.166 9.49/0.158 8.66/0.144 2 10.28/0.171 9.8/0.163 8.04/0.134

FABQ [0,30] 1 5.54/0.184 4.09/0.133 4.04/0.134 6 5.24/0.174 4.34/0.144 4.74/0.158

GPE [-5,5] 2 1.32/0.132 1.92/0.192 1.55/0.155 3 1.30/0.130 1.60/0.160 1.43/0.143

Table 2 summarises the results of the experiments. The SVR and XGB models
gave the lowest prediction error for WAI and FABQ at 1.68 and 4.04, respectively,
using the features selected by the hybrid method. XGB and CBR gave the lowest
prediction error for PSEQ and GPE at 8.04 and 1.30, respectively, using the features
selected by the permutation feature importance method. For the MAE, the error for
PSEQ and FABQ is higher compared to the other two outcomes, however, considering
the NMAE, these errors are comparable to that of the other two outcomes.

D Discussion
The external validation sample in this work included PROMs from 75 patients,
while the training and internal validation included 218 participants. In the internal

3https://jupyter.org/
4https://github.com/ntnu-ai-lab/mycbr-sdk
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validation of the models in our previous work (Verma et al., 2021a), CBR and SVR
gave the lowest MAE for WAI and FABQ at 1.14 and 3.60, respectively, using the
features selected by the hybrid method, while CBR gave the lowest MAE for PSEQ
and GPE at 5.95 and 1.49, respectively, using the features selected by the feature
importance method. Comparing these figures to the results in table 2, we can see
that the models show slightly worse performance for the external dataset, which is
usually expected. While the results for PSEQ appear worse in the external validation,
when considering the performance of the same best-performing model in the internal
validation for the outcome (XGB), the model in fact fared better on the external
dataset (MAE 8.04) that on the training dataset (MAE 17.1). Although the predictive
power was low, the evaluation suggest that the prediction models can be applied to a
new dataset. The approach for selecting features seems to have negligible influence
on the performance of the prediction models.

Training and testing a predictive model on the same dataset is by and large not
considered optimal, especially when the predictions should be used to support clinical
decision-making (Siontis et al., 2015). At a minimum, our evaluation substantiates
the potential of both the PROMs and utility of machine learning methods for PROMs,
while also highlighting the need for external validation and further development of
prediction models. Future work should compare the predictions made by clinicians
versus machine learning methods to fully assess the usefulness of machine learning
methods in this field.

D.I Study Limitation
The fact that this work is based on patient-reported data may be considered a
limitation owing to the limited reliability of subjective datasets (Bookstein and
Lindsay, 1989). Further, it is difficult to fully assess the extent of adequacy of the
features selected for clinical judgement since clinicians themselves have a hard time
selecting the most valuable or informative features (Leuchter et al., 2009).

E Conclusion
To conclude, the external validation of prediction models presents modest results
and highlights the need for further development in this area of machine learning
application. While the results are still far from being applicable in a clinical setting,
they nevertheless show potential in the methods as well as PROMs data. More
research is prudent to further this field of machine learning application.
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