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Private companies (PCs) in restructured electricity industries determine facility investment timing and 

sizing. Such decisions maximize the PC’s expected profit (rather than social welfare) under uncertainty. 

By anticipating the PC’s incentives, a welfare-maximizing transmission system operator (TSO) shapes the 

network to align public and private objectives. Via an option-based approach, we first quantify welfare 

losses from the PC’s and TSO’s conflicting objectives. We show that by anticipating the optimal timing and 

capacity decisions of the profit-maximizing PC, the TSO is able to reduce, though not eliminate, welfare 

loss. Next, we exploit the dependence of the PC’s capacity on the TSO’s infrastructure design to devise 

a proactive transmission-investment strategy. Hence, we mitigate welfare losses arising from misaligned 

incentives even in relatively uncertain markets. 
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. Introduction 

Concern about climate change has prompted many OECD coun- 

ries to set ambitious targets for adopting renewable energy (RE) 

echnologies, such as solar and wind power. 1 Attaining these tar- 

ets necessitates expansion of the transmission network because 

romising wind sites, for example, tend to be located remotely 

rom population centers. However, the deregulated nature of the 
� The authors thank the editor and the anonymous reviewers for their construc- 

ive comments. In addition, we thank Peter Kort, Kuno Huisman, Dharma Kwon, 

tein-Erik Fleten, and participants of the 30th European Conference on Operational 

esearch in Dublin (June 2019), the 23rd Annual Real Options Conference in Lon- 

on (June 2019), the INFORMS Annual Meeting in Seattle (October 2019), and the 

th Annual Conference of the IAERE in Brescia (February 2020) for their insight- 

ul comments. Verena Hagspiel and Maria Lavrutich gratefully acknowledge support 

rom the Research Council of Norway through project no. 268093. Afzal S. Siddiqui 

s grateful for support from the Swedish Energy Agency (Energimyndigheten) under 

roject no. 49259-1 [STRING: Storage, Transmission, and Renewable Interactions in 

he Nordic Grid]. 
∗ Corresponding author. 

E-mail address: maria.lavrutich@ntnu.no (M. Lavrutich) . 
1 For example, the EU has 2030 targets to reduce CO 2 emissions by at least 40% 

nd to reach a share of at least 32% RE, compared to 1990 levels ( European Union, 

018 ). The Nordic countries in particular want to lead by example and to com- 

it to carbon neutrality ( Regjeringen, 2019 ). The individual countries have am- 

itious climate policies such as the Swedish target of net-zero CO 2 emissions by 

045 ( Regeringskansliet, 2017 ) and the Danish commitment to 100% RE use by 2050 

 Energistyrelsen, 2015 ). 
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lectricity industry means that decisions about transmission in- 

estment and generation adoption are made by separate entities 

ith distinct and possibly conflicting objectives. In particular, gen- 

ration capacity in RE technologies is installed by private, profit- 

aximizing power companies, whereas transmission investment is 

hiefly undertaken by state-regulated transmission system opera- 

ors (TSOs), who are concerned about maximizing social welfare. 

hus, although TSOs cannot directly intervene in electricity mar- 

ets, they can, nevertheless, orient generation investment and op- 

rations by anticipating industry’s incentives when building trans- 

ission capacity ( Maurovich-Horvat, Boomsma, & Siddiqui, 2015; 

auma & Oren, 2007; Siddiqui, Tanaka, & Chen, 2019 ). Another 

omplicating factor is that these are investment decisions under 

ncertainty about future market conditions. Consequently, decision 

akers have the discretion to defer adoption and to scale the ca- 

acity ( Dangl, 1999 ). 

In this article, we aim to analyze the potential of anticipative 

ransmission planning when undertaking large infrastructure in- 

estments. More specifically, we focus on the investment decisions 

n a dynamic game between the private power generation com- 

any (PC) and the regulated transmission infrastructure provider 

TSO) in a market characterized by uncertain demand. 2 In this 

ame, the TSO moves first by providing transmission infrastructure, 
2 Other examples of infrastructure investments with similar coordination prob- 

ems are ports, telecommunication networks, and other utilities such as water or 

ewage. 
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nticipating subsequent investment in generation capacity under- 

aken by the PC. We seek to uncover how conflicting objectives be- 

ween a profit-maximizing PC and a welfare-maximizing TSO affect 

ocial welfare through their decisions regarding investment tim- 

ng and size. The stylized nature of our model allows us to obtain 

losed-form solutions and, at the same time, capture the relevant 

radeoffs involved in the investment decisions. This enables us to 

race the nexus through which decisions taken by the private PC 

re affected by the TSO’s transmission-capacity and timing deci- 

ions. We analyze the resulting welfare losses and investigate how 

onflicting objectives may be reconciled through the use of the in- 

rastructure capacity and investment timing. 

There exist several real-world investment cases that emphasize 

he pivotal role of transmission planning in the energy transition. 

ne example is the prospect of building Europe’s largest onshore 

ind park at Fosen in the county of Trøndelag in the central part 

f Norway based on a concession received in 2013. The realiza- 

ion of this wind park project was dependent on an addition to 

orway’s transmission grid amounting to an estimated cost of ap- 

roximately NOK 6 billion by Norway’s TSO, Statnett. 3 Statnett had 

romised in advance to extend the transmission grid so that new 

ind capacity could be connected. In order to achieve this out- 

ome, Statnett was effectively depending on investment decisions 

or new generation capacity that are at the discretion of private 

ompanies. 4 

Many regions worldwide currently face similar challenges, 

here significant transmission investments are required to con- 

ect new renewable capacity to the main grid. For example, in 

ermany, where significant investments in new transmission lines 

re required to connect new wind farms in the north of the coun- 

ry to the more densely populated regions in the south where in- 

ustry is concentrated ( Kunz, 2013 ). In Northeast Asia, there have 

een several proposals to invest in new power grid interconnec- 

ions between demand centers in the region and the wind and so- 

ar resources in Mongolia, as well as hydropower in Eastern Russia 

 Otsuki, Isa, & Samuelson, 2016 ). 

Texas provides a cautionary tale about coordination of trans- 

ission investment with wind-farm expansion, where non- 

nticipative transmission planning has led to severe consequences 

or the electricity industry. Although Texas enjoys some of the 

ighest on-shore wind speeds in the U.S. and has more installed 

ind capacity than any other state, most of the promising wind 

ites are in the sparsely populated northwest of the state. Due pri- 

arily to transmission constraints, these sites were unable to de- 

iver electricity to the state’s population centers and had to cur- 

ail 17% of electricity generated from wind in 2009. However, af- 

er construction of the necessary transmission capacity along with 

ther market reforms, the curtailment rate declined to 0.5% by 

014 even as wind capacity continued to increase ( Wiser et al., 

015 ). Hence, effective mechanisms to coordinate transmission and 

ind-power investments in a deregulated electricity industry are 

rucial to meeting environmental targets in a cost-effective man- 

er. 

Given this background, we address the following research ques- 

ions. First, we investigate if market volatility prevents the TSO 

rom enforcing the socially optimal transmission and generation 

nvestments. We find that although the TSO can naturally enforce 

he socially optimal outcome under certain market conditions, it 

annot steer the PC toward the social optimum in a more uncer- 

ain environment. This is particularly relevant in the context of 

nergy transition, as an increasing share of intermittent energy 
3 https://www.tu.no/artikler/kostnadssmell- for- fosen- linjen/346906 
4 https://www.statnett.no/vare-prosjekter/region-midt/afjord-surna/nyheter/ 

orbereder- utbygging- av- namsos- storheia/ 
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1168 
ources contributes to more volatile prices in electricity markets. 

iven that the investment valuation tools applied in practice are 

o a large extent static in nature, the absence of models that prop- 

rly account for uncertainty in transmission planning may lead to 

ub-optimal investment decisions. 

Second, we seek to quantify the welfare loss vis-à-vis a socially 

ptimal integrated benchmark setting, as well as a setting in which 

he TSO does not anticipate the optimal decisions of the PC. We 

how that the former case in which the TSO maximizes social wel- 

are and anticipates the PC’s decisions in a deregulated industry 

till results in substantial social losses vis-à-vis an integrated one, 

specially under high market volatility. Nevertheless, anticipating 

he optimal decisions of the PC can spare the TSO from overinvest- 

ent and, therefore, prevent welfare losses relative to a situation 

n which the TSO behaves in a non-anticipative manner. Thus, in 

ndustries characterized by volatile demand, such as the electricity 

ector, anticipating the behavior of PCs is imperative for mitigat- 

ng welfare losses from misaligned incentives between distinct de- 

ision makers. This is particularly important as in practice, infras- 

ructure planning is often done without accounting for the optimal 

eaction of the industry actors. This non-anticipative case reflects, 

or example, the reactive planner of Sauma & Oren (2007) , i.e., the 

SO makes transmission investments without accounting for in- 

ustry’s generation expansion. By ignoring the possibility to shape 

ore efficient generation investment, such a non-anticipative plan- 

er induces a welfare loss. These insights allow us to uncover the 

alue of anticipative transmission planning by identifying the cost 

f coordination failures and bring to light the extent of existing in- 

fficiencies given specific market conditions. 

Finally, we assess if particular mechanisms are able to miti- 

ate the welfare loss in the decentralized setting. In particular, 

e consider a lump-sum investment cost subsidy and the mini- 

um capacity requirement that was actually employed in the case 

f Fosen’s transmission planning. Although a TSO’s measures to 

udge private decisions to the social optimum are limited, we find 

hat both mechanisms allow the TSO to enforce the social opti- 

um for a wider range of market uncertainty. However, the in- 

estment cost subsidy has a limited effect in very uncertain envi- 

onments in that it does not substantially reduce the welfare loss 

hat is present even in the anticipated deregulated setting. A mini- 

um capacity restriction imposed on the PC, however, reduces the 

elfare loss substantially also for high volatility. In fact, we derive 

 condition depending on volatility and other market parameters 

nder which it is possible for the TSO to incentivize the PC to in- 

est in a welfare-enhancing manner. 

The rest of the article is organized as follows. Section 2 presents 

he review of the relevant literature. In Section 3 , we introduce 

he model setup. Section 4 formulates the decision-making prob- 

ems and provides analytical solutions in the decentralized case, 

here the TSO is responsible for the transmission investment only, 

hereas the PC decides upon the generation-capacity investment. 

ubsequently, Section 5 focuses on the results and derives their 

elfare implications. Mechanisms available to the TSO that miti- 

ate the welfare loss of the decentralized setting are explored in 

ection 6 , whereas Section 7 concludes. Proofs of analytical results 

re in Appendix Appendix A . 

. Literature review 

In general, large infrastructure projects are often characterized 

y high uncertainty, irreversibility, and the dependence on differ- 

nt actors with distinct objectives. In order to account for these 

eatures and the dynamic nature of the problem in the decision- 

aking process, we use real options analysis ( Dixit & Pindyck, 

994 ). Traditionally, the theory of real options determines the op- 

imal time to invest in a given capacity and concludes that un- 

https://www.tu.no/artikler/kostnadssmell-for-fosen-linjen/346906
https://www.statnett.no/vare-prosjekter/region-midt/afjord-surna/nyheter/forbereder-utbygging-av-namsos-storheia/
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ertainty generates a value of waiting. Subsequent contributions 

o the literature allow for optimal capacity sizing of the invest- 

ent as well ( Bar-Ilan & Strange, 1999; Dangl, 1999; Kouvelis & 

ian, 2014 ). A general result is that for higher levels of uncertainty, 

he firm invests later but in a larger quantity. Due to the strategic 

spects arising in the considered problem, game-theoretic articles 

re also relevant for our work ( Besanko, Doraszelski, Lu, & Satterth- 

aite, 2010; Chevalier-Roignant, Flath, & Trigeorgis, 2019; Huisman 

 Kort, 2015 ). Our model is most closely related to Huisman & 

ort (2015) who consider both an investment’s timing and capac- 

ty choice under uncertainty in a duopoly framework. They find 

hat the capacity level of a welfare-maximizing social planner is 

wice the level of a profit-maximizing monopolist and that both 

gents invest in a larger capacity when uncertainty increases. As 

n Huisman & Kort (2015) , we consider two different agents. How- 

ver, compared to Huisman & Kort (2015) , the two agents are not 

ompeting for market share. Rather, they are dependent on each 

ther’s investment decision with regards to both timing and siz- 

ng. Still, one can argue that competition arises in the sense that 

hey have conflicting objectives. 

Our study is related to a vast body of economic literature that 

nvestigates the effect of regulation on the infrastructure sector, cf. 

raeutigam & Panzar (1993) and Gilbert & Newbery (1994) . Re- 

ent articles contributing to this field acknowledge the importance 

f uncertainty when analyzing capital investment under regulation 

 Broer & Zwart, 2013; Dobbs, 2004; Evans & Guthrie, 2012; Guthrie, 

006; Teisberg, 1993; Willems & Zwart, 2018 ). Most of these stud- 

es specifically focus on welfare effects in a game between the so- 

ial planner and regulated monopoly by taking a real options ap- 

roach. However, they typically neglect the interactions between 

egulated entities and deregulated private firms by assuming that 

he regulated monopolist not only provides infrastructure but also 

akes production decisions. In practice, this assumption does not 

old given the deregulated nature of most infrastructure industries 

n OECD countries. In the example of the electricity industry, a gov- 

rnment agency (the energy ministry) is responsible for policies, 

he TSO (the regulated monopoly) provides the necessary grid in- 

rastructure, whereas the production decisions are made by private 

Cs. These decisions together shape the evolution of the power 

ector. Taking them into account is, therefore, vital for achieving 

ocially desirable outcomes. In our model, we disregard the inter- 

ction between the energy ministry and regulated monopoly by as- 

uming that the their objectives are perfectly aligned, i.e., the TSO 

trives to maximize social welfare. We do so in order to focus on 

nother aspect of the infrastructure investment problem, viz., the 

nteraction between regulated entities and private firms, and study 

he mechanisms available to align the decisions of private compa- 

ies with socially desirable outcomes. 

This assumption is also typical for the operations research 

iterature that focuses on transmission investment in a setting 

here the TSO maximizes social welfare in a game with profit- 

aximizing power companies ( Maurovich-Horvat et al., 2015; Sid- 

iqui et al., 2019 ). These studies, however, disregard discretion 

ver timing or even market uncertainty. Traditionally, transmis- 

ion planning in the power sector was based on the assumption 

f a cost-minimizing central planner that could rely upon a single 

ixed-integer linear program (MILP) to make transmission- and/or 

eneration-capacity investments ( Garver, 1970 ). Such a framework 

as adequate for the regulated paradigm in which decisions were 

ade largely on the basis of engineering considerations rather 

han the profit motive. Indeed, even electricity prices were set ad- 

inistratively, which meant that decision makers could pass on 

he risk of cost over-runs to ratepayers ( Hyman, 2010 ). Yet, as 

obbs (1995) points out, single-agent, deterministic models to sup- 

ort decisions may not be adequate in a deregulated electricity in- 

ustry. In the context of transmission planning, subsequent work 
1169 
as deployed equilibrium and bi-level approaches to handle game- 

heoretic aspects, e.g., between firms competing over a congested 

ransmission line ( Borenstein, Bushnell, & Stoft, 20 0 0 ) or between 

 cost-minimizing TSO and price-taking industry ( Garcés, Conejo, 

arcia-Bertrand, & Romero, 2009 ). 

Such optimization models adapted to deregulated industries 

ave assessed the interaction between transmission and genera- 

ion investment in a now-or-never setting. Typically, they use a 

tackelberg leader-follower framework in which transmission in- 

estment occurs at an upper level with generation investment at 

 lower level ( Sauma & Oren, 20 06; 20 07 ) in order to explore

ow market power in generation would affect socially optimal 

ransmission plans. Baringo & Conejo (2012) focus on transmis- 

ion and wind power investment at an upper level with uncer- 

ain market operations at the lower level in order to explain how 

 wind subsidy drives investment decisions. Seeking to quantify 

elfare losses from alternative market designs, Maurovich-Horvat 

t al. (2015) show that a transmission planner at the upper level 

nduces more wind power investment by lower-level power com- 

anies when they behave à la Cournot because it anticipates their 

trategic withholding and invests in countervailing transmission 

ines. They further find that a renewable portfolio standard (RPS) 

ould increase wind investment regardless of whether industry 

ere perfectly competitive or a Cournot oligopoly. Nevertheless, 

lthough such work incorporates conflicting objectives and uncer- 

ainty in wind output, decisions are modeled for a target test year, 

.e., there is no deferral option. 

Siddiqui et al. (2019) take a more stylized approach to the same 

roblem as in Maurovich-Horvat et al. (2015) in order to formalize 

ow proactive transmission investment may mitigate both market 

ower by producers at the lower level and environmental exter- 

alities from carbon emissions. They prove that even a perfectly 

ompetitive industry without a carbon charge will not deliver the 

ame generation mix as a centrally planned one because the cost 

f damage from emissions will not be internalized. Instead, the 

SO at the upper level will reduce the size of the line in order to

urb overconsumption. A regulatory mechanism for full alignment 

f incentives under perfect competition is a 100% carbon charge 

n emissions by generators, which sends the correct signal to con- 

umers to reduce quantity demanded. However, such a regulation 

s not successful when power companies at the lower level behave 

la Cournot because they already invest in less capacity in order to 

ncrease electricity prices. Thus, imposing a full carbon charge on 

ndustry will only exacerbate the loss in social welfare as it will 

urther enable their ability to raise prices. 

In spite of its contributions, the fact that this strand of the lit- 

rature ignores discretion over investment timing means that it 

verlooks an important component of the regulatory toolkit to in- 

entivize welfare-enhancing investments. Recent work by Henao, 

auma, Reyes, & Gonzalez (2017) and Willems & Zwart (2018) ad- 

resses the timing issue but ignores the interaction between regu- 

ated and deregulated stakeholders. In contrast to such works and 

iddiqui et al. (2019) , our focus here is on the role of market un-

ertainty and the value of the regulator’s deferral option in driving 

apacity adoption and timing when transmission and generation 

re undertaken by distinct entities with conflicting objectives. 

We also contribute to the literature on multi-objective infras- 

ructure investments in infrastructure industries in general, e.g., 

irports and seaports ( Jiang, Wan, & Zhang, 2017; Tsamboulas & 

allis, 2014; Xiao, Ng, Yang, & Fu, 2012; Zhang & Zhang, 2003 ). 

espite taking a dynamic approach, these articles disregard uncer- 

ainty in the future profitability of such investments. In our model, 

owever, uncertainty plays a crucial role in the TSO’s ability to co- 

rdinate public and private investment. Balliauw, Kort, Meersman, 

e Voorde, & Vanelslander (2019) present an exception in account- 

ng for uncertainty in the demand for cargo handling when ana- 
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Fig. 1. Decision-making timeline. 
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5 In Norway, for example, the Norwegian Water Resources and Energy Directorate 

(NVE) grants licenses for major power lines and other energy installations according 

to the Energy and/or the Water Course Act ( NVE, 2018 ). 
6 Karthikeyan, Raglend, & Kothari (2013) provide a thorough review of electricity- 

sector market power worldwide. 
7 The European Commission (2011) , for example, reports that the Italian energy 

market is highly concentrated, suggesting market power. Bosco, Parisio, & Pelagatti 

(2010) , Bigerna, Bollino, & Polinori (2016) , and Sapio & Spagnolo (2016) find empiri- 

cal evidence of market power in the Italian energy market. Fleten & Lie (2013) con- 

clude that Norway’s largest hydropower producer has an incentive to reduce ther- 

mal production in order to increase the price, which both are signs of market 

power. Focusing on Texas, Woerman (2019) estimates that a 10% increase in de- 

mand causes markups to more than double, thereby showing that producers do 

have market power. 
8 We verify that the results of our model are robust when allowing for isoelastic 

demand function, which is used, for example, by Cohen, Lobel, & Perakis (2016) and 

non-linear investment costs. The derivations are available from authors upon re- 

quest. 
yzing optimal investment decisions in port infrastructure. Despite 

cknowledging that profit maximization is not the only objective of 

he infrastructure provider, they do not analyze the consequences 

f the conflicting objectives on social welfare. Regarding other in- 

ustries, Sinha, Malo, Frantsev, & Deb (2013) consider a related 

roblem including a regulator and a mining company. Their ob- 

ectives are conflicting as the regulator strives to maximize social 

elfare through higher taxes and pollution reduction, whereas the 

ining company is profit maximizing. Our problem differs from 

hat of Sinha et al. (2013) as the PC is assumed to operate in a

eregulated industry, i.e., the TSO does not have a direct chan- 

el to influence the PC’s profit. Instead, it can affect the invest- 

ent decisions of the PC only indirectly by constraining the power 

ompany’s timing and capacity choice. In addition to Sinha et al. 

2013) , we incorporate uncertainty into the model and derive ana- 

ytical solutions for the optimal investment strategies that formal- 

ze policy insights. 

. Model setup 

We consider two decision makers, a regulated entity (TSO) and 

 private power company (PC), that serve one market characterized 

y uncertain demand. he role of the TSO is to provide the neces- 

ary grid capacity so that the PC is able to transmit electricity. The 

SO holds the option to invest in capacity at a time, τS , and a ca-

acity, K S (in MW), of its choosing. This can be, for example, an 

nvestment in a new infrastructure line to connect a power park 

o the main grid. Any subsequent investment by the PC is con- 

trained by the availability of the infrastructure capacity. For ex- 

mple, if there is no transmission capacity available, then the PC 

s not able to transmit the generated electricity and, therefore, re- 

eive profits. We consider the decision of the PC to invest in new 

eneration capacity of K P (in MW) that is dependent on infrastruc- 

ure provided by the TSO, i.e., K P ≤ K S . Like the TSO, the PC can

lso choose both the timing, τP , and sizing, K P , of its own possible

nvestment. Both investments are characterized by substantial sunk 

nvestment outlay, and, hence, are considered to be irreversible. In 

ddition, we focus on projects that are significant enough to moti- 

ate new transmission investment, as opposed to small incremen- 

al capacity expansions that are not likely to justify large infras- 

ructure projects. The decision-making timeline of the model is de- 

icted in Fig. 1 . 

In our model, the two agents have different objectives. The TSO 

aximizes social welfare, whereas the PC maximizes its profit. In 

hat follows, we refer to this situation as decentralized planning. 

e assume perfect information implying that the TSO can antic- 

pate the investment decision of the PC. This adds strategic as- 

ects to the problem, which will influence the TSO’s investment 

trategy as we assume that the TSO makes its investment deci- 

ion before the PC. Therefore, the problem is similar to a Stackel- 

erg game with the TSO as the leader and the PC as the follower.

owever, as transmission capacity complements generation capac- 

ty rather than substitutes for it, the considered problem does not 

ave the same competitive aspects as the traditional Stackelberg 

odel where companies compete on market share. Instead, each 
1170
gent’s value is dependent on the other agent’s investment deci- 

ions. The PC is dependent on the decision of the TSO to invest in 

ransmission capacity, whereas the TSO’s objective is dependent on 

he amount of electricity produced by the PC. The TSO in this set- 

ing strives to align the decision of the PC with the social optimum 

y using the PC’s is dependence on the capacity provided. 

We assume that generation-capacity investment is a one-off

umpy decision as in most concession-based contracts. 5 Once a 

oncession has been granted, the holder, i.e., the PC, has a perpet- 

al option to build the generation capacity, viz., a wind farm. In 

ffect, it can act as a de facto monopolist and influence the elec- 

ricity price (hence, its revenues) via its timing and sizing deci- 

ions. Given that we consider large infrastructure investments, we 

ssume that the power company is sufficiently large and exerts 

ome market power. The European electricity industry, for exam- 

le, shows a high degree of concentration on national and regional 

cales, suggesting market power. 6 Several studies have found ev- 

dence that producers in electricity markets exert some level of 

arket power. 7 

The PC operates in a market characterized by uncertain de- 

and. The inverse-demand function, P (θt , K P ) , is measured in 

/MW and is given by: 8 

 ( θt , K P ) = θt (1 − ηK P ) , (1) 

here θt (in $/MW) is a stochastic demand shock (shift) param- 

ter and η (in 1/MW) is a positive constant that is inversely 

roportional to the bound on the market size. We consider a 

ontinuous-time framework where the stochastic demand shift pa- 

ameter is assumed to undergo geometric Brownian motion shocks, 

.e., { θt , t ≥ 0 } follows a stochastic process of the form: 

 θt = αθt d t + σθt d W t , (2) 

here α ∈ � + is the trend parameter or drift, σ ∈ � + is the volatil-

ty parameter, and dW t is an increment of a Wiener process. The 

urrent value of the demand parameter is known to the agents, 

ut future values are uncertain and assumed to be log-normally 

istributed. A geometric Brownian motion (GBM) with positive 

rift is a reasonable representation of electricity demand shocks 
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n view of expected future increase in demand for renewable en- 

rgy due to an increase in consumers’ willingness to pay stemming 

rom the rise in their environmental awareness, increase in fossil 

uel prices, and reduction in marginal costs for green energy pro- 

ucers ( Bigerna & Polinori, 2014; Bigerna, Wen, Hagspiel, & Kort, 

019 ). In addition, mean reversion aspects in commodity prices 

lay little role for investments in long term assets and, therefore, 

 GBM can be considered a reasonable assumption for such prob- 

ems ( Schwartz, 1998 ). 

We assume that ρ is the exogenous discount rate, which is 

reater than α; otherwise, it would never be optimal to invest as 

oth agents would prefer to wait forever. Furthermore, we assume 

hat the PC’s production is fixed and normalized to the capacity 

ize, K P . 
9 

Without loss of generality, production costs are implicitly in- 

luded in the sunk investment costs. Also, we assume that the TSO 

oes not charge the PC for using the provided infrastructure. Thus, 

he continuous profit flow of the PC is equal to: 

( θt , K P ) = P (θt , K P ) K P . (3) 

imilar to Sauma & Oren (2007) , Huisman & Kort (2015) , and 

oonman, Hagspiel, & Kort (2015) , we assume investment costs for 

ach agent to be linear in capacity. Specifically, the total invest- 

ent cost, including operating costs, for the TSO is γ K S , whereas 

he PC faces an investment cost of δK P . Both γ and δ are in $/MW

nd are assumed to include the effect of fixed payments from the 

C to the TSO for the grid rental. 10 

. Decentralized decision making 

In this section, we formulate and solve the industry’s 

ransmission- and generation-capacity planning problem. As indus- 

ry comprises diverse actors with conflicting objectives, we con- 

ider production and infrastructure decisions as being taken sepa- 

ately by two different agents, the PC and the TSO. Because the PC 

as no incentive to undertake an investment before the TSO pro- 

ides the infrastructure, the TSO is the first mover in the model. 

e solve the problem via backward induction, starting with the 

ecision of the second mover, i.e., here, the investment strategy of 

he PC given that the TSO has already installed transmission ca- 

acity. We then solve the problem of the TSO given the optimal 

trategy of the PC. 

.1. Decision of the PC 

Given that the TSO has already undertaken an investment of K S , 

he PC solves the following optimal stopping problem: 

sup 

P ≥τS ,K P ≤K S 

E 

[∫ ∞ 

τP 

θt (1 − ηK P ) K P e 
−ρt dt − δK P e 

−ρτP 

∣∣∣θ0 = θ

]
. (4) 

ue to the Markovian nature of θt , the state space of this stochastic 

rocess can be split into a continuation and a stopping region, sep- 

rated by the optimal investment threshold, θ ∗
P (K S ) . If θ ≥ θ ∗

P (K S ) , 

hen it is optimal for the PC to invest immediately. Otherwise, it 
9 Renewable generation is generally largely dependent on weather conditions, 

aking production highly variable both in the short and medium terms. However, 

roduction is more predictable and less variable in the long term, i.e., over yearly 

ime scales. In the context of long-term investment decisions, we, therefore, do not 

onsider variability in renewable energy generation for our analysis ( Bigerna et al., 

019; Boomsma, Meade, & Fleten, 2012; Dalby, Gillerhaugen, Hagspiel, Leth-Olsen, 

 Thijssen, 2018 ). 
10 The marginal investment cost of the TSO depends on several factors like the 

oltage, thickness, and length of the power lines, whereas the marginal investment 

ost of the PC, among other things, depends on the type of power plant. Therefore, 

he two marginal investment costs will vary from project to project. 

P

s

s

θ

r

p

c

p

1171 
s optimal for the PC to wait. The optimal investment time is de- 

ned as τ ∗
P (K S ) ≡ min { t ≥ τS : θt ≥ θ ∗

P (K S ) } , and the corresponding 

ptimal capacity is K 

∗
P 
(θ ∗

P 
(K S ) , K S ) . 

First, we derive the now-or-never optimal capacity investment 

or the PC in (4) , denoted by K 

∗
P , for a given level of θ , i.e., the

apacity that maximizes the value of the PC in the stopping region 

iven that it is constrained by K S from above: 

sup 

 P ≤K S 

V (θ, K P ) := 

[
θ (1 − ηK P ) K P 

ρ − α
− δK P 

]
. (5) 

olving this constrained maximization problem yields the follow- 

ng optimal capacity of the PC: 

 

∗
P (θ, K S ) = min [ K 

∗
UP (θ ) , K S ] , (6) 

here K 

∗
UP (θ ) = 

1 
2 η

(
1 − δ(ρ−α) 

θ

)+ 
, which is the optimal unre- 

tricted capacity of the PC. 11 

Depending on the TSO’s capacity level and the current value of 

, two situations can occur: 

• If K S > K 

∗
UP 

(θ ) , then the PC’s capacity optimization leads to 

an interior solution, K 

∗
P (θ, K S ) = K 

∗
UP (θ ) . 

• If K S ≤ K 

∗
UP 

(θ ) , then the PC’s capacity optimization leads to 

a corner solution, K 

∗
P 
(θ, K S ) = K S . 

Next, we consider these two cases separately in or- 

er to determine the optimal investment timing of the PC. 

roposition 1 presents the optimal investment strategy in the 

ase of the unconstrained PC, i.e., the PC’s optimal capacity is an 

nterior solution, K 

∗
P 
(θ, K S ) = K 

∗
UP 

(θ ) . 

roposition 1. If K S > K 

∗
UP 

(θ ) , then the PC’s capacity choice is not

onstrained by the TSO. The optimal investment threshold of the un- 

onstrained PC is equal to 

∗
UP = 

(β + 1) 

(β − 1) 
δ(ρ − α) , (7) 

nd its optimal capacity choice at the investment threshold is given 

y 

 

∗
UP (θ

∗
UP ) = 

1 

η(β + 1) 
, (8) 

here 

= 

1 

2 

− α

σ 2 
+ 

√ (
−1 

2 

+ 

α

σ 2 

)2 

+ 

2 ρ

σ 2 
> 1 . (9) 

f the current level of the stochastic process is such that θ ≥ θ ∗
UP 

, then 

he PC invests immediately and installs capacity equal to 

 

∗
UP (θ ) = 

1 

2 η

(
1 − δ(ρ − α) 

θ

)+ 
. (10) 

If θ < θ ∗
UP 

, then the PC will wait to invest. 

Consider now the case of the constrained PC, i.e., the PC’s op- 

imal capacity is a corner solution supporting the constraint on 

he PC’s capacity, K S . Here, the optimal investment strategy is de- 

cribed by Proposition 2 as follows: 

roposition 2. If K S ≤ K 

∗
UP 

(θ ) , then the PC’s capacity choice is con- 

trained by the TSO. The optimal investment threshold of the con- 

trained PC is given by 

∗
CP (K S ) = 

β

β − 1 

δ(ρ − α) 

(1 − ηK S ) 
, (11) 
11 In what follows, the subscript UP stands for unconstrained private company and 

eflects the situation in which the optimum is an interior solution of the PC’s ca- 

acity optimization problem. The subscript CP, in turn, stands for constrained private 

ompany and reflects the situation in which the optimum is a corner solution sup- 

orting the constraint on the PC’s capacity set by the TSO. 
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Table 1 

Optimal strategy of the PC. 

Timing/Capacity Constrained Unconstrained 

Invest now K ∗P (θ, K S ) = K S K ∗P (θ, K S ) = 

1 
2 η

(
1 − δ(ρ−α) 

θ

)+ 

Invest at θ Invest at θ

Wait K ∗P (θ, K S ) = K S K ∗P (θ, K S ) = 

1 
η(β+1) 

θ ∗
P (K S ) = 

β
β−1 

δ(ρ−α) 
(1 −ηK S ) 

θ ∗
P (K S ) = 

β+1 
β−1 

δ(ρ − α) 

a

b

K

I

t

t

c

θ

 

i

c  

i

t  

a  

t

i

i  

r

t

l

w

t

s

d  

f  

T

K̂

t

e

t

4

t

o

&

p

C

T

t

p

T

p

S  

t

i

s

d

m

t

m

o  

i

e

T

P

t

t

o

(

i

p

i

t

t

a

s

c

m

t

s

t

T

t

t

w

o

nd its optimal capacity choice at the investment threshold is given 

y 

 

∗
P (θ, K S ) = K S . (12) 

f the current level of the stochastic process is such that θ ≥ θ ∗
CP , then 

he PC invests immediately and installs capacity K S . If θ < θ ∗
CP 

, then 

he PC will wait to invest. 

In general, the optimal investment threshold of the PC, θ ∗
P (K S ) , 

an be written as 

∗
P (K S ) = 1 K S <K ∗

UP 
(θ ∗

UP 
) θ

∗
CP (K S ) + 1 K S ≥K ∗

UP 
(θ ∗

UP 
) θ

∗
UP . (13) 

Table 1 summarizes the results of Propositions 1 and 2 . 

Note that for the case when K S > K 

∗
UP (θ ) , the TSO can directly

nfluence neither the optimal investment threshold nor the optimal 

apacity level of the PC. If, however, K S ≤ K 

∗
UP 

(θ ) , then the capacity

nstalled by the TSO directly affects both the investment timing of 

he PC and its capacity choice. Depending on the level of K S , there

re two strategies available for the PC for a given value of θ : ei-

her invest immediately at the current level of θ or wait until θ
ncreases to the level of θ ∗

CP (K S ) . Intuitively, immediate investment 

s possible only for low values of K S , because in this case, being

estricted by smaller available infrastructure, the PC does not have 

he incentive to wait for higher values of θ in order to install a 

arger capacity. If, however, K S is large enough, then the PC would 

ait for more profitable opportunities to install a larger genera- 

ion capacity. The capacity level of the TSO such that the con- 

trained PC is indifferent between investing now and postponing is 

enoted by ̂ K S (θ ) . This level can be found by solving θ = θ ∗
CP 

(K S )

or K S ≤ K 

∗
UP (θ ) , which insures that the PC is constrained by the

SO. This yields 

 

 S (θ ) = 

1 

η

(
1 − β

β − 1 

δ(ρ − α) 

θ

)+ 
. (14) 

We distinguish among the following strategies of the PC in 

erms of investment timing and capacity: 

I Constrained-Simultaneous The PC invests at the same time as 

the TSO and installs the same capacity. 

II Constrained-Sequential The PC invests later than the TSO and 

installs the same capacity. 

III Unconstrained-Simultaneous The PC invests at the same time 

as the TSO, and installs a smaller capacity. 

IV Unconstrained-Sequential The PC invests later than the TSO 

and installs a smaller capacity. 

Fig. 2 depicts the state-space diagram, illustrating for which lev- 

ls of the demand shock, θ , and the infrastructure capacity size, K S , 

he different strategies in Table 1 can occur. 

.2. Decision of the TSO 

As the TSO’s objective is to maximize social welfare, we define 

otal surplus as the sum of the consumer and producer surplus net 

f investment costs for both agents ( Huisman & Kort, 2015; Sauma 

 Oren, 2006 ). Note that the instantaneous consumer surplus de- 

ends on the generation capacity, K P , and is given by: 

S(θt , K P ) = 

∫ θt 

θt (1 −ηK ) 

1 

η

(
1 − P 

θt 

)
dP = 

1 

2 

θt K 

2 
P η. (15) 
P 

1172 
he instantaneous producer surplus, on the other hand, is equal to 

he profit flow of the PC given in (3) . Therefore, the instantaneous 

art of total surplus is equal to: 

 S(θt , K P ) = 

1 

2 

θt K 

2 
P η + θt (1 − ηK P ) K P = θt 

(
1 − 1 

2 

ηK P 

)
K P . (16) 

The TSO solves the following optimal stopping problem, antici- 

ating the PC’s decision: 

sup 

τS ,K S 

E 

[∫ ∞ 

τ ∗
P 
(K S ) 

θt 

(
1 − 1 

2 

ηK 

∗
P (θt , K S ) 

)
K 

∗
P (θt , K S )e −ρt dt − γ K S e 

−ρτS 

−δK 

∗
P (θτ ∗

P 
(K S ) , K S )e −ρτ ∗

P (K S ) 
∣∣θ0 = θ

]
. (17) 

imilar to the problem of the PC (4) , the solution to (17) is a

hreshold-type strategy, i.e., for θt levels greater than the optimal 

nvestment threshold of the TSO, denoted by θ ∗, we are in the 

topping region where it is optimal for the TSO to invest imme- 

iately. For θt < θ ∗, demand is too low to undertake the invest- 

ent, and it is optimal for the TSO to wait. The optimal investment 

ime is given by τ ∗
S ≡ min { t ≥ 0 : θt ≥ θ ∗} . The corresponding opti- 

al capacity is denoted by K 

∗
S 
(θ ∗) . 

Note that the solution to (17) depends on the optimal strategy 

f the PC, as depicted in Fig. 2 . The next proposition states that it

s always optimal for the TSO to choose the capacity level K S low 

nough to ensure that the PC invests in the same capacity as the 

SO. 

roposition 3. The optimal capacity choice of the TSO is always such 

hat K S ≤ min 

{̂ K S (θ ) , K 

∗
UP (θ ) 

}
, implying the PC invests at the same 

ime and in the same capacity as the TSO. 

The result in Proposition 3 implies that the solution to the TSO’s 

ptimization problem is always such that we end up in Scenario I 

Constrained-Simultaneous) in Fig. 2 . Hence, (17) becomes 

sup 

τS ,K S ≤min { ̂  K S (θ ) ,K ∗
UP 

(θ ) } 
E 

[∫ ∞ 

τS 

(
θt (1 − 1 

2 

ηK S ) K S 

)
e −ρt dt 

−(δ + γ ) K S e 
−ρτS 

∣∣θ0 = θ
]
. (18) 

Note that this problem is similar to the one that would arise 

n an integrated planning setting where the TSO can make both 

roduction and generations decisions by itself. The only difference 

s that the TSO is facing a capacity constraint. 

The intuition behind this result is as follows. If the capacity of 

he PC is not restricted by the TSO (i.e., the optimal capacity of 

he PC is smaller than that of the TSO), then the TSO cannot exert 

ny influence on the PC’s investment threshold. At the same time, 

ome transmission capacity will stay idle resulting in a larger sunk 

ost for the TSO. Thus, it is never optimal for the TSO to provide 

ore transmission capacity than the PC is going to use. If, however, 

he TSO always chooses the capacity level such that the PC is con- 

trained (i.e., capacity of the PC is always equal to that of the TSO), 

hen it is never optimal for the TSO to invest earlier than the PC. 

his is because earlier investment by the TSO affects neither the 

iming nor the capacity of the PC; however, the TSO does incur 

he sunk cost earlier. This option is always dominated by one in 

hich investment is delayed until the optimal investment thresh- 

ld of the PC is reached. 
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Fig. 2. Illustration of different strategies of the PC. 
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The optimal capacity in the constrained problem (18) is given 

n the following proposition. 

roposition 4. The optimal capacity of the TSO in the simultaneous 

nvestment problem is given by 

 

∗
S (θ ) = 

⎧ ⎨ ⎩ 

̂ K S (θ ) if θ < 

(β+1) 
(β−1) 

δ(ρ − α) and β ≤ δ
γ + 1 , 

K 

∗
SO ( θ ) if θ < ( δ + 2 γ )( ρ − α) and β > 

δ
γ + 1 , 

K 

∗
UP ( θ ) if θ ≥ max 

{
( δ+ 2 γ )( ρ−α) , (β+ 1) 

(β−1) 
δ( ρ−α) 

}
,

(19) 

here K 

∗
SO (θ ) denotes the socially optimal capacity level and is given 

y 12 

 

∗
SO (θ ) = 

1 

η

(
1 − (δ + γ )(ρ − α) 

θ

)+ 
. (20) 

Fig. 3 illustrates the result in Proposition 4 , where the solid 

urve represents the socially optimal capacity, the dot-dashed 

urve is the interior optimum of the PC, and the dashed curve 

s the maximum capacity that ensures simultaneous investment if 

he PC is constrained. The gray shaded area in Fig. 3 refers to the

cenario I (Constrained-Simultaneous). 

Comparing the expressions for K 

∗
SO (θ ) and K 

∗
UP (θ ) , one can eas- 

ly conclude that the solid curve in Fig. 3 representing the so- 

ially optimal capacity is always steeper than the dot-dashed curve 

epresenting the PC’s optimal unconstrained capacity choice, cf. 

20) and (10) . This is because the TSO also takes into account the 

onsumer surplus in addition to the producer surplus in its op- 

imization problem. Moreover, the solid curve always requires a 

arger value of θ than the dot-dashed one to be positive. This is 

ecause the TSO takes into account both infrastructure and gener- 

tion capacity investment costs. 
12 In the socially optimal case where the TSO decides on both pro- 

uction and transmission investments, it is never optimal to install 

ransmission capacity that is not used for production, i.e., K P = K S and 

P = τS . Therefore, the TSO solves the following optimal stopping problem: 

up τS ,K S 
E 

[∫ ∞ 
τS 

θt 

(
1 − 1 

2 
ηK S 

)
K S e 

−ρt dt − (δ + γ ) K S e 
−ρτS 

∣∣θ0 = θ
]
. The solution of this 

roblem is known from Huisman & Kort (2015) . 

t

i
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o

s

1173 
Depending on the parameters, two cases arise. Consider, for ex- 

mple, a change in the infrastructure investment cost, γ , which 

ffects the social optimum but not the decision of the PC. If in- 

rastructure investment becomes more expensive, then the socially 

ptimal capacity decreases for a given demand level. Fig. 3 a illus- 

rates the case when γ is sufficiently large. Here, for a sufficiently 

ow demand, the socially optimal capacity is small enough for the 

SO to be able to restrict the PC in both capacity and in timing, 

.e., it is optimal for the TSO is to install K 

∗
S 
(θ ) = K 

∗
SO 

(θ ) . If, how-

ver, θ > (δ + 2 γ )(ρ − α) , then the TSO overinvests compared to 

he capacity choice of the PC. As the PC is not restricted from 

bove in such a case, it chooses an optimal capacity that is smaller 

han the socially optimal capacity. Some of the infrastructure ca- 

acity would then be left idle, which is always suboptimal for the 

SO because it increases its costs but does not increase consumer 

urplus. Thus, in this case, the TSO cannot achieve the social opti- 

um and invests in a smaller capacity, i.e., K 

∗
S 
(θ ) = K 

∗
UP 

(θ ) , which

s the maximum capacity that ensures that the PC invests in an 

qual amount at the same time. 

Fig. 3 b depicts the situation in which γ is relatively small. In 

his case, the socially optimal capacity level is so large that the 

ocial optimum cannot be enforced for two reasons. First, similar 

o Fig. 3 a, for high levels of demand, the TSO is not able to con-

train the PC in capacity by choosing the socially optimal level. The 

ptimal choice of the TSO is then K 

∗
S 
(θ ) = K 

∗
UP 

(θ ) . Second, unlike

n Fig. 3 a, for the low demand levels the social optimum cannot be 

eached either. This is because a large enough infrastructure capac- 

ty incentivizes the PC to invest at a higher threshold. This way, the 

C is able to capitalize on uncertainty anticipating that it can in- 

tall larger capacity in the future. The TSO should, therefore, invest 

t the level below social optimum and install the maximal capac- 

ty that still ensures simultaneous investment, i.e., K 

∗
S (θ ) = 

ˆ K S (θ ) . 

roposition 3 states that sequential investment is not optimal from 

he TSO’s point of view because it wants to avoid leaving capacity 

dle. If the TSO installs relatively little capacity, then the PC does 

ot have any incentive to wait for investment, which will lead to 

imultaneous investment. 

The next step is to determine the optimal investment thresh- 

ld given the optimal capacity choice in different regions of θ . We 

ummarize the results in the following proposition. 
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Fig. 3. Optimal investment threshold and optimal capacity level of the TSO as functions of θ . γ = 100 ; η = 0 . 05 .]. 
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roposition 5. If it holds that β < 

2 δ
γ + 3 , then the optimal invest- 

ent threshold is given by 

∗ ≡ θ ∗
S = 

(ρ − α) 
(
β(2 γ + 3 δ) + 

√ 

4 γ 2 β2 + 3 δ(4 γ + 3 δ) 
)

3(β − 1) 
, (21) 

nd the optimal capacity level is equal to K 

∗
S 
(θ ) = K 

∗
UP 

(θ ) . If β ≥
2 δ
γ + 3 , then the optimal investment threshold is equal to the socially 

ptimal threshold level given by 

∗ ≡ θ ∗
SO = 

(β + 1) 

(β − 1) 
(δ + γ )(ρ − α) , (22) 

nd the optimal capacity level is equal to K 

∗
S 
(θ ) = K 

∗
SO 

(θ ) . Note that

t holds that θ ∗
S = θ ∗

SO when β = 

2 δ
γ + 3 . 

Proposition 5 shows that two cases can arise depending on the 

nvestment cost and demand shock parameters. In the first case, 

he TSO cannot force the PC to invest at the social optimum and, 

herefore, adjusts its investment choice such that the PC invests 

xactly in the same capacity as the TSO. In the second case, it is 

ptimal for the PC to invest at the socially optimal threshold and 

n the socially optimal capacity level. In the following section, we 

ill provide intuition for the condition that separates these two 

ases. 

. Results 

In this section and the next ( Section 6 ), we formalize the re-

earch contributions alluded to in Section 1 , viz., 

1. Determine the impact of uncertainty on the TSO’s ability to 

enforce the socially optimal transmission and generation in- 

vestments. 

2. Examine the effects of market structure and uncertainty on 

social welfare. 

3. Investigate the effectiveness of a capacity restriction im- 

posed on the PC by the TSO in enforcing the social optimum. 

.1. Impact of key parameters on enforceability of the social optimum 

The crucial result of the previous section is that the constraints 

n terms of timing and capacity are sufficient in ensuring that the 

SO is able to enforce the social optimum under certain conditions. 

he next proposition states that there exists a unique threshold for 
1174 
he volatility, ˆ σ , below which the TSO can achieve the social opti- 

um. 

roposition 6. The TSO can enforce the social optimum if and only if 

he following condition holds: 

< ˆ σ ≡

√ √ √ √ 

[
ρ − α

(
2 δ
γ + 3 

)]+ (
δ
γ + 1 

)(
2 δ
γ + 3 

) , (23) 

here ∂ ̂  σ
∂α

< 0 , ∂ ̂  σ
∂ρ

> 0 , and ∂ ̂  σ

∂ 
(

δ
γ

) < 0 . 

Intuitively, Proposition 6 implies that the TSO is unable to at- 

ain the socially optimal level of simultaneous investment in a rel- 

tively uncertain environment. In addition, it is also not possible 

o reach the social optimum when δ is relatively large compared 

o γ , i.e., the marginal investment cost of the PC is relatively large 

n comparison to the marginal cost faced by the TSO. This is typical 

or the electricity industry, where the marginal investment cost of 

ransmission lines is comparatively much lower than the marginal 

nvestment cost of, for example, wind power plants ( Baringo & 

onejo, 2012 ). 

Proposition 6 also states that ˆ σ decreases in the demand shock 

rift parameter, α. This means that the range for which the TSO 

an enforce the social optimum decreases as the drift rate in- 

reases. Likewise, as generation investment becomes more costly, 

he TSO’s opportunity to attain the social optimum vanishes. For 

xample, in an extreme case, i.e., when 

δ
γ > 

ρ−3 α
2 α , it becomes im- 

ossible to enforce the social optimum as ˆ σ < 0 . However, the op- 

osite holds for the effect of the discount rate, ρ , because its in- 

rease renders the future less important and facilitates achieve- 

ent of the social optimum. These results are driven by the fact 

hat it is always optimal for the TSO to align both the timing and 

ize of infrastructure and production investment. Whether it is able 

o do so, depends on the TSO’s possibility to constrain the PC. If 

he TSO can constrain the PC, then the TSO can enforce the social 

ptimum. Note that ˆ σ does not depend on the demand parameter, 

, that represents the bound on the market size. This is because 

he optimal capacities of the TSO and the PC are inversely propor- 

ional to η, and, thus, their resulting order does not depend on η. 

n addition, the optimal investment thresholds do not depend on 

either. This implies that this parameter does not impact the abil- 

ty of the TSO to align the size and timing of the production and 

ransmission investment. 
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Table 2 

Timing and size for both production and transmission investment under different 

planning strategies for the σ > ˆ σ . 

Setting Transmission investment Production investment 

Integrated planning (θ ∗
SO , K 

∗
SO (θ

∗
SO )) (θ ∗

SO , K 
∗
SO (θ

∗
SO )) 

Decentralized planning (θ ∗
S , K 

∗
UP (θ

∗
S )) (θ ∗

S , K 
∗
UP (θ

∗
S )) 

Private planning (θ ∗
SO , 

1 
2 

K ∗SO (θ
∗
SO )) (θ ∗

SO , 
1 
2 

K ∗SO (θ
∗
SO )) 

Non-anticipative planning (θ ∗
SO , K 

∗
SO (θ

∗
SO )) (θ ∗

SO , K 
∗
UP (θ

∗
SO )) 
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13 For our baseline parameter values, we choose δ = 50 and γ = 100 , which 

reflects the fact that marginal generation investment costs are generally lower 
.2. Impact of market structure on investment timing and capacity 

izing 

In order to provide context for these findings, we compare our 

ecentralized results from solving (17) to the three benchmarks 

entioned in Section 3 : 

• Integrated planning when the TSO decides on both produc- 

tion and transmission investments. 
• Private planning, which is a hypothetical scenario in which 

the PC undertakes all of the decisions itself. 
• Non-anticipative planning, in which the TSO does not take 

into account the private decisions about production capacity 

when investing in transmission. 

Table 2 summarizes the resulting investment timing and capac- 

ty pairs, 
(
θ ∗, K 

∗
S 
(θ ∗) 

)
, for different planning configurations for the 

ase when the social optimum cannot be enforced in the decen- 

ralized setting, i.e., for σ > ˆ σ . 

The relationship between investment timing and capacity sizing 

or the different settings is summarized in Proposition 7 . 

roposition 7. For σ > ˆ σ , it holds that θ ∗
SO > θ ∗

S and K 

∗
SO (θ

∗
SO ) > 

 

∗
UP 

(θ ∗
SO 

) > K 

∗
UP 

(θ ∗
S 
) > 

1 
2 K 

∗
SO 

(θ ∗
SO 

) . 

Comparing the integrated and decentralized settings, one can 

ee that in the decentralized case, the TSO and PC still invest at the 

ame time, θ ∗
S , and in the same capacity, K 

∗
UP (θ

∗
S ) , albeit at lower

emand and capacity levels than socially optimal. In other words, 

n the decentralized case, the TSO has to adjust by investing ear- 

ier and in a smaller capacity than is socially optimal if condition 

23) does not hold. Failing to do so and, thus, disregarding the dis- 

retion of the PC over timing and capacity choice would result in 

 welfare loss. More specifically, under such non-anticipative plan- 

ing, the TSO will invest in infrastructure at the socially optimal 

ime and capacity level, i.e. at θ ∗
SO 

and K 

∗
SO 

(θ ∗
SO 

) , respectively. The 

C will enter the market at the same time as the TSO, but it will

nvest in less capacity, K 

∗
UP (θ

∗
SO ) . Interestingly, in this case, both in- 

rastructure and production capacity are larger than those in the 

ecentralized setting and, thus, closer to the social optimum. The 

nvestment timing is also higher. Nevertheless, this scenario leads 

o a lower welfare in comparison to the decentralized case, as the 

apacity decisions of the PC and the TSO are misaligned. In par- 

icular, the installed production capacity is smaller than the infras- 

ructure capacity, i.e. K 

∗
UP 

(θ ∗
SO 

) < K 

∗
SO 

(θ ∗
SO 

) , implying that the latter 

ill partially remain idle. Thus, by correctly accounting for the op- 

imal decisions of the PC and adjusting both the investment timing 

nd size, TSO is able to spare the costs associated with unused ca- 

acity. These results are different from the literature that only fo- 

uses on the interaction between social planner and regulated mo- 

opolies and implicitly assumes that the deregulated firms do not 

mpact the decisions of higher level entities ( Broer & Zwart, 2013; 

vans & Guthrie, 2012; Evans, Quigley, & Guthrie, 2012; Willems & 

wart, 2018 ). In an application to transmission planning, Saphores, 

ravel, & Bernard (2004) take a real options approach to tackle the 

nteraction between a transmission planner and a regulator un- 

er uncertainty. In their example (loosely based on the case of 

ydro-Québec’s application for an interconnection with Ontario), 
1175
owever, both decisions (when to start the regulatory process and 

hen to begin construction of the line) are conducted by the trans- 

ission planner. Thus, although they account for the deferral op- 

ion, they do not reflect conflicting objectives between distinct en- 

ities. 

Comparing the integrated and the private-planning settings, we 

nd that a private investor halves the installed capacity that a 

SO would have adopted, i.e. 1 
2 K 

∗
SO 

(θ ∗
SO 

) , whereas investment tim- 

ng would be unchanged, cf. Huisman & Kort (2015) . Despite the 

act that in this case the timing of investment is socially optimal, 

he capacity installed is the lowest among different settings. In 

he decentralized setting, the TSO is able to increase welfare by 

nstalling larger capacity at the expense of an earlier investment. 

hese results emphasize the importance of the flexibility both in 

he choice of the timing and size in coordination of infrastruc- 

ure investment decisions. In practice, the boost in wind capac- 

ty in Texas beginning in 2008 without the concomitant increase 

n transmission capacity is indicative of the problems that could 

e created by such lack of coordination ( Wiser et al., 2015 ). Next, 

e analyze how costly the coordination failures under the above- 

entioned settings are in terms of social welfare. 

.3. Impact of volatility on optimal decisions and social welfare 

Given the importance of volatility in enabling the TSO to en- 

orce the social optimum, cf. (23) , we here analyze how volatility 

an affect both decisions and social welfare. First, we examine the 

ffect of volatility on both the optimal investment timing and ca- 

acity sizing for the decentralized setting compared to the inte- 

rated one. Next, we study the welfare loss in the decentralized 

etting vis-à-vis the integrated one. Finally, we quantify the wel- 

are loss if the TSO does not anticipate the PC’s investment-timing 

nd capacity-sizing decisions. 

Proposition 8 summarizes the impact of volatility on the opti- 

al decisions: 

roposition 8. In both the integrated and the decentralized settings, 

he investment thresholds of the TSO, as well as its optimal capac- 

ties evaluated at these thresholds, are increasing with volatility σ , 

.e., 
∂θ∗

SO 
∂σ

> 0 , 
∂θ∗

S 
∂σ

> 0 , 
∂K ∗

SO 
(θ∗

SO 
) 

∂σ
> 0 , and 

∂K ∗
UP 

(θ∗
S 
) 

∂σ
> 0 . For σ > ˆ σ , it

olds that 
∂ ( θ∗

SO 
−θ∗

S ) 
∂σ

> 0 and 
∂ ( K ∗SO 

(θ∗
SO 

) −K ∗
S 
(θ∗

S 
) ) 

∂σ
> 0 . 

Proposition 8 states that as volatility increases, the TSO invests 

t a higher threshold and in a larger capacity for both the decen- 

ralized and the integrated settings. This result is consistent with 

he real options literature that studies optimal capacity choice, 

here Dangl (1999) Bar-Ilan & Strange (1999) and Kouvelis & Tian 

2014) among others, find that in more uncertain environments 

rms invest later and in larger capacity. In addition, the difference 

etween the integrated and the decentralized settings in terms of 

oth investment thresholds and capacity sizes widens as volatility 

ncreases. Fig. 4 illustrates these effects. 13 
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Fig. 4. Optimal investment threshold and optimal capacity level of the TSO as functions of σ . [Parameter values: ρ = 0 . 1 ; α = 0 . 02 ; σ = 0 . 1 ; δ = 50 ; γ = 100 ; η = 0 . 05 .]. 
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Fig. 5. Relative welfare loss. [Parameter values: ρ = 0 . 1 ; α = 0 . 02 ; σ = 0 . 1 ; δ = 50 ; 

γ = 100 ; η = 0 . 05 .]. 
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14 The difference between the discounted welfare value under non-anticipative 
The investment timing of the TSO is driven by two factors: the 

bility of the TSO to restrict the capacity of the PC and the fact that

t is always optimal to invest at the same time as the PC. If volatil-

ty is low, then it is optimal to invest early where it is possible to

onstrain the PC such that it invests at the socially optimal level 

f θ . If volatility is relatively high, then the TSO is no longer able

o constrain the PC in either its capacity or its timing choice. The 

eason for that is that the PC installs less capacity than the social 

ptimum. Therefore, the PC can justify investment for lower values 

f θ , i.e., earlier. In order to ensure that timing and size are the 

ame for both infrastructure and production investment, the TSO 

dapts to the PC’s investment timing choice. These findings contra- 

ict the result of Maurovich-Horvat et al. (2015) that the presence 

f a transmission planner leads to more wind power investments. 

he key difference is that their model does not account for the 

ossibility to defer investments, which becomes particularly valu- 

ble in more uncertain environments emphasizing the importance 

f considering discretion over agents’ investment timing. 

We now analyze how social welfare is affected by a decentral- 

zed setting compared to an integrated one. Furthermore, we study 

he potential welfare loss when the TSO does not anticipate the 

act that the PC chooses timing and capacity sizing with the objec- 

ive to maximize profit. 

The relative welfare loss for a specific choice of invest- 

ent threshold, transmission capacity, and generation capacity, 

θ, K S , K P ) , evaluated at θ0 (such that θ0 < θ and θ0 < θ ∗
SO ) is de-

ned as 

 (θ, K S , K P ) = 1 − W ( θ, K S , K P ) 

W 

(
θ ∗

SO 
, K 

∗
SO 

(θ ∗
SO 

) , K 

∗
SO 

(θ ∗
SO 

) 
) , (24) 

here W ( θ, K S , K P ) = 

(
θ0 
θ

)β( θK P 
(
1 − 1 

2 
ηK P 

)
ρ−α − δK P − γ K S 

)
is the dis- 

ounted welfare value for the specific choice of (θ, K S , K P ) . 

In what follows, we describe some analytical properties of 

he welfare loss functions. First, by definition, the welfare loss 

nder integrated planning is equal to zero. Second, comparing 

he rest of the alternatives, it is obvious that under decentral- 

zed planning, the TSO is able to achieve the highest social wel- 

are value and, thus, the lowest relative loss. This is because 

he triplet (θ, K S , K P ) = (θ ∗
S 
, K 

∗
UP 

(θ ∗
S 
) , K 

∗
UP 

(θ ∗
S 
)) gives the optimal so-

ution to the infrastructure investment problem when the TSO 

annot directly influence the PC. Furthermore, it follows from 
han marginal transmission investment costs ( DeSantis, James, Houchins, Saur, & 

yubovsky, 2021; Energy Information Administration, 2020 ). 

p

W

f

1176 
roposition 8 that the relative welfare loss under decentralized 

lanning increases with σ , as the difference from the social op- 

imum both in terms of timing and capacity becomes larger as σ
ncreases. Under private planning, the relative welfare loss is con- 

tant and equal to 25%. This result directly follows from Huisman 

 Kort (2015) , as the social planner invests at the same time as 

he private planner, but in twice as much capacity. In the case of 

on-anticipative planning, it is possible to show that the relative 

elfare loss may even exceed that under the private planning. This 

appens for relatively large values of volatility. 14 Lastly, it is easy 

o verify that as σ → ∞ and, thus, β → 1 , the relative welfare loss

onverges to the value under the private planning because all the 

nvestment thresholds tend to infinity, whereas the capacity levels 

 

∗
UP (θ

∗
S ) , K 

∗
UP (θ

∗
SO ) and 1 

2 K 

∗
SO (θ

∗
SO ) converge to 1 

2 η , as follows from 

20) and (10) . This is because in our problem, there exists an ex- 

genous bound on the market size. 

Fig. 5 illustrates the relative welfare loss from the integrated 

enchmark as a function of volatility for the decentralized setting 

nd two alternative settings. The dashed line illustrates the rela- 

ive welfare loss when both infrastructure and generation invest- 
lanning and private planning is given by W (θ ∗
SO , K 

∗
SO (θ

∗
SO ) , K 

∗
UP (θ

∗
SO )) −

 (θ ∗
SO , 

1 
2 

K ∗SO (θ
∗
SO ) , 

1 
2 

K ∗SO (θ
∗
SO )) = 

(
θ0 

θ ∗
SO 

)β γ ( 3 β− 4 δ
γ −7 ) 

8(β+1) η( δγ +1 ) 
, which is smaller than 0 

or β < 

7 
3 

+ 

4 δ
2 γ (i.e., for large σ ) and is larger than 0 otherwise. 
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15 For example, in renewable energy auctions, it is typical to employ various mea- 

sures to enforce the contracts, such as penalties or pre-qualification requirements 

( Matthäus, Schwenen, & Wozabal, 2020 ). 
ent are made by a private investor with the objective to maxi- 

ize producer surplus disregarding consumer surplus. The dotted 

ine illustrates the relative welfare loss when the TSO does not an- 

icipate the PC’s profit-maximizing behavior. Finally, the solid line 

llustrates the relative welfare loss when the TSO anticipates the 

C’s optimal investment behavior in a decentralized market. 

As can be seen in Fig. 5 , if the PC decides upon both infrastruc-

ure and generation investments, then the social optimum can be 

ever reached with a welfare loss equal to 25%. It is also worth 

oting that the welfare loss is non-monotonic in σ in the case 

f non-anticipative planning. Given that the investment timing is 

he same in the social optimum and the non-anticipative planning 

ase, the differences in the welfare are primarily driven by capac- 

ty choice of the PC. When σ = ˆ σ , the capacities in the socially 

ptimal and the non-anticipative cases are equal and the welfare 

oss is zero. As σ starts increasing, these capacities diverge, where 

he socially optimal capacity, K 

∗
SO 

, increases faster because the so- 

ial planner is taking into account both producer’s and consumer’s 

urplus in its objective. The difference in capacities negatively af- 

ects the welfare, thereby implying that the welfare loss increases 

harply with σ . At some point, however, the difference in the PC’s 

apacities stops increasing as rapidly as a result of an increase in 

and becomes constant in the limit as σ goes to infinity. This, 

ogether with the fact that the welfare function is quadratic in the 

C’s capacity, leads to the result that the relative welfare loss starts 

eclining. Thus, if the TSO invests in a decentralized setting with- 

ut anticipating the PC’s optimal choices, then the welfare loss can 

ise significantly above 25% for intermediate values of σ . In other 

ords, when volatility is large enough, non-anticipative planning 

ecomes particularly costly from the welfare perspective as the 

egulated entity does even worse than the profit-maximizing mo- 

opolist that undertakes both infrastructure and production deci- 

ions. When σ is relatively high, the welfare loss approaches 25% 

rom above as in the private-planning setting. 

If the TSO decides upon infrastructure capacity anticipating the 

C’s investment decision, then it is able to hold the welfare loss 

o below 25% as illustrated by the solid curve even though the 

elfare loss asymptotically approaches the same level as in the 

rivate-planning setting. For a low volatility, i.e., σ ≤ ˆ σ , it can even 

btain the socially optimal outcome. 

The policy implications here are that in less volatile markets, 

he TSO is able to achieve the social optimum even if it chooses a 

yopic strategy and does not anticipate the PC’s profit-maximizing 

ehavior. As volatility increases, however, such a myopic strategy 

esults in substantial welfare losses. In moderately uncertain envi- 

onments, the ability of the TSO to orient the decisions of the PC 

y choosing investment timing and capacity size of the infrastruc- 

ure investment in itself helps to reduce welfare losses substan- 

ially in comparison to non-anticipative planning. In more volatile 

arkets, however, additional mechanisms are necessary in order to 

chieve a significant reduction of the welfare loss, as the ability to 

estrict the PC in timing and capacity alone does not bring a sig- 

ificant advantage over the myopic strategy of ignoring the opti- 

al decisions of the PC. These insights are particularly relevant for 

uture energy systems as increasing penetration of highly volatile 

nd inflexible renewable energy technologies contributes to a sub- 

tantial increase in the electricity price volatility ( Rintamäki, Sid- 

iqui, & Salo, 2017 ). The welfare losses in our model are also in

ine with real world examples, such as Texas, where the extent of 

he curtailment to wind production as a result of poor coordination 

etween generation and transmission expansion is an indicator of 

elfare loss. Likewise, the Energiewende in Germany also presents 

 cautionary tale about the consequences of fostering renewable- 

nergy technologies without considering their impact on a trans- 

ission system that was configured for a starkly different pattern 

f consumption and production. Indeed, Kunz (2013) argues that 
1177
nsufficient transmission capacity will lead to substantially higher 

ongestion management costs absent correct price signals. 

. Welfare-enhancement mechanisms 

In practice, the possibilities for the TSO to steer private deci- 

ions towards the social optimum are limited. Typical measures 

hat would affect investment decisions of PCs in deregulated in- 

ustries, such as subsidies and other incentive schemes, are at the 

iscretion of higher-level entities. In this paper, we analyze the ef- 

ects of two welfare-enhancement mechanisms. The first one that 

e consider is motivated by the fact the TSO can demand that cer- 

ain conditions are met before it commits to providing infrastruc- 

ure. Such a dispensation was deployed in Norway, where Statnett 

et a minimum restriction on generation capacity in the case of the 

osen wind park ( Lie, 2015 ). In particular, Statnett conditioned its 

pproval of the required transmission capacity on a commitment 

y the wind-park investor to install a minimum of 10 0 0 MW of 

eneration capacity. The PC in the Fosen case eventually met this 

ondition by adopting six onshore wind farms with a combined 

apacity of 10 0 0 MW. 

Another mechanism that we consider is a lump-sum investment 

ost subsidy (see, e.g. Boomsma et al. (2012) and Nagy, Hagspiel, 

 Kort (2021) that study investment timing and capacity choice 

f profit-maximizing energy producers), where the TSO subsidizes 

 fraction of the investment cost paid by the PC. Such a subsidy 

ould serve as an effective incentive-alignment mechanism as it 

educes the PC’s investment cost, thereby stimulating investment 

t a lower threshold and leading to an increase of the volatility 

egion where the social optimum is attained. 

.1. Minimum capacity requirement 

To account for the minimum capacity requirement, we incor- 

orate an additional decision variable for the TSO in our model, 

hich is the minimum required generation capacity denoted by 

 min . This restriction can either be set such that K min < K S or

 min = K S as the generation capacity is naturally limited from 

bove by the size of the infrastructure provided. For the TSO in 

 decentralized industry, it is, in fact, always optimal to set the 

apacity requirement such that K min = K S . This minimum capacity 

equirement essentially implies that the TSO eliminated the PC’s 

hoice over capacity. This leads to the following optimal stopping 

roblem of the TSO in anticipation of the PC’s decision: 

sup 

τS ,K S 

E 

[
−γ K S e 

−ρτS + 

∫ ∞ 

τ ∗
CP 

(K S ) 
θt 

(
1 − 1 

2 

ηK S 

)
K S e 

−ρt dt 

−δK S e 
−ρτ ∗

CP (K S ) 
∣∣θ0 = θ

]
, (25) 

here τ ∗
CP 

(K S ) = min { t : θt ≥ θ ∗
CP 

(K S ) } . 
In other words, for any choice of infrastructure capacity size, 

 S , the TSO will impose exactly the same minimum restriction on 

eneration capacity, K min = K S , such that if the PC decides to in-

est, it will always install exactly K S . Here, we assume that the PC 

s not able to back out of the deal after the TSO undertakes an in-

estment. In reality for such agreements, the regulators often have 

evers to secure the PC’s capacity commitment. 15 Given the level 

f planned infrastructure, the PC, however, still has some flexibil- 

ty with respect to investment timing and, in principle, can delay 

ts investment. In the following, we show that if the TSO antici- 

ates the decisions of the PC, it can always ensure that it is never 

ptimal for the PC to delay investment. 
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Fig. 6. Relative welfare loss. [Parameter values: ρ = 0 . 1 ; α = 0 . 02 ; δ = 50 ; γ = 50 ; 

η = 0 . 05 .]. 
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17 The relative welfare loss can be expressed as L (θ ∗
min 

, ̂  K (θ ∗
min 

) , ̂  K (θ ∗
min 

)) = 1 −( )β
The solution to the investment problem in the presence of such 

 capacity restriction (25) is presented in the following proposition. 

roposition 9. In the presence of the minimum generation capacity 

estriction, the TSO and the PC always invest at the same time and in 

he same capacity level. 

• If β < 

δ
γ + 1 , then the optimal investment threshold is given by 

θ∗
min = 

(ρ − α) 

(β − 1) 

⎛ ⎝ β(γ + δ) + 

√ 

(β − 1) 2 (γ + δ) 2 + 
(
β2 − 1 

)
(δ−(β − 1) γ ) 2 

(β − 1) 

⎞ ⎠ , 

(26) 

and the optimal capacity level is equal to ̂ K S (θ ) . 
• If β ≥ δ

γ + 1 , then the optimal investment threshold is equal to 

the socially optimal threshold given by 

θ ∗
SO = 

(β + 1) 

(β − 1) 
(δ + γ )(ρ − α) , (27) 

and the optimal capacity level is equal to K 

∗
SO 

(θ ) . 

In the presence of the minimum capacity restriction, the TSO 

ffectively forces the PC to install generation capacity of the same 

ize as the infrastructure capacity. This implies that the TSO can 

ssentially always constrain the capacity of the PC. However, the 

SO is not able to affect the PC’s investment timing directly. 

roposition 9 states that, in this case, sequential investment is 

ever optimal. Thus, the TSO has to make sure that its capacity 

s small enough to convince the PC to invest immediately rather 

han to defer investment. 

Although the social optimum cannot always be enforced with a 

inimum capacity restriction mechanism, it, nevertheless, allows 

he TSO to enforce the social optimum for a wider range of pa- 

ameters as illustrated in Fig. 6 . Specifically, it manages to do so if

≥ δ
γ + 1 (or, equivalently σ ≤ ˆ σmin ), i.e., if volatility is relatively 

ow and/or the marginal infrastructure investment cost is relatively 

igh compared to the marginal generation investment cost. 16 Note 

hat this condition is less restrictive than in the original model 

ithout minimum capacity requirement in which the TSO needs 

o make sure that the PC invests both in the same capacity and at 

he same time as the TSO. This is because now the TSO is less con-

trained in choosing its investment strategy as it effectively con- 

rols the PC’s choice over capacity and only needs to ensure that 
16 Here, ˆ σmin is the unique solution to β = 

δ
γ + 1 . Note that because β is a mono- 

onic function in σ , this allows us to conclude that ˆ σmin > ˆ σ . 

t

a
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oth production and infrastructure investments occur at the same 

ime. Furthermore, the social optimum is achieved in the limit as 

→ ∞ . 17 This leads to a non-monotonicity in the relative welfare 

oss with respect to σ , which in this case is driven by the differ-

nce in the investment timing. While this wedge is large for the 

ntermediate values of σ , for higher values of volatility, the invest- 

ents in the case of the minimum capacity restriction and in the 

ocial optimum are delayed substantially and, thus, this difference 

s diminishing due to discounting. This indicates that such a mech- 

nism allows the TSO to reduce the welfare losses substantially 

ven in very uncertain environments. This result is qualitatively 

ifferent from the cases considered previously where the TSO was 

ble to achieve a substantial reduction of the welfare losses for 

nly low levels of volatility. 

Compared to the case without the minimum capacity mecha- 

ism, the TSO is able to install a larger capacity size that is closer 

o the social optimum albeit at the cost of delayed investment. In 

act, the TSO installs the maximum capacity that allows simulta- 

eous investment. Note that the mechanism only allows the TSO 

o fix the capacity size for the PC but not the timing choice. If the

SO were to adopt an even larger infrastructure capacity, then the 

C would be forced to invest later in order to justify such large 

eneration capacity given it is forced to install capacity size equal 

o the size of infrastructure investment in this case. 

Proposition 10 formalizes features of the corresponding optimal 

hreshold and capacity. 

roposition 10. In the setting with a minimum capacity restriction, 

he optimal investment threshold of the TSO as well as its optimal 

apacity are increasing with volatility, 
∂θ∗

min 
∂σ

> 0 and 
∂ ̂  K S (θ

∗
min 

) 

∂σ
> 0 . In 

ddition, for σ > ˆ σmin it also holds that θ ∗
min 

> θ ∗
SO 

and K 

∗
UP 

(θ ∗
S 
) < 

 

 S (θ
∗
min 

) < K 

∗
SO 

(θ ∗
SO 

) . 

Fig. 7 illustrates the findings of Proposition 10 concerning the 

ptimal capacity ( Fig. 7 a) and optimal investment timing ( Fig. 7 b)

s functions of volatility for three settings: the socially optimal 

ne under integrated planning (dashed line), the decentralized one 

ith capacity restriction (dot-dashed line), and the decentralized 

ne without capacity restriction (solid line). Evidently, the optimal 

nvestment threshold in the setting with the minimum capacity re- 

triction is larger, whereas the optimal capacity level is small than 

n the social optimum. However, as volatility increases, the optimal 

apacity choice approaches the socially optimal level. 

Although the minimum production capacity restriction reduces 

elfare loss in a decentralized setting, there may be some disad- 

antages to using this instrument. In particular, the reduction of 

elfare loss comes at a cost of delayed investment. This can be 

rucial in the case of renewable energy, where the policymakers 

re especially concerned about meeting timing targets. In such in- 

tances, there is a need to balance ambitious renewable targets 

ith broader welfare objectives. 

.2. Investment cost subsidy 

Another mechanism available to the social planner that may 

elp to steer the PC towards the social optimum is an investment 

ost subsidy. In our model, such a subsidy results in a redistribu- 

ion of the investment cost between the TSO and the PC. Let us 

enote the investment cost subsidy per unit of capacity installed 
1 
θ∗

min 
( θ ∗

min 
−(ρ−α)(γ + δ) ) (

1 
θ∗

SO 

)β( 2 θ∗
SO 

β+1 

) in this case. Taking the limits as σ → ∞ , both the numera- 

or and the denominator of the fraction tend to 1 because β → 1 and both θ ∗
SO → ∞ 

nd θ ∗
min 

→ ∞ , thereby leading to zero relative welfare loss. 
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Fig. 7. Optimal investment threshold and optimal capacity level with the restriction on minimum generation capacity as a function of σ . [Parameter values: ρ = 0 . 1 ; 

α = 0 . 02 ; σ = 0 . 1 ; δ = 50 ; γ = 100 ; η = 0 . 05 .]. 

Fig. 8. Relative welfare loss. [Parameter values: ρ = 0 . 1 ; α = 0 . 02 ; δ = 50 ; γ = 100 ; 

ε = 50 ; η = 0 . 05 .]. 
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18 For δ ≤ γ , δ
γ + 1 ≤ 2 < 3 + 

2(δ−ε) 
γ + ε , from which it directly follows that ˆ σsub < 

ˆ σmin . 
y the PC by ε ∈ (0 , δ] . In the decentralized setting, the PC solves

he following problem 

sup 

P ≥τS ,K P ≤K S 

E 

[∫ ∞ 

τP 

θt (1 −ηK P ) K P e 
−ρt dt −(δ − ε) K P e 

−ρτP 

∣∣θ0 = θ

]
, 

(28) 

hich is the same problem as in (4) but with a lower 

arginal investment cost. Thus, its solution directly follows from 

ropositions 1 and 2 . Let us denote the optimal capacity of the PC 

n this case by K 

∗
P,sub 

and its optimal investment time by τP,sub (K S ) .

hen, the TSO’s investment problem becomes: 

up 

S ,K S 

E 

[∫ ∞ 

τ ∗
P,sub 

(K S ) 
θt 

(
1 − 1 

2 

ηK 

∗
P,sub (θt , K S ) 

)
K 

∗
P,sub (θt , K S )e −ρt dt 

−(γ + ε) K S e 
−ρτS 

−(δ − ε) K 

∗
P,sub (θτ ∗

P,sub 
(K S ) , K S )e −ρτ ∗

P,sub 
(K S ) 
∣∣θ0 = θ

] 
. (29) 

Similar to the case of the PC, this optimal problem is solved 

nalogously to (17) . Thus, the result of Proposition 3 sill applies, 

iz., that the TSO always chooses its optimal capacity such that 

he PC invests in the same capacity and at the same time as the 

SO also in the case of investment cost subsidy. This leads to the 

ollowing proposition. 
1179 
roposition 11. For a marginal investment cost subsidy, ε ∈ (0 , δ] , if

t holds that β < 

2(δ−ε) 
(γ + ε) 

+ 3 , then the optimal investment threshold is 

iven by 

∗
sub 

= 
(ρ − α) 

(
β(2 γ + 3 δ − ε) + 

√ 

4(γ + ε) 2 β2 + 3(δ − ε)(4 γ + ε + 3 δ) 
)

3(β − 1) 
, (30) 

nd the optimal capacity level is equal to K 

∗
sub 

(θ ) = 

1 
2 η

(
1 − (δ−ε)(ρ−α) 

θ

)
. If β ≥ 2(δ−ε) 

γ + ε + 3 , then the optimal invest- 

ent threshold is equal to the socially optimal threshold level 

iven by θ ∗
sub 

= θ ∗
SO 

and the optimal capacity level is equal to 

 

∗
sub 

(θ ) = K 

∗
SO (θ ) . 

Also, in the presence of a subsidy, the TSO can only enforce the 

ocial optimum for low values of volatility such that 

< ˆ σsub ≡

√ √ √ √ 

[
ρ − α

(
2(δ−ε) 
γ + ε + 3 

)]+ (
δ−ε
γ + ε + 1 

)(
2(δ−ε) 
γ + ε + 3 

) . (31) 

ote that the region where the social optimum can be attained in- 

reases in the presence of an investment cost subsidy, i.e. ˆ σ < ˆ σsub . 

his is because δ−ε
γ + ε < 

δ
γ and 

∂ ̂  σ

∂ 
(

δ
γ

) < 0 from Proposition 6 . Never- 

heless, the positive effect of the subsidy on the social welfare is 

estricted due to the natural upper boundary of ε = δ, which cor- 

esponds to the case in which the TSO fully covers the PC’s invest- 

ent cost. Furthermore note that for δ ≤ γ , which is typically the 

ase for the electricity industry ( DeSantis et al., 2021; Energy Infor- 

ation Administration, 2020 ), it is easy to show that ˆ σsub < ˆ σmin . 
18 

his implies that the minimum capacity restriction still leads to 

he largest region where the social optimum can be attained. If, 

owever, δ > γ , a sufficiently large subsidy ε > γ is sufficient to 

nsure that the social optimum is attained for larger values of σ
han under the minimum capacity restriction when the marginal 

nvestment cost of the PC is not too large, i.e. δ < 

2 γ 2 

ε−γ . However, 

ven in this case, the TSO is not able to reduce the welfare loss 

n very uncertain environments as opposed to the situation when 

t imposes the minimum capacity requirement. This is because as 

→ ∞ , the relative welfare converges to the value under the pri- 

ate planning similarly to the case without the subsidy. Fig. 8 illus- 

rates the relative welfare loss as a function of volatility for all the 
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Fig. 9. Optimal investment threshold and optimal capacity level with the restriction on minimum generation capacity and investment cost subsidy as a function of σ . 

[Parameter values: ρ = 0 . 1 ; α = 0 . 02 ; σ = 0 . 1 ; δ = 50 ; γ = 100 ; ε = 50 ; η = 0 . 05 .]. 
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ettings considered in our model for our base case when δ < γ and 

he TSO chooses to provide the maximum possible subsidy level, 

.e. ε = δ. 

Proposition 12 formalizes features of the corresponding optimal 

hreshold and capacity. 

roposition 12. In presence of an investment cost subsidy, 0 < ε ≤ δ, 

he optimal investment threshold of the TSO as well as its optimal 

apacity are increasing with volatility, 
∂θ∗

sub 
∂σ

> 0 and 
∂K ∗

sub 
(θ∗

sub 
) 

∂σ
≥ 0 . 

n addition, for σ > ˆ σsub , it also holds that θ ∗
sub 

< θ ∗
SO and K 

∗
UP (θ

∗
S ) <

 

∗
sub 

(θ ∗
sub 

) < K 

∗
SO 

(θ ∗
SO 

) . 

As can be seen, in the case of subsidy, the TSO invests in a 

arger capacity than in the case of decentralized planning (thus, 

loser to the socially optimal level). However, for high values of 

olatility, it does so at a lower level of θ than the one in the de-

entralized setting. This is because the capacity choice of the PC 

ecomes less sensitive with respect to the investment timing in 

he presence of a large subsidy of the investment cost. Thus, in- 

estment at a higher threshold by the TSO does not lead to any 

ubstantial increase in the capacity of the PC for larger values of 

olatility. Hence, the TSO invests at a lower threshold than in the 

ecentralized setting, which leads to the net effect that the welfare 

oss is reduced due to discounting ( Fig. 9 ). 

. Conclusions 

Deregulation of most infrastructure industries has decoupled 

etwork and production decisions, which were once undertaken by 

 central authority. This issue of coordinating complementary in- 

estments by distinct entities with conflicting objectives is partic- 

larly evident in the energy sector, which faces legally binding tar- 

ets for integrating more renewable energy sources into the power 

ystem. Indeed, substantial investment in new transmission capac- 

ty may be required given the remoteness of promising renewable 

ites. 

In this article, we analyze the optimal timing and optimal siz- 

ng of such transmission investments taking into account the mis- 

ligned objectives of the involved decision makers. In our model, 

he TSO aims to maximize social welfare, whereas the PC max- 

mizes its profit. Their decisions are, however, connected in the 

ense that the PC cannot operate the generation capacity unless 

he infrastructure is installed. Therefore, by undertaking an invest- 

ent in the infrastructure of a certain size, the TSO can natu- 
1180
ally restrict the PC by installing a maximum capacity and a lower 

ound for investment timing. 

Vis-à-vis the extent literature, we make three distinct contribu- 

ions: 

1. Determine market conditions under which the TSO may en- 

force the socially optimal transmission and production in- 

vestments. 

2. Relative to a socially optimal integrated benchmark setting, 

calculate the welfare loss resulting from a lack of coordina- 

tion. 

3. Provide insights about the viability of the minimum capacity 

requirement and the investment cost subsidy in the decen- 

tralized setting. 

In particular, first, we find that the TSO can naturally enforce 

he social optimal outcome when market uncertainty is relatively 

ow and/or the marginal investment cost of the TSO is relatively 

igh compared to the marginal generation investment cost. Intu- 

tively, in a more uncertain environment, the TSO cannot align the 

ecision of the PC with the social optimum. In this scenario, how- 

ver, anticipating the optimal decisions of the PC spares the TSO 

rom overinvestment and, therefore, avoidable welfare loss. 

Second, the relative welfare under private planning by the PC is 

 constant with respect to the volatility. This is related to the re- 

ult from Huisman & Kort (2015) in which a monopolist invests at 

he same time as a social planner but installs half of the socially 

ptimal capacity. By contrast, non-anticipative planning by the TSO 

an exacerbate welfare losses even vis-à-vis private planning by ig- 

oring the PC’s decisions for moderate levels of volatility. However, 

he relative welfare loss decays for higher volatility as more wait- 

ng is optimal regardless of the setting. Finally, decentralized plan- 

ing in which the TSO anticipates the PC’s optimal decisions has 

elatively low welfare losses and can even attain the social opti- 

um provided that the volatility is below the critical threshold, ˆ σ . 

Third, we find that although the social optimum cannot always 

e reached with a minimum capacity restriction mechanism or an 

nvestment cost subsidy, it, nevertheless, allows the TSO to enforce 

he social optimum for a wider range of market conditions, espe- 

ially in the case of the minimum capacity restriction. Specifically, 

e prove rigorously that enforceability of the mechanism depends 

n volatility and its relationship to the marginal infrastructure and 

eneration investment costs. Hence, this finding may be used by 
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olicymakers to enable TSOs to incentivize socially optimal behav- 

or by PCs in a decentralized setting. 

This study provides several promising directions for further re- 

earch. First, one could disentangle the objectives of the regulated 

onopolist and the regulator by assuming a profit-maximizing 

erchant transmission investor ( Maurovich-Horvat et al., 2015 ). 

econd, it would be also interesting to investigate the effect of 

ifferent renewable energy support schemes similar to Boomsma 

t al. (2012) that studies investment timing and capacity choice of 

rofit-maximizing energy producers. Therefore, a valuable exten- 

ion of this analysis would be to compare the effects of existing 

upport mechanisms such as feed-in tariffs, feed-in premiums, or 

enewable energy certificate trading on the investment timing and 

ize. Third, as part of our analysis, we did not include transmis- 

ion congestion or competition at the level of the power compa- 

ies ( Baringo & Conejo, 2012; Murphy & Smeers, 2005; Sauma & 

ren, 2007 ). Hence, a pertinent extension for future work could be 

o explore oligopolistic competition at the lower level and separate 

odes with congested transmission lines. 

ppendix A. Proofs of propositions 

roof of Proposition 1.. First, we derive the now-or-never optimal 

apacity investment, K 

∗
UP 

(θ ) , for a given level of θ , i.e., the capacity

hat maximizes the value of the PC in the stopping region: 

up 

K P 

V UP (θ, K P ) = sup 

K P 

[
θ (1 − ηK P ) K P 

ρ − α
− δK P 

]
. (32) 

ptimizing with respect to capacity yields 

 

∗
UP (θ ) = 

1 

2 η

(
1 − δ(ρ − α) 

θ

)+ 
. (33) 

Second, we derive the optimal timing of the investment. The PC 

olves the following optimal stopping problem 

up 

τ
V UP (θ ) , (34) 

here V UP (θ ) = V UP (θ, K 

∗
UP 

(θ )) . 

The solution to the optimal stopping problem is defined by a 

hreshold that separates a continuation, C and a stopping region S . 

et the value in the continuation region be denoted by F . Then the

ptimal value function is 

 

∗
UP (θ ) = 

{
F (θ ) on C, 

V UP (θ ) on � \ C, 
(35) 

here the continuation and stopping regions are defined as 

 = { θ ∈ �| V 

∗
UP (θ ) > V θ ) } , (36) 

 \ C = { θ ∈ �| V 

∗
UP (θ ) = V UP (θ ) } . (37) 

The optimal stopping time can be written as 

= inf { t > 0 ; θt 
∈ C} . (38) 

To solve the optimal stopping problem in (34) , we need to find 

he function V ∗UP , which is the smallest superharmonic function 

ominating the gain function V ( Peškir & Shiryaev, 2006 ), i.e., the 

ollowing conditions must be satisfied: 

L V 

∗
UP − ρV 

∗
UP ≤ 0 , ( F ∗ minimal) , 

V 

∗
UP ≥ V, ( V 

∗
UP > V on C & V 

∗
UP = V on � \ C) , 

(39) 

here L is infinitesimal generator of θ . 19 
19 L f (θ ) = lim 

t→ 0 

E θ [ f (θ )] − f (θ ) 

t 
. 

V

1181 
As the value function V UP (θ ) is increasing, the continuation re- 

ion can be written as C = (0 , θ ∗
UP ) , and the solution can be ex- 

ressed in terms of the optimal investment threshold, θ ∗
UP 

. This 

hreshold can be found by applying the following value matching 

nd smooth pasting conditions ( Dixit & Pindyck, 1994 ): 

 (θ ∗
UP ) = V UP (θ

∗
UP ) , (40) 

∂F (θ ) 

∂θ

∣∣∣
θ= θ ∗

UP 

= 

∂V UP (θ ) 

∂θ

∣∣∣
θ= θ ∗

UP 

, (41) 

here F is the solution of 

1 

2 

σ 2 θ2 ∂ 
2 F (θ ) 

∂θ2 
+ αθ

∂F (θ ) 

∂θ
− ρF (θ ) = 0 . (42) 

t is well known from the literature (see, e.g. Huisman & Kort 

2015) ) that in this case F = Aθβ , where A is a constant and β is

iven by 

= 

1 

2 

− α

σ 2 
+ 

√ (
−1 

2 

+ 

α

σ 2 

)2 

+ 

2 ρ

σ 2 
. (43) 

Note that as 
∂V UP (θ,K P ) 

∂K P 

∣∣
K P = K ∗UP 

(θ ) 
= 0 , it holds that 

∂V UP (θ,K ∗
UP 

(θ )) 

∂θ
= 

∂V UP (θ,K P ) 
∂θ

∣∣
K P = K ∗UP 

(θ ) 
. Thus, (40) is equivalent to 

olving the following system of equations for θ first and then 

aking into account the expression for K 

∗
UP (θ ) : 

θβ = 

θ (1 − ηK P ) K P 

ρ − α
− δK P , (44) 

Aθβ−1 = 

(1 − ηK P ) K P 

ρ − α
. (45) 

The resulting investment threshold is 

∗
UP (K P ) = 

β

β − 1 

δ(ρ − α) 

(1 − ηK P ) 
. (46) 

In the unconstrained case, i.e., when K S > K 

∗
UP (θ ) , the firm in-

talls capacity K 

∗
P 
(θ, K S ) = K 

∗
UP 

(θ ) . Therefore, the resulting invest-

ent threshold and capacity level at the threshold satisfy the fol- 

owing system of equations 
 

θ = 

β
β−1 

δ(ρ−α) 
(1 −ηK P ) 

, 

K P = 

1 
2 η

(
1 − δ(ρ−α) 

θ

)+ 
. 

(47) 

he resulting K 

∗
UP (θ

∗
UP ) and θ ∗

UP 

∗
UP = 

(β + 1) 

(β − 1) 
δ(ρ − α) , (48) 

 

∗
UP (θ

∗
UP ) = 

1 

η(β + 1) 
. (49) 

If the current value of θ is such that θ ≥ θ ∗
UP , then it is op- 

imal for the firm to invest immediately and install K 

∗
UP 

(θ ) = 

1 
2 η

(
1 − δ(ρ−α) 

θ

)
. Note that for β > 1 and any θ ≥ θ ∗

UP 
it holds that 

he optimal K 

∗
UP 

(θ ) < 

1 
η . If θ < θ ∗

UP 
, then the firm will wait with in-

estment until θ reaches θ and install K 

∗
UP 

(θ ∗
UP 

) = 

1 
η(β+1) 

< 

1 
η . This 

ields the result of the proposition. �

roof of Proposition 2. The PC is constrained by TSO and will 

hoose the investment level K 

∗
P (θ, K S ) = K S . Then, the value in the

topping region is equal to 

 CP (θ ) = 

θ (1 − ηK S ) K S 

ρ − α
− δK S . (50) 
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Value matching and smooth pasting yield 

θβ = 

θ (1 − ηK S ) K S 

ρ − α
− δK S , (51) 

Aθβ−1 = 

(1 − ηK S ) K S 

ρ − α
. (52) 

The resulting investment threshold is 

∗
CP (K S ) = 

β

β − 1 

δ(ρ − α) 

(1 − ηK S ) 
. (53) 

If the current value of θ is such that θ ≥ θ ∗
CP 

(K S ) , then it is op-

imal for the firm to invest immediately, if θ < θ ∗
CP (K S ) , the firm

ill wait with investment. The capacity level such that the firm 

s indifferent between investing now or postponing is denoted by 
 

 S (θ ) and is determined as follows 

= 

β

β − 1 

δ(ρ − α) 

(1 − ηK S ) 
, (54) 

 

 S (θ ) = 

1 

η

(
1 − β

β − 1 

δ(ρ − α) 

θ

)+ 
. (55) 

• If K S ≤ 1 
η

(
1 − β

β−1 
δ(ρ−α) 

θ

)+ 
≡ ̂ K S (θ ) , then the PC invests im- 

mediately at θ and installs capacity K S . Combining with the 

condition for constrained case, we get 

K S ≤ min 

{̂ K S (θ ) , K 

∗
UP (θ ) 

}
. (56) 

• If K S > 

1 
η

(
1 − β

β−1 
δ(ρ−α) 

θ

)+ 
≡ ̂ K S (θ ) , then the PC postpones 

investment until θ ∗
CP (K S ) and installs capacity K S . Combin- 

ing with the condition for constrained case, we get that ̂ K S (θ ) < K S ≤ K 

∗
UP 

(θ ) . So, it must hold that ̂ K S (θ ) ≤ K 

∗
UP 

(θ ) .

This condition can be transformed as follows 

1 

η

(
1 − β

β − 1 

δ(ρ − α) 

θ

)
≤ 1 

2 η

(
1 − δ(ρ − α) 

θ

)
, 

1 

2 

≤ δ(ρ − α) 

θ

(
β

β − 1 

− 1 

2 

)
, 

θ ≤ (β + 1) 

(β − 1) 
δ(ρ − α) . (57) 

�

roof of Proposition 3. First, consider the case where the PC’s 

ptimal capacity is an interior solution, i.e., the PC is not con- 

trained by the TSO, K S > K 

∗
UP 

(θ, K S ) . This corresponds to Sce-

arios III (Unconstrained-Simultaneous) and IV (Unconstrained- 

equential) in Fig. 2 . In Scenario III, the TSO’s optimal stopping 

roblem becomes 

sup 

τS ≥τ ∗
UP , 

K S >K ∗UP (θ ) 

E 

[
−γ K S e 

−ρτS + 

∫ ∞ 

τS 

θt 

(
1 − 1 

2 

ηK 

∗
UP (θt ) 

)
K 

∗
UP (θt )e −ρt dt 

−δK 

∗
UP (θτS 

)e −ρτS 

∣∣θ0 = θ
]
, (58) 

here τ ∗
UP 

= min { t ≥ τS : θt ≥ θ ∗
UP 

} . 
In the stopping region, the TSO optimizes its value with respect 

o capacity. The value in the stopping region is then given by: 

sup 

K S >K ∗
UP 

(θ ) 

(
E 

[ ∫ ∞ 

0 

θt 

(
1 − 1 

2 

ηK 

∗
UP (θt ) 

)
K 

∗
UP (θt )e −ρt dt 

−δK 

∗
UP (θ ) 

∣∣θ0 = θ
]

− γ K S 

)
= E 

[ ∫ ∞ 

θt 

(
1 − 1 

2 

ηK 

∗
UP (θt ) 

)
K 

∗
UP (θt )e −ρt dt −δK 

∗
UP (θ ) 

∣∣θ0 = θ
] 
0 
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+ sup 

K S >K ∗
UP 

(θ ) 

( −γ K S ) . (59) 

Thus, the optimum is a corner solution, leading to the case 

hen K S = K 

∗
UP 

(θ ) , which is incorporated in Scenario I in Fig. 2 . 

In Scenario IV, the TSO’s optimal stopping problem becomes 

sup 

τS <τ ∗
UP , 

K S >K ∗UP (θ ) 

E 

[
−γ K S e 

−ρτS + 

∫ ∞ 

τ ∗
UP 

θt 

(
1 − 1 

2 

ηK 

∗
UP (θt ) 

)
K 

∗
UP (θt )e −ρt dt 

−δK 

∗
UP (θτ ∗

UP 
)e −ρτ ∗

UP 

∣∣θ0 = θ
]
. (60) 

Similar to the above case, the value in the stopping region is 

hen given by: 

sup 

K S >K ∗
UP 

(θ ) 

(
E 

[∫ ∞ 

τ ∗
UP 

θt 

(
1 − 1 

2 

ηK 

∗
UP (θt ) 

)
K 

∗
UP (θt )e −ρt dt 

−δK 

∗
UP (θτ ∗

UP 
)e −ρτ ∗

UP 

∣∣θ0 = θ
]

− γ K S 

)
= E 

[∫ ∞ 

τ ∗
UP 

θt 

(
1 − 1 

2 

ηK 

∗
UP (θt ) 

)
K 

∗
UP (θt )e −ρt dt 

−δK 

∗
UP (θτ ∗

UP 
)e −ρτ ∗

UP 

∣∣θ0 = θ
]

+ sup 

K S >K ∗
UP 

(θ ) 

( −γ K S ) . (61) 

Again, the supremum is reached at the corner, i.e., K S = K 

∗
UP (θ ) ,

hich is already incorporated in Scenario I in Fig. 2 . 

Lastly, we show that even if the PC is constrained in capacity, 

t is not possible for the TSO to allow for the sequential invest- 

ent of the PC, i.e., it is not possible to end up in Scenario II

Constrained-Sequential) in Fig. 2 . 

In the Scenario II, the TSO’s optimal stopping problem becomes 

sup 

τS <τ ∗
CP (K S ) , ̂ K S (θ ) <K S <K ∗UP (θ ) 

E 

[
−γ K S e 

−ρτS + 

∫ ∞ 

τ ∗
CP 

(K S ) 
θt 

(
1 − 1 

2 

ηK S 

)
K S e 

−ρt dt 

−δK S e 
−ρτ ∗

CP (K S ) 
∣∣θ0 = θ

]
, (62) 

here τ ∗
CP (K S ) = min { t ≥ τS : θt ≥ θ ∗

CP (K S ) } . 
The value in the stopping region of the TSO is 

 (θ, K S ) = 

(
θ

θ ∗
CP 

(K S ) 

)β(
θ ∗

CP (K S )(1 − 1 
2 
ηK S ) K S 

ρ − α
− δK S 

)
− γ K S 

= 

(
θ (β − 1)(1 − ηK S ) 

βδ(ρ − α) 

)β(
β(1 − 1 

2 
ηK S ) 

(β − 1)(1 − ηK S ) 
− 1 

)
δK S − γ K S . (63) 

Suppose the TSO’s value function in (63) is maximized at ˜ K S (θ ) . 

hen, to determine the investment threshold the following system 

ust be solved: 

θβ = V (θ, ˜ K S (θ )) , (64) 

Aθβ−1 = 

∂V (θ, ˜ K S (θ )) 

∂θ
+ 

∂V (θ, K S ) 

∂K S 

∣∣∣
K S = ̃ K S (θ ) 

∂ ̃  K S (θ ) 

∂θ
. (65) 

Plugging the expression for V (θ, K S ) yields 

θβ = 

(
θ

θ ∗
CP 

( ̃  K S (θ )) 

)β(
β(1 − 1 

2 
η ˜ K S (θ )) 

(β − 1)(1 − η ˜ K S (θ )) 
− 1 

)
δ ˜ K S (θ ) − γ ˜ K S (θ ) , (66) 

θβ = 

(
θ

θ ∗
CP 

( ̃  K S (θ )) 

)β(
β(1 − 1 

2 
η ˜ K S (θ )) 

(β − 1)(1 − η ˜ K S (θ )) 
− 1 

)
δ ˜ K S (θ ) 

+ 

θ

β

∂ ̃  K S (θ ) 

∂θ

∂V (θ, K S ) 

∂K S 

∣∣∣
K S = ̃ K S (θ ) 

. (67) 



M. Lavrutich, V. Hagspiel and A.S. Siddiqui European Journal of Operational Research 304 (2023) 1167–1188 

Table A1 

Optimal capacity of the TSO given the constraint K S ≤ min 
{̂ K S (θ ) , K ∗UP (θ ) 

}
. 

β ≤ δ
γ + 1 

θ < (δ + 2 γ )(ρ − α) (δ + 2 γ )(ρ − α) ≤ θ < 

(β+1) 
(β−1) 

δ(ρ − α) θ ≥ (β+1) 
(β−1) 

δ(ρ − α) 

̂ K S (θ ) ≤ K ∗SO (θ ) < K ∗UP (θ ) ̂ K S (θ ) < K ∗UP (θ ) ≤ K ∗SO (θ ) K ∗UP (θ ) ≤ ̂ K S (θ ) ≤ K ∗SO (θ ) 

Optimum at ̂  K S (θ ) Optimum at ̂  K S (θ ) Optimum at K ∗UP (θ ) 

β > 

δ
γ + 1 

θ < 

(β+1) 
(β−1) 

δ(ρ − α) (β+1) 
(β−1) 

δ(ρ − α) ≤ θ < (δ + 2 γ )(ρ − α) θ ≥ (δ + 2 γ )(ρ − α) 

K ∗SO (θ ) < ̂

 K S (θ ) < K ∗UP (θ ) K ∗SO (θ ) < K ∗UP (θ ) ≤ ̂ K S (θ ) K ∗UP (θ ) ≤ K ∗SO (θ ) < ̂

 K S (θ ) 

Optimum at K ∗SO Optimum at K ∗SO Optimum at K ∗UP (θ ) 

A
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P
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i

γ

However, for ˜ K S (θ ) > 0 , combining (66) and (67) yields 

θβ − Aθβ = −γ ˜ K S (θ ) − θ

β

∂ ̃  K S (θ ) 

∂θ

∂V (θ, K S ) 

∂K S 

∣∣∣
K S = ̃ K S (θ ) 

> 0 . (68) 

To see why the last inequality holds observe the following. First, 

uppose ˜ K S (θ ) to be an interior optimum. Then, the last term in 

68) disappears as the first-order condition applies. Second, sup- 

ose now that the interior optimum does not exist. Then, for a 

iven value of θ , this would lead to a corner solution at either i)

he capacity level that insures simultaneous investment, ˜ K S (θ ) = 

 

 S (θ ) , or ii) the capacity level that ensures investment of equal 

ize, i.e., ˜ K S (θ ) = K 

∗
UP 

(θ ) . 20 The first case is a part of Scenario I

here the PC is constrained both in timing and in capacity. In the 

econd case, note that 
∂V (θ,K S ) 

∂K S 

∣∣∣
K S = K ∗UP 

(θ ) 

< 0 , otherwise V (θ, K S ) is 

ot maximized at K 

∗
UP 

(θ ) , because we can find a point in the in-

erior, which leads to a larger value. Together with the fact that 
∂K ∗

UP 
(θ ) 

∂θ
> 0 , this implies that the left hand side of (68) is always

ositive. Hence, the optimal investment threshold does not exist 

nd it is always optimal for the TSO to wait. �

roof of Proposition 4. In Scenario I (Constrained-Simultaneous), 

he TSO solves the following capacity optimization problem: 

sup 

 S ≤min { ̂  K S (θ ) ,K ∗
UP 

(θ ) } 
V (θ, K S ) = sup 

K S 

[
θ (1 − 1 

2 
ηK S ) K S 

ρ−α
−(δ + γ ) K S 

]
. 

(69) 

Note that the unconstrained optimum of this problem is equal 

o the social optimum. This is because if the TSO decides on both 

roduction and infrastructure investments, then it is never optimal 

o install infrastructure capacity that is not used for production, 

.e., K P = K S . Moreover, once the infrastructure is installed, there is 

o incentive to leave it unused. Therefore, both investments occur 

t the same time, and the TSO solves the following optimal stop- 

ing problem: 

up 

S ,K S 

E 

[∫ ∞ 

τS 

θt 

(
1 − 1 

2 

ηK S 

)
K S e 

−ρt dt − (δ + γ ) K S e 
−ρτS 

∣∣θ0 = θ

]
. (70) 

Let θ ∗
SO 

denote the optimal investment threshold, θ ∗
SO 

. The op- 

imal investment time, τ ∗, is equal to the first time the stochastic 

rocess hits the optimal level, θ ∗
SO 

, i.e., τ ∗ ≡ min { t ≥ 0 : θt ≥ θ ∗
SO 

} . 
he corresponding optimal capacity is denoted by K 

∗
SO 

(θ ∗
SO 

) . Analo- 

ously to the proof of Proposition 1 and similar to Huisman & Kort 

2015) , it can be shown that that the solution of this problem is 

iven as follows. The socially optimal investment threshold is 

∗
SO = 

(β + 1) 

(β − 1) 
(δ + γ )(ρ − α) , (71) 
20 The case when the corner solution is at K S = 0 is trivial because it would result 

nto zero value of investment for TSO, and therefore will be equivalent to waiting. 
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nd the socially optimal capacity choice is equal to 

 

∗
SO (θ

∗
SO ) = 

2 

η(β + 1) 
, (72) 

here β = 

1 

2 
− α

σ 2 
+ 

√ (
− 1 

2 
+ 

α

σ 2 

)2 

+ 

2 ρ

σ 2 
. 

If the current level of the stochastic process is such that θ > 

∗
SO 

, then the TSO invests immediately and installs capacity equal 

o 

 

∗
SO (θ ) = 

1 

η

(
1 − (δ + γ )(ρ − α) 

θ

)+ 
. (73) 

Therefore, the solution of (69) will depend on the relationship 

etween 

̂ K S (θ ) , K 

∗
SO 

(θ ) and K 

∗
UP 

(θ ) , which we formally state below. 

• If θ ≥ (β+1) 
(β−1) 

δ(ρ − α) , then 

̂ K S (θ ) ≥ K 

∗
UP 

(θ ) , and otherwise ̂ K S (θ ) < K 

∗
UP (θ ) . It can be shown that θ ≥ (β+1) 

(β−1) 
δ(ρ − α) im- 

plies ̂ K S (θ ) ≥ K 

∗
UP (θ ) and vice versa as follows 

θ ≥ (β + 1) 

(β − 1) 
δ(ρ − α) , 

1 

2 

≥
(

β

β − 1 

− 1 

2 

)
δ(ρ − α) 

θ
, 

1 

η

(
1 − β

β − 1 

δ(ρ − α) 

θ

)
≥ 1 

2 η

(
1 − δ(ρ − α) 

θ

)
, 

̂ K S (θ ) ≥ K 

∗
UP (θ ) . 

• If θ ≥ (δ + 2 γ )(ρ − α) , then K 

∗
SO (θ ) ≥ K 

∗
UP (θ ) , and otherwise 

K 

∗
SO 

(θ ) < K 

∗
UP 

(θ ) . It can be shown that θ ≥ (δ + 2 γ )(ρ − α)

implies K 

∗
SO 

(θ ) ≥ K 

∗
UP 

(θ ) and vice versa as follows 

θ ≥ (δ + 2 γ )(ρ − α) , 

1 

2 

≥
(

δ − δ

2 

+ γ

)
(ρ − α) 

θ
, 

1 

η

(
1 − (δ + γ )(ρ − α) 

θ

)
≥ 1 

2 η

(
1 − δ(ρ − α) 

θ

)
, 

K 

∗
SO (θ ) ≥ K 

∗
UP (θ ) . 

• If β ≤ δ
γ + 1 , then K 

∗
SO (θ ) ≥ ̂ K S (θ ) and (δ + 2 γ )(ρ − α) ≤

(β+1) 
(β−1) 

δ(ρ − α) , and otherwise K 

∗
SO 

(θ ) < ̂

 K S (θ ) and (δ + 

2 γ )(ρ − α) > 

(β+1) 
(β−1) 

δ(ρ − α) . 

It can be seen that K 

∗
SO 

(θ ) ≥ ̂ K S (θ ) if and only if δ + γ ≤ δ β
β−1 

,

mplying that β ≤ δ
γ + 1 . 

Finally, if β ≤ δ
γ + 1 , it holds that 

≤ δ

β − 1 

, 2 γ ≤ δ

(
(β + 1) 

(β − 1) 
− 1 

)
, 

(δ + 2 γ )(ρ − α) ≤ (β + 1) 

(β − 1) 
δ(ρ − α) . 
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Table A.3 summarizes these findings and states the optimal ca- 

acity choice in each of the cases. 

�

roof of Proposition 5. In what follows, we determine the opti- 

al threshold for the optimal capacity choice in different cases: 

hen β > 

δ
γ + 1 and when β ≤ δ

γ + 1 . 

• β > 

δ
γ + 1 

From Table A.3 , the optimal capacity choice in this case is 

K 

∗
SO (θ ) , if θ < (δ + 2 γ )(ρ − α) , 

K 

∗
UP (θ ) , if θ ≥ (δ + 2 γ )(ρ − α) . 

(74) 

Note that the value for the TSO in the stopping region in this 

ase is an increasing smooth function. In particular, the stopping 

alue is equal to 

 (θ ) = 

⎧ ⎪ ⎨ ⎪ ⎩ 

V (θ, K 

∗
SO (θ )) = 

(θ−(δ+ γ )(ρ−α)) 2 

2 ηθ(ρ−α) 
, if θ < (δ + 2 γ )(ρ − α)

V (θ, K 

∗
UP (θ )) = 

(θ−δ(ρ−α))(3 θ−(4 γ +3 δ)(ρ−α)) 
8 ηθ(ρ−α) 

, if θ

≥ (δ + 2 γ )(ρ − α) . 

(75) 

Now note that 
∂V (θ,K ∗

SO 
(θ )) 

∂θ
= 

θ2 −(δ+ γ ) 2 (ρ−α) 2 

2 ηθ2 (ρ−α) 
and

∂V (θ,K ∗
UP 

(θ )) 

∂θ
= 

3 θ2 −δ(4 γ +3 δ)(ρ−α) 2 

8 ηθ2 (ρ−α) 
are positive for θ > (δ + γ )(ρ + α) and 

≥ (δ + 2 γ )(ρ − α) , respectively. Evaluating these derivatives 

t θ = (δ + 2 γ )(ρ − α) , we get 
∂V (θ,K ∗

SO 
(θ )) 

∂θ
| θ=(δ+2 γ )(ρ−α) = 

∂V (θ,K ∗
UP 

(θ )) 

∂θ
| θ=(δ+2 γ )(ρ−α) = 

γ (3 γ +2 δ) 

2 η(δ+2 γ ) 2 (ρ−α) 
. Thus, the stopping 

alue is monotonically increasing and smooth. 

Using this result, we can derive the optimal thresholds in the 

egions θ < (δ + 2 γ )(ρ − α) and θ ≥ (δ + 2 γ )(ρ − α) separately, 

nd then verify if the constraint is satisfied. 

We start with the region θ < (δ + 2 γ )(ρ − α) , where the opti- 

al capacity choice for the TSO is K 

∗
SO 

(θ ) . Recall that in the inte-

rated case, the TSO’s optimal capacity is equal to K 

∗
SO 

(θ ) , and the

orresponding optimal investment threshold is equal to 

∗
SO = 

(β + 1) 

(β − 1) 
(δ + γ )(ρ − α) . (76) 

his expression is also the solution for the optimal stopping prob- 

em in the decentralized case if the constraint θ ∗
SO 

< (δ + 2 γ )(ρ −
) is satisfied, i.e., when (β+1) 

(β−1) 
(δ + γ )(ρ − α) ≤ (δ + 2 γ )(ρ − α) . 

t is easy to verify that this is true if and only if β > 

2 δ
γ + 3 . 

In the complementary case, when θ ≥ (δ + 2 γ )(ρ − α) , the op- 

imal θ solves the following equation: 

V (θ, K 

∗
UP (θ )) 

− θ

β

(
∂V (θ, K 

∗
UP (θ )) 

∂θ
+ 

∂V (θ, K S ) 

∂K S 

∣∣∣
K S = K ∗UP 

(θ ) 

∂K 

∗
UP (θ ) 

∂θ

)
= 0 . (77) 

lugging the expression for K 

∗
UP (θ ) into (77) yields 

3(β − 1) θ2 − 2 βθ(2 γ + 3 δ)(ρ − α) + (β + 1) δ(4 γ + 3 δ)(ρ − α) 2 

8 βηθ(ρ − α) 
= 0 . (78) 

he function of θ in the numerator is a convex parabola, such that 

ts largest root is the solution for the optimal threshold. 21 To ver- 

fy whether the constraint θ ≥ (δ + 2 γ )(ρ − α) holds we evaluate 

his expression at θ = (δ + 2 γ )(ρ − α) , and get 4 γ (ρ − α) 2 ((β −
) γ − 2 δ) . This expression is negative for β ≤ 2 δ

γ + 3 , implying that
21 This is because V (θ, K ∗UP (θ )) − θ
β

(
∂V (θ,K ∗UP (θ )) 

∂θ
+ 

∂V (θ,K S ) 
∂K S 

∣∣∣
K S = K ∗UP 

(θ ) 

∂K ∗UP (θ ) 

∂θ

)
must 

e smaller than zero for the values below the optimal threshold, otherwise stop- 

ing would be optimal in the waiting region. 

s

w
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he constraint is satisfied and the optimal solution is the positive 

oot of the parabola given by 

∗
S = 

(ρ − α) 
(
β(2 γ + 3 δ) + 

√ 

4 γ 2 β2 + 3 δ(4 γ + 3 δ) 
)

3(β − 1) 
. (79) 

If β > 

2 δ
γ + 3 , note that θ = (δ + 2 γ )(ρ − α) is larger than the

alue of θ for which the parabola reaches its minimum, i.e., θ = 

β
β−1 

(3 δ+2 γ )(ρ−α) 
3 , if γ > 

3 δ
2(2 β−3) 

. Thus, for γ > 

2 δ
β−3 

> 

3 δ
2(2 β−3) 

, the 

andidate threshold value is lower than (δ + 2 γ )(ρ − α) and the 

onstraint is not satisfied. 

To summarize, the optimal threshold for the parameter values 

uch that β > 

δ
γ + 1 the optimal threshold is equal to 

 

θ ∗
SO , if β > 

2 δ
γ + 3 , 

θ ∗
S , if β ≤ 2 δ

γ + 3 . 
(80) 

• β ≤ δ
γ + 1 . 

From Table A.3 , the optimal capacity choice in this case is 
 ̂ K S (θ ) , if θ < 

(β+1) 
(β−1) 

δ(ρ − α) , 

K 

∗
UP (θ ) , if θ ≥ (β+1) 

(β−1) 
δ(ρ − α) . 

(81) 

Consider first the situation when θ < 

(β+1) 
(β−1) 

δ(ρ − α) so that the 

SO chooses its optimal capacity at the level ̂ K S (θ ) . In this case, 

he optimal θ solves the following equation: 

 

(
θ, ̂  K S (θ ) 

)
− θ

β

(
∂V (θ, ̂  K S (θ )) 

∂θ
+ 

∂V (θ, K S ) 

∂K S 

∣∣∣
K S = ̂  K S (θ ) 

∂ ̂  K S (θ ) 

∂θ

)
= 0 . 

(82)

Plugging the expression for ̂ K S (θ ) into (82) yields 

(β − 1) 2 θ2 − 2(β − 1) βθ(δ + γ )(ρ − α) + β(β + 1) δ(ρ − α) 2 
(

(β−2) δ
β−1 

+ 2 γ
)

2 η(ρ − α) β(β − 1) θ
= 0 . (83) 

he function of θ in the numerator is a convex parabola, such that 

ts positive root is the solution for the optimal threshold 

22 Evalu- 

ting this function at θ = 

(β+1) 
(β−1) 

δ(ρ − α) yields − (β+1) δ2 (ρ−α) 2 

β−1 
< 0 . 

his implies that for θ < 

(β+1) 
(β−1) 

δ(ρ − α) the investment threshold 

oes not exist, and it is optimal to wait. 

Thus, the TSO will optimally wait until it is optional to in- 

tall K 

∗
UP 

(θ ) , i.e., θ ≥ (β+1) 
(β−1) 

δ(ρ − α) . The threshold in this case 

s defined by (79) . To verify that θ ∗
S ≥ (β+1) 

(β−1) 
δ(ρ − α) , we eval- 

ate the parabola in (78) at θ = 

(β+1) 
(β−1) 

δ(ρ − α) . This yields 

4(β+1) γ δ(ρ−α) 2 

β−1 
< 0 , implying that θ ∗

S 
> 

(β+1) 
(β−1) 

δ(ρ − α) . Thus, the 

alue function of the TSO in the waiting region is given by 

θ
θ∗

S 

)β

V (θ, K 

∗
UP 

(θ ∗
S 
)) . 

The value function in the stopping region is increasing, how- 

ver, it is no longer smooth as in the previous case. In ad- 

ition Now note that both 

̂ K S (θ ) and K 

∗
UP (θ ) are smaller than 

 

∗
SO (θ ) where the maximum of the stopping value is reached 

see Table A.3 ). Hence, we can conclude that V (θ, ̂  K S (θ )) < 

 (θ, K 

∗
UP 

) for θ < 

(β+1) 
(β−1) 

δ(ρ − α) and V (θ, ̂  K S (θ )) ≥ V (θ, K 

∗
UP 

) oth-

rwise. Thus, it is easy to verify that for θ < θ ∗
S 

, V (θ, ̂  K S (θ )) <

 (θ, K 

∗
UP 

) < 

(
θ
θ∗

S 

)β

< V (θ, K 

∗
UP 

(θ ∗
S 
)) . This sufficient to ensure that

he optimal value function dominates the gain function. 
22 This is because V (θ, ̂  K S (θ )) − θ
β

(
∂V (θ, ̂ K S (θ )) 

∂θ
+ 

∂V (θ,K S ) 
∂K S 

∣∣∣
K S = ̂ K S (θ ) 

∂ ̂ K S (θ ) 
∂θ

)
must be 

maller than zero for the values below the optimal threshold, otherwise stopping 

ould be optimal in the waiting region. 
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To summarize, for β ≤ δ
γ + 1 , the optimal capacity choice and 

he optimal investment threshold are K 

∗
UP 

(θ ) and θ ∗
S 

, respectively. 

ombining this result with the one for β > 

δ
γ + 1 , we arrive at

roposition 6 . �

roof of Proposition 6. Here derive ˆ σ , which is the value of σ
uch that β = 

2 δ
γ + 3 . As β solves 1 / 2 σ 2 β2 + (α − 1 / 2 σ 2 ) β − ρ =

 , it is straightforward to derive that ˆ σ is unique and given by 

ˆ = 

√ √ √ √ 

[
ρ − α

(
2 δ
γ + 3 

)]+ (
δ
γ + 1 

)(
2 δ
γ + 3 

) . (84) 

In addition, the comparative statics for ˆ σ > 0 with respect to α, 

, and 

δ
γ are given below 

∂ ̂  σ

∂α
= − γ

2(δ + γ ) 

√ 

ρ−α( 2 δγ +3 ) 
( δγ +1 ) ( 2 δγ +3 ) 

< 0 , (85) 

∂ ̂  σ

∂ρ
= 

γ 2 

2(δ + γ )(3 γ + 2 δ) 

√ 

ρ−α( 2 δγ +3 ) 
( δγ +1 ) ( 2 δγ +3 ) 

> 0 , (86) 

∂ ̂  σ

∂ 
(

δ
γ

) = −
ρ
(

4 δ
γ + 5 

)
− α

(
2 δ
γ + 3 

)2 

2 

(
δ
γ + 1 

)2 ( 2 δ
γ + 3 

)2 

√ 

ρ−α( 2 δγ +3 ) 
( δγ +1 ) ( 2 δγ +3 ) 

< 0 . (87) 

To derive the last inequality, consider the numerator of (87) . As 

> α
(

2 δ
γ + 3 

)
for ˆ σ > 0 , the following holds 

ρ

(
4 δ

γ
+ 5 

)
− α

(
2 δ

γ
+ 3 

)2 

> α

(
2 δ

γ
+ 3 

)(
4 δ

γ
+ 5 

)
−α

(
2 δ

γ
+ 3 

)2 

= α

(
4 δ

γ
+ 5 

)
− α

(
2 δ

γ
+ 3 

)
= 2 α

(
δ

γ
+ 1 

)
> 0 . (88) 

�

roof of Proposition 7. First, we show that for σ > ˆ σ , it holds 

hat θ ∗
SO 

> θ ∗
S 

. Consider the following difference: 

θ∗
SO − θ∗

S = 
(β + 1) 

(β − 1) 
(δ + γ )(ρ − α) −

(ρ − α) 
(
β(2 γ + 3 δ) + 

√ 

4 γ 2 β2 + 3 δ(4 γ + 3 δ) 
)

3(β − 1) 

= 
(ρ − α) 

(
3 δ + (β + 3) γ −

√ 

4 γ 2 β2 + 3 δ(4 γ + 3 δ) 
)

3(β − 1) 

= 
(ρ − α) 

(
3 δ + (β + 3) γ −

√ 

(3 δ + (β + 3) γ ) 2 − 3(β + 1) γ 2 
(

2 δ
γ + 3 − β

))
3(β − 1) 

> 0 . (89) 

The last inequality holds, because β < 

2 δ
γ + 3 for σ > ˆ σ . Thus, 

∗
SO > θ ∗

S . 

Second, we show that K 

∗
SO 

(θ ∗
SO 

) > K 

∗
UP 

(θ ∗
SO 

) > K 

∗
UP 

(θ ∗
S 
) > 

1 
2 K 

∗
SO (θ

∗
SO ) . From Table A.3 , it holds that K 

∗
SO (θ ) > K 

∗
UP (θ ) for

> (δ + 2 γ )(ρ − α) . Now note that 

∗
SO − (δ + 2 γ )(ρ − α) = γ

(
2 δ

γ
+ 3 − β

)
(ρ − α) 

β − 1 

> 0 . (90) 

Thus, K 

∗
SO 

(θ ∗
SO 

) > K 

∗
UP 

(θ ∗
SO 

) . In addition, as K 

∗
UP 

(θ ) is an in-

reasing function and from (89) θ ∗
SO > θ ∗

S , we can establish that 

 

∗
UP 

(θ ∗
SO 

) > K 

∗
UP 

(θ ∗
S 
) . Lastly, consider the following difference: 

 

∗
UP (θ ) − 1 

2 

K 

∗
SO (θ

∗
SO ) = 

1 

2 η

(
1 − δ(ρ − α) 

θ

)
− 1 

η(β + 1) 
1185 
= 

1 

2 η

(
β − 1 

β + 1 

− δ(ρ − α) 

θ

)
. (91) 

This implies that K 

∗
UP 

(θ ) > 

1 
2 K 

∗
SO 

(θ ∗
SO 

) for θ > 

β+1 
β−1 

δ(ρ − α) . 

hus, to conclude that K 

∗
UP 

(θ ∗
S 
) > 

1 
2 K 

∗
SO 

(θ ∗
SO 

) it is enough to show 

hat θ ∗
S 

> 

β+1 
β−1 

δ(ρ − α) . We show that this holds below. 

θ ∗
S −

β + 1 

β − 1 

δ(ρ − α) 

= 

(ρ − α) 
(

2 βγ − 3 δ + 

√ 

4 γ 2 β2 + 3 δ(4 γ + 3 δ) 
)

3(β − 1) 

= 

(ρ−α) 
(

2 βγ − 3 δ+ 

√ 

(2 βγ −3 δ) 2 + 12(β+ 1) γ δ
)

3(β − 1) 
> 0 . 

(92) 

Thus, we conclude that K 

∗
UP 

(θ ∗
S 
) > 

1 
2 K 

∗
SO 

(θ ∗
SO 

) . �

roof of Proposition 8. First, consider the sensitivity of the in- 

estment thresholds with respect to volatility. In what follows we 

ill use the fact that β decreases with σ and, thus, ∂β
∂σ

< 0 . In the

ntegrated case we have 

∂θ ∗
SO 

∂σ
= 

2(ρ − α)(γ + δ) 
(
− ∂β

∂σ

)
(β − 1) 2 

> 0 . (93) 

In the decentralized setting, we have 

∂θ∗
S 

∂σ
= 

(ρ − α) 
(
− ∂β

∂σ

)(
(2 γ + 3 δ) 

√ 

4 γ 2 β2 + 3 δ(4 γ + 3 δ) + 4 γ 2 β + 3 δ(4 γ + 3 δ) 
)

3(β − 1) 2 
√ 

4 γ 2 β2 + 3 δ(4 γ + 3 δ) 
> 0 . 

(94

Consider now the difference between these two thresholds, 
∗
SO 

− θ ∗
S 

for σ > ˆ σ (or equivalently, β < 

2 δ
γ + 3 ). 

∂ 
(
θ∗

SO 
− θ∗

S 

)
∂σ

= 
(ρ − α) 

(
− ∂β

∂σ

)((√ 

4 γ 2 β2 + 3 δ(4 γ + 3 δ) − 3 δ
)
(4 γ + 3 δ) − 4 γ 2 β

)
3(β − 1) 2 

√ 

4 γ 2 β2 + 3 δ(4 γ + 3 δ) 

= 

(ρ − α) 
(
− ∂β

∂σ

)(
4 γ 2 β + 3 δ(4 γ + 3 δ) 

)⎛ ⎝ 

√ 

(4 γ +3 δ) 2 
(
4 γ 2 β2 +3 δ(4 γ +3 δ) 

)(
(4 γ +3 δ) 2 −4 γ 2 

(
−β+ 3 δγ +4 

))2 
− 1 

⎞ ⎠ 

3(β − 1) 2 
√ 

4 γ 2 β2 + 3 δ(4 γ + 3 δ) 
. 

(95) 

Consider the last expression in the numerator of (95) : √ √ √ √ √ 

(4 γ + 3 δ) 2 
(
4 γ 2 β2 + 3 δ(4 γ + 3 δ) 

)(
(4 γ + 3 δ) 2 − 4 γ 2 

(
−β + 3 δ

γ + 4 
))2 

− 1 

= 

√ √ √ √ √ 

(4 γ + 3 δ) 2 

(4 γ + 3 δ) 2 − 4 γ 2 
(
−β + 3 δ

γ + 4 
) + 

(4 γ + 3 δ) 2 
(
4 γ 2 β(β − 1) 

)(
(4 γ + 3 δ) 2 − 4 γ 2 

(
−β + 3 δ

γ + 4 
))2 

− 1 

> 

√ √ √ √ 

(4 γ + 3 δ) 2 

(4 γ + 3 δ) 2 − 4 γ 2 
(
−β + 3 δ

γ + 4 
) − 1 > 0 . (96) 

Hence, we conclude that 
∂ ( θ∗

SO 
−θ∗

S ) 
∂σ

> 0 . 

Now consider the optimal capacities evaluated at the optimal 

nvestment thresholds. Both K 

∗
SO 

(θ ) and K 

∗
UP 

(θ ) are increasing in 

. In addition, from (93) and (94) , 
∂θ∗

SO 
∂σ

> 0 and 

∂θ∗
S 

∂σ
> 0 . Thus, it

mmediately follows that 
∂K ∗

SO 
(θ∗

SO 
) 

∂σ
> 0 , and 

∂K ∗
UP 

(θ∗
S 
) 

∂σ
> 0 . 

Consider now the difference between these capacity levels for 

> ˆ σ . As K 

∗
SO 

(θ ) and K 

∗
UP 

(θ ) do not depend directly on σ we can

rite 

∂ 
(
K 

∗
SO (θ

∗
SO ) − K 

∗
UP (θ

∗
S ) 
)

= 

∂K 

∗
SO (θ ) ∂θ ∗

SO − ∂K 

∗
UP (θ ) ∂θ ∗

UP . (97) 

∂σ ∂θ ∂σ ∂θ ∂σ
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23 This is because V (θ, ̂  K S (θ )) − θ
β

(
∂V (θ, ̂ K S (θ )) 

∂θ
+ 

∂V (θ,K S ) 
∂K S 

∣∣∣
K S = ̂ K S (θ ) 

∂ ̂ K S (θ ) 
∂θ

)
must be 

smaller than zero for the values below the optimal threshold, otherwise stopping 

would be optimal in the waiting region. 
Consider the difference 
∂K ∗

SO 
(θ ) 

∂θ
− ∂K ∗

UP 
(θ ) 

∂θ
: 

∂K 

∗
SO (θ ) 

∂θ
− ∂K 

∗
UP (θ ) 

∂θ
= 

(ρ − α)(2 γ + δ) 

2 ηθ2 
> 0 . (98) 

Thus, 
∂K ∗

SO 
(θ ) 

∂θ
> 

∂K ∗
UP 

(θ ) 

∂θ
. In addition, from (96) it follows that 

∂θ∗
SO 

∂σ
> 

∂θ∗
UP 

∂σ
for σ > ˆ σ . Together these observations imply that 

∂K ∗
SO 

(θ ) 

∂θ

∂θ∗
SO 

∂σ
> 

∂K ∗
UP 

(θ ) 

∂θ

∂θ∗
UP 

∂σ
and, thus, from (98) it follows that 

∂ ( K ∗SO 
(θ∗

SO 
) −K ∗

S 
(θ∗

S 
) ) 

∂σ
> 0 for σ > ˆ σ . �

roof of Proposition 9. Analogous to the derivations in 

ection 4.1 , in the stopping region the PC solves the follow- 

ng problem: 

sup 

 min ≤K P ≤K S 

V (θ, K P ) = sup 

K min ≤K P ≤K S 

[
θ (1 − ηK P ) K P 

ρ − α
− δK P 

]
. (99) 

he difference is now that K P is also restricted by K min from below. 

he resulting optimal capacity level of the PC is given by 

 

∗
P (θ, K S , K min ) = max 

[ 
K min , min [ K 

∗
UP (θ ) , K S ] 

] 
. (100) 

This leads to the following two situations: 

1. If K min ≥ K 

∗
UP 

(θ ) , then the PC will choose the investment 

level K 

∗
P (θ, K S ) = K min ; 

2. If K 

∗
UP 

(θ ) > K min , then the minimum capacity restriction is 

not binding. 

Note that Situation 2 leads to exactly the same optimal strate- 

ies of the TSO as in the case without the minimum constraint on 

eneration capacity. 

Situation 1 however, leads to the following optimal stopping 

roblem of the TSO 

sup 

τS ,K S >K min 

E 

[
−γ K S e 

−ρτS + 

∫ ∞ 

τ ∗
CP 

(K min ) 
θt 

(
1 − 1 

2 

ηK min 

)
K min e 

−ρt dt 

−δK min e 
−ρτ ∗

CP (K min ) 
∣∣θ0 = θ

]
, (101) 

here τ ∗
CP (K min ) = min { t ≥ τS : θt ≥ θ ∗

CP (K min ) } . 
In this case, too, the K S only enters as a cost, and, therefore, it

s optimal for the TSO always to set the minimum capacity possi- 

le. Thus, in order to find the optimal strategies of the TSO and PC 

n case when the minimum constraint is in place, it is sufficient to 

onsider the problem when K S = K min . That way, the PC is always

onstrained to install exactly K 

∗
P 
(θ, K S ) = K S . This leads to the fol-

owing optimal stopping problem of the TSO anticipating the PC’s 

ecision: 

sup 

τS ,K S 

E 

[
−γ K S e 

−ρτS + 

∫ ∞ 

τ ∗
CP 

(K S ) 
θt 

(
1 − 1 

2 

ηK S 

)
K S e 

−ρt dt 

−δK S e 
−ρτ ∗

CP (K S ) 
∣∣θ0 = θ

]
. (102) 

This problem is essentially the same as in Section 4.2 , with the 

ifference that the TSO no longer has to take into account that 

he PC might install the capacity that is smaller than K S . Similar 

o the problem without capacity restriction, the sequential invest- 

ent in this case is never optimal. The proof is analogous to that 

f Proposition 3 . In the case of simultaneous investment, the TSO 

olves the following problem 

sup 

τS ,K S ≤̂ K S (θ ) 

E 

[∫ ∞ 

τS 

(
θt 

(
1 − 1 

2 

ηK S 

)
K S 

)
e −ρt dt 

−(δ + γ ) K S e 
−ρτS 

∣∣θ0 = θ
]
, (103) 

hich is essentially the same problem as (70) , but now with a 

apacity constraint. Recall that the optimal capacity choice in an 
1186 
nconstrained problem is K 

∗
SO (θ ) from (73) . Then, the optimal ca- 

acity in the constrained problem will depend on the relationship 

etween 

̂ K S (θ ) and K 

∗
SO 

(θ ) as follows: 

 

∗
S (θ ) = 

{̂ K S (θ ) if β ≤ δ
γ + 1 , 

K 

∗
SO (θ ) if β > 

δ
γ + 1 . 

(104) 

In the following we determine the optimal threshold for the op- 

imal capacity choice in different regions of θ . 

• K 

∗
SO 

(θ ) if β > 

δ
γ + 1 . 

In this case, the solution for the optimal threshold is exactly the 

ame as that in the case of integrated planning, θ ∗
SO 

. 

• ̂ K S (θ ) if β ≤ δ
γ + 1 . 

In this case, the optimal θ solves the following equation: 

V 

(
θ, ̂  K S (θ ) 

)
− θ

β

(
∂V (θ, ̂  K S (θ )) 

∂θ
+ 

∂V (θ, K S ) 

∂K S 

∣∣∣
K S = ̂  K S (θ ) 

∂ ̂  K S (θ ) 

∂θ

)
= 0 . (105) 

Plugging the expression for ̂ K S (θ ) into (105) yields 

(β − 1) 2 θ2 − 2(β − 1) βθ(δ + γ )(ρ − α) + β(β + 1) δ(ρ − α) 2 
(

(β−2) δ
β−1 

+ 2 γ
)

2 η(ρ − α) β(β − 1) θ
= 0 . 

(106) 

he function of θ in the brackets is a convex parabola, such that 

ts positive root is the solution for the optimal threshold: 23 

∗
min = 

(ρ − α) 

(β−1) 

⎛ ⎝ β(γ + δ) + 

√ 

(β−1) 2 (γ + δ) 2 + 

(
β2 −1 

)
(δ−(β − 1) γ ) 2 

(β − 1) 

⎞ ⎠ . 

(107) 

�

roof of Proposition 10. First, we show that for σ > ˆ σ , it holds 

hat θ ∗
min 

> θ ∗
SO 

. 

θ ∗
SO − θ ∗

min = 

(β + 1) 

(β − 1) 
(δ + γ )(ρ − α) − (ρ − α) 

(β − 1) ⎛ ⎝ β(γ + δ) + 

√ 

(β − 1) 2 (γ + δ) 2 + 

(
β2 − 1 

)
(δ − (β − 1) γ ) 2 

(β − 1) 

⎞ ⎠ 

= 

(ρ−α) 
(
(β−1)(γ + δ) −

√ 

(β−1) 2 (γ + δ) 2 + 

(
β2 − 1 

)
(δ − (β − 1) γ ) 2 

)
(β−1) 2 

< 0 . (108) 

hus, θ ∗
SO < θ ∗

min 
. 

Next, we prove that K 

∗
UP (θ

∗
S ) < ̂

 K S (θ
∗
min 

) < K 

∗
SO (θ

∗
SO ) for β < 

δ
γ +

 . 

First, we show that K 

∗
UP 

(θ ∗
S 
) < ̂

 K S (θ
∗
min 

) . From Table A.3 , 

or θ > 

(β+1) 
(β−1) 

δ(ρ − α) it holds that ̂ K S (θ ) > K 

∗
UP (θ ) . In addi- 

ion, combining (89) and (108) we get that θ ∗
S 

< θ ∗
SO 

< θ ∗
min 

. 

his implies that θ ∗
min 

> θ ∗
SO 

= 

(β+1) 
(β−1) 

(δ + γ )(ρ − α) > 

(β+1) 
(β−1) 

δ(ρ −
) . Thus, ̂ K S (θ

∗
min 

) > K 

∗
UP (θ

∗
min 

) > K 

∗
UP (θ

∗
S ) . 

Second, we show that ̂ K S (θ
∗
min 

) < K 

∗
SO (θ

∗
SO ) . 

 

 S (θ ) − K 

∗
SO (θ

∗
SO ) = 

1 

η

(
1 − β

β − 1 

δ(ρ − α) 

θ

)
− 2 

η(β + 1) 
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3 δ +

3(β

K

θ

 

c

K  

N

K

T

A

S

f

R

B

B

B

B

B

B

B

= 

(β − 1) 2 θ − β(β + 1) δ(ρ − α) 

η(β − 1)(β + 1) θ
. (109) 

Hence, if θ < 

β(β+1) δ(ρ−α) 

(β−1) 2 
, then 

̂ K S (θ ) < K 

∗
SO 

(θ ∗
SO 

) . Now con- 

ider the following difference 

∗
min − β(β + 1) δ(ρ − α) 

(β − 1) 2 
= 

= 
(ρ − α) 

(√ (
β2 − 1 

)
(δ − (β − 1) γ ) 2 + (β − 1) 2 (γ + δ) 2 − βγ

(
2 δ
γ + 1 − β

))
(β − 1) 2 

= 
(ρ − α) 

( √ 

β2 γ 2 
(
(β − 1) 2 + 2(β−1) δ

βγ

(
δ
γ + 1 − β

))
− βγ

√ (
2 δ
γ + 1 − β

)2 
) 

(β − 1) 2 

= 
βγ (ρ−α) 

(√ 

(β−1) 2 + 2(β−1) δ
βγ

(
δ
γ + 1 −β

)
−
√ 

(β − 1) 2 + 4 δγ
(

δ
γ + 1 − β

))
(β − 1) 2 

< 0 . 

(110) 

he inequality holds because for 1 < β < 

δ
γ + 1 and 

2(β−1) δ
βγ

< 

4 δ
γ . 

ence, we conclude that θ ∗
min 

< 

β(β+1) δ(ρ−α) 

(β−1) 2 
and, as a result, 

 

 S (θ
∗
min 

) < K 

∗
SO 

(θ ∗
SO 

) . 

Next, consider the derivative of θ ∗
min 

with respect to σ for σ > 

ˆ min (i.e., β < 

δ
γ + 1 ): 

∂θ ∗
min 

∂σ
= 

(ρ − α)(γ + δ) 
(
− ∂β

∂σ

)
(β − 1) 2 ⎛ ⎝ 

γ 2 (β−1) β+ γ δ
(
−β2 + 

2 δ
γ β+ 

δ
γ + 1 

)
(γ + δ) 

√ 

(β − 1) β
(
γ (β − 1)(γ β−2 δ) + 2 δ2 

)+ 1 

⎞ ⎠ > 0 . 

(111) 

his is because ∂β
∂σ

< 0 and for 1 < β < 

δ
γ + 1 , it holds that

−β2 + 

2 δ
γ β + 

δ
γ + 1 

)
> 0 . Here, we used the fact that this expres- 

ion is a concave parabola and 

(
−β2 + 

2 δ
γ β + 

δ
γ + 1 

)∣∣∣
β=1 

= 

3 δ
γ > 0 

nd 

(
−β2 + 

2 δ
γ β + 

δ
γ + 1 

)∣∣∣
β= δγ +1 

= 

δ2 

γ 2 + 

δ
γ > 0 . 

Lastly, consider the optimal capacity evaluated at the optimal 

nvestment threshold. From Proposition 9 , for β < 

δ
γ + 1 the TSO 

ptimally chooses ̂ K S (θ ) , which is increasing in θ . As 
∂θ∗

min 
∂σ

> 0 

rom (111) , we conclude that 
∂ ̂  K S (θ

∗
min 

) 

∂σ
> 0 . �

roof of Proposition 11. The proof follows directly from the proof 

f Proposition 5 by substituting the marginal investment costs of 

he PC and the TSO by (δ − ε) and (γ + ε) , respectively. �

θ ∗
SO − θ ∗

sub = 

(β + 1) 

(β − 1) 
(δ + γ )(ρ − α) 

−
(ρ − α) 

(
β(2 γ + 3 δ − ε) + 

√ 

4(γ + ε) 2 β2 + 3 δ(4 γ + 3 δ +
3(β − 1) 

= 

(ρ − α) 
(

3 δ + (β + 3) γ + βε −
√ 

4(γ + ε) 2 β2 + 3 δ(4 γ +
3(β − 1) 

= 

(ρ − α) 
(
(β + 3) γ + βε + 3 δ −

√ 

(3 δ + (β + 3) γ + βε) 2 −
3(β − 1) 

> 0 . 
1187 
roof of Proposition 12. The proof for 
∂θ∗

sub 
∂σ

> 0 and 

∂K ∗
sub 

(θ∗
sub 

) 

∂σ
> 0 

ollows directly from the proof of Proposition 8 by substituting δ
y (δ − ε) and γ by (γ + ε) in the expressions for θ ∗

S 
and K 

∗
UP 

(θ ∗
S 
) , 

espectively. 

We now show that θ ∗
SO > θ ∗

sub 
for σ > ˆ σsub . For β < 

2(δ−ε) 
γ + ε + 3 , 

t holds that 

ε) 
)

+ 1)(γ + ε) 2 
(

2(δ−ε) 
γ + ε + 3 − β

))
(112) 

Next, we show that K 

∗
SO 

(θ ∗
SO 

) > K 

∗
sub 

(θ ∗
sub 

) > K 

∗
UP 

(θ ∗
S 
) . It holds that 

 

∗
SO (θ ) > K 

∗
UP (θ ) for θ > (δ + 2 γ + ε)(ρ − α) . Now note that 

∗
SO − (δ + 2 γ + ε)(ρ − α) 

= (γ + ε) 

(
2(δ − ε) 

γ + ε
+ 3 − β

)
(ρ − α) 

β − 1 

> 0 . (113) 

Thus, K 

∗
SO (θ

∗
SO ) > K 

∗
sub 

(θ ∗
SO ) . In addition, as K 

∗
sub 

(θ ) is an in-

reasing function and from (112) θ ∗
SO 

> θ ∗
sub 

, we can establish that 

 

∗
UP 

(θ ∗
SO 

) > K 

∗
sub 

(θ ∗
sub 

) . Lastly, we show that K 

∗
sub 

(θ ∗
sub 

) > K 

∗
UP 

(θ ∗
S 
) .

ote that K 

∗
UP (θ

∗
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hen, 

∂K ∗UP (θ
∗
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∂ 
(

δ
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) = 

3 

(
4 + 

3 δ
γ − 2 β2 − β

√ 

4 
(
β2 − 1 

)
+ ( 3 δγ + 2) 2 

)
(β + 1) η(4 + 

3 δ
γ ) 2 

√ 

4 
(
β2 − 1 

)
+ ( 3 δγ + 2) 2 

< 0 . (115) 

s K 

∗
sub 

(θ ∗
sub 

) is obtained directly from K 

∗
UP 

(θ ∗
S 
) by substituting 

δ−ε
γ + ε < 

δ
γ instead of δ

γ , we conclude that K 

∗
sub 

(θ ∗
sub 

) > K 

∗
UP 

(θ ∗
S 
) . �

upplementary material 

Supplementary material associated with this article can be 

ound, in the online version, at doi: 10.1016/j.ejor.2022.04.038 . 

eferences 

alliauw, M., Kort, P. M., Meersman, H., de Voorde, E. V., & Vanelslander, T. (2019). 

The case of public and private ports with two actors: capacity investment de- 
cisions under congestion and uncertainty. Case Studies on Transport Policy, 8 (2), 

403–415 . 

ar-Ilan, A., & Strange, W. C. (1999). The timing and intensity of investment. Journal 
of Macroeconomics, 21 (1), 57–77 . 

aringo, L., & Conejo, A. (2012). Transmission and wind power investment. IEEE 
Transactions on Power Systems, 27 (2), 885–893 . 

esanko, D., Doraszelski, U., Lu, L. X., & Satterthwaite, M. (2010). Lumpy capac- 
ity investment and disinvestment dynamics. Operations Research, 58 (4-part-2), 

1178–1193 . 
igerna, S., Bollino, C. A., & Polinori, P. (2016). Market power and transmission con- 

gestion in the Italian electricity market. The Energy Journal, 37 (2), 133–154 . 

igerna, S., & Polinori, P. (2014). Italian households’ willingness to pay for green 
electricity. Renewable and Sustainable Energy Reviews, 34 , 110–121 . 

igerna, S., Wen, X., Hagspiel, V., & Kort, P. M. (2019). Green electricity investments: 
Environmental target and the optimal subsidy. European Journal of Operational 

Research, 279 (2), 635–644 . 

https://doi.org/10.1016/j.ejor.2022.04.038
http://refhub.elsevier.com/S0377-2217(22)00352-6/sbref0001
http://refhub.elsevier.com/S0377-2217(22)00352-6/sbref0002
http://refhub.elsevier.com/S0377-2217(22)00352-6/sbref0003
http://refhub.elsevier.com/S0377-2217(22)00352-6/sbref0004
http://refhub.elsevier.com/S0377-2217(22)00352-6/sbref0005
http://refhub.elsevier.com/S0377-2217(22)00352-6/sbref0006
http://refhub.elsevier.com/S0377-2217(22)00352-6/sbref0007


M. Lavrutich, V. Hagspiel and A.S. Siddiqui European Journal of Operational Research 304 (2023) 1167–1188 

B

B  

B  

B

B  

B

C

C  

D  

D

D  

D

D

E

E

E

E
 

E

E

F  

G  

G

G

G

H  

H

H

H

J

K  

K

K

L

M

M

M

N

N

O

P

R

R

R

S

S

S

S

S

S

S

T

T

W

W

W

X  

Z

oomsma, T. K., Meade, N., & Fleten, S.-E. (2012). Renewable energy investments 
under different support schemes: A real options approach. European Journal of 

Operational Research, 220 (1), 225–237 . 
oonman, H. J., Hagspiel, V., & Kort, P. M. (2015). Dedicated vs product flexible pro-

duction technology: strategic capacity investment choice. European Journal of 
Operational Research . 

orenstein, S., Bushnell, J., & Stoft, S. (20 0 0). The competitive effects of transmission
capacity in a deregulated electricity industry. The RAND Journal of Economics, 

31 (2), 294–325 . 

osco, B., Parisio, L., & Pelagatti, M. (2010). Estimating marginal costs and market 
power in the Italian electricity auctions. 

raeutigam, R. R., & Panzar, J. C. (1993). Effects of the change from rate-of-return to
price-cap regulation. American Economic Review, 83 (2), 191–198 . 

roer, P., & Zwart, G. (2013). Optimal regulation of lumpy investments. Journal of 
Regulatory Economics, 44 (2), 177–196 . 

hevalier-Roignant, B., Flath, C. M., & Trigeorgis, L. (2019). Disruptive innovation, 

market entry and production flexibility in heterogeneous oligopoly. Production 
and Operations Management, 28 (7), 1641–1657 . 

ohen, M. C., Lobel, R., & Perakis, G. (2016). The impact of demand uncertainty on
consumer subsidies for green technology adoption. Management Science, 62 (5), 

1235–1258 . 
alby, P. A., Gillerhaugen, G. R., Hagspiel, V., Leth-Olsen, T., & Thijssen, J. J. (2018).

Green investment under policy uncertainty and Bayesian learning. Energy, 161 , 

1262–1281 . 
angl, T. (1999). Investment and capacity choice under uncertain demand. European 

Journal of Operational Research, 117 , 415–428 . 
eSantis, D., James, B. D., Houchins, C., Saur, G., & Lyubovsky, M. (2021). Cost of

long-distance energy transmission by different carriers. iScience, 24 , 103495 . 
ixit, A., & Pindyck, R. (1994). Investment under uncertainty . Princeton University 

Press . 

obbs, I. (2004). Intertemporal price cap regulation under uncertainty. Economic 
Journal, 114 (495), 421–440 . 

nergistyrelsen (2015). Danish Climate Policies. Available at https://ens.dk/en/ 
our-responsibilities/energy-climate-politics/danish-climate-policies . https://ens. 

dk/en/our-responsibilities/energy-climate-politics/danish-climate-policies . 
nergy Information Administration (2020). Capital Cost and Performance Character- 

istic Estimates for Utility Scale Electric Power Generating Technologies. Avail- 

able at https://www.eia.gov/analysis/studies/powerplants/capitalcost/pdf/capital _ 
cost _ AEO2020.pdf . 

uropean Commission (2011). 2009–2010 report on progress in creating the internal 
gas and electricity market - Technical annex. Technical Report . 

uropean Union (2018). Directive (EU) 2018/2001 of the European Parliament and 
of the Council of 11 December 2018 on the promotion of the use of energy

from renewable sources. Available at https://eur-lex.europa.eu/eli/dir/2018/2001/ 

oj . https://eur-lex.europa.eu/eli/dir/2018/2001/oj. 
vans, L., & Guthrie, G. (2012). Price-cap regulation and the scale and timing of 

investment. The RAND Journal of Economics, 43 (3), 537–561 . 
vans, L., Quigley, N., & Guthrie, G. (2012). Contemporary Microeconomic Foun- 

dations for the Structure and Management of the Public Sector. New Zealand 
Treasury. Available at https://www.treasury.govt.nz/sites/default/files/2012-05/ 

twp12-01.pdf . 
leten, S.-E., & Lie, T. T. (2013). A stochastic game model applied to the nordic elec-

tricity market. In H. I. Gassmann, & W. T. Ziemba (Eds.), Stochastic programming 

applications in finance, energy, planning and logistics . In World Scientific Book 
Chapters (pp. 421–441). World Scientific Publishing Co. Pte. Ltd. . 

arcés, L. P., Conejo, A. J., Garcia-Bertrand, R., & Romero, R. (2009). A bilevel ap-
proach to transmission expansion planning within a market environment. IEEE 

Transactions on Power Systems, 24 , 1513–1522 . 
arver, L. L. (1970). Transmission network estimation using linear programming. 

IEEE Transactions on Power Apparatus and Systems, PAS-89 (7), 1688–1697 . 

ilbert, R., & Newbery, D. M. (1994). The dynamic efficiency of regulatory constitu- 
tions. RAND Journal of Economics, 25 (4), 538–554 . 

uthrie, G. (2006). Regulating infrastructure: The impact on risk and investment. 
Journal of Economic Literature, 44 (4), 925–972 . 

enao, A., Sauma, E., Reyes, T., & Gonzalez, A. (2017). What is the value of the op-
tion to defer an investment in transmission expansion planning? An estimation 

using real options. Energy Economics, 65 , 194–207 . 

obbs, B. (1995). Optimization methods for electric utility resource planning. Euro- 
pean Journal of Operational Research, 83 , 1–20 . 

uisman, K. J., & Kort, P. M. (2015). Strategic capacity investment under uncertainty. 
The RAND Journal of Economics, 46 (2), 376–408 . 

yman, L. S. (2010). Restructuring electricity policy and financial models. Energy 
Economics, 32 (4), 751–757 . 

iang, C., Wan, Y., & Zhang, A. (2017). Internalization of port congestion: Strategic 

effect behind shipping line delays and implications for terminal charges and 
investment. Maritime Policy & Management, 44 (1), 112–130 . 

arthikeyan, S. P., Raglend, I. J., & Kothari, D. (2013). A review on market power in
deregulated electricity market. Electrical Power and Energy Systems, 48 , 139–147 . 
1188 
ouvelis, P., & Tian, Z. (2014). Flexible capacity investments and product mix: Op- 
timal decisions and value of postponement options. Production and Operations 

Management, 23 (5), 861–876 . 
unz, F. (2013). Improving congestion management: How to facilitate the integra- 

tion of renewable generation in Germany. The Energy Journal, 34 (4), 55–78 . 
ie, Ø. (2015). NVE: Statnett-krav i strid med energiloven. Digital Norway. Avail- 

able at https://www.tu.no/artikler/nve- statnett- krav- i- strid- med- energiloven/ 
222556 . https://www.tu.no/artikler/nve-statnett-krav-i-strid-med- 

energiloven/222556. 

atthäus, D., Schwenen, S., & Wozabal, D. (2020). Renewable auctions: Bidding for 
real options. Available at https://ssrn.com/abstract=3441339 . 

aurovich-Horvat, L., Boomsma, T., & Siddiqui, A. (2015). Transmission and wind 
investment in a deregulated electricity industry. IEEE Transactions on Power Sys- 

tems, 30 (3), 1633–1643 . 
urphy, F. H., & Smeers, Y. (2005). Generation capacity expansion in imper- 

fectly competitive restructured electricity markets. Operations Research, 53 (4), 

646–661 . 
agy, R. L., Hagspiel, V., & Kort, P. M. (2021). Green capacity investment under 

subsidy withdrawal risk. Energy Economics, 98 , 105259. https://doi.org/10.1016/j. 
eneco.2021.105259 . 

VE (2018). The Norwegian power system. Grid connection and licensing. Available 
at http://www.publikasjoner.nve.no/faktaark/2018/faktaark2018 _ 03.pdf . 

tsuki, T., Isa, A. B. M., & Samuelson, R. D. (2016). Electric power grid interconnec- 

tions in northeast Asia: A quantitative analysis of opportunities and challenges. 
Energy Policy, 89 , 311–329 . 

eškir, G., & Shiryaev, A. N. (2006). Optimal stopping and free-boundary problems . 
Birkhäuser, Basel, Switzerland . 

egeringskansliet (2017). Det klimatpolitiska ramverket. Available at http: 
//www.regeringen.se/artiklar/2017/06/det- klimatpolitiska- ramverket . 

http://www.regeringen.se/artiklar/2017/06/det-klimatpolitiska-ramverket/. 

egjeringen (2019). Declaration on Nordic carbon neutrality. Available at https:// 
www.regjeringen.no/contentassets/ff55fbdf4ce74ec3ac3e473f62a673a7/declarati 

ononnordiccarbonneutralitysigned.pdf , https://www.regjeringen.no/contentasset 
s/ff55fbdf4ce74ec3ac3e473f62a673a7/declarationonnordiccarbonneutralitysigne 

d.pdf. 
intamäki, T., Siddiqui, A. S., & Salo, A. (2017). Does renewable energy genera- 

tion decrease the volatility of electricity prices? an analysis of denmark and 

germany. Energy Economics, 62 , 270–282. https://doi.org/10.1016/j.eneco.2016.12. 
019 . http://www.sciencedirect.com/science/article/pii/S014098831730 0 063 

aphores, J.-D., Gravel, E., & Bernard, J.-T. (2004). Regulation and investment under 
uncertainty: An application to power grid interconnection. Journal of Regulatory 

Economics, 25 , 169–186 . 
apio, A., & Spagnolo, N. (2016). Price regimes in an energy island: Tacit collusion 

vs. cost and network explanations. Energy Economics, 55 , 157–172 . 

auma, E., & Oren, S. (2006). Proactive planning and valuation of transmission in- 
vestments in restructured electricity markets. Journal of Regulatory Economics, 

30 (3), 358–387 . 
auma, E., & Oren, S. (2007). Economic criteria for planning transmission investment 

in restructured electricity markets. IEEE Transactions on Power Systems, 22 (4), 
1394–1405 . 

chwartz, E. (1998). Valuing long-term commodity assets. Journal of Energy Finance 
& Development, 3 (2), 85–99 . 

iddiqui, A. S., Tanaka, M., & Chen, Y. (2019). Sustainable transmission planning in 

imperfectly competitive electricity industries: Balancing economic and environ- 
mental outcomes. European Journal of Operational Research, 275 (1), 208–223 . 

inha, A., Malo, P., Frantsev, A., & Deb, K. (2013). Multi-objective Stackelberg game 
between a regulating authority and a mining company: A case study in envi- 

ronmental economics. In Evolutionary computation (CEC), 2013 IEEE congress on 
(pp. 478–485). IEEE . 

eisberg, E. O. (1993). Capital investment strategies under uncertain regulation. The 

RAND Journal of Economics, 24 (4), 591–604 . 
samboulas, D., & Ballis, A. (2014). How to finance future port infrastructure invest- 

ments? Potential strategies for the different actors (pp. 211–227)). New York: In- 
forma Law from Routledge . 

illems, B., & Zwart, G. (2018). Optimal regulation of network expansion. The RAND 
Journal of Economics, 49 (1), 23–42 . 

iser, R., Bolinger, M., Barbose, G., Darghouth, N., Hoen, B., Mills, A., Hamachi 

LaCommare, K., Millstein, D., Hansen, D., Porter, K., Widiss, R., Buckley, M., 
Oteri, F., Smith, A., & Tegen, S. (2015). 2014 Wind Technologies Market Report. 

Available at https://www.energy.gov/sites/prod/files/2015/08/f25/2014-Wind- 
Technologies-Market-Report-8.7.pdf . 

oerman, M. (2019). Market size and market power: Evidence from the Texas elec- 
tricity market. Energy Institute at Haas, University of California, Berkeley. Available 

at https://haas.berkeley.edu/wp-content/uploads/WP298.pdf . 

iao, Y., Ng, A. K., Yang, H., & Fu, X. (2012). An analysis of the dynamics of own-
ership, capacity investments and pricing structure of ports. Transport Reviews, 

32 (5), 629–652 . 
hang, A., & Zhang, Y. (2003). Airport charges and capacity expansion: Effects of 

concessions and privatization. Journal of Urban Economics, 53 (1), 54–75 . 

http://refhub.elsevier.com/S0377-2217(22)00352-6/sbref0008
http://refhub.elsevier.com/S0377-2217(22)00352-6/sbref0009
http://refhub.elsevier.com/S0377-2217(22)00352-6/sbref0010
http://refhub.elsevier.com/S0377-2217(22)00352-6/sbref0012
http://refhub.elsevier.com/S0377-2217(22)00352-6/sbref0013
http://refhub.elsevier.com/S0377-2217(22)00352-6/sbref0014
http://refhub.elsevier.com/S0377-2217(22)00352-6/sbref0015
http://refhub.elsevier.com/S0377-2217(22)00352-6/sbref0016
http://refhub.elsevier.com/S0377-2217(22)00352-6/sbref0017
http://refhub.elsevier.com/S0377-2217(22)00352-6/sbref0018
http://refhub.elsevier.com/S0377-2217(22)00352-6/sbref0019
http://refhub.elsevier.com/S0377-2217(22)00352-6/sbref0020
https://ens.dk/en/our-responsibilities/energy-climate-politics/danish-climate-policies
https://ens.dk/en/our-responsibilities/energy-climate-politics/danish-climate-policies
https://www.eia.gov/analysis/studies/powerplants/capitalcost/pdf/capital_cost_AEO2020.pdf
http://refhub.elsevier.com/S0377-2217(22)00352-6/sbref0023
https://eur-lex.europa.eu/eli/dir/2018/2001/oj
http://refhub.elsevier.com/S0377-2217(22)00352-6/sbref0025
https://www.treasury.govt.nz/sites/default/files/2012-05/twp12-01.pdf
http://refhub.elsevier.com/S0377-2217(22)00352-6/sbref0027
http://refhub.elsevier.com/S0377-2217(22)00352-6/sbref0028
http://refhub.elsevier.com/S0377-2217(22)00352-6/sbref0029
http://refhub.elsevier.com/S0377-2217(22)00352-6/sbref0030
http://refhub.elsevier.com/S0377-2217(22)00352-6/sbref0031
http://refhub.elsevier.com/S0377-2217(22)00352-6/sbref0032
http://refhub.elsevier.com/S0377-2217(22)00352-6/sbref0033
http://refhub.elsevier.com/S0377-2217(22)00352-6/sbref0034
http://refhub.elsevier.com/S0377-2217(22)00352-6/sbref0035
http://refhub.elsevier.com/S0377-2217(22)00352-6/sbref0036
http://refhub.elsevier.com/S0377-2217(22)00352-6/sbref0037
http://refhub.elsevier.com/S0377-2217(22)00352-6/sbref0038
http://refhub.elsevier.com/S0377-2217(22)00352-6/sbref0039
https://www.tu.no/artikler/nve-statnett-krav-i-strid-med-energiloven/222556
https://ssrn.com/abstract=3441339
http://refhub.elsevier.com/S0377-2217(22)00352-6/sbref0042
http://refhub.elsevier.com/S0377-2217(22)00352-6/sbref0043
https://doi.org/10.1016/j.eneco.2021.105259
http://www.publikasjoner.nve.no/faktaark/2018/faktaark2018_03.pdf
http://refhub.elsevier.com/S0377-2217(22)00352-6/sbref0046
http://refhub.elsevier.com/S0377-2217(22)00352-6/sbref0047
http://www.regeringen.se/artiklar/2017/06/det-klimatpolitiska-ramverket
https://www.regjeringen.no/contentassets/ff55fbdf4ce74ec3ac3e473f62a673a7/declarationonnordiccarbonneutralitysigned.pdf
https://doi.org/10.1016/j.eneco.2016.12.019
http://www.sciencedirect.com/science/article/pii/S0140988317300063
http://refhub.elsevier.com/S0377-2217(22)00352-6/sbref0051
http://refhub.elsevier.com/S0377-2217(22)00352-6/sbref0052
http://refhub.elsevier.com/S0377-2217(22)00352-6/sbref0053
http://refhub.elsevier.com/S0377-2217(22)00352-6/sbref0054
http://refhub.elsevier.com/S0377-2217(22)00352-6/sbref0055
http://refhub.elsevier.com/S0377-2217(22)00352-6/sbref0056
http://refhub.elsevier.com/S0377-2217(22)00352-6/sbref0057
http://refhub.elsevier.com/S0377-2217(22)00352-6/sbref0058
http://refhub.elsevier.com/S0377-2217(22)00352-6/sbref0059
http://refhub.elsevier.com/S0377-2217(22)00352-6/sbref0060
https://www.energy.gov/sites/prod/files/2015/08/f25/2014-Wind-Technologies-Market-Report-8.7.pdf
https://haas.berkeley.edu/wp-content/uploads/WP298.pdf
http://refhub.elsevier.com/S0377-2217(22)00352-6/sbref0063
http://refhub.elsevier.com/S0377-2217(22)00352-6/sbref0064

	Transmission investment under uncertainty: Reconciling private and public incentives
	1 Introduction
	2 Literature review
	3 Model setup
	4 Decentralized decision making
	4.1 Decision of the PC
	4.2 Decision of the TSO

	5 Results
	5.1 Impact of key parameters on enforceability of the social optimum
	5.2 Impact of market structure on investment timing and capacity sizing
	5.3 Impact of volatility on optimal decisions and social welfare

	6 Welfare-enhancement mechanisms
	6.1 Minimum capacity requirement
	6.2 Investment cost subsidy

	7 Conclusions
	Appendix A Proofs of propositions
	Supplementary material
	References


