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Abstract
English:
Synchronous motor fault diagnosis provides insight into motor health and opera-
tional reliability. Diagnostic analysis is typically performed by examining changes
in frequency components. This thesis presents an image processing and machine
learning approach to detect faults in the motor automatically. The image processing
method would use continuous wavelet transformation plots as input, generated on
experimental and simulation data. The machine learning method, gradient boosting
on decision trees, would use spatial and statistical image region descriptors as in-
put. The effectiveness of the developed method produced a classification accuracy of
92%. The method is dependent on healthy data, but it is argued that with a more
extensive sampling size, the method could become independent of healthy data and
could potentially become applicable as a diagnostic tool in practical applications
Norsk:
Synkronmotor feildiagnose gir innsikt i motorhelse og driftssikkerhet. Diagnostisk
analyse utføres vanligvis ved å undersøke endringer i frekvenskomponenter. Denne
oppgaven presenterer en bildebehandlings- og maskinlærings tilnærming for å op-
pdage feil i motoren automatisk. Bildebehandlingsmetoden vil bruke kontinuerlige
wavelet-transformasjonsplott som input, generert på eksperimentell og simulerings-
data. Maskinlærings metoden, gradientforsterkning på beslutningstrær, vil bruke
romlige og statistiske bildeområde beskrivelser som input. Effektiviteten til den
utviklede metoden ga en klassifiseringsnøyaktighet på 92%. Metoden er avhengig
av sunn data, men det argumenters for at med en mer omfattende datainnsamling
vil metoden kunne bli uavhengig av sunn data og potensielt bli anvendelig som et
diagnostisk verktøy i praktiske anvendelser
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1. Introduction

This section will contain a short and comprehensive summary of the faults that will be
investigated later. These faults include inter-turn shortcircuit faults with increasing
severity in the field winding. It will also contain information about the experimental
laboratory setup at the NTNU campus. For this project, the experimental setup
will change from a generator to a motor operation. Furthermore, it will contain
information on the FE model and its simulation program. Finally, a summary of
previous project work done by students at NTNU will be presented.

1.0.1 Scope of project
The objective of this Master’s project is to develop an image processing method that
produces data that feeds into a machine learning algorithm, which will provide an
estimate of the type of fault and how severe the fault is. The method will be applied
to a salient pole synchronous motor. The data will be gathered both experimentally
and through simulations. The experiments will be carried out on a synchronous
laboratory machine found at the faculty of information technology and electrical
engineering at the NTNU campus. The simulation data will be gathered using a
modified FE model created by a previous student. The collected data will be pro-
cessed through signal processing. The signal processed data will serve as the input
for image processing. The faults will cover increasing inter-turn shortcircuit(ITSC)
faults. The fault severities of ITSC will range from 1ITSC, 2ITSC, 3ITSC, 7ITSC
and 10ITSC. The data will be acquired during no-load operations and various full-
load operations. The project will provide theory on image processing and machine
learning. The theory will be based on relevant theory to explain the methods used
in this task aptly. Furthermore, a literary survey on fault detection of electrical ma-
chines, with specific detail on machine learning based on image processing data, will
be conducted. A survey on previous work on fault detection in synchronous motors
will be performed as well. The conclusion of this work will hopefully be an algorithm
that can extract the fault and its severity with machine learning.

1.0.2 Background
There has been a great expanse of electrical motors, of these, synchronous motors
fit a particular role in the industry. Synchronous motors are estimated to reach
a market value of 30.1 million USD by 2027[11]. They are typically used in cases
where high performance and high reliability are necessary. These range from medical,
aerospace, military and automotive[17], fulfilling roles such as compressors, rolling
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mills and reciprocating pumps. It is desirable to keep these running as efficiently as
possible. During prolonged operation of the motor, faults may arise. If the machines
continue to be utilized during faulty operation, it may come at the detriment of the
efficiency. If the motor continues to work with faults, unexpected failure may arise.
Unforeseen events like these can have tremendous consequences. Depending on the
application, the consequences can range from costly maintenance or loss of life[41].

Efforts for the early detection of faults have been researched, and it is an ongo-
ing process. Methods include, but not limited to, online magnetic flux monitor-
ing[13], application of signal processing[37], stray magnetic flux monitoring[38], flux
Monitoring for Demagnetization Diagnosis[35], by means of the zero-Sequence volt-
age component[42], supervised machine learning for temperature estimation[22][32],
non-intrusive leakage flux-based methods[33], air gap flux-based detection and clas-
sification of damper bar and field winding faults[30] and so forth. This work develops
a fault detection method based on image processing and machine learning. The goal
is to be able to process plots generated by the signal processing of stray magnetic
flux data.

The work done in this thesis is a continuation of the work done in a specialization
project performed in fall 2021[21]. That project was oriented around synchronous
generators instead of synchronous motors. Due to the symmetry of the synchronous
machine operation, the same methods proposed in the previous work should, in
theory, also function for motor operation.

1.0.3 Experimental setup and the Finite Element Model
For this master thesis, data will be acquired experimentally and through simulation.
The experimental data will be gathered using magnetic flux sensors from a 100 Kva
synchronous machine. These sensors will register the stray magnetic flux generated
during machine operation. During the tests, the machine will be operating as a
motor. Henceforth in this thesis, the synchronous machine will be referred to as a
motor. The following sections present the specifications of the test motor and the
finite element model(FEM) that has been modified from previous work[13].

The experimental motor

The experimental data are acquired using an experimental synchronous machine
located in the laboratories at NTNU. The machine is modelled as a scaled-down
version of a standard hydropower generator to achieve results that apply to real-life
situations. Therefore, as with synchronous motors, it is a three-phase salient-pole
synchronous machine. A unique feature of the machine is that it is modifiable. This
allows for testing under different conditions that can resemble faulty operations in
synchronous motors. The desired rotor windings can be short-circuited to resemble
inter-turn short circuit faults. The stator frame can be moved and misaligned with
the rotor axis to resemble an eccentricity fault. Whole damper bars can be removed
to resemble broken damper bar faults, and so forth. Table 1.1 and 1.2 show design
and geometry specifications of the motor[13]. Three sensors around the stator core
will collect data on the stray flux during motor operation. The goal is to observe
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Figure 1.1: Nominal values of the test mo-
tor

Figure 1.2: Motor specifications

their corresponding waveforms in order to detect faults.

FE model

The FE model used in this thesis was created by a prior student[13] and used in
previous projects[38][13]. The purpose of those reports was to simulate faults in
hydropower generators. The FEM model has been slightly modified in this report
to simulate faults in synchronous motors. The building blocks are the same, but a
voltage is supplied to the three phases. The FE model is compatible with and used
in the ANSYS Maxwell2D 2021 release program. According to the ANSYS Maxwell
webpage, the program is "an EM field solver for electric machines, transformers,
wireless charging, permanent magnet latches, actuators and other electro-mechanical
devices. It solves static, frequency-domain and time-varying magnetic and electric
fields"[4]. Based on this description, the program can be an effective tool for solving
low-frequency magnetic field simulations. The complete FE model can be shown
in fig.1.3. The outer green circle represents the stator core. The stator core is
filled with 38 blue(phase A), 38 red(phase B) and 38 green(phase C) rectangles
that represent the three-phase stator windings. The blue circles surrounding the
stator frame represent the stray magnetic flux sensors. The large inner green circle
represents the rotor core. The reddish-brown rectangles in the rotor core represent
the field windings surrounding the rotor poles. The reddish-brown circles within the
rotor poles represent the damper bars.
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Figure 1.3: The complete FE model

1.0.4 Faults in sychronous motors
The following sections will summarise typical faults that may arise during the op-
eration of synchronous motors[41]. The faults presented will range from inter-turn
shortcircuit, air-gap eccentricity and broken damper bar faults. During faulty op-
eration, these faults produce specific symptoms that can be observed through the
investigation of the motor. Symptoms include a change in operating temperature,
the motor’s vibration, audible noise from the motor, increased losses, lower average
torque, unbalanced air-gap voltages and unbalanced line currents[41].
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Air-gap eccentricity

Air-gap eccentricity in a generator is a misalignment between the rotor and the stator.
There are numerous causes for air-gap eccentricity[41], such as improper mounting,
bearing wear, and bent rotor shaft. Once this misalignment occurs, the distance
between the rotor and the stator is no longer uniform. As such, these faults cause
changes in the stator currents[28][41].

Figure 1.4: Types of air-gaps a) Concentric b) Static eccentricity c) Dynamic eccen-
tricity, figure reproduced with permission[21]

Static eccentricity is characterized by its fixed minimal radial air gap, while in dy-
namic eccentricity, the minimal radial air gap follows with the turning of the rotor[28].
In some cases, there might be a combination of static and dynamic eccentricity,
called mixed eccentricity. The asymmetry that occurs during eccentricity faults in-
duces magnetic flux harmonics, which in turn induces harmonics in the current and
voltage of the machine[38].

Shorted turns in stator windings

A typically occurring fault in salient pole synchronous motors is related to stator
windings. In the case there are shorted turns, they may cause excessive stress to the
machinery by producing heat in the stator coil and cause an imbalance in the current.
The faults may occur due to insulation deterioration[40]. The deterioration occurs
due to thermal ageing and mechanical force caused by high-speed rotation. This
fault might not necessarily lead to machine failure, but prolonged operation with
faulty stator windings could, over time, aggravate into machine failure as increased
fault leads to increased bearing vibration and limit output. A fault might begin with
a single winding fault. Over time, this fault might increase in severity as degradation
and stress cause additional windings to fail. It is therefore beneficial to detect and
repair this fault early.

Broken damper bars

Broken damper bars typically arise as a consequence of the transient time of a syn-
chronous motor. During this time, the damper bars may be subjected to excessive
amounts of current. This significant excess is prevalent during start-stop cycles, load
changes and speed changes. If these changes of states occur frequently, it may cause
a fault in the damper bars[41].

12



1.0.5 Previous work
This project continues the work done by the three previous specialization
projects[13][37][38] conducted at a laboratory at NTNU. This laboratory contains
an experimental generator that can be modified to mimic faults that typically occur
in salient pole synchronous generators. In the report by Groth[13], an investigation
of fault detection by on-line magnetic flux monitoring was performed. That analysis
was done on the experimental laboratory generator and a finite element model sim-
ulation. That included faults for inter-turn short circuits and static eccentricity for
both no-load and full-load operations. In the report by Skreien[37] and Sørheim[38],
signal processing for fault detection in synchronous generators was examined. That
included signal processing methods such as fast Fourier transform, Hilbert Huang
transform, discrete wavelet transforms, continuous wavelet transform and short-time
Fourier transform.

1.0.6 Limitations
Due to time constraints and knowledge limitations, no data was gathered on broken
damper bar and eccentricity faults. Furthermore, simluated data on full-load motor
operation could not be produced. Therefore, this thesis will focus primarily on
analysing inter-turn shortcircuit faults with increasing severity
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2. Signal processing

2.0.1 Continous wavelet transform
Wavelet analysis deals with the analysis of signals within short-duration finite en-
ergy functions. In other words, shorter waveforms at higher frequencies[26]. These
waveforms are obtained by scaling the mother wavelet(also known as the reference
wavelet). Wavelets are oscillating signals with zero average and energy, and these
construct what is known as a wavelet dictionary. The relative transient wavelength
used varies depending on the frequency component under study. This is achieved by
shifting the scale and time of the mother wavelet, thus creating a cross-correlation
between a signal and a family of wavelets. A large transformation value is obtained
if the wavelet fits well with the signal at a specific scale and position. However,
if the wavelet and signal do not match well, a low value for the transformation is
obtained[19].

The notation for the continuous wavelet transfrom for a continuous signal is given in
eq.2.1. Here a denotes the scale of the wavelet Ψ∗

a,b , while b is the temporal centre,
while X(t) is the signal that shall be analysed.

X(a, b) =
∫ ∞

−∞
x(t)Ψ∗

a,b dt (2.1)

The equation for the mother wavelet is as follows:

Ψa,b(t) = 1√
a

Ψ(t− b

a
) (2.2)

By plotting the wavelet transformations, it is possible to generate pictures based
on the correlation between the wavelets at various scales and locations within the
signal. In image processing, wavelet local maxima indicate the placement of edges,
which are sharp and sudden changes in image intensity. The plots generate a scale-
space approach for the continuous signal from which exact image approximations
are reconstructed. At different scales, the geometry of these local maxima gives
the contours of image structures of various sizes. This image processing trait is
particularly effective for pattern recognition in the field of computer vision[26].

We have various wavelets used for signal processing. The selection of a specific
wavelet depends on the application used[2][26]. We manipulate the wavelets in two
ways: The first is scaling, and the second one is translation. For high frequen-
cies, shorter wavelets are employed to improve time localization at the expense of
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frequency localization. For low frequencies, longer wavelets are used to improve fre-
quency localization at the expense of time localization. This scheme allows us to
achieve a variable time-frequency localization. A wavelet dictionary can then be
constructed by varying the scales and translations of the mother wavelet[26]. The
translations are chosen to meet the "admissibility" condition, meaning it is zero av-
erage and compact and approximate the type of signal contained by the time series.
The transformation is calculated for various signal locations and wavelet scales, thus
filling up the transformation plane. If the process is done smoothly and continuously
(i.e., if scale and position are varied very smoothly), then the transform is called con-
tinuous wavelet transform[19]. If the scales and positions are changed discretely, the
transform is called discrete wavelet transform. On the other hand, Fourier transform
is a spectrum of one-dimensional array values. At the same time, wavelet transform
is a spectrum of two-dimensional array values.

For those interested in the mathematical approach of the continuous wavelet trans-
form, the proof and the resolution of its identity can be found in the "Ten Lectures
on Wavelets"[2].
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3. Image processing

Disclaimer

This chapter will present a brief and concise introduction to image processing. It will
present how a computer interprets images, what a filter is and how to apply them
to an image matrix, morphological filters, thresholding methods and how to find
regions within an image. Most of this theory was researched during the specialization
report in fall 2021[21]. Some formulations have been edited, some figures have been
updated, and irrelevant material has been removed. Due to the implementation of
machine learning, a particular focus on shape descriptors has been given. None of
the information presented in this section is presented as new information. This is all
based on a previous interpretation of the image processing theory that was done in
fall 2021[21]. The theory was acquired through textbooks such as [27][29] and [31].

3.1 Introduction
Most people have acess to a device that allows for digital image capture and the
ability to manipulate the images. This development has propelled the field of image
processing significantly and it continues to do so. In the early days, only a handful of
specialists with expensive equipment could feasibly process images. The specialists
would usually be stationed at laboratories, earning image processing an exclusive
position amongst the academics. For comparison, an image acquired on a common
camera today would be too big for the most powerful personal computers back in the
early 1990s. At that time, image processing techniques were invented and reinvented
as there was no unified guidance for the field. Azrial Rosenfeld wrote the first
textbook on image processing in 1969[23], and it acted as a collection of known
methods in order to solidify the image processing theory. As an advancing field,
image processing achieved great success when it helped map the surface of the moon.
This mapping would later be used during the Apollo 13 mission[31]. With victories
like these, great interest gathered and researchers wanted to tame the potential of
image processing.

Today, image processing is considered one of the core disciplines in computer sci-
ence and engineering. It is critical in research and is, therefore, a rapidly growing
technology. Today, image processing is a technique or method for operating on an
image. These operations are applied to extract useful information from characteris-
tics or features. Because of this, image processing is widely used in medicine, remote
sensing, media, entertainment and geological applications[7].
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Programming with digital images

Programming is no longer locked behind specialists through great strides and tech-
nological advancement. Almost everyone has the opportunity to manipulate images,
be it by employing filters, algorithms or extracting features. It can be intriguing to
develop programs that can progress through an image and discover structures hidden
from the human eye. Uncover features that aid in the early detection of symptoms,
faults and environmental change can prove bountiful. To the trained eye, an image is
nothing more than a matrix of values[6]. With the proper knowledge and expertise,
it is possible to manipulate these matrixes to fit any demand

Image analysis in computer vision

The first challenge with image processing is that the computer does not intuitively
know what is essential in an image and what is not. This challenge can seem trivial
to the human eye, but the matrix the computer is comprised of an array of numbers.
How can a computer tell the difference between a cat and a dog? A frown from
a smile? Careful manipulation of the image will aid the computer in realizing the
foreground and the background, which structures are essential and which structures
are considered noise, and how to segment the structures in the image in a helpful
way.

3.2 Image matrix
As stated before, an image is nothing more than a matrix to the computer. The
size of a matrix is determined by its width M and height N . The width represents
the number of columns in the matrix, while the height represents the number of
rows. The resolution of an image is the direct result of how many array elements are
present per measurement. Different applications have different resolution require-
ments. While print production might require a resolution of "dots per inch", satellite
imaging might need "pixels per kilometre". However, in most cases, the elements of
the image are square. This is because the resolution is the same horizontally and
vertically[16].
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Figure 3.1: Gray values matrix, shows the transformation from continous grayscale
image F(x, y) to a discrete image I(u, v) with corresponding gray level intensity
values

3.2.1 Bits and gray levels
The individual elements of an image matrix are referred to as pixels. Pixels represent
intensity values within an image. The higher the pixel value, the greater the intensity.
Within an image, a pixel can have a value of 2k where k is the "bit depth". A binary
image has a bit depth of 1 with the range [0, 1] where the images are either black
or white. Grayscale images have a bit depth of 8 with the range [0, 255], where
0 is black, and 255 is white. RGB colour images typically have a bit depth of 24,
comprising of three layers; red, green and blue. Each layer in RGB images has a bit
depth of 8[31]. Various image types can be seen listed in fig.3.2

18



Figure 3.2: Common image types, shows image types based on amount of channels
and bit depth, as well as common uses. Table has been reproduced with permis-
sion[21]

3.2.2 Grayscale images
Grayscale images are typically referred to as intensity images[27]. This type of image
mainly focuses on highlighting an image’s brightness or density. It is composed
exclusively of different shades of grey. An advantage of grayscale images over RGB
images is that less information is needed to produce the image. This, in turn, means
that it requires less computing power to process in later stages. In order to convert
an RGB image to grayscale, the following equation is applied to the pixels in the
matrix:

Y = 0.2125R + 0.7154G + 0.0721B (3.1)

Here, Y is the new grey pixel intensity value calculated by the R red pixel intensity
value, the G green intensity value and the B blue pixel intensity value at that point
in the image. This formula is used because the human eye perceives red, green and
blue differently in terms of brightness[1].

Binary images

Binary images are generally classified as images with a bit depth of 1 with the value
0 or 1. This gives them the attribute that they are black or white. A grayscale image
can be converted to binary with a thresholding operation by setting a threshold for
the pixel intensity; see sec.3.4 for more on thresholding. Binary images are instru-
mental in cases requiring a distinct pixel value representation. This can be roads on
a map, written documents, electronic printing and barcodes on the packaging.

19



Color images

To further elaborate on what was stated in sec.3.2.1, colour images are an additive
colour system. These images start at black, with the RGB values set at 0. Colour
gradually appears as more and more primary colour is added. Each colour channel
in an RGB image has [0, 255] values. Mixing and combining different values for each
colour channel creates the different colors[39].

3.3 Image statistics
A way to gauge the state of an image is through image statistics. It is possible
to see if an image is underexposed, overexposed, its dynamic range, and even if
image processing techniques have been applied to it. Analyzing the picture before
applying image processing techniques is vital through methods such as histograms.
The histogram can quickly tell if an image permanently loses information due to
poor lighting and exposure. Any loss of information will skew the rest of the image
processing process and prevent proper structural segmentation from occurring. The
histogram can function as a "forensic tool" to aid in seeing if an image has too
many errors, gaps and spikes. If this happens to be the case, it is recommended to
reconsider the image acquisition method[29].

3.3.1 Histogram definition
Histograms are considered in image processing as the frequency distributions of in-
tensity values that occur in the image[29]. The main function of a histogram is to
provide clear statistical information in a condensed form. A grayscale image with its
corresponding pixel intensity histogram is shown in fig.3.3

Figure 3.3: Histogram of a grayscale image, various peaks show in a condensed format
the amount of pixels that share the same pixel intensity value

The following sections contain theory that is explicitly tailored towards grayscale
images. The reasoning is that in image processing, many methods rely on converting
images to grayscale before applying image processing techniques. So to generalize

20



the theory as much as possible, grayscale images will be the type of images that will
be considered.

For a grayscale image, the histogram contains K entries, where K = 28 = 256 in the
case of an 8-bit depth image. This means that the image I will have pixel intensity
values in the range I(u, v) ∈ [0, K1]. Since the histogram is an intensity plot, the
entries can be defined as h(i) with h(i) being the number of pixels with a certain
intensity value i for all 0 ≤ i < K. This can be reiterated more formally as:

h(i) = card(u, v)|I(u, v) = i, 0 ≤ i < K (3.2)

All the values at h(0) have a value of 0, corresponding to black pixel intensities.
As you increase h(i), the entries will increase in pixel intensity values and appear
brighter and brighter. This continues until h(255) where all the pixel intensity values
are 255, corresponding to white. The result of eq.6.1 is a 1-dimensional vector h with
a length K

One significant drawback of histograms is the loss of the spatial dimension. A his-
togram cannot tell where a specific pixel is located in an image. Attempting to
reconstruct an image based on its histogram is futile[29]. A comparison has been
made in fig.3.4. If you were to compare the histogram of the different images, they
would appear nearly identical.

Figure 3.4: Three different images that have similar, if not identical, histograms.
Reproduced with permission from[21]

An example of histogram analysis is provided in fig.3.5 where it is seen how contrast
affects the original image. Higher contrast corresponds to a broader range of pixel
intensity values. Lower contrast corresponds to pixels that share similar pixel inten-
sity values to a greater extent. This can be seen in the figure as the high contrast
image has the values evenly spread across the various possible i values. The low
contrast histogram gathers the i values more densely and is displayed as significant
peaks.
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Figure 3.5: The histogram of the image, image on the left is unprocessed, image in
the middle has reduced contrast, image on the right has increased contrast

3.4 Points operations
Point operation creates an empty image and uses the values of the original image
as inputs. The operator will go through the matrix elements individually, perform
operations, and gather the new values onto the empty image. It moves through the
image from left to right, top to bottom. This will eventually form a different version
of the old image, but with a change based on the point operator. Point operators
get their name because they only require a single element as input. They do not
rely on neighbouring pixels in any way. This attribute means that the structures,
geometry or size of the image remains untouched[29]. The fig.3.5 shows the result of
a point operation. The low contrast image was processed by a point operation where
all the pixel elements were scaled down. The high contrast image was processed by
a point operation where all the pixel elements were scaled up. Mathematically, a
point operation can be presented as follows:

g(u, v) = T (f(u, v)) (3.3)

Where g(u, v) is the output image, T is the operator of intensity transformation and
f(u, v) is the input image. These operations typically come in two forms. Homoge-
nous or nonhomogenous. Homogenous point operations are independent of image
coordinates. This allows for operations such as gamma correction, colour transfor-
mations, inverting images and applying arbitrary intensity transformations. On the
other hand, nonhomogenous point operations rely on the current image coordinate
(u, v). This is useful for fixing uneven lighting during image acquisition[29]
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Clamping to limit intensity values

When performing point operations, increasing the intensity values above or below the
permissible values is theoretically possible. An 8-bit grayscale image can only contain
the intensity values [0, 255]. Therefore it is necessary to contain any exceeding values
within the permissible range. This can be done by setting an upper and lower limit.
Any value exceeding the upper limit will be set to 255, while any value exceeding
the lower limit will be set to 0.

This can be seen in the high contrast grayscale histogram in fig.3.5. The point
operation for increasing contrast ran the risk of exceeding boundaries, so the program
used for this operation set all the exceeding values to either 0 or 255. Therefore, we
see almost 70,000 pixel elements with 0 intensity.

Threshold operations

Thresholding is a type of point operation that aims at "binarizing" an image. It can
result in any two values, not just black and white. The concept of thresholding is
to place an arbitrary boundary value. This could be any value between [0, 255].
Any intensity value higher than or equal to the thresholding value gets set to one
value. Any intensity lower than the thresholding value gets set to another value.
The end result is an image with only two intensity values, see fig.3.6. This method is
excellent for separating the foreground from the background. Careful application of
thresholding techniques can find the optimal thresholding value to preserve as much
of the foreground structure as possible. Such techniques will be revisited later in
sec.3.7

Point operations and histograms

Different point operations have different effects on the resulting histogram. As seen
in fig.3.5, varying the contrast flattens and raises the intensity values. Inverting an
image would flip the histogram. Raising the brightness by a constant value will shift
all the intensity values to the right. An example of how binarizing an image through
thresholding is shown in fig.3.6.
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Figure 3.6: Shows the image before the thresholding, where the optimal threshold was
found, with the image and its corresponding histogram after the threshold operation

In practicality, the binarization point operation acts as shown in fig.3.7.

Figure 3.7: The histogram before and after binarization, reproduced with permission
from[21]

A downside to point operations is their irreversibility. Some point operations lead
to the merging of i values. This merging is irreversible as it is nearly impossible to
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predict which matrix elements used to belong to which i value. The point opera-
tions have then reduced the image’s dynamic range and caused permanent loss of
information[29].

3.5 Filters
Filter operations are a step further than point operations. The same logic applies
to creating new pixel intensity values based on the old intensity values. This time,
new pixel intensity values are created based on their neighbouring pixels instead of
focusing on individual pixels simultaneously. Operations like these move around the
image as a "stamp" that produces new pixel intensity values based on the weights on
the stamp. These operations do not remove or destroy the geometry of the image,
but they can sharpen edges, blur the images and much more[29]

A case of filter operation is to smooth images. Structures and geometry within an
image are created by what is perceived as edges and lines. Edges and lines signify
when the pixel intensity value rapidly shifts from one pixel to another. However, if
the pixel intensity values have a smooth transition, the edges and lines appear to
fade. This effect will make the image appear blurred. A simple implementation of
smoothing filters is to make the "stamp" take the average of the neighbouring pixels
and then create the new pixel intensity value.

In most cases of the image, a pixel will have eight neighbouring pixels. A typical
filter can have a stamp with a size of 3x3. Therefore nine pixels in total are included
in the calculations. A smoothing filter could theoretically look like the following[29]:

I ′(u, v)← 1
9 ·

1∑
j=−1

1∑
i=−1

I(u + i, v + j) (3.4)

Although the previous example used a stamp of size 3x3, filter stamps can have a
wide range of sizes and shapes. It can be 4x4, 5x5, 6x6, even NxN. It could be
circular, unevenly weighted, and the central pixel does not have to be a part of the
new pixel intensity values calculations.

This variety in shape, size and weights allows for tremendous amounts of freedom
when determining a filter. For the sake of clarity, it is vital to classify filters into
categories. The broadest classifications are linear and nonlinear filters. Linear filters
calculate the source pixel with a linear method. Nonlinear filters calculate the source
pixel with a nonlinear method[29].

3.5.1 Linear filters
It is called a linear filter when computing a source pixel intensity based on the
neighbouring intensities in a weighted summation. Linear filters can also be the
product of linear convolutions. The weights can be adjusted to meet a plethora
of demands. The smoothing filter in eq.3.4 is such a linear filter, where all the
neighbouring pixels have equal weights[31].
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Filter kernel

What has been referred to so far as a filter "stamp" is, in theory, a filter kernel. The
kernel is an instruction manual on calculating a new value for the source pixel(marked
with parenthesis in eq.3.7) using weights. "The filter kernel can be defined as the filter
matrix H(i, j) where the size is equal to the filter region and the elements contained
in that region specify the weights for the corresponding pixel intensity values on the
computation"[31][21]. The smoothing filter in eq.3.4 can be represented by the filter
kernel:

H = 1
9 ·

1 1 1
1 (1) 1
1 1 1

 (3.5)

The averaging factor here is nine as the filter kernel itself is 3x3. An example of the
averaging filter can be seen in the A.1. The source pixel is the central one in the
kernel, but this does not have to be the case for other filters. In order to apply the
filter for a typical 3x3 filter kernel, we can combine Eq.3.4 and Eq.3.7 into a new
equation[29]:

I ′(u, v)← 1
9 ·

1∑
j=−1

1∑
i=−1

I(u + i, v + j) ·H(i, j) (3.6)

Gaussian filter

A gaussian filter is considered a low pass filter than can smooth an image and reduce
noise. This functionality is due to its odd sized symmetric kernel as seen here:

H = 1
16 ·

1 2 1
2 (4) 2
1 2 1

 (3.7)

This type of kernel will have a smoothing effect on the image because the elements
further away from the kernel centre have less weight. Therefore, it goes easy on
drastic brightness changes, indicating edges. The Gaussian filter approximates the
Gaussian function and contains the characteristic "bell-shaped" function[29]. An
example of the Gaussian filter can be seen in the A.2.

3.5.2 Non-linear filters
Nonlinear filters are any filter that is not considered a linear filter. The procedure for
applying the filter remains the same as with the linear filters. The filter kernel will
move through the image and calculate new pixel intensity values based on the desired
kernel. The result will be a new, filtered version of the original image. The most
straightforward application for the nonlinear filters is the maximum and minimum
filters[31]. The equations for the maximum and minimum filters are as follows[29]
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I ′(u, v) = min
(i,j)∈R

(I(u + i, v + j)) (3.8)

I ′(u, v) = max
(i,j)∈R

(I(u + i, v + j)) (3.9)

Where I ′(u, v) is the filtered image, I(u, v) is the old image, and R is the filter
region. The maximum and minimum filters can be seen in A.3 and A.4. In order to
accentuate the effects of the maximum and minimum filter, the noise was applied to
the grayscale image. This noise is also referred to as "salt and pepper", a technique
for adding noise to an image. Salt and pepper add random white and black dots
across the image. When using the maximum filter, all the bright spots in the image
get expressed to a greater degree. Hence all the white dots from the salt and pepper
technique will appear brighter and dominate the image more. Reversibly, when using
the minimum filter, all the black dots get expressed to a greater degree. Therefore
the image will appear overall darker[31].

Median filter

Filtering away all the noise of an image is a near-impossible task. Some techniques
allow for good approximations, but the noise removal operation cannot tell what is
noise and what is structures within an image. One powerful noise removal technique
is the median filter. This filter calculates the median by first sorting all the pixel
intensity values in ascending order and then proceeds to replace the source pixel with
the median pixel intensity value. The median filter is particularly useful against salt
and pepper noise[31], as seen in fig.3.8
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Figure 3.8: Median filtering and noise removal

3.5.3 Edges and contours
Edges and contours are what create the structures within images. Therefore, in image
processing, it is important to properly apply edge detection methods to express the
desired image structures clearly. For an edge detection operation, edges and contours
are characterised by sudden and rapid shifts in pixel intensity values. When such
a rapid change occurs, an edge has likely been located. The greater the shift, the
greater the probability of an edge. The pixel intensity values can be considered the
rate of change in intensities and are therefore susceptible to mathematical operations
such as derivation. Edge detection operators such as Sobel, Prewitt, Canny and
Laplace consider the derivation of pixel intensity values[29]. Examples of the four
edge operators can be seen in A.[5 - 8]

3.5.4 Grayscale morphology
Grayscale morphology falls under the category of morphological transformations.
These types of transformations aim at accentuating image structures by manipulat-
ing the structures within an image. This is typically done with binary images, but
it is feasible to perform morphological operations on grayscale and colour images.
Examples of morphological operations are erosion, dilation, opening and closing.
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Erosion makes detected structures smaller by slightly reducing their edges. Dila-
tion makes detected structures more significant by slightly increasing their edges.
Opening is a combination of erosion and dilation where the resulting image will have
structures appear more individualistic. Closing is also a combination of dilation and
erosion where the resulting image will have more unified structures. In order to apply
morphological filters on grayscale images, the min and max operators are used, and
the kernel is a set of 2D functions instead of numerical weights. In order to apply
morphological filters on colour images, the same operation as with grayscale images
is performed on all the colour channels before being layered on top of each other
again[31].

3.6 Regions in binary images

3.6.1 Finding connected regions
By finding connected regions in an image, it is possible to discern structures. The
structures are typically used for investigating properties by analyzing them for var-
ious properties such as shapes and sizes. In order to do an analysis of an image, it
is vital to properly find the connected regions. This can be achieved with methods
such as iterative flood-filling, sequential region labeling method and recursive flood
filling. These methods are chosen based on their complexity, computational costs
and results. They differ greatly in terms of theory, but when it comes to practical
application, they produce similar results.

When locating connected regions, it is important to decide what is considered a pixel
neighbroughood. In most cases, a pixel neighbourhood is either 4-pixel connected or
8-pixel connected, see fig.3.9

Figure 3.9: 4-pixel connected region to the left, 8-pixel connected region to the right

Based on the pixel neighourhood, different results are provided. Is is therefore vital
to choose the pixel neighbourhood that provides the most appropriate results for a
given demand[27].

29



3.6.2 Combining labeling and contour finding
Even region detection programs are prone to faults. The algorithm might run into
some issues if the image region is of extreme enough complexity. It might correctly
detect a region edge, but due to the region’s complexity, it might also detect regions
within the structure. This might even progress recursively so that the algorithm keeps
detecting regions within subregions. This is where labelling becomes a powerful tool.
With labelling, it is possible to assign markers that tell the algorithm as it moves
through the image where it has been before, what it found, and where it should
progress next. A combination of labelling and contour finding can be described as
follows[31]: A region finding algorithm progresses throughout an image from the top
left to the bottom right. As it progresses, it assigns one of three labels depending
on three different scenarios. If there is an abrupt transition from a background pixel
to an unmarked foreground pixel, it will be marked as an edge. The neighbouring
background pixel will then be marked with a -1. If there is an abrupt transition from
a marked foreground pixel to an unmarked background pixel, it will be marked as an
inner contour. Once again, the neighbouring background pixel will be marked with
a -1. Lastly, if there is a transition from a marked foreground pixel to an unmarked
foreground pixel, it will be marked as a foreground pixel. The algorithm recognizes
that the new unmarked pixel is a foreground pixel as there is no abrupt shift in pixel
intensity values. The value of the marked foreground pixel will then be propagated
forward. This process will continue until all the pixel elements have been marked.
The resulting image will contain labels that indicate which pixels are structures and
which pixels are background.

3.6.3 Shape features
A shape feature is a qualitative measure that can be extracted from a detected region.
These measures form the basis of region features and are pivotal in the field of pattern
recognition and feature extraction[27]. As the name suggests, shape features are the
analytical extraction of the geometrical shapes of regions. Here is a list of shape
features that are useful for feature extraction[43]

Area: Number of pixels in a detected region

Bounding box area: Number of pixels in the bounding box surrounding a detected
region

Filled area: Area of a detected region with all subregions filled in

Convex area: The area of the smallest convex polygon enclosed by the detected
region

Perimeter: Approximates the contour of a detected region as a line through the
border pixels using 4-connectivity

Crofton perimeter: Calculates the perimeter approximation using the Crofton for-
mula

Maximum Feret’s diameter: The longest distance between points around a detected
region’s convex hull contour
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Extent: The ratio between the detected pixels within a region and its corresponding
bounding box

Statistical properties

Furthermore, it is also possible to gather statistical properties of the detected regions.
Here is a list of beneficial statistical properties for feature extraction[43]

Moments: A statistically weighted average of the pixel intensities in the detected
regions

Normalized moments: A moments calculation with consideration of the standard
deviation

Weighted moments: Moments defined by the cumulative distribution function

Central moments: Translation invariant moments

Hu moments: Moments that are invariant to translation, scale and rotation

Centroids: Average coordinate of a region

Local centroids: Average coordinate of a region with relation to that regions bounding
box

Weighted centroids: Average coordinate of a region in relation to that region’s in-
tensity image

Eccentricity: The ratio of the focal distance over the major axis length of a detected
region

Euler number: The number of connected components subtracted by the number of
holes in a detected region

Inertia tensor: An ellipse of a detected region that signifies the rotation around its
mass

Inertia tensor eigenvalues: The eigenvalues of the inertia tensor

Minimum intensity: The minimum pixel intensity value of a detected region

Maximum intensity: The maximum pixel intensity value of a detected region

Average intensity: The average pixel intensity value of a detected region

Orientation: The angle between the rows and the major axis of the inertia tensor

Solidity: Ratio of the pixels in the detected regions to the region’s convex hull image

3.7 Automatic thresholding
As explained in sec.3.4, the goal of thresholding is to separate the pixel elements
into the foreground or background. Previously, this was done manually by setting a
thresholding value. However, it is also possible to perform an unsupervised automatic
thresholding operation. This is excellent for cases where multiple images must be
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processed to save time. Furthermore, it can also provide local thresholding values.
Local thresholding values can, in most cases, extract even more helpful structural
information from an image[27].

3.7.1 Otsu’s method
Otsu’s method is an automatic thresholding method that was created early in the field
of image processing. It might be old, but it is pretty effective, even competing with
newer and computationally heavier methods. Otsu’s method finds the threshold value
that maximizes the separation of the image histogram. The intra-variance of the
resulting distributions will be at its minimum, while the centres of the distributions
will be as distant from each other as possible[27].

3.7.2 Local adaptive threshold
In the case where the image has a low variability in the background and high vari-
ability of the foreground pixel intensities, a local adaptive threshold is a suitable
thresholding method. This method calculates new thresholding values for every im-
age position the operator moves through. The new threshold value is calculated
through statistical properties of neighbouring pixels using a kernel, similar to filter
kernels. This ensures that the operator correctly detects potential edges and con-
tours, making the rest of the image processing process more accurate. Considering
the thresholding step is performed so early in the process, choosing the local adaptive
threshold can bring forth structures of an image that other thresholding techniques
would otherwise lose. This is particularly true for images containing uneven expo-
sures[18].
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4. Machine learning

This section will provide a brief introduction to some of the central topics in machine
learning. The topics will continue until they reach CatBoost, which is the algorithm
used in this work to determine the outcome of the fault severities

4.1 Machine learning
A successful and effective machine learning algorithm typically consists of three key
steps. The steps are data, feature and model, as shown in fig.4.1. It is impera-
tive for an algorithm that sufficient amounts of training data are collected and, if
necessary, labelled. Data is the information an algorithm will base its model and es-
timations on. Labelled data is provided with some tag, name or number to classify.
An example of labelled data in machine learning can be found in object detection
as boxes around objects with tags such as "car", "cyclist", and "pedestrian". Unla-
belled data is data without any tags, names or numbers to classify them, leaving the
classification to the algorithm. The concepts of labelled and unlabelled data will be
further discussed later in the supervised and unsupervised learning sections. Having
tremendous amounts of data is the most powerful way to boost the algorithm’s per-
formance. Furthermore, having data collected in the same domain as the machine
learning tool will be deployed is a sure-fire way to ensure that the algorithm is trained
and applicable to the user’s needs. Therefore the quantity and quality of the data
are essential[20].

Figure 4.1: Typical machine learning pipeline

The second stage is the feature extraction stage. Here, domain-specific procedures
must be used to extract relevant features from the raw data. What constitutes a
feature is not always known, but it is up to the machine learning algorithm to sort
it out. A feature can be considered a measurable characteristic of a trait in the
data. The features should be compact while still containing critical data from the
raw dataset. Creating a machine learning algorithm adapted to the dataset and
the domain from which the dataset was gathered will ensure that the algorithm can
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identify the essential features. The issue is that domains vary widely in nature, and
the algorithms will vary widely in design. The needs of a speech recognition problem
require different methods than that of finding structures within images.

The final stage consists of choosing the proper learning algorithm to construct models
from the extracted features of the training data. These models can range from
classification, regression, supervised and unsupervised learning[20].

4.1.1 Classification versus regression models
Classification and regression models are two major categories in machine learning.
They both have their uses, depending on the system outputs. Regression models
can solve continuous outputs, while classification models can solve discrete outputs.
This is because discrete outputs can only have a predefined output value, hence
classification. Continuous outputs can have any real value within a given set of
limits[20].

Classification models

Classification models predict a class-type outcome. Class type outcomes come in
many different shapes and forms. An example could be vegetables, such as carrots
and broccoli. Here carrots would be one class type, while broccoli is another distinct
class type. A classification algorithm would look for attributes that define what
broccoli is and what a carrot is. This could be its colour, its shape and its dimensions.
Collecting data on various attributes could predict the likelihood of the outcome
being a carrot or broccoli. A classification model can learn that broccoli is more
likely green with stems spreading out of a stalk, while carrots are more likely orange
and have a long cylindrical shape. It will, over time, learn that these attributes are
more likely to belong to one category than another and will thus attach more data
points belonging to that category, forming a classification[20].

Regression models

Regression is a method for predicting continuous outcomes from data, also known
as predictive modelling. It learns and understands the relationship between features
and an outcome. Once the algorithm estimates the relationship between dependent
and independent variables, an outcome can be predicted. The input and output
data are typically in the form of labelled training data. This training data must
represent the domain in which the model will be applied. If done well, the model
can predict outcomes from unseen input data. Otherwise, it will lead to inaccurate
predictions. This is because the regressive model will attempt to learn from the
nonrepresentative data and overfit logic that does not represent new data. Examples
of usages for regression models are predicting house prices, the future success of retail
sales, predicting customer trends, predicting stock prices, and predicting the success
of marketing campaigns[20].

34



Supervised learning

Both classification and regression models fall under the category of supervised learn-
ing. This means that the training data has been labelled for a specific output. The
models are subsequently trained until they can learn the underlying patterns that
connect the input data and the premade output labels. The goal is for such an algo-
rithm to yield accurate labels when used on new and unseen data. In other words,
to make sense of new and unseen data within the domain in which the algorithm has
been deployed.

A typical supervised learning algorithm will be deployed in the following way. It
is introduced to a labelled training set. The algorithm uses this set to learn the
relationship between the data set and the corresponding labels that are assigned to
the data. Once the algorithm has formed some estimations, it is presented to a test
dataset. This data set is also labelled, but the algorithm does not reveal the labels.
This is because the testing dataset should act like new and previously unseen data.
As a result, the test dataset allows the algorithm to measure how well it performs
on unlabeled data.

How well an algorithm performs is dependent on what algorithm is used and the
quality/quantity of the available training data. There needs to be enough data so
that the algorithm can develop robust estimations, but it needs to be crafted well
enough, so it does not skew the algorithm in favour of specific outputs[20].

Unsupervised learning

While supervised draws benefit from labelled data, unsupervised learning aims at
bridging the gap between machine learning and human learning. Just as we do not
know what something is before we have learned about it, the unsupervised method
uses unlabeled data. This grants the unsupervised algorithm the freedom to act on
the data without any outside influence. Similarily to supervised learning, unsuper-
vised learning aims to find connections and structures within the dataset. It will
attempt to gather the data according to the similarities and then attempt to provide
apt representations of the data. This can be done with either clustering or associa-
tion. The main reasons to use unsupervised learning versus supervised learning are
to more closely mimic human learning and to have a model more adapted to the real
world, as it is not always possible to have labelled data

4.1.2 Gradient boosting
Gradient boosting is a particular case in machine learning in which the deployment
of many weak learners can iteratively create a robust model. The concept of boosting
is that weak learners could be trained to become better. A good model could result
from the emergence of many lesser models. The predictive function is built slowly
and constantly checked to see if it is strong enough. This is where the gradient in
gradient boosting comes in. The algorithm will gradually minimize the loss function
by iteratively choosing the model that points towards the negative gradient. In
practicality, it works like this: The algorithm starts with a series of weak learners
who are barely better than random chance. These learners will attempt to create a
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predictive model based on their testing and hypotheses. For each iteration, the new
hypothesis will be tested based on the classifications and misclassifications of the
previous iteration. Over time, this will create a single robust model with a proper
predictive function[20].

4.1.3 Decision trees
Decision trees are considered one of the more popular supervised learning algorithms.
It is particularly used in classification problems, but it also works with regression
problems. It is structured much like a tree with a stem that spreads out in branches,
hence the name decision trees. Each branch junction, or node, represents a feature
of the dataset. The branches that spring out of the node are the rules set by the
decision tree algorithm. The end nodes, or leaves, represent the various outcomes.

Figure 4.2: Illustration showing the branch like structure of the decision tree algo-
rithm

The decisions are a direct result of the features in the dataset. These decision trees
can keep expanding into a full tree-like structure depending on the complexity of the
issue

4.1.4 Gradient boosting decision trees
As stated before, gradient boosting deploys many weak learners to create one strong
learner. In the case of gradient boosting decision trees, the weak learners are individ-
ual decision trees. The decision trees are connected in a series where each tree aims
at minimizing the previous tree’s error. This is done by taking in the residuals of the
previous step into the new decision trees. Once the final model has been achieved,
the result of each step is aggregated, and a strong learner is created. It is a highly
accurate algorithm, if not relatively slow due to its sequential nature.

36



4.1.5 CatBoost
The chosen algorithm for this work is the CatBoost algorithm. It uses gradient
boosting on decision trees as its method. It is an open-source machine learning
library which provides excellent results, especially for categorical data. It is relatively
straightforward to implement as it only requires some dataset preprocessing. It has
well-developed diagnostic tools, so it is possible to investigate which features affect
the prediction function the most. It is also compatible with other libraries such
as Keras and TensorFlow, which allows for a multitude of different approaches to
solving a machine learning problem[5].
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5. Literary review

This literary review will go along with the exploration and previous attempts at
using machine learning to perform online fault detection of synchronous motors,
methods for improving synchronous motors efficiency and fault detection methods of
synchronous motors in general. Furthermore, an investigation into image processing
techniques suitable for fault detection in synchronous motors was conducted. The
literature will be presented chronologically to create a coherent red thread on how
this field has gradually developed over time. Most, if not all, of the papers, are found
and gathered from the Institute of Electrical and Electronics Engineers(IEEE). More
specifically, it is the IEEE Xplore digital library.

5.1 Synchronous motors and efficiency optimiza-
tion review

This literary review begins in 2005 with J. Habibi and S. Vaez-Zadeh’s paper on op-
timizing the efficiency of a permanent magnet synchronous motor using direct torque
control[14]. The study is motivated by increasing the PMSM’s efficiency due to the
widespread usage of these types of motors and the pressing matters of climate change.
An offline optimization is first proposed using the optimum stator flux linkage values.
These values are then stored in a table. Once this table is filled, you can use online
calculations to acquire the desired rotation speed. Thus, a solution for optimum
stator flux has been calculated for salient pole machines. This method would then
be confirmed with simulation results. Another paper[46] proposed in 2008 a novel
approach to control the direct torque system of a permanent magnet synchronous
motor. This control system would directly control the magnetization factor of the
stator current. Results indicated that the static and dynamic performances had im-
proved, as well as a reduction in the torque ripple. The study[44] proposed in 2016
an efficiency optimization of the direct torque control with particular consideration
of the iron losses. A mathematical approach is performed of the rotor frame with
iron losses, which leads to a formula for power loss minimalization considering the re-
lationship between output torque, speed, power losses and stator flux. This method
preserved the fast direct torque control dynamic, as well as improved the operating
efficiency of the driving system

The study by Yifa Sheng, Shou-Yi Yu and Wen-Zhen Zhou in 2010[34] aimed at com-
bining torque compensation with intelligent integrated controls. This was achieved
by a combination of fuzzy logic and the golden search method in order to acceler-
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ate the search process for the torque correction control. This was done in order to
resolve the torque pulsation problem. In the paper, fuzzy logic and the golden sec-
tion method are presented as methods of adaptively making the step size smaller to
shorten the convergence time efficiently. They are both presented with advantages
and disadvantages. The fuzzy method can adaptively make the step size smaller
but runs the risk of increasing torque oscillations at the optimal efficiency point.
The golden section method has a significantly faster convergence speed but may
cause torque ripples at the beginning of the search. Therefore, combining these two
methods might compensate for each other’s weaknesses. The advancement of adding
intelligent integrated control with the previously presented work proved to improve
energy consumption, system efficiency, reduction in torque pulsations and overall
robustness is improved.

An approach with outstanding results within online efficiency optimization in 2014
was the non-model-based optimization method[48]. It is an extremum-seeking control
method that aims at optimizing the control values to make the system as efficient
as possible. This setup is robust against any parameter changes and allows for a
quick convergence speed as it is based on the principle of a numerical gradient-based
optimization method.

Finally, the paper [47] aims to improve the control efficiency of PMSMs using ma-
chine learning methods. The chosen model was gradient boosting on decision trees.
The study used the open-source machine learning library "CatBoost" for the experi-
ments. The model was used to evaluate the stator yoke, tooth temperature, winding
temperature and rotor temperature. It was deployed on an open base dataset library
"Electric motor temperature", consisting of 998070 entries across 13 parameters. The
study concludes that the CatBoost algorithm provided sufficiently accurate results
that could be used in control systems in order to detect overheating early. This could
potentially improve and increase the PMSM’s operational life.

5.2 Image processing investigation
The book by Sklansky[36] was written in the 1980s to provide some structure and
guidelines for the next generations of image processing developments. It stated that
grayscale conversion was performed on analogue devices such as logarithmic ampli-
fiers. Image segmentation techniques were developed, and feature extractions were
performed. Filter operations were done through digital convolutions and were nearly
as good as methods today in reducing image noise. Concepts such as "growing" and
"shrinking" were early iterations of erosion and dilation. Histogram manipulation had
progressed to the point where histogram equalization was considered new. For edge
detection, gradient and Laplacian operators were the leading methods. The major
obstacles that image processing faced in the 1980s were that previous knowledge of
the images was necessary for many of the operations, as well as computation time
and costs. The previous knowledge required was what structures and features were
of interest and by what method the image had been acquired. As the next step, Hong
et al.[15], and Liu et al.[24] argued that due to the nature of digital images being
identical to matrixes, digital images could be subjected to algebraic transformations.
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A study was done by Wu et al.[3] which proved that a couple of implementations
could "the first can reduce the scan time by about half in many test cases, and the
second can reduce the total execution time by a factor of five or more. If the image
size is large, the speedup could be more than a factor of 100."[3]. The first imple-
mentation is to use arrays instead of pointer-based decision trees when performing
the Union-find operations. The second implementation was to remove the flatten
operation after lines had been scanned. This study was inspired by the works of
Fiorio and Gustedt[10], which had proposed two linear time Union-find strategies for
optimizing connected component labelling algorithms. Previously, Union-find algo-
rithms had been performed using pointer-based decision trees[9][12]. The method of
using decision trees came with the disadvantage that the amount of data needed to
be handled would negatively impact computation time[3]. The strategy of storing
the data in arrays instead of decision trees would significantly reduce the stored data,
which would speed up the computation time

A study using the empirical cumulative distribution function to analyze the morpho-
logical data on nanoparticles was performed by Odziomek et al.[25]. The nanoparti-
cles that were researched were tricalcium phosphate and hydroxy phosphate. They
were investigated for features in the form of shape descriptors. Shape descrip-
tors could range from aspect ratio, circularity, solidity, area, perimeter and round-
ness. The framework for this analysis was to choose the most representative image
statistically and use the empirical cumulative distribution function based on the
Kolmogorov-Smirnov test. This framework could significantly reduce the number of
images required to confirm features sufficiently

A study that involved signal processing and image processing was the study on
"Spectral feature extraction based on continuous wavelet transform and image seg-
mentation for peak detection" by Yang et al.[45]. The paper followed the standard
image processing steps, as well as using the continuous wavelet transform. This com-
bination could reduce the effects of noise and eliminate interfering signals. A new
development in terms of thresholding was the usage of the fuzzy Otsu method. A
comparison between the Otsu and fuzzy Otsu threshold can be seen in fig.5.1. It is
clear that the fuzzy Otsu method can detect a broader range of segments
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Figure 5.1: The segmentation performance (a) adopting the Otsu threshold, (b)
adopting the fuzzy Otsu threshold[45]

An important point made in the study[45] is that the continuous wavelet scales have
already been determined before any image processing can take place. It is advised
to carefully choose the wavelet scale values to preserve as much helpful information
as possible.

Another automatic thresholding technique that would challenge the fuzzy Otsu
method is the adaptive local threshold method[31][18]. This method calculates mul-
tiple threshold values across the image using local pixel intensity structures. It is
also more straightforward and fairly easy to implement compared to fuzzy Otsu.
In the study by Issac et al.[18], adaptive local thresholding was used to investigate
glaucoma. This method was decided because glaucoma imaging varies greatly in
noise, grey levels and image structures. The results of that paper indicated that the
adaptive local thresholding method could sufficiently improve glaucoma detection
and classification
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6. Method

The work in this thesis can be separated into four categories. Data acquisition with
simulated and experimental data, signal processing through continuous wavelet trans-
form, image processing through feature extraction and machine learning through gra-
dient boosting on decision trees. The simulated data was acquired through ANSYS
electronics desktop on a FE model created by a previous student[13]. The experi-
mental data were acquired with a synchronous test generator at the department of
electrical engineering at NTNU with the valuable help of research scientist Anyuan
Chen. The signal processing was performed in python using an adapted version of
code written by Tarjeu Nesbø Skreien[37]. The image processing is performed by edge
sharpening, thresholding, region segmentation and feature extraction with powerful
tools such as scikit-image[43], in a similar way as done on synchronous generators
in the specialization project in fall 2021[21]. Machine learning was performed by
extracting numerous properties of the image processing results and gathering them
into datasets, which would be used in the robust gradient boosting on decisions trees
open source library CatBoost[5].

The main contribution in this work compared to the specialization project[21] is an
improved image processing method that has increased accuracy in spotting lower
fault severities. A secondary contribution is a machine learning algorithm that can
accurately predict fault severities, as well as an investigative analysis to see what fea-
tures of the continuous wavelet plots contribute the most to detecting and classifying
the faults.

6.1 Data acquisition

6.1.1 Simulation data acquisition
The simulation of the synchronous motor will be performed in the program ANSYS
electronics desktop at the Ørstedt computer lab provided by the faculty of Informa-
tion Technology and Electrical Engineering. A FE model for a synchronous generator
has been previously created by the previous student Ingrid Linnea Groth[13]. In this
work, this model has been modified to operate as a motor instead of a generator.
The method for modification was provided by the ANSYS workshop: UDPS exam-
ple. The modifications were relatively simple. Change the R, S and T phases from
current based to voltage based. This was done by adding a low resistance and adding
phase voltages in the three phases while also taking into account the phase shifts.

42



√
2√
3
∗ V ∗ sin(2πft− ϕ) (6.1)

The simulation would run for 1100ms with a 0.1ms time step. The voltage V = 400V ,
and the frequency f = 50Hz. The information would be gathered by simulated
magnetic flux sensors placed at the spots shown in the figure.1.3

The simulation was first run for a no-load healthy case. The simulation would run
for 16 hours. In order to simulate an inter-turn shortcircuit fault. A modification
to the model was performed. This was done by reducing the turns in the rotor
winding N2 and rotor winding P1 in the FEM. Winding N2 and P1 correspond to
the winding on a rotor pole’s left and right sides. For every increase in severity, the
winding was reduced accordingly, which means that for a two inter-turn short circuit,
the winding was reduced from 35 to 33. For a three inter-turn short circuit, it was
reduced from 35 to 32 and so on. This was performed for 1ITSC, 2ITSC, 3ITSC,
7ITSC and 10ITSC. The data would be collected and processed only to preserve the
steady-state data.

In order to simulate a full-load case, some investigation into the FE model had to be
conducted. First, it was essential to determine the direction the torque rotated in
during generator operation. Second, to see if the motor operation inverted the torque.
Once this was completed, the full-load simulation could be achieved by changing the
phase angles of the three phases. By correctly manipulating these values, you could
change the load angle, which in turn would simulate a loaded operation.

Further investigation had to be done. The testing would attempt to get a positive
torque by either adding a voltage source or adjusting the phase angles. Positive
torque, in this case, implies loaded motor operation. This would require abundant
testing, so adjustments to the model were made to reduce the calculation time. Once
an estimate for the max positive torque was achieved, the time-saving adjustments
would be reversed, and the new parameters would be kept. These adjustments
include reducing the mesh quality, increasing the time step and reducing the stop
time. A voltage source would be added to the Excitations or in the External Circuit
of the simulation. Alternatively, a current source could be added. Particularly for
the current source excitation, an adjustment to the initial position along the q-axis
had to be made. If the intended motor operation was not achieved by setting the
initial position, an option was to check multiple different phase angles in the voltage
or current source and observe the torque. With this, it is possible to identify the
max positive, max negative and zero torque at specific phase angles.

Changing the initial position in order to simulate a full-load operation proved futile.
The remaining alternative was to sweep through different phase angles to detect
which phase angle values would achieve maximum positive torque. Due to time
constraints, the sweep was not completed, and full-load data could not be acquired.

6.1.2 Experimental data acquisition
The experimental data for this report was collected with the synchronous test gen-
erator at the department of electrical engineering at NTNU. It is a 400V, 100kvA
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synchronous machine designed as a scaled-down version of a hydropower generator.
This machine has a unique feature that allows for different cases of faulty operation.
This is achieved by the machine’s ease of use in terms of structure manipulation. It
is designed, so it is possible to short circuit inter-turns, misalign the rotor to cause
eccentricity, remove damper bars etc. This feature allows for the data acquisition of
a multitude of faults and their severities. Perhaps the most unique feature is that it
is possible to have data for faulty and healthy cases on the same machine. The most
notable alteration that will be performed in this thesis compared to the specialization
report[21], is the change from generator operation to motor operation.

Experimental setup

The setup for this experiment has been developed by Hossein Ehya and Arne
Nysveen. The setup for data acquisition has been specifically developed by Hos-
sein Ehya. The data acquisition is performed by using magnetic flux sensors on the
stator core. This allows us to gather the stray magnetic field. The sensors are then
connected to a RHODE SCHWARZ RTO 2044 oscilloscope which allows for easy
gathering and exporting of data.

Figure 6.1: The laboratory rotor core a), and stator core b)

No-load ITSC proceedure

The proceedure for no load ITSC experiments are as follows: Remove the machine
cage so we have access to rotor and the stator of the machine. Apply the desired fault
by short circuiting the rotor using a metal plate. This plate would get secured tight to
avoid any loose parts in the machine during operation. Reassemble the machine cage.
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Turn on the rotor motor to initiate rotation. Slowly increase the rotor to the desired
RPM, in our case it was until we reached 50Hz which was at around 1710RPM.
Apply an excitation current and slowly raise it to the desired current, in our case
it was 53.2A. Once the motor reaches steady state, we measure the voltage across
the three sensors on a RHODE SCHWARZ RTO 2044 oscilloscope. Because we
have three sensors, we have three channels of data to acquire. Once the oscilloscope
has produced enough information, we stop it and save the data to a csv file. This
file is then extracted using one of the USB slots of the oscilloscope. This process is
repeated for different severities of ITSC fault ranging from healthy, 1ITSC, 2ITSC,
3ITSC, 7ITSC and 10ITSC. The differences in setup can be seen in the A..2

Full-load ITSC proceedure

The full-load procedure is an extension of the no-load proceedure. The startup of
the motor by adjusting the RPM, the excitation current, the data collection and the
adjustments made to induce a fault are all the same. The main difference is that the
setup is connected to the main grid in order to apply a breaking torque. The phase
angles and the frequencies of the grid and the machine needs to be synchronized.
This is achieved by having a phase angle difference of zero and by the two systems
having the same frequency. This was done by using a synchroscope and adjusting
the RPM of the machine in order to align with the grid

Figure 6.2: Synchroscope a), and speed reference control panel b). Note that b)
already shows negative torque. This is due to the picture being taken after the
synchronization had occured

The dial of the synchronoscope would rotate clockwise or counterclockwise depending
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on the difference in frequency and phase angle. We would adjust the motors RPM
until it was possible to safely synchronize the two systems and lock them in. In order
to apply a load to the motor, we reduced the speed reference to use the torque limit
as a control for the actual breaking torque. As seen in fig.6.2, the torque is negative.
Normally for synchronous machines, a positive torque indicates motor operation and
a negative torque indicates generator operation. Because this system is primarily
designed as a generator, negative torque here is equivalent to motor operation.

Possible sources of errors in the data

Some faults in the data can be explained by the following. Initial testing with the
oscilloscope showed that the scope produced an error of 4V in one of its channels. The
remaining three channels of the scope had an error of less than 200mV. Considering
our results are in the range of 4V, this error may be responsible for up to 5% deviation
in the data. The data export of the oscilloscope was done by manually pausing the
data acquisition. An attempt to pause the oscilloscope during the same part of the
phases for the different cases was made. This led to a difference in which initial part
of the phase is captured. The data was gathered over multiple rotational cycles of
the motor, so the long term effects of the difference is minimal. How this affects
the method down the line is uncertain. After the signals have been processed, a
CWT plot of the signal will be produced. In this plot, the fault will be shown in
the image depending on where in the phase cycle the data acquisition begins. This
means that the fault will appear in different places for different cases. The way the
image processing program works, it will take the CWT plot and segments it into
areas. Typically the program detects 28 areas, and their size and shape varies on
where the fault is in the cycle. These areas are analyzed for various properties and
then averaged. One could argue that because the areas get averaged in the end,
the placement of the faults is negligible. Another argument is that the faults might
appear more often, therefore there might be more calculated areas for the fault. This
might result in a skew in the data, which might affect the machine learning later. A
more indepth explanation of the image processing and machine learning applications
will be provided in sec.6.4

6.2 Signal processing
The acquired data would then be processed through signal processing. Multiple
methods for signal processing are available, such as fast fourier transform, short
time fourier transform, discrete wavelet transform, hilbert-huang transfrom and con-
tinuous wavelet transform(CWT). For this thesis, the CWT was chosen based on its
ability to produce plots which clearly shows a pattern with increasing fault severity.
A set of intensity plots can be seen in fig.6.3.

The process of producing a CWT plot is built on calculing scales based on the frequen-
cies of interest. The code takes in the continuous wavelet, the sampling frequency
of the signal and the frequencies that are of interest and returns a list of scales.
The plot generated by this process is dependent on a heatmap with varying levels of
intensity throughout. Normally the intensity is automatically detected, but in order
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to have a comparative analysis between the healthy cases and the faulty cases, it
was necessary to limit the heatmap values to an upper boundary. This boundary
was decided by first running a healthy case with automatic intensity detection and
noting the upper boundary. This upper boundary would then be set as the upper
boundary for all the other cases. This approach circumvents the issue with scales as
observed in [45].

Figure 6.3: CWT intensity plots of stray magentic field, Full-load operation at a)
Healthy b) 1ITSC c) 2ITSC d) 3ITSC e) 7ITSC f) 10ITSC

These plots show the CWT of different inter-turn shortcircuit(ITSC) fault severities.
The upper left plot is the healthy case, with no induced faults. The faults range from
lowest, 1ITSC, to highest(10ITSC). All the CWT plots can be found in A.3. The
CWT was calculated over three mechanical rotations of the machine in both the ex-
perimental and simulated case. It is observed that with increasing fault severity, the
intensity plot exhibits sudden spikes in intensity values periodically. These periodic
spikes are assumed to be where the sensors register a stray magnetic field from where
the fault is located. From section.2.1, we know that in CWT that sharp and sudden
changes of image intensity in the plot are considered wavelet local maxima. This is
because CWT produces large transformation values where the wavelet fits well with
the scales at their corresponding frequencies. Whereas if it doesn’t fit well, the CWT
will produce low transformation values. This trait of CWT produces structures in
the plot that we can take advantage of with image processing.

6.3 Image processing
This section of the method mirrors in large part the work I’ve done previously in the
specialization report[21]. Some paragraphs have been rephrased and some explana-
tions have been added to provide more clarity in the work presented. The figures
have been updated to account for the change in data, as the thesis diverges from the
specialization project in terms of machine operation.
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Grayscale conversion

The first step of image processing is to convert the plots to grayscale using point
operations, see sec.3.4. The plots are considered RGB images meaning they have
three color channels of 8-bits as noted in section.3.2.2. In order to convert it, we
need to combine the pixel intensity values in each channel into a single 8-bit channel.
This is done by using eq.3.1. Images are converted to grayscale to reduce the amount
of color channels which in turn reduces computation time. It is possible to perform
image processing on RGB images, but all the operations needs to be performed on
each channel separately, before being combined together again.

Figure 6.4: Original CWT plot of Full-load 10ITSC fault on the left, grayscale con-
verted image on the right

Noise reduction

The grayscale images are then filtered using a median filter in order to remove any
potential outliers in the image. These outliers, often referred to as hot pixels, are
pixels with a sudden spike in brightness. If none of the surrounding pixels contain a
similar spike, it is assumed that the hot pixel isn’t part of any structure within the
image and can be removed. Afterwards, a series of operations to sharpen the edges
of the image is performed. First, a copy is made of the filtered grayscale image. The
copy is then smoothed with the gaussian filter. The filtered grayscale image will then
have its pixel intensity values subtracted with the smoothed copy’s pixel intensity
values. The resulting image will then have less noise and more even edges.
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Figure 6.5: Grayscale image of Full-load 10ITSC fault with median filter a) and noise
reduced with gaussian substraction b)

Thresholding

The next step is to perform a thresholding operation. This is done to seperate the
foreground from the background, essentially isolating the objects we’re interested in
from the rest of the image. The tresholding method used in this work is the adap-
tive treshold. This was decided after doing a comparative analysis of three different
thresholding techniques. The first approach was a manual thresholding method. The
goal with the manual approach is to estimate which tresholding value will preserve
the most useful information in the image. This was done iteratively until an opti-
mal result was produced. The second approach was the otsu thresholding method.
This approach automatically determines the thresholding value, so no iteration is
necessary. However, this method produced subpar results which typically lacked sig-
nificant portions of valuable image information. Lastly, the adaptive thresholding
method is both automatic and it takes into consideration the neighbouring pixels to
generate multiple threshold values. This is effective for images with great variation
in pixel intensities in the foreground and low variability in the pixel intensities of the
background, see section.3.7.2. The comparison can be seen in fig.6.6

Figure 6.6: Comparison of threshold values on Full-load 10ITSC CWT plots, a)
Manual given threshold constant of t = 0.05, b) Otsu threshold, c) Adaptive threshold

Image segmentation and labeling

With the images thresholded, they are now prepared to be segmented and labeled.
A brief introduction to how this is done theoretically is given in section.3.6.2 and
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section.3.6.1. The method used in this work is based on the papers by Dillencourt et
al.[9] and Gabow et al.[12]. Their methods have been adapted to this work in order
to operate with array-based values as presented in[10][3]. The adaptation allows for
a significant reduction in computation time and resources. The segmentation and
labeling process is performed twice. The first operation labels all the areas it can find.
After this, areas beneath a set value will be considered as noise and removed. This
helps cleaning up the borders of the image. Afterwards, the remaining structures in
the image are segmented and labeled once again. To further expand on the choice
of thresholding method, a comparison can be seen in fig.6.7 to see how much the
thresholding value affects the segmentation and labeling process. It is therefore
recommended to carefully choose the thresholding value before continuing with the
image processing.

Figure 6.7: Comparison of threshold values on labeling process for Full-load 10ITSC,
a) Manual given threshold constant of t = 0.05, b) Otsu threshold, c) Adaptive
threshold

Detected regions test

A test is conducted to see if the algorithm can adequately detect the labeled regions.
The results of that test can be seen in fig.6.8. Observations indicate that this method
is sufficintly able to detect the areas and can surround the areas with bounding boxes.
The boxes are the simplest figures to enclose a space and act as a reference point for
later processing.
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Figure 6.8: Detected regions in stray magnetic field during Full-load a) Healthy case
b) 1ITSC c) 2ITSC d) 3ITSC e) 7ITSC f) 10ITSC

Empirical cumulative distribution function of the mean intensities

This conlcudes the preprocessing of the images. With the regions detected and la-
beled, it is time to extract useful information from them. The algorithm will take
advantage of the fact that various fault severities have various levels of intensities
in the CWT plots. It is therefore possible in theory to extract information that
can differentiate the fault cases from one another. In order to take advantage of
this trait, the algorithm takes the detected regions and layer them on top of the
original, unprocessed intensity CWT plots. Afterwards, the algorithm will use the
areas as reference when extracting information from the intensity plots. The inten-
sities within the now referenced areas will be the main focus of the analysis. The
algorithm then calculates the average intensity in each area and gathers this data in
an array and saves it with the corresponding fault severity, sensor channel and load
case. This information is then processed with the empirical cumulative distribution
function(ECDF) in a similar fashion as done in [25]. In this report[25], the ECDF
analysis requires a cumulative image set. This means that we normally take the
average of the intensity values between fault severity plots in order to see how each
plot differ from the average. For the sake of measuring fault severity, this work uses
the ECDF for the healthy case as the "baseline". In other words, how much does
the other cases differ from the healthy case in terms of mean intensity of the labeled
regions. The analysis will focus on a healthy case, 1ITSC, 2ITSC, 3ITSC, 7ITSC
and 10ITSC for no-load and full-load.
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Figure 6.9: Mean intensity ECDF of image regions during experimental Full-load
operation with different ITSC fault severities

The X-axis of the ECDF plot shows the observed average intensity values in the
regions, while the Y-axis shows the expected probability for observing a value less
than or equal to a given average intensity value[25]. Each of the coloured lines
represent a fault severity.

The difference method

The previous method would use the labeled areas and place them on top of the
original intensity CWT plots. This would mean that, for example, the labeled areas of
the 10ITSC case would get layered on top of the 10ITSC CWT plot when calculating
the mean intensity values.

The difference method instead takes the labeled areas of the different fault severities
and layer them on top of the healthy CWT plot. Now all the severity cases are
directly measured against the healthy CWT intensity plot.
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Figure 6.10: Mean intensity ECDF of image regions during simulated No-load oper-
ation with different ITSC fault severities

With this method, the healthy data is "lost" in the sense that we won’t be calculating
the properties of the segmented regions in the healthy CWT plot. Furthermore, by
using the healthy CWT plot as the intensity plot for the faulty cases, it is more of
a direct comparison. This means that the ECDF shows how similar each severity
case is to the healthy case. If the severity case is low, and therefore differs only
slightly, the ECDF will plot a straighter vertical line. If the severity case is high,
and therefore differs significantly, the ECDF will plot a more vertical line.

6.4 Machine learning
For the machine learning part, the open-source library CatBoost was used. This is
due to the study[47], which proved effective in diagnosing PMSMs. For the dataset,
data from both experimental and simulation was mixed and used. This means the
dataset contains data on healthy, 1ITSC, 2ITSC, 3ITSC, 7ITSC and 10ITSC faults
for no-load and full-load operations. The dataset was also filled with data from
each sensor. The experimental setup had three sensors for both full-load and no-
load, while the simulated setup had 6 for no-load. The properties of the segmented
regions would be calculated on the difference method. By using the optimal setup
for generating plots, the dataset would contain 6x5 + 3x5 + 3x5 = 60 entries. Early
testing showed that this was not enough entries to achieve a good predictive function.
Therefore, some manipulation of the plot generation was done. By doing slight
tweaks to the maximum intensity values allowed and small tweaks to the maximum
frequency of the plots, it was possible to generate a significant amount of new plots.
To the human eye, these plots would seem to be slight variations of the same plots.
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To the eye of the machine learning algorithm, these plots would contain new and
previously unseen data.

With these tweaks, the dataset grew from 60 entries to 720 entries and thus form-
ing the training dataset. The training dataset would be filled with information on
the properties of the segmented regions in the CWT plots. These properties range
from the area, bbox area, moments central, centroid, convex area, eccentricity, Euler
number, extent, feret diameter max, filled area, moments hu, inertia tensor, inertia
tensor eigvals, local centroid, max intensity, mean intensity, min intensity, moments,
moments normalized, orientation, perimeter, Crofton perimeter, solidity, weighted
centroid and weighted moments. The properties and their sub-properties would sum
up to a total of 98 different categories. These are all properties that can be han-
dled by the Scikit-image library[43]. Once all the values were filled in, the training
dataset was split into training and testing datasets. The testing dataset will be un-
labeled and act like new and unseen data to confirm the accuracy of the algorithm’s
predictive function.

Figure 6.11: A snippet showing how the dataset is built up, the full CSV file will be
added to the submission

For CatBoost to work effectively, some preprocessing of the data is needed. First,
the training dataset is sorted into numerical and categorical columns. This is done
when there is a mix of different data types. By isolating the categorical columns,
it is possible to convert them to a usable numerical format. The columns are then
combined and a target is set. In this case, the targets are 1ITSC, 2ITSC, 3ITSC,
7ITSC and 10ITSC. The healthy data is indirectly present in the form that all the
calculated properties for the faulty cases are in relation to the healthy case. The
training dataset is then split into training and evaluation dataset. Evaluation data
acts as a sort of temporary testing data in order to prevent overfitting of the model.
Afterwards, a learning rate and a random state is chosen, and the CatBoost classifier
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can be deployed. In this case, CatBoost ran for 1000 iterations with a leaf depth of
8.
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7. Results

Mean intensity method

The first image processing method of attempting to use the mean intensity values of
the original continuous wavelet plots produced the following results with the empir-
ical cumulative distribution function(ECDF) plot

Figure 7.1: Experimental result of mean intensity ECDF plot for full-load ITSC
faults sensor 1

The mean intensity results for all the other cases can be found in the A.4

Each line in the plot represents a fault severity case from healthy(H) to inter-turn
shortcircuit(ITSC) fault of severity 1ITSC, 2ITSC, 3ITSC, 7ITSC and 10ITSC. The
lines form a rudementary "S"-shape, which is common with the cumulative distribu-
tion function[25]. The X-axis of the ECDF plot shows the observed average intensity
values in the regions, while the Y-axis shows the expected probability for observing
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a value less than or equal to a given average intensity value[25]. In the case of fig.27,
it is observed that the 7ITSC and 10ITSC case starts to deviate from the trajec-
tory of the healthy case. Meanwhile, the lower severity cases of 1ITSC, 2ITSC and
3ITSC appear to have similar trajectory as the healthy case. This makes it difficult
to discern the fault at lower fault severities

Difference method

The second image processing method of attempting to use the healthy CWT plot
case as the intensity image for the faulty cases produced the following ECDF plots

Figure 7.2: Simulated result ECDF difference plot for no-load ITSC faults sensor 5

The difference method results for all the other cases can be found in the A.5

Similarily to the mean intensity method, each line in the plot represents a fault
severity case. This time, the healthy case is not present in the plot. This is because
the healthy data is being used as the comparison for all the other cases. While
the mean intensity plot was a graph showing differences in intensity values, the
difference method shows how similar each fault case is to the healthy case. The
more a severity case differs, the more horisontal the plot lines become. In terms of
detecting fault severities, the difference method is able to detect high severities as
well as low severities. A clear difference between the cases is observed and a tendency
for higher severity cases to go horizontal can be seen. It would appear that for the
experimental full-load cases such as fig.39 and fig.41, the algorithm struggles between
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1ITSC and 2ITSC. It consistently assumes that the 2ITSC case is more similar to
the healthy case than the 1ITSC case

Machine learning results

The image processing method used for creating the region property data which
would form the training dataset for the machine learning algorithm was the dif-
ference method. This was decided because the difference method produced more
consistent and desired results than the mean intensity method. Using CatBoost on
this dataset produced a R2 value of 0.8. According to the book by Moore et al.[8],
a R2 > 0.7 is considered a strong effect size. In this case, it means that 80% of
the variation in the output can be explained by the input variables. The results of
the signal processing, image processing and machine learning application produced
a model that could accurately predict 14 out of 15 severity cases

Figure 7.3: Predicted results versus the solution template

Fig.7.3 shows the result on the test sample. The test sample is unlabeled, so the
machine learning algorithm attempted to classify the data entries using its trained
model. The predictions are in the shape of nummerical values. This is due to the
targets being converted from categorical(strings) to nummerical(integer) values. The
conversion of the target values is 1ITSC = 1, 2ITSC = 2, 3ITSC = 3, 7ITSC = 4 and
10ITSC = 0. Due to creating the testing dataset, the solution is known. Therefore
it is possible to investigate how well the algorithm worked. It appears that the
predictive function was able to accurately detect all the cases except one, where it
predicted the entry to be a 7ITSC fault when in reality it was a 10ITSC fault.

An investigation into seeing which region properties affected the predictive function
the most was conducted. The result of that investigation is shown here:
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Figure 7.4: Comparison of region properties and their effect on the predictive function

Each bar in the figure shows the total of how much a region property impacted the
classes. It is observed that the moments central-2-3 and local centroid 0 impacted
the output magnitude the most

The model was trained for a second time with a larger testing dataset. This time the
test dataset contained 63 entries compared to the 15 entries in the previous set. This
also meant that the training dataset would be 48 entries shorter. The test dataset
consisted of entries from both simulation and experimental operation. This time the
model achieved a R2 of 0.73 with an accuracy of 92%. Continued testing revealed
that the accuracy was impacted by the training set size the most. By increasing the
test dataset, the evaluation dataset had to be reduced accordingly. The investigation

59



into region properties showed this plot:

Figure 7.5: Comparison of region properties and their effect on the predictive function
with a larger testing dataset

Which shows a drastic change compared to the previous region property investiga-
tion. This could suggest that the region properties themselves aren’t as decisive as
previously thought

60



8. Discussion

The results of this work indicate that using image processing and machine learning
could be a viable method for fault diagnosis in synchronous motors. By using the
difference method, it was possible to see an increasing difference between the healthy
and faulty cases with increasing severity, even at lower fault severities. Using the
mean intensity method could accurately detect higher intensity faults but not the
lower fault severities. Using gradient boosting on decision trees as a method for
machine learning could detect the fault and its severity in 92% of the cases, but is
entirely dependent on healthy data.

The mean intensity method appears to have the worst results in accurately detecting
faults. It was only able to detect higher severity faults accurately. Despite this,
it is also the only method in this work that does not directly compare with the
healthy data. All the cases are compared with themselves and then added to the
empirical cumulative distribution function(ECDF). This means that healthy data is
not necessary for performing computations. This could be an advantage because, in
real-life applications, it is rare to find a complete healthy dataset for a synchronous
motor. Then again, the ECDF plot plots the lines according to the levels of intensities
found in the continuous wavelet transform(CWT) plot. Analyzing and determining
that there is a fault based on the CWT intensities is difficult without knowing what
a regular, healthy operation is supposed to look like.

The difference method showed that the ECDF plot could be used to measure fault
severities more accurately. This included both low severity and high severity faults.
This came at the cost of using the healthy data as a source of comparison. The
fact that the healthy data is used for the difference comparison makes this method
dependent on healthy data. Or at least less faulty data. With this analysis method,
the ECDF plot went from being a measure of intensity to measuring how different
the fault severities are from the healthy plot. A benefit to this method is that the
most important properties for determining the difference between healthy and faulty
cases are made more evident.

The machine learning algorithm produced surprisingly good results. Using the
method proposed by the paper[47], a model with 92% accuracy on a bigger test
dataset was produced in this thesis. This means that when presented with new and
unseen information, the algorithm will be able to detect the fault severity 92% of the
time. Of course, as long as it is within the same domain as the algorithm was de-
ployed. Despite the high accuracy, this model will probably perform worse in real-life
applications. The data used for training was data produced through the difference
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method. In other words, the algorithm is dependent on healthy data. What this
method can be used for is to investigate what region properties are the most effec-
tive at predicting the various severities apart. This should have been reflected in
fig.7.4 and fig.7.5 with the same region properties dominating the top of the impact
scale for both cases. This does not mean the algorithm did not work as intended
necessarily. This could mean that the algorithm saw some underlying logic early on
in its iterations that worked and then proceeded to build a predictive model around
that logic. It is fair to argue that the "moments" properties take up most of the spots
on the plots. This is because out of the 98 properties, various moments constitute 70
of them. If we can assume that the algorithm can find underlying logic that works,
regardless of the property, we can assume that the properties, in reality, have the
same amount of potential for predicting the severities apart. Then, by the law of
averages, it is fair to assume most of the top properties in the investigation will be
moments.

In order to produce a better predictive model, more data is needed. This could have
been easily solved in the data acquisition stage, but I lacked the foresight to see it at
the time. When performing the experiments, the data would fill up the oscilloscope
monitor and then get exported. After the data was exported, the experimental
motor would be turned off and modified for the next faulty case. What should have
been done was to take more samples per fault case. The data would be similar
but different enough to aid a machine learning algorithm to learn better. Instead,
data was "artificially" created to fill up the dataset. This was done by varying the
max frequency and the max allowed intensity values of the CWT plots. This would
be done on the same data, but the plots would be technically different with these
changes. It would also be incredibly beneficial for the algorithm if it were fed data
from different sources. Otherwise, the predictive function might become overfitted
for detecting faults in the laboratory motor and the FE model. This would prevent
the algorithm from being useful in settings other than the laboratory and the FEM.

Verifying the experimental full-load results with the simulation data is impossible in
this thesis as there are no full-load data from the simulation. In theory, the no-load
operation should appear the same for motor and generator operations. Full-load data
would be needed for the FE model to be an accurate simulation of motor operation.
Attempts at converting the FEM to a motor operation yielded little results.

Although the method proved effective in detecting inter-turn shortcircuit faults, it is
necessary to expose the algorithm to other faults such as eccentricity and vibration
faults to make it real-life applicable. It is rare for the real world to be so kind as
to follow laboratory settings. It is therefore essential to gather data from different
sources. Once a solid foundation of experimental and simulation data has been
trained, the algorithm can use that previous experience to detect faults in real-life
applications. It would be interesting to see how the algorithm would handle cases
with mixed faults. Perhaps in the future, the algorithm will be able to detect cases
with multiple faults accurately.
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8.0.1 Future work
Based on the discussion, it is recommended to increase the dataset size for future
work. It is also recommended to simulate full-load motor operation to verify the
experimental data. Gather more samples of the same fault intensities to reinforce the
underlying logics the algorithm finds. Experiments and simulations of various faults
such as static eccentricity, dynamic eccentricity, mixed eccentricity, broken damper
bar and vibration expose the algorithm to a broader range of faults. Data from
real-life sources such as reciprocating pumps and compressors could be beneficial.
Use this data on the method proposed in this thesis until a clear dominating region
property is found. If this property is found, the original mean intensity method can
be improved to the point where it can accurately detect lower severity faults. This
can be done by swapping the "mean intensity" with the new region property. If this
is done, the proposed machine learning method could become independent of healthy
data and provide a better predictive accuracy.
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9. Conclusion

In this thesis, a machine learning application, gradient boosting on decision trees, is
explored to detect inter-turn shortcircuit faults in synchronous motors. The machine
learning library, CatBoost, would use image processing data for automatic classifi-
cation of motor fault. The image processing data would be acquired through feature
extraction of region properties. The region properties would be both spatial and
statistical descriptors. The image regions would be detected through a series of im-
age processing operations which can be summarised to grayscale conversion, image
sharpening, thresholding, segmentation and labeling. The images are produced as
a result of performing continuous wavelet transformations on magnetic field data,
acquired both experimentally and through simulations. The resulting investigations
can be categorised as two types. One is dependent on healthy data, while another is
independent of healthy data. Due to the small dataset sample available, the healthy
data dependent method proved the most accurate with a predictive accuracy of
92%. An investigation into which descriptors had the greatest weight on the pre-
dictive function was performed. The investigation could aid in the pursuit of which
descriptors is beneficial for fault detection. It is argued that with enough data, the
method can become independent of healthy data and become more applicable as a
diagnostic tool.
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.1 Image processing theory figures

Figure 1: Base image applied with the averaging blurring filter
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Figure 2: Base image applied with the gaussian blurring filter

Figure 3: Grayscale image with the max filter
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Figure 4: Grayscale image with the min filter

Figure 5: Sobel edge operator on grayscale image
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Figure 6: Prewitt edge operator on grayscale image

Figure 7: Canny edge operator on grayscale image
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Figure 8: laplace edge operator on grayscale image
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.2 Experimental interturn shortcircuit modifica-
tion

Figure 9: Setup for NLH case
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Figure 10: Setup for NL1ITSC case
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Figure 11: Setup for NL2ITSC case
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Figure 12: Setup for NL3ITSC case
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Figure 13: Setup for NL7ITSC case
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Figure 14: Setup for NL10ITSC case
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.3 Continuous wavelet transformation plots

Figure 15: Experimental No-load sensor 1 data CWT ITSC comparison where a)
Healthy b) 1ITSC c) 2ITSC d) 3ITSC e) 7ITSC f) 10ITSC
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Figure 16: Experimental No-load sensor 2 data CWT ITSC comparison where a)
Healthy b) 1ITSC c) 2ITSC d) 3ITSC e) 7ITSC f) 10ITSC
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Figure 17: Experimental No-load sensor 3 data CWT ITSC comparison where a)
Healthy b) 1ITSC c) 2ITSC d) 3ITSC e) 7ITSC f) 10ITSC
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Figure 18: Experimental Full-load sensor 1 data CWT ITSC comparison where a)
Healthy b) 1ITSC c) 2ITSC d) 3ITSC e) 7ITSC f) 10ITSC
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Figure 19: Experimental Full-load sensor 2 data CWT ITSC comparison where a)
Healthy b) 1ITSC c) 2ITSC d) 3ITSC e) 7ITSC f) 10ITSC
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Figure 20: Experimental Full-load sensor 3 data CWT ITSC comparison where a)
Healthy b) 1ITSC c) 2ITSC d) 3ITSC e) 7ITSC f) 10ITSC
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Figure 21: Simulated No-load sensor 1 data CWT ITSC comparison where a) Healthy
b) 1ITSC c) 2ITSC d) 3ITSC e) 7ITSC f) 10ITSC
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Figure 22: Simulated No-load sensor 2 data CWT ITSC comparison where a) Healthy
b) 1ITSC c) 2ITSC d) 3ITSC e) 7ITSC f) 10ITSC
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Figure 23: Simulated No-load sensor 3 data CWT ITSC comparison where a) Healthy
b) 1ITSC c) 2ITSC d) 3ITSC e) 7ITSC f) 10ITSC
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Figure 24: Simulated No-load sensor 4 data CWT ITSC comparison where a) Healthy
b) 1ITSC c) 2ITSC d) 3ITSC e) 7ITSC f) 10ITSC
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Figure 25: Simulated No-load sensor 5 data CWT ITSC comparison where a) Healthy
b) 1ITSC c) 2ITSC d) 3ITSC e) 7ITSC f) 10ITSC
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Figure 26: Simulated No-load sensor 6 data CWT ITSC comparison where a) Healthy
b) 1ITSC c) 2ITSC d) 3ITSC e) 7ITSC f) 10ITSC
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.4 Mean intensity method

.4.1 Experimental results Full-load

Figure 27: Experimental result of mean intensity ECDF plot for full-load ITSC faults
sensor 1
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Figure 28: Experimental result of mean intensity ECDF plot for full-load ITSC faults
sensor 2

Figure 29: Experimental result of mean intensity ECDF plot for full-load ITSC faults
sensor 3

95



.4.2 Experimental results No-load

Figure 30: Experimental result of mean intensity ECDF plot for no-load ITSC faults
sensor 1

Figure 31: Experimental result of mean intensity ECDF plot for no-load ITSC faults
sensor 2
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Figure 32: Experimental result of mean intensity ECDF plot for no-load ITSC faults
sensor 3
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.4.3 Simulation results no-load

Figure 33: Simulated result of mean intensity ECDF plot for no-load ITSC faults
sensor 1

Figure 34: Simulated result of mean intensity ECDF plot for no-load ITSC faults
sensor 2
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Figure 35: Simulated result of mean intensity ECDF plot for no-load ITSC faults
sensor 3

Figure 36: Simulated result of mean intensity ECDF plot for no-load ITSC faults
sensor 4
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Figure 37: Simulated result of mean intensity ECDF plot for no-load ITSC faults
sensor 5

Figure 38: Simulated result of mean intensity ECDF plot for no-load ITSC faults
sensor 6
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.5 Difference method

.5.1 Experimental difference results Full-load

Figure 39: Experimental result ECDF difference plot for full-load ITSC faults sensor
1
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Figure 40: Experimental result ECDF difference plot for full-load ITSC faults sensor
2

Figure 41: Experimental result ECDF difference plot for full-load ITSC faults sensor
3
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.5.2 Experimental difference results no-load

Figure 42: Experimental result ECDF difference plot for no-load ITSC faults sensor
1

Figure 43: Experimental result ECDF difference plot for no-load ITSC faults sensor
2
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Figure 44: Experimental result ECDF difference plot for no-load ITSC faults sensor
3

.5.3 Simulation difference results no-load

Figure 45: Simulated result ECDF difference plot for no-load ITSC faults sensor 1
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Figure 46: Simulated result ECDF difference plot for no-load ITSC faults sensor 2

Figure 47: Simulated result ECDF difference plot for no-load ITSC faults sensor 3
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Figure 48: Simulated result ECDF difference plot for no-load ITSC faults sensor 4

Figure 49: Simulated result ECDF difference plot for no-load ITSC faults sensor 5
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Figure 50: Simulated result ECDF difference plot for no-load ITSC faults sensor 6

.6 Python code

.6.1 Continuous wavelet transform plot acquisition
This code is the result of work done by a previous student Tarjeu Nesbø Skreien[37].
It was slightly modified in order to be able to be iterable in the specialization re-
port[21]

1 #!/ usr/bin/env python
2 # coding : utf -8
3

4 # In [1]:
5

6

7 import numpy as np
8 import pandas as pd
9 import matplotlib . pyplot as plt

10 import matplotlib . colors as colors
11 import pyhht
12 import pywt
13 from PIL import Image
14 import skimage .io
15 import skimage .color
16 import skimage . filters
17 from skimage . filters import threshold_otsu , threshold_local
18 import skimage . measure
19 from skimage . morphology import square
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20 from skimage . morphology import reconstruction
21 from skimage import data
22 from skimage import img_as_float
23 import skimage . segmentation
24 import skimage . morphology
25 import os
26 import cv2
27 import scipy. ndimage
28 from scipy. ndimage import gaussian_filter
29 import functools
30 import plotly . express as px
31 from pathlib import Path
32 import csv
33 from skimage . feature import blob_dog , blob_log , blob_doh
34 import matplotlib . patches as mpatches
35 from skimage import data
36 from skimage . segmentation import clear_border
37 from skimage . measure import label , regionprops , ...

regionprops_table
38 from skimage . morphology import closing , square
39 from skimage .color import label2rgb
40 get_ipython (). run_line_magic ('matplotlib ', 'inline ')
41 plt. rcParams . update ({ 'font.size ': 20}) # Setting the font size...

of the plots to 20. Use plt. rcdefaults () to reset to ...
default .

42

43

44 # # Importing the data
45

46 # In [2]:
47

48

49 def normalize_describe (df):
50 df_norm = (df - df.mean ()) / (df.max () - df.min ())
51 print( df_norm . describe ())
52 return df_norm
53

54

55 # # Windowing the data
56

57 # In [3]:
58

59

60 def is_valid_crossing (position , data_series , validation_length...
):

61 # Checks that the series of samples after " position " are ...
all positive

62 is_valid = True
63 validation_position = position
64 sum_of_samples = 0.0
65 for i in range( validation_length ):
66 current_sample = data_series [ position + i] # sampling ...

freq --> current_pos
67 sum_of_samples += current_sample
68 if (( current_sample < 0) or ( sum_of_samples < 0)):
69 validation_position += i
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70 is_valid = False
71 break
72

73 return is_valid , validation_position
74

75

76 def find_zero_crossing ( search_from , data_series , ...
sampling_period , validation_ratio ):

77 # Finds and returns the first rising zero crossing in the ...
signal after ...

78 # the time " search_from ", using zero - crossing .
79 # " data_series " is the array with the signal .
80 # " sampling_period " is the signal 's sampling period .
81 # " validation_ratio " is the length of the validation check...

, given in ...
82 # " synchronous_periods ". Should be between 0.1 and 0.35.
83

84 current_pos = int( search_from / sampling_period )
85

86

87 while ( data_series [ current_pos ] > 0): # Fast forward to a ...
lightly zero - crossing point.

88 current_pos += 1
89 while ( data_series [ current_pos ] < 0):
90 current_pos += 1
91 current_pos -= 10
92

93 validated_crossing = False # True if " current_pos " is a ...
validated zero -crossing , False otherwise .

94 validation_length = int ((0.02/ sampling_period )*...
validation_ratio )

95

96 while not validated_crossing : # Iterate through the ...
samples looking for a zero - crossing

97 has_crossed_upwards = False # True if " current_pos " ...
has just risen above zero , reset every cycle.

98

99 while not has_crossed_upwards :
100 if ( data_series [ current_pos ] > 0):
101 has_crossed_upwards = True
102 else:
103 current_pos += 1
104

105 validated_crossing , current_pos = is_valid_crossing (...
current_pos , data_series , validation_length )

106

107 if not validated_crossing :
108 current_pos += 1
109

110 crossing_int = current_pos
111 crossing_time = crossing_int * sampling_period
112

113 return crossing_time , crossing_int
114

115 def return_periods (df , search_from =0, sampling_freq =50000 , ...
synchronous_periods =4, channel_of_interest =1):
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116 # synchronous_periods refer to the electrical periods . The...
mechanical rotation period of the machine is 7.1333 Hz. We...
need at least 50/7.13 = 7 to capture an entire period of ...

rotation .
117 time_window = synchronous_periods *0.02 # The number of ...

electrical periods within the window we're looking at
118 sampling_period = 1/ sampling_freq
119 start_time , start_int = find_zero_crossing ( search_from , [i...

for i in df.iloc [:, channel_of_interest ] ], sampling_period ...
, 0.1)

120 end_time, end_int = find_zero_crossing ( start_time + ...
time_window - 0.005 , [i for i in df.iloc [:,...
channel_of_interest ] ], sampling_period , 0.1)

121

122 channels = np.array ([[i for i in df.iloc[ start_int:end_int...
,j]] for j in range(df.shape [1]) ])

123

124 time_series = np. linspace ( start_time, end_time , len(...
channels [0]) )

125 return ( start_time, end_time), ( start_int, end_int), ...
channels , time_series

126

127

128 # # Formatting
129

130 # In [4]:
131

132

133 def formatting_data ( synchronous_periods = 14):
134 time_window = synchronous_periods *0.02
135 yes_start_end_times , yes_start_end_ints , yes_channels , ...

yes_time_series = return_periods (has_fault , ...
channel_of_interest =0, search_from =0,

136 ...
sampling_freq = sampling_freq , ...

synchronous_periods = synchronous_periods )
137 yes_adjusted_sampling_freq = len( yes_time_series )/...

time_window
138 return yes_adjusted_sampling_freq , yes_channels
139

140

141 # # Continuous wavelet transform
142

143 # In [5]:
144

145

146 def plot_CWT (f, t, Zxx , figsize =(16 ,10) ,
147 cmap='magma ', max_freq =None ,
148 norm= colors . PowerNorm (gamma =2./8.) ,
149 time_shaving =None , output =False , save_figure =None...

):
150 # Plots an CWT transform .
151 # figsize is the size of the resulting figure .
152 # cmap is the colour scheme , by default magma. Reference : ...

https :// matplotlib .org /3.1.1/ gallery /color/...
colormap_reference .html
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153 # max_freq is the maximum frequency to include in the plot...
.

154 # time_shaving is the amount to shave off of the edges to ...
avoid edge artifacts , must be between 0 and 0.5.

155 # output is if the function is to return an outputm by ...
default False.

156 # save_figure will save the figure to disk if a string is ...
given. It is saved in the format of the filename .

157

158 fig = plt. figure ( figsize = figsize )
159 ### Different methods can be chosen for normalization : ...

PowerNorm ; LogNorm ; SymLogNorm .
160 ### Reference : https :// matplotlib .org/ tutorials / colors /...

colormapnorms .html
161 spec = plt. pcolormesh (t, f, np.abs(Zxx),
162 norm=norm ,
163 cmap=plt. get_cmap (cmap))
164 #cbar = plt. colorbar (spec)
165 ax = fig.axes [0]
166 ax.grid(False)
167 plt.axis('off ') #Turn off for image processing
168

169

170 #ax. set_title ('CWT Magnitude ')
171 ax. set_ylabel ('Frequency [Hz]')
172 ax. set_xlabel ('Time [sec]')
173

174

175

176 if ( max_freq is not None):
177 ax. set_ylim (0, max_freq )
178 if ( time_shaving is not None):
179 shaved_time_indices = int( time_shaving *len(t))
180 xMinimum = t[ shaved_time_indices ]
181 xMaximum = t[len(t)-shaved_time_indices ]
182 ax. set_xlim (xMinimum , xMaximum )
183

184 #fig.show
185 if ( save_figure is not None):
186 fig. savefig ( save_figure , dpi=None ,
187 facecolor ='w', edgecolor ='w',
188 orientation ='portrait ',
189 papertype =None , format =None ,
190 transparent =False , bbox_inches ='tight ',
191 pad_inches =0, metadata =None)
192 #fig.clf ()
193 #plt.close ()
194

195 if output :
196 return f,t,Zxx
197 else:
198 return
199

200 def find_scale (wavelet , frequency , scale ,
201 sampling_frequency , max_deviation =1):
202 # Takes in the continuous wavelet , the sampling frequency ...
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of the signal , ...
203 # the prior scale , and a frequency and finds its ...

corresponding scale.
204 # max_deviation is the convergence criteria of the ...

frequency
205 is_found = False # A boolean denoting if the correct scale...

is found
206 top_scale = scale
207 bot_scale = scale
208 top_frequency = pywt. scale2frequency (wavelet , top_scale )*...

sampling_frequency
209 bot_frequency = pywt. scale2frequency (wavelet , bot_scale )*...

sampling_frequency
210 while not is_found :
211 top_frequency = pywt. scale2frequency (wavelet , ...

top_scale )* sampling_frequency
212 bot_frequency = pywt. scale2frequency (wavelet , ...

bot_scale )* sampling_frequency
213 if ((( top_frequency - frequency )<max_deviation ) and
214 (( frequency - bot_frequency )<max_deviation )):
215 scale = ( top_scale + bot_scale )/2
216 is_found = True
217

218 if (( top_frequency < frequency ) or
219 ( bot_frequency > frequency )):
220 if ( top_frequency < frequency ):
221 top_scale -= 1
222 if ( bot_frequency > frequency ):
223 bot_scale += 1
224 else:
225 if (( pywt. scale2frequency (wavelet , ( top_scale + ...

bot_scale )/2)* sampling_frequency )>frequency ):
226 top_scale = ( top_scale + bot_scale )/2
227 else:
228 bot_scale = ( top_scale + bot_scale )/2
229 return scale
230

231 def make_scales (wavelet , frequencies ,
232 sampling_frequency , max_deviation =1):
233 # This function takes in the continuous wavelet , the ...

sampling frequency of the signal ...
234 # and the frequencies that are of interest and returns a ...

list of scales .
235 # wavelet is a string with the name of the continuous ...

wavelet .
236 # frequencies is a numpy array with the frequencies or ...

interest .
237 # samplingFrequency is the sampling frequency of the ...

signal to be analysed .
238 # max_deviation is the convergence criteria of the ...

frequency
239 scales = []
240 scale = 2500
241 for frequency in frequencies :
242 scale = find_scale (wavelet , frequency , scale
243 , sampling_frequency ,
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244 max_deviation )
245 scales = np. append (scales ,scale)
246

247 return scales
248

249

250 # # Scales for wavelets of interest
251

252 # In [6]:
253

254

255 def scales_of_interest (max_freq , min_freq ):
256 center_frequency = (50/50000)
257 bandwidth = center_frequency /2
258 wave_list_continuous = ['gaus1 ']
259

260 yes_adjusted_sampling_freq , yes_channels = formatting_data...
( synchronous_periods )

261 desired_frequencies = np. arange (max_freq ,min_freq , -0.5)
262 scales_list = []
263 for wavelet in wave_list_continuous :
264 resultant_scales = make_scales (wavelet , ...

desired_frequencies , yes_adjusted_sampling_freq , ...
max_deviation =0.1)

265 scales_list . append ( resultant_scales )
266 return scales_list [0], wave_list_continuous [0]
267

268

269 # # Continous wavelet calculation
270

271 # In[ ]:
272

273

274 def CWT_plot (channel , vmin = None , vmax = None , save_figure = ...
None):

275

276 scales , wavelet = scales_of_interest (max_freq , min_freq )
277 yes_adjusted_sampling_freq , yes_channels = formatting_data...

( synchronous_periods )
278 yes_start_end_times , yes_start_end_ints , yes_channels , ...

yes_time_series = return_periods (has_fault , ...
channel_of_interest =0, search_from =0,

279 ...
sampling_freq = sampling_freq , ...

synchronous_periods = synchronous_periods )
280 coeff ,freqs = pywt.cwt( yes_channels [ channel ],
281 scales , wavelet ,
282 sampling_period =(1/...

yes_adjusted_sampling_freq ))
283 plot_CWT (freqs , yes_time_series , coeff ,
284 save_figure =( save_figure ),
285 cmap='jet ', norm= colors . Normalize...

(vmin=vmin , vmax=vmax))
286 return save_figure
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.6.2 Image area segmentation
This code is the result of a practice done at MIT in 2016. It has been modified to
include adaptive thresholding[21].

The code within this section is licensed under the following: (c) 2016 Justin Bois and
Griffin Chure. This work is licensed under a Creative Commons Attribution License
CC-BY 4.0. All code contained herein is licensed under an MIT license.

1 #!/ usr/bin/env python
2 # coding : utf -8
3

4 # # Image area segmenter
5

6 # In[ ]:
7

8

9 def area_segmenter (image , thresh ='otsu ', radius =10.0 , ...
image_mode ='greater ',

10 area_bounds =(0 ,1 e7), ecc_bounds =(0, 1)):
11 """
12 This function segments a given image via thresholding and ...

returns
13 a labeled segmentation mask.
14

15 Parameters
16 ----------
17 image : 2d-array to be segmented
18 thresh : Threshold value. Can be 'int ', 'otsu ' or '...

adaptive '.
19 If 'otsu ' or 'adaptive ', the threshold value will be ...

automatically calculated
20 radius : float. Radius for gaussian blur for background ...

subtraction . Default value is 10.
21 image_mode : 'lower ' or 'greater '
22 If 'lower ', objects with
23 intensity values *lower* than the provided threshold ...

will be selected .
24 If `greater `, values * greater * than the provided ...

threshold will be
25 selected . Default value is 'greater '.
26 area_bounds : tuple of ints.
27 Range of areas of acceptable objects . This should be ...

provided in units
28 of square pixels .
29 ecc_bounds : tuple of floats
30 Range of eccentricity values of acceptable objects . ...

These values should
31 range between 0.0 and 1.0.
32

33 Returns
34 -------
35 image_labeled : 2d-array , int
36 Labeled segmentation mask.
37 """
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38 # Apply a median filter to remove hot pixels .
39 med_selem = skimage . morphology . square (3)
40 image_filt = skimage . filters . median (image , selem= med_selem...

)
41

42 # Perform gaussian subtraction
43 image_sub = background_subtract (image_filt , radius )
44

45 # Determine the thresholding method .
46 if thresh is 'otsu ':
47 thresh = skimage . filters . threshold_otsu ( image_sub )
48 elif thresh is 'adaptive ':
49 thresh = skimage . filters . threshold_local (image_sub , ...

block_size )
50

51 # Determine the image mode and apply threshold .
52 if image_mode is 'lower ':
53 image_thresh = image_sub < thresh
54 elif image_mode is 'greater ':
55 image_thresh = image_sub > thresh
56 else:
57 raise ValueError ("image mode not recognized . Must be '...

lower '"
58 + " or 'greater '")
59

60 # Label the objects .
61 image_label = skimage . measure .label( image_thresh )
62

63 # Apply the area and eccentricity bounds .
64 image_filt = area_ecc_filter ( image_label , area_bounds , ...

ecc_bounds )
65

66 # Remove objects touching the border .
67 image_border = skimage . segmentation . clear_border (...

image_filt , buffer_size =20)
68

69 # Relabel the image.
70 image_border = image_border > 0
71 image_label = skimage . measure .label( image_border )
72 image_label = skimage . morphology . dilation ( image_label )
73 plt. imshow ( image_label )
74 return image_label
75

76

77 def background_subtract (image , radius ):
78 """
79 Subtracts a gaussian blurred image from itself smoothing ...

uneven
80 values .
81

82 Parameters
83 ----------
84 image : 2d-array
85 Image to be subtracted
86 radius : int or float
87 Radius of gaussian blur
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88

89 Returns
90 -------
91 image_sub : 2d-array , float
92 Background subtracted image.
93 """
94

95 # Apply the gaussian filter .
96 image_filt = skimage . filters . gaussian (image , radius )
97

98 # Ensure the original image is a float
99 if np.max(image) > 1.0:

100 image = skimage . img_as_float (image)
101

102 image_sub = image - image_filt
103

104 return image_sub
105

106

107 def area_ecc_filter (image , area_bounds , ecc_bounds ):
108

109 # Thresholds objects in an image based on their areas and ...
eccentricities .

110

111 # Parameters
112 #image : Labeled image to be filtered
113 # area_bounds : Acceptable area range. Provided in units of...

square pixels
114 # ecc_bounds : Acceptable range of eccentricities . Should ...

be in the range of 0 to 1
115 #
116 # Returns
117 # image_relab : 2d-array. The relabeled and filtered image
118

119

120 # Extract the region properties of the objects .
121 props = skimage . measure . regionprops (image)
122

123 # Extract the areas and labels .
124 areas = np.array ([ prop.area for prop in props ])
125 eccs = np.array ([ prop. eccentricity for prop in props ])
126 labels = np.array ([ prop.label for prop in props ])
127

128 # Make an empty image to add the approved cells.
129 image_approved = np. zeros_like (image)
130

131 # Threshold the objects based on area and eccentricity
132 for i, _ in enumerate (areas):
133 if areas[i] > area_bounds [0] and areas[i] < ...

area_bounds [1] and eccs[i] > ecc_bounds [0] and ...
eccs[i] < ecc_bounds [1]:

134 image_approved += image == labels [i]
135

136 # Relabel the image.
137 print(np.sum( image_approved ))
138 image_filt = skimage . measure .label( image_approved > 0)
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139

140 return image_filt

.6.3 Enhanced connected components difference method
This code applies the segmented faulty cases on top of the healthy case in order to
see how significantly the faulty cases differ from the healthy case. It also saves the
ECDF plot to the computer. This code is a variation of the code produced in the
specialization project[21]

1 #!/ usr/bin/env python
2 # coding : utf -8
3

4 # # Enhanced connected components
5

6 # In [12]:
7

8

9 pathlist = Path('A:\\ Master thesis \\ Data sets Motor \\...
Experiment \\ Difference FL').rglob('*. csv ')

10 save_path = 'A:\\ Master thesis \\ Iterative image folder '
11 save_figure = 'A:\\ Master thesis \\ Iterative image folder \\ new....

png '
12 # ----------------------------------------------
13 sampling_freq = 10000
14 synchronous_periods = 20 # Normally 20
15 # ----------------------------------------------
16 max_freq = 80
17 min_freq = 20
18 channel = 1 # Corresponds to the columns in the csv datasets
19 vmin = None
20 vmax = None #NLH had a max intensity of 8.6
21 # ----------------------------------------------
22 t = 0.05 # Normally 0.25
23 block_size = 101
24 # ----------------------------------------------
25 area_bounds = (100 , 10000)
26 ecc_bounds = (0, 1)
27 namelist = []
28 meanlist = []
29 image_seglist = []
30 healthy_image_seglist = []
31 # ----------------------------------------------
32

33 healthy = str('A:\\ Master thesis \\ Data sets Motor \\ Experiment...
\\FL\\H.Wfm.csv ')

34 has_fault = pd. read_csv (healthy , sep=';',header ='infer ')
35 healthy_plot = CWT_plot ( channel = channel , vmin = vmin , vmax =...

vmax , save_figure = save_figure )
36 healthy_test = skimage .io. imread (f'A:\\ Master thesis \\...

Iterative image folder \\ new.png ')
37 healthy_test = skimage .color. rgb2gray ( healthy_test )
38
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39 for path in pathlist :
40 file = str(path)
41 has_fault = pd. read_csv (file , sep=';',header ='infer ')
42

43 return_plot = CWT_plot ( channel = channel , vmin = vmin , ...
vmax = vmax , save_figure = save_figure )

44

45 test = skimage .io. imread (f'A:\\ Master thesis \\ Iterative ...
image folder \\ new.png ')

46 test = skimage .color. rgb2gray (test)
47

48 # Pass all images through our function .
49 image_seg = area_segmenter (test , thresh = 'adaptive ', ...

image_mode = 'lower ', area_bounds = area_bounds , ecc_bounds =...
ecc_bounds )

50 image_seglist . append ( image_seg )
51

52 props = skimage . measure . regionprops (image_seg , ...
intensity_image = healthy_test )

53 mean_int = np.array ([ prop. moments_central for prop in ...
props ]) # mean_int is a numpy. ndarray

54

55 # Creating list with corresponding filename
56 name = file. rstrip ('.Wfm.csv ').split('\\ ')[-1]
57 print(name)
58 namelist . append (name)
59 meanlist . append ( mean_int )
60

61 # Performing the empirical cummulative distribution function ...
and saving its plot

62 image_name = file. rstrip ('.Wfm.csv ').split('\\ ')[-2]
63 addon = file. rstrip ('.Wfm.csv ').split('\\ ')[-3]
64 save_path = os.path.join(save_path , addon + ' ' + image_name +...

' ' + 'channel ' + ' ' + str( channel ))
65 fig = px.ecdf(meanlist , color= namelist )
66 fig. write_image (f'{ save_path }. png ')

.6.4 Label image regions
This code is provided by scikit-image[43] and it is one of their applications of the
regionprops tool

1 #!/ usr/bin/env python
2 # coding : utf -8
3

4 # # Label image regions
5

6 # In[ ]:
7

8

9 import matplotlib . pyplot as plt
10 import matplotlib . patches as mpatches
11

12 from skimage import data
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13 from skimage . filters import threshold_otsu
14 from skimage . segmentation import clear_border
15 from skimage . measure import label , regionprops , ...

regionprops_table
16 from skimage . morphology import closing , square
17 from skimage .color import label2rgb
18

19 image = image_seglist [5]
20

21 # apply threshold
22 thresh = threshold_otsu (image)
23 bw = closing (image > thresh , square (3))
24

25 # remove artifacts connected to image border
26 cleared = clear_border (bw)
27

28 # label image regions
29 label_image = label(image)
30 # to make the background transparent , pass the value of `...

bg_label `,
31 # and leave `bg_color ` as `None ` and `kind ` as `overlay `
32 image_label_overlay = label2rgb ( label_image , image=image , ...

bg_label =0)
33

34 fig , ax = plt. subplots ( figsize =(10 , 6))
35 ax. imshow ( image_label_overlay )
36

37 for region in regionprops ( label_image ):
38 # take regions with large enough areas
39 if region .area ≥ 100:
40 # draw rectangle around segmented coins
41 minr , minc , maxr , maxc = region .bbox
42 rect = mpatches . Rectangle ((minc , minr), maxc - minc , ...

maxr - minr ,
43 fill=False , edgecolor ='red ',...

linewidth =2)
44 ax. add_patch (rect)
45

46 ax. set_axis_off ()
47 plt. tight_layout ()
48 plt.show ()

.6.5 CatBoost implementation
This code is a variation of work done by the student Markus Fredrik Johansen in
a specialization topic during fall 2021. It has been modified to work for image
processing data as well as providing an investigation into region property importance

1 #!/ usr/bin/env python
2 # coding : utf -8
3

4 # # Necessary packages for the CatBoost implementation
5

6 # In [9]:
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7

8

9 import numpy as np
10 import pandas as pd
11 from sklearn . model_selection import train_test_split
12 import catboost as cb
13 from catboost import CatBoostClassifier
14 from catboost import CatBoostRegressor
15 import catboost as cb
16 import numpy as np
17 import pandas as pd
18 import seaborn as sns
19 import shap
20 from matplotlib import pyplot as plt
21 from sklearn . model_selection import train_test_split
22 from sklearn . metrics import mean_squared_error
23 from sklearn . metrics import r2_score
24 from sklearn . inspection import permutation_importance
25

26

27 # # Importing the training dataset and the test dataset
28 #
29 # The data is imported . For this application , the data is ...

produced by the difference method and distributed between a...
training set and a testing set

30

31 # In [10]:
32

33

34 training_set = pd. read_csv (r'A:\ Master thesis \Data collection \...
Final collection 2. csv ', sep=';')

35 categories = training_df . columns # Get the names of all the ...
categories

36 test_set = pd. read_csv (r'A:\ Master thesis \Data collection \...
Final test 2. csv ', sep=';')

37 test_original = test_set # Will be used later for gathering ...
results

38

39

40 # # Preview of data
41

42 # In [11]:
43

44

45 # Preview dataset
46 training_set .head ()
47 test_set .head ()
48

49 # Summary of dataframe
50 training_set .info ()
51 test_set .info ()
52

53

54 # # Sorting numerical and categorical columns
55 # In the case that there is a mix in data types , it is ...

important to sort them into numerical and categorical ...
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columns . This is done so it is possible to convert the ...
columns into an usable format

56

57 # In [12]:
58

59

60 # Sorting column into object and numerical
61 training_set_numerical = training_set . select_dtypes ( exclude ='...

object ')
62 test_set_numerical = test_set . select_dtypes ( exclude ='object ')
63

64 training_set_categorical = training_set . select_dtypes ( include =...
'object ')

65 test_set_categorical = test_set . select_dtypes ( include ='object '...
)

66

67 # Names of columns
68 training_set_numerical_cols = training_set_numerical . columns ....

tolist ()
69 training_set_categorical_cols = training_set_categorical ....

columns . tolist ()
70

71 test_set_numerical_cols = test_set_numerical . columns . tolist ()
72 test_set_categorical_cols = test_set_categorical . columns ....

tolist ()
73

74

75 # # Converting categorical columns into numerical columns and ...
filling in missing values

76

77 # In [13]:
78

79

80 # Converting object to category
81 training_set_category = training_set_categorical [...

training_set_categorical_cols ]. astype ('category ')
82 test_set_category = test_set_categorical [...

test_set_categorical_cols ]. astype ('category ')
83

84 # Converting category to int and filling missing values
85 training_set_category [ training_set_categorical_cols ] = ...

training_set_category [ training_set_categorical_cols ]. apply(...
lambda col:pd. Categorical (col).codes)

86 test_set_category [ test_set_categorical_cols ] = ...
test_set_category [ test_set_categorical_cols ]. apply( lambda ...
col:pd. Categorical (col).codes)

87

88 # Filling missing numerical values
89 numeric_cols = training_set_numerical . columns . values
90 for col in numeric_cols :
91 missing = training_set_numerical [col ]. isnull ()
92 num_missing = np.sum( missing )
93 if num_missing > 0: # impute values only for columns that...

have missing values
94 med = training_set_numerical [col ]. median () # impute ...

with the median
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95 training_set_numerical [col] = training_set_numerical [...
col ]. fillna (med)

96

97 numeric_cols = test_set_numerical . columns . values
98 for col in numeric_cols :
99 missing = test_set_numerical [col ]. isnull ()

100 num_missing = np.sum( missing )
101 if num_missing > 0: # impute values only for columns that...

have missing values
102 med = test_set_numerical [col ]. median () # impute with ...

the median
103 test_set_numerical [col] = test_set_numerical [col ]....

fillna (med)
104

105

106 # # Combining columns into a complete dataset
107 # Finishing the preparation by combining the datasets into the...

training and testing dataset again
108

109 # In [14]:
110

111

112 # Combining columns
113 training_set = pd. concat ([ training_set_numerical , ...

training_set_category ], axis =1)
114 test_set = pd. concat ([ test_set_numerical , test_set_category ], ...

axis =1)
115

116

117 # # Preparing training dataset
118

119 # In [37]:
120

121

122 # Feature vector and target variable
123 X = training_set .drop('target ', axis =1)
124 y = training_set ['target ']
125

126 # Split into training and validation set
127 test_size = 0.1
128 random_state = 9987
129 X_train , X_test , y_train , y_test = train_test_split (X, y, ...

test_size =test_size , random_state = random_state )
130

131

132 # # Implementing CatBoost
133 # CatBoost was chosen for this task because of previous ...

studies showing prominent results within diagnosing ...
synchronous motors

134

135 # In [38]:
136

137

138 # Catboost implementation
139 iterations = 1000
140 learning_rate = 0.2
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141

142 train_dataset = cb.Pool(X_train , y_train )
143 test_dataset = cb.Pool(X_test , y_test )
144

145 categorical_features_indices = np.where(X. dtypes != np.float)...
[0]

146

147

148 clf = CatBoostClassifier ( iterations =iterations , learning_rate =...
learning_rate , depth = 8)

149 clf.fit(X_train , y_train , cat_features = ...
categorical_features_indices , eval_set =( X_test , y_test ), ...
verbose =False , plot=True)

150

151

152

153 # # Finding the R- squared value of the predictive function
154

155 # In [39]:
156

157

158 r2 = r2_score (y_test , pred)
159 print(" Testing performance ")
160 print('R2: {:.2f}'. format (r2))
161

162

163 # # Investigating feature importance
164

165 # In [40]:
166

167

168 sorted_feature_importance = clf. feature_importances_ . argsort ()
169 plt.barh( categories [ sorted_feature_importance ],
170 clf. feature_importances_ [ sorted_feature_importance ],
171 color='turquoise ', height =0.5)
172 plt. xlabel (" CatBoost Feature Importance ")
173 plt.plot( figsize =(20 ,10))
174

175

176 # # A more concise representation of the investigation
177

178 # In [41]:
179

180

181 explainer = shap. TreeExplainer (clf)
182 shap_values = explainer . shap_values ( X_test )
183 shap. summary_plot ( shap_values , X_test , feature_names = ...

categories [ sorted_feature_importance ])
184

185

186 # # Exporting data
187 # And here we see the result of the work. The predictions is ...

shown here in the plot
188

189 # In [43]:
190
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191

192 # Exporting data
193 probs = clf. predict ( test_df )
194 sub = pd. DataFrame ()
195 sub['id '] = test_orig ['id ']
196 sub['target '] = probs [:, 0]
197 sub['target ']. plot.hist(bins =50)
198

199 sub. to_csv (r'A:\ Master thesis \Data collection \ results .csv ', ...
index=False , sep=';')

200 print('Test size =', test_size , 'Random state =', random_state ...
, 'Iterations =', iterations , 'Learning rate =', ...
learning_rate )
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