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Abstract

Numerous models for predicting the future distribution of credit spread changes are

specified and tested. Parsimonious factor models consisting of principal components

of the risk-free and credit spread term structure are shown to significantly outper-

form other models. Additional market variables weaken the prediction performance,

indicating that the information contained in the credit spread term structure and

the risk-free term structure to a large degree span a sufficient set of information for

credit spread predictions. One exception is the introduction of variables to account

for unconventional monetary policies by the Fed in the time period. These vari-

ables are found to improve predictions for tails of the distributions of credit spread

changes. The findings have implications for the modelling of credit spread changes

and risk management, as the whole distribution is considered. Furthermore, earlier

results in the literature are generalized to other quantiles of the distributions.
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Sammendrag

Flere modeller for prediksjon av fremtidige fordelinger av kredittspread-endringer

er spesifisert og testet. Modeller best̊aende av prinsipalkomponenter fra risikofri

rentekurve og kredittspreadkurve viser seg å være signifikant bedre enn andre testede

modeller. Å legge til andre variabler i prinsipalkomponent-modellene svekker predik-

sjonevnen, noe som indikerer at informasjonen i kurvenes prinsipalkomponenter er

tilstrekkelig for å predikere kredittspreader. Et unntak f̊as ved å legge til variabler

knyttet til den amerikanske sentralbankens ukonvensjonelle pengepolitikk i perioden.

Disse variablene bedrer prediksjonen av halene til fordelingen. Funnene i oppgaven

har implikasjoner for generell modellering av kredittspreader og risikostyring i fore-

tak, ettersom hele fordelingen av kredittspreader er hensyntatt. Videre generaliseres

tidligere funn i litteraturen til å gjelde andre kvantiler i fordelingene.
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1 Introduction

Ever since the classical corporate debt model of Merton (1974), the literature on

credit spreads has mainly been centered on the explanation of predicting average

credit spread changes (e.g. Collin-Dufresne et al. (2001); Krishnan et al. (2010)).

For investors or companies with exposure to credit spreads, simple mean predictions,

even accompanied by volatility estimates, may not be sufficient for evaluating an in-

vestor’s utility function for undertaking an investment. It is well-documented that

investors care about multiple traits of future returns beyond the classical mean-

variance model assumption of Markowitz (1952) (see (Arditti (1967); Scott and

Horvath, 1980); Fang and Lai, 1997), such as higher moments of relative price

changes. From a risk-management perspective, more granular insights into future

credit spread changes’ distributions are valuable. Especially the tails of the distri-

butions are of interest when considering risk metrics such as Value-at-Risk (VaR)

or Conditional Value-at-Risk (CVaR). Credit spreads are important for market par-

ticipants in numerous ways. First, they are, per se, a high-frequency indicator of

investors’ perception of risk as they are a bond’s premium to the corresponding

risk-free interest rate in the economy. Secondly, firms have intrinsic exposure to the

changes in credit spread as they alter the firms’ cost of capital, thus the firm value,

ceteris paribus. Furthermore, as Flannery et al. (2012) found, credit spreads also

comprise expectations of a firm’s future capital structure. Additionally, changes

in credit spreads pose a refinancing risk to companies looking to refinance debt to

’roll’ their liabilities in the financial market (Brunnermeier and Yogo, 2009). For

companies trying to match liabilities and asset cash flows, the bond market is a

vital funding source with the credit spread a substantial funding cost. Banking and

insurance are examples of industries in which the need to improve the matching of

liabilities and assets is significant to limit the risk of liquidity issues (e.g. bank runs,

see the classical Diamond and Dybvig (1987) work).

Since the great financial crisis (GCF) of 2007-08, the US Federal Reserve (the Fed)

has implemented highly expansive monetary policies. As interest rates have been

historically low, and the need for further stimulative action has been imminent in

the eyes of central bankers, these policies have included extensive waves of asset

purchases in the open market, commonly referred to as Quantitative Easing (QE).

While Fed Chairman Ben Bernanke explicitly spoke of reducing the Fed’s balance

as early as 2009 1, the programs are yet to be reserved. In total, the Fed’s balance

sheet has increased approximately tenfold since before the financial crisis to more

than 8.9 trillion USD, as of May 2022.

1”Federal Reserve will be able to return to its traditional means of mak-

ing monetary policy–namely, by setting a target for the federal funds rate”, see

https://www.federalreserve.gov/newsevents/speech/bernanke20090113a.htm
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Research on the subject of interest rates and risk premiums has shown that such QE

programs may lower both interest rates and premiums of credit risk in the economy

(Krishnamurthy and Vissing-Jorgensen, 2011). Due to their unprecedented nature,

the research on the effects of these QE programs has been facing obstacles. Prior

to the Bank of Japan (BoJ) launching its QE program in 2001 in the wake of the

’lost decades’, no modern large-scale QE program had ever been implemented 2.

Further, the US programs are different from that of BoJ’s (See Shiratuksa, 2010).

As Martin and Milas (2012) note, the QE policies are enacted as a response to

extreme events, and, hence, are intrinsically covarying with other events that make

the pure QE effects difficult to isolate. However, substantial academic literature

has researched the effects of these programs. The research considering interest rates

and credit spreads is of interest (e.g. Ugai, 2006; Gagnon et al., 2011; Gilchrist and

Zakrajsek, 2013; Nozawa and Qiu, 2021). By categorizing the announcement of the

Fed’s QE policy changes, a dummy variable approach is taken for accounting for

potential effects on credit spreads. However, the variables for announcements alone

are not enough as the actual asset purchases indeed do increase investors’ liquidity,

which again leads to actual portfolio re-balancing effects. Although announcements

may alter market expectations, the actual purchases and re-balancing effects could

have implications for credit spreads as well. In my view, both of them are likely

to change the demand for assets, and thus the price of the assets. To account for

actual liquidity effects, a variable linked to the Fed’s balance sheet is defined.

The fundamental motivations of the paper’s modeling are the well-established factor

analysis of the yield curve (Nelson and Siegel, (1987); Litterman and Scheinkman

(1991); Diebold and Li (2006), and the similar applications to the credit spread

term structure (Krishnan et al, 2010). In the academic literature, the amount of

information contained in the yield curve factors (i.e principal components (PCs) of

yield curve changes) is a debated topic. While Litterman and Scheinkman (1991)

found bond returns to be explained by the three first PCs (PC1, PC2, PC3), later

research found that additional factors improve the modeling of credit spreads beyond

the parsimonious PC models (Cochrane and Piazezzi, 2005; Ludvigson and Ng, 2009;

Joslin et al., 2014). In a thorough examination of the literature, Bauer and Hamilton

(2018) refute much of the literature that claims to find further improvements in

model specifications with additional variables than PC1, PC2 and PC3 of the yield

curve. According to Bauer and Hamilton (2018), much of the literature that rejects

the theory that current yield curve factors contain all needed for the prediction of

future rates, named the spanning hypothesis, is weaker than formerly believed. This

leaves more uncertainty as to whether additional variables than the term structure

2See Federal Reserve Bank of Francisco letter by Mark M. Spiegel

https://www.frbsf.org/economic-research/publications/economic-letter/2006/october/did-

quantitative-easing-by-the-bank-of-japan-work/.
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factors are needed for predicting and explaining yields. Krishnan et al. (2010)

test several models for credit spread predictions and find a model consisting of

factors from the risk-free (RF) yield curve and the credit spread (CS) term structure

to be superior to, among others, models extended with additional macroeconomic

variables. These results may indicate that the information needed for predicting

credit spreads is contained in these factors, similar to the spanning hypothesis of

the yield curve.

In this paper, factor models are further developed for predicting credit spread

changes. Importantly, the distribution of the credit spread changes is predicted

in order to further analyze any heterogeneity in credit spreads and how the regres-

sors influence the upper and lower parts of the distribution. Pires et al. (2015)

illustrate the need of considering more than the mean of the distribution as hetero-

geneity is displayed across the distribution of credit spreads. Furthermore, given the

widely recognized stylized fact in the academic studies that high-grade bonds tend

to behave like treasuries, while lower-grade bonds tend to behave more similarly to

equities (Fama and Bliss, 1987; Avramov et al.,2007), it seems reasonable to expect

the drivers of credit spread changes to differ across the credit quality segments. In-

deed, this paper’s objective is to contribute to the literature by prudently testing

factor models’ predictive ability of credit spreads’ distributions for a wide range of

bond categories (credit qualities and maturities).

The thesis is divided into sections, which could be further divided into subsections.

Firstly, the literature on credit spreads and how it relates to this thesis is presented

(Section 2). Secondly, the data and the statistical methods are presented (Section

3 and 4). Thirdly, the term structure factors are interpreted and the model spec-

ifications are formulated in Section 5. Thereafter, the results are presented and

discussed, with further in-depth analysis of the best-performing models. Lastly, a

concluding section follows.
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2 Literature review

In this section, the findings from the literature review are discussed. The determi-

nants of credit spreads, in general, are discussed, before the literature considering

the specifics of QE effects is presented. The credit spreads of interest here are the

differences in yield between corporate debt and risk-free debt (see section 3.2) with

a similar maturity. Thus, the literature covering sovereign credit spreads is not

covered.

2.1 Classical Determinants of Credit Spreads

In the classical credit spread literature, structural models for predicting and explain-

ing changes in credit spreads have been central. The seminal work of Merton (1974)

established a framework for the pricing of risky debt, and hence, its implied credit

spread. Following option pricing theory, equity is a long call position on a firm’s

assets with a strike equal to the firm’s liabilities at maturity. The debt-holding

position can be constructed with a long position on a firm’s assets combined with

a short call with a strike at the liabilities’ value at maturity, which eliminates the

further upside risk. Following non-arbitrage assumptions, this would deduct the

value of risky debt.

The Merton (1974) model has the risk-free rate, the company’s current capital struc-

ture, and the asset volatility as important input factors in the framework, and laid

the ground for later formulation of structural models. While strong in theory, later

empirical studies have shown the so-called Merton model to have a limited ability to

correctly predict credit spreads, prompting the ’credit puzzle’ phenomena (Jones et

al., 1984; Amato and Remolona, 2003), where investors seemingly are compensated

for more than credit risk, as wide gaps between expected losses and spreads have

been observed. Further adjustments for taxation, illiquidity, and extra risk premia

are shown by Amato and Remolona (2003) to not fully explain the observed credit

spreads either. While the works supporting these findings are numerous, they have

also been refuted (Feldhütter and Schaefer, 2018). Feldhütter and Schaefer (2018)

find the modeled credit spreads to be in line with observed investment-grade bonds,

while observed high-yield spreads are too high, partly due to illiquidity. Among the

influential papers on determinants of credit spreads is Collin-Dufresne et al. (2001),

which investigates the explanatory power of several categories of variables; among

others, the structural model factors originated in Merton’s (1974) work, which they

find to have limited explanatory power (about 25%). Perhaps more interestingly,

using principal component analysis (PCA), Collin-Dufresne et al. (2001) find credit

spread changes to a large extent by driven by a single, unknown factor. This factor

13



is nearly equally weighted across bins of bonds capturing different maturities and

credit qualities. Eom et al. (2004) test a wide range of structural models on credit

spreads on non-financial companies and find most of these to, on average, predict

spreads that are too high, while the classical Merton (1974) predicts too low spreads,

as expected. Furthermore, accuracy is still noted as a key obstacle in the models’

performance.

The classical structural models focused on point estimates of actual changes in

a single-regime period, and have yet to display strong predictive and explanatory

power. Researchers thus extended the structural models to allow for regime changes.

Hackbart et al. (2006) find that observed credit spreads can be generated by a

two-regime model allowing for aggregate macroeconomic shocks (either ’boom’ or

’recession’). Chen (2010) incorporates macroeconomic factors to account for the

changing firm behavior over the business cycles as different macroeconomic environ-

ments lead to different financial decisions, and found risks related to the business

cycle to be an additional explanation of the aforementioned ’credit spread puzzle’.

Chun et al. (2014) tested regime-switching models with economic, monetary and

credit-related regimes. The introduction of these regimes improves the explanatory

power of market and liquidity variables. As such, Chun et al. (2014) also contribute

to (at least partially) closing the credit spread puzzle gap. In sum, the classical

structural models have seen improvements by the elimination of the single-regime

modeling. Still, the classical factors for credit spread modeling, such as default risks,

liquidity risks, and market-wide risks, show varying success in explaining observed

credit spreads.

2.2 Factor Modelling and the Spanning Hypothesis

In this section, a brief introduction to factor modeling in finance is given. I then

present the literature on yield curve modeling. Although these works mainly relate

to the modeling and predictions of interest rates, they are seen as highly relevant,

as I seek to build on this tradition, but now for credit spreads.

Financial factor modeling has been influential since the formalization of single-factor

models for security returns by Sharpe (1964) and Lintner (1965), who, by building

on Markowitz (1952) and Tobin (1958), proposed models for predicting risky as-

sets’ expected excess returns determined by one single factor. While intuitive and

still widely taught in business schools around the globe, the empirical shortcom-

ings are several (Fama and French, 2004). These original models later saw multiple

improved extensions to account for other factors (Carhart 1997; Dittmar, 2002;

Fama and French, 1993). For interest rates, several short-term models, in which
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the (stochastic) short-rate is typically developed through a binomial three, have

been proposed (Hull and White, 1993). In yield curve modeling, Nelson and Siegel

(1987) and Litterman and Scheinkman (1991) are pioneering works. Nelson and

Siegel (1987) specified mathematical expressions where coefficients were able to fit

what they defined as ”monotonic”, ”humped” and ”S shaped” characteristics in

yield curves. Nelson and Siegel (1987) found a model to explain 96% of the varia-

tion in US T-bill yields in 1981-83. Litterman and Scheinkman (1991) found that

three principal components explained more than 95% of US Treasury bond returns.

They further provided interpretations of these factors as ”level” (PC1), ”steepness”

(PC2), and ”curvature” (PC3). These interpretations were supported by inspections

of the factor loadings across bond maturities. Diebold and Li (2006) predict yield

curve changes based on the Nelson-Siegel factors, and they provide similar inter-

pretations of the factors as those attributed to the Litterman-Scheinkman factors.

While the interpretations are similar, it is important to note that the Nelson-Siegel

factors are restricted by the boundary conditions of the mathematical formulation

and that the Litterman-Scheinkman factors are more unrestricted. Diebold and

Li (2006) conclude that the performance of predictions made by the Nelson-Siegel

yield curve factors on future yields substantially outperforms common benchmarks.

Cochrane and Piazezzi (2005) regress future excess bond returns on combinations of

forward interest rates, and find a single factor (a tent-shaped linear combination of

the regressors) to predict excess bond returns. Furthermore, this factor is deemed

unrelated to the level, slope, and curvature of the yield curve. As such, Cochrane

and Piazezzi (2005) find these traditional factors to not fully explain future interest

rates although they account for more than 99% of the yield change variability in the

data set. Hence, the distinction is made between explaining yield curve changes and

predicting them. Interestingly, the fourth factor of the yield curve changes (PC4)

is found important in forecasting expected bond returns, while still negligible when

purely explaining bond returns. Cochrane and Piazezzi (2009) revisit these tests and

find the fifth factor (PC5) to significantly lift the predictive power of the models.

Other researchers have noted that the yield curve factors are insufficient for yield

curve predictions and that additional variables provide relevant information for im-

proving predictions (For macroeconomic, see Ludvigson and Ng, (2009); for inflation

and economic output, see Joslin et al., (2014)). The mentioned works are among

the papers culminating in the debate on what Bauer and Hamilton (2018) name

the spanning hypothesis. The spanning hypothesis holds that all relevant informa-

tion for future yields and returns is spanned by the current yield curve (Bauer and

Hamilton, 2018). Thus, the three most important PCs of the yield curve, the level,

could be sufficient for predicting future yields. If correct, other additional variables

are not needed for future predictions, and would possibly deteriorate predictions

as more noise is added. Bauer and Hamilton (2018) argue that serial correlation

in the prediction error terms non-reliable R2 and standard error values in research
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that claims to reject the spanning hypothesis. Further, Bauer and Hamilton (2018)

note that the violation of econometric exogeneity for small sample-sizes, combined

with persistent regressor time series, leads to the risk of spurious null hypothesis-

rejections. On the findings of Cochrane and Piazzi (2005), that PC4 of the yield

curve is important for predictions, Hamilton and Bauer (2018) conclude that this

is sample-dependent and provides no sufficient evidence for rejecting the spanning

hypothesis. In sum, the evidence for so-called ”unspanned” information (i.e. infor-

mation not contained in the three common yield curve factors) is weaker than often

argued. Following the substantial contribution of Bauer and Hamilton (2018) to the

literature, the question of the spanning hypothesis seems less settled.

The literature concerning factor modelling of the credit spread term structure is cer-

tainly dwarfed by the extensive yield curve modeling covered in the previous para-

graphs. Krishnan et al. (2010) provide a bridge from the yield curve modelling to

credit spread predictions, and are thus highly motivating for this paper. Krishnan et

al. (2010) extract three term factors for credit spreads and the risk-free yield curve,

with a methodology inspired by Nelson and Siegel (1987) and Diebold and Li (2006).

These three factors are shown to closely covary with the conventional definitions of

the level, slope, and curvature, similar to the seminal Litterman-Scheinkmann fac-

tors. As such, Krishnan et al. (2010) do to the credit spread curve what numerous

academics prior to them did to the yield curve. They find that, while CS factors are

strong predictors of future credit spreads by themselves, performance is improved

by adding RF factors. Perhaps more interesting is the finding of Krishnan et al.

(2010) that further model extensions beyond the factors of the credit spread and

risk-free yield curve cannot improve predictions, indicating that explicitly includ-

ing macro variables as independent variables may result in disturbing noise. With

the spanning hypothesis debate as a backdrop, this could indicate that the CS PCs

alone do not span sufficient information for future credit spread curves but need

to be supplemented with RF PCs. As much of the conventional methodology in

the literature, Krishnan et al. (2010) apply linear regression on firm-specific credit

spreads. By that, Krishnan et al. (2010) are narrowed in on the mean point pre-

diction and do not cover the full distribution of credit spreads, which is this paper’s

objective. Nevertheless, such factor modelling of credit spreads represents a different

line of research, given the earlier literature centered on market-wide and firm-specific

variables. In fact, such prediction models represent one of the most parsimonious

models in the field.
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2.3 Distribution of Credit Spread changes

Since the aim of this paper is to predict distributions of future changes in credit

spreads for a variety of both maturities and credit qualities, some further discus-

sions of the literature concerning predictions of distributions is appropriate. As

noted in the previous sections, the literature on (successful) predictions of credit

spread changes is quite limited. Consequently, the literature on distributions of

credit spread changes is even sparser. The tails of the distributions are naturally

of interest in extreme risk modelling. The distributions of credit spreads, and thus

credit risk-linked financial products, are widely known to be leptokurtic, character-

ized by fatter tails in the distribution (Pedrosa and Roll, 1998). This could lead

to underperformance in classical risk models, which often assume standard statis-

tical properties (e.g. i.i.d. and normal distributions) (Pownall and Huisman, 2002;

Kuester et. al, 2006). Of particular pertinence to this paper is the work of Pires

et al. (2015), who developed a quantile regression (QR) model for predicting future

credit default swap (CDS) changes. Pires et al. (2015) regress CDS changes on a

wide-ranging set of variables, many of them discussed in Section 2.1. Specifically

on interest rates, they include the 10-year US treasury yield and the slope of the

yield curve, which would correspond to the two most important factors in the yield

curve if 10-year US treasury is to proxy the yield curve level. Pires et al. (2015)

find these yield curve ’factors’ to display heterogeneity for different quantiles. For

example, these coefficients are only statistically significant for lower quantiles, and

vary in size and sign. Somewhat interestingly, by benchmarking the QR model with

an OLS model, it is found that the mean predictions are quite similar to the upper

quantiles. As such, what may be perceived as an accurate reflection of the ’center’

of the distribution is in fact not accurately represented by the modelling of average

changes. Thus, Pires et al. (2015) illustrate the need for more granular modelling of

credit spread changes’ distribution. Hence, the findings of Pires et al. (2015) should

spur distribution modelling of credit spreads – and this paper.

2.4 The QE effects on credit spreads

In this section, the academic literature regarding the effecs of quantiative easing

(QE) programs on credit spreads is discussed. Firstly, I will briefly introduce the

findings from the first large-scale QE program in modern economies - the BoJ’s QE

program in the period 2001-2006. Secondly, the more wide-ranging QE programs

following the great financial crisis (GCF) and the related literature is discussed.

The first large-scale QE program was initied by Bank of Japan (BoJ) in March 2001,

running over a 5-year period. The Japanese economy experienced low-to-negative
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price growth following the burst of the Japanese asset bubble, which, following 2001

and its dotcom market crash, had already led the BoJ to zero-rate policies. One of

the program’s pilars was that liquidity provisions should stay in place until the core

inflation stabilized above zero percent (Ugai, 2006). Ugai’s (2006) empirical anal-

ysis of BoJ’s QE policies finds that the commitment to keep the program in place

molded investor’s expectations of continued low future interest rates, which again

shifted the yield curve lower, especially for short-to-medium maturities. Kimura and

Small (2006) study potential portfolio re-balancing effects, which are postulated to

happen due to the increasing cash position as the central bank purchases securi-

ties. Kimura and Small (2006) find the BoJ’s QE program to lower the risk premia

for assets with counter-cyclical returns, such as governmental and investment grade

bonds, while assets with pro-cyclical returns, such as high yield bonds and equi-

ties, experienced increased risk premia. Furthermore, they found the program to

decrease the volatilies in equities and high-yield bonds. Thus, Kimura and Small

(2006) represent an early discovery of the different implications for different finan-

cial assets (e.g. bonds of different ratings). Shiratsuka (2010) note the difference

in credit spreads for financial institutions and non-financial companies, where the

former see their credit spreads contract earlier compared to the non-financials’ credit

spreads which also contract but with some time lags.Shiratuksa (2010) further note

some distinctions between the BoJ QE program and those of the Fed: while the

BoJ concentrated on the liability side (specifically, the current account balances),

the latter are deemed more asset-side focused. In this paper, as I am concerned

with US credit spreads over the last decades, the sole data sampled for modelling

purposes is the Fed balance sheet data and minutes of the Federal Open Market

Committe’s (FOMC) meetings. Martin and Milas (2012) argue that the effects of

QE is difficult to evaluate as QE, at its core, is a response to extreme and unex-

pected economic shocks. The QE programs initiated by the Fed since 2008 (See

Appendix, 8.4) have been in effect over long periods, with few and important an-

nouncement dates marking initiations and finalization of these programs. As such,

any potential QE effects need to both be assessed by studying the effects of the policy

announcements and the effects of implementation of these policies (e.g. purchases of

assets). In particular, the initiations of these program covary with financial crises,

and, hence, a wide range of other extreme economic observations. A ’what-would-

have-happened’ analysis of these policies are thus very difficult as Fed policies have

multiple effects through different channels. The announcement-centered studies of

QE focuses on the short-term effects as investors’ expectations are altered over a

short period of time due to Fed’s public guidance and communication. Important

events-studies include Gagnon et al. (2011), Cenesizoglu and Essid (2012), Gilchrist

and Zakrajsek (2013), Javadi et al. (2017) and Nozawa and Qiu (2021). Gagnon et

al. (2011) studies the general effects of announcements of QE programs on finan-

cial market and find that longer-term interest rates were reduced, primarily due to
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lower risk premiums and not due to generally reduced expectations of future inter-

est rates. Cenesizoglu and Essid (2012) utilizes the futures market to decompose

Fed’s funds target rate policies into expected and unexpected policy changes. Due

to the period of Cenesizoglu and Essid’s (2012) interest, unconventional monetary

policy (e.g. QE) is not relevant for study. The methodology is however, as it dealt

with announcement of Fed policies and the issue related to market expectations ex

ante and ex post. Interestingly, the Cenesizoglu and Essid (2012) find lower-rated

bonds to be more sensitive to monetary shocks during recessions. Further, asym-

metrical effects are discovered in how unexpected tightening and easing of monetary

policy influence credit spreads. Hence, formulating models which allows for such

asymmetrical effects seems necessary. Mamaysky (2018) studies the time horizon

of price responses to QE announcements. Government bonds see quick price reac-

tions, while equities’ responses are delayed and spread out over several weeks. The

paper defines a ”maximal post-announcement response horizons” corresponding to

the time horizon in which the observed effect is least likely to have occurred under

the null-hypothesis that prices developed randomly. For US investment grade credit

spreads, this time horizon is found to be three days compared to 10 days and 21

days for stock returns and implied volatility, respectively. Hence, the time window

of QE events may be adjusted depending on the time series of interest. In this

paper, weekly time series are sampled, which should be in line with the findings of

Mamaysky (2018) as impacts on credit spreads are expected to be in effect. The

most recent of the QE programs, QE4 (see Appendix, 8.4), was initiated in March

2020 as part of the monetary policy response to the Covid-19 pandemic and the

associated restrictions on the economy. Nozawa and Qiu (2021) investigate the US

corporate bond market in the first half of 2020. By applying a two-day event win-

dow, they find effects to be different across credit ratings, with investment grade

spreads lowered and high-yield spreads lifted. These differences are attributed to the

markets’ expectations that the Fed would only purchase investment grade bonds.

Further, they note that regulatory constraints on major bond investors may induce

actual market segmentation in between credit ratings. Hence, different reactions to

policy actions may be expected. These findings further motivate the differentiation

made in this paper between different credit spread rating.

2.5 The contributions of this paper

In sum, this paper is motivated by a variety of literature. Of the most motivating

papers are Krishnan et al. (2010), with the factor modelling of credit spreads. The

need for QR models, as opposed to simpler OLS models, is highlighted by the find-

ings of Pires et al. (2015) that there are heterogeneity across the quantiles and that

factors have different significance and effects on different parts of the distribution.
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Furthermore, the Spanning hypotehsis debate makes it tempting to parsimoniously

specify pure term structure factor models. However, while motivated by the works

mentioned above, this paper differentiates itself from the credit spread literature in

numerous ways:i) contrary to Krishnan et al. (2010), the factor extraction from the

term structures is by PCA, both for CS and RF term structures, ii) more models

are tested on a variety of credit qualities and maturities to investigate the prediction

power different bond categories, iii) the models are tested for different time horizons

(i.e. 1 week, 2 weeks and 4 weeks ahead), iv) motivated by the findings of Pires

et al. (2015), a more granular analysis of the whole credit spread change distribu-

tion is performed, v) the spanning hypothesis motivates the model specifications,

as both pure term structure factor models and macro-extended models are tested

for predictions, vi) lastly, attempts are made to improve models by accounting for

unconventional Fed policies, both in terms of actual purchases and policy change

announcements.
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3 Data

In this section, the data considered in this paper is presented. The four categories of

data are i) the credit spread indices, ii) the risk-free rates and iii) the macroeconomic

data, iv) Federal Reserve data . Descriptive statistics are organized in tables for each

category, followed by brief discussions.

3.1 Credit Spread Data

The credit spread indices are the ICE BofA option adjusted credit spread indices,

all sourced from Federal Reserve Economic Data (FRED) in February 2022. The

indices are the well-established and have been quoted daily since the late 90s. While

initially constructed by Bank of America’s fixed income research division, the indices

have been under Intercontinental Exchange’s (ICE) ownership since 2017. The data

frequency is a weekly basis, with the Friday’s close as reference point. In order to

more accurately reflect vanilla bonds’ credit spreads at any point, the bonds in each

with certain embedded options are adjusted by ICE. The data set complies of 998

weeks, starting at the end of 2002 and ending in February of 2022.

As this paper aims to present quite granular results for the prediction models, both

varying along maturity and credit quality, the credit data set consists of the in-

vestment grade indices for intervals of constant maturities, as well as the basket

indices for different ratings. To limit the scope of the paper, only the investment

grade bonds data comprises different maturities. The shape of the term structure

in the investment grade credit spread should substantially overlap with any pure

AAA and BBB, as they are components in the investment grade class. From a more

practical view, they will often be covered by similar risk weights in bank’s regulatory

framework and often be covered by the same investment mandates. The high-yield

and even lower rated bonds, CCC&Lower, are thought to have somewhat different

credit spread determinants as found in the literature review. The pure credit rating

indices are consists of AAA, investment grade, BBB, high-yield and CCC&Lower

rated bonds. These credit ratings indices are constructed by ICE to reflect the

markets pricing of all dollar-denominated bonds with the relevant rating, subject to

option adjustments. As such, the changes in credit spreads index is interpreted as

the change in the market’s total basket of bonds with a specific rating.

The use of indices comes with certain pros and cons, some of which I find appropriate

to elaborate on further. One advantage concerns the issue of time-varying data for

firm-specific bonds. Since the time until maturity for each bond varies in the period,

credit spreads are not directly comparably just as yields on different maturities are
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not directly comparable. As both the credit spread curve (Bedendo et al., 2007;

Helwege and Turner, 1997; Merton, 1973) and risk-free yield (Campbell and Shiller,

1991; Fama and Bliss, 1987) curve are tend to display slopes (either negative or

positive) due to term premiums. By collecting the credit spread indices, which are

constructed to be comparable over time, this issue is avoided. Indices in general

have inherent survivor effects, as its components often are removed before complete

deterioration. In this specific example, this could suggest that bonds are removed

from indices as a default events nears. Bhanot (2005) investigates the mean reverting

tendency in bond indices and find survival effects and ratings based classifications

to contribute substantially to mean reversion. The implications of these findings

are manifold, with one of them being that this paper’s findings may not be naively

extrapolated to a single bond’s credit spread.

Figure 3.1: Surface plot of the credit spread data set

In the classical Merton (1974) framework, the expected credit term structure de-

pends on the credit quality of the debt. For high-quality debt, an upward slope

is expected. For low-quality debt, however, a downward slope is expected. The

conclusions are perhaps less intuitive for the low-quality debt. The reason, how-

ever, is that low quality debt is the debt of companies near their default-boundary.

As time goes, without the company defaulting on its liabilities, the probability of

defaults conditioned upon survival increases, as the company increases its chances

of a improved financial position. In Figure 3.1, a surface plot of the investment

grade spreads for different maturities is shown. As expected, the term structure is

mostly upward-sloping in the maturity dimension. During the most volatile markets

of the GFC, however, the term structure is inverted to higher spreads for shorter-

term bonds rather than longer-term. Following the reasoning of Merton (1974),

this should imply a market expectation of an even larger share of investment grade

companies to be near their default boundaries.
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Table 3.1: Credit spread statistics for ICE BofA Investment Grade indices (%)

1-3Y 3-5Y 5-7Y 7-10Y 10-15Y 15+Y

Average 1.22 1.39 1.63 1.70 1.84 1.88

Median 0.79 1.03 1.29 1.49 1.75 1.74

1st Quartile 0.59 0.8 1.01 1.12 1.27 1.43

3rd Quartile 1.25 1.55 1.84 1.89 2.1 2.08

Min 0.38 0.59 0.74 0.77 0.87 1.15

Max 8.13 6.98 6.74 6.22 5.80 5.23

Std.Dev 1.29 1.04 1.02 0.89 0.80 0.66

In Table 3.1, descriptive statistics of the investment grade indices are presented.

As expected, the average spreads are rising in maturities. The larger standard

deviation in the shorter-maturity spreads can partly be attributed to the rapid

inversions during the GFC and the onset of the Covid-19 pandemic in the US.

Another characteristic is that all medians are below the corresponding average,

which indicates a positive skewness. Not that surprising considering the practical

lower-bound of spreads to zero (at least adjusted for liquidity and transaction costs,

see Bhanot and Guo (2011)), while no such upper-bound exists.

Figure 3.2: Surface plot of the Investment grade credit spread data set

In Table 3.2, the credit spread data for the different ratings are summarized. The

investment grade spreads are strikingly close to a 40%-60% weighted sum of the

AAA and BBB. High-yield and CCC&Lower are by many means a totally different

investment regime, with high-yield almost yielding an US equity risk premium above

Treasuries, while CCC&Lower almost yields it twofold.
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Table 3.2: Credit spread statistics for different credit ratings (%)

AAA IG BBB High-yield CCC&Lower

Average 0.82 1.59 2.03 5.32 10.28

Median 0.65 1.33 1.76 4.54 8.94

1st Quartile 0.59 1.01 1.34 3.68 7.57

3rd Quartile 0.78 1.71 2.26 6.14 11.45

Min 0.44 0.79 1.07 2.41 4.16

Max 6.03 6.56 8.01 21.30 41.20

Std.Dev 0.59 0.94 1.12 2.71 4.81

3.2 Risk-Free Interest Data

The risk-free interest data consists of US Treasuries with a maturity in the range

of 3 months to 30 years, as sourced from the FRED database. Figure 3.3 displays

a surface plot of the interest rates, which serve as proxies for the hypothetical risk-

free rates. The notion that governmental debt is without risk of default has been

proving wrong on multiple occasions during the relevant period for this paper, with

the Greek debt restructuring and effective short-term default on IMF debt being

an example (Reinhart and Trebesch, 2015). Fisher (2013) lists several distinct risk-

factors inherent in sovereign debt (e.g. inflation, shape risk and possibly currency

risk). Since a liability in domestic currency on the government, the government could

pay of its debts by ’printing money’, thus putting the borrower at risk of receiving

substantially less in coupons and principal due to inflationary effects. The practical

implications of such behavior would, however, be significantly reduced trust in the

central bank, which could result in higher risk-premiums (Stella, 2005).
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Figure 3.3: Surface plot of US Treasuries in sampled data set

The US sovereign debt has historically been the safe haven for investors during mar-

ket volatility with a significant convenience yield for the investors (Hager, 2017; Kr-

ishnamurthy and Vissing-Jorgensen (2012)). Krishnamurthy and Vissing-Jorgensen

(2012) found that two attributes high-liquidity and low-risk, in US Treasuries signif-

icantly lowered their yields - more than 70 basis points in the 82-year period studied.

This translates to a negative relationship between the supply of US Treasuries and

the equilibrium pricing of these two attributes. As the supply of US Treasuries

increases, measured by the Debt/GDP ratio, the premium pricing of safety and

liquidity decreases. Nevertheless, the findings bring substantial support to the com-

mon notion that investors recognize large values in US Treasuries and their minor

default risk, thus providing a good proxy for risk-free interest rates.

Table 3.3: US Treasury yield statistics (Dec 2002- Feb 2022) (%)

3M 6M 1Y 2Y 3Y 5Y 7Y 10Y 30Y

Average 1.18 1.29 1.38 1.59 1.80 2.23 2.58 2.91 3.59

Median 0.30 0.46 0.65 1.03 1.43 1.90 2.30 2.74 3.40

1st quartile 0.07 0.12 0.18 0.45 0.79 1.35 1.67 1.99 2.82

3rd quartile 1.86 2.01 2.13 2.46 2.6 3.05 3.49 3.96 4.58

Min 0.00 0.02 0.04 0.09 0.11 0.21 0.39 0.55 1.17

Max 5.18 5.28 5.27 5.27 5.23 5.21 5.21 5.23 5.59

Std.Dev 1.51 1.54 1.51 1.42 1.35 1.24 1.17 1.14 1.09

Table 3.3 summarizes the US Treasury data in the sample. The averages are in-

creasing in maturity, as one would expect form a normal (i.e. non-inverted) yield

25



curve. All medians are below the the averages.

3.3 Macroeconomic data

The macroeconomic data in this paper is summarized in the table below. All but the

TED spread are collected from Eikon datastream as of March 2022. The TED spread

is, like the risk-free yield curve and credit spread data, sourced from the FRED

database. The returns are simple returns. To address the issue of mulitcollineraity

in the model, a correlation matrix can also be found in the Appendix. None of

the macroeconomic data series are highly correlated, with the correlation between

VIX Diff and S&P500 R spread being the highest in absolute terms (-0.54). As such,

the risk of multicollinearity in macroeconomic data seems negligible. Furthermore,

as the aims of this thesis are related to predictive power of the model, rather than

explanatory powers, the issue itself is less of a problem.

Table 3.4: Macroeconomic data: Simple returns for WTI, Gold and S&P500 index.

Non-differenced time series for the VIX index and the TED spread

WTIreturn Goldreturn S&P500return VIX TED spread

Average 0.26% 0.20% 0.19% 18.94 0.41%

Median 0.48% 0.35% 0.28% 16.45 0.29%

1st quartile -2.52% -1.10% -0.83 % 13.21 0.21%

3rd quartile 3.15% 1.64% 1.41% 21.59 0.43%

Min -29.31% -8.64% -18.20% 9.14 0.06%

Max 31.75% 14.11% 12.10% 79.13 4.58%

Std.Dev 5.34% 2.36% 2.38% 8.86 0.42%

3.4 Federal Reserve data

The quantitative easing data collected consists of the Fed’s total balance sheet, as

reported weekly, from the FRED database. The balance sheet has grown substan-

tially, from sub 1 billion USD prior to the first round of quantitative easing (QE1),

to almost 9 billion in February 2022. In total, there have been four rounds of large-

scale asset purchases by the Fed, often referred to as QE1-QE4. Throughout the
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period, there have been several policy changes, as decided by the Federal Open Mar-

ket Committee (FOMC). To account for these changes, the announcement dates for

what I deem the most important announcements are collected and visually repre-

sented in Figure 3.4. Announcements of monetary policy changes are important as

they potentially alter bond investors’ expectations of the future. As presented in the

literature review, event studies centered on policy announcement dates are crucial

for taking into account the effects of the policies. At the same time, the actual

purchases of assets from the Fed’s Trading Desk will ceteris paribus increase bank’s

liquidity, which further encourages increased lending, leading to monetary growth.

As such, I see it as essential to have variables for both changing expectations due to

policy changes and the actual asset purchases. Some studies simply use the Fed’s

balance sheet as a proxy for the QE effects; typically by calculating relative changes

in the balance sheet over time. While ensuring stationarity, such an exercise would

potentially equate a 5% increase in the balance sheet in Dec 2004 with a 5% in-

crease in the balance sheet in Dec 2021, which would represent a ten-fold increase in

purchases. I argue that the amount purchased on a weekly basis is indeed relative

- but relative to what? It could be argued that the size of the purchases should be

viewed relative to total outstanding the asset in focus (e.g. US Treasuries, MBSs

and investment grade bonds). The aforementioned effects on bank’s lending behav-

ior a specific example of more broad portfolio re-balancing effects. If we consider

the outstanding debt in the market as the full set of feasible credit investments, the

necessary size of an asset purchase program to have equal effects on spreads and

yields, should be linked to the total debt market in some way, as the additional

provided liquidity is spanned across a wider set of financial assets in a larger credit

market. In our considered time period, both the Fed’s balance sheet and the US

bond market grew considerably. Looking at the Fed’s balance sheet development in

Figure 3.4, the growth stems - by and large - from a few periods of of aggressive

purchases over time periods. In order to capture the information contained in these

purchases, I introduce a variable, D Fed Balance UP, that takes the value of the

relative weekly change in the Fed’s balance sheet, given that it is larger than the

0.975 quantile of relative weekly balance sheet expansions in an expanding window,

starting in December 2002 and expanding from mid-2008. The window is expanding

to ensure no information spillover from the future to our prediction model. The

weeks that have a non-zero value for D Fed Balance UP are highlighted in yellow in

Figure 3.4. D Fed Balance UP is mathematically defined as follows:

D Fed Balance UPt =

Balance rt if Balance rt > Q0.975
[0,t]

0 otherwise
(3.1)

where Balance rt is the relative change in the Fed’s balance sheet in time t, and

Q0.975
t,0 is the 0.975-quantile in the window from the first week (week 0) to week t.
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Figure 3.4: Federal Reserve Balance sheet and events. See Appendix, Subsection

8.4 for detailed description of the selected events

In addition to the D Fed Balance UP variable that accounts for significant liquid-

ity effects, selected FOMC meetings are categorized to capture potential effects on

spreads from changing market pricing of risk due to Fed policy changes. An included

event is either categorized as D FED Ann Dec, which represents a FOMC meeting

indicating a slow-down of purchases or tapering, or D FED Ann Inc, which rep-

resents announced acceleration of QE or increased commitment to credit markets

(e.g. a stated ’whatever-it-takes’ approach). The selection of which FOMC an-

nouncements to include are naturally subject to the author’s personal opinion and

possibly biases or other shortcomings. The expected impact from Fed announce-

ments is also a question of what the ex ante market expectations were, and the

potential gap between Fed’s announcement policies and the expected policies. In

the Appendix, Subsection 8.4, a more thorough overview of the events and, for

events we find it necessary, an associated comment on the why the event is attached

to either D FED Ann Dec and D FED Ann Inc.
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4 Statistical Methods for Distribution Prediction

4.1 Quantile Regression

The desire to estimate quantiles of a data sample dates at least back to the 18th

century (e.g. Boscovich and later Laplace), then centered on the median regression

(Koenker, 2017). Quantile regression in modern academia was pioneered by Koenker

and Bassett (1978). Contrary to ordinary least square (OLS) regression, the quantile

regression developed by Koenker and Bassett (1978) does not specifically assume

errors to be normally distributed. This provides more flexibility with respect to

the data set. The quantile regression model has proved to significantly out-perform

least square estimates for non-Gaussian error distributions. Further, conditional

mean regression analysis is much more prone to destabilization due to data outliers,

as it equally weighs the error squares. Quantile regression, however, weights the

absolute errors differently depending on whether an observation is above or below

the specified quantile (see Equation 4.2).

The mathematical formulae for quantile regression, as proposed by Koenker and

Bassett (1978), are as follows:

Yq = β0, q +
n∑

i=1

βi, qXi, q + ϵq (4.1)

The regression coefficients are estimated as the solution to the minimization problem:

min
β ∈R

[ ∑
t∈t: yt≥xtb

θ |yt − xtb| +
∑

t∈t: yt<xtb

(1− θ) |yt − xtb|

]
(4.2)

The weight, θ, takes the value equal to the quantile level to be estimated, e.g. 0.05,

0.95. xt is a vector containing the independent variables and b is the vector with

the quantiles’ regression coefficients. Consequently, θ = 0.5 represents a special

case that yields the solution to the least absolute error problem, i.e. the median

regression.

Quantile regression proves to be superior to OLS in presence of heterogeneous re-

lationships between explanatory variables and response variables. Such differences

in relationships are at risk of being neglected by an OLS apporach. Furthermore,

extrapolating results from OLS to the full distribution may lead to severely incor-

rect conclusions, as the significance and contributions in the different variables may

change considerably, dependent upon the quantiles in consideration.
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While the mean predictions provided by OLS may be interesting in a variety of dis-

ciplines (including finance), the mean serves as a poor metric for assessing financial

risks companies or investors are exposed to. For the investor being long a portfolio,

the lower quantiles (e.g. 1% or 10%) may be of interest, for example, due to leverage

control or liabilities coming due. Another example is a bond-funded bank, which

may want to control refinancing risk and study the drivers of higher quantiles in

credit spread changes’ distribution.

4.2 Backtesting of Quantiles

Accuracy tests for quantile regression models deviate from the prediction models

utilizing OLS. On a fundamental level, the quantile regression does not seek to

establish point estimates of observed values but rather point estimates of where θ%

of the observed values will be lower. For a simple OLS prediction of ŷt = 2.00

and the corresponding observed value of yt = 1.90, there are a number of clearly

defined errors measures such as Mean Absolute Deviation, (0.10) or Mean Absolute

Percentage Error (5.3%). For the quantiles regression, however, these measures are

not applicable, as the actual quantiles at each point in time are unknown. Building

on the OLS example, let yt = 1.90 once again. The quantile regression model

yields a prediciton of ŷt,q=0.05 = −1.05. The accuracy of such estimates is difficult to

empirically test based solely on a few observations. This is why sufficient backtesting

of the model is a necessity.

Since the 1990s, the applications of Value-at-Risk-like calculations became more

widespread, although sometimes under different names (e.g. ’Dollars-at-Risk’, ’Capital-

at-Risk’, ’Value-at-Risk) (Holton, 2002). Among the early advanced proprietary

VaR calculations was JP Morgan’s ’RiskMetrics’, which was developed at the wish

of Chairman Sir Dennis Weatherford’s desire to have a simple and sufficient risk

calculation to cover the spectrum of risks the bank faced in the coming 24 hours

(Adamko et al., 2015). In financial institutions’ regulatory framework, the back-

testing of quantile predictions and VaR calculations have become closely linked in

the academic literature (Gaglianone et al. 2011; Holton, 2002; Kuester et al., 2006).

More specifically, the 1996-amendments to the Basel I accords stated that banks

were, at a minimum, required to calculate daily Value-at-Risk, with a correspond-

ing backtesting by both external and internal supervisory 3. In this paper, the

backtesting procedure combines two of the earlier tests for VaR backtesting: i) the

Kupiec (1995) unconditional coverage test and, ii) the Christoffersen (1998) condi-

tional coverage test. In addition to being widely used, both tests are intuitive and

3See Bank for International Settlements’ Amendment to the capital accord to incorporate market

risks, https://www.bis.org/publ/bcbs24.htm
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quite simplistic in their application, which are the main rationales for selecting them

in this paper.

The unconditional coverage test proposed by Kupiec (1995) is of the earliest back-

testing procedures for testing the accuracy of loss distribution predictions. The

Kupiec (1995) test applies a proportion of failure (PoF) methodology, where the

predicted share of exceedances is compared to the expected share of exceedances.

An exceedance is defined an event in which the predicted value, ŷt,q, exceedes the

observed value, yt. After running the model, all events of exceedances are counted

and divided by the number of events. For example, considering the 1% quantile

one-week-ahead predictions for a period of 1,000 weeks, the expected number of ob-

served exceedances is 10. As such, we expect the model to only predict credit spread

changes above the observed change in 10 of the 1,000 weeks. The null hypothesis

is that the share of exceedances predicted by the model is equal to the quantile of

interest. Mathematically, such a exceedance function can be formulated:

It,q =

1 if ŷt,q > yt

0 Otherwise
(4.3)

where ŷt,q is the predicted quantile for the observation at time t, and yt is the

observed value at time t. Given such a function, the observed share of exceedances

for a quantile, p̂q becomes:

p̂q =
1

T

T∑
t=1

It,q (4.4)

where the predictions are made on the time interval [1, T].

The Kupiec (1995) test relates to the the unconditional prediction power of a quan-

tile prediction model, which test whether the observed share of exceedances,p̂q, de-

viates from the quantile. However, such a property would not alone be sufficent

to ensure the desired prediction properties. As Christoffersen (1998) points out,

such models’ predictions must also be independent of each other. For illustration

of the independence property’s importance, consider the following example: If the

model’s exceedance events are fully clustered in a subsequent order of four, there

may be indications that the predictions are not independent. If three exceedances

have occured in the recent three intervals, and given the fully clustered exceedances

modelled, there is no true probability distribution to estimate, as the next event

is known to be an exceedance as well. Such model behavior would distort the no-

tion of quantile predictions for the next interval since it would lead to wrongfully

assigning probability estimates to a deterministic event. This illustrates the need

to test the independence of the predictions. Christoffersen (1998) proposed a test
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for such conditional properties. The Christoffersen (1998) conditional coverage test

is formulated with the null hypothesis that the model’s prediction exceedances are

randomly distributed, indicating no systematic clustering.

4.3 Principal Component Analysis

Another important statistical method in the modelling is Principal Component Anal-

ysis (PCA). PCA is a widely applied dimensionality reduction method, with appli-

cations in a diversity of disciplines. The aim is the extract important features for

a set of covarying data sets and find the factors explaining a sufficient share of

their variance. With more-than-ever amounts of data available to researchers, the

need of dimensionality reduction techniques may rise, in order to combat the ‘curse

of dimensionality’, and, potentially, reduced explainability and accuracy in mod-

els (Verleysen and François, 2005). Especially for time series, such as yield and

spread changes, whose changes are highly correlated, PCA substantially reduces

the number of calculations needed to explain close to all variability in the data set

(See Section 5.1). High correlations among series could be due to shared impacts,

or ’common factors’, that each contribute to changes in the multivariate system.

Mathematically, the eigenvectors of the covariance (or correlation) matrix form a

new orthogonal basis. In the academic literature concerning factor modelling of

bonds, the aforementioned Litterman and Scheinkman (1991) is seminal, with the

famous interpretation of the three most important factors as level, slope, and cur-

vature, following inspection of the principal components’ loadings across the yield

curve.
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5 Empirical Methodology

In this section, a brief introduction to the extraction of the term structure factors,

both for the risk-free (RF) term structure and the credit spread (CS) term structure,

is given. Firstly, details on the extraction of term structure factors are presented, and

the eigenvectors of the correlation matrix are interpreted and visualized. Secondly,

the model specifications to be tested is formulated and discussed.

5.1 Extracting Term Structure Factors

With the objective of capturing information contained in the CS term structure and

RF term structure, the aforementioned method of PCA is applied. The method is

applied across the investment grade credit spread term structure (Table 3.1, Figure

3.1) and the risk-free yield curve (Table 3.3, Figure 3.2). The transformation to a

lower dimension is as follows:

X1, ..., Xn =⇒ Y1, ..., Ym (5.1)

Where Xi, i ∈ (1, n) is ith maturity credit spread and risk-free yield time series. n

is the number of different maturities considered in total, and m (¡n) the number

of PCs to be extracted. The correlation matrices for the two PCAs consists of the

simple relative changes for both the risk-free (RF) term structure and the credit

spread (CS) term structure. This is common practice in yield curve modelling to

ensure stationarity (ADF stationary tests of regressors in the appendix). In order to

decide on the number of principal component to extract, I study each component’s

proportion of variance explained, which is calculated as follows:

Variance explained by PCi =
λi∑m
i=1 λi

(5.2)

Where λi is the eigenvalue of the eigenvector that calculates the ith PC.
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Figure 5.1: PCs of the risk-free yield: Variance explained by the PCs

In Figure 5.1 and 5.3, the distributions of variance explained by the PCs of the

data sets are displayed. For table form, reference is made to the appendix. The

changes in the credit spread term have a dominant PC1 that explains more than

90% of the variance. Cumulatively, PC1, PC2, and PC3 explain more than 97%

of the variance, which is in the higher range of variance explained by three PCs

in the academic literature concerning interest rates. On the back of this, the three

first PCs of the CS term structure may encompass predictive power on CS changes

alone. For the RF interest rates, however, PC1 only explain 60.2% of the variance.

This is substantially lower than for other periods researched (Barber and Cooper,

1996; Litterman and Scheinkman, 1991). Driessen et al. (2003) investigate an

international factor-model using both currency- hedged and unhedged returns for

Japanese and German, and US bond returns. With the interpretation of the PC1

in the multi-country model as a worldwide level, PC1 is found to explain 60-20%

of the variance in international bond returns. For comparison, single-country factor

models were constructed as well, with the PC1 explaining 96-89%. As such, the

PC1 in this paper’s US Treasury data interestingly explains as much variance as the

worldwide interest rate level did in the period of 1990-1999, but nowhere near the

findings in the classical factor modelling of yield curve changes. One stark trend in

interest rates over the periods discussed here is the downward trend in US Treasusy

yield levels, proxied by the 10-year Treasury yield, which peaked at above 15% in

September 1981, more than 2 years after Paul Volcker took helm at the Fed. The

generally lower interest levels in the period may have reduced the importance of the

PC1 compared to that of other PCs.
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Figure 5.2: PC loadings for RF PCs

In Figure 5.2, the principal components are plotted across the maturities. The

principal components, or the eigenvectors, of the yield changes’ correlation matrix,

which represent the impacts the factors have at different maturities. The eigenvec-

tors scaled by the corresponding eigenvalues are equal to the so-called ’loadings’.

As such, since the eigenvalues differ substantially for different the different PCs,

the pure eigenvectors are helpful for visual inspections of the impacts. The RF

PC1 display somewhat constant impact across all maturities but for the shortest

rates (3m and 6m). This supports the interpretation of PC1 as a level factor with

similar impacts across the yield curve. The risks related to RF PC1 is thus ap-

proximately parallel shifts in the yield curve. Such risks can be quantified by the

classical Macaulay (1938) duration metric. Further, PC2 has increasing impact for

increasing maturity, with close-to-neutral impact at mid-maturities. These findings

are in alignment with the classical interpretation of RF PC2 as the slope of the

curve (longer term yields less shorter term yields). RF PC3 display highest impact

for the 3m, 30y and 2y interest rates. That is, the shortest term yields, the longest

term yields, and at some point in-between. Noteworthy is the changing sign for the

mid-term yields. This is supportive of the curvature interpretation of PC3, as it has

a similar impact in the yield curve ’tails’ but opposite in the center. Due to the

numerous examples of PCA applications of PCs explaining 95+% of yield changes,

the fourth PC, PC4, is also included. PC4 has high impacts for the shorter-term

yields, while a muted, but downward trend for 2y-plus maturities. On the 3m-1y

interval, PC4 resembles a form of curvature relationship between these short-term

yields but in the opposite direction of what PC3 displays on the whole curve. Thus,

PC4 may represent some relative changes in the short-term Treasury market that

contributes to overall variance in the yield curve changes.
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Figure 5.3: PC loadings for Credit spread PCs

In Figure 5.3, the variances explained by each CS PC are presented. In general, fewer

decomposition and interpretations of the PCs in the credit spread term structure

have been done in the literature.The first PC clearly dominates with an explained

variance above 90%. Cumulatively, PC1 and PC2 explain close to 95% of the credit

spread changes in the data set. Important to note is that the dimension in which

the PCA is applied to is maturity, and not credit ratings which Chun et al. (2014)

did. As I i) am building on the findings of Krishnan et al. (2010) by using factors

of the credit term structure, ii) want to analyze and compare the CS PCs and the

RF PCs in meaningful ways, I find the PCA of CS term structure more suited than

PCA in the credit rating dimension (See Chun et al. (2014) for such PCA).

Figure 5.4: PC loadings for Credit spread PCs

36



In Figure 5.4, the normalized loading vector for the different credit spread maturities

can be seen. PC1 has a steady impact for all maturities, even more than the RF

PC1. Hence, CS PC1 is interpreted. PC2 trends upwards in maturity, arguably

like a slope component of the term structure. Contrary to the US Treasury data,

the credit spread data set does not contain any of the short-term maturities (¡1y).

For PC3 a curvature-like impact change can be seen from 1y-15y. For the longest-

maturity credit spreads however, there is a high-impact change from the 10-15y

loading, which differs from the usual curvature impacts.

5.2 Prediction Model Validation

In this section, the rationales for the thesis’ modelling and validation are presented.

In order to understand the rationales, it seems fruitful return to the objective of this

paper. The most fundamental objective is to test whether the information contained

in the CS PCs have prediction power on a wide distribution of credit spread changes.

Further, the findings of Krishnan et al. (2010), that the RF factors contains ad-

ditional information that substantially improves point prediction abilities, are to

be investigated for the whole distribution. Thirdly, by building on these preceding

and more parsimonious models, the models are expanded in a hierarchical fashion

to include other relevant macroeconomic variables, all common for prediction and

explanatory models in the literature. More specifically, the defined variables related

to the Fed are added to the parsimonious pure PC models in order to investigate

their prediction powers. Although the aims of the paper is related to prediction

ability of the models, the explanatory power of the variables in successful models is

considered interesting too. As such, these are investigated for the most successful

models.

Since I have manifold modelling desires, I find it useful to expand the models in a

hierarchical fashion. As the models are for future predictions and for practitioners

to apply (or build on), I emphasize the importance of out-of-sample testing of all

models. There is broad agreement in the empirical finance literature that strong

in-sample performance does not guarantee satisfactory out-of-sample performance.

The in-sample predictions are thus secondary. This also has implications for whether

variables should omitted due to high correlation, or a non-linear relationship, with

other independent variables, to avoid multicollineary-like issues, which can improve

explainability without necessarily improving predictive power (Alin, 2010; Mason

and Perreaul (1991)). Still, as Inoue and Killian (2005) note, the out-of-sample

tests may results in lower test powers, leading to higher changes of falsely accepting

prediction models (Type I error, with rejection of null hypothesis). Furthermore, the

risk of data mining, which could lead to us conclude positively on prediction models
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which really are built on spurious relationships. As several model specifications are

tested, the risk of data mining is indeed prevalent. Hence, I find it appropriate

to both report in-sample and out-of-sample results. The prediction models are not

only measured against each other but also benchmarked against the highly common

quantile prediction method Historical Simulation (HS), based on a rolling window

of equal size as the other prediction models.

In total, there are six model specifications to formulate. These are all tested for

1-week, 2-weeks, and 4-weeks ahead predictions for different credit qualities (AAA,

investment grade, BBB and CCC&Lower) and different maturities (1-15Y, and only

for investment grade rating). For each model, a name is assigned, which will be

consequently be referred to in bold in the rest of the thesis. The first model only

regresses on the two CS PC scores that explain the most of the variation. The model

is named 2xCS model, since it encompasses only two CS PCs:

∆Spreadq (t+ h) = β0, q + β1, q, CS PC1 (t) + β2, q CS PC2 (t),+ϵ t+h (5.3)

with h = [1, 2, 4] week(s), and CS PCi(t) is the CS PC score of the ith most

dominant principal component with respect to variance explained. The CS PC

scores are the values along the new coordinate system, in which the PCs form the

basis, at each point in time. That is to say, if we fully assume CS PC1 to rep-

resent the credit spread level (See Section 5.1), the CS PC1 score is the change

in the yield curve along the spread level axis. As earlier noted, these two PCs,

CS PC1 and CS PC2, explain approximately 95% of the variance in the yield

curve (See Table 8.2 in the appendix). The rationale to start with such a parsi-

monious specification are the desires to model with simplicity and to potentially

find highly applicable models. Furthermore, ∆Spreadq is the conditional quan-

tile of the credit spread change (bps) from time t to time t + h for the relevant

credit spread index (i.e AAA, Investment grade, BBB, CCC&Lower, and Invest-

ment grade with constant maturity in 1-15Y). The quantiles of interest are q =

[0.01, 0.05, 0.10, 0.20, 0.30, 0.40, 0.50, 0.60, 0.70, 0.80, 0.90, 0.95, 0.99], which should al-

low for more granularity in the tails of the distribution as all 0.01, 0.05, 0.95, 0.99 are

included. These are arguably the most interesting from an extreme risk viewpoint

and portfolio stress testing. The second model is a simple extension of the 2xCS

model to the 3xCS model, which, as implied by its name, also has the third most

dominating CS PC as a regressor as a explanatory variable. The CS PCs are still

the only regressors in the model.

∆Spreadq (t+ h) = β0, q +
3∑

i=1

βi, q CS PCi(t) + ϵ t+h (5.4)
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with the similar notations as in Equation 5.3. The rationale for the specification

in Equation 5.4 is to test whether we could leave out the CS PC3 which explaines

nearly 3% of the variation in the credit spread variation at minor costs. The next

model is the first model which includes the RF PCs as well. Inspired by the mod-

elling in Krishnan et al. (2010), the pure CS PC models, 2xCS model and 3xCS

model, are expanded with RF PCs too, as we seek to account for any additional

predictive power contained in the RF yield-curve. Two RF extended models are

made specified: i) The 2xCS+3xRF model, which builds on the 2xCS model,

and ii) the 3xCS+4xRF model, which builds on the 3xCS model.

∆Spreadq (t+ h) = β0, q +
2∑

i=1

βi, q CS PCi(t) +
3∑

i=1

βi, q RF PCi(t) + ϵ t+h (5.5)

∆Spreadq (t+ h) = β0, q +
3∑

i=1

βi, q CS PCi(t) +
4∑

i=1

βi, q RF PCi(t) + ϵ t+h (5.6)

The latter model, formulated in Equation 5.6, is the model specification with the

most principal component variables in the paper and has variables that capture

more than 97% and 93% of the variance in the CS and RF term structure explained,

respectively.

The next model specifications is the first move away from formulations purely based

on PCs (either CS or RF). Following the quite extensive research seeking to explain

and predict credit spread changes with market or macroeconomic variables, a macro-

extended model is specified, the 2xCS + Macro model:

∆Spreadq (t+ h) = β0, q +
2∑

i=1

βi, q CS PCi(t) + β3, q WTIReturn (t) + β4, q GOLDReturn (t)+

β5, q S&P500Return (t) + β6, q ∆V IX (t) + β7, q ∆TEDRATE (t) + ϵ t+h

(5.7)

Lastly, the aims of taking Federal Reserve actions into account are addressed with the

specification of the 2xCS + FED model, which represent a quite neat formulation,

given the inclusion of three Fed related variables:

∆Spreadq (t+ h) = β0, q +
2∑

i=1

βi, q CS PCi(t) + +β3, q D FED Balance UP (t)

+β4, q D FED Ann Inc (t) + β5, q D FED Ann Dec (t) + ϵ t+h

(5.8)
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, where, as defined in Section 3.4, D FED Balance UP is a variable, starting in second

quarter of 2008, and taking the value of the week-over-week expansion if the balance sheet

expansion is higher than a expanding window of 2.5% percentiles for historical increases.

As large parts of the weekly changes are considered noise and that today’s USD 9 tn

is primarily due to short periods of highly aggressive QE purchases, only a few of the

weekly increases are considered important, hence the percentile threshold. The other two

variables, D FED Ann Inc and is a dummy variables taking the value 1 in weeks where

FOMC announces acceleration or increases, hence ”Inc”, in purchases, or 0 else. The

D FED Ann Inc, however, takes the value 1 in weeks where FMOC announces slowdown

or decreases, hence ”Dec”, in purchases.

In sum, a wide range of model specifications are presented, all to be tested rigorously for

1-week, 2-week, and 4-week ahead predictions for a variety of credit spreads (both ratings

and maturities), as I seek highlighting potential heterogeneity across different credit spread

categories.
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6 Results and Discussion

6.1 Out-Of-Sample Results

In this subsection, the out-of-sample prediction results are presented. In total, I

have tested six model specifications for quantile predictions for one week, two weeks

and four weeks ahead. The credit spread changes are for five different maturities,

and for four different credit maturities (all investment grade). With 13 quantiles,

the total number of quantile prediction results is therefore more than 700. The

MAD (mean average deviation) is calculated for each quantile and the averages are

summarized in the following subsections. Nevertheless, MAD, which is commonly

used when predicting mean point estimates, is less suited for ranking predictions

of distributions. For illustration, consider a model which is specified to predict

the 0.5 quantile. After testing the model, the exceedance frequency is 51%, which

corresponds to a MAD of 0.01. Now, consider the hypothetical model’s prediction

ability for the 0.01, and a corresponding exceedance frequency of 0%. That is, the

model never overshoots the quantile. This would too yield a MAD of 0.01. Only

considering the deviation from the respective quantile, we would conclude that the

model specification is equally (un)successful at predicting the 0.5 quantile and the

0.01, which may prove to be a poor conclusion. A model specification setting the 0.01

quantile prediction to a artificially negative number would of course results in MAD

of 0.01 as well. At the same time, this would be an awful model specification without

any theoretically anchored formulation. Hence, the results are differentiated as to

whether results are in the center or tails of the distribution. I define the tails of the

distribution as q = [0.01, 0.05, 0.10, 0.90, 0.95, 0.99] quantiles. The center quantiles

are defined as q = [0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8]. For benchmarking purposes, a

historical simulation is performed based on a rolling window consisting of 350 weeks

for each quantile. From a regulatory perspective, the prediction of quantiles are

highly relevant for Value-at-Risk calculations, in which historical simulation is often

applied by financial institutions. For reference, Pérignon and Smith (2010) studied

financial institutions disclosure of VaR caclulations and found historical simulation

to be the most popular method.

After presenting the average absolute deviations of the different model specifica-

tions, the best performing models are then backtested with the Kupiec (1995) and

Christoffersen (1998) tests, to test prediction ability and potential clustering of pre-

diction errors, respectively.
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6.1.1 One-week ahead predictions

In Figure 6.1, the average absolute deviations for the one-week ahead distribution

are presented.

Figure 6.1: Average MAD - One-week ahead prediction results

The average absolute deviation is defined as:

Average(MAD) =
1

Q

Q∑
q=1

|πexp,q − πpred,q| (6.1)

, where Q is the number of quantiles and πexp,q is the expected exceedance fre-

quency, e.g. 1%, 5%, and πexp,q is the observed share of exceedances for the model

specification.
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As indicated by the color map, the introduction of our macroeconomic variables in

the model specification does not improve the prediction power. Interestingly, the

parsimonious 2xCS model, consisting only of the first and second principal com-

ponents extracted from the credit spread term curve, represents one of the most

successful models for one-week predictions. The two PCs in the 2xCS model ex-

plain nearly 95% of the variance in the credit spread time series (see Table 8.2 in

the Appendix). Contrary to the findings of Krishnan et al. (2010), I do not find

the risk-free factors to improve prediction ability for all spreads. While Krishnan

et al. (2010) predict point estimates for actual changes and not the expected dis-

tribution, I would expect the prediction of the center quantiles to be improved as

risk-free factors were introduced. This is not the case for the 2xCS+3xRF model,

with some investment grade spreads as exceptions. The 2xCS+3xRF model spec-

ification improves the predictions in the center quantiles, as defined above. More

notably, the introduction of the Fed variables contribute to a substantially better

prediction of the tail quantiles. Hence, practitioners may apply the 2xCS model,

the 2xCS+3xRF model, or the 3xCS+4xRF model for the center of the dis-

tribution and the 2xCS + FED model estimate the credit spread distribution

next week. The 2xCS+3xRF model, the 2xCS model, and the 2xCS + Fed

model are deemed the best performing models for further investigations. In the

credit quality dimension, the tails of the lowest rated bonds proves hard to predict.

In the maturity dimension, the lower maturity spreads are harder to predict for the

best performing models. While the 2xCS + Fed model is more accurate in the tails

of the distribution, the middle quantiles are less successfully predicting compared

to the parsimonious 2xCS model or the 2xCS+3xRF model. The model with

macroeconomic variables, 2xCS+Macro model and the CS PCs are worst of the

specified models but still perform better than the Historical Simulation.

6.1.2 Two-weeks ahead predictions

In Figure 6.2 the average absolute deviations for the two-weeks ahead distribution

are presented.
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Figure 6.2: Average MAD - Two weeks prediction results

On average, the deviations are larger for all model specifications but for the 2xCS+3xRF

model and the Historical Simulation model. CCC&Lower credit spreads proves

to the credit rating for which predicting powers are strongest. Akin to the one-week

ahead predictions, the 2xCS + Fed model displays superiority to the other spec-

ifications in the tails of the distribution. In the center of the distribution, however,

the models combining the CS PCs and the RF PCs are the most accurate. In the

maturity dimension, the best performing models are more or less constant in the

center of the distribution, while substantially better for increasing maturity in the

tails of the distribution.
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6.1.3 Four-weeks ahead predictions

In Figure 6.3 the average absolute deviations for the four-weeks ahead distribution

are presented. The four-weeks ahead predictions distinguish from the one and two-

weeks predictions as the average MADs have increased significantly for the 2xCS

model, the 2xCS+3xRF model, and the 2xCS+Fed model. Especially, for

the center of the distribution the deviations are now close to 2% for all models.

The lowest rated bonds (CCCLower ratings) remain the exception, especially in the

center of the distribution. The 2xCS + Fed model once again performs better

than the other specifications. For the first time, theHistorical Simulation predicts

better in the center of the distribution than all models purely based on PCs.

While the prediction ability Historical Simulation is quite constant as the models

are tested for one-week to four-week predictions, the factor models’ performance

deteriorates quite dramatically.
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Figure 6.3: Average MAD - Four weeks prediction results

6.1.4 Prediction plots

In the figures below, the plotted predictions for the best performing models overall

can be seen.

46



Figure 6.4: The 2xCS model: 1-Week ahead predicted tail quantiles and actual

credit spread changes (bps)

The 2xCS model

Figure 6.5: The 2xCS+3xRF model: 1-week ahead redicted tail quantiles and

actual credit spread changes (bps)

The 2xCS+3xRF model
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Figure 6.6: The 2xCS+Fed model: 1-week ahead predicted tail quantiles and actual credit

spread changes (bps)

The 2xCS+Fed model

6.2 Backtesting the Out-of-Sample results

In this subsection, the results from the Kupiec (1995) and Christoffersen (1998) tests

are presented. Only the best performing model specifications, the 2xCS model,

2xCS+3xRF model and the 2xCS+Fed model are presented with their full

distribution, as the other model specifications are now considered of less interest.

The Kupiec (1995) test ensures that similar absolute deviations in the tail quantiles

(e.g. 1% and 5%) are harder punished than the deviations in the center quantiles.

As argued in the discussion of the MAD tables, this is a critical feature of statistical

tests for a predicted distribution. Further, another valued feature of predicting

models, beyond the difference between predicted and expected value, is the model’s

tendency to adapt to newly received information, and, thus, avoids clusters of errors

(Campbell, 2005). Christoffersen (1998) formulated these conditions as two distinct

properties, namely; i) the unconditional coverage property, and ii) the independence

property (Christoffersen (1998); Campbell (2005)). The first property is tested with

the Kupiec (1995) test, while the latter is tested with the Christoffersen (1998) test.

In this paper, both tests are required to pass in order for a series of predictions to

be deemed ’successful’.
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Figure 6.7: The 2xCS model: Backtesting results with Kupiec (1995) and Christoffersen

(1998) at 5% significance level. Two tests passed=green, one test passed=pink, none passed=red

As seen in Figure 6.7, the quantile predictions in the lower part of the distribution

(5%-30%) are more prone to failing one of the tests than other parts of the distri-

bution. The introduction of the RF PCs as variables to the model does not improve

the test performance but rather further exacerbates it in these quantiles.

Figure 6.8: The 2xCS+3xRF model: Backtesting results with Kupiec (1995) and Christof-

fersen (1998) at 5% significance level. Two tests passed=green, one test passed=pink, none

passed=red

Figure 6.9: The 2xCS+Fed model: Backtesting results with Kupiec (1995) and Christof-

fersen (1998) at 5% significance level. Two tests passed=green, one test passed=pink, none

passed=red

In Figure 6.9, the 2xCS+Fed model results are illustrated. It displays the im-

provements made by introducing the variables accounting for Federal Reserves’ most

rapid balance sheet expansions and its announcements of policy changes. The 5%

quantile predictions are improved for the higher rated bonds. The models are more

successful in predicting the upper quantiles of the distribution, suggesting that i)
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the RF PCS and CS PCs contain information about future credit spread changes,

while more variables are needed for explaining the lower quantiles. These findings

are in-line with the findings of Pires et al. (2010) which indicated that the center-to-

upper Credit spread quantiles were driven by the same factors. With respect to the

credit spread dimension, the lowest rated bonds are not as successful as the higher

quality bonds.

Figure 6.10: Historical Simulation: Backtesting results with Kupiec (1995) and Christof-

fersen (1998) at 5% significance level. Two tests passed=green, one test passed=pink, none

passed=red

To further illustrate the model’s performance, the backtesting results of the His-

torical Simulation is presented as well.

6.3 In-sample Results

In this section, the regression coefficients of the most successful predictions models

are discussed. Quantile regressions are run on the whole data set for the 2xCS

model, 2xCS+3CS model, and 2xCS + FED model with the purpose of further

analyzing potential relationships between the the different credit spread changes

(independent variables) and the variables used for prediction.

Figure 6.11: In-sample 2xCS model: QR coefficients for different credit ratings (bps). ***

p<0.01, ** p<0.05, * p<0.10

For illustration, the investment grade spreads and CCC&Lower spreads are pre-
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sented. In the maturity dimension, the 1-3Y bonds and 10-15Y bonds are presented.

The βCS PC 1,q is significant across all but the tails of the distribution, with a pos-

itive value for all significant coefficients. This implies that an increase in the level

factor (See Section 5.1) lifts the estimated distribution of next week’s credit spreads

(10.84-26.87 bps for an incremental increase in the CS PC1). The βCS PC 2,q, the

curvature factor for CS, is significant for mid-quantiles (70-20%) in investment grade

spreads, while less significant in the CCC&Lower credit spreads.

Figure 6.12: In-sample 2xCS+3xRF model: QR coefficients for different credit ratings

(bps). *** p<0.01, ** p<0.05, * p<0.10

The coefficients in the 2xCS+3xRF model includes the three RF PCs. βRF PC 1,q

is significant for all but the tail quantiles, with a negative value for most quantiles

in investment grade spreads. Increasing RF levels are thus significantly explaining

the lowering of next week’s credit spread distribution.
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Figure 6.13: In-sample 2xCS+Fed model: QR coefficients for different credit ratings (bps).

*** p<0.01, ** p<0.05, * p<0.10

An interesting finding in the 2xCS + Fed model is the significance of D FED Balance UP

and D FED Ann Inc. The variable for actual (extreme) purchases is positive for

most quantiles but negative for the lowest quantiles. This suggest the subsequent

widening of the credit spread change interval. The coefficient is not to say that asset

purchases increases spreads but rather that expansions of the amounts is expected

after aggressive asset purchases (more than 2.5%-percentile of historical purchases).

As such, the asset purchases, which is a monetary policy question, will tend to co-

vary with other extreme events. As such, the inclusion of these variables account

for important information. However, a weak point in modelling of policy actions

for prediction matters is that the validness of a model may be dependent upon the

political leadership (here: Fed leadership). Policy actions coming as a response to

changing conditions (e.g. Covid-19 or GFC) are assumed to occur during similar

conditions in the future. If the Fed’s political leadership were to change dramatically

in the future, the Fed data and their historical implications for credit spreads may

be incorrect. The D FED Ann Inc is significant for the lower tail of the investment

grade distribution, all with negative sign (expect 95%). The D FED Ann Dec, how-

ever, is not significant which could imply that the effects of the events in the period

are priced in or expected.
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7 Conclusion

In this paper, several quantile regression models for predicting the future distribution

of US credit spread changes are presented and tested out-of-sample. Parsimonious

models consisting only of term structure factors significantly outperform models

containing additional market-wide variables. As such, the amount of information

contained in these term factors are found to be sufficient for successfully predicting a

quite granular 1-week ahead distribution of credit spreads. For 2-weeks and 4-weeks

ahead predictions, exceedances are clustered and therefore represent a violation of

the much-desired independence property of quantile prediction models (See Section

4.2). Further, variables to account for announcements Fed policy behavior related

to the QE programs improve the out-of-sample predictions, especially for the tails of

the distributions. The categorization of these events could be subject to criticism as

no further decomposition related to the expected and unexpected policies are made

(See 8.7 for events included and categories). Purely based on a MAD metric of pre-

dictions, the inclusion of risk-free yield factors improves the prediction of the middle

of the distribution compared to the pure credit spread factor models. Backtesting

of the models with conditional and unconditional coverage tests indicates that the

models based on credit spread principal components are most successful, while the

inclusion of the risk-free factors lead to a weaker model, overall. As such, I do not

find support for general improved predictions by adding the risk-free yield curve

factors to the models, which is contrary to Krishnan et al. (2010). For predictions

of 4-weeks ahead credit spread changes, historical simulation performs as well as my

proposed models. Thus, they have limited use for prediction horizons over many

weeks.
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8 Appendix

8.1 The Kupiec (1995) test

LRKupiec = −2ln

[
pn1(1− pn0)

p̂n1(1− p̂n0)

]
∼ χ2

1 (8.1)

, with n1 being the number of exceedances when backtesting in the out-of-sample.

n0 is the number of non-exceedances. Thus, the total number of events is n0 + n1 .

p and p̂ are the expected share and the observed share of exceedances, respectively.

That is: p = q and p̂ = n1

n1+n0
for the quantile, q.

8.2 The Christoffersen (1998) test

LRChr. = −2ln

[
(1− p)n0 pn1

(1− p01)n00 pn01
01 (1− p11)n10 pn11

11

]
∼ χ2

2

Here p is the expected share of exceedances. n00 is the number of events in which two

consecutive non-exceedances is observed. n01 is the number of events with a non-

exceedance followed by an exceedance, n10 the number of events wit an exceedance

followed by a non-exceedance. n11 notes the number of two consequtive exceedances.

Furthermore, the two proportions, p01 and p11, are defined as follows:

p01 =
n01

n01 + n00

p11 =
n11

n10 + n11

8.3 Principal Component Analysis

Table 8.1: Explained variance by credit spread term structure principal compo-

nents

PC1 PC2 PC3 PC4 PC5 PC6

(%) Var. explained 90.5% 4.3% 2.7% 1.1% 0.8% 0.6%

Cumulative explained 90.5% 94.8% 97.6% 98.6% 99.4% 100%
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Table 8.2: Explained variance by risk-free term structure principal components

PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9

(%) Var. explained 60.2% 17.6 % 9.6% 6.4% 3.9% 1.4% 0.6% 0.2% 0.1%

Cumulative explained 60.2% 77.8% 87.4% 93.7% 97.7% 99.0% 99.7% 99.9% 100%

Figure 8.1: CS PC1 score time series

Figure 8.2: CS PC2 score time series
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Figure 8.3: CS PC3 score time series

Figure 8.4: RF PC1 score time series

Figure 8.5: RF PC3 score time series

62



8.4 More on Fed data

Figure 8.6: Percentiles of weekly changes in Fed’s balance sheet
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Figure 8.7: Selected Fed events related to QE programs, and their dummy category
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8.5 More on the data

Figure 8.8: Regressor data correlation matrix

Figure 8.9: Augmented Dickey Fuller test statistics for regressors

All statistics are significant, clearly indicating stationarity in all regressor time series. The ADF

tests are conducted using the number of lags that minimizes the Akaike information criterion

Figure 8.10: S&P500 - weekly returns in sample period

Figure 8.11: Oil (WTI) - weekly returns in sample period
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Figure 8.12: Gold price - weekly returns in sample period

Figure 8.13: VIX index - weekly changes in sample period

Figure 8.14: TED spread- weekly changes in sample period
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8.6 In-Sample QR results for best prediction models

Figure 8.15: In-sample: QR coefficients of the 1-week 2xCS model on different

investment grade maturities (bps). *** p<0.01, ** p<0.05, * p<0.10

Figure 8.16: In-sample: QR coefficients of the 2xCS + 3xRF model for different

maturities (bps). *** p<0.01, ** p<0.05, * p<0.10
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Figure 8.17: In-sample: QR coefficients of the 2xCS + FED model for different

credit ratings (bps). *** p<0.01, ** p<0.05, * p<0.10

8.7 Out-of-Sample Exceedance-% for all models
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