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Summary

Robotic grasping serves as a barrier for many robotic manipulation tasks. Gen-
eralized autonomous grasping remains an unsolved challenge, but reinforcement
learning has shown promising results within robotic grasping. There are several
challenges related to using reinforcement learning for robotic grasping, but sam-
ple inefficiency is one of the most notable. Utilizing simulated environments to
increase the amount of data available in training is a proposed solution. Previous
works [36, 13] show that directly transferring an algorithm from simulation to a
real-world setting causes a large loss in performance. This is called the sim-to-real
gap and is mainly caused by the inability of simulators to create exact replicas of
real-world physics and visuals.

Most grasping algorithms are trained utilizing images. The intuition is that simu-
lated and real images are too different, causing a significant performance loss when
the unfamiliar real images are utilized. In this thesis, we conduct experiments to
examine how training with depth information affects the sim-to-real gap. The ex-
periments show that using depth information in addition to RGB images reduces
the sim-to-real gap by 21.8% compared to using only RGB images. To conduct
these experiments, we have created a modern simulation framework consisting of
well-known reinforcement learning and robotics frameworks. This framework and
the environments created are also replicated with a real-world robotic setup for
grasping with the high-performing 3D camera, Zivid Two.





Sammendrag

Griping med roboter er en barriere for mange robotmanipulasjonsoppgaver. Gen-
eralisert autonom griping er fortsatt et uløst problem, men bruk av forsterkende
læring har vist lovende resultater. Det er flere utfordringer knyttet til bruk av
forsterkende læring for griping med roboter, men et av de mest bemerkelsesverdige
problemene er data ineffektivitet. Å bruke simulerte miljøer for å øke mengden
data som er tilgjengelig i trening er en mulig løsning. Tidligere arbeider [36, 13]
viser at direkte overføring av en algoritme fra simulering til virkeligheten medfører
et stort ytelsestap. Dette kalles sim-to-real gapet og er hovedsakelig forårsaket av
simulatorer sin manglende evne til å lage eksakte modeler av virkelighetens fysikk
og visuelle elementer.

De fleste algoritmer for griping bruker bilder som observasjoner. Intuisjonen er at
simulerte og ekte bilder er for forskjellige, noe som forårsaker et stort ytelsestap
når algoritmen bare er vant til å se simulerte bilder. I denne oppgaven gjennom-
fører vi eksperimenter for å undersøke hvordan trening med dybdeinformasjon
påvirker sim-to-real gapet. Eksperimentene viser at bruk av dybdeinformasjon
i tillegg til RGB-bilder reduserer gapet mellom simulator og virkeligheten med
21, 8% sammenlignet med å bare bruke RGB-bilder. For å gjennomføre disse
eksperimentene laget vi også et moderne simuleringsrammeverk bestående av velk-
jente forsterkende læring og robotikk rammeverk. Dette simuleringsrammeverket
og simulerings-miljøene som ble laget, er også gjenskapt med et virkelig fysisk
robotoppsett med det avanserte 3D-kameraet Zivid Two.
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Chapter 1

Introduction

Traditionally automation and robotics have required the task and objects to stay
constant and not deviate from their original form. Complex tasks involving novel
objects and experiences have had little to no potential of being automated. Re-
inforcement learning provides a framework and set of tools for robotics that can
be used to create these sophisticated and hard-to-engineer behaviors that are re-
quired to solve complex tasks. One of the hardest tasks in robotics is manipulation
tasks where a robot has to grasp one or more objects. Robotic grasping has be-
come one of the largest unsolved challenges in robotic manipulation [11], but it is
essential for carrying out many robotic manipulation tasks.

There are several examples of grasping systems trained with reinforcement algo-
rithms that reach grasp success rates of 92-96 % on novel objects [15, 32]. This
performance is not adequate for practical use. One common problem for most
reinforcement learning algorithms is sample inefficacy. Robots need hundreds to
thousands of running hours to collect enough data to train successful algorithms,
which is both impractical and expensive. One solution could be to use synthetic
data from training in simulation. Algorithms can be partially or fully trained in
simulation, and then the policy can be transferred to its real-world application.

In [13] an algorithm was trained to 98% success rate on novel objects in simulation.
When deployed to a real-world grasping scenario, the algorithm achieved only
21%. This performance difference is known as the sim-to-real gap or reality gap. It
is mainly caused by the inability of simulators to create exact replicas of real-world
physics and images. This causes differences in sensing, actuation, physics, and
image observations to occur. Closing the sim-to-real gap would allow algorithms
to be trained entirely in simulation and therefore eliminate the problems related
to sample inefficiency. This would be a large step towards making reinforcement
learning for robotic manipulation sufficient for solving tasks that today require
human interaction.
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Domain randomization is a known technique to help reduce the sim-to-real gap.
The intention behind randomizing different factors in the simulated environment is
to force the network to extract only semantically relevant features and therefore
extract the same information from the simulation and real-world observations
despite the differences between the simulated and real sensory input. The visual
modality is most notable as position, velocity, and acceleration measurements
are considerably easier to mimic in simulation. By training an algorithm with
domain randomization, the real-world grasp success in [13] rose to 37%. Modern
physics engines and renders produce high-quality images, but they do not look real
enough. Even small changes in lighting texture, color, and capturing method will
create very different values in the RGB format even though the images resemble
each other to the human eye. The intuition is that even though an algorithm is
trained with visual domain randomization, the real image domain will still present
a partially novel domain.

In this thesis, we will test how adding depth information will affect the sim-to-real
gap. The idea is that depth is less dependent on the variable and random factors
that affect images, such as lighting and textures. A high-quality 3D camera is
therefore expected to present less of a domain difference and reduce the sim-to-
real gap.

This master thesis is partially based on the work done in the specialization project
[16] preceding this paper. Some of the background and theory parts are from or
are based on this work.

1.1 Objectives
The overarching goal of this thesis is to:

• Investigate how RGB-D image observation will affect the sim-to-real transfer
compared to using RGB observations.

The intention is that depth images from a state-of-the-art 3D camera will be less
affected by the variable factors causing the sim-to-real gap for RGB images alone,
as depth is independent of light, shadows, and textures as opposed to RGB values
in images.

In order to conduct experiments for the overarching goal, several sub-goals, but
still time-consuming and challenging goals are defined:

• Create a reinforcement learning framework for robotic grasping that allows
training with RGB-D images, RGB images, and other observables commonly
used in robotic grasping.
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• Create a custom simulated environment that facilitates successful sim-to-
real transfer.

• Train a high-performing grasping policy utilizing reinforcement learning.

• Process real depth data observations from the camera to resemble simulated
depth data.

1.2 Contributions
For this master’s thesis, a framework for reinforcement learning in simulation
was constructed using the robosuite [37] framework on top of the physics engine
MuJoCo [20] with the reinforcement learning framework Stable-Baselines3 [26].
A large part of this system was developed in combination with Petter Rasmussen
and Ole Jørgen Rise [28].

The simulated environment was adapted so that it could be replicated in a real-
world setting in a robotics lab with the 3D camera Zivid Two.

Training and hyperparameter tuning was conducted to create a high-performing
reinforcement learning algorithm utilizing RGB-D images to reduce the sim-to-
real gap.

Tests were performed to show that the RGB-D algorithm had a smaller sim-to-real
gap than the RGB algorithm.

1.3 Report Structure
This master’s thesis consists of the following chapters.
Chapter 2 - Background Provides the reader with fundamental concepts, the-
ory, and related work, enabling the reader to comprehend the work presented in
the following chapters.
Chapter 3 - System Configuration Describes the key technologies, design
choices, and frameworks built and used to train and test reinforcement learning
algorithms in this thesis. This chapter also presents specific parameter choices
utilized for training, such as the reward function, action and observation space,
normalizing, hyperparameter tuning, and processing of depth information from
the real-world camera.
Chapter 4 - Experimental Setup This chapter explains the setup used for
conducting the experiments. This includes both the setup of the simulated envi-
ronment, algorithms used for training, and the real-world testing setup.
Chapter 5 - Results Presents the results from both the simulated training and
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the real-world performance of the grasping algorithms.
Chapter 6 - Discussion This chapter presents a discussion of the results and
evaluates the performance of the algorithms.
Chapter 7 - Conclusion Concluding remarks and further work.



Chapter 2

Background

This chapter starts with a review of the field of robotic grasping. Then basic
theory about reinforcement learning is presented, followed by the key equations
forming the PPO algorithm later utilized for training in this thesis. Then, a
discussion of the challenges related to using reinforcement learning for solving
robotic grasping tasks is presented. This part focuses on how sample efficiency
problems can be solved by closing the sim-to-real gap utilizing synthetic data.
The chapter is concluded with a review of related work. This chapter is based
on and includes parts from the Robotic Grasping chapter from the specialization
project [16] preceding this paper.

2.1 Robotic Grasping
This section discusses the fundamentals of robotic grasping. Common approaches
used in robotic grasping and relevant theory will be presented. This section is
based on and includes parts from the Robotic Grasping chapter from the special-
ization project [16].

A grasp can be defined as obtaining complete control of an object’s motion. Con-
trol of the object is achieved by restraining the motion by applying forces at
specific contact points of the object.

Robotic grasping is a complex task. There are several challenges related to robotic
grasping in general, which makes it a difficult task, but the lack of observables
and the large action space are two of the main hindrances for creating successful
algorithms. Cameras and different 3D sensors are the only observables available
for information about the target objects. Images are challenging for computers
to interpret and lead to ambiguity about object pose, material properties, shape,
and mass.
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The robot’s end-effector, in this case, the gripper, can have many dimensions. For
example, the Allegro hand (see figure 2.1) has four fingers with three joints each.
This makes a total of 12 dimensions. The wrist posture has an extra 6 degrees
of freedom due to the position of the end effector. In reinforcement learning, this
will create a larger action space, which will take longer to explore and complicate
the learning process.

Figure 2.1: The Allegro Hand. (Image is from wiki.wonikrobotics.com.)

2.1.1 Generalized Autonomous Grasping

Generalized autonomous grasping is a robot’s ability to pick up any given objective
within a reasonable size and mass. To achieve this, we need some way for the robot
to interact with its environment. I.e., a robot arm with a suitable end-effector
mounted. The robot needs some way of sensing its environment. This is often
solved with a camera. Either wrist-mounted or over the shoulder. The robot also
needs some algorithm for mapping the sensory information to some action that can
allow the robot to grasp the object presented. Cameras are the preferable source
for sensing the state space. Normal RGB and RGB-D cameras are commonly
used when developing autonomous grasping systems.

wiki.wonikrobotics.com
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In addition, approaches can be further divided into model-based and model-free
approaches. Model-based approaches use information about the object, for in-
stance, a CAD model of the target object, when evaluating and choosing different
grasp strategies. Model-free approaches do not utilize any pre-known information
about the objects when grasping.

2.1.2 Model-Free Robotic Grasping

Model-free approaches can generalize to unseen objects very well [30] and have
grown into becoming the main direction of research within robotic grasping. The
primary difference from model-based approaches is that model-free approaches do
not use any prior knowledge about the objects.

A more traditional approach to model-free robotic grasping has been to divide the
process into a series of steps. First, the robot senses the state, defines a suitable
grasp, and then plans and executes the grasp [19, 21]. This allows the problem
of sensing and deciding on a grasp strategy to be completely separated from the
problem of controlling the robot and executing the grasp. This can significantly
simplify the problem [14]. Studies have shown that deep neural networks applied
to large datasets of pre-labeled grasps can successfully calculate new grasps on
novel objects directly from sensory inputs like images and point clouds [12, 25].
Creating these datasets requires either tedious human labeling or many months of
training on a physical system. A major drawback of separating the grasp strategy
from the control of the robot is that this approach cannot react to changes in
the environment or refine its strategy while executing the grasp. These methods
don’t resemble the grasping behavior seen in animals and humans. The grasping
process of a human is a dynamic process where the plan and actions are continually
updated based on the latest information obtained by the senses. This approach
is more robust to unpredictable information.

2.1.3 Reinforcement Learning for Robotic Grasping

Reinforcement learning has shown very promising results within robotic grasping.
By processing raw sensory inputs, such as images, it manages to create control
policies by trial and error automatically. A major advantage of reinforcement
learning is the ability to learn pre-grasp manipulations. Techniques like push-
ing and shifting can be very useful when dealing with objects in hard-to-grasp
poses, cluttered environments, or objects stacked together. Deep reinforcement
learning is reinforcement learning where deep neural networks are used. Deep
reinforcement learning has been accelerated by the increased capacity of mod-
ern computation tools and resources. Deep neural networks are more capable of
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dealing with the large state and action spaces within vision-based robotics. High-
dimensional sensory inputs can be mapped to control outputs utilizing end-to-end
joint training for both perception and control

2.2 Reinforcement Learning
This section presents the fundamentals of reinforcement learning. The theory and
equations forming the basis of the popular PPO algorithm utilized for experiments
in this thesis will also be discussed. Section 2.2 until 2.2.8 is based on the rein-
forcement learning chapter from the specialization project written as preparations
for this master thesis [16].

Reinforcement learning is a type of machine learning that utilizes an agent that
interacts with an environment and learns through trial and error. It uses feedback
from the environment to learn whether the chosen actions were good or bad. The
environment, robots, tasks, objects, etc. differs greatly from different applications.
This makes supervised learning impractical as it would require a labeled data set
to be created for every new application. Reinforcement learning creates the data
during training and is practical when data collection and labeling are challenging.
Recent advances in reinforcement learning like [22] and [31] where reinforcement
learning was used to master the games of chess and go have given reinforcement
learning a great gain in popularity in recent years.

2.2.1 Reinforcement Learning Fundamentals

In reinforcement learning, we have an agent that operates in an environment.
The agent chooses which actions to conduct within the environment and receives
feedback based on the outcome of its actions. This feedback is called reward and
is given out based on specified parameters of how well the agent is accomplishing
the goal of the task. The agent’s objective is to maximize its reward.

The environment and agent are always in a state s ∈ S. This state represents
all aspects of the current situation that the agent is in. In a robotic setting, this
might be the geometry of every object present in the environment and all physical
parameters. The actions that the agent can perform are often noted a ∈ A.
Where A is the action space. The action space defines every possible action that
the agent can choose. For example, if the agent is controlling a robot by sending
out joint positions, then the action space would be

[min angel, max angel] ∗ number of joints

The action space can be discrete, continuous, or include both types of variables.
The actions allow the agent to change the state s.
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The agent uses a policy π in order to choose an action a given a state s. The
policy is a mapping from states to actions. The policy chooses the action that
gets the highest reward given the state s. The agent gets a reward R after every
timestep t. R is a function of the state and the observations. The reinforcement
learning structure can be modeled as seen in figure 2.2.

Figure 2.2: The RL structure (credit:https://en.m.wikipedia.org/wiki/
File:Markov_diagram_v2.svg).

An episodic setting is when the task is restarted when the task ends. It’s important
to note that the agent chooses its action not just based on the next reward. The
agent’s objective is to maximize the cumulative reward for the whole duration of
the episode. We want to maximize the total return J .

J = Rt + Rt+1 + Rt+1 + Rt+2 + Rt+3... (2.1)

The agent needs to learn the relationship between rewards, actions, and states.
This is done through exploration. Exploration is either embedded directly in
the policy, or it can be done separately and only during the learning process.
Exploration is challenging to implement since the agent needs to weigh between
choosing known actions that will lead to relatively high rewards or exploring and
possibly ending up with new strategies that might lead to even higher rewards.

2.2.2 Markov Decision Process

Reinforcement learning approaches are based on the Markov Decision Process.
The Markov property is when the next state and the reward only depend on the
previous state s and action a [29]. This can be expressed mathematically as:

P [St+1|St] = P [St+1|S1, ....., St] (2.2)

The Markov Process builds on the Markov property and is a series of states where

https://en.m.wikipedia.org/wiki/File:Markov_diagram_v2.svg
https://en.m.wikipedia.org/wiki/File:Markov_diagram_v2.svg
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the states only depend on the previous state and its action. The environment
may change state because of the agent’s actions. The mapping between actions
and the new state is called the transition probability or function. The transition
function can be defined as the probability of ending up in a new state s′ after
performing action a in state s. This can be denoted as:

T (s′, a, s) = P (s′|s, a) (2.3)

The following equations must be satisfied to define a proper probability distribu-
tion over possible next states:

0 ≤ T (s, a, s′) ≤ 1 (2.4a)∑
s∈S

T (s, a, s′) = 1 (2.4b)

The idea behind the Markov Decision Process is that the current state s gives
enough information to make an optimal decision. It is not important which states
and actions the system has been in before s.

2.2.3 Optimal Criteria and Policy

As previously stated, the goal is to have a policy that given all possible states
s ∈ S can choose the actions a that maximize the rewards.

In a real-world setting, we will always have stochastic noise. Therefore we can
not know the reward exactly given some action. It is therefore normal to use
the expected return of the reward function. The goal of reinforcement learning is
therefore to find the optimal policy π∗ that maps states to actions that maximize
the expected rewards J . There are different optimal behaviors depending on how
we define J. The finite horizon is an optimal criterion that attempts to maximize
the expected reward for the finite time until the horizon T for t steps:

J = E

{
H∑

t=0
Rt

}
(2.5)

The discounted finite horizon is a different optimal criterion where a variable γ
(with 0 ≤ γ ≤ 1) acts as a discount factor:
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J = E

{
H∑

t=0
γtRt

}
. (2.6)

The γ factor will decrease the importance of rewards that are further back in time.
This increases the value of the rewards earlier in the time, creating a policy that
will strive to claim its rewards faster. An example is if we are trying to learn a
robot to pick up a square. The reward function is simply 1 for a successful grasp
and 0 if no grasp is detected. In this case, the reward will be higher for the agent
if it manages to get a successful grasp within 10 seconds than if it is successful
within 20 seconds. The agent will try to find a policy that is as fast as possible
while still successful.

If the γ is too small the policy will be myopic and greedy and could lead to poor
performance [17].

2.2.4 Value Function

Value functions are methods that estimate the value of being in a given state.
It tries to estimate the discounted sum of rewards from this point onward. The
state-value function links the optimality criteria to policies. The value of a given
state can be expressed as the expected value of the reward given that the agent
will follow the policy π. With the discounted finite horizon optimal criteria the
value function is expressed as:

V π(st) = Eπ

{
H∑

t=0
γhRt|s0 = s

}
. (2.7)

Where the value metric is the expected sum of rewards.

The value function is represented by a neural net and it’s frequently updated
during training using the data that our agent collects. Because the value estimate
is the output of a neural net it is going to be a noisy estimate. There will be some
variance because our network will not always predict the exact value of that state.

2.2.5 Q-Function

A similar function to the state-value function is the state-action value function,
also known as the Q-function. This function returns the value of a given state
and action. It is defined as the expected return when taking action a from state
s and following the policy, π from there:
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Qπ(s, a) = Eπ

{ ∞∑
t=0

γhRt|s0 = s, a0 = a

}
. (2.8)

2.2.6 Advantage Function

The advantage function measures how good or bad a decision is given a certain
state. It is expressed as the state-value function minus the value function.

Aπ(s, a) = Qπ(s, a) − V π(s) (2.9)

The advantage function tries to estimate the relative value of the selected action
in the current state. It’s an estimate of how much better the chosen action is than
the expectation of what would normally happen in the state it was.

2.2.7 Model-Based RL

An important difference between different approaches is whether the agent learns
or has access to a model of the environment. If so, the RL algorithm is a Model-
Based approach. A model of the environment is defined as a function that predicts
the state transitions and rewards.

2.2.8 Model-Free RL

A model-free approach is the alternative to model-based learning. Model-free
approaches dose not involve a model of the environment. They learn the value
functions and optimal policies directly from interacting with the environment.
Model-free methods are often easier to implement and for tuning hyperparameters.
Due to these advantages, they are often used more than model-based methods [23].

There are two main branches model-free learning, policy-based and value-based.
In value-based methods the agent learns the state-action value function (Q-function),
Q(s, a) for the optimal Q∗(s, a). This optimization is often performed off-policy.
This means that the agent can use data collected at any time during the training
when updating the policy.

In policy-based methods, a policy is explicitly represented as π(a|s). The pa-
rameters θ are optimized either trough gradient descent or an objective function
J(πθ). Policy optimization techniques are almost always on-policy. On-policy
means that the agent always uses the latest policy when creating data which is
used for updating the policy.
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2.2.9 Policy Optimization

Policy gradient algorithms are algorithms that aim to update the policy by gra-
dient ascent 2.10.

θk+1 = θk + α ∇θJ(πθ)|θk
(2.10)

∇θJ(πθ), is called the policy gradient. Given a trajectory τ = (s0, a0, ..., sT +1)
the probability for the trajectory from πθ is

P (τ |θ) = ρ0(s0)
T∏

t=0
P (st+1|st, at)πθ(at|st) (2.11)

we can use 2.11 to calculate an expression for the policy gradient:

∇θJ(πθ) = E
τ∼πθ

[
T∑

t=0
∇θ log πθ(at|st)R(τ)

]
(2.12)

Since this is an expectation we can estimate it with a sample mean. By collecting
a set of trajectories D = {τi}i=1,...,N we can estimate the policy gradient with the
expression:

ĝ = 1
|D|

∑
τ∈D

T∑
t=0

∇θ log πθ(at|st)R(τ) (2.13)

where |D| is the number of trajectories.

The policy gradient can be rewritten in different forms which all have the same
expected value but different variances. The policy gradient has the general form

∇θJ(πθ) = E
τ∼πθ

[
T∑

t=0
∇θ log πθ(at|st)Φt

]
(2.14)

where Φt can be chosen to be equal to the advantage function [1].

Φt = Qπθ (st, at) (2.15)

By subtracting the value function we get

Φt = Aπθ (st, at) (2.16)

This gives us a policy gradient widely used in most popular Policy Optimization
algorithms. We can see that if the advantage function is positive, meaning that
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the actions that the agent took in the sample trajectory resulted in better than
average return, we will increase the probability of selecting them again in the
future when the agent encounters the same state. If the advantage function is
negative, the opposite will happen and we’ll reduce the likelihood of the selected
actions.

2.2.10 PPO

This section will present the key equations and ideas behind the PPO algorithm.

Simply running gradient ascent 2.10 on one batch of collected experience will
update the parameters in your network so far outside the range where this data
was collected. The advantage function, which is a noisy estimate of the real
advantage, will deviate severally from the real advantage, and the training process
will not find a satisfying policy.

The PPO and TRPO algorithms were created in order to combat this problem.
They are designed to take the biggest possible improvement step on a policy,
without stepping so far that we accidentally cause the policy to collapse. TRPO
solves this problem by using a complex second-order method and PPO uses first-
order methods and some other tricks to accomplish this.

There are two variants of PPO. PPO-Penalty and PPO-Clip, we will focus on
PPO-Clip. PPO-Clip has the following function for updating its policy

θk+1 = arg max
θ

E
s,a∼πθk

[L(s, a, θk, θ)] (2.17)

where L is given by

L(s, a, θk, θ) = min
(

rt(θ)Aπθk (s, a), clip
(
rt(θ), 1 − ϵ, 1 + ϵ

)
Aπθk (s, a)

)
, (2.18)

and

rt(θ) = πθ(a|s)
πθk

(a|s) (2.19)

Given a sequence of sampled actions and states rt(θ) will be larger than 1 if the
action is more likely now than it was in the old policy. It will be between 0 and
1 if the action is less likely now than it was before the last gradient step.
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The objective function that PPO optimizes is an expectation over batches of
trajectories of two terms where the first one is rt(θ) times the advantage estimate.
The second term is similar to the first one except that it contains a truncated
version of rt(θ) by applying a clipping operation between 1 − epsilon and 1 +
epsilon. Epsilon usually is around 0.2. The min operator is applied to the two
terms to get the final result.

The min operator over the extra clipping expression acts as a regulator. If the
policy tries to change too much, the clipped version will be used. The hyperpa-
rameter ϵ corresponds to how far away the new policy is allowed to change from
the old.

Most modern implementations of this algorithm include other elements like clip-
ping of value functions, normalization, and other tricks that will not be discussed
in detail in this paper.

2.3 Reward Function
Finding a suitable reward function is challenging but very important for creating
an environment where the agent can be successful. This section discusses the
importance of the reward function, reward shaping, and related work.

In reinforcement learning, the agents try to maximize the accumulated long-term
reward. The outcome of a trained policy heavily relies on the reward function
itself. Defining a good reward function in robotic reinforcement learning can be
very difficult [17]. If the reward signal always is the same, then the agent cannot
determine which action is better. It often seems natural to only reward upon task
achievement, but the agent might receive such a reward so rarely that it might
never succeed. Reinforcement learning algorithms are also notorious for exploiting
the reward function in ways that are not anticipated by the designer.

2.3.1 Reward Shaping

Reward shaping is engineering a reward function that guides the agent towards
successful episodes [18]. Robotic grasping is a complicated task that requires the
agent to achieve several sub-tasks. Locating the target object, moving the gripper
close, finding a suitable grasp, and finally executing the grasp. [10] solved this
problem with reward shaping. Creating good reward functions in robotics is often
hard and demands good domain knowledge and trial and error.
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2.3.2 Related Work

Qt-Opt [15] uses a sparse reward where the agent is rewarded only if it manages
to execute a successful grasp. A completely random initial policy would have a
very low chance of succeeding with an unconstrained action space, and the agent
would require unrealistic large amounts of data to learn a successful policy. Qt-
Opt utilized a weak scripted exploration policy to bootstrap data collection. This
engineered policy was biased toward reasonable grasps.

Training in a simulated environment provides more freedom when engineering the
reward function. This is because every metric that is simulated in the environment
is available. To check if a grasp was successful, Qt-Opt had to take a picture when
the robot had executed a grasp. Open the gripper so the grasped object would
fall, close it, take another picture, and compare the images to check if they were
different (successful grasp) or identical (not a successful grasp). In a simulated
environment, it’s possible to simply check the object’s height by retrieving the
object’s location to check if the grasp is successful.

[10] trained a PPO agent in a robosuite environment. They designed a reward
function consisting of three different rewards:

r = r1 + r2 + r3 (2.20)

where r1 ∈ [0, 1] is a metric of how far away the gripper is from the target object’s
position. r2 = 0.25 if both the fingers of the gripper are touching the cube and
r2 = 0 otherwise. r3 = 1 if the target’s center is higher than a certain value,
indicating that the robot must be lifting the cube. r3 = 0 otherwise.

The first reward , r1, encourages behavior that brings the gripper close to the
target object. r2 rewards the agent if it manages to place the gripper around the
target and make contact, and finally r3 rewards a successful grasp. This is an
example of reward shaping which is easy to construct in a simulated environment.
The agent trained in [10] does not need any demonstration data, imitation learning
or engineered policies to train a successful policy.

2.4 Robotic Grasping with Reinforcement Learning
In this section, we will discuss and look into some of the problems and challenges
that arise when using reinforcement learning to solve robotic grasping challenges.
This section is based on and includes parts of the work done in the specialization
project presiding this paper [16].

Reinforcement learning has the last few years increased in popularity amongst
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researchers in the robotics community [36]. Reinforcement learning provides a
framework and tools that allow robots to learn dexterous grasping end-to-end
directly from raw sensory information like cameras.

In the context of robotic grasping, the action and state space are often con-
tinuous and high-dimensional. This causes some very difficult challenges when
utilizing reinforcement learning. Some of the most notable problems in reinforce-
ment learning for robotic grasping that will be discussed briefly are exploration
vs exploitation, stable and reliable learning, and latency. Sample inefficiency and
sim-to-real will be discussed in greater detail.

Exploration and Exploitation

Due to the high-dimensional action and state space in robotics and often sparse
rewards, finding an efficient exploration method is often challenging in robotic
grasping.

Adding demonstration data to the data buffer is a common technique for off-
policy methods. This exposes the algorithm to high-reward behavior. Starting
the training process with “scripted” policies is also a conventional method for
initialization.

ϵ-greedy is a very common method for exploration in robotics. It is a simple
method where the agent has a ϵ probability of exploring and a 1 − ϵ probability
of choosing the action that maximizes the return.

The amount of exploitation when using on-policy algorithms depends on the initial
conditions. Further into training, the scale of exploration is reduced, and the
policy favors exploitation over exploration. This might trap the policy in local
optima.

Deterministic policies add noise to their training actions to create an exploration
effect. This approach will not perform sufficiently when dealing with spares and
deceptive rewards.

Stable and reliable learning

It is common that the performance of reinforcement learning methods depends
on careful settings of the hyperparameters, making them difficult to use in prac-
tice. This problem is extra notable for off-policy algorithms, which are useful in
robotic grasping due to their sample efficiency. The problem of stable and reli-
able learning can be categorized into two main challenges. Reducing sensitivity to
hyperparameters and reducing issues related to local optima and delayed rewards.
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Designing algorithms that automatically tune their own hyperparameters or de-
veloping algorithms that are robust to hyperparameter settings by design are
desirable solutions, but also very difficult to create. This requires deep knowl-
edge about the reasons behind the sensitivity of current reinforcement learning
algorithms. Using automated approaches to hyperparameter tuning is a common
technique.

Reducing issues related to local optima and delayed rewards can be difficult as
the reinforcement learning objective itself can present a challenging optimization
landscape. This means that the usual benefits of over-parameterized networks
don’t necessarily resolve the issues relating to local optima.

Latency

The state of a real robotic system is continuously changing as it moves. This is
contradictory to the MDP as it assumes synchronous execution. Latency is the
measurement of the delay from when the state is measured until the new action
is calculated and applied. The amount of latency depends on the hardware and
complexity of the system. It is possible to account for latency by predicting the
changes in the state using a learned dynamic model. Another approach within
model-free methods is to include the previous action as a part of the state defini-
tion.

2.4.1 Sample Inefficiency

Sample inefficiency is a problem that is very limiting within reinforcement learning
for robotic grasping. The root of the problem is that many robotic grasping tasks
require new data to be collected for training. Collecting data with a real-life robot
is very time-consuming.

Many reinforcement learning algorithms are constructed to learn a task from
scratch. An end-to-end reinforcement learning algorithm that uses a camera to
grasp might require extensive amounts of data just so that it manages to place its
end-effector close to the targeted object. The remaining part of the task, exploring
different strategies for performing the actual grasp, will probably require even
more data.

Off-policy algorithms can reuse old episodes (data) and exploit useful informa-
tion, but many SOTA algorithms are not proficient enough at this. On-policy
algorithms require new data for every update step.

Data collection can be very time-consuming for robotic grasping. Creating real-
world training data can be difficult as it requires a robot set up in a safe envi-
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ronment as the robot’s behavior will be unpredictable. Robot hours can often
be expensive as the hardware itself is expensive and the robot might need human
supervision or even intervention to reset the episode/task. The robot itself cannot
run faster than real-time, and a grasping situation can last around 10-30 seconds.
Additional reset time might also occur. Even scaleable learning with multiple
robots might require months of training in order to acquire a sufficient amount of
training data [15].

One approach for overcoming the problem of sample inefficiency could be to simply
generate more data. In a real-world setting, this can be done by simply using more
robots to collect data simultaneously. Qt-Opt [15] did this successfully, but this
approach requires expensive equipment and engineering efforts. See figure 2.3.

Figure 2.3: Seven robots simultaneously collecting data (credit [15]).

Another way to increase the amount of data is to add or solely use synthetic data.
Synthetic data is most commonly created with simulators. As discussed later in
2.5.2 there is a gap between data created in the real world and data created in
simulators, often called the Sim-To-Real gap. This gap causes successful policies
in simulators to perform poorly in a real-world setting. This gap must be reduced
to make synthetic data more useful.

2.5 Simulation
Simulation and different physics engines used for simulation are thoroughly dis-
cussed in the specialization project [16] and form the basis for this section. In this
section, we explain what a simulator is and argue why simulated environments
can drastically improve training efficiency.

As discussed in 2.4.1, one of the major disadvantages of reinforcement learning
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in robotics is the need for collecting huge amounts of data to train successful
policies. This process can be drastically accelerated using simulated environments.
Simulation allows multiple agents to train at the same time and to train at a
speed faster than real-time. It also reduces the need for human intervention and
allows for greater customization in training environments and episodes. Setting
up training in simulation often requires less engineering effort and eliminates the
safety hazard that follows real-life training with robots.

The domain gap between the simulated environment and the real world is a sig-
nificant problem holding back the use of simulation. This is further discussed in
chapter 2.5.2.

2.5.1 Robotic Simulators

To simulate training for tasks that will be executed in the real world, we need
some sort of software that emulates the physical attributes and properties of the
real world. We also need some way of recreating the physical environment that
the real-world robot will operate in, in the simulated environment.

There are several commercial and open-source physics simulators available that
have been created with the intent of being used for robotics. We will call these
robotic simulators.

[7] defines a robotics simulator as:

an end-user software application that includes at least the following
functionality:

1. Physics engine for realistic modeling of physical phenomenon.

2. Collision detection and friction models.

3. Graphical User Interface (GUI).

4. Import capability for scenes and meshes.

5. API especially for programming languages used by the robotics
community (C++/Python).

6. Models for an array of joints, actuators, and sensors are readily
available.

Robotic grasping is a precision task requiring the fine movement and contact
modeling of rigid bodies. There is also a need for physics that handles contact in
a precise and robust manner. This reduces the field of suitable simulators.

[7] also states that:
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To be useful for manipulation, research simulators must have actuator
models for position control, velocity control, and torque control, as
these are the most commonly used control modes for physical arms.
The simulator needs to support torque sensors as well as visual sen-
sors, namely RGB and RGB-D. Finally, built-in features that are rel-
evant especially for manipulators are Inverse and Forward Kinematics
solvers, and path planning.

[7] has made a table (see 2.1) comparing features of different simulators used in
state-of-the-art research within robotic manipulation.

Table 2.1: Comparison of physics simulators (credit [7]).

2.5.2 Sim-to-Real Gap

The sim-to-real gap, also referred to as the reality gap, is the mismatch between
data collected in simulated environments and real-world settings. This gap causes
reinforcement learning algorithms trained on synthetic data(in a simulator) to
perform worse when deployed in a real-world setting. This mismatch is caused
by a series of factors, such as differences in sensing, actuation, physics, and the
possibility of the agent being exposed to novel experiences in the real-world set-
ting. Rendered images dose rarely look like their real-world counterparts. These
differences are caused by the inability of simulators to create exact replicas of
real-world physics and images.

Better and more realistic simulators will contribute to closing the gap for the
actuation and account for variability in dynamics and physics. The gap in sensing
is a bit more complex as this also involves the problem that the agent can face
situations in the real world that haven’t appeared in the simulator.

2.5.3 Closing the Sim-to-Real Gap

Closing the sim-to-real gap could change how we approach reinforcement learning
for robotic grasping. It would allow algorithms to be trained entirely in sim-
ulation and therefore eliminate the problems related to sample inefficiency by
allowing reinforcement learning engineers and researchers to create as much data
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as their data resources allow. Training in simulation would also lower costs re-
lated to robotics hardware, and setups and eliminate the risk of accidents related
to training robots in the real world. Closing the sim-to-real gap attracts multi-
ple researchers and their efforts. Publications within this field have increased by
several orders of magnitude over the last few years [36].

Modern simulators are becoming more complex and realistic, but they are still
not a sufficient representation of the real world. It is challenging to create high-
quality rendered images in simulations. This is especially problematic within
robotics, where the main sensor information comes from cameras.

Figure 2.4: Simulated image of the KUKA IIWA R820 compared to a real photo
of the robot.

Humidity, temperature, positioning, and wear-and-tear might change the real
robot’s physical parameters, making it deviate from the simulated version.

2.5.4 Domain Randomization

Domain randomization is well documented to be essential for having a successful
sim-to-real transfer. Domain randomization is a technique that aims to narrow the
reality gap of the robotics simulation. This method consists of using some random
parameters in the simulator instead of trying to match them exactly to the real
world. For example, modeling the friction can be very hard, so instead of carefully
modeling the friction coefficient of different surfaces, the domain randomization
approach would be to use random friction coefficients within a somewhat plausible
interval. This will reduce the possibility of the agent relying too much on a bias in
the training data, which doesn’t exist in the real world. Introducing perturbations
in the form of randomization of different factors will make the agent more resilient
to the mismatches between reality and simulation.
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We can divide domain randomization into two different types. Visual randomiza-
tion and dynamics randomization.

Visual Randomization

Rendered images in simulators will always have different textures, lighting, and
camera positions than images from the real world. This makes creating training
data in simulators for vision tasks extra challenging. Visual randomization can
therefore be applied so that the agent has trained images with large variability so
that it can generalize when operating in a real-world setting.

Dynamics Randomization

Dynamics randomization is a method for closing the sim-to-real gap which involves
using some randomization for physical parameters like surface friction, robot joint
damping coefficients, actuator force gains, object dimensions, and masses. Mu-
JoCo [20] and other physics simulation platforms must simplify the underlying
physics model to achieve acceptable runtime speeds. Many of the physics pa-
rameters such as friction, damping, and contact constraints do not fully capture
real-world dynamics due to the simplified model. To compensate for this, it
is important to utilize randomization for important parameters in the physics
model. Open AI [3] managed a successful sim-to-real transfer for dexterous in-
hand manipulation tasks with a five-finger hand by applying the above-mentioned
techniques.

Figure 2.5: A model illustrating the intuition behind domain randomization
(credit [36]).
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2.6 Related Works
Previous work within the field of reinforcement learning for robotic grasping that
is relevant to this thesis is presented in this section. This section is a revised
version of the findings from the specialization project presiding this paper [16].

The field of robotic grasping lacks standardized benchmarks for evaluating the
performance of robotic grasping systems. This is unfortunate as comparing dif-
ferent methods and approaches becomes more challenging and subject to uncer-
tainty. The grasp success rate is a common measurement of performance. Most
researchers use tests where the success rate is measured when grasping objects
lying still. This reported grasp success is the metric used for comparing the per-
formance of different known robotic grasping systems in this paper.

2.6.1 Reinforcement Learning Approaches

QT-Opt [15] is a general-purpose reinforcement learning algorithm created to solve
grasping tasks. The algorithm is a closed-loop system. Qt-Opt is constantly re-
planning its next move depending on the input from the camera. This is because
the policy is learned by optimizing the reward across the entire trajectory, which
allows the policy to learn complex behaviors. This includes pregrasp manipula-
tion, dealing with cluttered scenes, learning retrial behaviors as well as handling
environment disturbance and dynamic objects. Some of these maneuvers are il-
lustrated in figure 2.6

There are several other interesting features of the Qt-opt system. It has a very
flexible action space. The gripper is commanded in all degrees of freedom in
3 dimensions. It operates directly on raw RGB observations from an over-the-
shoulder camera which doesn’t need to be calibrated.

By learning from data collected from previous experiments (offline data), Qt-
Opt reached a 86% grasp success. This data consisted of 580K real-world grasp
episodes/attempts collected with seven different KUKA LBR IIWA robot arms
with two-fingered grippers. The data was collected over the course of four months,
with a total of about 800 robot hours. With an additional 28000 grasps collected
for fine-tuning the joints of the robot, the algorithm achieved a grasp success of
96%.

Another method that achieved high grasping success is Grasping in the Wild [32].
[32] created a new low-cost handheld device for collecting grasping demonstra-
tions. This device utilized a gripper and an RGB-D gripper-centric camera (wrist
mounted). They collected about 12 hours of gripper-centric RGB-D video using
this hardware (see figure 2.7). From this data, 6 degrees of freedom grasping tra-
jectories were recovered using classic visual tracking algorithms. This data was
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Figure 2.6: Eight grasps from the QT-Opt policy, illustrating some of the strate-
gies discovered by their method: pregrasp manipulation (a, b), grasp readjustment
(c, d), grasping dynamic objects, and recovery from perturbations (e, f), and
grasping in clutter (g, h). (credit[15])

used to train a robust end-to-end closed-loop grasping model with reinforcement
learning. A deep neural network was used to model a value function that maps
the images from the camera to the expected rewards in that state. An important
aspect of this method is that it utilizes “action-view” based rendering to simulate
future states with respect to different possible actions (simulating what the cam-
era would see if it moved forward or sideways). These states are evaluated using
the learned value function in a closed loop while executing grasps to predict how
the gripper should move in the next step to maximize rewards. The algorithm was
fine-tuned on a real robot platform using trial and error with standard off-policy
Q-learning to bridge the domain gap between data collected from human demon-
strations and data from the real robot. This method achieved a grasp success of
92%.

2.6.2 Training in Simulation

There have been several attempts to develop approaches that train on data col-
lected completely or partially in simulated environments. Trying to close the
reality gap when using synthetic data is crucial.

A common approach for closing the reality gap is to use generative models to
translate simulated images into realistic images. This type of translation is often
task-agnostic, meaning that all features relevant for solving the task at hand might
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Figure 2.7: Demonstration of the handheld device for collecting grasping demon-
strations and the robot trained with demonstration data. (credit[32])

not be intact after the translation. [27] introduces RLscene consistency loss, which
ensures that the translation operation doesn’t affect the Q-values associated with
the image loss. This enables the possibility of creating task-aware translation. An
approach for simulation-to-real-world transfer for reinforcement learning, RLCy-
cleGAN, was developed using this loss. The RLCycleGAN translation was tested
with Q-learning on a simulated robotic grasping task. The benchmark standard
simulator, without any adaptation, resulted in a policy that achieved 21% grasp
success in the real world in contrast to 95% in the simulator. See table 2.2 for
results compared to some other GAN methods. [27] concludes that:

"RLCycleGAN offers a substantial improvement over a number of prior methods
for sim-to-real transfer, attaining excellent real-world performance with only a
modest number of real-world observations."

A different method also trying to close the reality gap is the RCAN method [13].
Randomized-to-Canonical Adaptation Networks is an approach trying to close the
visual reality gap. This method uses no real-world data. An image-conditioned
generative adversarial network learns to translate randomized rendered images
into their equivalent non-randomized, canonical versions. A robotic grasping
framework can then train using the canonical versions of the images. When de-
ployed in a real-world setting, the RCAN can also translate the real-world images
into canonical versions. This allows the algorithm to infer on data that is similar
to the data it has been trained on. This approach for closing the reality gap was
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Table 2.2: Comparison of achieved grasping success between different translation
techniques on a benchmark simulated grasping task (credit[27])

Simulation-to-Real Model Grasp Success

Sim-Only 21%

Randomized Sim 37%

GAN 29%

CycleGAN 61%

GraspGAN 63%

RL-CycleGAN 70%

deployed with the Qt-Opt algorithm and tested with different amounts of random-
ization in the training data and with on-policy joint fine-tuning with real-world
grasp attempts. See table 2.3 for the results. RCAN achieves a grasping success of
70% in the real world only utilizing simulated training data, which is over double
the success compared to not using RCAN.

Table 2.3: Average grasp success rate on test objects after 102 grasp attempts
on each of the multiple Kuka IIWA robots. The first four columns of the table
highlight the performance after training on a specified number of real-world grasps.
Zero grasps imply that all training was done in simulation. The last two columns
highlight the results of on-policy joint fine-tuning on a small number of real-world
grasps. (credit[13])

SURREAL [10] is an open-source, scalable framework that supports state-of-the-
art distributed reinforcement learning algorithms. It also includes the SURREAL
Robotics Suite, which is a set of benchmark robotic tasks of varied complexity
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created in the MuJoCo physics engine. A version of the on-policy algorithm PPO
was implemented in SURREAL and tested on a Block lifting task. The task was
to lift a block of a table using a two-fingered gripper mounted on a Sawyer robot.
The algorithm successfully trained an agent to repeatably manage to solve the
task.

[33] tried to learn quadruped locomotion from scratch using simple reward signals.
The focus was to close the reality gap. The control policy was learned in a physics
simulator and then deployed on real robots. It was found that actuator dynamics
and the lack of latency modeling were the main causes of the model error. By
implementing simulated latency and developing an accurate actuator model, they
managed to significantly narrow the reality gap
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System Configuration

This chapter describes the system and framework created to conduct reinforce-
ment learning experiments for robotic grasping both in simulation and in a real-
world setting. It also presents some of the essential elements, like the Zivid camera
used for real-world image observations, hyperparameter tuning, the construction
of the reward function, normalization, and action and observation space.

3.1 Simulation Framework
The simulation framework constructed for this master’s thesis consists of a ro-
bosuite module, Stable-baselines3 module, and the MuJoCo physics engine. An
overview of the architecture is presented in 3.1.

3.1.1 MuJoCo

This section is from the specialization project [16]. MuJoCo [20] is a general-
purpose physics engine that is made to be used in research and development,
including the fields of robotics and machine learning. MuJoCo is a library written
in C/C++ with an API written in C. The runtime simulation module operates
on low-level data structures which are preallocated by the built-in XML parser
and compiler. The MuJoCo library includes interactive visualizations rendered in
OpenGL.

MuJoCo is a popular simulator in robotic research [7]. This is due to its contact
stability. MuJoCo has been used to train policies for robotic manipulators in
simulation, both for proof of concepts and for transfer to real-world systems.
MuJoCo has many of the features that a simulation should have but doesn’t have
support for path planning and inverse kinematics.
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MuJoCo and Pybullet are the most common physics engines in DRL research [35].
An advantage for MuJoCo is that it is known to be more efficient than Pybullet
[9].

MuJoCo has the built-in ability to randomize the textures of rendered objects in
simulation. It also has built-in functions for randomizing the characteristics of
the camera. MuJoCo does not support multiple back-end physics engines.

It is worth noting that DeepMind, the well-known British artificial intelligence
subsidiary of Alphabet Inc, bought the MuJoCo physics engine in 2021 for usage
in robotics research and development. DeepMind is currently working to make
MuJoCo open source and free for everyone to use [8].

3.1.2 Robosuite

Robosuite is a framework for simulating robot learning. Robosuite is powered
by the MuJoCo physics engine. The motivation behind creating robosuite was
the challenges of reproducibility and the limited accessibility of robot hardware.
Robsuite was created to be:

• A standardized benchmark tasks for rigorous evaluation and al-
gorithm development.

• S modular design that offers great flexibility to design new robot
simulation environments.

• A high-quality implementation of robot controllers and off-the-
shelf learning algorithms to lower the barriers to entry. [37]

Robosuite provides two main categories of APIs:

1. Modeling APIs for defining simulation environments in a modular and pro-
grammatic fashion.

2. Simulation APIs for interfacing with external inputs such as from a Policy
or an I/O Device. [37]

3.1.3 Stable-Baselines3

Stable-Baselines3 (SB3) [26] is a library of different deep reinforcement learning
algorithms implemented in Python [24]. SB3 provides a simple API that makes
it easy to apply to novel tasks and environments. The algorithms are created
following a consistent interface and accompanied by comprehensive documenta-
tion. The algorithms have been tested and verified against other codebases and
published results by comparing the learning curves [26].
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The SB3 implementations allow for multi-processing with 12/13 of the algorithms
allowing for faster data collection, which is important due to the sample ineffi-
ciency problems related to using reinforcement learning for robotic grasping tasks.

The SB3 implementation is made to work with environments following the gym
[6] interface.

3.1.4 Environment Wrapper

The robosuite environments must be wrapped to match the gym interface to func-
tion with SB3. To solve this, a custom wrapper inspired by robosuite’s GymWrap-
per was created. Most of the wrapper was completely rewritten to utilize the
observation and action spaces needed to create a simulated environment that
matches the real-world setup.

3.1.5 Framework Overview

The Modeling API is used to specify a simulation model that the MuJoCo Engine
instantiates. This creates a simulation runtime called the environment. The
environment is then wrapped with the custom wrapper. A reinforcement learning
model using the algorithm of choice is created with SB3.

The reinforcement learning model is used to start the data collection process. An
episode consists of many steps. A step starts with the policy from SB3, using the
observations to calculate the next action. The action command is then sent to
the robot’s controller, which is passed on to MuJoCo as torques. MuJoCo then
simulates the step, and observations are generated through the sensors and sent
back to the SB3 policy along with the rewards. This is illustrated in 3.1. This
process is repeated until the length of the episode is reached.

The reinforcement learning model then utilizes all the actions, observations, and
rewards collected from the episodes to update its policy. SB3 allows for running
with multiple agents at once, meaning that the data collection process can be run
in parallel on different cores allowing several agents to collect data simultaneously
in separate environments.

3.2 Algorithm
The PPO algorithm was chosen as the preferred algorithm for creating a high-
performing grasping policy that could be used for testing the sim-to-real gap on a
robotic grasping task. PPO isn’t designed specifically for sample efficiency but is
relatively easy to tune compared to other high-performing algorithms. PPO still



46 Chapter 3 System Configuration

Figure 3.1: An overview of the framework architecture used for training in sim-
ulation.

achieves close to or equal to state-of-the-art performance on different benchmarks
in deep reinforcement learning.

There is no specific strategy for exploring with PPO except for the policy being
stochastic. The amount of exploring and randomness depends on initial conditions
and training procedures [2]. The policy will typically become less and less random
during training and exploit actions that have already been found to be rewarding.
The SB3 implementation has an entropy term that helps to prevent premature
convergence towards one action probability that would dominate the policy and
prevent exploration, possibly causing the policy to get trapped in local optima.

3.2.1 Hyperparameter Tuning

A time-consuming task when setting up the experiments was hyperparameter
tuning. Between 40-60 runs ranging from 1 to 72 hours in length were conducted
to find hyperparameters that trained successful policies given the environment
setup. The basis was the default hyperparameters used in [10]. Hyperparameters
that were crucial for training successful policies when domain randomization was
used were Buffersize and Bacthsize. There was a significant need for more data per
learning step as the complexity of the environment rose with the added domain
randomization.

Finding a suitable size and complexity for the neural network utilized, given the
different sizes of the image observable, was also a demanding task. Training with
a larger observation space by increasing the resolution of the images was not
successful.
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3.3 Observation Space
The observation space consists of 3 different inputs

• RGB-D or RGB image. The baseline was a [100,100,4/3] Matrix consisting
of integers ∈ [0, 255]

• Robot end-effector pose. A vector consisting of three elements [x,y,z], De-
scribing the end-effector position.

• Gripper Status. A single value. 0 or 1 describing if the gripper is closed or
not.

3.4 Action Space
The first series of algorithms were trained with an action space consisting of the
four following actions:

Action space = [dx, dy, dz, (rotation around z-axis)]

The angle of the end effector is fixed to zero around the x and y-axis. Allowing the
agent only to control the rotation of the last joint, rotating the gripper around the
z-axis. The rotation around the x and y axis is fixed to reduce the action space’s
size. Dx, dy, and dz is the amount of movement in the x, y, and z - direction.

These algorithms failed when deployed on the real-world system as the end effector
rotation around the z-axis seemed to deviate too much from the simulated system
and caused the system to stop due to conservative joint limits.

The algorithms, therefore, had to be trained with an action space consisting only
of dx, dy, and dz and fixed rotation around the x, y, and z-axis.

3.5 Reward Function
As described in 2.3, the design of the reward function is crucial for the agent to
succeed with training a successful policy.

The reward function designed for this grasping problem consists of three different
rewards.

• R1, a reward based on how close the gripper is to the target object. Range
[0,0.5].

• R2, "Detected grasp", a binary reward for grasping the target object. Either
0 or 0.25.
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• R3, "Successful grasp", a binary reward for lifting the target object. Either
0 or 2.25.

R1 rewards the agent for how close it can bring the gripper to the target object.
The function used for calculating this reward is:

R1 = 1
2(1 − tanh(dgo) ∗ 0.5 (3.1)

where dgo is the distance between the gripper and the target object. R1 is close
to 0.5 when the gripper is as close as it gets to the target object.

There is also a reward, R2, which is equal to 0.25 if both the fingers of the gripper
are in contact with the target object and zero otherwise.

The main reward is R3, which is equal to 2.25 if the target object is lifted more
than 0.04 meters above the table. A central detail is that the function used to
check if there is a grip also has to be verified in order for this reward to be returned.
This was incorporated due to some unwanted behavior in the earlier stages of this
project. The reward function rewarded the agent every time the target object was
higher than 0.04 meters from the table, resulting in the agent trying to hit the
target object so that it would bounce off the table, and the agent would receive
the "Successful Grasp" reward.

The R1 reward is crucial to encourage movement close to the target objective in
the early stages of training. A reward from R2 and R3 would be very rare, and
the agent might therefore never learn a successful policy. The R2 reward has the
same effect as the R1 reward and rewards the agent for placing the gripper around
the target objective. This is necessary as "Successful grasps" would still be very
rare even though the agent is encouraged to stay close to the object by the R1
reward.

Another important aspect is that the episode does not terminate when the task is
completed and the agent has achieved a successful grasp. If the episode was ended
immediately after the grasp, the agent would learn to grasp the object, but not
lift it off the table before the last timestep as this would increase the accumulated
reward over the episode. By not ending the episode, we encourage the agent to
grasp the target objective as quickly as possible and then continue holding it until
the end of the episode.
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3.6 Normalizing Observations and Rewards
The rewards and the observations, except for the images, are normalized with a
moving average. The Images are simply normalized between 0 and 1 by dividing
the input by 255.

Robosuite has a built-in wrapper called VecNormalize, which takes care of normal-
izing both the rewards and the observations for all the parallelized environments.

3.6.1 Observations

The observations are normalized with the following formula 3.2

obsnorm = clip
(obs − obsmean√

obsvar + ϵ
, −10, 10

)
(3.2)

where clip() represents a clipping action, clipping the normalized observations
between -10 and 10. Obs is the raw observation values, obsmean is the running
mean of the observations, obsvar is the running standard deviation and ϵ is a small
constant to avoid dividing by zero.

3.6.2 Rewards

The rewards are normalized with the following formula 3.3

rewnorm = clip( rew√
rewvar + ϵ

, −10, 10) (3.3)

where rew is the raw reward value and rewvar is the running standard deviation
of the rewards.

3.7 Real-World Robot Control System
The real-world robotic system consists of a KUKA IIWA R820 robot with a Robo-
tiq 2F 85 gripper. The control system was built with ROS2 and includes nodes
for the camera, gripper(open/close), and the robot joints. The robot was directly
controlled using KUKA Sunrise Workbench. More implementation details of this
system can be viewed in [28].
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3.7.1 Robot Control System

In order to control the robot and the camera, we have chosen to use Ros2. Ros2 is
an open-source robotics framework for software developers. Our system consists
of the main node, which subscribes to all the observations. It chooses an action
by running the policy with real-world observations as input and finally publishes
the chosen action to the robot.

The controller used to control the robot is not the same as the controller used in
robosuite. Utilizing end-effector position coordinates might lead to the real-world
robot choosing different joint positions to achieve the end-effector position, as the
robot has 7 DoF. This enforces that the input to the real-world controller has
to be joint positions as these are not ambiguous. The policy uses end-effector
positions as action space as this reduces the complexity of the problem. An extra
simulation step is therefore added to make the real-world system work. The chosen
end-effector position is passed to a robosuite environment, and the time step is
simulated. The final joint positions after executing the action are observed and
fed to the real-world robot. This causes extra runtime, but the ambiguity of using
different controllers in the real-world setup and simulation is alleviated.

The code was written to be simple, understandable, and suited for prototyping.
Runtime was not considered an important factor. This resulted in a real-world
system that runs considerably slower than the simulated system. A cycle in the
real-world system takes around 2-4 seconds compared to 0.1 seconds in simulation.

3.7.2 Added Constraints

The real-world robot has very conservative joint limits in the current setup, which
we could not change. This meant that the robot could achieve joint configura-
tion where the robot had to be reset. Episodes where the robot reaches these
configurations are terminated as the robot has to be manually reset.

3.8 Real World Camera Observables
This section presents the Zivid Two camera used when testing the system in the
real-world. It also discusses the image quality and presents the data processing
steps created to use the depth information.

3.8.1 Technology

Zivid Two is a state-of-the-art 3D camera that provides high-resolution and precis
point clouds of even very small, densely packed, and highly detailed objects.



3.8 Real World Camera Observables 51

Zivid Two uses structured light to create its perception of depth. Structured light
is a technique where a known pattern is projected onto the scene. The deformation
of the light pattern when striking the surfaces allows a vision system to calculate
the depth in the image. The Zivid camera consists of a projector that projects
the light pattern onto the scene and a camera capturing images of the scene both
with and without the pattern projected onto it. Some of the patterns projected
onto the scene by the Zivid Two Camera can be seen in figure 3.2.

Figure 3.2: Examples of the structured light patterns used by Zivid Two

The strip engine uses the displacement of the patterns to calculate the depth of
every pixel captured by the camera.

A common challenge especially in bin picking applications is that the other objects,
the bin’s walls, and corners will create interreflections from the light projected onto
the objects you want to capture. This causes the decoded signal to be garbled
and the point cloud becomes distorted [38]. New patterns in Zivid two enable the
stripe engine to filter out the interreflections and recovers the unreflected signal.
The stripe engine also aims to reduce the distortion which can occur with reflective
and shiny objects like reflective cylinders or chrome plated parts.

3.8.2 Specifications

The Zivid Two camera has a capture time of 80 ms to 1 s. This includes the
time from initializing the capture until the point cloud is ready to copy. The
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actual acquisition time can be shorter. A capture time of one second will create
a relatively long time step in the Algorithm. A typical frequency in continuous
control problems is 10 to 20 Hz.

Zivid reports the following general specifications about image quality and at-
tributes.

Imaging 1944 x 1200 (2.3 MP)

Point cloud output 3D (XYZ) + Color (RGB) + SNR

Aperture (A) f/1.8 to f/32

Gain (G) 63%

Projector Brightness (B) 0.25x to 1.8x

1x = 360 lumens

Table 3.1: General specifications of the Zivid Two Camera.

The Zivid Two camera has also been carefully tested. Providing optimal working
distance and precision.

Focus distance (mm) 700

Optimal working distance (mm) 500 to 1100

Field of view (mm) 754 x 449 at 700

Spatial resolution (mm) 0.39 at 700

6.6 x 10−4 per distance (z) in mm

Table 3.2: Operating distance and field of view of the Zivid Two Camera.

Zivid also reports some measurements for point precision, polarity and trueness.
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Point precision 1 σ Euclidian distance variation for a point be-
tween consecutive measurements at focus dis-
tance, 700 mm. 2

Local planarity
precision

1 σ Euclidian distance variation from a plane for
a set of points within a smaller local region at
focus distance 700 mm

Global planarity
trueness

Average deviation from a plane in field of view
at fous distance 700 mm.

Dimension true-
ness

70-percentile dimension error in field of view
within optimal working distance and typical
temperature range < 0.30%

Table 3.3: Typical specifications for the Zivid Two Camera .
2 Measured with Gaussian filter disabled.

3.8.3 Depth-Image Processing

The depth image captured by Zivid Two has large areas where depth information
is lacking due to limitations caused by the structured light technique and several
random points where depth information is lacking due to noise and reflections.
An exmaple can be seen in figure 3.3.

The larger white areas to the left of the robot arm and at the left side of the
gripper and gripper fingers are caused by the structured lighting being projected
from the right side of the camera lens. These areas are therefor not to be hit
by the structured lighting, causing the camera to have no measurement of depth.
These areas and points are filtered out by their value and filled in by utilizing an
inpainting method developed in [34] and implemented in cv2 [4].

The resulting image looks like 3.4
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Figure 3.3: Raw depth image from Zivid Two.

Figure 3.4: Inpainted depth observation.
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The depth image was resized to 100 x 100 with bicubic interpolation over a 4×4
pixel neighborhood. The result is compared to the depth image from simulation
in 3.5.

Figure 3.5: Comparison of Real depth Image (Left) and simulated image
(right).

The depth values are integers between 0 and 255. These intervals are so large
that the reported precision and trueness from the Zivid Two camera have little
to no effect on the observations. There is therefore no need to add extra noise in
the simulated data.





Chapter 4

Experimental Setup

This section describes the setup for the experiments conducted in this thesis.
First, the task and important parameters related to the algorithm are presented.
Then follows a description of the simulated environment and the environment
utilized for real-world testing.

To answer the overarching goal of how RGB-D image observation will affect the
sim-to-real transfer compared to using RGB observations, we conducted an ex-
periment comparing the sim-to-real gap for two algorithms. One was trained with
RGB image observations, and one was trained with RGB-D image observations.
The sim-to-real gap was measured by finding the average grasp success in simu-
lation and comparing it to the grasp success rate when deploying the algorithm
in the real-world setup. A sub-goal was to create a baseline policy (RGB) that
achieved a high grasp success rate, 90 − 100%, in simulation to make the results
relevant for other applications trying to achieve state-of-the-art success rates. In
addition to the image observations, we utilized common observations such as grip-
per status(open/closed) and end effector position. The modern algorithm, PPO,
which has proven to be successful and easy to use, was used to conduct the train-
ing. We tuned the hyperparameters empirically and trained the algorithms for 50
million time steps.

To review the sub-goals of this thesis, we will measure and evaluate the per-
formance of the algorithms and provide a discussion on the performance of the
simulation framework.

4.1 Task
The task that the agent is going to learn is a simple block-lifting task. The robot
starts the episode by hovering the gripper above the table, as shown in figure 4.2.
A cube is placed with a random rotation within a rectangle of 10 by 30 cm beneath
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the gripper. In simulation, the task is counted as successful if both the gripper
fingers are placed on the cube simultaneously as the cube has been elevated from
the table. In the real-world setup, the task is counted as successful if the human
supervisor can see that the gripper has performed a grasp of the cube and the
cube has been elevated off the table.

4.2 Algorithm and Training
The algorithm used for all experiments is the PPO algorithm implemented in
stable-baselines3 [26].

4.2.1 Neural Network Size

We used a custom feature extractor for the image observations consisting of the
following layers:

• Convolutional layer (n input channels,32, kernel size=7, stride=2, padding=3,
bias = False)

• Batch Normalization 2d

• ReLU

• MaxPool2d (kernel size = 3, stride = 2)

• Convolutional layer (32, 32, kernel size=3, stride=1, padding=1, bias =
False),

• Batch Normalization 2d

• ReLU

• MaxPool2d (kernel size = 3, stride = 2),

• Linear (in features=3872, out features=256, bias=True)

• ReLU

These parameters are from the RGB-D algorithm, but the layer types are identical
to the RGB algorithm. The end-effector and gripper observations had no feature
extractor and were fed directly into the first and only shared layer.

We used one shared layer (250,512) between the policy and value network. The
rest of the policy and value network was identical except for the final output layer.
We used one hidden layer of size 512 and one layer of size 256. The architecture
of the neural networks can be seen in figure 4.1.
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Figure 4.1: Neural network architecture

4.2.2 Computer Resources Utilized for Training

The Idun cluster was used to conduct all training for this master’s thesis. The Idun
cluster is a high-availability and professionally administrated computing platform
for NTNU. Different nodes and GPUs were used to train depending on availability.
The main bottleneck when training is the number of CPU cores available. Most
of the training was done using 64 CPU cores and one NVIDIA A100 80Gb GPU.

4.3 Simulation Environment
This section describes the setup, variables, and parameters used for the training
done in simulation.

4.3.1 Visual and Physical Description of the Environment

The environment created in robosuite consists of a table with legs and a back
wall. A KUKA IIWA R820 with a Robotiq 2F 85 is placed on the table with the
gripper hovering above the table. The target object is randomly spawned with a
random rotation within a rectangle of 10 by 30 cm beneath the gripper.
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Figure 4.2: Images from the simulation environment.

4.3.2 Image Observations

The Image observations in simulation are a [100,100,4] matrix representing an
RGB-D image. The Image observations in simulation are captured using a custom
camera created through robosuite’s interface. The camera is set to capture an
[100,100] image. The camera placement in the real-world setting was calibrated,
and the simulated camera is placed with the same extrinsic calibration found in
the real-world setting.

Depth Image

The RGB-D image is created by concatenating an RGB image and a depth map
recovered from the same camera.

By default, MuJoCo returns a depth map normalized in [0, 1]. Therefore, the
original depth map must be recovered with a utility function from robosuite.
Lengths up to 3 meters are then normalized between 0 and 255 and rounded off
to integers. All lengths over 3 meters are set to 255.

Field of View

The Zivid Two camera has a field of view vertically (fovy) of 36◦, but the light
from the projector does not cover the whole area within the field of view. This
can be seen in figure 4.3 where the large white areas at the top and bottom of the
image mark areas where the real camera lacks depth information from the image.
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Figure 4.3: Raw depth image from Zivid Two.

We crop the images by a factor of 980
1200 to remove the areas by the edges that lack

depth information. Reducing the fovy to 29.4◦.

4.3.3 Domain Randomization

Robosuite has a built-in domain randomization wrapper that wraps the environ-
ment and provides the possibility of passing custom arguments to different modder
classes that can change environment parameters while training.

Visual randomization

Robosuite has three different Modder classes to control different aspects of the
visual environment from which we have used different effects.

The CameraModder is important because there will be errors in the calibration
of the camera in the real world. By adding some random values to the camera’s
placement, we can make the policy less prone to imperfections between the real
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and simulated placement of the camera. We used the following settings for the
CameraModder:

• Randomized position, random value between +-0.01 m in [x,y,z] dimension.

• Randomized rotation, around 1 degree in all three axes.

• Randomized Fovy, random value around 1-2 degrees.

The TextureModder is used for randomizing visual objects’ appearances. This
includes texture, color, and material properties. We used the following settings
for the TextureModder:

• Color of the target object was randomized.

• The material and texture of the target object was randomized.

The LightingModder is used for controlling lighting parameters. This includes the
light source properties and pose. We used the following settings for the Lighting-
Modder:

• The position of the light source was randomized.

• The specular attribute (degree of reflection) of the lighting was randomized.

• The diffuse attribute (light strength) of lighting was randomized.

• The active attribute of lighting was randomized.

• The ambient attribute of lighting was randomized.

Dynamic Randomization

The DynamicsModder is used for randomizing physical parameters related to the
underlying physics model and contact modeling.

The following parameters for the target object was randomized.

• Friction. Perturbation Ratio: 0.1.

• Solref. Perturbation Ratio: 0.1.

• Solimp. Perturbation Ratio: 0.1.

The following parameters for all joints in the simulation was randomized.

• Stiffness: Perturbation ratio: 0.1.

• Friction loss: Perturbation size: 0.05.

• Damping: Perturbation size: 0.01.
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• Armature: Perturbation size: 0.01.

4.4 Real World Setup
The real-world setup consists of a Kuka LBR iiwa R820 and the Robotiq 2F
85 gripper mounted on a table. A grey sheet covers the table, and the back
wall is also covered by a white sheet to resemble the environment created in the
simulation. The lab has a powerful light shining almost directly above the robot.
Three smaller lamps were used in addition from the side to reduce shadows and
have a more even distribution of light.

4.4.1 Real-World Observations

The end-effector position is sent to the master node by ROS from the Robot Con-
troller and the gripper node. These observations are identical to the observations
recovered in simulation.

4.4.2 Image Observations

The Zivid Two camera was used to capture the images in the real-world setup. The
camera was mounted in front of the robot looking down at the gripper and target
object, as shown in figure 2.5.3. A normal RGB image is captured and posted
at the zivid/color/image_color topic and a depth image is captured and posted
at the /zivid/depth/image topic. The depth image undergoes the processing
steps described in 3.8.3. The RGB image and depth image are combined into an
RGB-D Image and cut to have the same fovy as the image observations used in
simulation.





Chapter 5

Results

This chapter first presents the performance of the models trained and tested in
simulation. Then the success rate of these models when transferred and tested in
a real-world setting is presented.

5.1 Simulation Results
Two algorithms were trained in simulation, one using RGB-image observations,
end-effector position, and gripper status as observation space. The other used
RGB-D-image observations, end-effector position, and gripper status as observa-
tion space. They were trained for 50 million time steps each. The algorithms
are evaluated and measured on two key factors, success rate and episodic reward
mean. The success rate is the percentage of episodes where a successful grasp is
detected. The episodic reward mean is based on the reward function described
in 2.3 and is a measurement of both success and how fast successful grasps are
achieved and maintained.

The success rate converges after around 10-20 million steps as seen in 5.1. The
RGB-D algorithm averages a slightly higher success rate from around 15 million
steps until the end of training.

The RGB-D algorithm performs better than the RGB algorithm in terms of reward
mean per episode for the whole duration of the training process. This can also be
seen in the final results, where the RGB-D algorithm achieves a successful grasp
on average 7.9% faster than the RGB algorithm.
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Figure 5.1: Plot of the evaluation success rate during training.

Figure 5.2: Plot of the reward mean per episode during training.

The algorithms performed pretty similar and achieved the following grasping suc-
cess with domain randomization:

Algorithm Success rate Average number of time steps average time

RGB-D 94.4 % 19.67 timesteps 1.97 s

RGB 92.6 % 21.43 timesteps 2.14 s

Table 5.1: Comparison of RGB and RGB-D tested in simulation.
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5.2 Real World Testing
Both algorithms were tested under the same conditions in the lab. Due to the
slow run time of the real-world system, the episodes were ended after 50 time
steps. The algorithms were tested for a total of 30 episodes.

Algorithm Success rate

RGB-D 53.3 %

RGB 40.0 %

Table 5.2: Comparison of RGB and RGB-D tested in a real-world setting.

The RGB-D algorithm achieved a grasp success of 53.3% and performed better
than the RBD algorithm, which achieved a success rate of 40% 5.3

Figure 5.3: A image series from a successful grasp attempt in the real-world
setup.

Empirical assessments of the grasping strategies show no specific malfunction in
the system. Both failed, and successful attempts seem to involve large amounts
of seemingly random movements. Successful grasps occurred seemingly random,
following no clear pattern. For example, the agent can move around aimlessly
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for 30 time steps and suddenly start moving towards the target and achieve a
successful grasp. A successful grasp is captured in the image series seen in figure
5.3

5.3 Sim-To-Real Results
By simply subtracting the real-world grasp success from the simulation grasp
success, we get a measurement of how large the sim-to-real gap is:

Algorithm Sim-to-real gap

RGB-D 41.1 %

RGB 52.6 %

Table 5.3: Comparison of how large the RGB and RGB-D sim-to-real gaps are.

The sim-to-real gap is 21.8% smaller for the RGB-D algorithm.

5.4 Training Speed
The training speed is measured in time steps per second. Depending on how
many CPU cores are available, this number fluctuates severally. When utilizing
68 cores, a training speed of 280-300 frames per second was achieved.

Figure 5.4: Plot of the training speed:
PPO RGB uses 48 cores and one NVIDIA A100 40Gb GPU.
PPO RGB-D uses 64 cores and one NVIDIA A100 80Gb GPU.
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Training the final algorithms required 50 hours of running time.





Chapter 6

Discussion and Future Work

This chapter presents a discussion of the results and demonstrates how they relate
to the objectives of this thesis. First, the algorithm’s performance is discussed,
then the effect of adding depth information for reducing the sim-to-real gap. Fi-
nally, the performance of the simulation framework is presented.

6.1 Performance in Simulation
The PPO algorithm trained with RGB-image observations, end-effector position,
and gripper status as observation space achieved an average grasp rate of 92.6 %.
This is a slightly less than average success rate compared to other state-of-the-art
results like [13] which achieved 98%. One important factor to account for here is
the difference in tasks. [13] was trained on a set of different objects and tested
on a set of novel objects. Our environment was trained on a relatively simple
geometric form, a cube, and tested on the same object. Although our target object
had random color and placement for every episode, the task performed in [13] is
considerably harder. The performance of our algorithm is therefore worse than
expected. [5] used a similar training environment and achieved a grasp success
rate of 92.5%, training and testing on 69 different objects. This also indicates
that our algorithm performs slightly weaker than other state-of-the-art methods.

The PPO algorithm, trained with RGB-D image observations instead of RGB,
achieved a grasp success of 94.4%. This is a slight improvement. An improvement
was expected because the depth channel adds important and precise geometric
information. Compared to the results from [5] and [13], judging by the fact that
both tasks were considerably harder, the grasp success from the RGB-D algorithm
is also lower than expected.

Comparing results from different reinforcement learning papers and projects is no-
tably hard due to the lack of good standardized benchmark tests. Small changes
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in the environment like light, texture, and friction could impact the agent’s inter-
actions with the environment. The robot controllers differ from different frame-
works, and their precision and response to actions are important for the algo-
rithm’s ability to train successful policies. The control frequency of the robot is
another important factor in the environment affecting how well an algorithm can
be trained.

Tuning hyperparameters are notably hard in reinforcement learning, and sub-
optimal hyperparameter choices could be the reason behind the slightly lower
than expected performance. There might also be theoretical limitations with the
use of PPO for these types of complex grasping tasks. [10] only accomplished
simple block lifting tasks and not more complex bin picking tasks using their
implementation of PPO.

6.2 Sim-To-Real Gap
Previous work has shown how big the sim-to-real gap can be [15]. Our system
found a sim-to-real gap of 92.6% to 40% for the algorithm trained with RGB
images. This shows the severity of the sim-to-real gap. The performance of the
policy is reduced by 56.8%. This is coherent with related works [13] and the
conclusions from [36]. Our method has a significantly smaller sim-to-real gap
than baseline tests in [13]. This is likely due to the task being less complex.

Our system found a sim-to-real gap of 94.4% to 53.3% for the algorithm trained
with RGB-D images. The gap between simulation and real-world application
is reduced by 21.8% when introducing the extra depth dimension in the image
observations. The performance improvement is significantly greater for the sim-
to-real gap than it is for simulation performance.

By applying some statistics, we can see that the sample size of the real-world
testing is small and provides a modest confidence interval. A larger sample size
would have given a greater confidence interval for claiming that the RGB-D al-
gorithm performed better than the RGB algorithm in the real-world setup. The
large difference in score combined with the sample size still gives us reason to
believe that RGB-D can improve the sim-to-real gap. The small sample size was
caused by delays due to sick leave.

There is reason to believe that the enhanced sim-to-real performance is due to the
depth data being more coherent in the simulation and real-world setup. This can
be caused by the RGB values fluctuating too much under the influence of different
lights and textures. The depth is a fixed value, which is perfect in simulation but
is subject to noise in the real-world setup. The noise effect in the Zivid camera is
less than the intervals caused by using unit8 as datatype. A significant source of
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error is the interpolated depth image caused by the lack of depth information in
large areas of the depth image.

6.3 Simulation Framework
The simulation framework used for the experiment functioned well. It was intu-
itive to use and the modular framework allowed for large amounts of customiza-
tion. There were some issues that needs to be addressed.

The framework lacked inverse kinematics functionality for the OSC pose controller
used for this thesis. This lack of functionality caused the extra simulation step in
the real-world setup in order to provide the real robot controller joint angles as
input.

The domain randomization wrapper had some instability issues when trying to
create environments with multiple random objects.

6.3.1 Training Speed

It is not possible to use more than one GPU to speed up training with stable-
baselines3. 64 CPU cores were the maximum available for this thesis. Speeding
up the training more would require more CPU cores. Training the final algorithms
required 50 hours of running time. Fifty hours is an acceptable amount of time
compared to manually programming robots. Fifty hours becomes very long when
performing 50 runs for different hyperparameter settings during training.





Chapter 7

Conclusion

This chapter presents some concluding remarks and suggestions for potential fur-
ther work and exciting possibilities.

7.1 Conclusion
This thesis aimed to test whether using depth information would improve the sim-
to-real gap when utilizing reinforcement learning for robotic grasping. This also
involved the process of creating a simulating framework that facilitates the train-
ing of high-performing reinforcement learning algorithms. The results achieved
in simulation underperformed slightly compared to other state-of-the-art results,
but we still managed to train algorithms to a high grasp success rate. The per-
formance gap between our system and other state-of-the-art systems is probably
due to the complicated process of hyperparameter tuning. Given more time to
tune hyperparameters and experiment with environment variables and different
algorithms, it is likely that the algorithm could be trained to achieve a higher
grasp success rate on the current task.

The results from real-world testing imply that the added depth information re-
duces the sim-to-real gap. Further work should include a test with a larger sample
size to confirm these results. This is an exciting result as it implies that future
attempts at closing the sim-to-real gap should involve depth information in the
observation space. Adding depth information does not close the sim-to-real gap
fully, but a reduction of 21.8% is a significant contribution to closing the sim-to-
real gap. Due to error sources such as hyperparameter tuning, the processing of
the real-world depth data, and differences between the real-world and simulated
controller, there might also be possible to reduce the sim-to-real gap even further
with this method.
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7.2 Recommendations for Further Work
The simulation and real-world system created to conduct the experiments in this
thesis is a good foundation for different types of reinforcement learning research
for robotic grasping. In future work, time should be devoted to reducing the time
step length in the real-world setup. Comparing the precision and functionality of
the simulated and real robot controllers and how this affects the sim-to-real gap
is an interesting approach for understanding more about the sim-to-real gap.

Conducting similar sim-to-real experiments for generalized grasping of novel ob-
jects is an interesting approach that would require the creation of new objects in
the simulation environment and a domain randomization method that is capable
of handling multiple random objects.

7.2.1 Using Depth Information

An interesting aspect of research would be to see what type of depth information
improves simulation and sim-to-real results the most. For example, running tests
with a depth image as a separate feature and testing with point clouds. Utilizing
networks created to handle point clouds of various sizes and resolutions would
alleviate the need for interpolating and processing real-world depth information.
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