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Magnon drag in a metal–insulating antiferromagnet bilayer
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We study a bilayer structure consisting of an antiferromagnetic insulator and a normal metal. An electron
current is driven in the normal metal with direction parallel to the interface between the materials. Due to
interfacial exchange coupling between the localized spins in the antiferromagnet and the itinerant electrons
in the normal metal, a magnon current can then be induced in the antiferromagnet. Using an uncompensated
antiferromagnetic interface, creating an asymmetry in the interfacial coupling to the two degenerate magnon
modes, we find that it is possible to generate a magnon spin current. The magnon spin current can be enhanced
by increasing the temperature or by spin-splitting the magnon modes.
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I. INTRODUCTION

A key element in spin-based electronics is the possibility of
using spin currents to transport information. The spin currents
should be efficiently generated, capable of propagating with
low loss of energy, and reliably detected. An interesting av-
enue for low-loss transportation of spin signals is provided by
magnetic insulators where spin currents are associated with
fluctuations in magnetic order rather than a spin-polarized
flow of electrons [1–4]. Information can thus be transferred
without the need of moving charge carriers. Detection of spin
currents propagating through magnetic insulators can, e.g., be
achieved through conversion to electron spin currents at metal
interfaces, which can then be detected through the inverse spin
Hall effect [5–7]. Conversely, the generation of spin currents
can be achieved through injection from a neighboring mate-
rial, such as a material exhibiting the spin Hall effect [1,2,5,8–
12]. Alternatively, spin currents in magnetic insulators can
also result from, e.g., a temperature gradient through the spin
Seebeck effect [13,14].

Antiferromagnetic insulators, specifically, have recently
gathered interest as alternatives to ferromagnetic insulators
as active components in spintronics applications [4,15–17].
An additional complication for spin transport in antiferromag-
netic insulators is, however, that their ability to carry spin
currents can be reduced by competing contributions from the
two oppositely polarized magnon modes, often giving rise to
a vanishing spin current for an easy-axis antiferromagnet with
two degenerate magnon modes [18]. Potential solutions to this
problem include splitting the magnon modes through, e.g., the
application of an external magnetic field [19,20], or utilizing
hard-axis antiferromagnets, naturally featuring nondegenerate
magnon modes [21]. The latter solution relies on the net spin
angular momentum of the magnons not vanishing [18].

Going in a different direction, it is also possible to work
with degenerate magnon modes, but inducing a magnon spin
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current through a coupling to another material where one
mode is more affected than the other. Such an asymmetry in
the coupling can, e.g., arise from the other material exhibiting
a spin accumulation at the interface [22–26], or from the anti-
ferromagnetic interface itself being uncompensated, meaning
that only one antiferromagnetic sublattice is exposed at the
interface [24]. In addition to a potential asymmetry in the
coupling to the two magnon modes, uncompensated interfaces
can also provide an enhancement of electron-magnon inter-
actions through suppressed sublattice interference [27,28].
This has been exploited in proposals for magnon-mediated
superconductivity in heterostructures consisting of antiferro-
magnets and conductors [29–32], as well as indirect exciton
condensation [33].

Spin currents associated with fluctuations in magnetic or-
der can also arise in metallic magnets featuring both ordered
localized magnetic moments and itinerant electrons. In this
case, the coupling between the localized spins and itinerant
electrons can give rise to a rich phenomenology pertaining to
transport phenomena [34–38]. For instance, a voltage-induced
electron current, naturally giving rise to an electron spin
current in a metallic ferromagnet due to the spin nondegen-
eracy of the system, can transfer momentum to the magnon
population in the system. This gives rise to a magnon spin
current [39]. Likewise, a ferromagnetic metal with a temper-
ature gradient will host flow of both electrons and magnons
coupled together through drag effects [40–43]. Coupling of
flow of electrons and magnons has also been investigated in
noncollinear antiferromagnetic metals [44]. This type of in-
terplay between electron and magnon currents is not naturally
present in magnetic insulators. It can, however, be realized in
heterostructures involving magnetic insulators and conducting
materials.

Recently, it has been proposed that an in-plane charge cur-
rent carried by spin-triplet Cooper pairs in a superconducting
thin film can induce a magnon spin current in a neighbor-
ing ferromagnetic insulator layer due to interfacial exchange
coupling [45]. This study, considering the coupling between
localized spins and an imbalanced population of left-moving
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and right-moving particles in an adjacent material, represents
a new way of inducing a spin current in a ferromagnetic insu-
lator. A natural question to ask is then whether it is possible
to induce a spin current in an antiferromagnetic insulator in
a similar way. Moreover, as a normal metal subjected to a
voltage also can host an imbalance of right-moving and left-
moving particles, exchanging the superconductor in Ref. [45]
with a normal metal could allow for the mechanism to be
extended to higher temperatures in a simpler system setup.

In the present article, we investigate a system consisting
of an antiferromagnetic insulator (AFMI) layer located on top
of a normal metal (NM) layer, where an in-plane current is
driven in the normal metal. Our modeling allows us to tune
between a compensated and uncompensated AFMI interface,
as well as to introduce spin splitting of both electrons and
magnons. Through interfacial scattering processes, momen-
tum can be transferred from the itinerant electrons of the NM
to the magnons in the AFMI, potentially giving rise to magnon
currents. Applying semiclassical Boltzmann theory, we here
derive a relationship between the macroscopic currents flow-
ing in the system.

For the case of spin-degenerate quasiparticles in both sub-
systems and a compensated antiferromagnetic interface, we
find that the charge current in the NM induces a magnon
current in the AFMI, but no magnon spin current as the contri-
butions from the two magnon modes cancel. Applying instead
an uncompensated AFMI interface, a magnon spin current
is produced. Interestingly, we find that the magnitude of the
induced magnon spin current is not always maximized for a
fully uncompensated interface. A weaker asymmetry in the
coupling between the NM and the two AFMI sublattices can
actually be more favorable, despite the fact that this weakens
the typical strength of the electron-magnon coupling. It is
further found that the magnon spin current increases with
temperature and that it can be enhanced by spin-splitting the
magnon modes.

II. MODEL

The system setup is illustrated in Fig. 1. An experimental
realization of the system will typically feature thin films of
some finite thickness. For simplicity, we consider the layers
to be two-dimensional and apply square lattice models. We
start out from a tight-binding description of electrons hopping
between lattice sites in the NM. For the AFMI, we consider
localized spins with easy-axis anisotropy K , interacting with
each other through a nearest-neighbor exchange interaction
J1 and a next-nearest-neighbor interaction J2. We perform a
Holstein-Primakoff transformation in order to describe spin
fluctuations in terms of magnons. Additionally, there is an in-
terfacial exchange coupling J̄�ϒ between the localized spins
of the ϒ = A, B sublattice in the AFMI and the spins of the
itinerant electrons in the NM, which gives rise to electron-
magnon scattering [32]. Importantly, we can, e.g., set �A = 1,
�B = � and tune our way from � = 1 (compensated inter-
face) to � = 0 (uncompensated interface). As discussed in
Appendix A, we go to the long-wavelength limit to obtain
isotropic expressions for the dispersion relations and magnon
coherence factors, which will simplify our further calcula-
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FIG. 1. A bilayer structure consisting of an antiferromagnetic
insulator (AFMI) on top of a normal metal (NM). A voltage bias
is applied to the normal metal in order to produce an electron current
directed along the x axis. The itinerant electrons in the NM can
interact with the spins in the AFMI, potentially leading to an induced
magnon spin current. The coupling between the electrons in the NM
and the A sublattice of the AFMI is J̄�A, while the coupling to the B
sublattice is J̄�B.

tions. For a sufficiently small and isotropic Fermi surface in
the NM, our modeling should be suitable.

The Hamiltonian describing the electrons then takes the
form

HNM =
∑
kσ

εkσ c†
kσ

ckσ , (1)

where εkσ = t (ka)2 − μ − σhe. Here, c†
kσ

is a creation oper-
ator for an electron with momentum k and spin σ =↑,↓=
+,−. Further, t is the electron hopping amplitude, a is the
lattice constant, μ is the chemical potential, and he is a spin-
splitting field. The electron spin splitting can arise from either
asymmetric coupling to the two sublattices of the AFMI, an
external applied field, or a combination of these two sources,
as discussed in Appendix A.

The Hamiltonian describing the magnons is expressed as

HAFMI =
∑

q

(ωqαα†
qαq + ωqββ†

qβq), (2)

where ωqα = ωq + hm, ωqβ = ωq − hm, and

ωq =
√

	2
g + κ2(qa)2. (3)

Here, α†
q is a creation operator for an α magnon (spin down)

with momentum q, and β†
q is a creation operator for a β

magnon (spin up). The gap in the magnon spectrum is 	g,
while the dispersiveness of the spectrum is parametrized by
κ . A splitting of the magnon modes hm could, e.g., be intro-
duced through an external field. Similarly to the electrons,
we will use a short-form notation ωq,γ = ωq − γ hm, where
γ = α, β = −,+.

Finally, the electron-magnon scattering arising from the
coupling between the materials is described by [32]

Hint = V√
N

∑
kq

(Mq c†
k+q,↓ck,↑ + M†

−q c†
k+q,↑ck,↓), (4)
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where N is the number of lattice sites in each layer, V =
−2J̄

√
S, and

Mq = (�Auq + �Bvq)αq + (�Avq + �Buq)β†
−q. (5)

Here, S is the spin quantum number of the lattice site spins
in the AFMI, and the magnon coherence factors uq and vq are
defined in Appendix A. Importantly, uq and vq have opposite
signs and grow large in magnitude when q → 0, while always
satisfying u2

q − v2
q = 1. The coupling between electron and

long-wavelength magnons can therefore be enhanced by tak-
ing �A �= �B [28,29]. In addition to the scattering processes
included in (4), there can also be additional umklapp scatter-
ing processes where the outgoing electron has its momentum
shifted by a magnon reciprocal lattice vector [46]. Such scat-
tering processes arise because the magnon Brillouin zone is
reduced compared to the electron Brillouin zone. For a small
electron Fermi surface, umklapp processes will take electrons
far away from the Fermi surface, and such scattering processes
can therefore be neglected [29,32]. Moreover, umklapp pro-
cesses will typically not be present for a real uncompensated
interface where the NM is lattice matched with one of the two
sublattices of the AFMI.

In order to describe transport introduced by a voltage
bias applied to the NM, we utilize coupled Boltzmann equa-
tions for electrons and magnons. We express the linearized
Boltzmann equation for the electrons as [39,47]

−eE ve
kx

∂ f 0(εk,σ )

∂εk,σ

= − fσ (k) − fσ (k)

τσ

− fσ (k) − f−σ (k)

τ↑↓

+
[

∂ fσ (k)

∂t

]
int

. (6)

Here, e is the elementary charge, E is the electric field ap-
plied to the normal metal in the x direction, and ve

kx
is the x

component of the electron group velocity. Further, fσ (k) is
the electron distribution function, f 0(εk,σ ) = 1/(eβεk,σ + 1) is
the equilibrium electron distribution function, and f̄σ repre-
sents a momentum average over the angular coordinate. In
the absence of even-in-momentum corrections to the equi-
librium distribution, the angularly averaged distribution is
equivalent to the equilibrium distribution. Finally, τσ is the
spin-conserving electron relaxation time for electrons with
spin σ , and τ↑↓ is the spin-flip relaxation time for electrons.
We have assumed that the electron distribution function is
independent of in-plane position. An applied, uniform, elec-
tric field gives rise to spatially uniform corrections to the
electron distribution functions, giving rise to flow of electrons.
Interaction with magnons, represented by the last term [48],
can modify, and potentially spin-polarize, the electron current.
These effects are also assumed to be spatially uniform.

Furthermore, we express the linearized Boltzmann equa-
tion for the magnons as [21,39][

∂ bγ (q)

∂t

]
int

= bγ (q) − b0
γ (q)

τM,γ (q)
. (7)

Here, the magnon distribution function is denoted by bγ (q),
while b0

γ (q) = 1/(eβωq,γ − 1) is an equilibrium magnon distri-
bution function. Moreover, τM,γ (q) is a momentum-dependent
magnon-relaxation time. While the left-hand sides of the

Boltzmann equations for the electrons contain an external
driving term, any net magnon motion will have to result from
interaction with the electrons in the metal.

The electron and magnon distribution functions appearing
in the Boltzmann equations will be expressed as sums of the
equilibrium distributions and deviations from the equilibrium
distributions of the form [39,49,50]

fσ (k) = f 0(εk,σ ) − ∂ f 0(εk,σ )

∂εk,σ

[
δμe

σ + ge
σ (k)

]
, (8a)

bγ (q) = b0(ωq,γ ) − ∂b0(ωq,γ )

∂ωq,γ

[
δμm

γ + gm
γ (q)

]
. (8b)

While δμ represents a uniform shift of the chemical potential,
any deviations associated with momentum-dependent correc-
tions to the excitation energies are captured by the functions
{ge

σ (k), gm
γ (q)}. The part of these functions which is odd in

momentum may generate a net flow of particles and will
therefore be of relevance for this study. Moreover, the interac-
tion terms in the electron Boltzmann equations can, using the
interaction Hamiltonian together with Fermi’s golden rule, be
expressed as[

∂ f↑(k)

∂t

]
int

= 2πV 2

h̄N

∑
q

[
Qα (k, q) − QR

β (k, q)
]
, (9a)

[
∂ f↓(k)

∂t

]
int

= 2πV 2

h̄N

∑
q

[
Qβ (k, q) − QR

α (k, q)
]
, (9b)

while the interaction terms in the magnon Boltzmann equa-
tions similarly may be expressed as[

∂bγ (q)

∂t

]
int

= 2πV 2

h̄N

∑
k

Qγ (k, q). (10)

Here, we have defined

Qα (k, q) = (�Auq + �Bvq)2δ[εk,↑ + ωq,α − εk+q,↓]

× ([bα (q) + 1][1 − f↑(k)] f↓(k + q)

− bα (q)[1 − f↓(k + q)] f↑(k)), (11a)

Qβ (k, q) = (�Avq + �Buq)2δ[εk,↓ + ωq,β − εk+q,↑]

× ([bβ (q) + 1][1 − f↓(k)] f↑(k + q)

− bβ (q)[1 − f↑(k + q)] f↓(k)), (11b)

as well as introduced QR
γ (k, q), which is related to Qγ (k, q)

by sending q → −q followed by sending k → k + q. We see
that, with some necessary relabeling of momentum indices,
conservation of spin dictates the structure of the equations.
Processes increasing/decreasing the number of α magnons
contribute in the same way to the number of spin-↑ electrons,
and conversely to the number of spin-↓ electrons. For the β

magnons, the situation is the same, except for reversal of the
spin directions.

III. DERIVING MACROSCOPIC EQUATIONS

Starting from the coupled Boltzmann equations, we derive
a set of macroscopic equations relating the spin-polarized
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magnon current density jsm, magnon current density jm, and
spin-polarized electron current density js to the electron cur-
rent density je. The particle current densities are defined as
[19,39,51]

js = 1

(2π )2

∫
dk ve

kx
[ f↑(k) − f↓(k)], (12a)

je = 1

(2π )2

∫
dk ve

kx
[ f↑(k) + f↓(k)], (12b)

jsm = 1

(2π )2

∫
dq vm

qx
[bβ (q) − bα (q)], (12c)

jm = 1

(2π )2

∫
dq vm

qx
[bβ (q) + bα (q)], (12d)

where we in the thermodynamic limit have introduced inte-
gration over momentum. In the following, js and jsm will be
referred to as the electron and magnon spin currents, while jm
and je will be referred to as simply the magnon and electron
currents. Notably, we consider currents in the x direction in
real space, and the spin-space z component of the spin cur-
rents. Further, the electron and magnon velocities appearing
in the definitions of the currents are given by

ve
kx

= 1

h̄

∂εk

∂k
k̂ · x̂, vm

qx
= 1

h̄

∂ωq

∂q
q̂ · x̂. (13)

As the velocities are odd under inversion of momentum (odd
in the x direction and even in the y direction), only the cor-
responding odd part of the distribution functions fσ (k) and
bγ (q) contributes to the currents. Denoting the odd part of
ge

σ (k) and gm
γ (q) by an index o, we can then write

js = 1

(2π )2

∫
dk ve

kx

∑
σ

σ

[
− ∂ f 0(εk,σ )

∂εk,σ

]
ge

σ,o(k), (14a)

je = 1

(2π )2

∫
dk ve

kx

∑
σ

[
− ∂ f 0(εk,σ )

∂εk,σ

]
ge

σ,o(k), (14b)

jsm = 1

(2π )2

∫
dq vm

qx

∑
γ

γ

[
− ∂b0(ωq,γ )

∂ωq,γ

]
gm

γ ,o(q), (14c)

jm = 1

(2π )2

∫
dq vm

qx

∑
γ

[
− ∂b0(ωq,γ )

∂ωq,γ

]
gm

γ ,o(q). (14d)

The next step is to multiply the electron Boltzmann equa-
tions by an electron velocity ve

kx
and integrate over momentum

k [39]. Similarly, we multiply the magnon Boltzmann equa-
tions by a magnon velocity vm

qx
and integrate over momentum

q. Once again, any even-in-momentum corrections to the
distribution functions drop out of the equations so that the
remaining terms can be expressed in terms of the currents.
Adding or subtracting the two equations for the electrons, we
end up with

E T+ = 1
2 P0τ

−1
e js − 1

2Y0τ
−1
e je + [F↑ + F↓], (15a)

E T− = 1
2 P0τ

−1
e je − 1

2Y0τ
−1
e js + [F↑ − F↓]. (15b)

We have here defined τ−1
e = τ−1

↑ + τ−1
↓ , P0 = (τ↑ −

τ↓)/(τ↑ + τ↓), Y0 = 1 + 2τe/τ↑↓,

T± = −e

(2π )2

∫
dk

(
ve

kx

)2

[
∂ f 0(εk,↑)

∂εk,↑
± ∂ f 0(εk,↓)

∂εk,↓

]
, (16)

and

Fσ = 1

(2π )2

∫
dk ve

kx

[
∂ fσ (k)

∂t

]
int

. (17)

As τ↑↓ shows up in the equations of the form 1 + 2τe/τ↑↓,
its effect can be neglected for τ↑↓ � τe. Similarly, for the
magnons, we obtain

Bβ + Bα = τ−1
M0

jm, (18a)

Bβ − Bα = τ−1
M0

jsm, (18b)

where

Bγ = 1

(2π )2

∫
dq vm

qx
ν(q)

[
∂ bγ (q)

∂t

]
int

. (19)

We have here neglected the γ dependence of the magnon
relaxation time [19,21], and written τM (q) = τM0ν(q), where
we take ν(q) to be of the form ν(q) = 1/[1 + ∑

n dn(qa)n].
Setting some coefficient dn nonzero, we can then capture the
effect of momentum dependence of the magnon relaxation
time. Further, it is worth noting that if both electrons and
magnons are spin degenerate, the left-hand side of (18b) can
vanish. A natural result would then be a nonzero magnon
current, but no magnon spin current. However, for �A �= �B,
the asymmetry between uq and vq can give rise to Qα �= Qβ ,
producing Bα �= Bβ . In order to evaluate the interaction terms
Fσ and Mσ , we insert the expressions for the distribution
functions from Eqs. (8a) and (8b). We then have

F↑ = V 2a2

h̄(2π )3

∫
dk ve

kx

∫
dq

[
Qα (k, q) − QR

β (k, q)
]
, (20a)

F↓ = V 2a2

h̄(2π )3

∫
dk ve

kx

∫
dq

[
Qβ (k, q) − QR

α (k, q)
]
, (20b)

Bγ = V 2a2

h̄(2π )3

∫
dq vm

qx
ν(q)

∫
dk Qγ (k, q), (20c)

now with

Qα (k, q) = β(�Auq + �Bvq)2δ[εk,↑ + ωq,α − εk+q,↓]

× b0(ωq,α )[1 − f 0(εk+q,↓)] f 0(εk,↑)

× ([
δμe

↓ − δμe
↑ − δμm

α

]
+ [

ge
↓(k + q) − ge

↑(k) − gm
α (q)

])
, (21a)

Qβ (k, q) = β(�Avq + �Buq)2δ[εk,↓ + ωq,β − εk+q,↑]

× b0(ωq,β )[1 − f 0(εk+q,↑)] f 0(εk,↓)

× ([
δμe

↑ − δμe
↓ − δμm

β

]
+ [

ge
↑(k + q) − ge

↓(k) − gm
β (q)

])
. (21b)
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Here, β = 1/(kBT ), where T is the temperature of the system
and kB is the Boltzmann constant. Redefining k → −k and
q → −q, we see that we, once again, are left with only con-
tributions from terms involving ge

σ,o and gm
γ ,o. The factors ge

σ,o
and gm

γ ,o will be used in order to obtain Fσ and Bγ expressed
in terms of currents multiplied by some prefactors. Depending
on the order of the g’s in the square brackets in (21a) and
(21b), we give each term an index a = 1, 2, 3. Further, we
also give terms arising from Fσ an index γ depending on
whether they arise from Qα or Qβ . We then have a total of
16 terms to evaluate: 12 terms F (a)

σ,γ and 6 terms B(a)
γ , giving

rise to Fσ = ∑
γ ,a F (a)

σ,γ and Bγ = ∑
a B(a)

γ . Each term should
be expressed in terms of a combination of currents multiplied
by some prefactor �. As outlined in Appendix B, we achieve
this goal by, for each term, first performing one of the two
momentum integrals. For each term, we are then left with an
integral over ge

σ,o or gm
γ ,o which can be related to a combina-

tion of currents by replacing additional momentum-dependent
factors by some characteristic value determined by the rest
of the integral. Along the way, we assume that the electron

energy scale is much larger than kBT . The energy kBT is again
assumed to be much larger than the typical magnon energies
that contribute to the integrals, which we find to typically be a
good approximation for our antiferromagnetic magnons living
in two dimensions.

Inserting the resulting expressions for the interaction terms
into Eqs. (18a), (18b), (15a), and (15b), we obtain

τ−1
M0

jm = [
�

(1)
β + �(1)

α − �
(2)
β − �(2)

α

]
je

+ [
�

(1)
β − �(1)

α + �
(2)
β − �(2)

α

]
js

− [
�

(3)
β + �(3)

α

]
jm − [

�
(3)
β − �(3)

α

]
jsm, (22)

τ−1
M0

jsm = [
�

(1)
β − �(1)

α − �
(2)
β + �(2)

α

]
je

+ [
�

(1)
β + �(1)

α + �
(2)
β + �(2)

α

]
js

− [
�

(3)
β − �(3)

α

]
jm − [

�
(3)
β + �(3)

α

]
jsm, (23)

E T+ = −[
1
2Y0τ

−1
e − [

�
(1)
↑,α + �

(1)
↓,α − �

(2)
↑,α − �

(2)
↓,α − �

(1)
↑,β − �

(1)
↓,β + �

(2)
↑,β + �

(2)
↓,β

]]
je

+ [
1
2 P0τ

−1
e − [

�
(1)
↑,α − �

(1)
↓,α + �

(2)
↑,α − �

(2)
↓,α + �

(1)
↑,β − �

(1)
↓,β + �

(2)
↑,β − �

(2)
↓,β

]]
js

+ [
�

(3)
↑,β + �

(3)
↓,α − �

(3)
↑,α − �

(3)
↓,β

]
jm + [

�
(3)
↑,β − �

(3)
↓,α + �

(3)
↑,α − �

(3)
↓,β

]
jsm, (24)

and

E T− = [
1
2 P0τ

−1
e + [

�
(1)
↑,α − �

(1)
↓,α − �

(2)
↑,α + �

(2)
↓,α − �

(1)
↑,β + �

(1)
↓,β + �

(2)
↑,β − �

(2)
↓,β

]]
je

− [
1
2Y0τ

−1
e + [

�
(1)
↑,α + �

(1)
↓,α + �

(2)
↑,α + �

(2)
↓,α + �

(1)
↑,β + �

(1)
↓,β + �

(2)
↑,β + �

(2)
↓,β

]]
js

+ [
�

(3)
↑,β − �

(3)
↓,α − �

(3)
↑,α + �

(3)
↓,β

]
jm + [

�
(3)
↑,β + �

(3)
↓,α + �

(3)
↑,α + �

(3)
↓,β

]
jsm. (25)

The coefficients � are defined in Appendix C, and their in-
dices relate them to one of the terms F (a)

σ,γ or B(a)
γ . For a

given set of parameters, these coefficients can be determined
through numerical integration.

Solving Eq. (25) for E and inserting this into Eq. (24), we
obtain

js = Ae→s je + Am→s jm + Asm→s jsm, (26)

where Ae→s, Am→s, and Asm→s are defined in Appendix D.
Inserting the expression in Eq. (26) into Eq. (22), we further
obtain

jm = Ce→m je + Csm→m jsm, (27)

where the expressions for the coefficients are once again pro-
vided in Appendix D.

Finally, combining Eqs. (27) and (26) with Eq. (23), we
can obtain an expression for jsm in terms of je. We can then
use this expression to also obtain expressions for jm and js in
terms of je.

IV. RESULTS

The final result of our calculation is⎛
⎝ js

jm
jsm

⎞
⎠ =

⎛
⎝ Ps

Pm

Psm

⎞
⎠ je. (28)

Here, the magnon spin-current drag coefficient is

Psm = Ae→sm + Ce→m Am→sm

+ (Ae→s + Ce→m Am→s)As→sm, (29)

where

Ae→sm = [
�

(1)
β − �(1)

α − �
(2)
β + �(2)

α

]
/Xsm, (30a)

As→sm = [
�

(1)
β + �(1)

α + �
(2)
β + �(2)

α

]
/Xsm, (30b)

Am→sm = −[
�

(3)
β − �(3)

α

]
/Xsm, (30c)

and

Xsm = τ−1
M0

+ [
�

(3)
β + �(3)

α

] + Csm→m
[
�

(3)
β − �(3)

α

]
− (Asm→s + Csm→m Am→s)

[
�

(1)
β + �(1)

α + �
(2)
β + �(2)

α

]
.

(31)
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The indices of the coefficients have been chosen to highlight
the origin of the different contributions. The role played by
the coefficients in Eqs. (26) and (27), can, e.g., provide some
information about the the origin of the different terms in the
numerator of Psm. If Ae→sm is nonzero, there can, e.g., be a
nonzero jsm even if Ce→m and Ae→s vanish, meaning that a
nonzero numerator of Ae→sm represents contributions to jsm

that can be interpreted as arising directly from je. The other
terms in the numerator of Psm can be interpreted as arising
indirectly from je via jm or js. Similarly, some understanding
of the terms in the denominator of Psm can be obtained. For
vanishing Csm→m, Asm→s, and τ−1

M0
, there is still a remaining

term [�(3)
β + �(3)

α ] in Xsm, associated with direct conversion of
magnon spin current into electron current.

Further, the magnon current drag coefficient can be ex-
pressed as

Pm = Ce→m + Psm Csm→m, (32)

and the ratio between the electron spin current and the normal
electron current is

Ps = Ae→s + Pm Am→s + Psm Asm→s. (33)

The two latter expressions for Pm and Ps have some room
for simplification, but their current form is convenient for
understanding the numerical results.

Setting �B = � and �A = 1, results for Psm and Pm as a
function of � are presented in Fig. 2. We have here neglected
any spin splitting of magnons and electrons and taken τ↑ = τ↓.
For � = 1, we see that there is a finite induced magnon cur-
rent, but no magnon spin current. In order to obtain a magnon
spin current, we need to introduce an asymmetry between the
coupling between the electrons and the two magnon modes.
This can be achieved by taking � < 1, producing a nonzero
magnon spin current. From the figure, we see that Pm simply
increases as we reduce �. The behavior of Psm is a bit more
peculiar. For sufficiently large τ−1

M0
, reducing � generally leads

to an increase in |Psm| (or at least not a strong reduction),
but for smaller τ−1

M0
we see that |Psm| has a clear peak at

some � > 0. Taking � = 0, maximizing the typical strength
of the electron-magnon coupling, does, in other words, not
necessarily maximize the induced magnon spin-current. We
also note that Ps is found to be small in all cases.

These results can be understood by inspecting the expres-
sions for the drag coefficients. Starting with Psm, the behavior
is mainly dominated by Ae→sm, where the dominant parts of
the denominator of Ae→sm are the terms related to magnon
relaxation and direct conversion of magnon spin current into
electron current. We can then inspect the resulting simplified
expression

Psm ∼
[
�

(1)
β − �(1)

α − �
(2)
β + �(2)

α

]
τ−1

M0
+ [

�
(3)
β + �

(3)
α

] . (34)

Here, asymmetry between �(1)
γ and �(2)

γ is related to asymme-
try between different scattering processes involving a specific
magnon mode, arising from an imbalance of electrons moving
in opposite directions. Moreover, an asymmetry between �(a)

α

and �
(a)
β has to arise from an asymmetry between scattering

processes involving α and β magnons. As we see from the
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0 0.5 1
0

0.1

0.2

0.3

0.4

0.5

FIG. 2. The ratio of magnon spin current (a) and magnon cur-
rent (b) to electron current as a function of the asymmetry in the
coupling between the normal metal and the two sublattices of the
antiferromagnet. Here, � = 1 corresponds to a compensated inter-
face, and � = 0 corresponds to an uncompensated interface. Three
different curves are displayed for different values of the inverse
magnon relaxation time at zero momentum τ−1

M0
. The rest of the

parameters are set to t = 1.6 eV, kF a = 0.6, S = 3/2, J1 = 6 meV,
J2 = 0, K/J1 = 1.0 × 10−3, J̄ = 15 meV, T = 300 K, τ↑ = τ↓ =
1.0 × 10−14 s, d3 = 5, and he = hm = 0.

simplified expression, asymmetries of both types are neces-
sary in order to obtain a magnon spin current.

Starting from large τ−1
M0

, this term dominates the denomi-
nator, and the effect of � will enter through the numerator of
Psm. Here, � < 1 will typically act to make (|uq| − �|vq|)2

(for α magnons) and (|vq| − �|uq|)2 (for β magnons) larger
and more different from each other, increasing the differ-
ence between α and β contributions to the numerator of Psm.
We therefore see that |Psm| increases with reduced �. As α

magnons, for � < 1, couple more strongly to electrons due to
|uq| > |vq|, the negative direction of the spin carried by the α

magnons makes Psm negative.
However, if we reduce τ−1

M0
so that the bracket in the

denominator of Psm also starts playing a role, the picture
becomes more complicated. In order to have Psm �= 0, we still
need � �= 1. Starting from � = 0 and increasing �, we again
have that �(a)

γ becomes smaller. Importantly, this reduction
mainly stems from suppression of dominant long-wavelength
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contributions with small q > 0. For such contributions |uq|
and |vq| are large. Since |uq|2 − |vq|2 = 1, we have that
(|uq| − |vq|) = 1/(|uq| + |vq|), meaning that the difference
between |uq| and |vq| is smaller for long-wavelength magnons.
This means that when we increase �, we most efficiently
suppress the long-wavelength contributions as, e.g., (|uq| −
�|vq|)2 is more efficiently suppressed with increasing � when
|uq| and |vq| are very similar. The key point to understanding
the behavior of Psm(�) is then that long-wavelength contribu-
tions are even more important for the denominator than the
numerator of Psm. In contrast to the denominator, the numer-
ator relies on |uq| �= |vq|, not allowing the magnon coherence
factors to have their normal boosting effect and making con-
tributions from somewhat larger q values more important. A
simple example is � = 0. Then, the magnon coherence fac-
tors of �(a)

α − �
(a)
β show up in the form u2

q − v2
q = 1, while the

coherence factors of �(3)
α + �

(3)
β show up in the form u2

q + v2
q ,

favoring long-wavelength magnons. By taking � > 0, we
then strongly suppress the bracket in the denominator through
its long-wavelength contributions, while the numerator of Psm

is less strongly affected. This makes it possible for |Psm| to
increase until the denominator becomes dominated by τ−1

M0
,

or the suppression of the numerator of Psm due to � → 1
eventually becomes too strong.

A similar increase in |Psm|, for sufficiently small τ−1
M0

,
can also be obtained by reducing the importance of long-
wavelength contributions to the �’s in other ways. One option
is to increase the easy-axis anisotropy, which both reduces the
value of uq and vq for small q and increases the excitation
energy of long-wavelength magnons. It is, however, worth
noting that, within our approximation scheme, one should be
careful with suppressing the importance of long-wavelength
magnons too much. For this reason, one should also not put
too much trust in, e.g., the results for Pm when � → 1, in
contrast to the result Psm(� = 1) = 0 which follows from
symmetry. Further, taking the magnon relaxation time to de-
cay faster with increasing momentum has an opposite effect,
pushing contribution weights toward smaller momenta. If τ−1

M0

is sufficiently small, we can compensate this effect by, e.g.,
taking a larger easy-axis anisotropy. However, if τ−1

M0
is too

large and/or ν(q) decays too quickly with momentum, there
can be a reduction in the achievable values of Psm. Increasing,
e.g., both d3 and K by an order of magnitude, the magnitude
of Psm(� = 0) for τ−1

M0
= 5 × 109 1/s is reduced by around

30%.
Similarly to Psm, the behavior of Pm in Fig. 2 can also be

understood from a simplified expression

Pm ∼
[
�

(1)
β + �(1)

α − �
(2)
β − �(2)

α

]
τ−1

M0
+ [

�
(3)
β + �

(3)
α

] . (35)

We see that the contributions from α and β magnons add, in
contrast to the case of Eq. (34), where they were subtracted.
In this case, also for small τ−1

M0
, there is typically no benefit

of increasing � as also the combination of magnon coherence
factors in, e.g., �(1)

α + �
(1)
β in the numerator still favors long-

wavelength magnons. Increasing � then simply leads to a
rapid suppression of the numerator.

Finally, we also comment on the smallness of Ps in the
simple case of no spin splitting of the electrons. The easiest
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-0.9 0.9
0.26

0.34

FIG. 3. The ratio of magnon spin current to electron current, Psm,
and the ratio of magnon current to electron current, Pm, are here
presented. In (a) and (b) we vary the interfacial coupling between
the materials, J̄ , as well as the temperature, T . In (c) and (d) we
vary the next-nearest-neighbor interaction in the antiferromagnet, J2,
where J2 > 0 corresponds to a frustration. In (e) and (f) we vary the
splitting of the magnon modes hm. Unless otherwise specified in the
panels, we have set hm = J2 = 0, J̄ = 15 meV, and T = 300 K. We
have also taken � = 0 and τ−1

M0
= 1 × 1010 1/s, while the rest of the

parameters are set to their values in Fig. 2.

case to analyze is if we simply take τ−1
e to be very large. In

that case, the denominator of Ae→s, Am→s, and Asm→s contains
a term τ−1

e that is not matched in the numerators. As there,
in this case, is assumed to be no intrinsic spin-current source
in the normal metal, an electron spin current will have to
arise from interaction with magnons. However, if the electron
relaxation time is too short, the effect of interaction with
magnons is washed away and the resulting electron spin cur-
rent becomes small.

We next consider, for � = 0, how the induced magnon
spin current and magnon current depend on some other im-
portant parameters of the system. In Figs. 3(a) and 3(b), we
show, for three different temperatures, how Psm and Pm vary
with the strength of the interfacial exchange coupling J̄ . For
J̄ = 0, there is, of course, no induced magnon currents. As all
coefficients � ∼ J̄2, increasing J̄ makes τ−1

M0
less important

until |Psm| and Pm reach their saturation values equivalent
to τ−1

M0
= 0. The shape of the curves resemble a function

a1/(1/x2 + a2), as expected from the simplified expressions
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for Psm and Pm. Further, increasing the temperature leads to
more spin fluctuations, which enter the expressions through
the Bose-Einstein distribution factors in �(1/2)

γ . This increases
the magnitude of the numerators of Psm and Pm, leading to the
results in Figs. 3(a) and 3(b). How much the magnon currents
actually can be enlarged by increasing the temperature will
necessarily be limited by how large temperature the order in
the antiferromagnetic material can survive. In order to obtain
larger drags at a given temperature, one can, e.g., reduce the
energy scale of the antiferromagnet by reducing J1, making it
easier to excite magnons. Oppositely, increasing J1 will make
it harder to excite magnons and increase the stability of the
magnetic ordering. Setting, e.g., J1 = 10 meV in Fig. 2 leads
to Psm(� = 0) = 0.009 and Pm(� = 0) = 0.15 for the purple
curves corresponding to τ−1

M0
= 5 × 109 1/s.

The behavior of Psm and Pm as a function of next-
nearest-neighbor interaction in the antiferromagnet is shown
in Figs. 3(c) and 3(d). Positive J2/J1 here corresponds to an
antiferromagnetic coupling between next-nearest neighbors,
acting as a frustration. Similarly to increasing the temperature,
frustrating the system leads to more spin fluctuations pro-
ducing larger induced magnon currents. Notably, frustration,
in contrast to a temperature increase, influences the magnon
energies. Frustration therefore also affects the magnon coher-
ence factors, with the particular effect of making them decay
more slowly with increasing momentum without affecting
their values at zero momentum [30,31]. The latter effect actu-
ally favors the denominator of Psm, but the effect of increased
number of magnons dominates and makes Psm increase with
increasing J2.

Finally, in Figs. 3(e) and 3(f), we display how splitting of
the magnon modes influences the drag coefficients. Taking
hm < 0 lowers the excitation energies of α magnons, increas-
ing the asymmetry favoring contributions to Psm associated
with α magnons. This leads to an enhancement of the induced
magnon spin current, which is quite significant because the
splitting of the magnon modes allows for long-wavelength
magnons to better contribute to Psm. Taking hm > 0 works
in the opposite direction of the asymmetry between α and β

magnons introduced by � = 0. Moreover, while Pm is also
influenced by hm, the effect is much weaker as Pm does not
rely on an asymmetry between contributions associated with
α and β magnons. Taking, e.g., hm < 0, the effect is that
the α contributions become larger while the β contributions
are suppressed. The growth of the α contributions slightly
outweighs the decrease in the β contributions, leading to a
weak enhancement of Pm. We also note that, if the results are
extended to |hm| even closer to 	g, the magnitudes of the drag
coefficients continue to grow larger, but they are not found to
diverge.

In order to attempt to describe the induced magnon cur-
rents in a real system featuring a sufficiently thick NM layer,
neglecting spin splitting of the electrons arising from � �= 1
(and/or an external field applied to the antiferromagnet) and
taking τ↑ = τ↓ might be a reasonable approximation. At least
for a thinner NM layer, these effects could, however, play
a larger role. We therefore investigate how the drag coeffi-
cients depend on he and τ↑ �= τ↓. The relationship between
these parameters is not evident, especially when the electron
density of states has weak or no energy dependence, and

0.8 0.9 1 1.11 1.25
-0.05

0

0.8 0.9 1 1.11 1.25
-0.1

0.1

0.8 0.9 1 1.11 1.25

0.2

0.4

FIG. 4. The ratio of magnon spin current (a), electron spin cur-
rent (b), and magnon current (c) to electron current as a function
of τ↑/τ↓ for different values of he, where τσ is the spin-conserving
relaxation time for electrons with spin σ and he represents a spin
splitting of the electron energies. The x axis is here logarithmic in
order to highlight symmetries between τ↑ < τ↓ and τ↑ > τ↓. For
the parameters, we have set � = 0, τ↓ = 1.0 × 10−14 s, τ−1

M0
= 1 ×

1010 1/s, while the rest of the parameters are equal to their values in
Fig. 2.

the relationship should be expected to vary strongly with the
details of the system. We therefore simply treat he and τσ as
independent parameters and display how their separate and
combined effects can influence the results.

In Fig. 4, we present Psm, Ps, and Pm as a function of τ↑/τ↓
for different values of he. As we now introduce an asymmetry
between spin-↑ and spin-↓ electrons, we have that, e.g., Ae→s

starts to grow as T−/T+ and P0 can become nonzero. We
are then, of course, generating a spin current, as displayed
in Fig. 4(b). For, e.g., τ↑ < τ↓, the spin current becomes
negative, which is quite natural. Moving on to the magnon
spin current, the last term in the numerator of Psm of the
form (Ae→s + Ce→m Am→s)As→sm now starts becoming more
active. This term can be viewed as converting electron spin
current into magnon spin current. The general trend is there-
fore that the changes to Psm in Fig. 4(a) follow the variations
in Ps. We also see that a spin-splitting field he presumably
will need to be somewhat larger than 	g in order to have
a real effect on the induced magnon spin current, meaning
that the effect on the electrons of applying an external field
to split the magnons modes might not be that important for
the resulting induced magnon spin current, even for a thin
NM layer. Discussing next the results for Pm in Fig. 4(c),
we see that Pm can be substantially affected by the combi-
nation of splitting of the electron energies and asymmetry in
τσ . Taking τ↑ �= τ↓ alone is enough to create a spin current
through Ae→s, but in order for this spin current to influence
the induced magnon current, we also need a sufficiently large
As→m ∼ [�(1)

β − �(1)
α + �

(2)
β − �(2)

α ]. While the electron spin
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current is naturally able to influence the magnon spin current,
we find that, e.g., the related asymmetry between ↑ and ↓
electrons introduced through he is needed in order to enhance
As→m, allowing the electron spin-current to influence the spin-
unpolarized magnon current.

V. DISCUSSION

As mentioned in the beginning of Sec. II, an experimental
realization of our system would typically involve thin films
of finite thickness. In particular, an experimentally realized
uncompensated interface naturally relies on an AFMI with
more than one layer. For a given material, the AFMI should
be sufficiently thick to, in a real system, stabilize magnetic
ordering in the presence of intrinsic quantum and thermal
fluctuations, as well as interfacial interaction with the elec-
trons from the metal. While a larger thickness can provide a
necessary increase in stability, as well as simply more spins
that can fluctuate, the added stability might also make it
harder for the electrons of the normal metal to induce magnon
currents. The density of the magnon currents should also be
expected to decrease as only the surface layer couples directly
to the electrons in the normal metal. The present study simply
demonstrates that driving an in-plane electron current in an
adjacent metal is a potential mechanism for creating a spin
current in an AFMI and highlights that increasing the tem-
perature and splitting the magnon modes are possible ways
of increasing the magnon spin current in an ordered AFMI.
In order to obtain reliable estimates for the magnitude of the
induced magnon currents in a real system, one would need
to take into account the effect of the thickness of the AFMI.
Taking properly into account finite thickness of the normal
metal layer could potentially also influence the results.

Moreover, the model we have used to study the system
is, also in other ways, relatively simple, motivated by a goal
of exploring some of the key physics that can arise in this
system. We have therefore been able to rely on, quite involved,
analytical calculations in order to interpret the origin of the
results obtainable within the boundaries set by our approxi-
mation scheme. A natural extension of this work would be
investigations more tailored toward specific material choices.
The magnitude of the induced magnon spin current, intimately
related to, e.g., the competition between effects pushing con-
tribution weights towards smaller or larger momenta, should
be expected to depend considerably on the details of the sys-
tem.

For a larger and more anisotropic Fermi surface, umklapp
processes, not considered in this study, could also become
of importance. For such scattering processes, � = 1 actually
maximizes the electron-magnon coupling [32,46]. However,
an induced magnon spin current relies on an asymmetry be-
tween α and β magnons. Hence, in the absence of splitting of
the magnon modes, having a compensated interface and rely-
ing on umklapp processes to generate a magnon spin-current
does not seem like a viable option.

As the induced magnon spin current is found to be
enhanced through splitting of the magnon modes, antifer-
romagnets with intrinsically nondegenerate magnon modes
present an interesting possibility. Nondegenerate magnon
modes that are still able to carry a spin current may be realized

in biaxial antiferromagnets, featuring both a hard axis and an
additional in-plane easy axis, such as NiO [21,52]. As long
as long-wavelength magnons are dominant, it might not be
problematic if the splitting of the magnon modes is only sig-
nificant near the Brillouin zone center. Moreover, as we find
that intermediate values of � could be more favorable than
� = 0, it could be worth considering other options than a fully
uncompensated interface. One option could be a compensated
interface where the two sublattices are made up of different
atoms, potentially introducing an intermediate-strength asym-
metry in the coupling between the normal metal and the two
sublattices of the AFMI.

VI. SUMMARY

Applying semiclassical Boltzmann theory, we have inves-
tigated the possibility of inducing magnon currents in an
antiferromagnetic insulator layer through proximity coupling
to a normal metal layer where a charge current is driven
parallel to the interface. We find that an asymmetry in the
coupling between the electrons and the two sublattices of
the antiferromagnet can allow for a magnon spin current to
be generated. The magnitude of the induced magnon spin
current depends intimately on the relative importance of long-
wavelength magnons, leading to the somewhat surprising
result that a more weakly asymmetric antiferromagnetic in-
terface can be a better choice than a fully uncompensated
interface. We also find that the induced magnon currents
increase with temperature, and that magnon mode splitting
can be beneficial for the magnon spin current. Future work
could include more application-oriented studies, as well as
experimentally investigation of our proposed mechanism for
generating a magnon spin current in an antiferromagnetic
insulator.
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APPENDIX A: STARTING MODEL

Following Ref. [32] we start out from a Hamiltonian de-
scribing an antiferromagnet

HAFMI = J1

∑
〈i, j〉

Si · Sj + J2

∑
〈〈i, j〉〉

Si · Sj

− K
∑

i

S2
iz − hm

∑
i

Si,z, (A1)

where we have added an additional term splitting the magnon
modes. Our modeling is not sensitive to whether the spin-
space z direction is taken to align with the real-space z
direction or not. Performing a Holstein-Primakoff transforma-
tion, this Hamiltonian can be diagonalized and put in the form
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of Eq. (2) with [32]

ωq =
√

C2
q − D2

q, (A2)

where

Cq = 2z1J1S − 2z2J2S(1 − γ̃q) + 2KS, (A3)

Dq = 2z1J1Sγq. (A4)

Here,

γk = 2

z1
[cos(kxa) + cos(kya)], (A5)

γ̃k = 2

z2
[cos(kxa + kya) + cos(kxa − kya)], (A6)

where z1 is the number of nearest neighbors, and z2 is the
number of next-nearest neighbors.

For the coupling between the electrons and magnons, we
start out from

Hint = −2J̄
∑
ϒ

∑
i∈ϒ

�ϒ c†
i σci · Si, (A7)

where the sum over ϒ ∈ {A, B} is a sum over the two sub-
lattices of the AFMI, and σ is a vector of Pauli matrices.
We then, again, perform a Holstein-Primakoff transformation,
as well as Fourier transformations. Neglecting umklapp scat-
tering processes and moving electron spin-splitting terms to
the NM Hamiltonian, we arrive at the expression in Eq. (4)
[32]. Here, the magnon coherence factors, relating the AFMI
eigenexcitations to the original sublattice spin-flip magnons
introduced in the Holstein-Primakoff transformation, take the
form

uq = 1√
2

√
Cq

ωq
+ 1, (A8)

vq = −1√
2

√
Cq

ωq
− 1. (A9)

Finally, for the electrons, we start out from

HNM = −t
∑
〈i, j〉σ

c†
iσ c jσ − μ

∑
iσ

c†
iσ ciσ − h′

e

∑
iσ

σc†
iσ ciσ ,

(A10)

where h′
e is a spin-splitting arising from an externally applied

field. Diagonalizing the Hamiltonian and including the poten-
tial additional spin splitting of the electrons arising from the
antiferromagnetic interface, we end up with the Hamiltonian
in Eq. (1). Here,

εkσ = −tz1γk − μ − σhe. (A11)

The additional spin splitting of the electrons arising from the
interaction term has a strength J̄S(�B − �A). However, if we
consider a NM of finite thickness, delivering a similar surface
current affecting the antiferromagnet, the effective spin split-
ting of the electrons due to proximity to the AFMI will be
reduced. We therefore treat the spin splitting of the electrons
as an adjustable parameter.

Finally, the last step is to consider the long-wavelength
limit in order to obtain isotropic expressions for ωq, εkσ , uq,

and vq. For ωq =
√

	2
g + κ2(qa)2, we have defined 	g =

2S
√

K (K + 8J1), and κ = 4S
√

2J2
1 − J2(K + 4J1). Further,

the magnon coherence factors now take the form

uq = 1√
2

√
8J1S − 4J2S(qa)2 + 2KS

ωq
+ 1, (A12)

vq = − 1√
2

√
8J1S − 4J2S(qa)2 + 2KS

ωq
− 1. (A13)

As we are working in the long-wavelength limit, under the
assumption that large-momentum processes are negligible,
it will not be of importance that the magnons live in a re-
duced Brillouin zone compared to the electrons. Momentum
integrals for both magnons and electrons will be performed
over circular Brillouin zones of radius π/a, where we make
sure that contributions from large momenta have little or no
influence on the results. In particular, by taking a sufficiently
small Fermi surface, we make sure that all integrands con-
taining magnon coherence factors vanish before the isotropic
expression for vq turns imaginary.

APPENDIX B: EVALUATING THE INTERACTION TERMS

As discussed above, in order to evaluate the interaction
terms, we start out from Eqs. (20a), (20b), (20c) and divide
these expressions up into terms involving a single factor ge

σ,o
or gm

γ ,o. For terms involving ge
σ,o(k + q) or gm

σ,o(k + q), we
send k → k − q. We then proceed to do the angular part of
the integral over the momentum that the involved factor g
does not depend on. If g depends on q, we can next do the
radial integral over k and use the remaining integral over q
to form a combination of magnon currents after having re-
placed some additional q-dependent factors by characteristic
values. If g depends on k, we use the assumption that the
important magnon energies are significantly smaller kBT in
order to decouple the two integrals. Replacing some additional
k-dependent factors by characteristic values, we are then left
with a combination of electron currents with a prefactor that
depends on a radial integral over q.

In this Appendix we outline the evaluation of two specific
terms. The rest of the terms can be evaluated in a similar
manner. We start with B(2)

α , which can be written out as

B(2)
α = −β

V 2a2

h̄(2π )3

∫
dk f 0(εk,↑)ge

↑,o(k)

×
∫

dq vm
qx

ν(q)(�Auq + �Bvq)2[1 − f 0(εk+q,↓)]

× b0(ωq,α )δ[εk,↑ + ωq,α − εk+q,↓]. (B1)

We next proceed to perform the angular part of the integral
over q. For a given k, we then introduce a new coordinate
system for q where θ ′ is the angle between q and the x axis
of the new coordinate system which is taken to be aligned
with k. The angle between k and the x axis of the original
coordinate system is denoted by θ . We can then express B(2)

α
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in the following form:

B(2)
α = −β

V 2a2

h̄(2π )3

∫
dk f 0(εk,↑)ge

↑,o(k)
∫

dq q vm
q ν(q)

× (�Auq + �Bvq)2[1 − f 0(εk,↑ + ωq,α )]b0(ωq,α )

×
∫ 2π

0
dθ ′ [cos(θ ′) cos(θ ) − sin(θ ′) sin(θ )]

× δ[ωq,α − 2he − 2t (qa)(ka) cos(θ ′) − t (qa)2],
(B2)

where the square bracket of cosine factors arises because we
need the component of the magnon velocity in the x direction
of the original coordinate system. Performing the angular
integral, we obtain

B(2)
α = −β

V 2

2t h̄(2π )3

∫
dk

cos(θ )

k
f 0(εk,↑)ge

↑,o(k)

×
∫

dq vm
q (�Auq + �Bvq)2[1 − f 0(εk,↑ + ωq,α )]

× b0(ωq,α )
2 ν(q)�q,α,2(k)√

1 − �2
q,α,2(k)

�(1 − |�q,α,2(k)|). (B3)

Using the assumption that the important magnon energies are
significantly smaller than kBT , we next approximate f 0(εk,↑ +
ωq,α ) ≈ f 0(εk,↑). We also use that ve

k = 2tka2/h̄, as well
as β[1 − f 0(ε)] f 0(ε) = −∂ f 0(ε)/∂ε. Finally, approximating
loose factors of k by kF , motivated by the combination of
Fermi distributions, we end up with

B(2)
α = −V 2

8πt2(kF a)2

∫
dq (�Auq + �Bvq)2

× b0(ωq,α ) vm
q

2 ν(q)�q,α,2√
1 − �2

q,α,2

�(1 − |�q,α,2|)

× 1

(2π )2

∫
dk ve

kx

[
− ∂ f 0(εk,↑)

∂εk,↑

]
ge

↑,o(k), (B4)

where now

�q,α,2 = 1

2t (qa)(kF a)
[ωq,α − 2he − t (qa)2]. (B5)

Writing the integral over k as a combination of electron cur-
rents and inserting vm

q = κ2qa2/(ωqh̄), we then obtain

B(2)
α = −�(2)

α [ je + js], (B6)

where we have defined

�(2)
α = 1

h̄

(kF a)2V 2

8πE2
F

∫
d (qa) (�Auq + �Bvq)2

× b0(ωq,α )
κ2(qa)

ωq

ν(q)�q,α,2 �(1 − |�q,α,2|)√
1 − �2

q,α,2

. (B7)

The integral included in �(2)
α is somewhat complicated, but

can, for a given set of parameters, be calculated numerically.

We next evaluate B(3)
α , which is of the form

B(3)
α = −β

V 2a2

h̄(2π )3

∫
dq vm

qx
b0(ωq,α )gm

α,o(q)

× ν(q)(�Auq + �Bvq)2
∫

dk [1 − f 0(εk+q,↓)]

× f 0(εk,↑) δ[εk,↑ + ωq,α − εk+q,↓]. (B8)

Following similar steps to those above, we proceed to, this
time, perform the angular part of the integral over k,

B(3)
α = −β

V 2a2

h̄(2π )3

∫
dq vm

qx
gm

α,o(q)

× ν(q)(�Auq + �Bvq)2b0(ωq,α )
∫

dk k

× f 0(εk,↑)[1 − f 0(εk,↑ + ωq,α )]
∫ 2π

0
dθ ′

× δ[ωq,α − 2he − 2t (qa)(ka) cos(θ ′) − t (qa)2],
(B9)

where we have introduced a rotated coordinate system for k
where the new x axis is aligned with q, and θ ′ is the angle
between k and q. The result after the angular integration
becomes

B(3)
α = −β

V 2

2t h̄(2π )3

∫
dq

vm
qx

q
b0(ωq,α )gm

α,o(q)

× (�Auq + �Bvq)2 2 ν(q)�(1 − |�q,α,3|)√
1 − �2

q,α,3

×
∫

dk [1 − f 0(εk,↑ + ωq,α )] f 0(εk,↑), (B10)

with

�q,α,3 = 1

2t (qa)(kF a)
[ωq,α − 2he − t (qa)2], (B11)

where we have taken k ≈ kF in �q,α,3, once again motivated
by the combination of Fermi distributions. We then transform
the radial integral over k into an integral over electron energy,
producing a factor 1/

√
εk + μ which we approximate by its

value at the Fermi level. Further, using the assumption EF �
kBT, he, we end up with

B(3)
α = −β

V 2

2t h̄(2π )3

∫
dq

vm
qx

q
b0(ωq,α )gm

α,o(q)

× (�Auq + �Bvq)2 2 ν(q)�(1 − |�q,α,3|)√
1 − �2

q,α,3

× 1

2a
√

t

1√
EF

eβωq,α

eβωq,α − 1
ωq,α. (B12)
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This expression can further be put in the form

B(3)
α = −V 2

4at
3
2 h̄(2π )3

√
EF

∫
dq vm

qx

[
− ∂b0(ωq,α )

∂ωq,α

]
gm

α,o(q)

× (�Auq + �Bvq)2 ωq,α

q

2 ν(q)�(1 − |�q,α,3|)√
1 − �2

q,α,3

.

(B13)

The integral can here be rewritten as a combination of magnon
currents multiplied by the expectation value of the second line
of additional momentum-dependent factors calculated using
the first part of the integral as the distribution function. When
the first part of the integral is a sufficiently peaked func-
tion with respect to momentum, and the second part varies
slowly with momentum, this procedure approaches simply
approximating the second part by its value at the momentum
corresponding to the peak of the first part. Assuming that
radial momentum dependence of gm

α,o(q) only has a weak
effect on the important momentum region for the integral, the
result for B(3)

α can be expressed as

B(3)
α = −�(3)

α [ jm − jsm], (B14)

where

�(3)
α = 1

h̄

(kF a)3V 2

8πE2
F

1

Iα

∫
d (qa)(qa)

κ2(qa)

ωq

[
− ∂b0(ωq,α )

∂ωq,α

]

× (�Auq + �Bvq)2 ωq,α

qa

ν(q)�(1 − |�q,α,3|)√
1 − �2

q,α,3

,

(B15)

and

Iα =
∫

d (qa) (qa)
κ2(qa)

ωq

[
− ∂b0(ωq,α )

∂ωq,α

]
. (B16)

Like �(2)
α , the expression for �(3)

α can also be evaluated numer-
ically.

APPENDIX C: FINAL EXPRESSIONS FOR INTERACTION
TERMS

Performing the necessary calculations for all interaction
terms, we end up with

B(1)
α = �(1)

α [ je − js],

B(2)
α = −�(2)

α [ je + js], (C1)

B(3)
α = −�(3)

α [ jm − jsm],

B(1)
β = �

(1)
β [ je + js],

B(2)
β = −�

(2)
β [ je − js], (C2)

B(3)
β = −�

(3)
β [ jm + jsm],

F (1)
↑,α = �

(1)
↑,α[ je − js],

F (2)
↑,α = −�

(2)
↑,α[ je + js], (C3)

F (3)
↑,α = −�

(3)
↑,α[ jm − jsm],

F (1)
↑,β = −�

(1)
↑,β[ je + js],

F (2)
↑,β = �

(2)
↑,β[ je − js], (C4)

F (3)
↑,β = �

(3)
↑,β[ jm + jsm],

F (1)
↓,α = �

(1)
↓,α[ je + js],

F (2)
↓,α = −�

(2)
↓,α[ je − js], (C5)

F (3)
↓,α = �

(3)
↓,α[ jm − jsm],

F (1)
↓,β = −�

(1)
↓,β[ je − js],

F (2)
↓,β = �

(2)
↓,β[ je + js], (C6)

F (3)
↓,β = −�

(3)
↓,β[ jm + jsm],

where

�(1/2)
α = 1

h̄

(kF a)2V 2

8πE2
F

∫
d (qa) (�Auq + �Bvq)2

× b0(ωq,α )
κ2(qa)

ωq

ν(q)�q,α,1/2 �(1 − |�q,α,1/2|)√
1 − �2

q,α,1/2

,

(C7)

�(3)
α = 1

h̄

(kF a)3V 2

8πE2
F

1

Iα

∫
d (qa)(qa)

κ2(qa)

ωq

[
− ∂b0(ωq,α )

∂ωq,α

]

× (�Auq + �Bvq)2 ωq,α

qa

ν(q)�(1 − |�q,α,3|)√
1 − �2

q,α,3

, (C8)

�
(1/2)
β = 1

h̄

(kF a)2V 2

8πE2
F

∫
d (qa) (�Avq + �Buq)2

× b0(ωq,β )
κ2(qa)

ωq

ν(q)�q,β,1/2 �(1 − |�q,β,1/2|)√
1 − �2

q,β,1/2

,

(C9)

�
(3)
β = 1

h̄

(kF a)3V 2

8πE2
F

1

Iβ

∫
d (qa)(qa)

κ2(qa)

ωq

[
− ∂b0(ωq,β )

∂ωq,β

]

× (�Avq + �Buq)2 ωq,β

qa

ν(q)�(1 − |�q,β,3|)√
1 − �2

q,β,3

,

(C10)

�(1)
σ,α = 1

h̄

(kF a)V 2

4πEF

∫
d (qa) (�Auq + �Bvq)2b0(ωq,α )

× �(1 − |�q,σ,α,1|)√
1 − �2

q,σ,α,1

[
1 − qa

kF a
�q,σ,α,1

]
, (C11)

�(2)
σ,α = 1

h̄

(kF a)V 2

4πEF

∫
d (qa) (�Auq + �Bvq)2b0(ωq,α )

× �(1 − |�q,σ,α,2|)√
1 − �2

q,σ,α,2

, (C12)
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�(3)
σ,α = 1

h̄

(kF a)2V 2

4πEF

1

Iα

∫
d (qa)(qa)

[
− ∂b0(ωq,α )

∂ωq,α

]
�q,σ,α,3

× (�Auq + �Bvq)2 ωq,α

qa

�(1 − |�q,σ,α,3|)√
1 − �2

q,σ,α,3

, (C13)

�
(1)
σ,β = 1

h̄

(kF a)V 2

4πEF

∫
d (qa) (�Avq + �Buq)2b0(ωq,β )

× �(1 − |�q,σ,β,1|)√
1 − �2

q,σ,β,1

, (C14)

�
(2)
σ,β = 1

h̄

(kF a)V 2

4πEF

∫
d (qa) (�Avq + �Buq)2b0(ωq,β )

× �(1 − |�q,σ,β,2|)√
1 − �2

q,σ,β,2

[
1 − qa

kF a
�q,σ,β,2

]
, (C15)

�
(3)
σ,β = 1

h̄

(kF a)2V 2

4πEF

1

Iβ

∫
d (qa)(qa)

[
− ∂b0(ωq,β )

∂ωq,β

]
�q,σ,β,3

× (�Avq + �Buq)2 ωq,β

qa

�(1 − |�q,σ,β,3|)√
1 − �2

q,σ,β,3

. (C16)

We have here defined

Iγ =
∫

d (qa) (qa)
κ2(qa)

ωq

[
− ∂b0(ωq,γ )

∂ωq,γ

]
, (C17)

as well as

�q,γ ,1 = 1

2t (qa)(kF a)
[ωq,γ + 2γ he + t (qa)2],

�q,γ ,2 = 1

2t (qa)(kF a)
[ωq,γ + 2γ he − t (qa)2], (C18)

�q,γ ,3 = �q,γ ,2,

�q,↑,α,1 = 1

2t (qa)(kF a)
[ωq,α − 2he + t (qa)2],

�q,↑,α,2 = 1

2t (qa)(kF a)
[ωq,α − 2he − t (qa)2],

�q,↑,α,3 = �q,↑,α,2,

�q,↑,β,1 = 1

2t (qa)(kF a)
[ωq,β + 2he + t (qa)2],

�q,↑,β,2 = −1

2t (qa)(kF a)
[ωq,β + 2he − t (qa)2],

�q,↑,β,3 = �q,↑,β,1,

(C19)

�q,↓,α,1 = −�q,↑,α,2, �q,↓,α,2 = −�q,↑,α,1,

�q,↓,α,3 = �q,↑,α,1, �q,↓,β,1 = −�q,↑,β,2,

�q,↓,β,2 = �q,↑,β,1, �q,↓,β,3 = −�q,↑,β,2. (C20)

APPENDIX D: DEFINITION OF COEFFICIENTS

The coefficients in Eq. (26) are given by

Ae→s = 1

Xs

[
1

2

(
Y0

T−
T+

+ P0

)
τ−1

e

+
(

1 + T−
T+

)( − �
(1)
↓,α + �

(2)
↓,α + �

(1)
↓,β − �

(2)
↓,β

)

+
(

1 − T−
T+

)(
�

(1)
↑,α − �

(2)
↑,α − �

(1)
↑,β + �

(2)
↑,β

)]
, (D1)

Am→s = 1

Xs

[(
1 − T−

T+

)(
�

(3)
↑,β − �

(3)
↑,α

)

+
(

1 + T−
T+

)( − �
(3)
↓,α + �

(3)
↓,β

)]
, (D2)

and

Asm→s = 1

Xs

[(
1 − T−

T+

)(
�

(3)
↑,β + �

(3)
↑,α

)

+
(

1 + T−
T+

)(
�

(3)
↓,α + �

(3)
↓,β

)]
, (D3)

where

Xs = 1

2

(
P0

T−
T+

+ Y0

)
τ−1

e

−
(

T−
T+

− 1

)(
�

(1)
↑,α + �

(2)
↑,α + �

(1)
↑,β + �

(2)
↑,β

)

+
(

T−
T+

+ 1

)(
�

(1)
↓,α + �

(2)
↓,α + �

(1)
↓,β + �

(2)
↓,β

)
. (D4)

Further, the coefficients in Eq. (27) take the form

Ce→m = Ae→m + Ae→s As→m,

Csm→m = Asm→m + Asm→s As→m,
(D5)

where

Ae→m = [
�

(1)
β + �(1)

α − �
(2)
β − �(2)

α

]
/Xm,

As→m = [
�

(1)
β − �(1)

α + �
(2)
β − �(2)

α

]
/Xm,

Asm→m = [
�(3)

α − �
(3)
β

]
/Xm,

(D6)

and

Xm = τ−1
M0

+ [
�

(3)
β + �(3)

α

]
− Am→s

[
�

(1)
β − �(1)

α + �
(2)
β − �(2)

α

]
. (D7)
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