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Abstract

Numerous models for predicting the future distribution of credit spread changes are
specified and tested. Parsimonious factor models consisting of principal components
of the risk-free and credit spread term structure are shown to significantly outper-
form other models. Additional market variables weaken the prediction performance,
indicating that the information contained in the credit spread term structure and
the risk-free term structure to a large degree span a sufficient set of information for
credit spread predictions. One exception is the introduction of variables to account
for unconventional monetary policies by the Fed in the time period. These vari-
ables are found to improve predictions for tails of the distributions of credit spread
changes. The findings have implications for the modelling of credit spread changes
and risk management, as the whole distribution is considered. Furthermore, earlier

results in the literature are generalized to other quantiles of the distributions.



Sammendrag

Flere modeller for prediksjon av fremtidige fordelinger av kredittspread-endringer
er spesifisert og testet. Modeller bestaende av prinsipalkomponenter fra risikofri
rentekurve og kredittspreadkurve viser seg a veere signifikant bedre enn andre testede
modeller. A legge til andre variabler i prinsipalkomponent-modellene svekker predik-
sjonevnen, noe som indikerer at informasjonen i kurvenes prinsipalkomponenter er
tilstrekkelig for a predikere kredittspreader. Et unntak fas ved a legge til variabler
knyttet til den amerikanske sentralbankens ukonvensjonelle pengepolitikk i perioden.
Disse variablene bedrer prediksjonen av halene til fordelingen. Funnene i oppgaven
har implikasjoner for generell modellering av kredittspreader og risikostyring i fore-
tak, ettersom hele fordelingen av kredittspreader er hensyntatt. Videre generaliseres

tidligere funn i litteraturen til a gjelde andre kvantiler i fordelingene.
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1 Introduction

Ever since the classical corporate debt model of Merton (1974), the literature on
credit spreads has mainly been centered on the explanation of predicting average
credit spread changes (e.g. Collin-Dufresne et al. (2001); Krishnan et al. (2010)).
For investors or companies with exposure to credit spreads, simple mean predictions,
even accompanied by volatility estimates, may not be sufficient for evaluating an in-
vestor’s utility function for undertaking an investment. It is well-documented that
investors care about multiple traits of future returns beyond the classical mean-
variance model assumption of Markowitz (1952) (see (Arditti (1967); Scott and
Horvath, 1980); Fang and Lai, 1997), such as higher moments of relative price
changes. From a risk-management perspective, more granular insights into future
credit spread changes’ distributions are valuable. Especially the tails of the distri-
butions are of interest when considering risk metrics such as Value-at-Risk (VaR)
or Conditional Value-at-Risk (CVaR). Credit spreads are important for market par-
ticipants in numerous ways. First, they are, per se, a high-frequency indicator of
investors’ perception of risk as they are a bond’s premium to the corresponding
risk-free interest rate in the economy. Secondly, firms have intrinsic exposure to the
changes in credit spread as they alter the firms’ cost of capital, thus the firm value,
ceteris paribus. Furthermore, as Flannery et al. (2012) found, credit spreads also
comprise expectations of a firm’s future capital structure. Additionally, changes
in credit spreads pose a refinancing risk to companies looking to refinance debt to
roll” their liabilities in the financial market (Brunnermeier and Yogo, 2009). For
companies trying to match liabilities and asset cash flows, the bond market is a
vital funding source with the credit spread a substantial funding cost. Banking and
insurance are examples of industries in which the need to improve the matching of
liabilities and assets is significant to limit the risk of liquidity issues (e.g. bank runs,
see the classical Diamond and Dybvig (1987) work).

Since the great financial crisis (GCF) of 2007-08, the US Federal Reserve (the Fed)
has implemented highly expansive monetary policies. As interest rates have been
historically low, and the need for further stimulative action has been imminent in
the eyes of central bankers, these policies have included extensive waves of asset
purchases in the open market, commonly referred to as Quantitative Easing (QE).
While Fed Chairman Ben Bernanke explicitly spoke of reducing the Fed’s balance
as early as 2009 !, the programs are yet to be reserved. In total, the Fed’s balance
sheet has increased approximately tenfold since before the financial crisis to more
than 8.9 trillion USD, as of May 2022.

1”Federal Reserve will be able to return to its traditional means of mak-
ing monetary policy-namely, by setting a target for the federal funds rate”, see
https://www.federalreserve.gov/newsevents/speech/bernanke20090113a.htm
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Research on the subject of interest rates and risk premiums has shown that such QE
programs may lower both interest rates and premiums of credit risk in the economy
(Krishnamurthy and Vissing-Jorgensen, 2011). Due to their unprecedented nature,
the research on the effects of these QE programs has been facing obstacles. Prior
to the Bank of Japan (BoJ) launching its QE program in 2001 in the wake of the
"lost decades’, no modern large-scale QE program had ever been implemented 2.
Further, the US programs are different from that of BoJ’s (See Shiratuksa, 2010).
As Martin and Milas (2012) note, the QE policies are enacted as a response to
extreme events, and, hence, are intrinsically covarying with other events that make
the pure QE effects difficult to isolate. However, substantial academic literature
has researched the effects of these programs. The research considering interest rates
and credit spreads is of interest (e.g. Ugai, 2006; Gagnon et al., 2011; Gilchrist and
Zakrajsek, 2013; Nozawa and Qiu, 2021). By categorizing the announcement of the
Fed’s QE policy changes, a dummy variable approach is taken for accounting for
potential effects on credit spreads. However, the variables for announcements alone
are not enough as the actual asset purchases indeed do increase investors’ liquidity;,
which again leads to actual portfolio re-balancing effects. Although announcements
may alter market expectations, the actual purchases and re-balancing effects could
have implications for credit spreads as well. In my view, both of them are likely
to change the demand for assets, and thus the price of the assets. To account for

actual liquidity effects, a variable linked to the Fed’s balance sheet is defined.

The fundamental motivations of the paper’s modeling are the well-established factor
analysis of the yield curve (Nelson and Siegel, (1987); Litterman and Scheinkman
(1991); Diebold and Li (2006), and the similar applications to the credit spread
term structure (Krishnan et al, 2010). In the academic literature, the amount of
information contained in the yield curve factors (i.e principal components (PCs) of
yield curve changes) is a debated topic. While Litterman and Scheinkman (1991)
found bond returns to be explained by the three first PCs (PC1, PC2, PC3), later
research found that additional factors improve the modeling of credit spreads beyond
the parsimonious PC models (Cochrane and Piazezzi, 2005; Ludvigson and Ng, 2009;
Joslin et al., 2014). In a thorough examination of the literature, Bauer and Hamilton
(2018) refute much of the literature that claims to find further improvements in
model specifications with additional variables than PC1, PC2 and PC3 of the yield
curve. According to Bauer and Hamilton (2018), much of the literature that rejects
the theory that current yield curve factors contain all needed for the prediction of
future rates, named the spanning hypothesis, is weaker than formerly believed. This

leaves more uncertainty as to whether additional variables than the term structure

2See  Federal Reserve Bank of Francisco letter by Mark M.  Spiegel
https://www.frbsf.org/economic-research/publications/economic-letter /2006 /october /did-

quantitative-easing-by-the-bank-of-japan-work/.
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factors are needed for predicting and explaining yields. Krishnan et al. (2010)
test several models for credit spread predictions and find a model consisting of
factors from the risk-free (RF) yield curve and the credit spread (CS) term structure
to be superior to, among others, models extended with additional macroeconomic
variables. These results may indicate that the information needed for predicting
credit spreads is contained in these factors, similar to the spanning hypothesis of

the yield curve.

In this paper, factor models are further developed for predicting credit spread
changes. Importantly, the distribution of the credit spread changes is predicted
in order to further analyze any heterogeneity in credit spreads and how the regres-
sors influence the upper and lower parts of the distribution. Pires et al. (2015)
illustrate the need of considering more than the mean of the distribution as hetero-
geneity is displayed across the distribution of credit spreads. Furthermore, given the
widely recognized stylized fact in the academic studies that high-grade bonds tend
to behave like treasuries, while lower-grade bonds tend to behave more similarly to
equities (Fama and Bliss, 1987; Avramov et al.,2007), it seems reasonable to expect
the drivers of credit spread changes to differ across the credit quality segments. In-
deed, this paper’s objective is to contribute to the literature by prudently testing
factor models’ predictive ability of credit spreads’ distributions for a wide range of

bond categories (credit qualities and maturities).

The thesis is divided into sections, which could be further divided into subsections.
Firstly, the literature on credit spreads and how it relates to this thesis is presented
(Section 2). Secondly, the data and the statistical methods are presented (Section
3 and 4). Thirdly, the term structure factors are interpreted and the model spec-
ifications are formulated in Section 5. Thereafter, the results are presented and
discussed, with further in-depth analysis of the best-performing models. Lastly, a

concluding section follows.
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2 Literature review

In this section, the findings from the literature review are discussed. The determi-
nants of credit spreads, in general, are discussed, before the literature considering
the specifics of QE effects is presented. The credit spreads of interest here are the
differences in yield between corporate debt and risk-free debt (see section 3.2) with
a similar maturity. Thus, the literature covering sovereign credit spreads is not

covered.

2.1 Classical Determinants of Credit Spreads

In the classical credit spread literature, structural models for predicting and explain-
ing changes in credit spreads have been central. The seminal work of Merton (1974)
established a framework for the pricing of risky debt, and hence, its implied credit
spread. Following option pricing theory, equity is a long call position on a firm’s
assets with a strike equal to the firm’s liabilities at maturity. The debt-holding
position can be constructed with a long position on a firm’s assets combined with
a short call with a strike at the liabilities” value at maturity, which eliminates the
further upside risk. Following non-arbitrage assumptions, this would deduct the

value of risky debt.

The Merton (1974) model has the risk-free rate, the company’s current capital struc-
ture, and the asset volatility as important input factors in the framework, and laid
the ground for later formulation of structural models. While strong in theory, later
empirical studies have shown the so-called Merton model to have a limited ability to
correctly predict credit spreads, prompting the ’credit puzzle’ phenomena (Jones et
al., 1984; Amato and Remolona, 2003), where investors seemingly are compensated
for more than credit risk, as wide gaps between expected losses and spreads have
been observed. Further adjustments for taxation, illiquidity, and extra risk premia
are shown by Amato and Remolona (2003) to not fully explain the observed credit
spreads either. While the works supporting these findings are numerous, they have
also been refuted (Feldhiitter and Schaefer, 2018). Feldhiitter and Schaefer (2018)
find the modeled credit spreads to be in line with observed investment-grade bonds,
while observed high-yield spreads are too high, partly due to illiquidity. Among the
influential papers on determinants of credit spreads is Collin-Dufresne et al. (2001),
which investigates the explanatory power of several categories of variables; among
others, the structural model factors originated in Merton’s (1974) work, which they
find to have limited explanatory power (about 25%). Perhaps more interestingly,
using principal component analysis (PCA), Collin-Dufresne et al. (2001) find credit

spread changes to a large extent by driven by a single, unknown factor. This factor
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is nearly equally weighted across bins of bonds capturing different maturities and
credit qualities. Eom et al. (2004) test a wide range of structural models on credit
spreads on non-financial companies and find most of these to, on average, predict
spreads that are too high, while the classical Merton (1974) predicts too low spreads,
as expected. Furthermore, accuracy is still noted as a key obstacle in the models’

performance.

The classical structural models focused on point estimates of actual changes in
a single-regime period, and have yet to display strong predictive and explanatory
power. Researchers thus extended the structural models to allow for regime changes.
Hackbart et al. (2006) find that observed credit spreads can be generated by a
two-regime model allowing for aggregate macroeconomic shocks (either ’boom’ or
recession’). Chen (2010) incorporates macroeconomic factors to account for the
changing firm behavior over the business cycles as different macroeconomic environ-
ments lead to different financial decisions, and found risks related to the business
cycle to be an additional explanation of the aforementioned ’credit spread puzzle’.
Chun et al. (2014) tested regime-switching models with economic, monetary and
credit-related regimes. The introduction of these regimes improves the explanatory
power of market and liquidity variables. As such, Chun et al. (2014) also contribute
to (at least partially) closing the credit spread puzzle gap. In sum, the classical
structural models have seen improvements by the elimination of the single-regime
modeling. Still, the classical factors for credit spread modeling, such as default risks,
liquidity risks, and market-wide risks, show varying success in explaining observed

credit spreads.

2.2 Factor Modelling and the Spanning Hypothesis

In this section, a brief introduction to factor modeling in finance is given. I then
present the literature on yield curve modeling. Although these works mainly relate
to the modeling and predictions of interest rates, they are seen as highly relevant,

as I seek to build on this tradition, but now for credit spreads.

Financial factor modeling has been influential since the formalization of single-factor
models for security returns by Sharpe (1964) and Lintner (1965), who, by building
on Markowitz (1952) and Tobin (1958), proposed models for predicting risky as-
sets’ expected excess returns determined by one single factor. While intuitive and
still widely taught in business schools around the globe, the empirical shortcom-
ings are several (Fama and French, 2004). These original models later saw multiple
improved extensions to account for other factors (Carhart 1997; Dittmar, 2002;

Fama and French, 1993). For interest rates, several short-term models, in which
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the (stochastic) short-rate is typically developed through a binomial three, have
been proposed (Hull and White, 1993). In yield curve modeling, Nelson and Siegel
(1987) and Litterman and Scheinkman (1991) are pioneering works. Nelson and
Siegel (1987) specified mathematical expressions where coefficients were able to fit
what they defined as "monotonic”, "humped” and ”S shaped” characteristics in
yield curves. Nelson and Siegel (1987) found a model to explain 96% of the varia-
tion in US T-bill yields in 1981-83. Litterman and Scheinkman (1991) found that
three principal components explained more than 95% of US Treasury bond returns.
They further provided interpretations of these factors as "level” (PC1), ”steepness”
(PC2), and ”curvature” (PC3). These interpretations were supported by inspections
of the factor loadings across bond maturities. Diebold and Li (2006) predict yield
curve changes based on the Nelson-Siegel factors, and they provide similar inter-
pretations of the factors as those attributed to the Litterman-Scheinkman factors.
While the interpretations are similar, it is important to note that the Nelson-Siegel
factors are restricted by the boundary conditions of the mathematical formulation
and that the Litterman-Scheinkman factors are more unrestricted. Diebold and
Li (2006) conclude that the performance of predictions made by the Nelson-Siegel
yield curve factors on future yields substantially outperforms common benchmarks.
Cochrane and Piazezzi (2005) regress future excess bond returns on combinations of
forward interest rates, and find a single factor (a tent-shaped linear combination of
the regressors) to predict excess bond returns. Furthermore, this factor is deemed
unrelated to the level, slope, and curvature of the yield curve. As such, Cochrane
and Piazezzi (2005) find these traditional factors to not fully explain future interest
rates although they account for more than 99% of the yield change variability in the
data set. Hence, the distinction is made between explaining yield curve changes and
predicting them. Interestingly, the fourth factor of the yield curve changes (PC4)
is found important in forecasting expected bond returns, while still negligible when
purely explaining bond returns. Cochrane and Piazezzi (2009) revisit these tests and
find the fifth factor (PC5) to significantly lift the predictive power of the models.
Other researchers have noted that the yield curve factors are insufficient for yield
curve predictions and that additional variables provide relevant information for im-
proving predictions (For macroeconomic, see Ludvigson and Ng, (2009); for inflation
and economic output, see Joslin et al., (2014)). The mentioned works are among
the papers culminating in the debate on what Bauer and Hamilton (2018) name
the spanning hypothesis. The spanning hypothesis holds that all relevant informa-
tion for future yields and returns is spanned by the current yield curve (Bauer and
Hamilton, 2018). Thus, the three most important PCs of the yield curve, the level,
could be sufficient for predicting future yields. If correct, other additional variables
are not needed for future predictions, and would possibly deteriorate predictions
as more noise is added. Bauer and Hamilton (2018) argue that serial correlation

in the prediction error terms non-reliable R? and standard error values in research
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that claims to reject the spanning hypothesis. Further, Bauer and Hamilton (2018)
note that the violation of econometric exogeneity for small sample-sizes, combined
with persistent regressor time series, leads to the risk of spurious null hypothesis-
rejections. On the findings of Cochrane and Piazzi (2005), that PC4 of the yield
curve is important for predictions, Hamilton and Bauer (2018) conclude that this
is sample-dependent and provides no sufficient evidence for rejecting the spanning
hypothesis. In sum, the evidence for so-called "unspanned” information (i.e. infor-
mation not contained in the three common yield curve factors) is weaker than often
argued. Following the substantial contribution of Bauer and Hamilton (2018) to the

literature, the question of the spanning hypothesis seems less settled.

The literature concerning factor modelling of the credit spread term structure is cer-
tainly dwarfed by the extensive yield curve modeling covered in the previous para-
graphs. Krishnan et al. (2010) provide a bridge from the yield curve modelling to
credit spread predictions, and are thus highly motivating for this paper. Krishnan et
al. (2010) extract three term factors for credit spreads and the risk-free yield curve,
with a methodology inspired by Nelson and Siegel (1987) and Diebold and Li (2006).
These three factors are shown to closely covary with the conventional definitions of
the level, slope, and curvature, similar to the seminal Litterman-Scheinkmann fac-
tors. As such, Krishnan et al. (2010) do to the credit spread curve what numerous
academics prior to them did to the yield curve. They find that, while CS factors are
strong predictors of future credit spreads by themselves, performance is improved
by adding RF factors. Perhaps more interesting is the finding of Krishnan et al.
(2010) that further model extensions beyond the factors of the credit spread and
risk-free yield curve cannot improve predictions, indicating that explicitly includ-
ing macro variables as independent variables may result in disturbing noise. With
the spanning hypothesis debate as a backdrop, this could indicate that the CS PCs
alone do not span sufficient information for future credit spread curves but need
to be supplemented with RF PCs. As much of the conventional methodology in
the literature, Krishnan et al. (2010) apply linear regression on firm-specific credit
spreads. By that, Krishnan et al. (2010) are narrowed in on the mean point pre-
diction and do not cover the full distribution of credit spreads, which is this paper’s
objective. Nevertheless, such factor modelling of credit spreads represents a different
line of research, given the earlier literature centered on market-wide and firm-specific
variables. In fact, such prediction models represent one of the most parsimonious
models in the field.
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2.3 Distribution of Credit Spread changes

Since the aim of this paper is to predict distributions of future changes in credit
spreads for a variety of both maturities and credit qualities, some further discus-
sions of the literature concerning predictions of distributions is appropriate. As
noted in the previous sections, the literature on (successful) predictions of credit
spread changes is quite limited. Consequently, the literature on distributions of
credit spread changes is even sparser. The tails of the distributions are naturally
of interest in extreme risk modelling. The distributions of credit spreads, and thus
credit risk-linked financial products, are widely known to be leptokurtic, character-
ized by fatter tails in the distribution (Pedrosa and Roll, 1998). This could lead
to underperformance in classical risk models, which often assume standard statis-
tical properties (e.g. i.i.d. and normal distributions) (Pownall and Huisman, 2002;
Kuester et. al, 2006). Of particular pertinence to this paper is the work of Pires
et al. (2015), who developed a quantile regression (QR) model for predicting future
credit default swap (CDS) changes. Pires et al. (2015) regress CDS changes on a
wide-ranging set of variables, many of them discussed in Section 2.1. Specifically
on interest rates, they include the 10-year US treasury yield and the slope of the
yield curve, which would correspond to the two most important factors in the yield
curve if 10-year US treasury is to proxy the yield curve level. Pires et al. (2015)
find these yield curve ’factors’ to display heterogeneity for different quantiles. For
example, these coefficients are only statistically significant for lower quantiles, and
vary in size and sign. Somewhat interestingly, by benchmarking the QR model with
an OLS model, it is found that the mean predictions are quite similar to the upper
quantiles. As such, what may be perceived as an accurate reflection of the ’center’
of the distribution is in fact not accurately represented by the modelling of average
changes. Thus, Pires et al. (2015) illustrate the need for more granular modelling of
credit spread changes’ distribution. Hence, the findings of Pires et al. (2015) should

spur distribution modelling of credit spreads — and this paper.

2.4 The QE effects on credit spreads

In this section, the academic literature regarding the effecs of quantiative easing
(QE) programs on credit spreads is discussed. Firstly, I will briefly introduce the
findings from the first large-scale QE program in modern economies - the BoJ’s QE
program in the period 2001-2006. Secondly, the more wide-ranging QE programs

following the great financial crisis (GCF) and the related literature is discussed.

The first large-scale QE program was initied by Bank of Japan (BoJ) in March 2001,

running over a 5-year period. The Japanese economy experienced low-to-negative
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price growth following the burst of the Japanese asset bubble, which, following 2001
and its dotcom market crash, had already led the BoJ to zero-rate policies. One of
the program’s pilars was that liquidity provisions should stay in place until the core
inflation stabilized above zero percent (Ugai, 2006). Ugai’s (2006) empirical anal-
ysis of BoJ’s QE policies finds that the commitment to keep the program in place
molded investor’s expectations of continued low future interest rates, which again
shifted the yield curve lower, especially for short-to-medium maturities. Kimura and
Small (2006) study potential portfolio re-balancing effects, which are postulated to
happen due to the increasing cash position as the central bank purchases securi-
ties. Kimura and Small (2006) find the BoJ’s QE program to lower the risk premia
for assets with counter-cyclical returns, such as governmental and investment grade
bonds, while assets with pro-cyclical returns, such as high yield bonds and equi-
ties, experienced increased risk premia. Furthermore, they found the program to
decrease the volatilies in equities and high-yield bonds. Thus, Kimura and Small
(2006) represent an early discovery of the different implications for different finan-
cial assets (e.g. bonds of different ratings). Shiratsuka (2010) note the difference
in credit spreads for financial institutions and non-financial companies, where the
former see their credit spreads contract earlier compared to the non-financials’ credit
spreads which also contract but with some time lags.Shiratuksa (2010) further note
some distinctions between the BoJ QE program and those of the Fed: while the
BoJ concentrated on the liability side (specifically, the current account balances),
the latter are deemed more asset-side focused. In this paper, as I am concerned
with US credit spreads over the last decades, the sole data sampled for modelling
purposes is the Fed balance sheet data and minutes of the Federal Open Market
Committe’s (FOMC) meetings. Martin and Milas (2012) argue that the effects of
QE is difficult to evaluate as QE, at its core, is a response to extreme and unex-
pected economic shocks. The QE programs initiated by the Fed since 2008 (See
Appendix, 8.4) have been in effect over long periods, with few and important an-
nouncement dates marking initiations and finalization of these programs. As such,
any potential QE effects need to both be assessed by studying the effects of the policy
announcements and the effects of implementation of these policies (e.g. purchases of
assets). In particular, the initiations of these program covary with financial crises,
and, hence, a wide range of other extreme economic observations. A ’what-would-
have-happened’ analysis of these policies are thus very difficult as Fed policies have
multiple effects through different channels. The announcement-centered studies of
QE focuses on the short-term effects as investors’ expectations are altered over a
short period of time due to Fed’s public guidance and communication. Important
events-studies include Gagnon et al. (2011), Cenesizoglu and Essid (2012), Gilchrist
and Zakrajsek (2013), Javadi et al. (2017) and Nozawa and Qiu (2021). Gagnon et
al. (2011) studies the general effects of announcements of QE programs on finan-

cial market and find that longer-term interest rates were reduced, primarily due to
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lower risk premiums and not due to generally reduced expectations of future inter-
est rates. Cenesizoglu and Essid (2012) utilizes the futures market to decompose
Fed’s funds target rate policies into expected and unexpected policy changes. Due
to the period of Cenesizoglu and Essid’s (2012) interest, unconventional monetary
policy (e.g. QE) is not relevant for study. The methodology is however, as it dealt
with announcement of Fed policies and the issue related to market expectations ex
ante and ex post. Interestingly, the Cenesizoglu and Essid (2012) find lower-rated
bonds to be more sensitive to monetary shocks during recessions. Further, asym-
metrical effects are discovered in how unexpected tightening and easing of monetary
policy influence credit spreads. Hence, formulating models which allows for such
asymmetrical effects seems necessary. Mamaysky (2018) studies the time horizon
of price responses to QE announcements. Government bonds see quick price reac-
tions, while equities’ responses are delayed and spread out over several weeks. The
paper defines a "maximal post-announcement response horizons” corresponding to
the time horizon in which the observed effect is least likely to have occurred under
the null-hypothesis that prices developed randomly. For US investment grade credit
spreads, this time horizon is found to be three days compared to 10 days and 21
days for stock returns and implied volatility, respectively. Hence, the time window
of QE events may be adjusted depending on the time series of interest. In this
paper, weekly time series are sampled, which should be in line with the findings of
Mamaysky (2018) as impacts on credit spreads are expected to be in effect. The
most recent of the QE programs, QE4 (see Appendix, 8.4), was initiated in March
2020 as part of the monetary policy response to the Covid-19 pandemic and the
associated restrictions on the economy. Nozawa and Qiu (2021) investigate the US
corporate bond market in the first half of 2020. By applying a two-day event win-
dow, they find effects to be different across credit ratings, with investment grade
spreads lowered and high-yield spreads lifted. These differences are attributed to the
markets’ expectations that the Fed would only purchase investment grade bonds.
Further, they note that regulatory constraints on major bond investors may induce
actual market segmentation in between credit ratings. Hence, different reactions to
policy actions may be expected. These findings further motivate the differentiation

made in this paper between different credit spread rating.

2.5 The contributions of this paper

In sum, this paper is motivated by a variety of literature. Of the most motivating
papers are Krishnan et al. (2010), with the factor modelling of credit spreads. The
need for QR models, as opposed to simpler OLS models, is highlighted by the find-
ings of Pires et al. (2015) that there are heterogeneity across the quantiles and that

factors have different significance and effects on different parts of the distribution.
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Furthermore, the Spanning hypotehsis debate makes it tempting to parsimoniously
specify pure term structure factor models. However, while motivated by the works
mentioned above, this paper differentiates itself from the credit spread literature in
numerous ways:i) contrary to Krishnan et al. (2010), the factor extraction from the
term structures is by PCA, both for CS and RF term structures, ii) more models
are tested on a variety of credit qualities and maturities to investigate the prediction
power different bond categories, iii) the models are tested for different time horizons
(i.e. 1 week, 2 weeks and 4 weeks ahead), iv) motivated by the findings of Pires
et al. (2015), a more granular analysis of the whole credit spread change distribu-
tion is performed, v) the spanning hypothesis motivates the model specifications,
as both pure term structure factor models and macro-extended models are tested
for predictions, vi) lastly, attempts are made to improve models by accounting for
unconventional Fed policies, both in terms of actual purchases and policy change

announcements.
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3 Data

In this section, the data considered in this paper is presented. The four categories of
data are i) the credit spread indices, ii) the risk-free rates and iii) the macroeconomic
data, iv) Federal Reserve data . Descriptive statistics are organized in tables for each

category, followed by brief discussions.

3.1 Credit Spread Data

The credit spread indices are the ICE BofA option adjusted credit spread indices,
all sourced from Federal Reserve Economic Data (FRED) in February 2022. The
indices are the well-established and have been quoted daily since the late 90s. While
initially constructed by Bank of America’s fixed income research division, the indices
have been under Intercontinental Exchange’s (ICE) ownership since 2017. The data
frequency is a weekly basis, with the Friday’s close as reference point. In order to
more accurately reflect vanilla bonds’ credit spreads at any point, the bonds in each
with certain embedded options are adjusted by ICE. The data set complies of 998
weeks, starting at the end of 2002 and ending in February of 2022.

As this paper aims to present quite granular results for the prediction models, both
varying along maturity and credit quality, the credit data set consists of the in-
vestment grade indices for intervals of constant maturities, as well as the basket
indices for different ratings. To limit the scope of the paper, only the investment
grade bonds data comprises different maturities. The shape of the term structure
in the investment grade credit spread should substantially overlap with any pure
AAA and BBB, as they are components in the investment grade class. From a more
practical view, they will often be covered by similar risk weights in bank’s regulatory
framework and often be covered by the same investment mandates. The high-yield
and even lower rated bonds, CCC&Lower, are thought to have somewhat different
credit spread determinants as found in the literature review. The pure credit rating
indices are consists of AAA, investment grade, BBB, high-yield and CCC&Lower
rated bonds. These credit ratings indices are constructed by ICE to reflect the
markets pricing of all dollar-denominated bonds with the relevant rating, subject to
option adjustments. As such, the changes in credit spreads index is interpreted as

the change in the market’s total basket of bonds with a specific rating.

The use of indices comes with certain pros and cons, some of which I find appropriate
to elaborate on further. One advantage concerns the issue of time-varying data for
firm-specific bonds. Since the time until maturity for each bond varies in the period,

credit spreads are not directly comparably just as yields on different maturities are
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not directly comparable. As both the credit spread curve (Bedendo et al., 2007;
Helwege and Turner, 1997; Merton, 1973) and risk-free yield (Campbell and Shiller,
1991; Fama and Bliss, 1987) curve are tend to display slopes (either negative or
positive) due to term premiums. By collecting the credit spread indices, which are
constructed to be comparable over time, this issue is avoided. Indices in general
have inherent survivor effects, as its components often are removed before complete
deterioration. In this specific example, this could suggest that bonds are removed
from indices as a default events nears. Bhanot (2005) investigates the mean reverting
tendency in bond indices and find survival effects and ratings based classifications
to contribute substantially to mean reversion. The implications of these findings

are manifold, with one of them being that this paper’s findings may not be naively
extrapolated to a single bond’s credit spread.

Figure 3.1: Surface plot of the credit spread data set
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In the classical Merton (1974) framework, the expected credit term structure de-
pends on the credit quality of the debt. For high-quality debt, an upward slope
is expected. For low-quality debt, however, a downward slope is expected. The
conclusions are perhaps less intuitive for the low-quality debt. The reason, how-
ever, is that low quality debt is the debt of companies near their default-boundary.
As time goes, without the company defaulting on its liabilities, the probability of
defaults conditioned upon survival increases, as the company increases its chances
of a improved financial position. In Figure 3.1, a surface plot of the investment
grade spreads for different maturities is shown. As expected, the term structure is
mostly upward-sloping in the maturity dimension. During the most volatile markets
of the GFC, however, the term structure is inverted to higher spreads for shorter-
term bonds rather than longer-term. Following the reasoning of Merton (1974),

this should imply a market expectation of an even larger share of investment grade
companies to be near their default boundaries.
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Table 3.1: Credit spread statistics for ICE BofA Investment Grade indices (%)

1-3Y 3-5Y 5-7Y 7-10Y 10-15Y 154Y
Average 1.22 139 1.63 1.70 1.84 1.88
Median 0.79 1.03 1.29 1.49 1.75 1.74
1st Quartile 0.59 0.8 1.01 1.12 1.27 1.43
3rd Quartile 1.25 1.55 1.84 1.89 2.1 2.08
Min 0.38 0.59 074 0.77 0.87 1.15
Max 813 6.98 6.74 6.22 5.80 5.23
Std.Dev 1.29 1.04 1.02 0.89 0.80 0.66

In Table 3.1, descriptive statistics of the investment grade indices are presented.
As expected, the average spreads are rising in maturities. The larger standard
deviation in the shorter-maturity spreads can partly be attributed to the rapid
inversions during the GFC and the onset of the Covid-19 pandemic in the US.
Another characteristic is that all medians are below the corresponding average,
which indicates a positive skewness. Not that surprising considering the practical
lower-bound of spreads to zero (at least adjusted for liquidity and transaction costs,

see Bhanot and Guo (2011)), while no such upper-bound exists.

Figure 3.2: Surface plot of the Investment grade credit spread data set
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In Table 3.2, the credit spread data for the different ratings are summarized. The
investment grade spreads are strikingly close to a 40%-60% weighted sum of the
AAA and BBB. High-yield and CCC&Lower are by many means a totally different
investment regime, with high-yield almost yielding an US equity risk premium above
Treasuries, while CCC&Lower almost yields it twofold.
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Table 3.2: Credit spread statistics for different credit ratings (%)

AAA IG BBB High-yield CCCé&Lower

Average 0.82 1.59 2.03 5.32 10.28
Median 0.65 1.33 1.76 4.54 8.94
1st Quartile 0.59 1.01 1.34 3.68 7.57
3rd Quartile 0.78 1.71 2.26 6.14 11.45
Min 044 0.79 1.07 2.41 4.16
Max 6.03 6.56 8.01 21.30 41.20
Std.Dev 0.59 094 1.12 2.71 4.81

3.2 Risk-Free Interest Data

The risk-free interest data consists of US Treasuries with a maturity in the range
of 3 months to 30 years, as sourced from the FRED database. Figure 3.3 displays
a surface plot of the interest rates, which serve as proxies for the hypothetical risk-
free rates. The notion that governmental debt is without risk of default has been
proving wrong on multiple occasions during the relevant period for this paper, with
the Greek debt restructuring and effective short-term default on IMF debt being
an example (Reinhart and Trebesch, 2015). Fisher (2013) lists several distinct risk-
factors inherent in sovereign debt (e.g. inflation, shape risk and possibly currency
risk). Since a liability in domestic currency on the government, the government could
pay of its debts by 'printing money’, thus putting the borrower at risk of receiving
substantially less in coupons and principal due to inflationary effects. The practical
implications of such behavior would, however, be significantly reduced trust in the
central bank, which could result in higher risk-premiums (Stella, 2005).
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Figure 3.3: Surface plot of US Treasuries in sampled data set
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The US sovereign debt has historically been the safe haven for investors during mar-
ket volatility with a significant convenience yield for the investors (Hager, 2017; Kr-
ishnamurthy and Vissing-Jorgensen (2012)). Krishnamurthy and Vissing-Jorgensen
(2012) found that two attributes high-liquidity and low-risk, in US Treasuries signif-
icantly lowered their yields - more than 70 basis points in the 82-year period studied.
This translates to a negative relationship between the supply of US Treasuries and
the equilibrium pricing of these two attributes. As the supply of US Treasuries
increases, measured by the Debt/GDP ratio, the premium pricing of safety and
liquidity decreases. Nevertheless, the findings bring substantial support to the com-

mon notion that investors recognize large values in US Treasuries and their minor

default risk, thus providing a good proxy for risk-free interest rates.

Table 3.3: US Treasury yield statistics (Dec 2002- Feb 2022) (%)

3M 6M 1Y 2Y 3Y 5Y 7Y 10Y 30Y
Average 1.18 1.29 1.38 1.59 1.80 2.23 258 291 3.59
Median 0.30 0.46 0.65 1.03 143 190 230 2.74 3.40
1st quartile 0.07 0.12 0.18 0.45 0.79 1.35 1.67 199 2.82
3rd quartile 1.86 2.01 2.13 246 2.6 3.05 349 3.96 4.58
Min 0.00 0.02 0.04 0.09 0.11 0.21 0.39 0.55 1.17
Max 5.18 5.28 527 527 523 521 521 523 5.59
Std.Dev 1.561 1.54 1.51 142 135 124 1.17 1.14 1.09

Table 3.3 summarizes the US Treasury data in the sample. The averages are in-

creasing in maturity, as one would expect form a normal (i.e. non-inverted) yield
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curve. All medians are below the the averages.

3.3 Macroeconomic data

The macroeconomic data in this paper is summarized in the table below. All but the
TED spread are collected from Eikon datastream as of March 2022. The TED spread
is, like the risk-free yield curve and credit spread data, sourced from the FRED
database. The returns are simple returns. To address the issue of mulitcollineraity
in the model, a correlation matrix can also be found in the Appendix. None of
the macroeconomic data series are highly correlated, with the correlation between
VIX_Diff and S&P500-R spread being the highest in absolute terms (-0.54). As such,
the risk of multicollinearity in macroeconomic data seems negligible. Furthermore,
as the aims of this thesis are related to predictive power of the model, rather than

explanatory powers, the issue itself is less of a problem.

Table 3.4: Macroeconomic data: Simple returns for WTI, Gold and S&P500 index.
Non-differenced time series for the VIX index and the TED spread

WTIreturn GOldreturn S&P500return VIX TED Spread

Average 0.26% 0.20% 0.19% 18.94 0.41%
Median 0.48% 0.35% 0.28% 16.45 0.29%
Ist quartile  -2.52% -1.10% -0.83 % 13.21 0.21%
3rd quartile  3.15% 1.64% 1.41% 21.59 0.43%
Min -29.31% -8.64% -18.20% 9.14 0.06%
Max 31.75% 14.11% 12.10% 79.13 4.58%
Std.Dev 5.34% 2.36% 2.38% 8.86 0.42%

3.4 Federal Reserve data

The quantitative easing data collected consists of the Fed’s total balance sheet, as
reported weekly, from the FRED database. The balance sheet has grown substan-
tially, from sub 1 billion USD prior to the first round of quantitative easing (QE1),
to almost 9 billion in February 2022. In total, there have been four rounds of large-
scale asset purchases by the Fed, often referred to as QE1-QE4. Throughout the
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period, there have been several policy changes, as decided by the Federal Open Mar-
ket Committee (FOMC). To account for these changes, the announcement dates for
what I deem the most important announcements are collected and visually repre-
sented in Figure 3.4. Announcements of monetary policy changes are important as
they potentially alter bond investors’ expectations of the future. As presented in the
literature review, event studies centered on policy announcement dates are crucial
for taking into account the effects of the policies. At the same time, the actual
purchases of assets from the Fed’s Trading Desk will ceteris paribus increase bank’s
liquidity, which further encourages increased lending, leading to monetary growth.
As such, I see it as essential to have variables for both changing expectations due to
policy changes and the actual asset purchases. Some studies simply use the Fed’s
balance sheet as a proxy for the QE effects; typically by calculating relative changes
in the balance sheet over time. While ensuring stationarity, such an exercise would
potentially equate a 5% increase in the balance sheet in Dec 2004 with a 5% in-
crease in the balance sheet in Dec 2021, which would represent a ten-fold increase in
purchases. I argue that the amount purchased on a weekly basis is indeed relative
- but relative to what? It could be argued that the size of the purchases should be
viewed relative to total outstanding the asset in focus (e.g. US Treasuries, MBSs
and investment grade bonds). The aforementioned effects on bank’s lending behav-
ior a specific example of more broad portfolio re-balancing effects. If we consider
the outstanding debt in the market as the full set of feasible credit investments, the
necessary size of an asset purchase program to have equal effects on spreads and
yields, should be linked to the total debt market in some way, as the additional
provided liquidity is spanned across a wider set of financial assets in a larger credit
market. In our considered time period, both the Fed’s balance sheet and the US
bond market grew considerably. Looking at the Fed’s balance sheet development in
Figure 3.4, the growth stems - by and large - from a few periods of of aggressive
purchases over time periods. In order to capture the information contained in these
purchases, I introduce a variable, D_Fed Balance UP, that takes the value of the
relative weekly change in the Fed’s balance sheet, given that it is larger than the
0.975 quantile of relative weekly balance sheet expansions in an expanding window,
starting in December 2002 and expanding from mid-2008. The window is expanding
to ensure no information spillover from the future to our prediction model. The
weeks that have a non-zero value for D_Fed_Balance_UP are highlighted in yellow in

Figure 3.4. D_Fed_Balance_UP is mathematically defined as follows:

Balance_r, if Balance_r; > ([30.%5

D_Fed_Balance UP, = (3.1)

0 otherwise
where Balance_r; is the relative change in the Fed’s balance sheet in time t, and

037 is the 0.975-quantile in the window from the first week (week 0) to week t.
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Figure 3.4: Federal Reserve Balance sheet and events. See Appendix, Subsection

8.4 for detailed description of the selected events
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In addition to the D_Fed_Balance_UP variable that accounts for significant liquid-
ity effects, selected FOMC meetings are categorized to capture potential effects on
spreads from changing market pricing of risk due to Fed policy changes. An included
event is either categorized as D_FED_Ann_Dec, which represents a FOMC meeting
indicating a slow-down of purchases or tapering, or D_FED_Ann_Inc, which rep-
resents announced acceleration of QE or increased commitment to credit markets
(e.g. a stated 'whatever-it-takes’ approach). The selection of which FOMC an-
nouncements to include are naturally subject to the author’s personal opinion and
possibly biases or other shortcomings. The expected impact from Fed announce-
ments is also a question of what the ex ante market expectations were, and the
potential gap between Fed’s announcement policies and the expected policies. In
the Appendix, Subsection 8.4, a more thorough overview of the events and, for
events we find it necessary, an associated comment on the why the event is attached
to either D_.FED_Ann_Dec and D_FED_Ann_Inc.
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4 Statistical Methods for Distribution Prediction

4.1 Quantile Regression

The desire to estimate quantiles of a data sample dates at least back to the 18th
century (e.g. Boscovich and later Laplace), then centered on the median regression
(Koenker, 2017). Quantile regression in modern academia was pioneered by Koenker
and Bassett (1978). Contrary to ordinary least square (OLS) regression, the quantile
regression developed by Koenker and Bassett (1978) does not specifically assume
errors to be normally distributed. This provides more flexibility with respect to
the data set. The quantile regression model has proved to significantly out-perform
least square estimates for non-Gaussian error distributions. Further, conditional
mean regression analysis is much more prone to destabilization due to data outliers,
as it equally weighs the error squares. Quantile regression, however, weights the
absolute errors differently depending on whether an observation is above or below

the specified quantile (see Equation 4.2).

The mathematical formulae for quantile regression, as proposed by Koenker and
Bassett (1978), are as follows:

Y, :BO,q"‘ZBi,qu,q‘i‘ﬁq (4.1)
i=1

The regression coefficients are estimated as the solution to the minimization problem:

min [ Y Oy —adl + D (1—0) |y — xib| (4.2)

BeR
tEL: yr >xeb tet: yr<web

The weight, 0, takes the value equal to the quantile level to be estimated, e.g. 0.05,
0.95. x; is a vector containing the independent variables and b is the vector with
the quantiles’ regression coefficients. Consequently, 6 = 0.5 represents a special
case that yields the solution to the least absolute error problem, i.e. the median

regression.

Quantile regression proves to be superior to OLS in presence of heterogeneous re-
lationships between explanatory variables and response variables. Such differences
in relationships are at risk of being neglected by an OLS apporach. Furthermore,
extrapolating results from OLS to the full distribution may lead to severely incor-
rect conclusions, as the significance and contributions in the different variables may

change considerably, dependent upon the quantiles in consideration.
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While the mean predictions provided by OLS may be interesting in a variety of dis-
ciplines (including finance), the mean serves as a poor metric for assessing financial
risks companies or investors are exposed to. For the investor being long a portfolio,
the lower quantiles (e.g. 1% or 10%) may be of interest, for example, due to leverage
control or liabilities coming due. Another example is a bond-funded bank, which
may want to control refinancing risk and study the drivers of higher quantiles in

credit spread changes’ distribution.

4.2 Backtesting of Quantiles

Accuracy tests for quantile regression models deviate from the prediction models
utilizing OLS. On a fundamental level, the quantile regression does not seek to
establish point estimates of observed values but rather point estimates of where 6%
of the observed values will be lower. For a simple OLS prediction of gy, = 2.00
and the corresponding observed value of y, = 1.90, there are a number of clearly
defined errors measures such as Mean Absolute Deviation, (0.10) or Mean Absolute
Percentage Error (5.3%). For the quantiles regression, however, these measures are
not applicable, as the actual quantiles at each point in time are unknown. Building
on the OLS example, let y; = 1.90 once again. The quantile regression model
yields a prediciton of §; 4—0.05 = —1.05. The accuracy of such estimates is difficult to
empirically test based solely on a few observations. This is why sufficient backtesting

of the model is a necessity.

Since the 1990s, the applications of Value-at-Risk-like calculations became more
widespread, although sometimes under different names (e.g. 'Dollars-at-Risk’, ’Capital-
at-Risk’, "Value-at-Risk) (Holton, 2002). Among the early advanced proprietary
VaR calculations was JP Morgan’s 'RiskMetrics’, which was developed at the wish
of Chairman Sir Dennis Weatherford’s desire to have a simple and sufficient risk
calculation to cover the spectrum of risks the bank faced in the coming 24 hours
(Adamko et al., 2015). In financial institutions’ regulatory framework, the back-
testing of quantile predictions and VaR calculations have become closely linked in
the academic literature (Gaglianone et al. 2011; Holton, 2002; Kuester et al., 2006).
More specifically, the 1996-amendments to the Basel I accords stated that banks
were, at a minimum, required to calculate daily Value-at-Risk, with a correspond-
ing backtesting by both external and internal supervisory 3. In this paper, the
backtesting procedure combines two of the earlier tests for VaR backtesting: i) the
Kupiec (1995) unconditional coverage test and, ii) the Christoffersen (1998) condi-

tional coverage test. In addition to being widely used, both tests are intuitive and

3See Bank for International Settlements’ Amendment to the capital accord to incorporate market
risks, https://www.bis.org/publ/bcbs24.htm
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quite simplistic in their application, which are the main rationales for selecting them

in this paper.

The unconditional coverage test proposed by Kupiec (1995) is of the earliest back-
testing procedures for testing the accuracy of loss distribution predictions. The
Kupiec (1995) test applies a proportion of failure (PoF) methodology, where the
predicted share of exceedances is compared to the expected share of exceedances.
An exceedance is defined an event in which the predicted value, 9,4, exceedes the
observed value, y;. After running the model, all events of exceedances are counted
and divided by the number of events. For example, considering the 1% quantile
one-week-ahead predictions for a period of 1,000 weeks, the expected number of ob-
served exceedances is 10. As such, we expect the model to only predict credit spread
changes above the observed change in 10 of the 1,000 weeks. The null hypothesis
is that the share of exceedances predicted by the model is equal to the quantile of
interest. Mathematically, such a exceedance function can be formulated:
1 if grg >

It,q - (4 3)
0 Otherwise

where 9, is the predicted quantile for the observation at time t, and y; is the
observed value at time t. Given such a function, the observed share of exceedances

for a quantile, p, becomes:

T
. 1
bo =7 ; L, (4.4)
where the predictions are made on the time interval [1, T].

The Kupiec (1995) test relates to the the unconditional prediction power of a quan-
tile prediction model, which test whether the observed share of exceedances,p,, de-
viates from the quantile. However, such a property would not alone be sufficent
to ensure the desired prediction properties. As Christoffersen (1998) points out,
such models’ predictions must also be independent of each other. For illustration
of the independence property’s importance, consider the following example: If the
model’s exceedance events are fully clustered in a subsequent order of four, there
may be indications that the predictions are not independent. If three exceedances
have occured in the recent three intervals, and given the fully clustered exceedances
modelled, there is no true probability distribution to estimate, as the next event
is known to be an exceedance as well. Such model behavior would distort the no-
tion of quantile predictions for the next interval since it would lead to wrongfully
assigning probability estimates to a deterministic event. This illustrates the need

to test the independence of the predictions. Christoffersen (1998) proposed a test
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for such conditional properties. The Christoffersen (1998) conditional coverage test
is formulated with the null hypothesis that the model’s prediction exceedances are

randomly distributed, indicating no systematic clustering.

4.3 Principal Component Analysis

Another important statistical method in the modelling is Principal Component Anal-
ysis (PCA). PCA is a widely applied dimensionality reduction method, with appli-
cations in a diversity of disciplines. The aim is the extract important features for
a set of covarying data sets and find the factors explaining a sufficient share of
their variance. With more-than-ever amounts of data available to researchers, the
need of dimensionality reduction techniques may rise, in order to combat the ‘curse
of dimensionality’, and, potentially, reduced explainability and accuracy in mod-
els (Verleysen and Frangois, 2005). Especially for time series, such as yield and
spread changes, whose changes are highly correlated, PCA substantially reduces
the number of calculations needed to explain close to all variability in the data set
(See Section 5.1). High correlations among series could be due to shared impacts,
or ‘common factors’, that each contribute to changes in the multivariate system.
Mathematically, the eigenvectors of the covariance (or correlation) matrix form a
new orthogonal basis. In the academic literature concerning factor modelling of
bonds, the aforementioned Litterman and Scheinkman (1991) is seminal, with the
famous interpretation of the three most important factors as level, slope, and cur-
vature, following inspection of the principal components’ loadings across the yield

curve.
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5 Empirical Methodology

In this section, a brief introduction to the extraction of the term structure factors,
both for the risk-free (RF) term structure and the credit spread (CS) term structure,
is given. Firstly, details on the extraction of term structure factors are presented, and
the eigenvectors of the correlation matrix are interpreted and visualized. Secondly,

the model specifications to be tested is formulated and discussed.

5.1 Extracting Term Structure Factors

With the objective of capturing information contained in the CS term structure and
RF term structure, the aforementioned method of PCA is applied. The method is
applied across the investment grade credit spread term structure (Table 3.1, Figure
3.1) and the risk-free yield curve (Table 3.3, Figure 3.2). The transformation to a

lower dimension is as follows:

X1, Xy = Y1, Y (5.1)

Where X;,i € (1,n) is ith maturity credit spread and risk-free yield time series. n
is the number of different maturities considered in total, and m (jn) the number
of PCs to be extracted. The correlation matrices for the two PCAs consists of the
simple relative changes for both the risk-free (RF) term structure and the credit
spread (CS) term structure. This is common practice in yield curve modelling to
ensure stationarity (ADF stationary tests of regressors in the appendix). In order to
decide on the number of principal component to extract, I study each component’s

proportion of variance explained, which is calculated as follows:

Ai
Variance explained by PC; = —75—— (5.2)

Z?ll Ai

Where J; is the eigenvalue of the eigenvector that calculates the ¢th PC.
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Figure 5.1: PCs of the risk-free yield: Variance explained by the PCs
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In Figure 5.1 and 5.3, the distributions of variance explained by the PCs of the
data sets are displayed. For table form, reference is made to the appendix. The
changes in the credit spread term have a dominant PC1 that explains more than
90% of the variance. Cumulatively, PC1, PC2, and PC3 explain more than 97%
of the variance, which is in the higher range of variance explained by three PCs
in the academic literature concerning interest rates. On the back of this, the three
first PCs of the CS term structure may encompass predictive power on CS changes
alone. For the RF interest rates, however, PC1 only explain 60.2% of the variance.
This is substantially lower than for other periods researched (Barber and Cooper,
1996; Litterman and Scheinkman, 1991). Driessen et al. (2003) investigate an
international factor-model using both currency- hedged and unhedged returns for
Japanese and German, and US bond returns. With the interpretation of the PC1
in the multi-country model as a worldwide level, PC1 is found to explain 60-20%
of the variance in international bond returns. For comparison, single-country factor
models were constructed as well, with the PC1 explaining 96-89%. As such, the
PC1 in this paper’s US Treasury data interestingly explains as much variance as the
worldwide interest rate level did in the period of 1990-1999, but nowhere near the
findings in the classical factor modelling of yield curve changes. One stark trend in
interest rates over the periods discussed here is the downward trend in US Treasusy
yield levels, proxied by the 10-year Treasury yield, which peaked at above 15% in
September 1981, more than 2 years after Paul Volcker took helm at the Fed. The
generally lower interest levels in the period may have reduced the importance of the
PC1 compared to that of other PCs.
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Figure 5.2: PC loadings for RF PCs
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In Figure 5.2, the principal components are plotted across the maturities. The
principal components, or the eigenvectors, of the yield changes’ correlation matrix,
which represent the impacts the factors have at different maturities. The eigenvec-
tors scaled by the corresponding eigenvalues are equal to the so-called ’loadings’.
As such, since the eigenvalues differ substantially for different the different PCs,
the pure eigenvectors are helpful for visual inspections of the impacts. The RF
PC1 display somewhat constant impact across all maturities but for the shortest
rates (3m and 6m). This supports the interpretation of PC1 as a level factor with
similar impacts across the yield curve. The risks related to RF PC1 is thus ap-
proximately parallel shifts in the yield curve. Such risks can be quantified by the
classical Macaulay (1938) duration metric. Further, PC2 has increasing impact for
increasing maturity, with close-to-neutral impact at mid-maturities. These findings
are in alignment with the classical interpretation of RF PC2 as the slope of the
curve (longer term yields less shorter term yields). RF PC3 display highest impact
for the 3m, 30y and 2y interest rates. That is, the shortest term yields, the longest
term yields, and at some point in-between. Noteworthy is the changing sign for the
mid-term yields. This is supportive of the curvature interpretation of PC3, as it has
a similar impact in the yield curve ’tails’ but opposite in the center. Due to the
numerous examples of PCA applications of PCs explaining 95+% of yield changes,
the fourth PC, PC4, is also included. PC4 has high impacts for the shorter-term
yields, while a muted, but downward trend for 2y-plus maturities. On the 3m-1y
interval, PC4 resembles a form of curvature relationship between these short-term
yields but in the opposite direction of what PC3 displays on the whole curve. Thus,
PC4 may represent some relative changes in the short-term Treasury market that

contributes to overall variance in the yield curve changes.
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Figure 5.3: PC loadings for Credit spread PCs
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In Figure 5.3, the variances explained by each CS PC are presented. In general, fewer
decomposition and interpretations of the PCs in the credit spread term structure
have been done in the literature.The first PC clearly dominates with an explained
variance above 90%. Cumulatively, PC1 and PC2 explain close to 95% of the credit
spread changes in the data set. Important to note is that the dimension in which
the PCA is applied to is maturity, and not credit ratings which Chun et al. (2014)
did. As I i) am building on the findings of Krishnan et al. (2010) by using factors
of the credit term structure, ii) want to analyze and compare the CS PCs and the
RF PCs in meaningful ways, I find the PCA of CS term structure more suited than
PCA in the credit rating dimension (See Chun et al. (2014) for such PCA).

Figure 5.4: PC loadings for Credit spread PCs
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In Figure 5.4, the normalized loading vector for the different credit spread maturities
can be seen. PC1 has a steady impact for all maturities, even more than the RF
PC1. Hence, CS PC1 is interpreted. PC2 trends upwards in maturity, arguably
like a slope component of the term structure. Contrary to the US Treasury data,
the credit spread data set does not contain any of the short-term maturities (jly).
For PC3 a curvature-like impact change can be seen from 1y-15y. For the longest-
maturity credit spreads however, there is a high-impact change from the 10-15y

loading, which differs from the usual curvature impacts.

5.2 Prediction Model Validation

In this section, the rationales for the thesis’ modelling and validation are presented.
In order to understand the rationales, it seems fruitful return to the objective of this
paper. The most fundamental objective is to test whether the information contained
in the CS PCs have prediction power on a wide distribution of credit spread changes.
Further, the findings of Krishnan et al. (2010), that the RF factors contains ad-
ditional information that substantially improves point prediction abilities, are to
be investigated for the whole distribution. Thirdly, by building on these preceding
and more parsimonious models, the models are expanded in a hierarchical fashion
to include other relevant macroeconomic variables, all common for prediction and
explanatory models in the literature. More specifically, the defined variables related
to the Fed are added to the parsimonious pure PC models in order to investigate
their prediction powers. Although the aims of the paper is related to prediction
ability of the models, the explanatory power of the variables in successful models is
considered interesting too. As such, these are investigated for the most successful

models.

Since I have manifold modelling desires, I find it useful to expand the models in a
hierarchical fashion. As the models are for future predictions and for practitioners
to apply (or build on), I emphasize the importance of out-of-sample testing of all
models. There is broad agreement in the empirical finance literature that strong
in-sample performance does not guarantee satisfactory out-of-sample performance.
The in-sample predictions are thus secondary. This also has implications for whether
variables should omitted due to high correlation, or a non-linear relationship, with
other independent variables, to avoid multicollineary-like issues, which can improve
explainability without necessarily improving predictive power (Alin, 2010; Mason
and Perreaul (1991)). Still, as Inoue and Killian (2005) note, the out-of-sample
tests may results in lower test powers, leading to higher changes of falsely accepting
prediction models (Type I error, with rejection of null hypothesis). Furthermore, the

risk of data mining, which could lead to us conclude positively on prediction models
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which really are built on spurious relationships. As several model specifications are
tested, the risk of data mining is indeed prevalent. Hence, I find it appropriate
to both report in-sample and out-of-sample results. The prediction models are not
only measured against each other but also benchmarked against the highly common
quantile prediction method Historical Simulation (HS), based on a rolling window

of equal size as the other prediction models.

In total, there are six model specifications to formulate. These are all tested for
1-week, 2-weeks, and 4-weeks ahead predictions for different credit qualities (AAA,
investment grade, BBB and CCC&Lower) and different maturities (1-15Y, and only
for investment grade rating). For each model, a name is assigned, which will be
consequently be referred to in bold in the rest of the thesis. The first model only
regresses on the two CS PC scores that explain the most of the variation. The model

is named 2xCS model, since it encompasses only two CS PCs:

ASpread, (t +h) = o g+ P1,q, CS-PCy (t) + B2, CS_PCs (t), +€1sh (5.3)

with h = [1,2,4] week(s), and CS_PC;(t) is the CS PC score of the ith most
dominant principal component with respect to variance explained. The CS PC
scores are the values along the new coordinate system, in which the PCs form the
basis, at each point in time. That is to say, if we fully assume CS PCI1 to rep-
resent the credit spread level (See Section 5.1), the CS PC1 score is the change
in the yield curve along the spread level axis. As earlier noted, these two PCs,
CS PC1 and CS PC2, explain approximately 95% of the variance in the yield
curve (See Table 8.2 in the appendix). The rationale to start with such a parsi-
monious specification are the desires to model with simplicity and to potentially
find highly applicable models. Furthermore, ASpread, is the conditional quan-
tile of the credit spread change (bps) from time t to time ¢ + h for the relevant
credit spread index (i.e AAA, Investment grade, BBB, CCC&Lower, and Invest-
ment grade with constant maturity in 1-15Y). The quantiles of interest are g =
[0.01,0.05,0.10, 0.20, 0.30, 0.40, 0.50, 0.60, 0.70, 0.80, 0.90, 0.95, 0.99], which should al-
low for more granularity in the tails of the distribution as all 0.01, 0.05, 0.95, 0.99 are
included. These are arguably the most interesting from an extreme risk viewpoint
and portfolio stress testing. The second model is a simple extension of the 2xCS
model to the 3xCS model, which, as implied by its name, also has the third most
dominating CS PC as a regressor as a explanatory variable. The CS PCs are still

the only regressors in the model.

3
ASpread, (t +h) = Bo.q + > _ Bi.g CSPCi(t) + €1sn (5.4)
=1
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with the similar notations as in Equation 5.3. The rationale for the specification
in Equation 5.4 is to test whether we could leave out the CS PC3 which explaines
nearly 3% of the variation in the credit spread variation at minor costs. The next
model is the first model which includes the RF PCs as well. Inspired by the mod-
elling in Krishnan et al. (2010), the pure CS PC models, 2xCS model and 3xCS
model, are expanded with RF PCs too, as we seek to account for any additional
predictive power contained in the RF yield-curve. Two RF extended models are
made specified: i) The 2xCS+3xRF model, which builds on the 2xCS model,
and ii) the 3xCS+4xRF model, which builds on the 3xCS model.

2 3
ASpready (t+h) = Bo.g+ > Big CSPCi(t) + Y Big RE_PCi(t) + €1 (5.5)
=1

i=1

3 4
ASpready (t+h) = Bo. g+ > _ Biq CS-PCi(t) + Y _ Big RE_PCi(t) + €1 (5.6)
=1 i=1

The latter model, formulated in Equation 5.6, is the model specification with the
most principal component variables in the paper and has variables that capture
more than 97% and 93% of the variance in the CS and RF term structure explained,

respectively.

The next model specifications is the first move away from formulations purely based
on PCs (either CS or RF). Following the quite extensive research seeking to explain
and predict credit spread changes with market or macroeconomic variables, a macro-
extended model is specified, the 2xCS + Macro model:

2
ASp?“eadq (t + h) = BO,CI + Z Bi,q CS*PCl(t) + 53,(1 WTIReturn (t) + B4,q GOLDReturn (t)+
=1

Bs. 4 S&P500eturn (£) + o, AVIX (£) + Br. g ATEDRATE (t) + €141
(5.7)

Lastly, the aims of taking Federal Reserve actions into account are addressed with the
specification of the 2xCS 4+ FED model, which represent a quite neat formulation,

given the inclusion of three Fed related variables:

2
ASpready (t+h) = Bo.q + Y _ Bi.g CS-PCi(t) + +Bs,¢ D-FED_Balance UP (t) -
=1 .

+B4,q D-FED_Ann_Inc (t) + fs5,g D-FED_Ann_Dec (t) + €4n
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, where, as defined in Section 3.4, D_FED _Balance UP is a variable, starting in second
quarter of 2008, and taking the value of the week-over-week expansion if the balance sheet
expansion is higher than a expanding window of 2.5% percentiles for historical increases.
As large parts of the weekly changes are considered noise and that today’s USD 9 tn
is primarily due to short periods of highly aggressive QE purchases, only a few of the
weekly increases are considered important, hence the percentile threshold. The other two
variables, D_FED_Ann_Inc and is a dummy variables taking the value 1 in weeks where
FOMC announces acceleration or increases, hence ”Inc”, in purchases, or 0 else. The
D_FED_Ann_Inc, however, takes the value 1 in weeks where FMOC announces slowdown

or decreases, hence ”Dec”, in purchases.

In sum, a wide range of model specifications are presented, all to be tested rigorously for
1-week, 2-week, and 4-week ahead predictions for a variety of credit spreads (both ratings
and maturities), as I seek highlighting potential heterogeneity across different credit spread

categories.
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6 Results and Discussion

6.1 Out-Of-Sample Results

In this subsection, the out-of-sample prediction results are presented. In total, I
have tested six model specifications for quantile predictions for one week, two weeks
and four weeks ahead. The credit spread changes are for five different maturities,
and for four different credit maturities (all investment grade). With 13 quantiles,
the total number of quantile prediction results is therefore more than 700. The
MAD (mean average deviation) is calculated for each quantile and the averages are
summarized in the following subsections. Nevertheless, MAD, which is commonly
used when predicting mean point estimates, is less suited for ranking predictions
of distributions. For illustration, consider a model which is specified to predict
the 0.5 quantile. After testing the model, the exceedance frequency is 51%, which
corresponds to a MAD of 0.01. Now, consider the hypothetical model’s prediction
ability for the 0.01, and a corresponding exceedance frequency of 0%. That is, the
model never overshoots the quantile. This would too yield a MAD of 0.01. Only
considering the deviation from the respective quantile, we would conclude that the
model specification is equally (un)successful at predicting the 0.5 quantile and the
0.01, which may prove to be a poor conclusion. A model specification setting the 0.01
quantile prediction to a artificially negative number would of course results in MAD
of 0.01 as well. At the same time, this would be an awful model specification without
any theoretically anchored formulation. Hence, the results are differentiated as to
whether results are in the center or tails of the distribution. I define the tails of the
distribution as q = [0.01, 0.05, 0.10, 0.90, 0.95, 0.99] quantiles. The center quantiles
are defined as q = [0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8]. For benchmarking purposes, a
historical simulation is performed based on a rolling window consisting of 350 weeks
for each quantile. From a regulatory perspective, the prediction of quantiles are
highly relevant for Value-at-Risk calculations, in which historical simulation is often
applied by financial institutions. For reference, Pérignon and Smith (2010) studied
financial institutions disclosure of VaR caclulations and found historical simulation

to be the most popular method.

After presenting the average absolute deviations of the different model specifica-
tions, the best performing models are then backtested with the Kupiec (1995) and
Christoffersen (1998) tests, to test prediction ability and potential clustering of pre-

diction errors, respectively.
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6.1.1 One-week ahead predictions

In Figure 6.1, the average absolute deviations for the one-week ahead distribution

are presented.

Figure 6.1: Average MAD - One-week ahead prediction results

1 Week, Full distribution
2xCS + 3xRF 3xCS +4xRF 2xCS+Macro 2xCS+Fed Historical Sim.

IG 0.78 % 0.84 % 077 % 1.01 % 1.54 %
ARA 0.97 % 1.01 % 1.13 % 1.31 % 090 %
BEE 0.93 % 0.86 % 0386 % 1.02 % 162 %
CCC- 0.77 % 1.00 % 108 % 1.22 % 1.38 %
1G1-3Y 1.22 % 1.40 % 1.34 % 0.77 % 198 % 0.99 % 321 %
IG 3-5Y 0.94 % 1.19 % 101 % 1.17 % 162 % 0.99 % 225%
IG5-7Y 1.26 % 1.06 % 1.19 % 0.96 % 1.36 % 1.23 % 1.88 %
IG7-10Y 0.97 % 1.16 % 121 % 1.22 % 123 % 1.22 % 1.04 %
IG 10-15Y 0.98 % 1.10 % 097 % 1.07 % 1.73 % 1.09 % 0.96 %
Average 0.98 % 1.07 % 1.06 % 1.08 % 148 % 0.97 % 1.93 %

1Week, g=<10%,90%>
2xCS + 3xRF 3xCS +4xRF 2xCS+Macro 2xCS + Fed Historical Sim.

IG
ARA
BEB 1.15 % 0.90 % 101 % 1.15 % 2.37 % 1.25% 1.02 %
CCC- 0.80 % 109 % 1.25% 152 % 0.89 % 132 %
IG1-3Y 1.18 % 131 % 159 % 1.98 % 0.96 % 4.36 %
IG 3-5Y 1.20 % 1.30 % 118 % 1.16 % 1.98 % 1.34 % 3.08 %
IG5-TY 212 % 1.70 % 190 % 1.37 % 209 % 1.92 % 2.68 %
IG7-10Y 1.45 % 1.59 % 154 % 1.65 % 176 % 1.94 % 1.23 %
IG 10-15Y 1.40 % 158 % 131 % 1.37 % 264 % 1.69 % 1.48 %
Average 1.27 % 1.27T % 134 % 1.22 % 192 % 1.40 % 2.69 %
1 Week, g=[1% , 5%, 10% ,90%, 95%, 99%]

2xCS + 3xRF 3xCS +4xRF 2xCS+Macro 2xCS + Fed Historical Sim.
IG
ARA
BEB
CCC-
IG1-3Y
IG 3-5Y
IG5-TY
IGT7-10Y
IG10-15Y
Average

The average absolute deviation is defined as:

Q
1
Average(MAD) = 0 Z |Tewp.q — Tpredyql (6.1)
q=1

, where () is the number of quantiles and 7., , is the expected exceedance fre-
quency, e.g. 1%, 5%, and 7., is the observed share of exceedances for the model

specification.
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As indicated by the color map, the introduction of our macroeconomic variables in
the model specification does not improve the prediction power. Interestingly, the
parsimonious 2xCS model, consisting only of the first and second principal com-
ponents extracted from the credit spread term curve, represents one of the most
successful models for one-week predictions. The two PCs in the 2xCS model ex-
plain nearly 95% of the variance in the credit spread time series (see Table 8.2 in
the Appendix). Contrary to the findings of Krishnan et al. (2010), I do not find
the risk-free factors to improve prediction ability for all spreads. While Krishnan
et al. (2010) predict point estimates for actual changes and not the expected dis-
tribution, I would expect the prediction of the center quantiles to be improved as
risk-free factors were introduced. This is not the case for the 2xCS+3xRF model,
with some investment grade spreads as exceptions. The 2xCS+3xRF model spec-
ification improves the predictions in the center quantiles, as defined above. More
notably, the introduction of the Fed variables contribute to a substantially better
prediction of the tail quantiles. Hence, practitioners may apply the 2xCS model,
the 2xCS+3xRF model, or the 3xCS+4xRF model for the center of the dis-
tribution and the 2xCS + FED model estimate the credit spread distribution
next week. The 2xCS+3xRF model, the 2xCS model, and the 2xCS + Fed
model are deemed the best performing models for further investigations. In the
credit quality dimension, the tails of the lowest rated bonds proves hard to predict.
In the maturity dimension, the lower maturity spreads are harder to predict for the
best performing models. While the 2xCS + Fed model is more accurate in the tails
of the distribution, the middle quantiles are less successfully predicting compared
to the parsimonious 2xCS model or the 2xCS+3xRF model. The model with
macroeconomic variables, 2xCS+Macro model and the CS PCs are worst of the

specified models but still perform better than the Historical Simulation.

6.1.2 Two-weeks ahead predictions

In Figure 6.2 the average absolute deviations for the two-weeks ahead distribution

are presented.
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Figure 6.2: Average MAD - Two weeks prediction results

2 Weeks, Full distribution
2xCS 3xCS  2xCS + 3xRF 3xCS +4xRF 2xCS+Macro 2xCS+Fed Historical Sim.

G 122%  141% 1.11 % 133 % 204 % 1.30 % 1.48 %
ARA 074%  088% | 063%  064% = 093% 0.81% 170%
BBB 102%  122% 0.89 % 104 % 235% 1.03 % 124 %
G 1-3Y 112%  129% 1.00 % 114 % 197 % 1.09 % 218%
IG 3.5 123%  146% 1.38 % 132% 197 % 1.18 % 156 %
IG57Y 098%  120% 112% 120% 178 % 1.01% 128 %
G710Y  122%  140% 121 % 151% 171 % 146 % 145 %
IG10-15Y  124%  117% 119 % 125% 243% 117 % 116 %
Average  105%  120% 1.01% 112% 185 % 1.06 % 1.47 %

2 Weeks, q=<10%,90%>
2xCS 3xCS  2xCS + 3xRF 3xCS +4xRF 2xCS+Macro 2xCS + Fed Historical Sim.

G 167%  168% 150 % 149 % 264 % 1.85 % 146 %
AAA 086%  090%  062%  057%  076% 1.21% 240 %
BBB 118%  118% 1.05 % 098 % 293 % 1.49 % 1.09 %
ccc- [081% 059% [083% | 062% . 151% [NNOBIGNN| 112%
G 1:3Y 113%  127% 1.01% 108 % 217 % 1.40 % 242%
G 3.5Y 134%  154% 167 % 142% 226% 151% 153 %
IG5-7Y 143%  154% 181 % 181% 235% 1.65 % 128 %
IG710Y  176%  176% 171 % 190 % 231% 216 % 127 %
IG10-15Y  184%  169% 146 % 153% 354 % 1.95 % 140 %
Average  131%  138% 1.26 % 127% 227% 1.61% 1.65 %

2 Weeks, g=[1% , 5%, 10% ,90%, 95%, 99%)]
2xCS + 3xRF 3xCS +4xRF 2xCS+Macro 2xCS + Fed Historical Sim.

G 070%  108% 0.66 % 113% 134% 150 %
AAA 059%  085% 0.65 % 072% 113% 0.88 %
BEB 083%  126% 0.70 % 111% 168 % 142%
cee- 074%  101% 0.53 % 072% 150 % 134%
IG1-3Y 11%  131% 0.98 % 121% 173% 191%
IG3-5Y 1%  137% 1.03 % 121% 162 % 160 %
IG57y  [[045% @ o0s0% DNGEEN  048% 111% 1.29%
G710 | 058%  098% 0.63 % 105% 101% 157 %
G10-15Y | 053%  057% 0.87 % 093% 113% 0.88 %
Average | 074%  103% 0.7 % 095% 136 % 1.38%

On average, the deviations are larger for all model specifications but for the 2xCS+3xRF
model and the Historical Simulation model. CCC&Lower credit spreads proves

to the credit rating for which predicting powers are strongest. Akin to the one-week
ahead predictions, the 2xCS 4+ Fed model displays superiority to the other spec-
ifications in the tails of the distribution. In the center of the distribution, however,

the models combining the CS PCs and the RF PCs are the most accurate. In the
maturity dimension, the best performing models are more or less constant in the
center of the distribution, while substantially better for increasing maturity in the
tails of the distribution.

44



6.1.3 Four-weeks ahead predictions

In Figure 6.3 the average absolute deviations for the four-weeks ahead distribution
are presented. The four-weeks ahead predictions distinguish from the one and two-
weeks predictions as the average MADs have increased significantly for the 2xCS
model, the 2xCS+3xRF model, and the 2xCS+Fed model. Especially, for
the center of the distribution the deviations are now close to 2% for all models.
The lowest rated bonds (CCCLower ratings) remain the exception, especially in the
center of the distribution. The 2xCS 4+ Fed model once again performs better
than the other specifications. For the first time, the Historical Simulation predicts

better in the center of the distribution than all models purely based on PCs.

While the prediction ability Historical Simulation is quite constant as the models
are tested for one-week to four-week predictions, the factor models’ performance

deteriorates quite dramatically.

45



Figure 6.3: Average MAD - Four weeks prediction results

4 Weeks, Full distribution
2xCS 3xCS  2xCS + 3xRF 3xCS +4xRF 2xCS+Macro 2xCS+Fed Historical Sim.

G 156%  164%  168% 177% 2.16 % 164 % 148%
AAA 125%  138%  138% 140% 1.16 % 145 % 111%
BBB 149%  173%  138% 143% 237 % 151 % 218%
ccC- | 068%  081% 0.85 % 102% 140% [OEEN 157 %
I 1-3Y 146%  164%  134% 156 % 212% 161 % 183%
IG 3-5Y 161%  179%  163% 168 % 206 % 162 % 168 %
IG 5-7Y 132%  153%  1.35% 122% 191% 124 % 163 %
IG7-10Y  137%  138%  138% 155 % 1.96 % 152 % 159 %
IG10-15Y |~ 184%  182%  178% 186 % 214 % 206 % 165 %
Average  140%  152% 142 % 150 % 192% 145 % 164%

4 Weeks, q=<10%,90%>

2xCS + 3xRF 3xCS +4xRF 2xCS+Macro 2xCS + Fed Historical Sim.

IG 213 % 1.93 % 229 % 206 % 279 % 252 % 1.35 %
AAA 150 % 1.50 % 1.59 % 154 % 1.04 % 2.10 % 091 %
BEE 182 % 211 % 1.57 % 167 % 292 % 211 % 228%
coc- [ NOSHENNNOSNOs0 %I 067% 1 107 NGRS 155
IG 1-3Y 184 % 1.91 % 1.72 % 162 % 255 % 242 % 175 %
IG 3-5Y 193 % 2.06 % 2.08 % 195 % 255 % 220 % 171 %
IG 5-7Y 182 % 1.88 % 1.84 % 146 % 259 % 1.91 % 164 %
IG 7-10Y 168 % 1.63 % 1.72 % 187 % 246 % 222 % 145 %
IG 10-15Y 279 % 257 % 2.59 % 250 % 3.01 % 3.30 % 224 %
Average 1.76% 177 % 1.77 % 1.71% 237 % 211 % 165%

4 Weeks, q=[1% , 5%, 10% ,90%, 95%, 99%)]

2xCS + 3xRF 3xCS +4xRF 2xCS+Macro 2xCS + Fed Historical Sim.

I 090%  129% 0.98 % 142% 142 % 0.61% 162 %
AAA 095% 124 % 113 % 123% 129 % 0.69 % 134 %
BBB 111%  129% 115 % 115% 173 % 0.80 %

cee 108%  137% 1.26 % 142% 144 % 0.7 % 160 %
IG 1-3Y 101%  131% 0.90 % 150 % 162 % 0.66 % 193%
IG 3-5Y 124% 147 % 111 % 137 % 150 % 0.95 % 165 %
IG 5-7Y 075%  111% 0.76 % 093% 111% PU0E%T  163%
IG 7-10Y 101%  108% 0.98 % 119% 137 % 0.7 % 175%
IG10-15Y | 074% 094 % 0.83 % 111% 113 % 0.61 % 0.96 %
Average  098%  123% 1.01 % 126% 1.40 % 0.69 % 162%

6.1.4 Prediction plots

In the figures below, the plotted predictions for the best performing models overall

can be seen.
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Figure 6.4: The 2xCS model: 1-Week ahead predicted tail quantiles and actual
credit spread changes (bps)
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Figure 6.5: The 2xCS+3xRF model: 1-week ahead redicted tail quantiles and
actual credit spread changes (bps)
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Figure 6.6: The 2xCS+Fed model: 1-week ahead predicted tail quantiles and actual credit
spread changes (bps)

The 2xCS+Fed model
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6.2 Backtesting the Out-of-Sample results

In this subsection, the results from the Kupiec (1995) and Christoffersen (1998) tests
are presented. Only the best performing model specifications, the 2xCS model,
2xCS+3xRF model and the 2xCS+Fed model are presented with their full
distribution, as the other model specifications are now considered of less interest.
The Kupiec (1995) test ensures that similar absolute deviations in the tail quantiles
(e.g. 1% and 5%) are harder punished than the deviations in the center quantiles.
As argued in the discussion of the MAD tables, this is a critical feature of statistical
tests for a predicted distribution. Further, another valued feature of predicting
models, beyond the difference between predicted and expected value, is the model’s
tendency to adapt to newly received information, and, thus, avoids clusters of errors
(Campbell, 2005). Christoffersen (1998) formulated these conditions as two distinct
properties, namely; i) the unconditional coverage property, and ii) the independence
property (Christoffersen (1998); Campbell (2005)). The first property is tested with
the Kupiec (1995) test, while the latter is tested with the Christoffersen (1998) test.
In this paper, both tests are required to pass in order for a series of predictions to

be deemed ’successful’.
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Quantile 1.0% 5.0% 10 % 200% 300% 400% 500% 600% 700% 80.0% 900% 95.0% 99.0%

1-3Y
3-5Y
5-7Y
7-10Y
10-15Y

Figure 6.7: The 2xCS model: Backtesting results with Kupiec (1995) and Christoffersen

(1998) at 5% significance level. Two tests passed=green, one test passed=pink, none passed=red

As seen in Figure 6.7, the quantile predictions in the lower part of the distribution
(5%-30%) are more prone to failing one of the tests than other parts of the distri-
bution. The introduction of the RF PCs as variables to the model does not improve

the test performance but rather further exacerbates it in these quantiles.

Quantile 10% 50% 10 % 200% 300% 400% 500% 600% 700% 800% 900% 950% 99.0%

IG 1-3Y
IG 3-5Y
IG 5-7Y
IG 7-10Y
IG 10-15Y

Figure 6.8: The 2xCS+3xRF model: Backtesting results with Kupiec (1995) and Christof-
fersen (1998) at 5% significance level. Two tests passed=green, one test passed=pink, none

passed=red

Quantile 1.0 % 5.0% 0% 200% 300% 400% S500% 600% 700% 800% 90.0% 95.0% 99.0%

1G 1-3Y
1G 3-5Y
1G 5-7Y
I1G 7-10Y
IG 10-15Y

Figure 6.9: The 2xCS+Fed model: Backtesting results with Kupiec (1995) and Christof-
fersen (1998) at 5% significance level. Two tests passed=green, one test passed=pink, none

passed=red

In Figure 6.9, the 2xCS+Fed model results are illustrated. It displays the im-
provements made by introducing the variables accounting for Federal Reserves’ most
rapid balance sheet expansions and its announcements of policy changes. The 5%
quantile predictions are improved for the higher rated bonds. The models are more

successful in predicting the upper quantiles of the distribution, suggesting that i)
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the RF PCS and CS PCs contain information about future credit spread changes,
while more variables are needed for explaining the lower quantiles. These findings
are in-line with the findings of Pires et al. (2010) which indicated that the center-to-
upper Credit spread quantiles were driven by the same factors. With respect to the
credit spread dimension, the lowest rated bonds are not as successful as the higher

quality bonds.

Quantile 1.0 % 5.0 % 10% 200% 300% 400% S500% 600% 700% 800% 90.0% 95.0% 99.0%

1G 1-3Y
1G 3-5Y
IG 5-7Y
IG 7-10Y
IG 10-15Y

Figure 6.10: Historical Simulation: Backtesting results with Kupiec (1995) and Christof-
fersen (1998) at 5% significance level. Two tests passed=green, one test passed=pink, none

passed=red

To further illustrate the model’s performance, the backtesting results of the His-

torical Simulation is presented as well.

6.3 In-sample Results

In this section, the regression coefficients of the most successful predictions models
are discussed. Quantile regressions are run on the whole data set for the 2xCS
model, 2xCS+3CS model, and 2xCS + FED model with the purpose of further
analyzing potential relationships between the the different credit spread changes

(independent variables) and the variables used for prediction.

Dep. Var Quantiie 70% 50% 100% 200% 300% 400% 500% 600% 700% 800% 900% 950% 990%
s Bog 25117 8694 5282 2866™* -1651* -08725"* -0195" 04967** 1415"* 2714 4562 7648 2972
% Std.Err 1.984 0.5427 0.4104 0.1775 0.1327 0.1162 0.1129 0.1203 0.1426 0.1811 0.2555 0.7225 2.442
€ Besroia 2435  10.84" 1155 1437** 1473** 1504** 1554™* 1666™* 19.66™* 2225 2291°* 2687 5465
g Std.Err 38.42 6.335 3.897 1.312 0.8249 0.6451 0.5947 0.6387 0.8084 1.205 2121 8.252 53.75
¢ Besraa 2794 1578  -8.665 -1357*% -13.05* -10.02"** -11.06™* -9.119™* -6.977** -603  -2.06  9.854 99.07
= Std.Err 127.5 21.69 12.88 4.443 2,942 2377 2.267 2.499 3.240 4.812 8917 28.62 144

Bog 5307 -B3.97*** -44AT** 27.20"* -16.96™* 9162 -2609*  4.354** 1163** 2206 4382 78.18*** 1735
g Std.Err 22.43 3.396 3.002 1.450 1.225 1.110 1.064 1.119 1.254 1.689 2.774 5.626 10.75
9 Beseoig 1929 3455 3256 4007** 40.97*** 47.09"* 5445 6544"* 67.417* 7611 9485 6338 1288
8 Std.Err 412.4 37.13 26.75 10.18 7.270 6.021 5.607 6.053 7.422 11.71 24.84 64.62 212.8
8 Bosraa 1396  -159.7  -1482 -89.25" -67.49" 3075  -4747  -1667 2821 3978  67.04 4317 317.4

Std.Err 1143 135.3 94.69 35.46 26.17 223 21.38 23.69 29.63 47.62 103.8 268.4 925.4

Figure 6.11: In-sample 2xCS model: QR coefficients for different credit ratings (bps). ***
p<0.01, ** p<0.05, * p<0.10

For illustration, the investment grade spreads and CCC&Lower spreads are pre-
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sented. In the maturity dimension, the 1-3Y bonds and 10-15Y bonds are presented.

The Bes pe1,4 is significant across all but the tails of the distribution, with a pos-

itive value for all significant coefficients. This implies that an increase in the level

factor (See Section 5.1) lifts the estimated distribution of next week’s credit spreads
(10.84-26.87 bps for an incremental increase in the CS PC1). The fBcs peay, the

curvature factor for CS, is significant for mid-quantiles (70-20%) in investment grade

spreads, while less significant in the CCC&Lower credit spreads.

Dep. Var_Quantile 10% 50% 100% 200% 300% 400% 500% 600% 700% 6800% 900% 950% 990%
Bog 23.94%* -8516*% 5342 2787™* -1672"* -0.8995"* -02453"* 05164** 1452 2759"* 4621** 8113** 3149
Std.Err 1.471 0.5941 0.3104 0.1749 0.1278 0.1151 0.1132 0.1231 0.1440 0.1849 0.2517 0.5955 1.707
Bes peig 02323 1143 128" 1519* 1549** 1652**  16.02"** 1847*** 2027*** 2208"* 2325** 2605™* 5322

% Std.Err 29.23 7.065 2974 1.301 0.8306 0.6787 0.6434 0.7144 0.9052 1.357 2.420 7.699 38.86
g Besran 1012 -0.4607 1043 -11.40% -1251** 9567** 9161** -8764** -6445* 6138 -0.8097  5.833 98.40
€ Std.Emr 93.35 2367 10.26 4.547 3.015 2.520 2.445 2.752 3.520 5.290 9.678 24.88 95.86
£ Brerca 6580 2920 -4156 -2.504* -2452** 2401** 1188  -2446** 1602 -0.3995 -1.541 1625  -24.36
g Std.Err 26.22 6.612 2.940 1.495 1.033 0.8806 0.8519 0.9572 1.214 1.708 2.843 8.383 46.89
2 Brerag 7951 3013 3157 07745 1211 08501 06601  1378" 1461* 08617 1935 5684 28.91
Std.Err 42.54 8.056 3.263 1.385 0.8712 0.7052 0.6538 0.7059 0.8653 1.167 1.956 5.641 51.25
Brr pca,q 441 3572 1663 -0.1223 -0.1964 01018 02969 -1636 -1.803 -06226 -1607 -5821  -43.39
Std.Emr 55.17 10.26 443 2.047 1.335 1.156 1.109 1.235 1.542 2117 3.605 8.252 64.85
Bosg 7397 -B5.18**% -44.48** 26.76"* -1T.78%* 9392 2975 3875 1206 2173 4518 79.66** 1775
Std.Err 9.646 2.938 2.814 1.340 1.167 1.123 1.065 1.118 1.269 1.690 2.675 4.741 12.38
[ 4393 4972 ATA4*  BB2G** 5331 G532 79T 7384 80554 70.08** 8827  50.69 108.3
Std.Err 176.8 32.86 25.31 9.655 7.266 6.470 6.054 6.599 8.268 13.10 27.18 64.11 201.8
g Bes_pcaq 2224 1087 7749 2099 8770 1463 4.086 9424 5217 3952 5597 3972 160.4
3 Std.Err 661.5 121.5 89.91 34.55 26.7 24.16 23.01 25.39 3217 51.15 108.0 251.5 763.6
§ Brr peiq 2458  -7205*  -4014 -37.26*** -4184** 2616** 2521 6386  -1217 1409 1553 3757 55.66
(@] Std.Err 179.6 3328 27.13 12.03 9.701 8.651 8.016 8.507 10.08 14.89 29.48 64.40 258.3
Brr pcaq 2883 1471 1804 1183  2042™ 1001 5263 5095 -4078 -1152 8022 3214 85.70
Std.Err 271.6 40.48 28.75 10.62 8.204 6.977 6.152 6.245 7.151 9.998 19.14 44.43 350.7
Brr pesq 777 1321 1185  -1007 1788  -9.889 7385 7084 6827 9490  -1189  -6533  -1221
Std.Err 3486 51.78 37.91 14.88 13.28 11.57 10.43 10.56 12.00 16.74 30.14 77.48 462.3

Figure 6.12: In-sample 2xCS+3xRF model: QR coefficients for different credit ratings
(bps). ¥** p<0.01, ** p<0.05, * p<0.10

The coefficients in the 2xCS+3xRF model includes the three RF PCs. Brr_pc.1,4

is significant for all but the tail quantiles, with a negative value for most quantiles

in investment grade spreads. Increasing RF levels are thus significantly explaining

the lowering of next week’s credit spread distribution.
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Dep. Var_Quantile 10% 50% 100% 200% 300% 400% 500% 600% 700% 80.0% 900% 950% _990%
Bog 18.68™ 74T 5217 2797 1662 -0.8638"* -0.2092° 04650 1304 2637 44757 7206**  24.80%*
Std.Err 0.8660 0.5110 0.3628 0.1733 0.1341 0.1178 0.1145 0.1205 0.1386 0.1779 0.2384 0.4969 1.446
Bes pcig 2089 1319" 1221** 138** 14257 1537~  155%* 1659 18557 21157 21327 2539 3251

% Std.Err 17.54 5.661 3.197 1.206 0.8190 0.6548 0.6046 0.6394 0.7606 1.100 1.852 5.020 26.36
£ PBesrag 8531 -1747  -9638 -14.1%* -11.97** _1318** 1014+ 5376 -1003 1558 07947 -4617  -5444
€ Std.Emr 57.00 17.79 10.32 4.121 2.931 2392 2264 2.417 2731 3.738 6.020 15.09 58.33
fg’ B b FeD Balance UPq -396.97 -399.2*** 3316 2613 -1536** 5050 5333" 74977 1502 2891** 2813™* 6342 1010
§ Std.Err 58.56 19.08 15.290 10.03 8.568 7.974 8437 9.319 11.37 16.43 30.64 31.50 103.9
E  Boreoamincg 99277 -87.69 -91257* 05764 -06127 -1416  -01029 01213 -05794 -1012 -1272 2590 -18.24
Std.Emr 18.73 5279 2.852 1.533 1.236 1.099 1.101 1.192 1.451 1.725 2.366 6.528 39.93
B b_FeD_Ann Decq 1514 3295 2981 1318 02430 -0.3601 05616 -0.09162 0.1261  1.440 -0.3039  1.886 -13.81
Std.Err 2222 6.288 3279 1.844 1.234 1.136 1.079 1.160 1.271 1.885 2.147 6.237 38.12
Bog 12407 G237 4327 7OTF 723 Q722 3A(Tr 3T5T {167 2107* 40757 B9.O6** 1530+
Std.Err 8.368 3.262 2.490 1.419 1.212 1.100 1.067 1.122 1.258 1.566 2371 4.980 10.03
Bes petg 8999 3517  3531* 4257 35657 37.64™ 4361 5517 5776 6196 7758 63.18 1185
Std.Err 151.5 33.19 19.99 9.380 7.100 5954 5631 6.052 7.230 10.26 19.71 53.16 195.5
g Bes pcaq 7086  -1124  -6527 -9574** 5278~  -30.13 3392 8326™ 111.8™ 1276 1433~ 1731 1223
S Std.Emr 371.4 111.2 69.81 3323 25.49 22.00 21.09 2261 27.53 34.99 63.40 154.4 498.0
B Borepanceurgq 6325 -1656"* -B74.9%* 9295 3332 1016** 1434  1571** 1691** 1630"* 1487 1401*** 4156+
8 Std.Err 796.4 161.1 102.6 88.35 76.02 74.84 78.58 85.33 101.2 146.4 310.8 308.70 1252
B o red annincg  -342.0° 1417 98.20%* 7892 1472 14.90 12.11 7863 09052 -7.625 -4.963 3404 24650
Std.Emr 180.0 33.92 19.31 14.33 11.95 10.27 10.26 11.08 13.17 17.66 2349 64.44 273.8
B b_rep_Ann_beca 9257 3358 3228 1804 1054 5211 06981 -06725 4131 2727 1899 1503 66.78
215.0 40.24 2242 15.04 12.09 10.60 10.05 10.80 12.53 14.24 29.07 61.62 261.6

Std.Emr

Figure 6.13: In-sample 2xCS+Fed model:
$k 50,01, ** p<0.05, * p<0.10

QR coefficients for different credit ratings (bps).

An interesting finding in the 2xCS + Fed model is the significance of D_FED _Balance_UP
and D_FED_Ann_Inc. The variable for actual (extreme) purchases is positive for
most quantiles but negative for the lowest quantiles. This suggest the subsequent
widening of the credit spread change interval. The coefficient is not to say that asset
purchases increases spreads but rather that expansions of the amounts is expected
after aggressive asset purchases (more than 2.5%-percentile of historical purchases).
As such, the asset purchases, which is a monetary policy question, will tend to co-
vary with other extreme events. As such, the inclusion of these variables account
for important information. However, a weak point in modelling of policy actions
for prediction matters is that the validness of a model may be dependent upon the
political leadership (here: Fed leadership). Policy actions coming as a response to
changing conditions (e.g. Covid-19 or GFC) are assumed to occur during similar
conditions in the future. If the Fed’s political leadership were to change dramatically
in the future, the Fed data and their historical implications for credit spreads may
be incorrect. The D_FED_Ann_Inc is significant for the lower tail of the investment
grade distribution, all with negative sign (expect 95%). The D_.FED_Ann_Dec, how-
ever, is not significant which could imply that the effects of the events in the period

are priced in or expected.
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7 Conclusion

In this paper, several quantile regression models for predicting the future distribution
of US credit spread changes are presented and tested out-of-sample. Parsimonious
models consisting only of term structure factors significantly outperform models
containing additional market-wide variables. As such, the amount of information
contained in these term factors are found to be sufficient for successfully predicting a
quite granular 1-week ahead distribution of credit spreads. For 2-weeks and 4-weeks
ahead predictions, exceedances are clustered and therefore represent a violation of
the much-desired independence property of quantile prediction models (See Section
4.2). Further, variables to account for announcements Fed policy behavior related
to the QE programs improve the out-of-sample predictions, especially for the tails of
the distributions. The categorization of these events could be subject to criticism as
no further decomposition related to the expected and unexpected policies are made
(See 8.7 for events included and categories). Purely based on a MAD metric of pre-
dictions, the inclusion of risk-free yield factors improves the prediction of the middle
of the distribution compared to the pure credit spread factor models. Backtesting
of the models with conditional and unconditional coverage tests indicates that the
models based on credit spread principal components are most successful, while the
inclusion of the risk-free factors lead to a weaker model, overall. As such, I do not
find support for general improved predictions by adding the risk-free yield curve
factors to the models, which is contrary to Krishnan et al. (2010). For predictions
of 4-weeks ahead credit spread changes, historical simulation performs as well as my
proposed models. Thus, they have limited use for prediction horizons over many

weeks.
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8 Appendix

8.1 The Kupiec (1995) test

P (L )
LRy ypiec = —2In [W ~x; (8.1)

, with n; being the number of exceedances when backtesting in the out-of-sample.
ng is the number of non-exceedances. Thus, the total number of events is ng + ng .

p and p are the expected share and the observed share of exceedances, respectively.

ni
ni-+no

That is: p=qgand p = for the quantile, gq.

8.2 The Christoffersen (1998) test

(1 —p)mop™ 9

LRCh'I’. = —2In n n ~X
(1 = por)™® pgi* (1 — pi1)™o pitt ?

Here p is the expected share of exceedances. ngg is the number of events in which two
consecutive non-exceedances is observed. ng; is the number of events with a non-
exceedance followed by an exceedance, nyy the number of events wit an exceedance
followed by a non-exceedance. ni; notes the number of two consequtive exceedances.

Furthermore, the two proportions, pg; and p1, are defined as follows:

Po1 = o1
0 =——"—
No1 + Moo

P ni
n=—"
N1 + N1

8.3 Principal Component Analysis

Table 8.1: Explained variance by credit spread term structure principal compo-

nents

pC1 PC2 PC3 PC4y PC5 PC6

(%) Var. explained 90.5% 4.3% 2.7% 1.1% 0.8% 0.6%
Cumulative explained 90.5% 94.8% 97.6% 98.6% 99.4% 100%
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Table 8.2: Explained variance by risk-free term structure principal components

pPC1  PC2 pPC3 PC4y PC5 PC6 PC7T PCS PCY

(%) Var. explained 60.2% 176 % 9.6% 64% 3.9% 14% 0.6% 02% 0.1%
Cumulative explained 60.2% 77.8% 87.4% 93.7% 97.7% 99.0% 99.7% 99.9% 100%

Figure 8.1: CS PC1 score time series
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Figure 8.2: CS PC2 score time series
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CS PC3 score time series

Figure 8.3
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Figure 8.4
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Figure 8.5
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8.4 More on Fed data

Figure 8.6: Percentiles of weekly changes in Fed’s balance sheet
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Color codes: D_FED Ann_Inc, D_FED_Ann_Dec, None
25.11.2008 |FOMC announces program to purchase USD 100 bn of agency debt securities and USD 500 bn of mortgage-backed
securities (MBS). Marks the start of QE1
18.03.2008 | Apnounces expansion of its asset purchasing program. Now USD 1.2 tn of MBS and USD 200 bn of agency debt.

Purchases of long-term Treasuries also introduced. Purchases to be done by year-end.

12.08.2009 | Announces gradual slowdown of Treasury purchases and anticipates completion by October 2009. Categorized as
D_FED_Ann_Dec since it represents a slowdown and guidance of the program's completion.

23.09.2009 |Rejterates its intention to complete Treasury purchases by October-end. Also anticipates slowdown of MBS and agency
debt purchases

04.11.2009 | Apnounces a USD 25 bn reduction in agency debt-target. Included, altough somewnhat in-line with guided policy, as it
represents the first numerical specifics with respect to the slowdown

10.08.2010 | Apnounces its intention to reinvest principal payments on its current holdings

03.11.2010 | Announces plan to expand balance sheet by purchasing long-term Treasuries, USD 600 bn by end of Q2'11
22.06.2011 | Announces end of QE2 and plan to reinvest payments to be received. No variable attached to the event as Fed sticks to

guiding and reinvesting security recievables already was a well-established policy tool following QE1

21.09.2011 | Announces the so-called 'Operation Swift', which was undetaken to increase the average maturity of the Fed's holdings.
Buying 400 USD bn in 6-year-plus securities and selling 3-year-less securities for an equal amount. Operation Swift does
neither represent a slowdown nor acceleration of purchases.Hence, the event is not deemed suited for any of the
categories

20.06.2012 |\ Announces that it anticipates the completion of 'Operation Swift' by the year-end

13.09.2012 | Apnounces increasing purchases of MBS (up 40 USD bn per month). Also hints at additional purchases if labor market
does not improve. Marks the beginning of QE3

1212.2012 | Apnounces the continuation of the MBS program and launches purchase program of long-term Treasuries, wanting to
see improved labor market outlook. Fits the category as the event includes both continued purchases, and, more
importantly, expansion to Treasuries

18.12.2013 | Announces plan to slow down pace of asset purchases. The Committe still stresses that the course of purchases is not
preset. Announcement of slowdown, as labor market conditions had improved. However, not widely unexpected
announcement. Still, included in the catogory as it represents a policy shift

29.01.2014 | Apnounces a 5 USD bn per month reduction in purchases of MBS and Treasuries. Further slowdown - once again USD
5bn

19.03.2014 | Announces another reduction in purchases of MBS and Treasuries. The last of these reductions to be included in the
category as a clear USD 5 bn per meeting-pattern is established. Indeed, the FOMC continued to decrease purchases by
USD 5 bn for every meeting in Jan-Sept 2014. The last of these reductions to be included in the category as a clear USD
5 bn per meeting-pattern is established

17.09.2014 | pyplishes plan to normalize balance sheet ('Policy Normalization Principles and Plans'). A key feature in the plans is to
cease the reinvestments of securities' principal payments. Regarding the MBS held, it is stated that any sales will be
limited. The last event included from QE3.

14.06.2017 | Announces that it expects the normaliziation program to begin within year-end, contingent upon anticipated
deveolopments. The event is the first clear signal of balance sheet normalization

20.09.2017 | Announces the normalization to begin in October. While guided, and partially expected by market participants, the event
is important as it represents the first specific policy change to include balance sheet reduction

11.09.2019 | Announces purchases of Treasury bills at least into Q2'20, following the repo market turmoil in Sept. 2019. The
purchases of USD 60 bn per month is signifcant, and thus included. However, | do not consider this the start of QE4
15.03.2020 | Apnounces its intention of buying USD 500 bn Treasuries and USD 200 bn in MBS in the coming months, amid the
global Covid-19 outbreak. The event is the beginning of an unprecedented balance sheet expansion

23.03.2020 | Apnounces a signifcant expansion of the asset purchasing program. The program is expanded to several other asset
classes as well, e.g , primary and secondary markets for corporate bonds and ABS. The Fed promises to use 'its full
range of tools' to support the flow of credit and other objectives

10.06.2020 |FOMC directs the Desk to continue purchasing 'at least' at current pace, resulting in USD 80 bn Treasuries per month
and USD 40 bn of MBS. Categorized as D_FED_Ann_Inc since the FOMC established the current pace as a lower-
bound going forward and directs the Trading Desk to be prepared in order to adjust as 'needed to sustain the smooth
functioning' of credit markets

16.12.2020 | Apnounces its intention of slowing down purchases but not 'until substantial further progress has been made toward the
Committee's maximum employment and price stability goals. ' The purchasing volumes of Treasuries and MBS were
both held at approx. USD 80 bn and USD 40 bn, respectively. Although these are one of the first hints of slowing-down
purchases, | have categorized it as D_FED_Ann_Inc since the conditions needed for normalizations illustrates Fed's
committement to continued support in the markets. The tone from the Committe is still to use 'its full range of tools to
support the U.S. economy.'

03.11.2021 | Apnounces its first reductions in purchasing volumes, USD 10 bn for Treasuries and USD 5 bn for MBS. Note the
relative reduction is equal. Tapering of purchases starts

1512.2021 | Announces further acceleration of tapering in both Treasuries and MBS. FMOC sees more rapid tapering as necessary

as inflation remains elevated (no longer the 'transitory’-wording) and labor markets have improved
SOURCES: NEW YORK FED, BROOKINGS INSTITUTION

Figure 8.7: Selected Fed events related to QE programs, and their dummy category
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8.5 More on the data
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Figure 8.8: Regressor data correlation matrix

Figure 8.9: Augmented Dickey Fuller test statistics for regressors
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tests are conducted using the number of lags that minimizes the Akaike information criterion

Figure 8.10: S&P500 - weekly returns in sample period
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Gold price - weekly returns in sample period

Figure 8.12
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8.6 In-Sample QR results for best prediction models

Figure 8.15: In-sample: QR coefficients of the 1-week 2xCS model on different
investment grade maturities (bps). *** p<0.01, ** p<0.05, * p<0.10

Dep. Var Quantile 10% 50% 100% 200% 300% 400% 500% 600% 700% 800% 90.0% 950% 99.0%
Boq 24417 8653 -4.861"* 2545 1578 0.8876"* -0.2463"* 0.3862°* 12227 2142°* 4.110* 8104 3451
Std.Err 1.476 1.032 0.3287 0.1656 0.1121 0.1031 0.1023 0.1091 0.121 0.1387 0.3155 0.7799 2.445

g Bes peig 06942 1238 1412 1595 16.50"* 17.74*  18.14** 1844** 2052~ 2160 2484 3125 6317
2 Std.Err 30.30 12.17 3.268 1.226 0.6988 0.5716 0.539 0.5812 0.6942 0.9153 2.834 9.236 53.00
[, 3594 2434 2976 27.02%** 27.40"* 27.45*** 27.36** 534" _1887* 1667 -1724 -1452 6579
Std.Err 103.0 44.30 11.65 4.387 2.529 2.129 2.055 2.234 2.765 3.576 11.06 36.29 143.2
Boq 28.07*** -8.063*** -5.263** -3.053** -1827** 0.9195"* -0213* 05253** 1587 2.857*** 5276 8249 27.01"**
o Std.Err 1.415 0.5153 0.3592 0.1869 0.1405 0.1241 0.1238 0.1295 0.1585 0.2009 0.3367 0.6377 1.960
% Bosrag 716 1337 1244 1130 1143 1158 1283 136 12.827* 14.10"* 1659 1659 2650
g Std.Err 28.27 5.370 3.196 1.264 0.8278 0.6751 0.6524 0.6985 0.9098 1.291 2.869 6.917 34.63
~  Besrag 1396 2630 -3.191 -10.37* -7.680"* -5482  -2923  -1938 3601 4666  1931* 187 2217
Std.Err 90.94 22,51 12.34 4.899 3.216 2597 2487 2,614 3.349 4.548 10.01 24.04 108.6

Figure 8.16: In-sample:

QR coefficients of the 2xCS + 3xRF

maturities (bps). *** p<0.01, ** p<0.05, * p<0.10

model for different

Dep. Var Quantile

1.0%

50%

10.0%

20.0%

30.0%

40.0% 50.0% 60.0 % 70.0% 80.0 % 90.0% 95.0 % 99.0%
Bo.q -24.497* -8.939"* -4.664™ -2.601** -1.578"* -0.9043*** -0.2823"** 0.3642*** 1.159™** 2.188™* 4.018** 8777 3487
Std.Emr 1.739 0.9514 0.3201 0.1504 0.1114 0.1042 0.1023 0.1095 0.1206 0.1387 0.2742 0.725 1.931
Bes peig 3293 1463  16.36™* 17.33** 16.96™* 17.96™  19.08"* 19.08*** 21.20™* 21.81"* 26.05"* 30.93** 67.05
Std.Err 34.50 12.18 3.137 1.161 0.7268 0.6153 0.5815 0.6330 0.7539 1.005 2.704 9.507 4227
o Bes peag -19.14 -11.49  -28.08** -17.97** -23.11** -24.44**  -2552** -24.08*** -17.49"* -15.06"** -15.55 -20.12 90.72
; Std.Err 107.4 40.74 11.73 4.237 2675 2.303 2.210 2.410 2.957 3.844 10.27 35.57 150.0
«@ BRFJCl,q 1.481 -6.195 -3.030 -3.750*** -2.398*** -1.794** -1.432* -1.125  -0.9658  -1.034 -2.172 3.060 -25.35
- Std.Err 33.68 11.03 3.185 1.336 0.8788 0.7913 0.77 0.8381 0.9918 1.277 3.019 10.02 52.61
Brr pcag -6.426 4.607 1.404 1.008 0.3248 0.7474 -0.08744 -0.09009 0.2513  0.8541 2.387 2.460 30.78
Std.Err 49.62 13.01 3.318 1.193 0.7477 0.6380 0.5910 0.6226 0.7124 0.8683 2.223 7.466 56.95
Brr pcag 43.16 9.563 3531 -0.05785 0.3189 -0.3707 1.097 03418 -0.1903 -0.7077  -3.095 -3.309 -43.92
Std.Emr 65.86 16.73 4.479 1.712 1.141 1.047 1.002 1.092 1.275 1.589 3.585 11.68 72.05
Bo,q -23.88"* -8.236™* -5.458™* -3.098™* -1.887*** -0.9493** -0.2595™* 0.4906™** 1.506™* 2.798™* 5286™* 9.156™* 29.00"**
Std.Err 1.312 0.5283 0.3243 0.1758 0.1406 0.1235 0.1223 0.1286 0.1538 0.1980 0.3436 0.7889 1.691
Bes peig 4.388 13.95"  13.04™  13.81™* 12237 13.49™*  1424™*  13.81"" 14.26™* 14.40™* 16.53"* 17.05" 34.39
Std.Err 26.11 5.958 2.903 1.251 0.8796 0.7167 0.6951 0.7589 0.9806 1.426 3.269 10.05 34.57
9} Bes peag 33.89 0.5863 1.182 -0.7519  -6.173* -2.931 -1.084 -0.9111 3.337 6.845 18.94* 28.91 47.93
% Std.Err 86.42 25.08 11.59 4.931 3.423 2.768 2.642 2.818 3.578 4.879 10.78 32.48 97.25
g Brr pc1g -10.81 -6.971 -5.657* -4.830™** -3.274**  -1.514 -2.582"**  -1507 -2.181*  -1497 -0.4354 -2553 -10.96
- Std.Err 24.61 6.621 3.323 1.520 1.098 0.9262 0.9204 1.010 1.299 1.833 3.832 11.34 48.13
Brr Pc2yg -1.990 3.073 1.236 06317  0.2694 -0.8519 -0.2744 0.3963 1.385 1.117 1.294 5.403 15.81
Std.Err 37.03 7.537 3.523 1.455 0.9739 0.7615 0.7065 0.7262 0.8827 1.207 2.602 7.882 49.43
BRFiP‘CS,q 24.96 6.505 4.176 03793  0.7341 1.560 -0.03726  -1.237 -2.162 -1.521 -1.647 -5.510 -12.46
Std.Err 44.36 9.671 4.807 2.131 1.542 1.251 1.198 1.265 1.582 2.213 4.930 15.09 65.97
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Figure 8.17: In-sample: QR coefficients of the 2xCS + FED model for different
credit ratings (bps). *** p<0.01, ** p<0.05, * p<0.10

Dep. Var Quantile 1.0% 5.0% 10.0% 20.0% 30.0% 40.0 % 500% 60.0% 70.0% 80.0% 90.0% 950% 99.0%
B()’q -21.51%* -7.596*** -4.538*** -2.498*** -1.514** -0.8648"* -0.2741** 0.3992*** 1.205*** 2.105"* 3.941** 7.144**  25.55***
Std.Err 0.9866 0.5126 0.2587 0.1563 0.1094 0.1033 0.1024 0.1112 0.1221 0.1362 0.2762 0.6122 1.086
Bcsipcltq 29.03 16.78"** 14.16*** 1445 1548*** 17.63*** 18.14***  19.61*** 21.57*** 21.44*** 23.96*** 2747 43.97*
Std.Err 20.06 5.836 2.320 1.102 0.6742 0.5720 0.5405 0.5931 0.6828 0.8529 2.299 6.675 21.08
o) Bcsipcth -16.03 -22.46  -18.94** -23.8*** -24.52*** -26.26"** -25.57*** -27.63*** -23.47*** -1531*** -18.36** -23.41 -30.97
> Std.Err 65.25 19.45 8.247 3.872 2.404 2.101 2.025 2.235 2.599 2.905 7.612 20.14 47.53
2 Bi[)ipEDiﬁamnceiUqu -862.7*** -729.4*** -855.7*** _ :,m" -203.6***  -44.92*** 3.944 20.65*  191.4*** 464.4*** 449.6*** 692.0**  3789***
Std.Err 66.89 20.00 10.73 9.159 7.183 7.058 7.543 8.597 9.621 12.38 35.64 38.69 72.65
B b FED Ann inca  -128.6™* -111.5*** _10.78*** .2146 -3.018** -3439** .0.07678 0002308 -06687 -1.081 -0683  3.530 -16.97
Std.Err 21.33 5410 3.046 1.652 1.102 1.003 0.9846 1.099 1.175 1.531 3.668 7.890 29.55
B b_Fep_Ann Decq 17.87  4.495 2131 03475 -04760 -1.036 1527 09026 0.1522 01626 -1.070  -1.968 -19.25
Std.Err 25.33 6.379 2.350 1.666 1.005 0.9953 0.9648 1.070 1.119 1.441 3.390 7.499 27.87
Bo,q -20.15*** .7.901*** -5.079*** -3.017*** -1.836*** -0.9096*** -0.2187* 0.5206™** 1.494*** 2751** 5055"* 7.919***  21.19***
Std.Err 1.231 0.4441 0.3256 0.1777 0.1419 0.1256 0.1249 0.1303 0.1561 0.1912 0.301 0.5175 1.340
Bcsipm,q 25.76 15.01*  13.06*** 12.66*** 1251 12.19*** 13.09**  13.70"** 13.30*** 12.87*** 16.53*** 16.61*** 19.66
Std.Err 23.32 4.907 2.716 1.140 0.8266 0.6820 0.6591 0.6905 0.8749 1.140 2.368 5.018 24.06
O Bcsipcth 15.78 -6.693 -10.85 -17.22*** -8.881*** -5.885"* -3.183 -1.898 1.746 3.004 15.12** 7.978 -36.02
> Std.Err 72.26 14.83 8.578 4.507 3.140 2.594 2.469 2.534 3.117 3.832 6.968 14.13 58.85
g Bi[)ipEDiﬁalancgiUqu -602.17** -402.7*** -218.5"* -196.3"** -49.49*** -2565"* 134.6"™* 131.0™* 150.6"** 146.3** 227.9"* 477.8* 411.7**
- Std.Err 75.90 16.33 13.13 11.080 8.949 8.588 9.197 9.779 12.96 12.43 19.33 32.16 165.9
B,DjEDiAnnilnc,q -60.55** -66.35*** -8.398**  -1.442 1.490 0.3952 -0.5342 -0.001760 0.1113 -1.108 -1.707  26.79*** 11.19
Std.Err 26.32 4.642 3.796 1.573 1.429 1.221 1.200 1.252 1.508 1.828 3.898 6.688 36.57
BiDiFEDJ-\nniDec,q 16.12 3.606 1.942 0.9657 0.3450 0.2068 0.4040 -0.06441 04613  -0.4979 -2.151 -3.891 -14.58
Std.Err 31.62 5.534 4.018 1.888 1.304 1.211 1.176 1.209 1.556 2.034 3.712 6.393 34.77

8.7 Out-of-Sample Exceedance-% for all models
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