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A B S T R A C T   

Rapid advances in Industry 4.0 have the potential to transform production planning and control (PPC) through 
the emerging concept of smart PPC. This paper provides a visionary perspective by addressing the gap in research 
on how the characteristics of a company’s planning environment impact on the need for, and potential benefit of, 
smart PPC. The paper posits that the potential of smart PPC to improve PPC performance increases with the 
complexity of the planning environment. A set of propositions is developed for how 12 product, market, and 
process variables impact on the need for smart PPC. These are operationalized into a conceptual framework that 
can be used as a tool by practitioners and academics to assess a company’s need for smart PPC. A case study from 
the food sector illustrates the applicability of the framework and describes three potential applications for how 
four elements of smart PPC (real-time data management, dynamic production planning and re-planning, 
autonomous production control, and continuous learning) can be used to address key PPC challenges and 
open new opportunities for improving PPC. Future research should strengthen the validity and applicability of 
the proposed framework through additional cases across industrial sectors and carry out case studies, surveys, 
and structural equation modeling to investigate the specific relationship between planning environment char-
acteristics, smart technologies, and the elements of smart PPC.   

1. Introduction 

Smart manufacturing is a well-established concept. Through the use 
of emerging technologies, production systems are increasing their per-
formance and simultaneously generating increasingly large volumes of 
data. The potential use of this data for production planning and control 
(PPC) and performance improvements has been widely promoted in 
industry and academia but with limited adoption (Chavez et al., 2017; 
Fatorachian & Kazemi, 2021; Kusiak, 2017; Nagy et al., 2018). Un-
precedented opportunities are provided to not only support human 
decision-making but also automate planning and control tasks and make 
way for more integrated, dynamic, and real-time PPC. Many studies 
have investigated the application of Industry 4.0 for smart 
manufacturing (Mittal et al., 2018; Qi & Tao, 2018; Wang et al., 2021; 
Zheng et al., 2018), and there is a growing number of papers on how 
emerging technologies can be used for smart PPC (see Bueno et al., 2020 
for an overview). However, few empirical case studies have been 

reported that specifically focus on the role of PPC in achieving smart 
manufacturing or how Industry 4.0 can be used to improve PPC (Moeuf 
et al., 2018; Oluyisola, 2021; Ren et al., 2015; Sun et al., 2019). 

From a contingency perspective, before we start implementing new 
technologies for smart PPC, we need to understand in which situations 
such technologies have the largest potential to improve PPC perfor-
mance. For this purpose, we adopt the definition of Oluyisola et al. 
(2020), where smart PPC is understood as the integration of emerging 
technologies and capabilities in the Industry 4.0 framework with PPC 
processes to improve the performance of the production system by 
enabling real-time, data-driven decision-making and continuous 
learning with input from a more diverse range of data sources. 

This paper provides a visionary perspective on the emerging concept 
of smart PPC by investigating the relationship between the planning 
environment characteristics of a company and the need for smart PPC. 
The purpose of the paper is to provide a structured tool that can guide 
academics and practitioners in evaluating the need for smart PPC 
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through an assessment of a company’s planning environment 
characteristics. 

Firstly, we use literature to identify the variables of a company’s 
production planning environment with regards to product, market, and 
process characteristics. The resulting framework contributes to the 
literature on PPC through a structured way to describe a company’s 
planning environment, with illustrations of how different variables 
complicate PPC. The paper’s second contribution is towards the litera-
ture on smart PPC, where we develop a conceptual framework that links 
planning environment characteristics with the need for smart PPC. The 
framework was developed from a set of propositions on how each var-
iable impacts on the need for smart PPC. Lastly, the paper contributes 
with empirical insights from a case study. The case illustrates how the 
proposed framework can be used in a company to identify the most 
challenging PPC aspects and assess the need for smart PPC, and outlines 
some potential applications of smart PPC. 

The structure of the paper is as follows. Section 2 describes the 
theoretical background for the paper with regards to smart PPC and 
production planning environment characteristics. In section 3, the 
framework and propositions linking the production planning environ-
ment characteristics with the need for smart PPC are presented. The 
framework is subsequently used in the case study in section 4. Section 5 
concludes the paper by outlining the main contributions and providing 
directions for future research. 

2. Theoretical background 

Industry 4.0 and the emergence of associated smart technologies are 
expected to have considerable impact on PPC. However, some recent 
studies indicate that many companies are facing challenges in their ef-
forts towards adoption of smart technologies and realization of smart 
PPC (Bean & Davenport, 2019; Oluyisola, 2021). Many of these chal-
lenges are related to the characteristics of the planning environment 
(Oluyisola et al., 2020), and an understanding of these characteristics is 
therefore important in order to identify the needs and opportunities for 
smart PPC. Below, we first define and describe smart PPC and then 
present a framework for mapping the planning environment character-
istics that constrain PPC. 

2.1. Smart production planning and control 

A company’s PPC function is concerned with operating and coordi-
nating the company’s resources on a day-to-day basis. The purpose is to 
ensure the availability of materials and other variable resources needed 
to supply the goods and services which fulfill customers’ demands 
(Bertrand et al., 1990; Slack et al., 2013). PPC encompasses 
decision-making processes and policies about planning (estimating, 
routing, scheduling, and resource loading) and control (dispatching, 
expediting, inspecting, evaluating, and taking corrective action) of 
production processes and resources (Slack et al., 2013). 

A number of enterprise systems have emerged to support the PPC 
task, from material requirements planning (MRP) and manufacturing 
resource planning (MRPII) systems to the more advanced enterprise 
resource planning (ERP) systems. Later, manufacturing execution sys-
tems (MES) and advanced planning and scheduling (APS) systems have 
emerged to address some of the limitations of ERP systems. However, 
these also have their limitations, including being too simplistic and 
rigid, with limited ability to adjust schedules to real-time or near-real- 
time data, as well as being very expensive and requiring employees 
with specialized skills (Oluyisola, 2021). In addition, such systems are 
still based on periodic planning even though demand is continuous 
(Oluyisola, 2021). 

The developments within Industry 4.0 now present new opportu-
nities for creating a real-time connection between resources, services, 
and humans through smart technologies such as cyber-physical systems 
(CPS), the internet of things (IoT), big data analytics (BDA), and 

machine learning (ML) (Oluyisola et al., 2020; Stock et al., 2018). 
Building on the Industry 4.0 framework, smart PPC has emerged as a 
result of the integration of Industry 4.0 technologies and capabilities 
into PPC (Oluyisola et al., 2020). 

Building on previous literature, smart PPC can be understood as 
consisting of four main elements; real-time data management (Saad 
et al., 2021), dynamic production planning and re-planning (Saad et al., 
2021), autonomous production control (Saad et al., 2021), and contin-
uous learning (Oluyisola et al., 2020). 

Real-time data management: it consists of tracking, collecting, 
analyzing, and protecting data from internal and external sources to 
provide adaptive and responsive planning, scheduling, and execution 
(Saad et al., 2021). Real-time data acquisition technologies such as radio 
frequency identification (RFID) tags (Grunow & Piramuthu, 2013), 
real-time localization systems (RTLS) (Reuter et al., 2017; Saad et al., 
2021), and sensors and actuators (Malek et al., 2017) provide access to 
real-time data based on the current situation and offer more and qual-
ified data for PPC decision-makers to support and facilitate PPC 
(Strandhagen et al., 2011; Zheng et al., 2018). It should be noted that 
real-time data is not only about the accuracy of the data, it is also about 
getting the required information at the required time (Arica & Powell, 
2014). Therefore, by applying real-time data management, PPC 
decision-makers and managers can recognize deficiencies and prevent 
potential errors and problematic issues on the shopfloor (Arica & 
Powell, 2014), allowing decision-makers to plan and re-plan 
dynamically. 

Dynamic production planning and re-planning: smart PPC provides 
a company with the ability to respond quickly to changes or unplanned 
events in the production processes. Capabilities for dynamic scheduling 
and rescheduling are required to automatically deal with such disrup-
tions – enabled by access to real-time data and participation of all main 
internal and external parties in the production planning (Saad et al., 
2021). Dynamism here refers to the rate of change in elements of an 
organization’s environment that are not directly within its control 
(Makkonen et al., 2014). Causes of such changes are events that can be 
categorized into two groups: resource-related and job-related (Ouelhadj 
& Petrovic, 2009). Examples of resource-related events include machine 
breakdown, operator sickness, unavailability or failures of tools, loading 
restrictions, delay in the arrival or shortage of materials, and defective 
material. Job-related events include rush jobs, job cancellations, due 
date changes, early or late arrival of jobs, job priority changes, and job 
processing time adjustments (Ouelhadj & Petrovic, 2009). Dynamic 
production planning and re-planning thus provide opportunities for a 
company to plan and re-plan efficiently, reduce labor costs, increase 
production speed and responsiveness, and improve product quality 
control (Li et al., 2006; Oluyisola et al., 2020). 

Autonomous production control: autonomy can be understood as a 
system’s ability to make decisions without external instructions and to 
perform activities without the need for external forces (Scholz-Reiter & 
Freitag, 2007). The task of production control is to ensure that schedules 
are executed with the consideration of potential disruptions (Grund-
stein et al., 2017). Autonomous production control seeks to enhance the 
performance of production systems by enabling an object, such as a 
resource, pallet, or order, to make decisions on its own without human 
involvement (Martins et al., 2018). Machine-to-machine (M2M) 
communication enables "smart devices" to communicate with each other 
independently and make joint decisions without direct human inter-
vention (Verma et al., 2016). Self-optimizing production control is 
necessary in such systems to continually assess the current situation, and 
as a consequence, the job allocations to the machines can be adapted at 
any moment (Köchling et al., 2016). Application of advanced data 
processing, data analytics, data storage, and cloud technologies can be 
used to support control systems in solving real-time problems, thus 
achieving higher flexibility, robustness (Bendul & Blunck, 2019), and 
reliability (Bueno et al., 2020) and paving the way towards autonomous 
production control (Saad et al., 2021). 
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Continuous learning: many companies have made significant in-
vestments in technologies to automate production processes, while 
many PPC decisions are still made based on expert experience (Bresler 
et al., 2020). The production and PPC-related expertise, experience, and 
tacit knowledge of operators, planners, and managers should be 
captured and modeled so they can be used for PPC decision-making 
(Bresler et al., 2020). Continuous learning can further be integrated 
into PPC through the application of ML algorithms that run indepen-
dently, without human intervention (Oluyisola et al., 2020). Continuous 
learning is currently not well addressed within PPC (Oluyisola et al., 
2020), but as an element of smart PPC, it can enable the evolution of 
"digital thinking", which will bring improvements to make smarter, 
faster, and more accurate decisions (Thomas et al., 2018). 

2.2. Production planning environment characteristics 

The characteristics of a company’s planning environment constrain 
the company’s PPC decisions and policies and affect the efficacy of PPC 
(Hong et al., 2010; Jonsson & Mattsson, 2003; Romsdal, 2014). Thus, an 
analysis of these characteristics provides an understanding of the envi-
ronment within which PPC is conducted and can assist in identifying the 
PPC contexts where smart PPC is most beneficial. 

Following the approach of Jonsson and Mattsson (2003), for the 
purpose of this study, we describe planning environments in terms of 
their product, market, and process characteristics. Building on the 
framework of Romsdal (2014), we identified 12 variables that we expect 
to have the largest impact on the need for smart PPC. For our purposes, 
some variables from the Romsdal framework have been excluded or 
adjusted, while others have been added, depending on their expected 
impact on the need for smart PPC. The variables "demand uncertainty" 
and "supply uncertainty" are changed to "demand variability" and 
"supply variability" respectively because variability can be modeled and, 
in some ways, controlled thanks to the analysis of data collected from 
the market. Further, "product perishability" is instead expressed as the 
"ability to keep inventory" to include also other factors that impact this 
ability. The variable "stock-out rates in retail stores" is not included since 
it does not have a direct effect on PPC. "Make-to-order lead time" is 
changed to the more generic term "process lead time". The variable 
"plant, processes and technology" is replaced by the two variables 
"process flexibility" and "process complexity" since these better describe 
the planning environment. 

The revised framework is presented in Table 1, where each variable 
is firstly defined, and then some non-exhaustive examples are provided 
to illustrate how each variable can impact PPC. The examples were 
logically derived in a discussion among the authors. 

2.3. Research gap 

Very few empirical case studies have been reported that specifically 
focus on the role of PPC in achieving smart manufacturing or on how 
Industry 4.0 can be used to improve PPC (Bueno et al., 2020; Moeuf 
et al., 2018; Oluyisola et al., 2022; Ren et al., 2015; Sun et al., 2019). 

Bueno et al. (2020) conducted a systematic literature review inves-
tigating the relationship between PPC and Industry 4.0. They developed 
an analytical framework for how PPC in Industry 4.0 is affected by smart 
capabilities. A number of smart capabilities based on five Industry 4.0 
technologies were identified, including real-time, autonomy, adapt-
ability, and dynamic capabilities. Product, market, and production 
process factors that influence smart PPC capabilities were identified, but 
the study did not investigate how the different factors affect the per-
formance of smart PPC. The authors concluded that more research is 
needed into the question of fit between Industry 4.0 technologies and 
their integration into PPC in different production environments. 

Another recent study on smart PPC is Oluyisola et al. (2020), who 
propose an incremental, conceptual model of smart PPC. They described 
a path for how Industry 4.0 technologies can be used in the transition 

Table 1 
Production planning environment characteristics and their impact on produc-
tion planning and control  

Category Variable Definition Examples of challenges 
for production 
planning and control 

Product Product 
complexity 

Number of levels in the 
bill of material, number 
of items on each level ( 
Jonsson & Mattsson, 
2003), and 
interrelatedness of 
product components ( 
Lamming et al., 2000) 

A high number of 
components and 
interrelatedness between 
components increase 
PPC complexity. Any 
changes in the 
production of one 
component can affect the 
production of many end 
products – requiring 
replanning and resource- 
demanding monitoring 
and control, particularly 
in situations with shared 
capacity. High 
complexity increases the 
need for volume 
flexibility and often 
leads to smaller batch 
sizes in order to respond 
quickly to changes in 
demand. 

Product 
variety 

Number of product 
variants (Jonsson & 
Mattsson, 2003) 

High product variety 
means production 
volume is spread over 
many product variants. 
This complicates 
demand forecasting, 
materials planning, and 
PPC of raw materials, 
components, and 
finished products. A 
large number of variants 
increases the number of 
changeovers and limits 
the ability to exploit 
economies of scale 
through large batches. 

Product life 
cycle 

Stage and length of a 
product’s life cycle from 
launch to termination ( 
Aitken et al., 2005;  
Christopher et al., 2009) 

Short product life cycles 
and frequent product 
launches and 
terminations require 
high product mix and 
volume flexibility and 
lead to frequent changes 
to the product mix. Low 
demand predictability at 
launch and termination 
stages requires an ability 
to quickly adapt to 
changes in demand, 
favoring smaller batches 
which lead to more 
frequent changeovers. 

Product 
volume and 
variability 

Volume related to 
market demand and 
variability of volume ( 
Aitken et al., 2005) 

Low volumes per variant 
often lead to small batch 
sizes and a high number 
of changeovers to satisfy 
demand. High volume 
variability requires high 
volume flexibility in 
order to deliver the 
required variants within 
the lead time. This 
typically limits the 
ability to exploit 
economies of scale 
through large batch sizes 
and can lead to high 
inventories and high risk 
of obsolescence. 

(continued on next page) 

M. Rahmani et al.                                                                                                                                                                                                                              



Annual Reviews in Control 53 (2022) 370–381

373

from connected to transparent, and finally intelligent and smart pro-
duction systems. The study used a set of attributes to describe and 
compare the planning environments and Industry 4.0 initiatives in four 
empirical cases. However, the study did not investigate how the different 
variables impact on the degree of need for, or potential benefits of, In-
dustry 4.0 for smart PPC. 

Saad et al. (2021) proposed and tested a hierarchical requirements 
model for smart PPC, consisting of criteria, drivers, and technologies. 
The three main criteria in the model were real-time data management 
systems, dynamic production planning, and autonomous execution 
control. The authors used the smart small and medium sizes enterprises 
(SME) technology readiness assessment (SSTRA) methodology to mea-
sure SMEs’ technology capability to implement Industry 4.0. However, 
this methodology did not consider any planning environment charac-
teristics in the assessment of the requirements for smart PPC. 

In the most recent study on smart PPC, Oluyisola et al. (2022) pro-
pose a 5-step methodology for designing and developing smart PPC. 
Here, the first step consists of determining the objectives and priorities 
for developing smart PPC with regards to the fit with planning 

Table 1 (continued ) 

Category Variable Definition Examples of challenges 
for production 
planning and control 

Market Delivery lead 
time 

The time window 
between the placement 
of customer order until 
its delivery to the 
customer (Milgate, 
2001) 

Short delivery lead time 
requirements require 
high mix and volume 
flexibility. This can be 
achieved through 
frequent changeovers or 
using finished goods 
inventory as buffers 
against demand and 
supply variability. Any 
disturbances such as 
machine breakdowns or 
lack of raw materials can 
require replanning and 
additional changeovers. 

Delivery lead 
time 
variability 

Variability related to 
lead time predictability ( 
Aitken et al., 2005) 

High delivery lead time 
variability reduces 
forecast accuracy and 
the ability to use 
inventory to buffer 
against demand and 
supply variability. This 
typically leads to more 
frequent changeovers to 
meet customer demand 
within lead time 
requirements and can 
require frequent 
replanning. 

Demand 
variability 

Predictability and 
stability of demand (Lee, 
2002) 

High demand variability 
complicates demand 
planning and reduces the 
accuracy of demand 
forecasting. Often large 
inventories are used to 
buffer against demand 
variability in order to be 
able to respond quickly 
to changes in demand – 
but this increases the risk 
of obsolescence and 
scrapping. 

Ability to 
keep 
inventory 

Perishability of raw 
materials, intermediates, 
and finished goods 
inventories (Coelho & 
Laporte, 2014) 

Limited ability to keep 
inventory, e.g., due to 
perishability or risk of 
obsolescence, limits the 
possibility to use 
inventory to buffer 
against demand and 
supply variability. This 
favors frequent 
production in smaller 
batches, increasing the 
number of setups and 
changeovers and 
limiting the ability to 
exploit economies of 
scale. 

Process Process lead 
time 

The time between 
starting and terminating 
a process (Karmarkar, 
1993) 

Long process lead times 
lead to high levels of 
work-in-process (WIP) 
inventory and limit the 
ability to quickly adjust 
production volumes in 
response to changes in 
demand and supply. 
Long lead times increase 
the need for controlling 
queues and flows of 
products. 

Process 
flexibility 

Ability to change 
product volume (Jordan 
& Graves, 1995) and 
produce different types 

Low process flexibility 
complicates several PPC 
decisions, such as 
product assignment and  

Table 1 (continued ) 

Category Variable Definition Examples of challenges 
for production 
planning and control 

of products (Hopp et al., 
2010) 

capacity. Rigid processes 
with long setup times 
favor large batch sizes 
and infrequent 
changeovers, which 
again reduces volume 
and product mix 
flexibility and the ability 
to respond quickly to 
changes in demand or 
supply. Machine 
breakdowns and changes 
in production processes 
further complicate 
control. 

Process 
complexity 

Number of processes ( 
Jonsson & Mattsson, 
2003) and 
interrelatedness of 
processes (Jacobs, 2013) 

A high number of 
production processes 
complicate planning and 
control, particularly 
when processes are 
interrelated. Challenges 
include difficulties in 
establishing and 
controlling lead times, 
determining routings, 
monitoring backlogs, 
controlling queues and 
WIP, and coordinating 
flows of semi-finished 
items and components 
with the production of 
end products. 

Supply 
variability 

Predictability and 
stability of supply (Lee, 
2002) 

High supply variability 
reduces the ability to 
quickly increase 
production volumes if 
inputs are not available. 
High inventory levels are 
therefore often used to 
buffer against low 
stability and 
predictability. 
Production should 
continuously monitor 
supply to foresee and 
manage shortages and 
attempt to manage 
variability through 
dynamic planning.  
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environment variables. However, the authors do not identify or propose 
any frameworks or tools that can assist companies assess this fit, or the 
degree to which a company can benefit from smart PPC. 

Although the literature on smart PPC is growing, there appears to 
still be a gap with regards to how one can assess a company’s need for 
smart PPC and how this need is linked to the characteristics of the 
production planning environment. 

3. A framework linking production planning environment 
characteristics with the need for smart production planning and 
control 

Based on the research gap identified in section 2.3, the purpose of 
this paper is to provide a structured tool that can guide academics and 
practitioners in evaluating the need for smart PPC through an analysis of 
company planning environment characteristics. 

For this purpose, we started with the variables from the framework in 
Table 1 because it provides a structured set of variables that have an 
impact on PPC. Since the literature on the relationship between planning 
environment characteristics and smart PPC is scarce, logical assump-
tions have been used to develop a set of propositions on how the vari-
ables impact the need for smart PPC. “Need” is here understood as the 

degree to which smart PPC is expected to be beneficial for PPC, i.e., 
improve PPC performance. A scale was assigned to each variable, where 
the variable at its most challenging setting is associated with a high need 
for PPC. The assumption is that a variable at its most challenging setting 
complicates PPC, thus increasing the expected benefit of applying ele-
ments of smart PPC to address the challenges. 

The propositions are summarized in the framework in Table 2. For 
each variable, the degree of need for smart PPC is indicated by a scale of 
one, two, or three stars. One star (*) indicates that the variable is at its 
most favorable setting, i.e., a situation in which the characteristic does 
not significantly complicate PPC and smart PPC is therefore not ex-
pected to lead to considerable improvements in PPC performance. Two 
stars (**) indicate that the variable is at a medium setting, i.e., a situa-
tion where smart PPC is expected to provide some benefit. Three stars 
(***) indicate that the variable is at its least favorable or most chal-
lenging setting, where smart PPC is expected to provide considerable 
benefits for PPC. The righthand column provides non-exhaustive ex-
amples of how some parts of the four elements of smart PPC identified in 
section 2.1 can be beneficial in PPC, where R = real-time data man-
agement; D = dynamic production planning and re-planning; A =
autonomous production control; and C = continuous learning. With the 
rapid development of smart technologies, the potential applications of 

Table 2 
Framework linking planning environment characteristics with the need for smart PPC  

Category Variable Proposition Need for smart PPC Examples of how elements of smart PPC can be beneficial 
* ** *** 

Product Product 
complexity 

The higher the product complexity, 
the higher the need for smart PPC. 

Low Medium High Through smart PPC a company can more efficiently collect, store and 
update product data (R) and enable dynamic changes and replanning, 
with associated effects on capacity and material requirements (D). 

Product variety The higher the product variety, the 
higher the need for smart PPC. 

Low Medium High Smart PPC can simplify the management of a high number of product 
variants through a more proactive definition and analysis of product 
families, combining both objective (data-driven) and subjective (based on 
planners’ experience) clustering (R; C). 

Product life cycle The shorter the product life cycle, 
the higher the need for smart PPC. 

Long Medium Short When the product mix changes frequently, access to more up-to-date 
product data is essential (R) so that PPC processes can be adapted (D) or 
can adapt themselves (A) quickly to a new product mix. 

Product volume 
and variability 

The higher the volume variability, 
the higher the need for smart PPC. 

Low Medium High The higher the volume variability, the more essential is the ability to 
foresee product volume behavior over time. Forecasting accuracy relies on 
the availability of up-to-date demand data (R) and knowing how to exploit 
this data in PPC in a smart way (C). 

Market  Delivery lead time The shorter the delivery lead time, 
the higher the need for smart PPC. 

Long Medium Short Short delivery lead time requires the use of up-to-date demand data for use 
in PPC decision-making (R), enabling the production system to respond 
quicker to sudden changes in demand, such as customer rush orders (D). 

Delivery lead time 
variability 

The higher the delivery lead time 
variability, the higher the need for 
smart PPC. 

Low Medium High Data on lead time variability can be used by planners to better predict the 
behavior of the delivery system (R; C) and when needed, dynamically re- 
plan production or change inventory allocation (D). 

Demand 
variability 

The higher the demand variability, 
the higher the need for smart PPC. 

Low Medium High For producers, more up-to-date demand data is an essential input to PPC to 
foresee, manage and respond quickly to changes in demand (R; D). AI 
tools can be used to automate some demand forecasting tasks (A) 

Ability to keep 
inventory 

The lower the ability to keep 
inventory, the higher the need for 
smart PPC. 

High Medium Low Product perishability limits the producer’s ability to use inventory as a 
buffer against demand variability. Thus, continuous insights into demand 
can be used to improve and support forecasting (R; C) and dynamically 
adjust lot sizes in e.g. processing or packing (D). 

Process Process lead time The longer the process lead time, the 
higher the need for smart PPC. 

Short Medium Long When process lead times are long, processing data can be used to have a 
continuously updated and accurate overview of the entire process and its 
potential variability (R; C). This can be used to enable autonomous 
decision-making (A), dynamic re-planning (D), and support decision- 
making (C). 

Process flexibility The lower the process flexibility, the 
higher the need for smart PPC. 

High Medium Low When a process is inflexible and setup times are long, the process cannot 
easily be adapted to changes in the planning environment. Instead, 
accurate, detailed, and real-time process data can be used to assess system 
constraints and limitations (R; C) and further enable dynamic replanning 
through e.g. autonomous control (D; A). 

Process 
complexity 

The higher the process complexity, 
the higher the need for smart PPC. 

Low Medium High High process complexity means a process cannot be easily adapted to 
changes in the planning environment. Instead, accurate, detailed, and real- 
time process data (R) can be used for autonomous control (A) or be 
combined with tacit knowledge for use in PPC decision-making (C). 

Supply variability The higher the supply variability, 
the higher the need for smart PPC.  

Low Medium High Highly variable supply limits the producer’s ability to adapt to changes in 
the planning environment. Instead, up-to-date internal data and 
information from suppliers (R) can be used to foresee and manage 
variability through dynamic re-planning (D) and enable autonomous 
planning and control of purchasing, inventory, and production (A).  
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these for PPC purposes are almost endless. The examples provided in 
Table 2 are therefore meant as inspiration and illustration of how 
various elements of smart PPC can be operationalized to support a 
company in addressing the most challenging setting of each variable. 
The examples are generated based on the insights of the authors from 
previous research and case studies, combined with inspiration from 
existing literature on smart PPC, mainly Bueno et al., 2020, Moeuf et al., 
2018, Oluyisola et al., 2021, and Oluyisola et al., 2022. 

4. Case study; planning environment characteristics and 
potential applications of smart PPC in food production 

In this section, we first provide a short introduction to food pro-
duction and introduce the case company. We then present the case 
findings with regard to the company’s planning environment charac-
teristics and use the framework in Table 2 to identify the need for smart 
PPC. Based on this, we propose and describe three potential applications 
of smart PPC which can address the identified needs for smart PPC. 

The case study was conducted as part of the research project DigiMat, 
using design science as the overall research strategy. In this approach, 
research is driven by practical problems, and specific solutions are 
developed, realized, and evaluated in close collaboration among com-
pany representatives and researchers (Van Aken & Romme, 2009). The 
researchers provide key competencies and development resources and 
act as drivers of the research and development activities. The company 
representatives contribute with their knowledge, experience, and in-
sights to practical challenges in discussions, development work, and 
testing of new solutions. The research processes in the DigiMat project 
consist of four phases. In phase 1, the current situation is analyzed to 
identify problems, weaknesses, and improvement potential within spe-
cific topics. This forms the basis for phase 2, where conceptual solutions 
are developed based on a study of available techniques and solutions. In 
phase 3, specific solutions are developed in collaboration between re-
searchers and practitioners. In phase 4, selected elements of the solu-
tions from phase 3 are deployed and tested in the form of applications, 
demonstrators, and prototypes. The project activities on smart PPC in 
the company are currently in phase 3, where specific smart PPC appli-
cations are being developed, and a selection of these are described in 
section 4.3. 

In addition to the researchers, company representatives from several 
functions were involved in data collection, mapping, analysis, and 
development of the conceptual solutions, including managers and em-
ployees in the supply chain, production planning, forecasting, shopfloor, 
sales and marketing, and IT. Data was collected using traditional case 
study techniques such as interviews, observations, site visits, and 
quantitative data from company information systems and supply chain 
partners. The data was analyzed using traditional qualitative and 
quantitative techniques and methods. The proposed smart PPC appli-
cations were developed in workshops and discussions among re-
searchers and company representatives, building on previous and 
ongoing smart PPC initiatives in the company and using literature 
studies to augment the solution designs. 

4.1. Introduction to food production 

Food production, like other homogenous products such as chemicals, 
paint, and pharmaceuticals, is a process industry in which standardized 
products are manufactured in large amounts. Food products are often 
made in batches, where raw materials and intermediates are accumu-
lated and processed together in lots. Typically, the stock of raw materials 
is not more than a few days due to the perishability of the raw materials 
(Romsdal, 2014). With each manufacturing stage, the number of prod-
uct variants increases, as a small number of raw materials and other 
inputs are turned into a broad range of finished goods via a divergent 
product structure. The packaging process is crucial because it is often at 
this stage that the product becomes customer specific, e.g., sized, 

packaged, and labelled for a specific market or consumer (Romsdal, 
2014). 

There are several physical processes and stock points in the material 
flow of food production, including receiving of inputs (e.g., raw mate-
rials, ingredients and packing materials), processing, packing (which is 
often combined with cutting and labelling), and delivery. Typically, 
there are three stock points; raw materials before processing, unpacked 
bulk products between the processing and packing stage, and end 
products packed in consumer packaging. The production processes and 
stock positions are illustrated in Fig. 1. 

Processing lead times in food production are typically much longer 
than customers’ delivery lead time expectations. Producers therefore 
mostly use a make-to-stock strategy for production, and customer orders 
are filled from finished goods inventory. This strategy is complicated by 
the fact that finished goods can expire in inventory if demand is lower 
than the amounts produced. Conversely, if demand is higher than ex-
pected, producers commonly use overtime and other costly measures to 
avoid stock-outs and loss of customer goodwill. 

Food producers operate within a supply chain consisting of many 
actors, including primary producers and suppliers of other production 
inputs (packaging material, ingredients, etc.), the industrial production 
unit, a wholesale or distribution unit, retailers, and consumers. A typical 
industrialized food supply chain is shown in Fig. 2. 

Many countries have seen major structural changes in food supply 
chains over the past decades, with emergence of large brand owners and 
industrial processors on one hand, and consolidation of the wholesale 
and retail stages on the other. However, food supply chains still involve 
many actors, with limited cooperation, coordination and information 
sharing between supply chain stages. Thus, producers’ information 
about end customer demand is distorted, making it difficult for pro-
ducers to balance supply with demand. 

4.2. Introduction to case company 

Brynild AS is a medium-sized, family-owned food producer with 
approx. 230 employees and an annual revenue of EUR 90 mill. The 
company’s Norwegian factory produces approx. 50 variants of sugar 
confectionery products, 50 chocolate variants, and 80 nut variants. The 
Norwegian market for confectionery and snacks products is dominated 
by large international actors and Brynild has a market share of approx. 
14 %. Their main customers are the three Norwegian grocery wholesaler 
– retailer dyads that control 100 % of the retail market, with wholesalers 
typically requiring a 98 % service level and two to three days delivery 
lead time. Consumer demand for snacks and confectionery products is 
highly seasonal and affected by a high frequency of promotional activ-
ities and new product launches. Brynild’s products have 5-24 months 
shelf life, and products that approach or pass their industry-standard 
sell-by date are either scrapped or sold at reduced prices through 
alternative sales channels. 

Brynild currently has limited access to data from the downstream 
supply chain beyond orders from wholesalers, negotiations with re-
tailers regarding timing and product variants for promotional activities 
and product launches, and the opportunity to buy aggregated sales data 
from a national grocery database. Due to buy-back agreements, Brynild 
carries a large portion of the risk associated with seasonal products, 
while having little or no insight into actual consumer demand or influ-
ence over inventory levels in retail stores. The customers’ requirements 
for high service levels and short delivery lead times mean that orders 
must be met from inventories of finished goods. The limited access to 
demand information complicates demand planning and PPC and limits 
the company’s ability to quickly respond to changes in demand, 
particularly related to campaigns and new product launches. The con-
sequences include loss of revenues and customer goodwill in out-of- 
stock situations, scrapping of unsold products in several supply chain 
stages, and physical and administrative handling and destruction of 
unsold products. 

M. Rahmani et al.                                                                                                                                                                                                                              



Annual Reviews in Control 53 (2022) 370–381

376

Production is organized in two main steps: processing and packing. 
Both steps are carried out on large integrated and automated processing 
lines, and there is a large inventory of intermediates between processing 
and packing. There are considerable setup times. Most of the material 
flow before, after and between production lines is carried out manually, 
although some material handling is carried out by conventional robots 
and automated machinery, and more recently also collaborative robots 
(COBOTs) and automated guided vehicles (AGVs). 

The company’s production strategy is mainly make-to-stock for 
standard products, with build-up of inventory of seasonal and new 
products weeks and months in advance of customer orders. The two 
production steps are planned and controlled separately. Production 
plans are based on forecasts and inventory levels, with some make-to- 
order for campaign products where retailers share demand estimates 
5-8 weeks before the campaign starts. A 52-week forecast is generated 
using traditional forecasting methods in the ERP system. The system 
adjusts the forecast with inventory levels to arrive at the weekly net 
requirement. The production planners then manually adjust this with 
information about confirmed orders, planned campaigns, new product 
launches, and the need for seasonal build-up of inventory to generate the 
weekly production plan. The ERP planning module does not have 
functionality to optimize safety stock levels, batch sizes or production 
sequence so this is also done manually by the planners. After a rough-cut 
capacity planning once a week, the planners perform the MRP calcula-
tions and manually plan volumes and timing of variants per production 
line per day to meet estimated demand. The daily plan is communicated 
to the shopfloor for sequencing, execution and control. 

4.3. Case findings on planning environment characteristics and the need 
for smart PPC 

An analysis of the current PPC processes in Brynild revealed some 
potentials for improvements. Firstly, the planners make a lot of repeti-
tive decisions and spend a lot of time making the same decisions every 
time. Thus, there is unexploited potential to automate PPC. In addition, 
data used for PPC is imperfect, e.g., data captured from the internal 
production environment and received or bought from the supply chain is 
often both incomplete, delayed, or not detailed enough. Further, plan-
ning is periodic while demand is continuous, which means that PPC is 
not carried out in real-time based on updated information about new 
events. PPC is also performed with static parameters, for instance, batch 
sizes that are not adjusted to fit with changes in demand. 

After the analysis of the PPC processes, the planning environment 
characteristics of the company were analyzed using the framework in 

Table 2. Table 3 summarizes the findings and identifies the corre-
sponding need for smart PPC for each variable, indicated with bold in 
the table. The characteristics were identified based on interviews, site 
visits, document reviews, and workshops. The number of stars per var-
iable was determined in a discussion between researchers and company 
representatives. 

The joint assessment by the researchers and company representatives 
is that the need for smart PPC in the company is fairly high. Six of the 
variables are in the most challenging setting: one product variable 
(product variety), three market variables (delivery lead time re-
quirements, demand variability, and ability to keep inventory), and one 
process variable (processing lead times). In addition, four variables are 
in a medium setting: three product variables (product complexity, 
product life cycles, and volume variability) and one process variable 
(process complexity). Only two variables are in the most favorable 
setting: one market variable (delivery lead time variability) and one 
process variable (supply variability). 

With regards to the planning environment characteristics’ conse-
quences for PPC, the large demand variations, combined with the very 
limited ability to keep inventory, constrain the volumes that can be 
produced with the company’s selected make-to-stock production strat-
egy. Combined with the insights from the analysis of the PPC processes, 
there appears to be a potential to reduce dependence on forecasts and 
finished goods inventory to meet customer requirements for service 
level and delivery lead time, for instance, through more responsive and 
dynamic PPC and increased automation in material handling. There is 
also a potential to reduce manual decision-making, for instance, by 
increasing the degree of system support in PPC. Further, autonomous 
production control and event management could be enabled through the 
capture and use of more real-time data from production lines. One 
element in this is the potential to capture and model shopfloor opera-
tors’ skills and tacit knowledge for integration into PPC systems. In sum, 
it was concluded that there appears to be a strong need and potential for 
smart PPC in the company. 

4.4. Proposed applications of smart PPC 

Based on the findings documented in section 4.3, three applications 
of smart PPC have been identified as promising. Below, the three pro-
posed applications are described with regard to their industrial moti-
vation, objectives, opportunities for smart PPC, and the expected results. 

4.4.1. Use of point-of-sales (POS) data for new product launches 
Industrial motivation: forecasting demand for new products is a 

Fig. 1. Typical processes and stock points in food production (based on Méndez & Cerdá, 2002; van Dam et al., 1993)  

Fig. 2. Typical industrialized food supply chain (Romsdal, 2014)  
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particularly challenging task since historical data is not available as an 
indicator of future demand (van Steenbergen & Mes, 2020). This 
significantly complicates production planning for new products since 
these need to be produced several weeks and months prior to launch to 
meet expected demand. Different types of new products will result in 
different demand profiles (Gelper et al., 2016; Surathkal et al., 2017), 
where the demand for a completely new product is likely to differ from 
that of an extension within an already existing brand, such as a new 
flavor or a new packaging size. Qualitative methods such as expert 
opinions and surveys are the most widespread techniques applied for 
demand estimation of new products as they do not require historical 
data (Kahn, 2002). Thus, demand and production planning for new 
products is a highly resource-demanding process, and failure to correctly 
estimate demand can lead to overproduction, where excess inventory is 
sold at reduced prices or scrapped, or not producing enough to satisfy 
demand, leading to out-of-stock situations, revenue loss, and dissatisfied 
customers and consumers. By continuously monitoring and analyzing 
POS data, food producers can get an early indication of the demand 
profile of a new product, identifying when and at what level the demand 
peaks and stabilizes. These insights can then be used to continuously 
adjust production plans. 

Objective: to develop PPC processes and decision support tools to 
exploit POS data for continuous learning and dynamic PPC before, 
during, and after new product launches. 

Opportunities for smart PPC: the use of POS data for PPC for product 
launches involves three elements of smart PPC. Firstly, a (near) real-time 
data management is required to store and analyze POS data from retail 
stores. The data should be as detailed and updated as possible to enable 
continuous analysis and tracking of consumer demand as a basis for PPC, 
rather than solely relying on demand estimates and historical order data 
from wholesalers. For the purposes of production planning, insights 
from the POS data analysis should be combined with internal data such 
as production plans, inventory levels, customer orders, and purchasing 
orders to determine a production plan for the coming period. In addi-
tion, a collaboration process should be established with customers (both 
wholesalers and retailers) for continuous information sharing and 
collaboration before and during the product launch period. Internally, 
the company should set up a cross-functional team to ensure close 
collaboration and information sharing between different functions, 
enabling the production system to quickly adjust production plans and 
schedules in response to any unexpected changes in demand. Rather 
than operating with static and fixed lot sizes in processing and pro-
duction, during the launch period, production should aim for more dy-
namic production planning and re-planning. Production planners can, for 
instance, use dynamic lot sizes to quickly adjust production volumes to 
changes in demand. Also, the production of the new product could be 
planned more frequently to enable adjusting production volumes to 
insights into demand from the POS data analyses. Finally, the POS data 
could be used to support continuous learning among the sales and mar-
keting staff, both associated with new products and also for other types 
of demand. Using BDA and ML on the historical POS data can identify 
effects on demand of various sales initiatives towards retail stores, such 
as the extra spacing in stores, locations and types of instore product 
displays, types of price displays, and joint exposure with other products. 
POS data can also be analyzed to identify how demand patterns of new 
product launches vary with product types, degree of newness, differ-
ences in demand between types and geographic locations of retail stores, 
etc. These insights can then be used in the planning of future product 
launches. 

Expected results: several studies have found that when manufac-
turers get real-time access to POS data, the delay of the initial response 
to demand fluctuations such as product launches can be significantly 
reduced, increasing forecast accuracy and service levels, compared to a 
situation without access to POS data (see e.g., Mason-Jones & Towill, 
1997; Småros, 2005). It has also been found that using real-time data for 
dynamic lot-sizing enables quicker response to changes in demand (Gu 

Table 3 
Company planning environment characteristics and need for smart PPC     

Importance of smart PPC 
Category Variable Characteristic * ** *** 

Product Product 
complexity 

Medium number of 
raw materials and 
intermediates, high 
number of finished 
products. Combination 
of divergent and 
convergent product 
structure. 

Low Medium High 

Product 
variety 

High and increasing 
variety in products and 
packaging sizes, 
particularly for 
promotions. 
Combination of fast 
and slow-moving 
items. 

Low Medium High 

Product life 
cycle 

Medium and 
decreasing life cycle, 
with frequent product 
introductions and high 
failure rates. 

Long Medium Short 

Product 
volume and 
variability 

High product volumes 
and medium volume 
variability. 

Low Medium High 

Market  Delivery 
lead time 

Short time between 
order receipt and 
delivery (2-3 days). 

Long Medium Short 

Delivery 
lead time 
variability 

Low delivery lead time 
variability, with fixed 
days for order and 
delivery. 

Low Medium High 

Demand 
variability 

High and increasing 
variability caused by 
seasonality and high 
and increasing 
frequency of 
promotional activities. 
Strong presence of 
bullwhip effect. 

Low Medium High 

Ability to 
keep 
inventory 

Very limited ability to 
keep inventory due to 
medium (raw 
materials and finished 
products) to high 
(intermediates) 
perishability. 

High Medium Low 

Process Process lead 
time 

Product dependent, 
but generally long lead 
times (2-3 weeks). 

Short Medium Long 

Process 
flexibility 

Dedicated equipment, 
long setup times and 
two-step production 
process, resulting in 
low product type 
flexibility and high- 
volume flexibility in 
processing, and low 
product type and low 
volume flexibility in 
packing. 

High Medium Low 

Process 
complexity 

Mainly two steps; 
processing and 
packaging. High 
integration of 
processes within each 
step. 

Low Medium High 

Supply 
variability 

Some variability, 
mainly caused by 
seasonality, but 
generally high 
reliability. 

Low Medium High  
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et al., 2017). Although this comes at the expense of higher setup costs, 
these must be weighed against potential revenue losses and costs of 
scrapping and lost customer goodwill resulting from failing to match 
supply with demand. In addition, POS data can provide better insights 
that can be used to improve the effectiveness of in-store sales initiatives 
for all types of demand, including campaigns and new, seasonal, and 
standard products. 

4.4.2. Decision support for production planning and control 
Industrial motivation: PPC is a complex and time-consuming task in 

many companies. Planners typically have a large number of options in 
planning, such as moving products between production lines or time 
periods, changing a production line’s capacity, and changing the pro-
duction mix. Because of the enormous amounts of data and the 
complicated relationships among data, and the dynamic nature of the 
decision-making environment, PPC systems often fail to provide solu-
tions or visualizations that reflect the changing constraints and envi-
ronment (Zhang, 1996). This lack of visualization capabilities means 
that planners often rely on their cognitive powers and experience to 
make PPC decisions rather than on formalized rules and complex data 
sets from internal and external sources. On the other hand, many 
planning tasks involve making repetitive decisions with the same out-
comes, such as performing the same planning tasks on fixed days and 
using fixed parameters (e.g., batch sizes, fixed ABC product classifica-
tions, and fixed production sequences). Many of these decisions could be 
carried out by computer systems. In addition, shopfloor operators often 
use tacit knowledge, for instance, when determining if a disturbance in a 
production run requires immediate attention or if it can wait until the 
end of the run. ‘Tacit knowledge’ is an intrinsic understanding of how 
things work and enables humans to intuitively produce strategies and 
solutions when faced with a new situation (Reber, 1989). If these skills 
and tacit knowledge were captured and modeled, they could be used to 
support and automate PPC decision-making. Food production further 
typically uses the hierarchical approach to PPC, where material flow and 
capacity are coordinated across planning levels, using an aggregation 
logic in terms of time, material, location, and resources (Arica et al., 
2013). As a result, the dynamics of decision-making on the shopfloor are 
neglected (Meyer et al., 2011), and the ability to react to events 
happening on the shopfloor, or to new information from the external 
environment is limited after plans and schedules have been frozen and 
initiated. 

Objective: to improve the speed and quality of decision-making in 
planning and control. 

Opportunities for smart PPC: existing and emerging technologies 
provide unprecedented opportunities for capturing data from produc-
tion systems and supply chains. However, this data needs to be shared, 
stored, processed, combined, and analyzed for decision-making pur-
poses to unlock the true value of the data for PPC. Some of the data are 
already automatically captured through sensors, cameras, and other 
technology. In addition, operators possess highly valuable tacit knowl-
edge, which they use in decision-making. If this tacit knowledge could 
be captured, it could be stored, shared, analyzed, modeled, and com-
bined with other types of data – and further utilized in the transfer of 
manual work to automated systems (Johnson et al., 2019). The captured 
tacit knowledge thus provides a basis for continuous learning and should 
inform the design of new and emerging technologies. In addition, it can 
replace human decision-makers, be used to redesign systems to aug-
ment/assist human operators in their manual decisions, and be used to 
optimize the introduction and implementation of new systems and 
processes (Johnson et al., 2019). A key element of dynamic PPC is the 
ability to understand, control and predict the outcomes of an event, such 
as accepting a new order, changing a batch size or production schedule, 
or changing inventory policy (dynamic production planning and 
re-planning and autonomous production control). Real-time data manage-
ment is required to collect, analyze and visualize the different data, such 
as inventory, production, demand, etc., to support human 

decision-making. Further, AI and BDA can be used to identify patterns 
and alternatives with the most beneficial outcomes. This can be done by 
creating a digital twin or digital shadow of the system under evaluation – 
which in turn can be used to simulate the effects of alternative decisions 
on performance, such as costs, lead times, and inventory and service 
levels. 

Expected results: use of data for decision support can enable faster 
and more accurate decision-making. The use of simulation and visuali-
zation further provides effective decision support tools for human 
planners. Many PPC decisions currently made by humans could be 
carried out more efficiently and with a higher degree of precision by 
computer systems. Automation of PPC reduces the risk of human errors, 
reduces the time spent on PPC, and frees up time for humans to focus on 
more complex and value-adding tasks. In addition, formalizing and 
modeling tacit knowledge of experience-based rules of thumb used in 
planning and shopfloor control into computer systems safeguards this 
type of knowledge and reduces the risks associated with absenteeism 
and turnover of key planning resources. Increased automation of data 
capture and the establishment of a real-time data management system 
make adequate data for PPC available to all relevant functions and 
reduce the need for manual information sharing and coordination. 
Further, more dynamic and real-time based PPC decision-making will 
enable higher responsiveness in the production system to changes in 
both the internal and external environment. And finally, simulation al-
lows a fast, risk-free, and cost-effective way of evaluating alternative 
options before implementation. 

4.4.3. Autonomous control of material flow and handling equipment 
Industrial motivation: material handling is essential to guarantee 

the flexibility of production systems in food producers such as Brynild. 
There is a general trend in the sector to move away from the traditional 
solution with highly integrated production lines which span the whole 
production process from the input of raw materials through processing 
and packing, where conveyors are used to connect and move products 
between machines and production steps (Fragapane et al., 2020; Sgar-
bossa et al., 2020; Sgarbossa et al., 2021). Such solutions are typically 
very efficient and productive but have limited flexibility due to long 
changeover times and fixed layout. In a smart PPC scenario, each pro-
duction step can be performed in separate machines – where material 
handling is flexible and can transport products between different pro-
duction stages. This enables higher flexibility in production plans, as 
well as autonomous control of material flow. 

Objective: to increase flexibility in food production through auton-
omous control of material flow and handling equipment. 

Opportunities for smart PPC: cloud technologies represent a recent 
advancement in production systems. So-called cloud manufacturing af-
fects PPC through the possibility of sharing real-time information about 
the status of products and all resources, equipment, and machines 
involved in the production systems (real-time data management). The 
availability of Industry 4.0 technologies, such as indoor positioning 
technologies (IPT) as part of IoT, motion tracking and control, and cloud 
computing is making material handling systems one of the most feasible 
solutions for increasing the flexibility of production systems, guaran-
teeing flexible production plans through their autonomous control. The 
concept of cloud material handling system (CMHS, see e.g., Sgarbossa 
et al., 2021), has been introduced and developed by the authors in the 
Logistics 4.0 Laboratory at NTNU. Here, the solutions provided by 
transportation service providers and platforms, such as Uber, are 
brought into production environments. In the CMHS, the "customers" are 
the products (in unit loads) which autonomously request transport from 
one point to another. Forklifts and other material handling equipment 
are the "cars" that can be used to transport products in the system. The 
transport requests made by the products are dynamically assigned to the 
most suitable equipment by an intelligent control system based on 
advanced dynamic rules (autonomous production control). The func-
tioning of the CMHS is similar to a MES. The main difference is the 
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real-time localization of the products and material handling equipment 
due to the IPT implementation and the sharing of their attrib-
utes/functions along with positions, which enable autonomous sched-
uling and control of all the components in the system. However, while 
with MES operators need to confirm every change in the status of the 
product (e.g., when the product is moved from one point to another), 
using CMHS the status of the product is automatically updated, allowing 
autonomous control of the system. Moreover, the tracking and control of 
each material handling equipment allows data collection about their 
performance and so enables autonomous adjustment of the assignment 
policies to the most suitable equipment available. Assignment policies 
can evolve from basic heuristic rules such as longest waiting time (LWT) 
and shortest travel distance (STD) to more advanced rules based on 
ML/AI algorithms, such as deep reinforcement learning (DRL). 

Expected results: preliminary studies have demonstrated through 
simulation models that CMHS performs better than traditional material 
handling system where job allocation is static and predetermined or 
where MES is implemented. CHMS improves the utilization of forklift 
and other material handling equipment, assisting the operators in 
selecting the most appropriate mission and how to perform it. It allows 
the reduction of idle time and execution since handling activities are 
optimized. The application of ML/AI algorithms for dispatching leads to 
higher potential throughput and improves the agility of the system, 
assisting the prepositioning of forklifts. 

4.5. Insights from case study 

The case study used the framework for smart PPC to identify the 
degree to which the company can expect to benefit from smart PPC by 
identifying the project, market, and process variables which complicate 
PPC the most. Next, the three proposed applications illustrated how 
different elements of smart PPC can be used to both solve some of the 
challenges in the company’s current PPC and exploit some of the op-
portunities of emerging smart technologies. Table 4 provides an over-
view of the proposed applications, indicating the elements of smart PPC 
addressed in each. 

The purpose of the applications was not to address all four elements 
in each nor to provide an exhaustive list of potential smart PPC appli-
cations. Rather, the applications are meant as illustrations of how some 
elements of smart PPC can be used to solve specific challenges and open 
new opportunities for improving PPC performance. This can support 
companies in improving their PPC and assist in strategic decision- 
making about the further development of PPC and investments in 
smart technologies. 

The proposed applications illustrate how technologies can enable the 
use of new types of data from a company’s operators, operations, and 

supply chain. This data could be combined with existing data for use in 
PPC, thus providing more complete and real-time data sets. Further, data 
can be used in new ways in PPC, e.g., by digitizing tacit planning 
knowledge and using AI, BDA, and visualization to support, improve and 
automate PPC decision-making. Additionally, data can enable dynamic 
production planning where real-time information about events can be 
used to re-plan or dynamically change parameters such as batch size and 
production sequences. 

5. Conclusions and directions for future research 

There are great expectations both in industry and academia around 
the potential of Industry 4.0 to transform and improve operations. A 
plethora of technologies are emerging, and many companies are strug-
gling to decide the technologies in which to invest. The purpose of this 
paper was, therefore, to provide a structured tool that can guide aca-
demics and practitioners in evaluating the need for smart PPC, thus 
addressing the gap in research with regards to how the characteristics of 
a company’s planning environment impact on the need for smart PPC. 

The paper has three main contributions. Firstly, it demonstrates a 
structured way to describe a company’s planning environment with 
regards to product, market, and process characteristics and illustrates 
how different characteristics complicate PPC. The insights from such a 
mapping of planning environment characteristics can be useful also for 
other purposes, e.g., in supply chain design decisions (Sun& Cooper, 
1998), for identifying production planning and control methods (Jons-
son & Mattsson, 2003), and for identifying the need for efficiency vs. 
responsiveness (Romsdal, 2014). 

Secondly, the propositions in Table 2 provide insights into how 
different planning environment characteristics impact on the need for 
smart PPC. The underlying assumption is that the potential of smart PPC 
to improve PPC performance increases with the complexity of the 
planning environment. The most challenging setting of each variable 
represents key challenges for PPC in general – and thus increases the 
potential benefits of utilizing Industry 4.0 technologies for smart PPC. 
The proposed framework can be used by companies both to identify the 
most challenging aspects of their planning environments, prioritize the 
areas where smart PPC has the highest potential to improve PPC per-
formance and select the elements and smart technologies that can enable 
the required level of PPC "smartness". 

Thirdly, the case study illustrates how the framework in Table 2 can 
be used to analyze a company’s planning environment characteristics 
and assess the need for smart PPC. Although the case company operates 
in the food sector, companies in other sectors can find inspiration from 
the ideas described in the proposed applications. 

Some important insights on the applicability of the proposed 
framework and directions for further research emerged through the case 
study. The assessment of each variable was based on subjective quali-
tative judgments in the project team. Although there was little or no 
disagreement in the group in the assessment, quantifying the variables 
and defining thresholds for the scales and assignment of stars would 
have made the framework more objective and eased its application. 
Further, some variables were more important than others in determining 
the need for smart PPC, thus the framework could be expanded with the 
possibility to assign weights to each variable. The case also showed that 
variables can exert pressures for smart PPC in opposite directions. 
However, we expect that using smart PPC to address the variables that 
complicate PPC the most will not have a negative impact on the vari-
ables that are in a more favorable setting. 

Future research on smart PPC should strengthen the validity and 
applicability of the proposed framework through additional cases across 
industrial sectors. In addition, a broader survey and structural equation 
modeling should be carried out to identify specific relationships be-
tween planning environment characteristics and the need for smart PPC. 
Given that there is a close link between a company’s production plan-
ning environment and its selected customer order decoupling point 

Table 4 
Proposed applications and link to elements of smart PPC  

Smart PPC 
element 

Real-time 
data 
management 

Dynamic 
production 
planning 
and re- 
planning 

Autonomous 
production 
control 

Continuous 
learning 

Smart PPC 
application 

Use of POS 
data for 
product 
launches 

X X  X 

Decision 
support for 
PPC 

X X X X 

Autonomous 
control of 
material 
flow and 
handling 
equipment 

X  X   
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(CODP) (also called market interaction strategy or order fulfillment 
strategy), it would also be interesting to investigate if there are certain 
smart technologies that are more suited to support PPC in companies 
applying an engineer-to-order strategy compared to companies that 
follow a make-to-order, assemble-to-order, or make-to-stock strategy. 
Future research should also investigate the relationship between the 
variables of the production planning environment, the elements of smart 
PPC, and the existing and emerging smart technologies, for instance, 
through case studies and surveys. 

From a practitioner’s perspective, a number of challenges remain to 
be solved for companies in the transition towards smart PPC, including:  

• Value of data; data and digitalization are essential parts of smart PPC, 
but the quantitative value of sharing and using data for PPC is still 
not fully known. Thus, it is difficult for supply chain actors to agree 
on the distribution of costs and risks associated with capturing, 
storing, processing, and sharing data.  

• Which data to use and share; we still do not know exactly which data is 
useful for PPC. Challenges remain related to issues such as capturing 
too much data, not enough data, not the right data, and incompatible 
data formats.  

• Cost of technology; companies may be reluctant to invest in smart 
technologies for PPC due to both the upfront investment and the 
hidden costs of technology associated with the need for maintenance, 
upgrades, higher-skilled employees, etc. They may also find it diffi-
cult to choose and prioritize between technologies.  

• Infrastructure; realizing the potential benefits of smart PPC requires 
investments in infrastructure, e.g., for data capture in processing 
lines and automation of physical processes. In addition, there are 
challenges associated with integrating and implementing the 
different technologies. 

• Resistance to moving from conventional enterprise systems: organiza-
tions may have invested significantly in conventional information 
systems, such as ERP and MES. The benefits achievable from 
adopting and integrating further digital technologies need to be 
investigated and demonstrated. 

Declaration of Competing Interest 

The authors declare that they have no known competing financial 
interests or personal relationships that could have appeared to influence 
the work reported in this paper. 

Acknowledgements 

The work was carried out as part of the innovation research project 
“DigiMat; smart, transparent and sustainable food supply chains”, with 
financial support from the Research Council of Norway (project no. 
226686), NTNU, and the participating industrial partners. 

References 

Aitken, J., Childerhouse, P., Christopher, M., & Towill, D. (2005). Designing and 
managing multiple pipelines. Journal of business logistics, 26(2), 73–96. 

Arica, E., & Powell, D. J. (2014). A framework for ICT-enabled real-time production 
planning and control. Advances in Manufacturing, 2(2), 158–164. 

Arica, E., Strandhagen, J. O., & Hvolby, H.-H. (2013). Handling Unexpected Events in 
Production Activity Control Systems. In C. Emmanouilidis, M. Taisch, & D. Kiritsis 
(Eds.), Advances in Production Management Systems. Competitive Manufacturing for 
Innovative Products and Services Berlin, Heidelberg. Springer.  

Bean, R., & Davenport, T. H. (2019). Companies are failing in their efforts to become 
data-driven. Harvard business review, 5–8. 

Bendul, J. C., & Blunck, H. (2019). The design space of production planning and control 
for industry 4.0. Computers in Industry, 105, 260–272. 

Bertrand, J. W. M., Wortmann, J. C., & Wijngaard, J. (1990). Production control: a 
structural and design oriented approach. Elsevier.  

Bresler, M., Romsdal, A., Strandhagen, J. O., & Oluyisola, O. E. (2020). Principles and 
Research Agenda for Sustainable, Data-Driven Food Production Planning and 
Control. In IFIP International Conference on Advances in Production Management 
Systems. 

Bueno, A. F., Godinho Filho, M., & Frank, A. G. (2020). Smart Production Planning and 
Control in the Industry 4.0 context: A systematic literature review. Computers & 
Industrial Engineering, Article 106774. 

Chavez, R., Yu, W., Jacobs, M. A., & Feng, M. (2017). Data-driven supply chains, 
manufacturing capability and customer satisfaction. Production Planning & Control, 
28(11-12), 906–918. 

Christopher, M., Towill, D. R., Aitken, J., & Childerhouse, P. (2009). Value stream 
classification. Journal of Manufacturing Technology Management. 

Coelho, L. C., & Laporte, G. (2014). Optimal joint replenishment, delivery and inventory 
management policies for perishable products. Computers & Operations Research, 47, 
42–52. 

Fatorachian, H., & Kazemi, H. (2021). Impact of Industry 4.0 on supply chain 
performance. Production Planning & Control, 32(1), 63–81. 

Fragapane, G., Ivanov, D., Peron, M., Sgarbossa, F., & Strandhagen, J. O. (2020). 
Increasing flexibility and productivity in Industry 4.0 production networks with 
autonomous mobile robots and smart intralogistics. Annals of operations research, 
1–19. 

Gelper, S., Wilms, I., & Croux, C. (2016). Identifying demand effects in a large network of 
product categories. Journal of Retailing, 92(1), 25–39. 

Grundstein, S., Freitag, M., & Scholz-Reiter, B. (2017). A new method for autonomous 
control of complex job shops–Integrating order release, sequencing and capacity 
control to meet due dates. Journal of manufacturing systems, 42, 11–28. 

Grunow, M., & Piramuthu, S. (2013). RFID in highly perishable food supply 
chains–Remaining shelf life to supplant expiry date? International Journal of 
Production Economics, 146(2), 717–727. 

Gu, Q., Visich, J. K., Li, K., & Wang, Z. (2017). Exploiting timely demand information in 
determining production lot-sizing: an exploratory study. International Journal of 
Production Research, 55(16), 4531–4543. 

Hong, P. C., Dobrzykowski, D. D., & Vonderembse, M. A. (2010). Integration of supply 
chain IT and lean practices for mass customization: benchmarking of product and 
service focused manufacturers. Benchmarking: An International Journal. 

Hopp, W. J., Iravani, S. M., & Xu, W. L. (2010). Vertical flexibility in supply chains. 
Management science, 56(3), 495–502. 

Jacobs, M. A. (2013). Complexity: Toward an empirical measure. Technovation, 33(4-5), 
111–118. 

Johnson, T. L., Fletcher, S. R., Baker, W., & Charles, R. (2019). How and why we need to 
capture tacit knowledge in manufacturing: Case studies of visual inspection. Applied 
ergonomics, 74, 1–9. 

Jonsson, P., & Mattsson, S.-A. (2003). The implications of fit between planning 
environments and manufacturing planning and control methods. International 
Journal of Operations & Production Management, 23(8), 872–900. 

Jordan, W. C., & Graves, S. C. (1995). Principles on the benefits of manufacturing process 
flexibility. Management science, 41(4), 577–594. 

Kahn, K. B. (2002). An exploratory investigation of new product forecasting practices. 
Journal of Product Innovation Management: An international publication of the product 
development & management association, 19(2), 133–143. 

Karmarkar, U. S. (1993). Manufacturing lead times, order release and capacity loading. 
Handbooks in operations research and management science, 4, 287–329. 

Kusiak, A. (2017). Smart manufacturing must embrace big data. Nature, 544(7648), 
23–25. 
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