Elias Sagmo Larsen
Torkjell Romskaug

Real time stress-aware feedback
system for programming.

Master’s thesis in Master of Science in Informatics
Supervisor: Kshitij Sharma

June 2022

2
4
=
P

°
o
C

c
]

'_

©
C
(8]
[0}
9]
C

o
(&)

(V2]

Y
o

2
(%]
—
[}

2
C

o)
C

ke
Bo
:
o

zZ

0y
£e
o Y
[Te]
£wun
DOL
c g
w S
= a
SE
S O
oo
D«
w2
T C
ca
=
85
S g
gw
_CD
o}
|_
c
o
=1
©
€
_
L
£
Y
S)
=]
o
©
[N

@ NTNU

Kunnskap for en bedre verden

Elias Sagmo Larsen
Torkjell Romskaug

Real time stress-aware feedback
system for programming.

Master’s thesis in Master of Science in Informatics
Supervisor: Kshitij Sharma
June 2022

Norwegian University of Science and Technology

Faculty of Information Technology and Electrical Engineering
Department of Computer Science

@ NTNU

Kunnskap for en bedre verden

Abstract

In this master thesis we implement a real time system of continuous feedback based on students
predicted cognitive load. The system was tested on two groups of students in a within subject
experiment. The participants (n=26) was first introduced to a pretest and subsequently tasked
with debugging two games with varying degrees of difficulty, they had a total of 15 minutes on
each task. The pretest was used to split the participants into two groups based on their level of
expertise. To compute cognitive load, pupillary data from participants was collected using an eye
tracker. Providing students with feedback while programming did not increase their cognitive load.
Regardless of expertise, receiving feedback had a positive effect on performance on the harder task
and had no effect on the easier task. Experts had a trend towards having lower cognitive load than
Novices when programming, especially on easier tasks. The results of this experiment are inline
with the previous research done on the subject and heavily implies the feasibility of wearable based

feedback system for programming.

ii

Oppsummering

I denne masteroppgaven implementerer vi et sanntidssystem med kontinuerlig tilbakemelding
basert pa studentenes predikerte kognitive belastning. Systemet ble testet pa to grupper elever i
et mellom subjekt fageksperiment. Deltakerne (n=26) ble forst introdusert til en forhandstest og
fikk deretter i oppgave a feilspke to spill med ulik vanskelighetsgrad, de hadde totalt 15 minutter
pa hver oppgave. Forhandstest ble brukt til a dele deltakerne inn i to grupper basert pa deres
kompetanseniva. For a beregne kognitiv belastning ble pupilldata fra deltakerne samlet inn ved
hjelp av en gyesporer. A gi elevene tilbakemelding under programmering gkte ikke deres kognit-
ive belastning. Uavhengig av kompetanse hadde tilbakemelding en positiv effekt pa prestasjonen
pa den vanskeligere oppgaven og hadde ingen effekt pa den lettere oppgaven. Eksperter hadde
en trend mot a ha lavere kognitiv belastning enn nybegynnere ved programmering, spesielt pa
enklere oppgaver. Resultatene av dette eksperimentet er i trad med tidligere forskning gjort pa
emnet og antyder i stor grad gjennomfgrbarheten av et smart baerbart tilbakemeldingssystem for

programmering,.

iii

iv

Acknowledgments

We want to say thank you to our advisor Kshitij Sharma, who with his insight and knowledge
has helped us immensely. Additionally we want to thank William, Casper and Petter who had to

endure this last year with us at the study hall, Gamle fysikk 353.

vi

Table of Contents

List of Figures
List of Tables

1 Introduction

1.1 Motivation
1.2 Research Questions L
1.3 Terminology L
1.4 Outline e

2 Theory & related work

2.1 Cognitive load and Stress
2.2 Feedback
2.3 Experts and Novices L

3 Research design
3.1 Experiment

3.2 Analysis L

4 Implementation and Data Processing

4.1 Eyetracking. e e
4.2 Cognitive Load Estimation & Data Processing
4.2.1 Real time Data Processing

vii

ix

xi

10

13

14

17

21

4.2.2 LHIPA Calculation e

4.2.3 Mean LHIPA and cognitive load calculation

4.3 VSCode Extension

5 Results

5.1 Performance e e e e e

5.2 Cognitive load

5.3 Perceived mental load (Nasa TLX)

5.4 Interactions and number of feedbacks . .

6 Discussion & Limitations

6.1
6.2 Validity of Cognitive load Measurements
6.3 Feedback - [RQ1]

6.3.1 Continuous feedback
6.4 Expertise & Cognitive load - [RQ2] . .
6.5

7 Conclusion & Contribution

Bibliography

A Adjusted LHIPA code

B NSD

C Consent form

D Pretest

E Snake debugging task with hints

F Tetris debugging task with hints

Findings

Limitations & future work

29

30

33

36

38

41

41

42

42

43

44

44

47

49

53

57

67

71

79

83

viii

List of Figures

3.1

3.2

4.1

4.2

4.3

ot
—_

5.2

5.3

5.4

9.5

5.6

5.7

5.8

5.9

5.10

5.11

Research process design Lo

Test environment used during experiments

Implementation architecture o L

Tobii Glasses 2 Eye Tracker Wearable System Tobii I by Tobii Technology is licensed
under Attribution 3.0 Unported.

Types of feedback shown to the participant during debugging tasks

Performance distribution on the pretest.

Performance distribution for Snake and Tetris debugging tasks. The Tetris perform-

ance is the adjusted Tetris performance.,
Performance on Snake and Tetris tasks by expertise.
Sum of Snake and Tetris performance grouped by expertise.

Performance on Snake and Tetris by whether or not the participant was given feed-

back on the task.

Performance when the participant received feedback independent of which task the

feedback was received. oL
Cognitive load for pretest, Snake task and Tetris task.
Cognitive load by expertise. Lo
Average cognitive load by expertise for both Snake and Tetris.
The participants mean cognitive load by feedback or not.

Cognitive load grouped by receiving of feedback. Independent of which debugging
task the participant had feedback on.

ix

30

30

31

33

34

35

35

5.12 Mental demand as reported by a NASA TLX form compared by if the student is

classified as an Expert or Novice for respectively the pretest, Snake and Tetris. . . 37

5.13 The self reported mental demand compared on Snake and Tetris tasks by whether

or not they received feedback on the task. 38

List of Tables

3.1 Generated participant files oo o 16
5.1 Cognitive load mean scores. L oL 34
5.2 NASA-TLX mean SCOTeS. v v v v i it e e e e 36
5.3 Imnteractions with feedback.o oo 38
5.4 Amount of feedback given L L 39

xi

xii

Chapter 1

Introduction

1.1 Motivation

The use of technology and its applications in everyday life has exploded in the previous several
decades. With technology also comes distractions and with distraction, the technology can become
less effective. Cognitive load theory is a way of thinking about human memory that is comparable
to the way ram works in computers. Cognitive load is the number of elements you have in your
memory at one time [1]. Because the human brain’s working capacity is limited, it’s critical not to
overburden it with options and distractions. One could create more effective systems by combining
cognitive load theory and technology. Previously, the two most prominent methods for calculating
cognitive load were time-consuming surveys [2] that asked individuals about their load or intrusive
EEG caps that monitored brainwaves [3]. New research published in the last few years have
outlined a method for predicting cognitive load that is significantly less tiresome, intrusive, and,

most importantly, far less expensive and time consuming [4]-[6].

We can predict the learners cognitive workload by using portable eye-trackers and wristbands to
measure the learners physiological signals, such as pupil dilation [1], [4]-[8]. The application of
such a system could be massive and help in an array of areas, raising awareness of the things that
are clogging up memory, to make space for the things that matters. With knowledge of a user’s
cognitive workload, better solutions might be designed to avoid overwhelming the user and help
them stay focused. Another research area where cognitive workload could be used is in learning

systems as e-learning, giving the teacher or student more tools at their disposal.

The state of the art cognitive load estimation systems have yet to be tested in a programming
setting, and has to the best of our knowledge not been used to give feedback in real time. We
want to take use of the possibility of real time cognitive load estimation and test how well feedback

works when given in such a system. We propose a system that take advantage of the state of the

art theory to give students feedback based on their cognitive load at real time during programming.
Our novel system will try to apply the eye tracking measure proposed in Duchowski et al. [6] and

Duchowski et al. [4] for timing feedback to the programmers need without any human intervention.

1.2 Research Questions

With a system that can give the relative cognitive load of the user with little intervention, we
wanted to investigate several important aspects. We want to investigate the effects of expertise,
which is a key factor in working memory, to see if there is a difference in the effect of our system
based on their prior knowledge. Based on this motivation our research questions(RQs) are as

follows:
o RQ1 What is the effect of continuous feedback timed with cognitive load during programming
tasks?
e RQ2 What is the effect of expertise on cognitive load during programming tasks?
With the use of the following research objectives, this thesis will attempt to address the research
questions.

e RO 1 Design and develop a system for feedback during programming.

e RO 2 Research, design and develop a cognitive load estimation system for real time cognitive

load estimation.

RO 3 Perform an experiment with the developed system to evaluate its effect.

e RO 4 Analyze the resulting data from the experiment.

1.3 Terminology

Pupil dilation is how much, in millimeter, the pupils are dilated. Change in pupil diameter is

often used as a metric to estimate cognitive load.

Cognitive load is related to the brains working capacity, and we define it as the amount of

information the brain can process/is processing at any given moment.

Real time is a term meaning something happening at the same or close to the same time as an

event occurs.

Debugging is the process of finding and removing errors, also called bugs, in software code that

can cause it to behave unpredictably or crash.

1.4 Outline

Section 1: Introduction

The introduction introduces the Motivation, Research Questions, Terminology and the Outline.

Section 2: Theory & related work

In theory & related work we outline knowledge and previous studies on feedback, cognitive load

and stress as well as look into the differences between Experts and Novices.

Section 3: Research Design

In Research Design we outline how we will execute the experiment and how we will analyze the

data.

Section 4: Implementation and Data Processing

In Implementation and Data Processing the stress aware feedback system is described. We describe
the required functionality, the system architecture, and how we implemented the specific parts of

the architecture.

Section 5: Results

In results we present the analyzed results of the experiments in text, graphs and tables.

Section 6: Discussion & Limitations

In discussion the main findings are summarized, interpreted, and implications and limitations

discussed.

Section 7: Conclusion & Contribution

In conclusion & Contribution we conclude and summarize our contributions.

Chapter 2

Theory & related work

In this chapter, the theory and related works about cognitive load, stress and feedback is presented
and explained. It is necessary to clarify concepts for the rest of the thesis. The studies presented

here are selected from a rigid set of criteria.

ot

2.1 Cognitive load and Stress

How we measure and define cognitive load is important to make clear as it should not be ambiguous.
Cognitive load is defined in the following way: The amount of information the brain can process
at any given moment [1]. Measurements of the ground truth cognitive load is often measured
with questionnaires, i.e., rating scales, with the most common being the 9 point scale [9], [10].
Another frequently used measurement is the NASA Task Load Index (NASA TLX) [2]. One of
the main advantages of questionnaires is that they provide valid information on an individual
level. In addition, they are very simple to implement, and a lot of people can use the same
questionnaire. There are some small problems with the questionnaires. One of them is that they
are not completely accurate, and they do not differentiate between the different types of cognitive
load. [11] Although questionnaires have some problems the biggest one might be that the person
has to fill them in after they already have experienced the cognitive load, which leaves time to
forget or miss-remember the correct load. To get better more nuanced measurement research has
taken to measuring physiological data, for example eye tracking and EEG. [3], [11] Though there
are many possible applications of cognitive load theory, we are going to focus on the physiological

measurements and the subsequent feedback one could possibly give to students.

Cognitive load predictors

In recent years researchers have tried to predict cognitive load in both students and others to get
more accurate and faster insights [3], [7], [11]. When researchers try to predict and understand cog-
nitive load they are reliant on predictors to conduct their analysis. As talked about in Section 2.1,
Cognitive load and Stress, the traditional method uses questionnaires. In the following section
we explore other predictors which has been used to predict cognitive load. The focus is mainly
on physiological predictors, specifically eye-tracking measures, EDA (electrodermal activity), skin
temperature, and heart rate measures. A predictor is a variable that maps to the target variable.
In machine learning, a predictor is the input variable to the machine learning model, which in our
case is an eye-tracker and a wristband. The output variable is the target variable, which in our
case is either stress or cognitive load. The next paragraphs will contain information on all the

predictors previously mentioned with what they can and have been used to predict.

Eye-tracking has been shown to be a good tool for predicting cognitive load [8], [12]-[15]. Tobii®
explains eye tracking as a sensor device that can identify a person’s presence and monitor their gaze
in real time. The system turns eye movements into a data stream that includes pupil position,
gaze vectors for each eye, and gaze point information. Essentially, the technology decodes eye
movements and converts them into insights that may be utilized in a variety of applications or as

a second mode of input. Eye-tracking provides the means to extract several features, including

Lhttps:/ /www.tobii.com/group/about /this-is-eye-tracking/

6

pupil diameter, blink latency, eye fixations, and saccade characteristics.

Pupil dilation is one feature from eye-tracking that seems to be good for measuring cognitive load.
[12]-[15] Tt has been studied in several studies over several decades. [13], [14]. Krejtz et al. [12],
conducted a study where participants did tasks of varying difficulty while tracking their eyes. To
track the eyes, the participants had to keep their head stabilized on a chin rest. They tracked
saccades and pupil diameter. The research focused on measuring the averages of the whole session,
and did not try to predict the real time cognitive load. Their results shows that microsaccade
magnitude and change in pupil diameter maps to task difficulty, and thus inadvertently cognitive
load. Additionally, a study by Wel and Steenbergen [13], did a meta-review on pupil dilation as
an index of effort in cognitive control tasks. They found that an increase in task demand leads
to higher pupil dilation. Pupil dilation does at times predict improved task performance, because

more effort can lead to better results.

Going all the way back to 1996, a study by Granholm et al. [14] found that task-evoked pupillary
responses are a reliable and precise measure of cognitive load. They examined 22 undergrads during
a digit span recall task. They used 5, 9 and 13 digits per string (length of the number they had
to remember), where 5 is low, 9 is high, and 13 is too excessive. The subjects pupillary responses
increased with increased task difficulty. When the demand is below cognitive load limits, the
authors suggest that pupillary responses increase methodically with increase in demand. When
the limit is reached or the load is close to the limit, the responses change little, but when the
cognitive load gets excessive the pupillary response starts to decline. Agreeing with Granholm et
al. [14] a more recent study by Gollan et al. [15] combined the mean pupil diameter, saccade speed,
standard deviation, and number of fixations, and demonstrated it to be a reliable and precise

measurement of cognitive load.

As already mentioned in the previous paragraph, some studies used other features than just pupil
diameter to measure cognitive load. One of these features is saccades, which was found to be a
good predictor of cognitive load. [8], [12], [15] Andrzejewska and Skawiriska [8] examined cognitive
load in students. The authors gave the students either a logical debugging task or a syntactical
debugging task. Students were given unlimited time and had to answer orally. The authors
used a mounted eye tracker to measure intrinsic cognitive load. They did not look at continuous
measuring cognitive load but instead looked at the cognitive load of the whole task compared to
another easier task. To find a task’s difficulty, the students rated their task. They rated the logical
debugging task harder than the syntactical debugging task. To find the statistical significance of
the physiological measures, they used eye-tracking measures and considered their averages. They
found that SAA(”the sum of all saccade amplitudes divided by the number of saccades in the

trial”) was statistically significant in relation to task difficulty.

More recent studies used pupil dilation and the frequency of pupil oscillations to create new fea-

tures/ measures of cognitive load. [4], [6]. The Duchowski et al. [4] build upon the work of Marshall

[5] and created the index of pupillary activity (IPA). The IPA is capable of discriminating between
task difficulty in respect to cognitive load, in experiments where participants do easy and difficult
tasks. The IPA and the ICA are thought to be insensitive to lighting conditions, because they are
based on moment to moment changes in pupil dilation. [6] However it is thought to be susceptible
to the law of initial value, when the participants is seated in a room with very low light, and the
pupil is already dilated. Duchowski et al. [6] shows that IPA is incapable of distinguishing between
high and low cognitive load during n-back task, which they consider a more appropriate meas-
urement of its manifestation. Another metric that claims to be more resistant to changes in light
conditions is Duchowski et al. [6]’s Low High Index of Pupillary Activity (LHIPA). The LHIPA
uses the same concept of pupillary oscillations, but considers the ratio of high and low frequency
bands contained within the wavelet composition of pupil diameter signal. Through analysis of
three experiments, they show the robustness of the LHIPA. They conclude that the LHIPA is not
necessarily successful in distinguishing between levels of task difficulty, but that it is better than
the TPA at calculating cognitive load. Their findings show that small angles off-axis distortion
negatively affect IPA, but not LHIPA, making the LHIPA a more suitable fit when participants
have to move their eyes freely. They also hypothesize the LHIPA’s ability to estimate cognitive

load in real time.

Because of the success of cognitive load measurements when utilizing eye trackers, Zagermann
et al. [16] looked into the field of cognitive load and eye tracking to device a model for utilizing
eye tracking with focus on Human Computer Interaction (HCI). They created the model with
four eye-based indicators; Fixation(Number and duration), Saccade(Length, Angle and Velocity),
Pupil(dilation) and Blink(Rate and Velocity). They then theorize that elements from HCI influence
the eye-based indicators; Individual Interaction, Workflow, Environment, and Social Interactions

and communication.

The aforementioned studies shows how eye-tracking can be beneficial for predicting cognitive load
in students. Firstly, eye-tracking has successfully been used to map task difficulty with cognitive
load. Therefore, we have reason to believe that as a task gets harder, or a student has high cognitive

load, eye-tracking will be a good predictor and provide valuable data.

Wristbands is another tool that have been used to investigate cognitive load. Various measure-
ments have been created and used to capture cognitive load. Haapalainen et al. [17] found that the
electrocardiogram median absolute deviation and median heat flux (rate of heat transfer) meas-
urements were the most accurate at distinguishing between low and high levels of cognitive load,
providing a classification accuracy of over 80% when used together. In a more recent study by
Gjoreski et al. [18], galvanic skin response (GSR) was found to demonstrate changes in germane

cognitive load levels.

Stress predictors

Smartwatches and wristbands have been used to investigate physiological stress. The physiological
measurements used from the smartwatches and wristbands are mainly EDA, skin temperature,
and heart rate and have been used many times to measure physiological stress [19]-[21]. Kyriakou
et al. [19] studied stressful situations in real-life. The researchers used galvanic skin response, a
type of EDA, and skin temperature to measure stress. They developed a model that gained an
accuracy of 84% when predicting moments of stress. Gjoreski et al. [20] conducted a study on five
adults where they tried to detect stress using a commercial wristband. The adults logged their
stress level on a smartphone, and their heart rate was measured during the experiment. Both the
logged stress and heart rate was fed to a machine learning model. They conducted the study in a
lab where they used stress-inducing techniques. Additionally, they tested in real-life scenarios over
the course of 55 days. Their detection was significantly better when using context data like the
watches’ accelerator. The accuracy after collecting real-life data for 55 days, for a 2-class problem,

was 92%.

One of the biggest advantages of smartwatches and wristbands are their unobtrusive nature. In
contrast to EEG a wristband is invisible. They are also better suited, than other wearables, for
collecting measurements when a study is conducted over a longer time period. They are better
suited because the user is less obstructed. In addition they can give information at night. Eye-
trackers don’t give any information when the subject is sleeping, while a wristband or a smart-watch

can continuously be on the body.

2.2 Feedback

Feedback is one of the most powerful tools educators has at hand to influence the learning of
students, but the influence can be both bad and good and it varies how effective it is [22]. Wis-
niewski et al. [22] conducted a meta-analysis of educational feedback research and is a continuation
on Hatties previous study ”The Power of Feedback” Hattie and Timperley [23]. The purpose of
feedback is to help the learner achieve their desired learning goal. Wisniewski found that good

feedback timed well has an effect size of 1.13 on the learners learning achievement.

Wisniewski et al. [22] found that there are some points that are important for how effective the
feedback is, how informative the feedback is, when the feedback is received and how specific it
is. One general rule that seems to apply to most forms of feedback is that more information
correlates with a more effective learning outcome for the user. There are now being done a lot
of research on the topic of giving feedback based on information gathered from wearable devices
such as eye trackers and wristbands [3], [7], [11]. With eye trackers and wristbands being able to

predict cognitive load and stress levels we think that this has potential as a tool to solve the issue

9

of timing the feedback to the participant.

Real time Feedback Systems

Testing of real-time wearable-based feedback systems is barely explored in the literature. However,
there is research that looks at the possibilities of such systems. [3], [21] Di Lascio et al. [21] was
able to use data gathered from of-the-shelf wearable devices to identify the emotional engagement
of students during lectures with high precision. They evaluated their methods on 24 students
and 9 teachers over the course of 41 lectures. Using a support vector machine they got a 81
percentage recall rate with a precision of 64 percent, the recall rate was 25 percent higher then when
using a biased random classifier. The data they used to accomplish this was from a commercial
wrist-watch that collected the students electro-dermal activity. In their study they theorize that
their models could be used to make a feedback system for students and teachers that would give
them information on their engagement, enabling them to self-reflect and adjust. Because student
engagement correlates in many ways to learning outcome [24] the feedback would be highly relevant
for advancing ones own learning. With the proposed feedback system they would give student or
the teacher the information gathered after the session, but there is nothing to suggest this could

also be done in real time using the same methods.

2.3 Experts and Novices

Ericsson and Kintsch [25] proposed that when we gain expertise on a task, the information is stored
in long-term memory in the form of higher-order structures or representations that are reactivated
when the task is performed. The acquisition of a concept or skill is then the process of forming
a template or schema for it in long-term memory, gradually integrating multiple elements into a
smaller number of more complex elements that we can activate automatically [26]. Expertise is
task-specific, but for any activity that involves acquiring expertise, long-term working memory
provides enormous processing power. The working memory capacity of novices is in contrast

severely limited.

Experts and novices work differently when approaching programming tasks. Wiedenbeck [27]
suggest that experts automate some of the simpler subcomponents of their programming tasks,
indicating that they make more use of their long term memory than novices. Jessup et al. [28]
found that experts have more fixations than novices. When solving a sql database problems, the
experts studied the sql database schema significantly more than the novice students [29]. Najar et
al. [29] hypothesize that it is because the experts know to look at the schema to find the correct

elements.

Because experts automate some of their actions and have a deeper knowledge, expertise can have

10

an effect on cognitive load. Novices do not have sufficient knowledge, they may experience higher
cognitive load than an intermediate or expert[30]. Expertise effect, where experts have higher

performances than novices, has an important impact on cognitive load [31].

11

12

Chapter 3

Research design

The literature review containing the related works showed how previous studies had conducted
similar experiments to what we wanted to conduct. In Duchowski et al. [6] they used pupil dilation
and the frequency of pupil oscillations to create new features of cognitive load. The new metrix
called the Low/High Index of Pupillary Activity or LHIPA, is a more robust method of detecting
cognitive load than the similar Index of Pupillary Activity and a lot more than using just the pupil

dilation which is subjected to even small changes in lightning conditions.

Our chosen research strategy for the collection of the data is through experiments. We are going to
use eyetracking and wristband technology to asses the participants in real time. The experiments
are designed as a Within-Subjects (repeated measures) experiments, meaning that all participants
are subjected to both the control and test environment. The debugging tasks are always provided
to the participants in the same order, Snake before Tetris, and they only get feedback on Snake
or Tetris, never both. We chose to design the experiments in this way to maximize the amount of

data collected and we did not think it would contaminate the other results.

13

Strategies

Data generation
Experiences Surve
& motivation Y

Interviews

3
o
~
>
o
a
0w

Data
analysis

Design &
creation

I Observation
often
—_—
1:N
Case study

Action
research

Ethnography I

Figure 3.1: Research process design

Conceptual
framework

Qualitative

LBl

3.1 Experiment

There are several different methods of eye tracking, but we have chosen mainly to focus on the
two most dominant ways, a stationary eye tracking bar and eye tracking glasses. The bar is less
obtrusive for the participant as it sits on the computer in front of the participant, but it is limited
in that it can’t always see the participant’s eyes. For example, when the subjects looks in another
direction than the eye-tracking bar. The glasses are better at continuously capturing their eyes,
but it is tougher to map where the participant is looking, and the frame rate is typically lower.
The glasses are also situated closer to the eyes. Glasses are more relevant if the participant needs
the option to move freely, and the bar is more relevant if the participant is looking at a screen the
whole time. Because we have a pretest on paper we needed the participant to be able to look away

from the screen, therefore we chose to use a mobile eye tracker for our experiment.

Originally we were going to also use wristbands to monitor the participants stress levels, but had to
abandon this as the hardware being used was too unreliable. The issue made it close to impossible
to receive consistent heart rate data, that we needed for the real time feedback we wanted to
implement. As a band-aid solution we recorded the heart rate with the Empatica mobile app with

the intention to analyze this data at a later stage.

14

Participants

The participants for our research project was chosen based on several different key criteria. The
first criteria was that the participant needed to be a students currently living in Trondheim because
the tests were conducted physically on site. Criteria number two was that the student needed to
have some computer coding experience, here we put the bar at the second semester intermediate
course TDT4140 - Software Engineering, seeing as a second semester course would be sufficient
for solving the programming tasks. Lastly the participant needed to be able to work on a monitor
without using glasses as the Tobii eye trackers lose a lot of data when using glasses beneath the
eye tracker glasses. With theses criteria in mind we reached out to students of informatics and
computer science through different social media platforms and word of mouth. The study was

conducted with in total 26 participants with ages ranging from 19 to 27.

Experimental Procedure and data collection

The participants went through 3 tasks, one pretest and two debugging coding tasks. The pretest
evaluates the participants programming proficiency, while the debugging tasks were for testing of
the independent variables. After each of the tasks the participants answered a NASA Task load
index questionnaire(Nasa TLX), this was done to assess their perceived workload and achievement,
in addition as a validation that the implementation of our cognitive load estimation was correct.
The participants was put randomly in one of two groups of participants, which one they were
placed in was kept secret and decided if they would receive feedback on the first or the second

debugging task.

After signing the consent form and making sure they understood the contents, the participants were
seated and fitted to the eye tracker glasses and wristband as seen on Figure 3.2. The participant
was set directly in front of the screen they coded on, with one keyboard and a mouse. After the
fitting and making sure the participant was comfortable the recording started. Additionally the
monitor was also recorded using screen recording software and the participant was filmed from a
web camera mounted on the monitor as can be seen on figure 3.2. They had 15 minutes on each
task, including the pretest and the entire experiment took approximately 45 minutes to 1 hour.
After each participant was finished, either before time or on time we then proceeded with stopping
the recording. Then came the review of the answers, how many bugs were found and corrected.
The reviewed data would then be decoded, graded and placed in a excel sheet for further analysis.
All data from each participant was placed in a folder with their unique id making it anonymous.

In the end we had the following list of documents on each participant:

15

DATA TYPE

webcamera recording .mp4

screen recording .mp4
vscode log data .CSV
scores and answers .CsV
Cognitive load data .CSV
eye tracker data .CSV

Table 3.1: Generated participant files

Technology and Experimental setup

The experiments were conducted in a secluded room where only the participant and tester(s) were
present. The eye tracking was conducted using a pair of Tobii Pro Glasses 2 running at at 50hz
connected to the computer using an Ethernet cable. The physiological data was acquired using the
Empatica E4 wristband and recorded using Empaticas proprietary mobile app E/ realtime. Web
camera recordings were recorded using the windows camera app with a logitech 1080p monitor
camera. The web camera was mounted on the top of the computer monitor. The screen was
recorded using OBS Studio, a free screen recording software. We also tracked the participants
scrolling and focus when they were programming, this was logged using the VSCode extension

APL

\
\
)

)

#3 Web camera| g | #1JEye
== - \

|

Figure 3.2: Test environment used during experiments

16

3.2 Analysis

A series of statistical analyses was needed in order to properly answer the research questions.
To answer the research questions we introduce two independent variables. The first independent
variable is feedback, which is a binary variable that we controlled during the experiment. The
second independent variable is programming expertise, which we have split into Expert and Novice
and calculate based on the pretest. We used these independent variables to find their effect on other
dependent variables, i.e., variables that are dependent on the independent variable. In addition,

we compared some of the dependent variables against each other.

Statistical Analysis

During development, before the experiments, it was shown from a pilot that the Tetris debugging
task was harder than the Snake debugging task, based on the answers of five (N=5) participants.
To adjust for the difference in difficulty we adjusted the grading of Tetris to be 1.5 points per 1
point for Snake. Both debugging tasks had a max score of 6 correct answers, but the adjusted Tetris
max score is 9 and Snake is 6. In our analysis we wanted to compare the difficulty of the two tasks,
to verify the findings from the pilot. To do this comparison we needed to make performance
variables for Snake and Tetris, where the performance variable for Tetris is unadjusted, i.e., 1 point
Snake is equal to 1 point in Tetris. Therefore, in the analysis when we talk about the differences
in difficulty the 1 to 1 grading is used, but everywhere else when analyzing in conjunction with the
other independent variables the adjusted Tetris score is utilized. Both performance variables for
Snake and Tetris are not normally distributed and therefore all tests with them are non-parametric.
To check for normality we used the Shapiro-Wilks test. To investigate the task difficulty a Wilcoxon
Signed-Ranks test was applied between the score on Snake and the unadjusted score on Tetris. The
experiments being repeated-measures makes score on Snake and Tetris debugging tasks dependent
variables because the participants first complete the Snake debugging task, before proceeding to

the Tetris debugging task.

In order to answer the questions about the cognitive load experienced during the different stages of
testing we created new variables from the collected data. We took the mean of each participant’s
cognitive load during each of the individual segments to compute the mean Cognitive load for

the pretest, Snake and Tetris. The cognitive load calculation is explained in Section 4.2.3.

As stated in chapter 2 cognitive load can be an indicator of how difficult a task is. The higher the
load the more difficult the task is considered. To investigate the task difficulty and more precisely
the tasks cognitive load, a Wilcoxon Signed-Ranks test was applied between the cognitive load
measured on the Snake and Tetris debugging tasks. The cognitive load variables for Snake and
Tetris are dependent variables, because each participant first goes through one task where the

cognitive load is measured, and then another. The cognitive load of the second tasks might be

17

influenced by the participant already having gone though a possibly mentally demanding task,
which is why they are considered dependent. The difference between the dependent variables is
not normally distributed, which warrants the use of a non-parametric test. The sample size is also

so small that it is important to check the normal distribution if one where to use a t-test.

The first independent variable is feedback, which is our controlled variable in the experiments.
RQ1: What is the effect of continuous feedback timed with cognitive load during programming

tasks? is the driving force of many of our hypotheses and the statistical analyses related to them.

The amount of information processed by the brain is defined as cognitive load. Programming with
and without feedback should increase and decrease the quantity of information processed by the
brain, respectively, resulting in an increase in cognitive load. As a result, we should also expect an

increase in perceived cognitive load. To answer RQ1 we want to test the following hypothesises.

e H1 - Cognitive load increases when the user is given feedback.
e H2 - The perceived cognitive load is higher when receiving feedback.

e H3 - The user scores better when receiving feedback.

To investigate the effect of feedback [RQ2] during the experiment within each group on debugging
performance, cognitive load, and perceived mental demand, a Mann-Whitney U test was applied
between the feedback and the no feedback groups. By within each group, we mean the effect
when looking at feedback and no feedback for only one of the debugging tasks. Feedback is a
categorical variable, while cognitive load, performance and perceived mental load variables are
continuous. All the continuous variables are, when splitting on feedback, either not normally
distributed or failed the test for equality of variances. Normal distribution was tested for with
a Shapiro-Wilks Normality test, and variance was tested for with a Levene Test for Equality of
Variances. To investigate the effect of feedback during the experiment, looking at both Snake
and Tetris, on debugging performance. A Wilcoxon Signed-Ranks test was applied between the
feedback group and the no feedback group. We considered using a paired t-test, but because the
debugging performance variables, with and without feedback, was either not normally distributed

or failed the test for equality of variances, therefore we went with a non-parametric test.

To answer our research question pertaining to expertise [RQ2] we split the participants into
Experts and Novices, creating the variable Expertise. Experts are the participants that scored
high on the pretest, and Novices are the ones that scored low. The split is based on the mean of
all the pretest scores (M = 4.519), which makes the novices the ones that scored from 0 to 4 and

the Experts the ones that scored from 5 to 7.

Experts are defined as the participants that score better on the pretest than Novices. We assume
that they therefore need less time to understand the code, and faster understands the bigger

concepts. Experts have better schemata, and might have a lower cognitive load than Novices [30].

18

If the assumption stands we would generally expect the Experts to score lower on cognitive load
than the Novices, because they already understand some underlying concepts, that the Novices
need to hold in their memory, while the Experts don’t. To answer RQ2 we formulate the following

hypothesis.

e H/: FExperts have a lower cognitive load than Novices when solving programming tasks.

e H5: FExperts perceives tasks to be easier than Novices when solving programming tasks.

To investigate the effect of the participants expertise on performance and cognitive load. A Mann-
Whitney U test was applied between the Expert and Novice group on Snake and Tetris debugging
tasks. Expertise is an independent categorical variable, while performance and cognitive load for
Snake and Tetris are continuous dependent variables. All the continuous variables were either not
normally distributed or did not have equality of variances. To investigate the effect of expertise on
the total score (Snake + Tetris performance) and the average cognitive load (cognitive load Snake
+ cognitive load Tetris / 2) for the two tasks, a Mann-Whitney U test was applied between the
Expert and Novice groups. The Expert and Novice group are independent and the total score and
average cognitive load are continuous variables. When splitting the variables on knowledge level

they where either not normally distributed or did not satisfy the equality of variances.

To investigate the effect of expertise on perceived mental load two different tests were applied
between the Expert group and the Novice group. A Mann-Whitney U test for the pretest and a
independent t-test for Snake and Tetris. When splitting on expertise the pretest perceived mental
load was not normally distributed, while both Tetris and Snake were normally distributed and had

equality of variances.

All the analyses were performed with python 3.10 using SciPy stats, and the diagrams were created

using seaborn and matplotlib.pyplot.

19

20

Chapter 4

Implementation and Data

Processing

Our goal is to implement a system that takes advantage of knowing a individuals cognitive load

while they are solving programming tasks to give them relevant continuous feedback.

To implement the system and achieve this goal, we need to achieve multiple sub-goals:

1. We need to reliably collect data from participants while they are programming.
2. We need to process the data in real time.

3. We need to calculate the cognitive load in real time.

4. We need to, based on the cognitive load, give appropriate feedback.

We need to implement the feedback in a programming environment.

ot

Figure 4.1 shows the outline of the system architecture. The system is divided between front
end, which handle the feedback, and back-end which handles the eye tracking and cognitive load
estimation. The eye tracking is explained in Section 4.1. The Cognitive Load estimator is explained
in Section 4.2, along with how data is fetched from the eye tracker. The LHIPA calculation and
cognitive load estimation is further elaborated on in Section 4.2.2 and 4.2.3. Finishing off the

chapter with a walk trough of how the front end VSCode extension works in Section 4.3.

21

Eye-tracker data

CogntivelLoadEstimator.py extension.ts

UpdateDatal) » 1 | cognitveLoadController

CalculateLHIPA{) 2 | feedbackController

CalculateCL{() 3 | dataCollector

Backend Frontend

Figure 4.1: Implementation architecture

4.1 Eye tracking

This subsection explains how we achieved goal 1.

We need to reliably collect data from participants while they are programming.

Eye tracking is carried out by employing the tobii pro glasses 2 mobile eye tracker [32] as can be
seen in Figure 4.2. The eye tracker records at 50Hz. To communicate with the eye tracker we use
De Tommaso and Wykowska [33]’s TobiiGlassesPyController, which is based on the tobii_research

library [34] written in Python.

The TobiiGlassesPyController constantly retrieves data from the eye tracker and updates variables
that may then be accessed, but when it saves data, it overwrites the previous value. Overwriting
values is useful when you simply want to retrieve the most recent value, but it becomes a problem
when the software has to save the data for analysis. We modified the TobiiGlassesPyController
to save all new raw data without overwriting existing data. The raw data is now accessible for
retrieval from the Cognitive Load Estimator. We have updated the controller to save only pupil
dilation and gaze point data, rather than all non-important data. Tobii pro glasses 2 mobile can
transfer data by WiFi, or through an Ethernet cable. Due to restrictions in the available gear, a

Ethernet cable was used.

22

[

® N o o

g—

Figure 4.2: Tobii Glasses 2 Eye Tracker Wearable System Tobii I by Tobii Technology is licensed
under Attribution 3.0 Unported.

4.2 Cognitive Load Estimation & Data Processing

This subsection explains how we achieved goal 2 & 3.

We need to process the data in real time.
We need to calculate the cognitive load in real time.
In this section we go through the elements of the core update loop, to update data, update the

LHIPA based on the new data, and to calculate the cognitive load based on the new LHIPA values,

as seen in Listing 1.

1. update data
self._update_data_()

2. Calculate and update LHIPA
self._update_lhipa_()

3. Update mean based cognitive load
self._calculate_load_()

Listing 1: Cognitive Load Estimator core update loop

23

4.2.1 Real time Data Processing

The Cognitive Load Estimator is responsible for calling the customized TobiiGlassesPyController,
and fetch the newest eye tracking data. It calls the TobiiGlassesPyController every 500 ms, and

stores the data in the object.
Data cleaning

After fetching the data, the data needs to be cleaned. The data cleaning steps can be seen in
Section 4.2.1. First the right and left eye data stream have to be synchronized, as they are sent
and handled separately by the eye tracking glasses. Then the users blinks have to be removed,

aswell as the data affected by the users blinking.

e Synchronization
e Remove blinks

e Remove data affected by blinking

To remove blinks and the affected data the Cognitive Load Estimator searches for all data points
that are blinks, as identified by the eye tracker, and removes all data 200 ms forwards and backwards
from the blinking. This method of removing blinks is consistent with research in the field of
cognitive load [35]. The pupil data is not further processed and is used in its raw form. Following
data cleaning, the clean data is added to a clean data array, which is then used to calculate the

most recent cognitive load.

Real time Cognitive Load Calculation

The real time cognitive load calculation is based on Duchowski et al. [6]'s Low High Index of
Cognitive Load implementation. We use their implementation of the LHIPA, and alter it to work
in real time. Then we use the LHIPA values to look at cognitive load over a 15 second window
(mean_-LHIPA), to see if the participants load stays higher, lower or about the same as a baseline
cognitive load, estimated from a pretest. This calculation, results in our final cognitive load values
which are used to assert what type of feedback the participant is given and when they should get
it.

The specific implementation of LHIPA and mean-LHIPA as well as how to reach the final cognitive
load values is explained respectively in Section 4.2.2 and Section 4.2.3. In this section we go over

the aspects that makes our implementation real time.

In Duchowski et al. [6]’s paper they calculate LHIPA for each task. For example for a 12 seconds
task, they calculate LHIPA based on the whole 12 seconds. If we used the same approach and

calculated the LHIPA based on the whole session we could not give feedback before after the session

24

was over, which is not real time. Instead, we calculate the LHIPA based on the newest cleaned
values going 6 seconds backwards in time. Therefore, when we every 500 milliseconds update the
data and clean it, a new LHIPA value is calculated, and can be used to give feedback. Calculation
only happens after we have accumulated 6-12 seconds of data, which through testing has shown
to be enough data to calculate the LHIPA when using the db6 wavelet. Therefore, the first 6-12
seconds of any trial will be without LHIPA values. Having no LHIPA values at the start is not a

problem for us, because we do not need to give feedback at the very start of a task.

4.2.2 LHIPA Calculation

Our LHIPA calculation comes from the original paper [6], and adjusted to run on python3. Our
adjusted code can be found in Appendix A and the original python 2.7 code can be found in the
original paper. In addition we changed the wavelet function, to db6 as recommended by Duchowski
et al. [4], because the eye tracker has a frame rate of 50Hz. The LHIPA is calculated using the
average raw pupil size of the right and left eye. It is important to point out that the LHIPA values
are counter-intuitive. A low LHIPA value is equivalent to high cognitive load, while a high LHIPA

value indicates low cognitive load.
Selection of the LHIPA values

When selecting values to use for the real time calculation we select the last n_seconds * frames_per_second
clean values. This means that if the participants has blinked a lot in the last seconds the data
will be an aggregate of data further back than n_seconds of raw data. By always taking the last
seconds of clean data we get a consistent number of values to calculate the LHIPA from. If we only
selected values from the last 10 seconds, and there were enough blinks/ void data, then calculating
of the LHIPA could result in getting 0 values instead of the actual LHIPA value. This is because
the LHIPA needs a certain amount of values to be able to give a number. With db6 it needs 176
values, and because we use a headset with a frame-rate of 50Hz that means more than 3 seconds of

clean data. Therefore we select values as far back as needed to consistently calculate the LHIPA.
Minimum number of values

The reason we need 176 values is because of the way the LHIPA works. The max decomposition
level calculation can be seen in Equation 4.1. When not enough values are used to calculate the
LHIPA, the max decomposition level comes out to less than 4. When the max decomposition level

is below 4 the lower frequency band is equal to the higher frequency band.

data-len

Fitterden —1)! (4.1)

mazlevel = |log,(

The two bands are then used to obtain the HI/LO frequency. The HI/LO frequency is calculated

by dividing the low frequency at position i by the high frequency at a position dependent on the

25

S

max decomposition level, which results in, when the low and high frequency bands are equal,
dividing the low frequency at position i by the high frequency at position i. And, because they
are equal to each other, the result comes out as an array filled with 1s. When the calculation later

uses these ones to check for oscillations, it finds none and returns 0.

To get a max decomposition level above 4, using Equation 4.1, when using db6, which has a length

of 12, we need a data_len of at least 176.

4.2.3 Mean LHIPA and cognitive load calculation

The mean LHIPA is the mean of he last 30 LHIPA values, the same as 15 seconds of data collection
when using a .5 second sampling window. The mean LHIPA is used to figure out if the participant
is in high, medium or low cognitive load. As a baseline value to compare the mean LHIPA with
during debugging of task 1 and 2, we use the mean of all the LHIPA values from the entire pretest,
see Equation 4.2. The selection of 30 LHIPA values is based on a test on 4 participants during
development of the system. By looking at a 15 second window the system is able to see the greater
trends in cognitive load, and ignore the small variances in the data.

i pretest. LHIPA;
n

baseline = (4.2)

Using mean LHIPA to find cognitive Load

When calculating the users cognitive load we check if the current mean LHIPA is 0.1 higher or lower
than the baseline mean LHIPA from Equation 4.2. Which translates to: When the participant
has a mean_lhipa of 0.1 away from the baseline over the previous 30 LHIPA values assign either
high or low cognitive load. When the mean LHIPA is higher than 0.1 above the baseline the
participant has low cognitive load. When the mean LHIPA is lower than 0.1 below the baseline
the participant has high cognitive load. And when the mean LHIPA is closer than 0.1 from the
baseline the participant has medium cognitive load. Cognitive load calculation as code can be view

in Listing 2.

take mean of last 30 lhipa values
mean_lhipa = np.mean(lhipa_values[-30:])

if the mean is 0.1 higher than the baseline the load is low
if mean_lhipa > (baseline + 0.1):

load = LoadType.LOW
1f the mean ts 0.1 lower than the baseline the load is higher
elif mean_lhipa < (baseline - 0.1):

load = LoadType.HIGH
else:

load = LoadType.MEDIUM

Listing 2: mean cognitive load to high medium or low

26

The 0.1 change from the baseline to calculate cognitive load is based on tests on four (N=4)
subjects, that tested the system after development and before the final study. The 0.1 deviation
ensures that when the subject has a high load over the set time period, they will be getting
feedback. The change from the baseline could have been set higher or lower based on if we wanted
the feedback to be given by smaller or bigger deviations from the baseline. A change of 0.2 from
the baseline would drastically reduce the number of times the person is considered to be in high

and low load, and drastically increased the number of times they were in the middle.

4.3 VSCode Extension

This subsection explains how we achieved goal 4 & 5.

We need to, based on the cognitive load, give appropriate feedback.

We need to implement the feedback in a programming environment.

The participants had to use VSCode to perform the programming tasks and the system was
specifically tailored to this code editor. VSCode was picked because of its easy to use extension API
that enables editing of its user interface and notifications. The extension is written in Typescript
and uses Node.js and the VSCode extension API. The system has three main functions, receive
and send data from the Cognitive Load Estimator, display appropriate feedback based on data

from the Cognitive Load Estimator and to log relevant data for analysis.

The first function of the system to receive the data from the Cognitive Load Estimator was done
using one asynchronous fetchdata() method. The data received from the backend was the current
cognitive load, the average cognitive load, and the percentage of load. All the received data is
shown, when feedback is given, to the participant in the bottom bar of the VSCode window seen
in Figure 4.3d. Based on the information received from the Cognitive Load Estimator the program

displays the appropriate feedback.

When the cognitive load is high for a significant amount of time, the program gives the feedback
from Figure 4.3c and if the cognitive load is low it displays the feedback from Figure 4.3a. When
the participant is shown the low cognitive load example (Figure 4.3a) and press yes, indicating
that they want help, they are shown one of the prewritten hints as shown in Figure 4.3b. The
hints are selected based on where in the code the user currently is located as provided by the
VSCode APL 1. e., when the user is 15 lines from a bug on line 75, but only 3 lines from a bug on
line 57 the feedback provides the hint associated with line 57. When the user receives a hint it is
provided with two options: ”This helped”, and ”Didn’t help” as can be view in the bottom right
of Figure 4.3b. When the user press ”This helped” the hint/feedback is removed from the pool of

possible hints the user can receive, in such a manner that if the user is in low cognitive load at a

27

later stage and close to the same buggy lines, it gets a hint it has not been given before. When
the user presses "Didn’t help” the feedback from Figure 4.3a is displayed again and the user can

select ”Yes” or "No” again.

On line 84: rectify the range call to correctly remove

Hey! Do you need help? £ X completed lines

Source: stress-aware-feedback (Extension) Source: stress-aware-feedback (Extension) This helped Didnt help

(a) Low cognitive load feedback (b) Low cognitive load hint - example

Youre doing great work! keep it up

(c) High cognitive load feedback (d) Continuous feedback example

Avg: 2.16, Raw: 5.00, max load: 35%

Figure 4.3: Types of feedback shown to the participant during debugging tasks

Overloading or spamming the user with popups during the programming was not wanted, therefore
a cooldown period for popups was implemented. Whenever the user has not interacted with a popup
such that the popup vanishes, or presses this helped the cooldown period begins. The cooldown
period is such that the user will have some time to find the hint and think about how to solve the
issue. The cooldown period is set to 2 minutes, and when the timer is done the extension can send

popups again.

28

Chapter 5

Results

After the study there were in total n=26 students who participated in the experiments. All
participants went through the same procedure, 3 tests with 15 minutes each to complete, starting
with the pretest and finishing with debugging a Snake game and a Tetris game. Of the collected
data no participant was excluded, but one participant had errors with the pretest collection. For
that one participant we sat the cognitive load variables to the mean of all the other participants.
The Empatica E4 wristband data is not included in the results and is excluded from the rest of the
study. Due to unforeseen circumstances, time limits and issues with the data collection procedure,

the data had to be left out.

The results are divided into three main categories, first we look at the performance, before moving
on to cognitive load and perceived mental load. We end the results by looking at interactions
and the amount of feedback. Within the three first parts the independent variables expertise and

feedback, are both analysed.

29

5.1 Performance

Figure 5.1 and Figure 5.2 shows 3 histograms of the results for the participants, pretest score
(M = 4.5), Snake score (M = 1.9) and Tetris score (M = 1.6). On the pretest the highest score
was 7 out of a maximum of 10 and the lowest was 1. On Snake, left in Figure 5.2, 10 participants
found zero bugs and scored a 0 and 2 found all 6. In addition the ones that found all bugs finished
before their time was up. On Tetris, right in Figure 5.2, 6 participants found zero bugs and scored

a 0, one scored 6 out of 9, and one scored 4.5 out of 9 (after the score was multiplied by 1.5).

8

Count
N

1 2 3 4 5 6 7
Pretest Performance

Figure 5.1: Performance distribution on the pretest.

12.5
10.0
7.5

Count

5.0
2.5
0.0

0 2 4 6 0 2 4 6
Snake Performance Tetris Performance

Figure 5.2: Performance distribution for Snake and Tetris debugging tasks. The Tetris performance

is the adjusted Tetris performance.

Task difficulty

During the development a pilot was conducted to check the difficulty of Snake and Tetris debugging
tasks with five participants. In the pilot, Tetris was discovered to be harder than Snake. Therefore,
when comparing feedback and expertise against performance the adjusted Tetris score is used, for

example in Figure 5.2. To validate the new scoring we investigate the task difficulty. A Wilcoxon

30

Signed-Ranks test indicates that score on Snake (M = 1.942) is greater than the score on Tetris
(M = 1.096); Score on Snake is significantly greater than score on Tetris. (¢t = 162.5, p = .05).

The test confirms the findings from the pilot, and the use of the adjusted Tetris score is valid.

Expert vs Novice

A Mann-Whitney U test indicates that the ”expert” group (M = 3.154) had a greater score
than the "novice” group (M = 0.731) when working on solving Snake debugging task; there is a
significant difference in the Snake score (U = 23.0, p = .0006). A Mann-Whitney U test indicates
that the "novice” group (M = 1.385) had the same score as the "expert” group (M = 1.904)
when working on solving Tetris debugging task; there is no significant difference in the Tetris score
(U = 65.5, p = .149). This again confirms that the Tetris task was more difficult than the Snake

debugging task.

Snake Tetris
6 '
L]
4 +
ol o
Q Q
(&) O
(7} (7}
: ——
o| T— .
Novice Expert Novice Expert
Participant type Participant type

Figure 5.3: Performance on Snake and Tetris tasks by expertise.

The Expert group does better than the Novice group on Snake, but not significantly on Tetris.
We also looked at the experts and novices scores collectively for the sum of Snake and Tetris. A
Mann-Whitney U test indicates that the "expert” group (M = 5.057) had a greater score than the
“novice” group (M = 2.115) for the sum of Snake and Tetris tasks; there is a significant difference
in the total score (U = 138, p = .003). Showing that the Expert group did better than the Novice
group when looking at the sum of both tasks.

31

Snake + Tetris

12.5

10.0

7.5

Score

5.0

2.5

0.0

Novice Expert
Participant type

Figure 5.4: Sum of Snake and Tetris performance grouped by expertise.

Feedback vs No feedback

In Figure 5.5, on the right, it looks like the feedback might have an effect on the score on the Tetris
task. A Mann-Whitney U test indicated that the “feedback” group (M = 2.25) scored greater
than the “no feedback” group (mean M = 1.04); there was a significant increase in test score
(U = 124.5, p = .013), confirming the suspicion. Of the participants that received feedback on

Tetris, 8 are categorized as Experts and 5 as Novices. Vice versa for the no feedback group.

For the Snake task a Mann-Whitney U test indicated that the ”feedback” group (M = 1.73) scored
the same as the "no feedback” group (M = 2.15); there is no significant difference in test score
(U =68, p=.198). Of the participants that received feedback on Snake, there were 5 Experts and

8 Novices. Vice versa for the no feedback group.

Snake Tetris

6 6 ‘

4 4
o o
o) o)
O (5]
wn w

2 2

0 0 -

No feedback Feedback No feedback Feedback

Figure 5.5: Performance on Snake and Tetris by whether or not the participant was given feedback

on the task.

To see if there was a difference between the group that received feedback and not we ran a Wilcoxon

Signed-Ranks test. The Wilcoxon Signed-Ranks test indicated that the ”feedback” group (M =

32

1.615) scored the same as the "no feedback” group (M = 1.423); There was no significant difference
in test score (t = 125.5, p = .364).

Score based on feedback

6 +
L]

4 D
o
Q
O
()]

2

| I

No feedback Feedback

Figure 5.6: Performance when the participant received feedback independent of which task the

feedback was received.

5.2 Cognitive load

Figure 5.7 shows 3 box plots with the calculated mean cognitive load of the participants. Figure
5.7 shows a steady increase in the cognitive load across all participants. The cognitive load of
the participants during both of the debugging tasks were close, Snake (M = 2.04) and Tetris
(M = 2.07). On the pretest (M = 1.84) there was no baseline to compare to, so a constant
from earlier tests was used for all participants. The cognitive load should therefore not be used to

compare the cognitive load from the pretest with Snake and Tetris debugging tasks.

Pretest Snake Tetris

+

N
~

+

N
[N

Cognitive load
@

Cognitive load

Cognitive load

n
o

-
D

Figure 5.7: Cognitive load for pretest, Snake task and Tetris task.

33

Cognitive load difference between Tetris and Snake

A Wilcoxon Signed-Ranks test indicates that cognitive load on Snake (M = 2.03) is lower than the

cognitive load on Tetris (M = 2.07); cognitive load on Snake is significantly smaller than cognitive

load on Tetris (t = 79, p = .007).

’ Snake Tetris

CL ‘ 2.036 (0.126) 2.073 (0.124)

Table 5.1: Cognitive load mean scores.

Expert vs Novice

A Mann-Whitney U test indicates that the ”expert” group (M = 2.000) had lower cognitive load
than the "novice” group (M = 2.072) when working on solving the Snake debugging task; there
is a significant difference in the mean cognitive load (U = 51.0, p = .045). A Mann-Whitney U
test indicates that the "novice” group (M = 2.106) had the same cognitive load as the ”expert”
group (M = 2.043) when working on solving the Tetris debugging task; there is no significant

difference, but there is an indication that the "expert” group has a lower mean cognitive load

(U =59, p = .100).

Snake Tetris

N
[

Cognitive load
N
o
Cognitive load

'y
(o]

Novice Expert Novice Expert
Participant type Participant type

Figure 5.8: Cognitive load by expertise.

We also looked at the "expert” and "novice” performers mean cognitive load collectively for the
sum of Snake and Tetris. A Mann-Whitney U test indicates that the "expert” group (M = 4.043)
had the same cognitive load as the "novice” group (M = 4.178) for the sum of Snake and Tetris
tasks; there is not a significant difference in the sum of cognitive load (U = 53, p = .056). Though

it is not statistically significant, there is a strong trend towards the experts having a lower cognitive
load.

34

Average Cognitive load

ad
NN NN
o - N w

Cognitive lo

-
(o]

—
(e}

‘

Expert

Novice
Participant type

Figure 5.9: Average cognitive load by expertise for both Snake and Tetris.

Feedback vs No Feedback

A Mann-Whitney U test indicates that the ”feedback” group (M = 2.02) had the same cognitive
load as the "no feedback” group (M = 2.05) when working on solving the Snake debugging task;
there is no significant difference in the mean cognitive load (U = 80, p = .419). A Mann-Whitney
U test indicates that the ”feedback” group (M = 2.08) had the same cognitive load as the "no

feedback” group (M = 2.06) when working on solving the Tetris debugging task; there is no
significant difference in the mean cognitive load (U = 84, p = .5).

Snake Tetris

N
(N

Cognitive load
N
o
Cognitive load

-
(o]

No feedback Feedback No feedback Feedback

Figure 5.10: The participants mean cognitive load by feedback or not.

We also looked at the "feedback” and "no feedback” groups cognitive load independent of which
task they received feedback on. A Wilcoxon Signed-Ranks test indicates that the ”feedback” group

(M = 2.051) had the same cognitive load as the "no feedback” group (M = 2.058); there is no
significant difference in cognitive load(t = 165, p = .79).

35

Cognitive load with and without feedback

+
+

Feedback No feedback

N
[N

N
o

Cognitive load

-
(o]

Figure 5.11: Cognitive load grouped by receiving of feedback. Independent of which debugging
task the participant had feedback on.

5.3 Perceived mental load (Nasa TLX)

The NASA Task Load Index(TLX) was a survey conducted after every test and the results can
be found in Table 5.2 with mean values for each question separated by task. The survey answers
showed that the participants perceived that the pretest and Snake debugging used a similar amount
of mental demand with scores of 13.85/20 and 13.88/20 respectively, but giving the Tetris debugging
task a higher score of 15.04/20. All mental demand scores are closer to 20 (very high) than 0 (very
low). On a scale from perfect(1) to failure(20) on the question of performance there is a steady
increase of about 1 point for each test starting with 13.73 on the pretest and 15.08 and 16.04 on the
Snake and Tetris debugging tasks respectively. The participants answered that they put somewhat
above average effort with scores ranging from 13.38 to 13.96 of 20 on the tests where 20 is high

effort and 1 is low effort.

Pretest Snake Tetris
Mental Demand 13.85(3.54) 13.88(3.27) 15.04(3.38)
Physical Demand 3.31(2.92) 3.46(2.8) 4.0(3.45)
Temporal Demand 11.5(3.83) 12.0(4.24) 11.77(4.18)
Performance 13.73(4.56) 15.08(5.66) 16.04(3.93)
Effort 13.38(3.94) 13.38(4.18) 13.96(4.77)
Frustration 12.85(4.5) 11.77(5.42) 13.31(4.58)

Table 5.2: NASA-TLX mean scores.

36

Mental demand difference

A Wilcoxon Signed-Ranks test indicates that perceived mental load on the Snake debugging task
(M = 13.88) is lower than the perceived mental load on the Tetris debugging task (M = 15.04);
Perceived mental load on Snake is significantly lower than perceived mental load on Tetris (¢t = 35.5,

p=0.05).

Expert vs Novice

A Mann-Whitney U test indicates that the ”expert” group (M = 13.462) had the same perceived
mental load as the "novice” group (M = 14.231) when working on the pretest; there is no significant
difference in the perceived mental load(U = 70.5, p = .243).

A independent t-test indicates that the ”expert” group (M = 13.385) had the same perceived
mental load as the "novice” group (M = 14.385) when working on the Snake debugging task; there
is no significant difference in the perceived mental load(t = —0.774, p = .446).

A independent t-test indicates that the ”expert” group (M = 13.385) had the same perceived
mental load as the "novice” group (M = 14.385) when working on the Tetris debugging task; there
is no significant difference in the perceived mental load(t = 1.618, p = 0.119).

Pretest Snake Tetris

20 -
x x x
= 5 5
g 15 T s
£ £ £
(] (] ()]
© © ©
= - -
£10 £ £
(0] o ()]
£ = £

‘ —

Novice Expert Novice Expert Novice Expert
participant_type participant_type participant_type

Figure 5.12: Mental demand as reported by a NASA TLX form compared by if the student is

classified as an Expert or Novice for respectively the pretest, Snake and Tetris.

Feedback vs No Feedback

A Mann-Whitney U test indicates that the ”feedback” group (M = 13.31) had the same perceived
mental load as the "no feedback” group (M = 14.46) when working on solving the Snake debugging
task; there is no significant difference in the perceived mental load(U = 71.5, p = .260). A Mann-
Whitney U test indicates that the ”feedback” group (M = 16.23) had a greater perceived mental

37

load in comparison to the "no feedback” group (M = 13.85) when working on solving the Tetris

debugging task; there was a significant increase in the perceived mental load (U = 117, p = .0495).

Snake Tetris

20 ‘
< x
]]
g ' s
[(]
© o
© ©
£ 10 £
O (0]
I €

‘

No feedback Feedback No feedback Feedback

Figure 5.13: The self reported mental demand compared on Snake and Tetris tasks by whether or

not they received feedback on the task.

5.4 Interactions and number of feedbacks

In Table 5.3 we can see that more participants interacted with Tetris feedback popups than with
Snake feedback popups. With respectively 10 out of 13 and 8 out of 13 of the participants in-
teracting with the popups one or more times, meaning that clicked on one of the buttons of the
hint popups seen in Figure 4.3b. Only 8 out of 13 participants interacted with the low cognitive
load(CL) popups on Snake, meaning that almost half did not use the popups. Additionally, there
were more high cognitive load feedback popups than low cognitive load popups with a total of
74 low cognitive load(CL) popups and 95 high cognitive load(CL) popups, when looking at the
total for both tasks. Only two times, did any participant press no on the feedback. Of the 74 low
cognitive load(CL) popups no interaction happened many times, as can be seen by the 54 yes or

no presses, leaving 22 non interactions.

no . high CL low CL hints did not
interacted
interactions popups popups received need help
Snake 5 8 44 41 22 2
Tetris 3 10 51 33 30 0
Total 8 18 95 74 52 2

Table 5.3: Interactions with feedback.

In one of the debugging tasks the participant was shown feedback based on their current calculated

cognitive load. The types of feedback shown can be seen in Figure 4.3. During the Snake debugging

38

if the participant was receiving feedback they received a pretty similar amount of both high and
low feedback types. If the participant was receiving feedback on the Snake debugging task they
received more high load popups than the ones getting feedback on Snake. In Table 5.4 there is
shown that for the ones receiving feedback on Tetris they received a mean of 3.92 cheer popups

while only receiving 2.54 help popups on average.

Low CL high CL
help popups cheer popups

Feedback on
Snake
Feedback on

3.15(1.14) 3.38(1.33)

2.54(1.27) 3.92(1.19)

Tetris

Table 5.4: Amount of feedback given

39

40

Chapter 6

Discussion & Limitations

In this chapter we will discuss the results from our experiments, with a focus on answering our

hypothesises surrounding the research questions.

6.1 Findings

e Performance is positively effected by feedback on the Tetris debugging task
e Performance has no effect on the Snake debugging task.

e Experts perform significantly better than Novices.

e Cognitive load is not effected by feedback.

e Cognitive load is significantly higher on Tetris than on Snake.

e Participants scored significantly lower on the Tetris debugging task than on the Snake de-

bugging task.

e For all tasks, Experts exhibited a strong trend toward having a lower cognitive load than

Novices, with the Snake debugging task being significantly lower.

e Perceived mental demand is significantly higher for the feedback group on Tetris than the no

feedback group, but equal on Snake.

e Perceived mental demand is equal for the feedback group and the no feedback group on

Snake.

e 31% ignored or did not see the feedback popups.

41

6.2 Validity of Cognitive load Measurements

We wanted to make sure that the cognitive load results we are basing our subsequent discussion on
were valid and in line with the previous research done on the topic. By looking at Table 5.1 and
the associated analysis, we can see that there is a significant increase in cognitive load from Snake
to Tetris. This agrees with previous research that indicates that more difficult tasks are more
cognitive demanding [6]. The same increase can be seen on the significant increase in perceived
mental demand on the same tasks as shown in Section 5.3. That the measurements agrees with
each other making us comfortable concluding with that the assumption that the cognitive measures

were valid.

6.3 Feedback - [RQ1]

What is the effect of continuous feedback timed with cognitive load during program-

ming tasks?

We hypothesized that when participants were given feedback, their overall performance would im-
prove as a result of the help they were given. There was no significant difference in performance
between scores when provided feedback and scores when not given feedback, as indicated in Fig-
ure 5.6. Indicating that receiving feedback did not improve overall performance. When we look
at each task separately, we can see that receiving feedback aided the participants in the Tetris

debugging task significantly, but not the Snake debugging task.

There could be a number of reasons why participants showed a significant improvement on Tetris
whereas they did not on Snake. To begin, if the groups were divided unevenly by knowledge level,
a difference would have been expected, because experts performed better than novices overall. The
Expert and Novice groups were split nearly evenly, with 5 and 8 in each group, making this less
likely. Another reason could be the difference in difficulty between the two debugging tasks, with
Tetris being more difficult overall than Snake. This could imply that the provided feedback is more
effective on more difficult programming tasks than on easier programming tasks. A third reason is
that Snake feedback may be less useful than Tetris feedback. Either the Snake debugging was so
simple that the feedback hints were unnecessary, or they were insufficiently useful. Furthermore,
because feedback hints were offered depending on code position, it was possible that the user had
previously solved the problem that the feedback hinted towards. Because the solve rate on Snake
was higher, the likelihood of this increasing and being a reason for the performance difference
increases. The potential of a real-time feedback system is demonstrated by some positive, but no

negative effects on performance.

A main finding is that the cognitive load measurement did not increase nor decrease between the

42

feedback and no feedback groups, indicating that the introduction of feedback did not have an
effect on the cognitive load of the participant. This disproves our first hypothesis that cognitive
load would increase as additional elements appear on screen. There could be several explanations
for this though, one reason is that some of the contestants did not interact with the feedback at
all. Of the 26 people that participated in the study there was a total of 8 that did not interact
with the feedback at all as seen in Table 5.3, meaning that they either did not see them or they
ignored them entirely. Another reason could be that the feedback was integrated well with the
editor using the default notifications of VSCode resulting in a seamless experience for the users.
If we had gone with another solution with more intrusive feedback, adding sound and making the
popups larger, we maybe would’ve seen a larger difference. The potential of a real-time feedback

system is demonstrated by no negative effects on cognitive load.

The perceived mental load when receiving feedback was higher than when not receiving feedback
on Tetris, but not on Snake. The increased reported perceived mental load can be explained by
several factors. Reporting of mental load after completion of a task is less accurate than during the
task [11]. The measurements (read cognitive load) made during the tasks could therefore be more
accurate and a more representative measure of the participants actual cognitive load. Another
explanation is that the term mental load was not explained to the user, but left to the participant
to decipher resulting in possible misinterpretations. During the experiment the term cognitive load
was not explained, and the term mental demand was also not explained. Thus it was up to each
participant to decide for themselves. The choice to not explain mental load and cognitive load
was to interfere as little as possible during the test, but in hindsight it could have been important
to explain in relation to the self reported scores. Based on these finding we do not think that
the NASA TLX questionnaire was the best choice, possibly because of how we carried out the

experiment.

6.3.1 Continuous feedback

When speaking with participants after their study was conducted, no one noticed the continuous
feedback on the bottom of the screen from Figure 4.3d. This could be because the feedback
is so small, and the fact that the numbers change is not very noticeable or simply because the
participant did not know what they were looking at. In addition, since the participants use a lot
of their attention on trying to figure out what is going on in the code, they might not have a lot
of time to look around the screen for additional information. In future work making use of more
clear information or limiting the amount of feedback to test the usability and effect of the system

is advised.

43

6.4 Expertise & Cognitive load - [RQ2]

What is the effect of expertise on cognitive load during programming tasks?

From previous research we expected the cognitive load of Experts to be lower than that of Novices
[25], [26], [30]. Our findings show that the Expert group had a lower cognitive load than the
novices, but only on the Snake debugging task was the difference statistically significant. The only
sign of lower cognitive load in the Tetris debugging task was in the Expert group, where we found a
not significant, but a slight indication that they could have lower load. The difference could be due
to the Tetris task being more challenging, resulting in participants having a higher cognitive load
on Tetris. This suggests that both groups were approaching their maximum cognitive load and
even overload, which is when pupillary responses begin to fall after having reached their highest

point. [14].

There was no indication that Experts perceived the tasks to be less mentally demanding than
Novices. There could be several reasons for this, many of which are already discussed in the
previous section of why the perceived difficulty was not significantly different in the two games.
A reason not discussed is that the relative mental demand is subjective to the participants own
expectations, something that could’ve been avoided if the scale had been more properly explained.
Another reason could be because of the within subject design of our experiments, the participant
could not adjust their answers for the first test after completing the second. This becomes a issue
if the participant rates the first task too high not leaving any room for a higher demanding task.
A fix for this would be to let the participants change the scores after each test to account for the

new insight.

6.5 Limitations & future work

This study has 5 main limitations that we will present and suggest how we could fix them in the
future. Firstly, there are some limitations with the feedback, how the feedback was timed and how
it was presented. There is no test to see if giving feedback based on a random timer could have
produced the same results as the feedback given in our study. We chose the minimum amount of
minutes between popups arbitrarily and there is no telling if another time interval might have been
better suited. We focused on the effects of the feedback that was timed, and took the first step
towards further studies using real time cognitive load estimation, and cognitive load estimation as
a tool for real time feedback during programming. To figure out if the same effect could have just

because hints were given, or if there is an additional effect from the timing further work is needed.

The second limitation is the number of people who participated in the system’s research and testing.

We had 26 students participate, which is sufficient for some analysis but restricts the weight we

44

can place on our findings. We could have done a lot more categorizations and made a lot more
with more volunteers. With more participants, the results would have been clearer, and we might
have been able to analyze the data with greater precision, resulting in larger trends in the data.
The participants were also chosen because they had little to no prior programming expertise; as
a result, it’s uncertain whether the findings can be applied to other sorts of feedback. Increased
testing time and effort put in to recruit students would have been a solution, however we were

unable to do so due to the time constraints in this thesis.

Thirdly, we divided the subjects based on their pretest mean score, which has certain drawbacks.
When we split on the mean, we consider all students above the mean to have the same level of
expertise, even if the students just above are closer to the ones just below than the very top. A
future approach could be to divide the group into additional categories, but this would necessitate
more participants in order to achieve the same statistical results. Another option is to employ
statistical approaches based on regression. Nonetheless, utilizing a rather basic pretest to establish
expertise, we were able to uncover numerous significant parts of the real-time feedback by dividing
on mean. Prior information obtained through a questionnaire might have also been used to properly

divide the groups and provide context for the participants’ expertise.

The fourth limitation stems from the fact that we adopted a within-group design, which can result
in an undesired carryover effect. For example, a person may become exhausted from the first
task before moving on to the second, negatively impacting the outcome. They may also actually
improve at the tasks simply by working on the first one, and then apply what they’ve learned on
the first one to the second. We also used a robust statistical test to try to limit the carryover effect,
but in the future, others should explore adopting a between-subjects methodology to confirm or

refute this suspicion.

Finally, while our feedback is timed based on cognitive load, our analysis considers the cognitive
load throughout the whole of the session. We may very well have examined data closer to the
seconds when the feedback is provided to learn more about the effects of feedback on cognitive
load, stress, and performance. For example, we could have looked at the cognitive load in the

following 30 seconds of receiving feedback(read a popup).

45

46

Chapter 7

Conclusion & Contribution

In this work, we implemented a system taking advantage of a robust method for computing cog-
nitive workload based on the low /high frequency ratio of pupil oscillation presented by Duchowski
et al. [6] to give feedback to student while programming. We base our findings on a within subject
experiment with 26 participants where we collected pupillary data using an eye tracker. A pretest
was used to split the participants into two groups based on their level of expertise. According to
the findings, providing students with feedback while programming did not increase their cognitive
load. Regardless of expertise, receiving feedback had a positive effect on performance on the harder
task and had no effect on the easier task. The experts had a trend towards having lower cognitive
load than novices when programming, especially on easier tasks. The results of this experiment are
inline with the previous research done on the subject and heavily implies the feasibility of wearable

based feedback system for programming.

Our contribution include:

e A system for giving feedback based on the computation of cognitive load based on input from

an eye tracker.

e An insight into the effects of such a system on the participant in a programming environment

both looking at cognitive load and their previous expertise.

47

48

Bibliography

1]

J. Sweller, ‘Cognitive load during problem solving: Effects on learning’, Cognitive science,

vol. 12, no. 2, pp. 257285, 1988.

S. G. Hart and L. E. Staveland, ‘Development of nasa-tlx (task load index): Results of
empirical and theoretical research’, in Advances in psychology, vol. 52, Elsevier, 1988, pp. 139—
183.

C. Mills, I. Fridman, W. Soussou, D. Waghray, A. M. Olney and S. K. D’Mello, ‘Put your
thinking cap on: Detecting cognitive load using eeg during learning’, in Proceedings of the

seventh international learning analytics € knowledge conference, 2017, pp. 80-89.

A. T. Duchowski, K. Krejtz, I. Krejtz et al., ‘The index of pupillary activity: Measuring
cognitive load vis-a-vis task difficulty with pupil oscillation’, in Proceedings of the 2018 CHI

conference on human factors in computing systems, 2018, pp. 1-13.

S. P. Marshall, ‘The index of cognitive activity: Measuring cognitive workload’, in Proceedings

of the IEEE Tth conference on Human Factors and Power Plants, IEEE, 2002, pp. 7-7.

A. T. Duchowski, K. Krejtz, N. A. Gehrer, T. Bafna and P. Baekgaard, ‘The low/high index
of pupillary activity’, in Proceedings of the 2020 CHI Conference on Human Factors in
Computing Systems. New York, NY, USA: Association for Computing Machinery, 2020,
pp. 1-12, 1sBN: 9781450367080. [Online]. Available: https://doi.org/10.1145/3313831.
3376394.

P. Vanneste, A. Raes, J. Morton et al., ‘Towards measuring cognitive load through mul-
timodal physiological data’, Cognition, Technology & Work, vol. 23, no. 3, pp. 567-585,
2021.

M. Andrzejewska and A. Skawinska, ‘Examining students’ intrinsic cognitive load during
program comprehension—an eye tracking approach’, in International Conference on Artificial
Intelligence in Education, Springer, 2020, pp. 25-30.

F. G. Paas, ‘Training strategies for attaining transfer of problem-solving skill in statistics: A

cognitive-load approach.’, Journal of educational psychology, vol. 84, no. 4, p. 429, 1992.

49

[10]

[11]

[17]

[18]

[19]

[20]

[21]

F. Paas, J. E. Tuovinen, H. Tabbers and P. W. Van Gerven, ‘Cognitive load measurement as
a means to advance cognitive load theory’, Educational psychologist, vol. 38, no. 1, pp. 63-71,

2003.

A. Korbach, R. Briinken and B. Park, ‘Measurement of cognitive load in multimedia learning:
A comparison of different objective measures’, Instructional science, vol. 45, no. 4, pp. 515—

536, 2017.

K. Krejtz, A. T. Duchowski, A. Niedzielska, C. Biele and 1. Krejtz, ‘Eye tracking cognitive
load using pupil diameter and microsaccades with fixed gaze’, PloS one, vol. 13, no. 9,

€0203629, 2018.

P. van der Wel and H. van Steenbergen, ‘Pupil dilation as an index of effort in cognitive

control tasks: A review’, Psychonomic bulletin & review, vol. 25, no. 6, pp. 2005-2015, 2018.

E. Granholm, R. F. Asarnow, A. J. Sarkin and K. L. Dykes, ‘Pupillary responses index
cognitive resource limitations’, Psychophysiology, vol. 33, no. 4, pp. 457-461, 1996.

B. Gollan, M. Haslgriibler and A. Ferscha, ‘Demonstrator for extracting cognitive load from
pupil dilation for attention management services’, in Proceedings of the 2016 ACM Interna-
tional Joint Conference on Pervasive and Ubiquitous Computing: Adjunct, 2016, pp. 1566—
1571.

J. Zagermann, U. Pfeil and H. Reiterer, ‘Measuring cognitive load using eye tracking tech-
nology in visual computing’, in Proceedings of the sixth workshop on beyond time and errors

on novel evaluation methods for visualization, 2016, pp. 78-85.

E. Haapalainen, S. Kim, J. F. Forlizzi and A. K. Dey, ‘Psycho-physiological measures for
assessing cognitive load’, in Proceedings of the 12th ACM international conference on Ubi-

quitous computing, 2010, pp. 301-310.

M. Gjoreski, M. Lustrek and V. Pejovié, ‘My watch says i’'m busy: Inferring cognitive load
with low-cost wearables’, in Proceedings of the 2018 ACM International Joint Conference
and 2018 International Symposium on Pervasive and Ubiquitous Computing and Wearable

Computers, 2018, pp. 1234-1240.

K. Kyriakou, B. Resch, G. Sagl et al., ‘Detecting moments of stress from measurements of

wearable physiological sensors’, Sensors, vol. 19, no. 17, p. 3805, 2019.

M. Gjoreski, H. Gjoreski, M. Lustrek and M. Gams, ‘Continuous stress detection using a
wrist device: In laboratory and real life’, in proceedings of the 2016 ACM international joint

conference on pervasive and ubiquitous computing: Adjunct, 2016, pp. 1185-1193.

E. Di Lascio, S. Gashi and S. Santini, ‘Unobtrusive assessment of students’ emotional en-
gagement during lectures using electrodermal activity sensors’, Proceedings of the ACM on

Interactive, Mobile, Wearable and Ubiquitous Technologies, vol. 2, no. 3, pp. 1-21, 2018.

B. Wisniewski, K. Zierer and J. Hattie, ‘The power of feedback revisited: A meta-analysis of
educational feedback research’, Frontiers in Psychology, vol. 10, p. 3087, 2020.

50

[31]

[34]

[35]

J. Hattie and H. Timperley, ‘The power of feedback’, Review of educational research, vol. 77,
no. 1, pp. 81-112, 2007.

J. A. Fredricks, P. C. Blumenfeld and A. H. Paris, ‘School engagement: Potential of the
concept, state of the evidence’, Review of educational research, vol. 74, no. 1, pp. 59-109,

2004.

K. A. Ericsson and W. Kintsch, ‘Long-term working memory.’, Psychological review, vol. 102,

no. 2, p. 211, 1995.

J. Sweller and P. Chandler, ‘Why some material is difficult to learn’, Cognition and instruc-

tion, vol. 12, no. 3, pp. 185-233, 1994.

S. Wiedenbeck, ‘Novice/expert differences in programming skills’, International Journal of

Man-Machine Studies, vol. 23, no. 4, pp. 383-390, 1985.

S. Jessup, S. M. Willis, G. Alarcon and M. Lee, ‘Using eye-tracking data to compare differ-
ences in code comprehension and code perceptions between expert and novice programmers’,

in Proceedings of the 54th Hawaii International Conference on System Sciences, 2021, p. 114.

A. S. Najar, A. Mitrovic and K. Neshatian, ‘Utilizing eye tracking to improve learning from
examples’, in International Conference on Universal Access in Human-Computer Interaction,

Springer, 2014, pp. 410-418.

T. Van Gog, F. Paas and J. J. Van Merriénboer, ‘Effects of process-oriented worked examples
on troubleshooting transfer performance’, Learning and Instruction, vol. 16, no. 2, pp. 154—

164, 2006.

A. Armougum, E. Orriols, A. Gaston-Bellegarde, C. Joie-La Marle and P. Piolino, ‘Virtual
reality: A new method to investigate cognitive load during navigation’, Journal of Environ-

mental Psychology, vol. 65, p. 101 338, 2019.
Tobii pro glasses 2, https://www.tobiipro.com/product-listing/tobii-pro-glasses-2/, 2022.

D. De Tommaso and A. Wykowska, ‘Tobiiglassespysuite: An open-source suite for using
the tobii pro glasses 2 in eye-tracking studies’, in Proceedings of the 11th ACM Symposium
on Eye Tracking Research € Applications, ser. ETRA 19, Denver, Colorado: ACM, 2019,
46:1-46:5, 1SBN: 978-1-4503-6709-7. DOI: 10.1145/3314111.3319828. [Online]. Available: http:
//doi.acm.org/10.1145/3314111.3319828.

https: //www.tobiipro.com/product-listing/tobii-pro-glasses-2-sdk /, 2022.

R. Engbert and R. Kliegl, ‘Microsaccades uncover the orientation of covert attention’, Vision

research, vol. 43, no. 9, pp. 1035-1045, 2003.

51

52

Appendix A

Adjusted LHIPA code

import math
import pywt

import numpy as np

def modmax(d) :
compute signal modulus
m = [0.0] * len(d)
for i in range(len(d)):
m[i] = math.fabs(d[i])
1f value is larger than both mneighbours , and strictly
larger than either , then it 2s a local mazimum
t = [0.0] * len(d)
for i in range(len(d)):

11 = m[i - 1] if i >= 1 else m[i]

oo = m[i]

rr = m[i + 1] if i < len(d) - 2 else m[i]

if (11 <= oo and oo >= rr) and (11 < oo or oo > rr):

compute magnitude

t[i] = math.sqrt(d[i] ** 2)
else:

t[i] 0.0

return t

53

def lhipa(d: np.ndarray, tt: float) -> float:

nmnn

Computes the lhipa over the d datapoints

Parameters:

d: mp.ndarray

Pupil dilation.

tt: float

Time tn seconds.

Returns:

LHIPA: float

nmnn

find maxz decomposition level
w = pywt.Wavelet('db6')

maxlevel = pywt.dwt_max_level(len(d), filter_len=w.dec_len)

set high and low frequency band indices

hif, lof = 1, int(maxlevel / 2)

get detail coefficients of pupil diameter signal d
cD_H = pywt.downcoef('d', d, 'db6', 'per', level=hif)
cD_L = pywt.downcoef('d', d, 'db6', 'per', level=lof)

normalize by 1/ sqrt(2 ~j)
cD_H[:] = [x / math.sqrt(2 *x hif) for x in cD_H]
cD_L[:] = [x / math.sqrt(2 ** lof) for x in cD_L]

obtain the LH:HF ratio
cD_LH = cD_L
for i in range(len(cD_L)):

cD_LH[i] = cD_L[i] / cD_H[int(((2 ** lof) / (2 ** hif)) * i)]

detect modulus mazima , see Duchowski et al. [15]

54

cD_LHm = modmax(cD_LH)

threshold using universal threshold lambda_univ = sigma_hat sqrt(2 log n)
where sigma_hat ts the standard deviation of the noise

lamda_univ = np.std(cD_LHm) * math.sqrt(2.0 * np.log2(len(cD_LHm)))

cD_LHt = pywt.threshold(cD_LHm, lamda_univ, mode="less")

compute LHIPA
ctr = 0
for i in range(len(cD_LHt)):
if math.fabs(cD_LHt[i]) > O:
ctr += 1
LHIPA = float(ctr) / tt
return LHIPA

95

56

Appendix B

NSD

Meldeskjema for behandling av personopplysninger 01.06.2022, 11:57

|\SD NORSK SENTER FOR FORSKNINGSDATA

Meldeskjema

Referansenummer

983309

Hvilke personopplysninger skal du behandle?

Navn (ogsa ved signatur/samtykke)

Bilder eller videoopptak av personer

Lydopptak av personer

Bakgrunnsopplysninger som vil kunne identifisere en person
Helseopplysninger

Beskriv hvilke bakgrunnsopplysninger du skal behandle

Jobbstilling, tidligere arbeid, Navn, alder, kjgnn.

Prosjektinformasjon

Prosjekttittel

Design of a smart gaze-aware feedback system for programming.

Prosjektbeskrivelse

Fokuset til denne avhandlingen er & utvikle et intelligent tilbakemeldingssystem, som kan hjelpe studenter
mens de programmerer. Tilbakemeldingen (hjelpen) vil gis i sanntid ved bruk av gyesporingsdata,

armbandsdata og logdata fra datamaskinen de utfgrer oppgaven pa.

Det fgrste som skal gjgres er et fokusgruppeintervju, som skal hjelpe med a finne ut hva slags
tilbakemeldingsverktgy som kan hjelpe studentene pa best mate.

Det andre som skal gjgres er opptak av skjermen til erfarene programmerere for a finne ut hvordan de
ville 1gst programmeringsoppgaven.

Det tredje og siste som skal gjores er en AB-test. I testen vil studenter fa en programmeringsoppgave som
de skal Igse og tilbakemeldingsverktgyet fra fokusgruppen vil bli brukt her. Hensikten er & finne ut om

about:blank Side 1av 8

Meldeskjema for behandling av personopplysninger 01.06.2022, 11:57

tilbakemeldingsverktgyet er effektivt som hjelpemiddel for en student som programmerer.

Begrunn behovet for a behandle personopplysningene

Navn er ngdvendig for signatur.

Alder, kjgnn er viktig for a forsta kontekst og for a kunne trekke slutninger.

Video og lydopptak trengs for a kunne gé gjennom og analysere fokusgruppen i etterkant.
Jobbstilling er ngdvendig for kontekst.

@yesporer er ngdvendig for a kunne fa tilgang til kognitiv belastning.

Armband trengs for a fa tilgang til puls som kan si noe om personens stressniva.

Video og skjermopptak av utvalg 3 er ngdvendig for analysen.

Ekstern finansiering

Type prosjekt
Studentprosjekt, masterstudium
Kontaktinformasjon, student

Torkjell Romskaug, torkjer@stud.ntnu.no, tlf: 94178571

Behandlingsansvar

Behandlingsansvarlig institusjon

Norges teknisk-naturvitenskapelige universitet / Fakultet for informasjonsteknologi og elektroteknikk (IE)
/ Institutt for datateknologi og informatikk

Prosjektansvarlig (vitenskapelig ansatt/veileder eller stipendiat)
Kshitij Sharma, kshitij.sharma@ntnu.no, tlf: 41209147
Skal behandlingsansvaret deles med andre institusjoner (felles behandlingsansvarlige)?

Nei

Utvalg 1

Beskriv utvalget

Studenter/ansatte ved NTNU.

Rekruttering eller trekking av utvalget

about:blank Side 2 av 8

Meldeskjema for behandling av personopplysninger

Rekruteres gjennom bekjente og medarbeidere til veileder.

Alder

22 -50

Inngar det voksne (18 ar +) i utvalget som ikke kan samtykke selv?
Nei

Personopplysninger for utvalg 1

Navn (ogsa ved signatur/samtykke)

Bilder eller videoopptak av personer

Lydopptak av personer

Bakgrunnsopplysninger som vil kunne identifisere en person

Hvordan samler du inn data fra utvalg 1?
Gruppeintervju

Grunnlag for a behandle alminnelige kategorier av personopplysninger

Samtykke (art. 6 nr. 1 bokstav a)
Informasjon for utvalg 1

Informerer du utvalget om behandlingen av opplysningene?
Ja
Hvordan?

Skriftlig informasjon (papir eller elektronisk)

Utvalg 2

Beskriv utvalget

Studenter innenfor programmering og innformatikk som har gatt mer enn 3 ars skolegang.

Rekruttering eller trekking av utvalget

Rekrutering gjennom nettverk.

about:blank

01.06.2022, 11:57

Side 3 av 8

Meldeskjema for behandling av personopplysninger 01.06.2022, 11:57

Alder

23-26

Inngar det voksne (18 ar +) i utvalget som ikke kan samtykke selv?
Nei

Personopplysninger for utvalg 2

e Navn (ogsa ved signatur/samtykke)
e Bilder eller videoopptak av personer

Hvordan samler du inn data fra utvalg 2?
Annet

Beskriv

Dataskilder:

@yesporer (tobii eyetracker 60hz): pupilldilatasjon, pupilldiameter, gazepoints (blikk-koordinater).

datamaskin: Tastetrykk.

Utvalg 2 sitter foran en pc og gjennomfgrer en oppgave.
Grunnlag for a behandle alminnelige kategorier av personopplysninger

Samtykke (art. 6 nr. 1 bokstav a)
Informasjon for utvalg 2

Informerer du utvalget om behandlingen av opplysningene?
Ja
Hvordan?

Skriftlig informasjon (papir eller elektronisk)

Utvalg 3

Beskriv utvalget

Studenter ved ntnu med litt/ moderat kunnskap om programmering.

about:blank

Side 4 av 8

Meldeskjema for behandling av personopplysninger 01.06.2022, 11:57

Rekruttering eller trekking av utvalget

Rekruttering vil gjgres ved at skolen tar kontakt med elevene og spgrr om de vil veere med. Det kan ogsa
tenkes at det gjgres ved a bruke netverket vart.

Alder
19 - 30
Inngar det voksne (18 ar +) i utvalget som ikke kan samtykke selv?
Nei
Personopplysninger for utvalg 3
e Navn (ogsa ved signatur/samtykke)

e Bilder eller videoopptak av personer
e Helseopplysninger

Hvordan samler du inn data fra utvalg 3?
Annet

Beskriv

Dataskilder:
@yesporer (tobii eyetracker 60hz): pupilldilatasjon, pupilldiameter.

armband: (1) hjerterytme ved 1 Hz, (2) elektrodermisk aktivitet (EDA) ved 64Hz, (3) kroppstemperatur
ved 4Hz og (4) slagvolum puls ved 4Hz.

datamaskin: Tastetrykk, opptak av skjerm og bevegelse av mus.
videokamera: video av deltager.

Grunnlag for a behandle alminnelige kategorier av personopplysninger
Samtykke (art. 6 nr. 1 bokstav a)

Grunnlag for & behandle szerlige kategorier av personopplysninger
Uttrykkelig samtykke (art. 9 nr. 2 bokstav a)

Redegjgr for valget av behandlingsgrunnlag

about:blank Side 5 av 8

Meldeskjema for behandling av personopplysninger 01.06.2022, 11:57
Informasjon for utvalg 3

Informerer du utvalget om behandlingen av opplysningene?
Ja
Hvordan?

Skriftlig informasjon (papir eller elektronisk)

Tredjepersoner

Skal du behandle personopplysninger om tredjepersoner?

Nei

Dokumentasjon

Hvordan dokumenteres samtykkene?
e Manuelt (papir)

Hvordan kan samtykket trekkes tilbake?

Deltakere far mulighet til a trekke tilbake samtykket ved & sende en email til de ansvarlige for prosjektet.

Hvordan kan de registrerte fa innsyn, rettet eller slettet opplysninger om seg selv?

De far mailen var og kan sende etterspgrsel etter sin egen data.
Totalt antall registrerte i prosjektet

1-99

Tillatelser

Skal du innhente fglgende godkjenninger eller tillatelser for prosjektet?

about:blank Side 6 av 8

Meldeskjema for behandling av personopplysninger

Behandling

Hvor behandles opplysningene?
e Maskinvare tilhgrende behandlingsansvarlig institusjon
Hvem behandler/har tilgang til opplysningene?

e Student (studentprosjekt)
e Prosjektansvarlig

01.06.2022, 11:57

Tilgjengeliggjgres opplysningene utenfor EU/EOS til en tredjestat eller internasjonal organisasjon?

Nei

Sikkerhet

Oppbevares personopplysningene atskilt fra gvrige data (koblingsngkkel)?
Ja
Hvilke tekniske og fysiske tiltak sikrer personopplysningene?

¢ Opplysningene anonymiseres fortlgpende
e Adgangsbegrensning

Varighet

Prosjektperiode

08.11.2021 - 01.07.2022

Skal data med personopplysninger oppbevares utover prosjektperioden?
Neli, data vil bli oppbevart uten personopplysninger (anonymisering)

Hvilke anonymiseringstiltak vil bli foretatt?

e Lyd- eller bildeopptak slettes
e Personidentifiserbare opplysninger fjernes, omskrives eller grovkategoriseres

Vil de registrerte kunne identifiseres (direkte eller indirekte) i oppgave/avhandling/gvrige
publikasjoner fra prosjektet?

Nei

about:blank

Side 7 av 8

Meldeskjema for behandling av personopplysninger 01.06.2022, 11:57

Tilleggsopplysninger

La til videoopptak av deltager pa utvalg 3 og opptak av pupildilatasjon og pupildiameter pa utvalg 2.
La ogsa til at det kommer til a veere en forhandsprgve der deltagerene i utvalg 3 vil bli gitt flere sma
programmerings oppgaver der man bruker det samme innsamling som var tilstede i nsden fra for.

about:blank Side 8 av 8

66

Appendix C

Consent form

67

Request for participation in research project

Design of a smart gaze-aware feedback system for

programming

Background and Purpose

Design of a smart gaze-aware feedback system for programming is a master project at the
Norwegian University of Science and Technology (NTNU). The focus of the thesis is to
develop an intelligent feedback system that helps the students while they are programming.
This help should be provided in real-time using the eye-tracking data from the student and the
log data from the IDE that the student is using.

Sample selection: The participants will be primarily selected based on their participation in
the first-year programming course object-oriented programming at NTNU. The students need
to be familiar with the programming language and have some experience with programming
simple tasks. The participants will be recruited by spoken word or through the course sending

out information that students are needed.
What does participation in the project imply?

Participation in this study entails a pretest, and solving a programming task that together
should take between 30 - 60 minutes to complete. The participant will be programming while
an eye tracker, a wristband, and keystrokes are monitored and stored. In addition, the screen
and the participant will be recorded by a screen recorder and a video camera. Eye-tracking is
to film the eyes with a high resolution camera that is zoomed in on the eyes. For eye-tracking
we will use:(tobii eyetracker 60hz): and extract pupil dilation and pupil diameter. From the
wristband we will collect: (1) heart rate at 1 Hz, (2) electrodermal activity (EDA) at 64Hz, (3)

body temperature at 4Hz og (4) blood volume pulse at 4Hz.

The participant will be assigned randomly to group A or group B. Group A will be given an
extra tool while completing the programming task, while group B will complete the task
without the tool. Then they will switch and the ones that did not receive the extra tool for the

first programming task will get it for the next one and vice versa.

After the programming tasks the participant will rank the tasks with a NASA-TLX

questionnaire.
What will happen to the information about you?

The data will be collected with the respective devices at NTNU. The devices will be
connected to the internet, but the data will be analysed locally from the researchers that are
taking part in this project. Your data will be anonymized (the names will be stored separately
from the data) after we have transcribed and reviewed the data. The project is scheduled for
completion by 2022. Once the interview is conducted, the data will be stored in the one drive
that is password protected and will be kept, and used by us until the end of spring 2022. The

data might be kept anonymized for further research in the future.
Voluntary participation

Participation in this study is voluntary, and you as participants can choose to withdraw your
consent at any time during the project without stating any reason. If you decide to withdraw,
all your personal data will be deleted and not used in the project. If you have any questions

concerning the project or the study, please contact Elias Larsen at EliasSL(@stud.ntnu.no,

Torkjell Romskaug at TorkjeR @stud.ntnu.no, or Kshitij Sharma at kshitij.sharma@ntnu.no.

The study has been notified to the Data Protection Official for Research, NSD - Norwegian
Centre for Research Data.

Your rights
So long as you can be identified in the collected data, you have the right to:
- access the personal data that is being processed about you
- request that your personal data is deleted
- request that incorrect personal data about you is corrected/rectified
- receive a copy of your personal data (data portability), and

send a complaint to the Data Protection Officer or The Norwegian Data Protection Authority
regarding the processing of your personal data.

Where can I find out more?

If you have questions about the project, or want to exercise your rights, contact:
Norwegian University of Science and Technology via Kshitij Sharma.

NSD — The Norwegian Centre for Research Data AS, by email:
(personverntjenester@nsd.no) or by telephone: +47 53 21 15 00.

Consent for participation in the study

I hereby confirm that I have been fully informed about the aims and purposes of the study
and the project in general. I understand that my participation is entirely voluntary and, if I no
longer wish to participate, | may at any stage withdraw my participation. I have been
informed and understand my participation in the focus group interview, and that the data will

be stored and analyzed for the purposes of the project.

I have received information about the project and am willing to participate

(Signed by participant, date)

Appendix D

Pretest

71

foriin range(10):
ifi==5:
break
else:
print(i)
else:
print("Here")

a)01234Here
b)012345Here
c)01234
d)12345

foriin range(5):
ifi==5:
break
else:
print(i)
else:
print("Here")

a)01234Here
b)012345Here
c)01234
d)12345

a=[0,1,2,3]

i=-2

forinotin a:
print(i)
i+=1

a)-2-1

b)0

c) error

d) none of the mentioned

class Demo:
def __new__(self):
self.__init__(self)
print("Demo's __new__() invoked")

def __init__(self):
print("Demo's __init__() invoked")

class Derived_Demo(Demo):
def __new__(self):
print("Derived_Demo's __new__() invoked")

def __init__(self):
print("Derived_Demo's __init__() invoked")

def main():
objl = Derived_Demo()
obj2 = Demo() main()

a)

Derived_Demo’s __init__() invoked
Derived_Demo's __new__() invoked
Demo's __init__() invoked

Demo's __new__() invoked

b)

Derived_Demo's __new__() invoked
Demo's __init__() invoked

Demo's __new__() invoked

c)
Derived_Demo's __new__() invoked
Demo's __new__() invoked

d)
Derived_Demo’s __init__() invoked
Demo's __init__() invoked

class Test:
def __init__(self):
selfx=0

class Derived_Test(Test):
def __init__(self):
selfy=1
def main():
b = Derived_Test()
print(b.x,b.y)

main()

a)01

b)00

c) Error because class B inherits A but variable x isn't inherited

d) Error because when object is created, argument must be passed like
Derived_Test(1)

count={}
count[(1,2,4)]=5
count[(4,2,1)] =7
count[(1,2)]=6
count([(4,2,1)] =2
tot=0
foriin count:
tot=tot+count][i]
print(len(count)+tot)

a) 25
b) 17
c) 16
d) Tuples can’t be made keys of a dictionary

def fn(**kwargs):
for emp, age in kwargs.items():
print ("%s's age is %s." %(emp, age))

fn(John=25, Kalley=22, Tom=32)

OUTPUT

class PC: # Base class
processor = "Xeon" # Common attribute
def set_processor(self, new_processor):
processor = new_processor

class Desktop(PC): # Derived class
os = "Mac OS High Sierra" # Personalized attribute
ram = "32 GB"

class Laptop(PC): # Derived class
os = "Windows 10 Pro 64" # Personalized attribute
ram="16 GB"

desk = Desktop()
print(desk.processor, desk.os, desk.ram)

lap = Laptop()
print(lap.processor, lap.os, lap.ram)

OUTPUT

class PC: # Base class

processor = "Xeon" # Common attribute

def __init__(self, processor, ram): OUTPUT:
self.processor = processor
self.ram = ram

def set_processor(self, new_processor):
processor = Nnew_processor

def get_PC(self):
return "%s cpu & %s ram" % (self.processor, self.ram)

class Tablet():
make = "Intel"
def __init__(self, processor, ram, make):
self.PC = PC(processor, ram) # Composition
self.make = make

def get_Tablet(self):
return "Tablet with %s CPU & %s ram by %s" % (self.PC.processor, self.PC.ram, self.make)
if _name__=="__main__":
tab = Tablet("i7", "16 GB", "Intel")
print(tab.get_Tablet())

def multiply_number(num):
def product(number):
'product() here is a closure'
return num * number
return product

num_2 = multiply_number(2)
print(hum_2(11))
print(hum_2(24))

num_6 = multiply_number(6)
print(num_6(1))

OUTPUT

Appendix E

Snake debugging task with hints

import pygame
import time

import random
pygame.init ()

white = (255, 255, 255)
yellow = (255, 255, 102)
black = (0, 0, 0)

red = (213, 50, 80)
green = (0, 255, 0)

blue = (50, 153, 213)

dis_width = 600
dis_height = 400

dis = pygame.display.set_mode((dis_width, dis_height))
clock = pygame.time.Clock()

snake_block = 10

snake_speed 15

font_style = pygame.font.SysFont("bahnschrift", 25)

score_font = pygame.font.SysFont("comicsansms", 35)

79

def Your_score(score):
value = score_font.render("Your Score: " + str(score), True, yellow)

dis.blit(value, [0, 0])

def our_snake(snake_block, snake_list):
for x in snake_list:

pygame.draw.rect(dis, black, [x[0], x[1], snake_block, snake_block])

def message(msg, color):
mesg = font_style.render(msg, True, color)

dis.blit(mesg, [dis_width / 6, dis_height / 3])

def gameLoop():
game_over = False

game_close = False

x1 = dis_width / 2
yl = dis_height / 2

I
o

x1_change

I
o

y1l_change

snake_List = []

Length_of_snake = 1

foodx = round(random.randrange(0O, dis_width - snake_block) / 10.0) * 10.0

foody = round(random.randrange(0O, dis_height - snake_block) / 10.0) * 10.0

while not game_over:

while game_close == True:
dis.fill(blue)
message ("You Lost! Press C-Play Again or Q-Quit", red)
Your_score(Length_of_snake - 1)

pygame.display.update ()

80

for event in pygame.event.get():
if event.type == pygame.KEYDOWN:
if event.key == pygame.K_q:
game_over = True
game_close = False
if event.key == pygame.K_c:

gameLoop ()

for event in pygame.event.get(): #I change in this loop to rectfy moving
if event.type == pygame.QUIT:
game_over = True
if event.type == pygame.KEYDOWN:
if event.key == pygame.K_LEFT:

x1_change snake_block

yl_change = snake_block

elif event.key == pygame.K_RIGHT:

x1_change snake_block

y1l_change snake_block

elif event.key == pygame.K_UP:
y1l_change = snake_block
x1_change = snake_block

elif event.key == pygame.K_DOWN:
y1l_change = snake_block

x1_change snake_block

if x1 > dis_height or yl1 > dis_width: #2 change this to rectify game over

game_close = True

x1 x1_change #3 change this to rectify moving

y1 yl_change #4 change this to rectify moving

dis.fill(blue)

pygame .draw.rect(dis, green, [foodx, foody, snake_block, snake_block])
snake_Head = []

snake_Head.append(x1)

snake_Head.append(y1)

snake_List.append(snake_Head)

if len(snake_List) > Length_of_snake:

del snake_List[0]

81

for x in snake_List[:-1]:
if x == snake_Head:

game_close = True

our_snake (snake_block, snake_List)

Your_score(snake_List[0]) #5 change this for increasing the score properly
pygame.display.update ()
if x1 == foodx and yl1 == foody:
foodx = round(random.randrange(0, dis_width - snake_block) / 10.0) * 10.0
foody = round(random.randrange(0, dis_height - snake_block) / 10.0) * 10.0
Length_of_snake = 1 #6 change this for increasing the length of the snake with the
clock.tick(snake_speed)
pygame.quit ()

quit()

gameLoop ()

82

Appendix F

Tetris debugging task with hints

import pygame

import random

colors = [

(0, 0, 0),

(120, 37, 179),
(100, 179, 179),
(80, 34, 22),
(80, 134, 22),
(180, 34, 22),
(180, 34, 122),

class Figure:
x =0
y =0
Rectify this array to obtain correct tetris figures

figures = [

(ft, 5, 9, 131, [4, 5, 6, 711,

(4, s, 9, 101, [2, 6, 5, 911,

(6, 7, 9, 101, [1, 5, 6, 1011,

(ft, 2, 5, 91, [0, 4, 5, 61, [6, 7, 9, 101, [4, 5, 6, 1011,
(ct+, 2, 6, 101, 5, 6, 7, 91, [2, 6, 10, 111, [6, 7, 9, 1011,
((t, 4, 5, 61, [6, 7, 9, 101, [4, 5, 6, 91, [1, 5, 6, 911,
(fx, 2, 5, 611,

83

def __init__(self, x, y):
self.x = x
self.y =y
self.type = random.randint(0, len(self.figures) - 1)
self.color = random.randint(1, len(colors) - 1)

self.rotation = 0O

def image(self):

return self.figures([self.type][self.rotation]

def rotate(self):

self .rotation = (self.rotation + 1) % len(self.figures[self.typel)

class Tetris:

level = 2

score = 0

state = "start"
field = []
height = 0
width = 0

x = 100

y = 60

zoom = 20

figure = None

def __init__(self, height, width):

self .height = height

self.width = width
self.field = []
self.score = 0
self.state = "start"

for i in range(height):
new_line = []
for j in range(width):
new_line.append(0)

self.field.append(new_line)

84

def new_figure(self):
self.figure = Figure(3, 0)

def intersects(self):
intersection = False
for i in range(10): # Rectify both for loops to properly insert the tetris
figures in the building
for j in range(10):
if i * 4 + j in self.figure.image():
if i + self.figure.y > self.height - 1 or \
j + self.figure.x > self.width - 1 or \
j + self.figure.x < 0 or \
self.field[i + self.figure.y][j + self.figure.x] > O:
intersection = True

return intersection

def break_lines(self):
lines = 0
for i in range(self.height): # rectify the range call to correctly remove
completed lines
zeros = 0
for j in range(self.width):
if self.field[il[j] ==
zeros += 1
if zeros ==
lines += 1
for il in range(i, 1, -1):
for j in range(self.width):
self.field[i1][j] = self.field[il - 1][j]

self.score += lines *x* 2

def go_space(self):
while not self.intersects():
self .figure.y += 1
self.figure.y += 1 # rectify this to properly pull down the tetris piece

self.freeze()

def go_down(self):

85

self.figure.y += 1
if self.intersects():
self.figure.y += 1 # rectify this to properly move the tetris piece down

self.freeze()

def freeze(self):

for i in range(4):

for j in range(4):

if i * 4 + j in self.figure.image():
self.field[i + self.figure.y][j + self.figure.x] = self.figure.color

self .break_lines()
self .new_figure()
if self.intersects():

self.state = '"gameover"

def go_side(self, dx):
old_x = self.figure.x
self.figure.x += dx
if self.intersects():

self.figure.x = old_x

def rotate(self):
old_rotation = self.figure.rotation
self.figure.rotate()
if self.intersects():

self.figure.rotation = old_rotation

Inittalize the game engine

pygame.init ()

Define some colors
BLACK = (0, 0, 0)
WHITE = (255, 255, 255)
GRAY = (128, 128, 128)

size = (400, 500)

screen = pygame.display.set_mode(size)

86

pygame.display.set_caption("Tetris")

Loop until the user clicks the close button.
done = False

clock = pygame.time.Clock()

fps = 25

game = Tetris(20, 10)

counter = 0

pressing_down = False

while not done:
if game.figure is None:
game .new_figure()
counter += 1
if counter > 100000:

counter = 0

if counter 7 (fps // game.level // 2) == 0 or pressing_down:
if game.state == '"start":

game . go_down ()

for event in pygame.event.get():
if event.type == pygame.QUIT:
done = True
if event.type == pygame.KEYDOWN:
if event.key == pygame.K_UP:
game.rotate()
if event.key == pygame.K_DOWN:
pressing_down = True
if event.key == pygame.K_LEFT:
game.go_side(1) # rectify this to move the piece left
if event.key == pygame.K_RIGHT:
game.go_side(1)
if event.key == pygame.K_SPACE:
game . go_space ()
if event.key == pygame.K_ESCAPE:

game.__init__(20, 10)

87

if event.type == pygame.KEYUP:
if event.key == pygame.K_DOWN:

pressing_down = False

screen.fill (WHITE)

for i in range(game.height):
for j in range(game.width):
pygame.draw.rect(screen, GRAY, [game.x + game.zoom * j, game.y + game.zoom * i, ga
if game.field[i][j] > O:
pygame.draw.rect(screen, colors[game.field[i][j]],

[game.x + game.zoom * j + 1, game.y + game.zoom * i + 1, game

if game.figure is not None:
for i in range(4):
for j in range(4):
p=i*4+j
if p in game.figure.image():
pygame.draw.rect (screen, colors[game.figure.color],
[game.x + game.zoom * (j + game.figure.x) + 1,
game.y + game.zoom * (i + game.figure.y) + 1,

game.zoom - 2, game.zoom - 2])

font = pygame.font.SysFont('Calibri', 25, True, False)

fontl = pygame.font.SysFont('Calibri', 65, True, False)

text = font.render("Score: " + str(game.score), True, BLACK)
text_game_over = fontl.render("Game Over", True, (255, 125, 0))

text_game_overl = fontl.render("Press ESC", True, (255, 215, 0))

screen.blit(text, [0, 0])
if game.state == "gameover":
screen.blit(text_game_over, [20, 200])

screen.blit(text_game_overl, [25, 265])

pygame.display.flip()
clock.tick(fps)

pygame.quit ()

88

Real time stress-aware feedback system Tor programming.

@ NTNU

Kunnskap for en bedre verden

