
N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f E

ng
in

ee
rin

g
D

ep
ar

tm
en

t o
f M

ec
ha

ni
ca

l a
nd

 In
du

st
ria

l E
ng

in
ee

rin
g

Fabian Vakhidi

Pose Estimation with Convolutional
Neural Networks

A study of Riemannian optimization with various
rotation representations in deep rotation regression
using convolutional neural networks.

Master’s thesis in Mechanical Engineering
Supervisor: Olav Egeland
June 2022

M
as

te
r’s

 th
es

is

Fabian Vakhidi

Pose Estimation with Convolutional
Neural Networks

A study of Riemannian optimization with various
rotation representations in deep rotation regression
using convolutional neural networks.

Master’s thesis in Mechanical Engineering
Supervisor: Olav Egeland
June 2022

Norwegian University of Science and Technology
Faculty of Engineering
Department of Mechanical and Industrial Engineering

Acknowledgements

I would like to express my sincere appreciation to my Professor, Olav Egeland,
for the counseling during the writing of this master’s thesis. I am honored to have
been working with such a talented academic, and I wish him the utmost success
in all his future endeavours. I would also like to express my deepest gratitude
towards my family who have provided continuous support during my tenure as a
student.

Abstract

Pose estimation with convolutional neural networks (CNN) falls under the um-
brella as deep rotation regression. Deep rotation regression determines a rotation
matrix from point cloud measurements, and the solution will depend on the rep-
resentation that is used for the rotation matrix. In particular, this master’s thesis
is inspired by the contribution of Chen et al.[1] which studies the gradients of the
quaternion, 6D, 9D and 10D representations during the backpropagation stage of
a CNN. The simulations conducted in this thesis proves that by employing Rie-
mannian optimization to compute manifold-aware gradients through a goal rota-
tion Rg, consistently improves network performance when using gM and gRP M

on quaternion, 6D, 9D and 10D representations. The simulations shows that
the gRP M from 6D, 9D and 10D representations provides the most optimal con-
vergence and neural network learning. The simulations further proves that the
homeomorphic rotation representations enjoys the better network performance
than their discontinuous counterparts when using Euclidean gradients, gM and
gRP M .

Sammendrag

Positurestimering ved hjelp av convolutional neural networks (CNN) faller under
fellesbetegnelsen deep rotation regression. Deep rotation regression bestemmer
en rotasjonsmatrise fra punktskyer, hvor løsningen vil sterkt avhenge av represen-
tasjonen som brukes for rotasjonsmatrisen. Denne masteroppgaven er inspirert
av bidraget fra Chen et al.[1] som studerer gradientene til lærevennlige rotasjon-
srepresentasjoner under backpropagation-stadiet til et CNN. Simuleringene utført
i denne oppgaven beviser at ved å bruke Riemann-optimalisering for å beregne
manifoldbevisste gradienter gjennom en målrotasjon Rg, konsekvent forbedrer
nettverksytelsen ved bruken av gM og gRP M på quaternion, 6D, 9D og 10D repre-
sentasjonene. Simuleringene viser at gRP M fra 6D, 9D og 10D representasjonene
gir mest optimal konvergens. Simuleringene viser også at de homeomorfe rotasjon-
srepresentasjonene har bedre nettverksytelse enn deres diskontinuerlige motset-
ninger når det brukes Euklidiske gradienter, gM og gRP M .

Contents

Acknowledgements i

Abstract ii

Sammendrag iii

1. Introduction 1
1.1. Notations . 2

2. Background 3
2.1. Lie groups . 3

2.1.1. General Lie groups . 3
2.1.2. Matrix Lie group . 3
2.1.3. Special orthogonal group SO(3) and SO(2) 4

2.2. Norms . 5
2.2.1. ℓp-norm . 5
2.2.2. Frobenius norm . 6

2.3. Singular value decomposition . 7
2.4. QR decomposition with Gram-Schmidt 7
2.5. Rotation representations . 8

2.5.1. Euler angles . 9
2.5.2. Axis-angle . 9
2.5.3. Unit quaternion . 9
2.5.4. 6D representation and Gram-Schmidt orthogonalization . . 10
2.5.5. 5D representation . 10
2.5.6. 9D representation and SVD orthogonalization 11
2.5.7. 10D representation . 12

2.6. Topology . 12
2.6.1. Surjectivity and homeomorphism 12
2.6.2. SO(n) and homeomorphism 13

2.7. Differential geometry . 13
2.7.1. Topological- and smooth manifolds 13
2.7.2. Riemannian manifolds . 15

Contents v

2.7.3. Riemannian metric on SO(3) 16
2.8. Optimization . 19

2.8.1. Euclidean optimization . 19
2.8.2. Riemannian optimization 19
2.8.3. Riemannian optimization on SO(3) 21

3. Deep Learning on Point Clouds 23
3.1. Pose estimation and loss function 23
3.2. Deep learning on point clouds . 24

3.2.1. PointNet . 25
3.2.2. PointNet++ . 26
3.2.3. PointNet++ MSG: . 28

3.3. Deep rotation regression . 29
3.3.1. PointNet . 29
3.3.2. PointNet++ MSG . 30

4. Deep Rotation Regression 32
4.1. Problem area . 32
4.2. Continuity of rotation representations 33

4.2.1. Deep learning pipeline . 33
4.2.2. Smoothness properties & surjectivity 34

4.3. Manifold-aware gradients . 37
4.3.1. Backpropagation with RPMG-layer 38

5. Objective & Simulation 43
5.1. Objective . 43

5.1.1. Task . 43
5.1.2. PointNet++ MSG on ModelNet40 43
5.1.3. Idun HPC . 44

5.2. Simulation details . 44
5.2.1. Idun HPC . 46
5.2.2. Code compilation in Idun 46
5.2.3. Transferring files to create tables and graphs 48

6. Results & Discussion 49
6.1. Results . 49

6.1.1. Rotation representations . 49
6.1.2. Rotation representations with gM 50
6.1.3. Rotation representations with gP M 52
6.1.4. Rotation representations with gRP M 53
6.1.5. Length-vanishing problem 54
6.1.6. Overview of results . 56

Contents vi

6.2. Discussion . 58

7. Conclusion 60

A. Mathematical Formulations 65
A.1. Derivation of inverse projections 65

A.1.1. Quaternion . 65
A.1.2. 6D representation . 66
A.1.3. 9D representation . 66
A.1.4. 10D representation . 67

B. Code Listing 70
B.1. RPMG/ModelNet_PC/code/ . 70

B.1.1. config.py . 70
B.1.2. dataset.py . 71
B.1.3. prepare.py . 71
B.1.4. test.py . 73
B.1.5. train.py . 75

B.2. RPMG/ModelNet_PC/configs/ . 79
B.2.1. example.config . 79

B.3. RPMG/ModelNet_PC/pointnet_lib/ 80
B.3.1. pointnet2_modules.py . 80
B.3.2. pointnet2_utils.py . 87

B.4. RPMG/ModelNet_PC/ . 96
B.4.1. model.py . 96
B.4.2. pointnet_utils.py . 98
B.4.3. pointnets.py . 103

B.5. RPMG/utils/ . 105
B.5.1. rpmg.py . 105
B.5.2. tools.py . 110

List of Figures

2.1. Stereographic in 2D on the unit sphere S1. Figure is from [6]. . . . 11
2.2. Surjective functions. Figure is from [22]. 13
2.3. The torus. 14
2.4. Transition maps. 15
2.5. The Riemannian metric with an inner product on a manifold. . . . 16
2.6. Geodesic on the Riemannian manifold SO(n). 18
2.7. Riemannian optimization on (M, g). η is tangent vector at TxM. . 21

3.1. Irregularities of points on a car model produces dense and sparse
areas of points. Figure is from [32]. 24

3.2. A point cloud is unstructured. Thus it has no grid, as each point is
independent and distance between neighboring points is not fixed.
Figure is from [32]. 25

3.3. Point clouds are invariant to permutations. Figure is from [32]. . . 25
3.4. PointNet. Figure is from [33]. 26
3.5. PointNet++. Figure is from [34]. 27
3.6. Sampling and grouping of points into local patch. The reds are

the centroid points selected using sampling algorithms, and the
grouping shown is a ball query where points are selected based on
a radius distance to the centroid [32]. Figure is from [32]. 28

3.7. PointNet++ MSG. Figure is from [34]. 29

4.1. PointNet with 3-dimensional output. Figure is from [5]. 32
4.2. Pipeline with input, output and mapping between the representa-

tion space and the original space. Figure is from [6]. 34
4.3. Discontinuity. Figure is from [6]. 35
4.4. Pipeline with RPMG. Figure is from [1]. 37
4.5. Illustration of the relation between Rest, Rg and Rgt, where Rg is

an intermediate rotation matrix on the geodesic curve between the
estimation and ground truth. 39

4.6. Inversion of π to obtain xg is a multi-ground-truth problem. Figure
is from [1]. 40

4.7. The gradients of gM , gP M and gRP M in action. Figure is from [1]. . 41

List of Figures viii

5.1. Airplane models from ModelNet40 R3×5632. 44
5.2. Airplane models from ModelNet40 in R3×1024. 45

6.1. Median dM-test error of airplane models in different iterations dur-
ing training. Simulation is done without manifold-aware gradients.
The plot is a replication of [6] and [8] trained on ModelNet40. 5D,
6D, 9D and 10D is shown to be the most optimal rotation repre-
sentations. 50

6.2. Box plot of rotation representations without manifold-aware gradi-
ents. 50

6.3. Median dM-test error of airplane models in different iterations dur-
ing training. Simulation is performed on an RPMG-layer using gM

as the manifold-aware gradient. 51
6.4. Box plot of rotation representations using gM as a manifold-aware

gradient. 51
6.5. Median dM-test error of airplane models in different iterations dur-

ing training. Simulation is performed on an RPMG-layer using gP M

as the manifold-aware gradient. 52
6.6. Box plot of rotation representations using gP M as a manifold-aware

gradient. 53
6.7. Median dM-test error of airplane models in different iterations dur-

ing training. Simulation is performed on an RPMG-layer using
gRP M as the manifold-aware gradient. 54

6.8. Box plot of rotation representations using gRP M as a manifold-
aware gradient. 54

6.9. Using gP M imposes vanishing gradients. 55
6.10. The gRP M gradient has stable gradients in comparison to gP M . . . 56
6.11. Error plot of rotation representations with and without the RPMG-

layer. 57

List of Tables

6.1. A comparison of rotation representations by loss, minimum- and
median dM-test error, along with 5◦ accuracy of dM-test errors
after 30k training steps. Min, Md and Acc are abbreviations of
minimum, median and 5◦ accuracy. The most optimal 5◦ Acc is
marked in blue, and belongs to 6D-RPMG, while red colorization
specifies the superior representation within its respective domain. . 58

6.2. This table shows the results on 6D, 9D and 10D representations
when λ = 0.0005. The results proves that the only requirement is
to keep λ > 0 to maintain great generalization errors. 58

Chapter 1.

Introduction

The forthcoming of an advanced autonomous world requires the processing of se-
mantic information of the objects in the world around us. The fast development
of high precision sensors such as Light Detection and Ranging (LiDAR) has led to
point clouds being the primary data format to represent the 3D world [2]. LiDAR
captures laser scans of the 3D scene to generate a cloud of spatial information.
The cloud (or the data set) is an irregular and unordered composition of 3D-
arrays. Despite of these great aspects, LiDAR is constrained to scans of limited
view ranges, which creates a dependence of a registration algorithm to gather
information of the complete 3D scene. The registration problem involves estimat-
ing the rigid-transformation between two point clouds, which is generally known
as pose estimation. Moreover, LiDAR proves to be ineffective in poor weather
conditions, which potentially leaves the point cloud being corrupted with noise
and outliers. In order to tackle such obstacles, a registration algorithm must be
robust against outliers and precise in its rigid-transformation estimations.

The research community is extensively working towards providing registration
algorithms with state-of-the-art performances, as several solutions have been pro-
posed. Recent works from Yang et al.[3] and Zhou et al.[4] with Truncated least
squares Estimation And SEmidefinite Relaxation (TEASER) and Fast Global
Registration (FGR), respectively, have proven to be quite successful in their do-
main, and offers high precision and robustness. The resurgence of the deep learn-
ing community has offered new proposals by tackling the registration problem
through the lens of deep learning-frameworks. Gao et al.[5] was the first to in-
troduce a deep learning based pose estimation (deep rotation regression) method
that uses point clouds as inputs in a convolutional neural network (CNN). Their
work estimates the rigid-transformation by directly regressing on rotations under
supervised learning, where the axis-angle rotation representation is best suited for
the learning task. The contribution of Gao et al.[5] has later been extended in
Zhou et al.[6], who studies deep learning-friendly rotation representations, where

Chapter 1. Introduction 2

the conclusion is that a rotation representation must be continuous in order to
provide correct results when using the whole rotation space. Contributions from
Levinson et al.[7] and a case-study from Romain Brégier [8] expands this problem
area of learning-friendly representations. Recent work from Chen et al.[1] tackles
an under-explored avenue of deep rotation regression by studying the gradients
extracted during the backpropagation stage in the neural network, in which a
solution of Riemannian optimization is proposed. In this report, all of the afore-
mentioned contributions in deep rotation regression will be extensively studied.

1.1. Notations
R, N and I are used to denote the set of real numbers, natural numbers and the
identity matrix, respectively. The determinant, trace, transpose, inverse, skew-
symmetric and Frobenius norm of a matrixA are denoted by det(A), tr(A), A⊤, A−1,
A× and ∥A∥2F respectively. The tangent space of a manifold M at a point x is
denoted using TxM and the geodesic distance is given as dM. The notation Rn

is used to indicate n-dimensional space, while Euclidean plane and the Euclidean
space are referred to as R2 and R3, respectively. SO(n) denotes the Lie group,
while the lowercase so(n) denotes the Lie algebra. The notations exp(·) and log(·)
are used to denote the matrix exponential and logarithm, respectively.

Chapter 2.

Background

This chapter serves the theoretical background for the implementations presented
later in this thesis. Based on this background information, one should be able
to apprehend the theory on Lie groups and its corresponding Lie algebra, Singu-
lar Value Decomposition (SVD), QR-Decompisition with Gram-Schmidt, various
rotation representations and distance measure on SO(3). Topology along with
concepts in differential geometry are also presented in order to understand the
theory on Riemannian optimization.

2.1. Lie groups

2.1.1. General Lie groups

A Lie group G is a topological group and a smooth manifold such that group
multiplication G×G→ G(x, y) 7→ x · y and group inversion G→ Gx 7→ x−1 are
smooth maps.

2.1.2. Matrix Lie group

The matrix Lie group is a subgroup G of the general linear group GL(n,R), i.e
G ⊆ GL(n,R). Then G is a subset of square invertible matrices of size n×n with
real entries on which smooth maps of matrix multiplication and inversion can be
safely used without going outside the subset. It is noted that

In ∈ G, ∀g ∈ G, g−1 ∈ G and ∀a, b ∈ G, ab ∈ G

A matrix A is said to be square, symmetric and skew-symmetric when A ∈ Rn×n,
A = AT and A = −AT , respectively [9].

Chapter 2. Background 4

2.1.3. Special orthogonal group SO(3) and SO(2)
The special orthogonal group SO(n) is the set of all square real matrices R, which
are represented by n× n rotation matrices. 3D rotations are expressed as

SO(3) =
{
R ∈M3×3(R) | RRT = I3 | det(R) = 1

}
, (2.1)

where I3 is the identity matrix of R3×3. Similarly, the set of 2D special orthog-
onal rotation matrices are a subgroup of SO(3) and are denoted as SO(2). The
corresponding Lie algebra (tangent space) is so(n), where n is the same dimension
as its Lie group SO(n). The tangent space for SO(3) is noted in [10] as

so(3) =
{

Ω ∈M3×3(R) | Ω = −ΩT
}
, (2.2)

The logarithm is expressed as

logso(3)

 ξ1
ξ2
ξ3

 =

 ξ1
ξ2
ξ3

×

=

 0 −ξ3 ξ2
ξ3 0 −ξ1
−ξ2 ξ1 0

 . (2.3)

The logarithm log(R) = θk× is computed in [11] as

log(R) = arcsin(∥w∥)
∥w∥

ŵ, ŵ = 1
2
(
R−RT

)
. (2.4)

The matrix exponential is in [12] given by

R = expSO(3) u, u = log(R), (2.5)

where u ∈ so(3) is a local parameterization of the rotation matrix R.

Consider the instance where the logarithm is given by u = θk where k ∈ R3 is a
unit vector. Then R is a rotation matrix rotated by an angle of θ about k given
as the matrix exponential defined by the Rodrigues’ equation

R = I + sin θk× + (1− cos θ)k×k×, (2.6)

where k× is the skew-symmetric representation of k.

Chapter 2. Background 5

2.2. Norms

2.2.1. ℓp-norm

A normed linear space (X, ∥ · ∥) is in [13] a linear space X equipped with a norm
∥ · ∥. Let x, y be points in X. A norm on X is a real-valued function ∥x∥ : Rn

where x ∈ X which fulfills the following

1. Positivity:
∥x∥ ≥ 0,∀x ∈ Rn, (2.7)

2. Positive definitness:
∥x∥ = 0⇔ x = 0, (2.8)

3. Homogenity:
∥αx∥ = |α|∥x∥,∀α ∈ Rn, (2.9)

4. The triangle inequality:

∥x+ y∥ ≤ ∥x∥+ ∥y∥, ∀x, y ∈ Rn, (2.10)

where the function d(x, y) = ∥x− y∥ is a metric on its space X, and returns the
distance between x, y as a straight line. The ℓp-norm is a general set of norms
determined by p, and is noted in [14] as

∥x∥p =
(

n∑
i=1
|xi|p

) 1
p

, p ≥ 1, (2.11)

which gives the ℓ2-norm (Euclidean norm) as

∥x∥2 =

√√√√ n∑
i=1

x2
i , p = 2. (2.12)

Norms and distances in R3 expresses the normed linear space as
(
R3, ∥ · ∥

)
, are

commonly given by the Euclidean norm. Let the vector a = [a1, a2, a3]T ∈ R3.
The Euclidean norm ∥a∥ =

√
a2

1 + a2
2 + a2

3. Let b = [b1, b2, b3]T also be an element
in R3. Then the distance is given by the Euclidean norm as

d(a, b) =
√

(a1 − b1)2 + (a2 − b2)2 + (a3 − b3)2. (2.13)

Chapter 2. Background 6

2.2.2. Frobenius norm

The norm of a matrix is called the Frobenius norm. The Frobenius norm for a
matrix A = {aij} ∈ Rm×n is defined in [14] as

∥A∥F =

√√√√ m∑
i=1

n∑
j=1
|aij |2. (2.14)

The Frobenius norm is often times used as a loss function to penalize the error in
deep neural network and machine learning applications, which is often seen to be

n∑
i=1
∥yi −Rxi∥2 = ∥Y −RX∥2F , (2.15)

where Y −RX is the sum of the square elements in ∥ · ∥2F .

Angular distance

Let R1 and R2 be two rotation matrices with orientations distinct from each
other. The angular distance function is based on the axis-angle parameterization
Equation 2.6. Consider the incremental rotation (θe, ke) as

Re = RT
1 R2 = exp(θek

×
e). (2.16)

The angular distance is given by the smallest angle of rotation between R1 and
R2. Let da(R1, R2) denote the angular distance between two rotation matrices.
The angular distance is then noted in [15] as

da (R1, R2) = da

(
I,RT

1 R2
)

= d (I,Re) = |θe| ∈ [0, π]. (2.17)

The angular distance is given by the norm of the vector form imposed by the
rotation logarithm as

da(I,Re) = ∥θk∥, (2.18)

while the matrix form is given by the Frobenius norm of the logarithm as

da(I,Re) = 1√
2
∥∥θk×∥∥

F . (2.19)

Chapter 2. Background 7

It follows that the angular distance can be given by the Frobenius norm of the
logarithm in Equation 2.3 as

da(I,Re)2 = 1
2 ∥log(Re)∥2F = ∥u∥2, (2.20)

where u× = log(Re)

2.3. Singular value decomposition
The Singular Value Decomposition (SVD) of a rotation matrix A ∈ Rn×n is in
[16] given by

A = UΣV T, (2.21)

where

U ∈ Rn×n, Σ ∈ Rn×n, V ∈ Rn×n. (2.22)

The matrices U and V are orthogonal matrices given by

U = (u1, . . . , un) and V = (v1, . . . , vn) . (2.23)

The matrix Σ is the square diagonal matrix

Σ = diag (σ1, . . . , σn) ∈ Rn×n, (2.24)

with the singular values along the diagonal.

2.4. QR decomposition with Gram-Schmidt
It is noted in [17] that the QR decomposition of a matrix is a decomposition of the
matrix into an orthogonal matrix and a triangular matrix. A QR decomposition
of a real square matrix A is a decomposition of A as

A = QR, (2.25)

where Q is an orthogonal matrix and R is an upper triangular matrix. If A is
non-singular (determinant not equal to zero) the decomposition is unique. There

Chapter 2. Background 8

exists several proposals for solving the QR decomposition. The Gram-Schmidt
orthogonalization is one solution.

Consider the Gram-Schmidt procedure, with the vectors to be considered in the
process stacked as columns of the matrix A defined as

A =
[
a1 a2 · · · an

]
(2.26)

Then,

u1 = a1, e1 = u1
∥u1∥

, (2.27)

u2 = a2 − (a2 · e1) e1, (2.28)

e2 = u2
∥u2∥

, (2.29)

uk+1 = ak+1 − (ak+1 · e1) e1 − · · · − (ak+1 · ek) ek, (2.30)

ek+1 = uk+1
∥uk+1∥

. (2.31)

Finally, the QR decomposition returns

A = [a1 |a2| · · · | an] = [e1 |e2| · · · | en]

a1 · e1 a2 · e1 · · · an · e1

0 a2 · e2 · · · an · e2
...

...
0 0 · · · an · en

 = QR.

(2.32)

2.5. Rotation representations
An n-dimensional vector in Rn can be mapped to a rotation matrix R ∈ SO(3)
by a parameterization noted as ϕ, s.t ϕ : Rn → R ∈ SO(3). The following

Chapter 2. Background 9

rotation representations introduces various parameterization procedures mapping
n-dimensional vectors to rotation matrices. This includes Euler angles, axis-angle,
quaternion, 5D, 6D, 9D- and 10D representations. The parameterization proce-
dures are given in Python scripts in appendix B.5.2.

2.5.1. Euler angles

From [18], consider a succession of three rotations (α, β, γ) about the elementary
x−y−z axes, respectively. One can then define the parameterization as (α, β, γ) ∈
R3 → Rx(α)Ry(β)Rz(γ) ∈ SO(3), where

Rx(α) =

 1 0 0
0 cosα − sinα
0 sinα cosα

 , Ry(β) =

 cosβ 0 sin β
0 1 0

− sin β 0 cosβ

Rz(γ) =

 cos γ − sin γ 0
sin γ cos γ 0

0 0 1

(2.33)

2.5.2. Axis-angle

Any arbitrary 3D vector can be mapped to the rotation space through the expo-
nential map in Equation 2.6 [8].

2.5.3. Unit quaternion

Note that the n dimensional unit sphere is given as Sn =
{
x ∈ Rn+1 : ∥x∥ = 1

}
.

It is noted in [1] that unit quaternions represent a rotation using a 4D unit vector
q ∈ S3 double covering the non-Euclidean 3-sphere in which q and -q identify the
same rotation. The corresponding manifold mapping is usually chosen to be a
normalization step πq(x) = x/∥x∥. Its parameterization ϕ4D converts the unit
quaternion q into a rotation matrix given as

ϕ(q) =

 2
(
q2

0 + q2
1
)
− 1 2 (q1q2 − q0q3) 2 (q1q3 + q0q2)

2 (q1q2 + q0q3) 2
(
q2

0 + q2
2
)
− 1 2 (q2q3 − q0q1)

2 (q1q3 − q0q2) 2 (q2q3 + q0q1) 2
(
q2

0 + q2
3
)
− 1

 (2.34)

where q = (q0, q1, q2, q3) ∈ S3 In the reverse direction, the representation mapping

Chapter 2. Background 10

ψ(R) can be expressed as
q0 =

√
1 +R00 +R11 +R22/2

q1 = (R21−R12) / (4 ∗ q0)
q2 = (R02 −R20) / (4 ∗ q0)
q3 = (R10 −R01) / (4 ∗ q0)

(2.35)

Note that q = (q0, q1, q2, q3) and −q = (−q0,−q1,−q2,−q3) as both are well-
founded quaternions parameterizing the same rotation matrix R.

2.5.4. 6D representation and Gram-Schmidt orthogonalization

6D rotation representation, lying on Stiefel manifold V2
(
R3), uses two orthogo-

nal unit 3D vectors (ĉ1, ĉ2) to represent a rotation, which are essentially the first
two columns of a rotation matrix. Its manifold mapping π6D, initiated by Zhou
et al.[6], is done through a Gram-Schmidt-like orthogonalization. The Gram-
Schmidt procedure from [6] is a modification of the original Gram-Schmidt which
was introduced in Section 2.4. The modification from Equation 2.31 is that the
last column is generalized to be the cross product ĉ1 = (ĉ1, ĉ2), which gives the pa-
rameterization ϕ6D. Its inverse representation mapping ψ6D is given by discarding
the third column ĉ3 from the rotation matrix, denoted as

ψ6D

 | |
ĉ1 . . . ĉn

| |

 =

 | |
ĉ1 . . . ĉn−1
| |

 (2.36)

2.5.5. 5D representation

Zhou et al.[6] proved that the 6D representation could actually be compressed into
a 5D representation through the use of stereographic projection combined with
normalization, while retaining the continuous properties. Figure 2.1 depicts a
stereographic projection of a point p on the unit-sphere S1, a procedure generalized
to lower dimensions, but can easily be transferred to higher dimensions [6]. Let
p be a point projected to a sphere by a normalization step, which gives the point
N0 at (0, 1). N0 is then stereographically projected through an intersection with p
and onto the plane y = 0, which gives p′. The point p′ is a stereographic projection
of the initial point p. The combination of steps is referred to in [6] as a normalized
projection, and is mathematically defined as P : Rm → Rm−1:

P (u) =
[

v2
1− v1

,
v3

1− v1
, . . . ,

vm

1− v1

]T

, v = u/∥u∥ (2.37)

Chapter 2. Background 11

Figure 2.1.: Stereographic in 2D on the unit sphere S1. Figure is from [6].

A stereographic inverse projection gives the function Q : Rm−1 → Rm which is
noted as

Q(u) = 1
∥u∥

[1
2
(
∥u∥2 − 1

)
, u1, . . . , um−1

]T

(2.38)

It is noted in [6] that it is possible to make between 1 and n−2 projections on an n-
dimensional vector while preserving a continuous representation in SO(n). For 3D
rotations in SO(3), the 5D representation is a special case of the 6D representation.
The 5D representation is obtained by flattening the representation mapping ψ6D

to obtain r ∈ R6, and then employ normalized projection on the 4 last points in r,
which gives r ∈ R5. The normalized projected points are then passed through a
stereographic inverse projection Q : R5 → R6, which gives r ∈ R6. r is then passed
through the aforementioned Gram-Schmidt-like process in Subsection 2.5.4.

2.5.6. 9D representation and SVD orthogonalization

Mapping a 9D representation M to a rotation matrix, Levinson et al.[7] employs
SVD orthogonalization as the manifold mapping function π9D. The mapping func-
tion π9D first decomposes M into left and right singular vectors

{
U, V ⊤

}
and sin-

gular values Σ,M = UΣV ⊤. The Σ is then replaced with Σ′ = diag
(
1, 1,det

(
UV ⊤

))
and finally, computes R = UΣ′V ⊤ to get the corresponding rotation matrix
R ∈ SO(3). Note that this representation manifold M is SO(3), which yields
the following rotation mapping as the identity matrix I.

Chapter 2. Background 12

2.5.7. 10D representation

Peretroukhin et al.[19] proposed a 10D representation for rotation matrix. The
manifold mapping function π10D maps θ ∈ R10 to q ∈ S3 by computing the
eigenvector corresponding to the smallest eigenvalue of A(θ), expressed as

π10D(x) = arg min
q∈S3

q⊤A(x)q, in which

A(θ) =

θ1 θ2 θ3 θ4
θ2 θ5 θ6 θ7
θ3 θ6 θ8 θ9
θ4 θ7 θ9 θ10

 . (2.39)

Since the representation manifold is S3, the rotation and representation mapping
are the same as unit quaternion Equation 2.34.

2.6. Topology
Topology is the area of mathematics which studies continuity. Objects are con-
sidered topologically equivalent if they can be continuously deformed into one an-
other through motions in space such as bending, twisting, stretching, and shrink-
ing while disallowing tearing apart or gluing together parts. The main topics of
interest in topology are the properties that remain unchanged by such continuous
deformations [20].

2.6.1. Surjectivity and homeomorphism

Let the set X be a domain and the set Y be a codomain. A surjective function is
in [21] a continuous function f that maps an element x ∈ X to every y ∈ Y. The
function is said to be surjective if

f : X → Y, if (2.40)
∀y ∈ Y,∃x ∈ X, f(x) = y (2.41)

If (x, y) belongs to the function f , then y is referred to as the image of x under f ,
and x is the pre-image of y under f . Using the definition of surjective functions
introduced in Equation 2.40, a surjective function is bijective if there exists a con-
tinuous inverse f−1 which maps elements from the codomain back to the domain,
i.e f−1 : Y → X . A bijective map further leads to the term homeomorphism. Two
spaces are called topologically equivalent if there exists a homeomorphism between

Chapter 2. Background 13

the sets. A homeomorphism preserves the properties between the sets in a one-
to-one correspondence. Surjective functions are either one-to-one, one-to-many
or many-to-one correspondences. One-to-many/many-to-one correspondences are
referred to as non-injective surjective functions, and thus are not homeomorphic.
Figure 2.2 shows a bijective and an non-injective surjective correspondence.

Figure 2.2.: Surjective functions. Figure is from [22].

2.6.2. SO(n) and homeomorphism

Determining homeomorphism between two topological structures requires the in-
troduction of path- and simply-connected manifolds. A topological space X is
called path-connected if for every pair of points ∀x, y ∈ X there exists a path γ in
X joining x to y. A topological space is simply-connected if it is path-connected
and every path between two points can be continuously transformed into any other
such path while preserving the two endpoints in question [23]. SO(3) and SO(2)
are path-connected, but not simply-connected. The n-sphere is simply-connected.
Thus, the SO(n) manifold is not homeomorphic to any subset of Rn when n < 4
[24].

2.7. Differential geometry

2.7.1. Topological- and smooth manifolds

An n-dimensional manifold is a topological space M for which every point x ∈
M has a local neighbourhood homeomorphic to Euclidean space Rn [25]. A
topological manifold M is a non-Euclidean geometric structure. The torus in
Figure 2.3 is an example of a topological manifold.

Chapter 2. Background 14

Figure 2.3.: The torus.

Let the torus be a topological manifold M. Each point x ∈ M is located in a
local neighbourhood, or an open subset U ⊆ M, which is homeomorphic to an
open subset of Rn [26]. The more formal definition of a topological manifold is
given in [25] as

1. M is Hausdorff space, that is, for each distinct point xn at M, there exists
a local neighborhood Un that separates each point.

2. Each point xn atM has a local neighborhood Un homeomorphic to an open
subset Uα ⊆ Rn.

3. M is second countable. The notion of second countable restricts the number
of open sets M can possess.

Let M be a topological space and U ⊆ M an open set. Let V ⊆ Rn be open.
A homeomorphism ϕ : U → V, ϕ(u) = (x1(u), . . . , xn(u)) is called a coordinate
system on U , and the functions x1, . . . xn the coordinate functions [26]. The pair
(U , ϕ) is called a chart on M. The inverse map ϕ−1 is a parameterization of U .

An atlas on M is a collection of charts {Uα, ϕα} such that Uα cover M. The
homeomorphisms ϕβϕ

−1
α : ϕα (Uα ∩ Uβ) → ϕβ (Uα ∩ Uβ) are the transition maps

or coordinate transformations [26]. A homeomorphism implies that all topological
properties are preserved after a transition map

A topological manifold is a smooth manifold if all transition maps are C∞(M,x)
diffeomorphisms, that is, all partial derivatives at point x ∈ M exist and are
continuous [26].

Chapter 2. Background 15

Figure 2.4.: Transition maps.

From [27], a derivation on C∞(M,x) is a linear map δ : C∞(M,x) → Rn, and is
denoted by D∞(M,x) as the set of all derivations. D∞(M, x) is called the tangent
space of M at x, which is further denoted as TxM . Using the introduction of the
matrix exponential and logarithm on SO(3) from Subsection 2.1.3, shows that
logarithm map to so(3) is a chart, while the exponential map is a parameterization.
The tangent space of SO(3) at R is expressed as TRSO(3).

2.7.2. Riemannian manifolds

The intuition of manifolds were covered through the lens of topological- and
smooth manifolds in Subsection 2.7.1, and lays the foundation for understand-
ing the concept of Riemannian manifolds. Noted in [25], the metric properties
of the Euclidean Rn are restricted to flat spaces. And hence, the Euclidean met-
ric properties are not eligible to perform mathematical operations on the curved
spaces of smooth manifolds.

Riemannian geometry studies smooth manifolds equipped with a Riemannian met-
ric. From [25], a Riemannian metric on a smooth manifoldM is a symmetric posi-
tive definite smooth 2-covariant tensor field g. As noted in [28], a smooth manifold
M equipped with a Riemannian metric g is called a Riemannian manifold, and
denoted by (M, g).

If g is a Riemannian metric on M, then for each x ∈ M, the 2-tensor gx is an
inner product on TxM. The notation of the inner product ⟨u, v⟩g denotes the
real number gx(u, v) for u, v ∈ TxM (Figure 2.5). The definition of a Riemannian
metric allows for the usage of lengths, norms, angles and distances of a tangent
vector v ∈ TxM. The length or norm of a tangent vector v ∈ TxM is expressed
in [28] as

Chapter 2. Background 16

|v|g = ⟨v, v⟩1/2
g = gx(v, v)1/2. (2.42)

The angle between two nonzero tangent vectors u, v ∈ TxM is the unique θ ∈
[0, π] satisfying

cos θ = ⟨u, v⟩g
|u|g|v|g

(2.43)

Tangent vectors u, v ∈ TxM are said to be orthogonal if ⟨u, v⟩g = 0. This means
either one or both vectors are zero, or the angle between them is π/2.

Figure 2.5.: The Riemannian metric with an inner product on a manifold.

2.7.3. Riemannian metric on SO(3)
The following is from [29]. The Riemannian metric on TxSO3 is expressed as

⟨A,B⟩g = 1
2 tr

(
ATB

)
, A,B ∈ TxSO3. (2.44)

The Riemannian metric of the two elements u× and v× on the Lie algebra so(3)
satisfies

〈
u×, v×〉

g = uTv, (2.45)

which follows from the calculation

Chapter 2. Background 17

〈
u×, v×〉

g = 1
2 tr

[(
u×)T v×

]
= −1

2 tr
[
u×v×] , (2.46)

which is equal to

1
2 tr

(
uTvI − uvT

)
= uTv. (2.47)

Let R be a rotation matrix. The Riemannian metric of Ru×, Rv× ∈ TxSO(3) is

〈
Ru×, Rv×〉

g = 1
2 tr

[(
u×)TRTRv×

]
= 1

2 tr
[(
u×)T v×

]
=
〈
u×, v×〉

g , (2.48)

which shows that the Riemannian metric on SO(3) is left invariant, as it is indif-
ferent whether u× and v× are pre-multiplied by R. It is further shown that the
Riemannian metric is right-invariant in u×R, v×R ∈ TxSO(3). The calculation
gives

〈
u×R, v×R

〉
g = 1

2 tr
[
RT (u×)T v×R

]
= 1

2 tr
[(
u×)T v×

]
=
〈
u×, v×〉

g . (2.49)

Being both left- and right-invariant means that the Riemannian metric on SO(3) is
bi-invariant [30], as it is unchanged whether u× and v× are pre- or post-multiplied
by the rotation R. Bi-invariance means that the distance between two points
points are unaltered if both points are given the same offset.

The Riemannian metric on SO(3) makes it possible to perform mathematical
operations on the tangent space, through surjective mappings, which permits
movement along a geodesic curve γ between two points (x1, x2) on M. The
geodesic curve γ denoted as dM is defined as the infimum length between two
distinct points on M, i.e the shortest path between two points. The geodesic
distance is seen to be the angular distance defined in Subsubsection 2.2.2. The
angular distance induced by the Riemannian metric is further elaborated on in
Subsubsection 2.7.3. Figure 2.6 depicts the movement along γ on M from point
C to Ci. It is seen from the figure that the logarithm- and exponential map from
Equation 2.3-Equation 2.6 allows for mapping between TxSO(3) and SO(3).

Chapter 2. Background 18

dM =
∥∥∥log(C−1Ci)

∥∥∥2

F
(2.50)

Figure 2.6.: Geodesic on the Riemannian manifold SO(n).

Geodesic distance dM on SO(3) on Riemannian manifolds

Consider the motion from R ∈ SO(3) to Q ∈ SO(3) described by the rotation
with angular velocity ω(t) = ωk, for 0 ≤ t ≤ T , where ω is constant, and k is a
constant unit vector. Moreover, it is assumed that Q = R exp(θk), which means
that ωT = θ. This further leads to

R(t) = R exp(ωtk), 0 ≤ t ≤ T (2.51)

The Riemannian metric is then given in [29][15] as〈
ω×, ω×〉

g = ωTω = ω2kTk = ω2 (2.52)

The length of a curve induced by the Riemannian metric is then

dM =
∫ T

t=0

√
⟨ω×, ω×⟩

g
dt, (2.53)

which gives ∫ T

t=0
ωdt = ωT = θ. (2.54)

This proves that the length given by the Riemannian metric is the angular dis-
tance, which is termed as the geodesic distance dM. The geodesic on a Riemannian

Chapter 2. Background 19

manifold (M, g) is expressed as

dist :M×M→ R : dist(x, y) = inf
Γ
dM, (2.55)

where Γ is the set of all such curves inM which connects points x and y in which
the geodesic is given as the infimum length between two points [28].

2.8. Optimization

2.8.1. Euclidean optimization

Before delving into Riemannian optimization, a brief summary of Euclidean opti-
mization must be introduced. Let Rn be the Euclidean space and let f : Rn → R
be a real-valued function. An optimization problem on this space has the form

arg min
x∈Rn

f(x) (2.56)

The equation states that one would like to find a point x̂ ∈ Rn such that f(x̂) is
the minimum of f . The optimization problem derives the minimum with the use
of Euclidean gradients. The function f(x) = 1

2
(
x2 + y2 + z2) = 1

2x
Tx will have

the Euclidean gradient as

∇f(x) =
[
x y z

]T
= x (2.57)

The numerical method for solving Equation 2.56 is given by the stochastic gradient
descent algorithm as

Algorithm 1 Stochastic Gradient Descent
1. Pick arbitrary x(0) ∈ Rn and let α ∈ R with α > 0
2. While the stopping criterion is not satisfied:

1. Compute the gradient of f at x(t), i.e. h(t) := ∇f(xt)
2. Move in the direction of −h(t), i.e. x(t+1) = x(t) − αh(t)
3. t = t+ 1

3. Return x(t)

2.8.2. Riemannian optimization

The gradient descent algorithm can be generalized on Riemannian manifolds
with Riemannian gradients. Consider (M, g) to be an n-dimensional Rieman-
nian manifold. The union of all tangent spaces on M defines the tangent bun-

Chapter 2. Background 20

dle TM = ∪x∈MTxM. Let f : M → R be a real-valued function on M and
∀(x, η) ∈ TM. The tangent bundle defines a vector field onM. The Riemannian
optimization problem on M is given in simple form as

arg min
x∈M

f(x). (2.58)

Consider η ∈M to be the tangent vector at TxM if there exists a geodesic curve
γ : [0, 1] on M. It follows in [1] that γ(0) = x and the time-derivative γ̇(0) = η.
The Riemannian gradient of f on M is thus a unique tangent vector ∇̃f in the
vector field defined on M, and satisfies the directional derivative as

Df(x)[η] = ⟨∇̃f(x), η⟩g (2.59)

where Df(x)[η] is the derivation of f by η. The Riemannian gradient of f at x
is the direction in which the directional derivative is the greatest (steepest). The
Riemannian gradient descent (RGD) is given in [1] by

Rxk+1 ← Rxk

(
−τk∇̃f(xk)

)
, (2.60)

where k is the iteration, τk is step size, grad f(xk) is the Riemannian gradient and
Rxk

is the retraction. A retraction is a parameterization Rk : TxM→M, and is
used to map x to the endpoint of the geodesic when t = T in Equation 2.51. The
retraction on SO(3) is simply the Rodrigues’ equation, and satisfies the following

• Rx is continuously differentiable

• Rx(0) = x

• DRx(0)[η] = η

The retraction on SO(3) is simply the Rodrigues’ equation. A step along a
geodesic curve with a retraction is depicted in Figure 2.7 [1].

Chapter 2. Background 21

Figure 2.7.: Riemannian optimization on (M, g). η is tangent vector at TxM.

2.8.3. Riemannian optimization on SO(3)
Riemannian optimization on SO(3) in the following is from [15]. The time deriva-
tive of the rotation matrix is in [12] given by

Ṙ = Rω×
b ∈ TRSO(3), (2.61)

where ω×
b = RTṘ and TRSO(3) is the tangent space of SO(3) at R. The tangent

space at the identity R = I is TISO(3) = so(3), which verifies

Ṙ
∣∣∣
R=I

= ω×
b ∈ so(3). (2.62)

Consider the Frobenius of two rotation matrices define the loss function as

L(f(R)) = ∥Rest −Rgt∥2F . (2.63)

Then L(f(R)) ∈ R maps a rotation matrix R ∈ SO(3) to a scalar R. The gradient
∇̃L of the loss function lies on the tangent plane at R, which is written as ∇̃L ∈
TxSO(3). The gradient can be expressed as

∇̃L = Rg× ∈ TRSO(3), (2.64)

Chapter 2. Background 22

where g× ∈ so(3). The directional derivative of the function L(f(R)) is found by
differentiating the function L(f(P (t))), where

P (t) = R exp
(
ta×) ∈ SO(3). (2.65)

Then P (0) = R, and

Ṗ (0) = P (0)a× = Ra×. (2.66)

Moreover, Ṗ (0) = P (0)ω(0)× where ω(t)× = PTṖ is the right velocity corre-
sponding to P (t). From this it is seen that ω(0) = a. The gradient at R is then
defined in terms of the directional derivative and the Riemannian metric by

〈
Ra×, ∇̃L

〉
g

= d
dtf(P (t))

∣∣∣∣
t=0

. (2.67)

Since the Riemannian metric is bi-invariant on SO(3), the gradient can be alter-
natively expressed as

〈
a×, g×〉

g = d
dtf(P (t))

∣∣∣∣
t=0

(2.68)

The Riemannian optimization problem on SO(3) can be expressed as

Rxk+1 ← Rxk

(
−τk∇̃L(xk))

)
, (2.69)

where τk is the step size, ∇̃L is the Riemannian gradient, Rxk
is the retraction

and k is the iteration k.

Chapter 3.

Deep Learning on Point Clouds

This chapter introduces point cloud registration with deep learning, and the chal-
lenges of using deep learning on point clouds. In particular, the chapter reviews
the applied CNN-architectures in [5], [6], [7], [8] and [1] for conducting deep ro-
tation regression using PointNet and PointNet++. It is assumed that the reader
is familiar with the concept of deep learning and the inner-workings of a CNN.

3.1. Pose estimation and loss function
Consider the data point cloud X and the model point cloud Y, where X =
[x1, . . . , xN] ∈ R3×N and Y = [y1, . . . , yN] ∈ R3×N where N is the number of
points, each point is a 3D vector and each pair (xi, yi) is a point correspondence
[6]. The point clouds are assumed to be separated by a rotation R.

yi = Rxi (3.1)

If the registration problem involves the estimation of a rotation R between the
data- and model point cloud, the problem is generally known as the Wahba’s-
problem [31]. The loss function of the Wahba’s problem is generally computed by
formulating it as a least-squares problem

arg min
R∈SO3

N∑
i=1
∥yi −Rxi∥2 , (3.2)

which minimizes the sum of the squared differences between model- and target
point cloud. As seen in the equation, the least-squares minimization is given by

Chapter 3. Deep Learning on Point Clouds 24

the ℓ2-norm. Thus, the minimization problem does not regress directly on the
rotation matrices, but uses the i-th vector in both data sets to find the minimal
solution. This is in contrast to deep rotation regression which regresses directly
on the rotation matrices under supervised learning. The loss function L(f(R)) in
the backpropagation of a neural network is given in [1] by the Frobenius norm as

arg min
R∈SO3

∥Rest −Rgt∥2F , (3.3)

where f constructs a loss function that compares the estimated rotation Rest to
the ground truth rotation Rgt.

3.2. Deep learning on point clouds
The application of deep learning on point clouds imposes multiple challenges,
where the most obvious difficulties could be distinguished into irregularities, un-
structuredness and unorderedness.

Irregularity: Point clouds are irregular, which means that points of an objec-
t/scene are not evenly sampled, as some regions are more dense of points, whereas
other areas are more sparse [32]. Figure 3.1 illustrates the concept of irregularities
on a car model.

Unstructured: Point clouds are not on a regular grid, which means that each
point is scanned independently and its distance to neighboring points is not always
fixed, whereas pixels in images are fixed on a 2-dimensional grid with fixed spacing
between each pixel [32]. Figure 3.2 illustrates the concept of unstructuredness.

Unordered: The order of the points in a point cloud data set does not change
the scene the points are representing [32]. Figure 3.3 shows the

Figure 3.1.: Irregularities of points on a car model produces dense and sparse
areas of points. Figure is from [32].

Chapter 3. Deep Learning on Point Clouds 25

Figure 3.2.: A point cloud is unstructured. Thus it has no grid, as each point is
independent and distance between neighboring points is not fixed. Figure is from
[32].

Figure 3.3.: Point clouds are invariant to permutations. Figure is from [32].

3.2.1. PointNet

PointNet is the first deep learning framework on unstructured point clouds, and
is a bedrock for most of the later developed frameworks such as PointNet++
[32]. PointNet is a unified weight-sharing CNN model developed for 3D shape
segmentation and classification purposes using raw a point cloud as input. Unlike
pixel arrays in image classification tasks, a fundamental problem lies in the fact
that point clouds are unordered. Given that a point cloud X ∈ R3×N is an
unordered data set, the network must be invariant to N ! permutations of the data
set. PointNet obtains permutation invariance, and the classification architecture
of the network is given in Figure 3.4.

The idea of PointNet is to learn a spatial encoding of each point through a multi-
layer perceptrons (MLPs) and then aggregate all individual point features to a
global point cloud signature using max-pooling [34]. The diagram above illustrates
intuitively the inner-workings and the pipeline of PointNet. Given an unordered
point set X = [x1, . . . , xN] ∈ R3×N , one can define a set function f : X → R that
maps a set of points to a vector

Chapter 3. Deep Learning on Point Clouds 26

Figure 3.4.: PointNet. Figure is from [33].

f (x1, . . . , xN) = γ

(
MAX
i=1,...,n

ψ (xi)
)

(3.4)

where γ and ψ MLPs. f in Equation 3.2.1 is permutation invariant, and the MAX
is a max pooling operator that takes a data set of n vectors as input and returns a
vector of the element-wise maximum [34]. Permutation invariance is achieved by
processing all points independently in shared MLPs which creates shared weights
[5]. The classification network is composed of two weight-sharing MLPs. ψ is a
feature extractor with neuron sizes of [64,64,64,128,1024] where all input points
in X share a single copy of ψ [33]. The neural network maps the point cloud to
X̃ = Ψ(X) such that X̃ ∈ R1024×N . X̃ is then further processed through max
pooling to create 1024D global feature vector. Finally, the feature vector is then
passed through the second MLP, γ with output sizes of [512, 256, n], resulting in
a n-dimensional output vector Rk.

3.2.2. PointNet++

Recall that X ∈ R3×N is a point cloud. All points in the point cloud forms
local dependency/structure with their surrounding points [33]. Capturing the
local structure has proven to be essential for the success of CNN-architectures
[33]. The PointNet introduced in Subsection 3.2.1 does not consider the local
structure of each individual point, which imposes shortcomings in recognizing
fine grained patterns in the input set, which further leads to restricted abilities
of generalization of complex scenes [34]. After PointNet many approaches were
proposed to capture local structure. PointNet++, developed by [34], is one such
proposal which is PointNet with a local structure added hierarchically, with each
hierarchy encoding a richer representation [32]. The addition of a hierarchical
structure shows to overall improve the performance in classification tasks [34]. The
hierarchical neural network applies PointNet recursively on a nested partitioning
of the input set X , and by exploiting metric space distances, the network is able

Chapter 3. Deep Learning on Point Clouds 27

to learn the local- and higher level features. This process resembles CNN for
image classification, where the convolutional layers extracts local spatial features
from the image and combines the local spatial features to higher-order features.
The higher-order features are then used to linearly separate different image types
[35]. Figure 3.5 illustrates the architecture of PointNet++ with its hierarchical
structure. The grey shaded area to the left in the diagram shows the hierarchical
structure.

Figure 3.5.: PointNet++. Figure is from [34].

Local structure modeling rests on three operations: sampling layer, grouping layer
and a mapping function (MLP) [32]. As seen in the Figure 3.5, the hierarchical
structure is formed by several set abstraction levels, where a set of points at each
level is processed and abstracted to produce a new set with fewer elements [34].
Each set abstraction level is composed of a sampling layer, grouping layer and
PointNet layer.

Sampling layer

The Sampling layer is applied to reduce resolution of points across layers. a set
of points from the input set, which defines the centroids of local regions. Given
point cloud X ∈ R3×N , the sampling reduces it to M points X̂ ∈ R3×M , where
M < N . The subsampled M points are referred to as centroids. The centroids
are used to represent the local region from which they were sampled [32]. There
most prominent techniques for subsampling are:

• Random Point Sampling (RPS) where each of the N points is uniformly
likely to be sampled.

Chapter 3. Deep Learning on Point Clouds 28

• Farthst Point Sampling (FPS) where the M sampled points is the most
distant point from the rest of the M − 1 points.

Grouping layer

Given that the centroids are sampled, k-Nearest Neighbor-algorithm (kNN) is used
to form local patches by grouping centroid points with their nearest neighboring
points. The points in a local patch are then used to compute the local feature
representation of the neighborhood. In the grouping layer, the kNN-algorithm is
either used explicitly where the k-nearest neighbors are sampled to form a local
path, or in a ball-query, where a ball-query selects the k-nearest neighbor points
within a given radius [32].

PointNet layer

Given that the nearest points to each centroid are computed, the next stage is
to map the points into a global feature vector. This is procedure is executed by
applying Equation Equation 3.2.1 [32].

Figure 3.6 depicts the process of local structure modeling using an airplane model
as point cloud input.

Figure 3.6.: Sampling and grouping of points into local patch. The reds are the
centroid points selected using sampling algorithms, and the grouping shown is a
ball query where points are selected based on a radius distance to the centroid
[32]. Figure is from [32].

3.2.3. PointNet++ MSG:

Recall that point clouds are irregular. Features learned in denser data, does
not necessarily generalize well to sparsely sampled regions. Moreover, Point-
Net++ trained on sparse input sets, does not necessarily learn local structures

Chapter 3. Deep Learning on Point Clouds 29

well enough. To tackle this problem, [34] provides PointNet++ with density
adaptive layers, which is called Multi-scale grouping (MSG). Figure 3.7 illustrates
PointNet++ MSG with its adaptive layers, that learn to combine features from
regions of different scales when the sampling density changes.

Figure 3.7.: PointNet++ MSG. Figure is from [34].

3.3. Deep rotation regression
To regress rotations with the PointNet and PointNet++, one must obtain the Rest

from Equation 3.3. The solution is setting the neural network output dimension to
be equal to the desired rotation representation in Rn, which is parameterized to a
rotation matrix R ∈ SO(3) with the parameterizations introduced in Section 2.5.

3.3.1. PointNet

The contributions from Zhou et al.[6], Levinson et al.[7] and Brègier [8] are con-
ducted by using PointNet as the backbone network. The PointNet-architecture
in [6] receives two input point clouds X ∈ R3×N and Y ∈ R3×N , where Y =
RgtX . The two input point clouds are pushed through PointNet to generate Rest,
which is used to construct the loss against Rgt in Equation 3.3. Recall ψ and γ
to be two weight-sharing MLPs from Equation 3.2.1. In particular, consider two
input point clouds X ∈ R3×N and Y ∈ R3×N , both point clouds are separately
passed through ψ to create X̃ = ψ(X) and Ỹ = ψ(Y). Both X̃ ∈ R1024×N and
Ỹ ∈ R1024×N are then concatenated to form a Z ∈ R2048×N . Z is then passed
through the γ with output sizes of [2048, 512, n]. The following code snippet is
from [6], and shows the MLPs’ ψ and γ. The code is written in Python and uses
the PyTorch framework.

1

2 import torch

Chapter 3. Deep Learning on Point Clouds 30

3 import torch.nn as nn
4

5

6 """ Feature descriptor """
7 self. feature_extracter = nn. Sequential (
8 nn. Conv1d (3, 64 , kernel_size =1),
9 nn. LeakyReLU (),

10 nn. Conv1d (64 , 128 , kernel_size =1),
11 nn. LeakyReLU (),
12 nn. Conv1d (128 , 1024 , kernel_size =1),
13 nn. AdaptiveMaxPool1d (output_size =1))
14

15

16

17 """ Multilayer perceptron """
18 self.mlp = nn. Sequential (
19 nn. Linear (2048 , 512),
20 nn. LeakyReLU (),
21 nn. Linear (512 , self. out_channel))
22

23 #self. out_channel = D- dimensional output
24

25 """ Two input point clouds pt1 and pt2 """
26 def forward (self , pt1 , pt2):
27 batch = pt1.shape[0]
28 point_num =pt1.shape[1]
29

30 feature_pt1 = self. feature_extracter (pt1. transpose (1,2)).
view(batch ,-1)#b*512

31 feature_pt2 = self. feature_extracter (pt2. transpose (1,2)).
view(batch ,-1)#b*512

32

33 f = torch.cat ((feature_pt1 , feature_pt2), 1) #batch*1024

3.3.2. PointNet++ MSG

In Chen et al.[1] the PointNet++ MSG is used as the backbone network for re-
gressing rotations. The network receives a single point cloud as input to generate
Rest, which is used to form a loss against Rgt. Thus, the network and the formula-
tion of the regression problem in [1] is in contrast to the previous works mentioned
in Subsection 3.3.1. The following code snippet is from [1], and shows PointNet++
MSG. The code is written in Python and uses the PyTorch framework.

1 class PointNet2_MSG (nn. Module):
2 def __init__ (self , out_channel):
3 super (PointNet2_MSG , self). __init__ ()
4 self.sa1 = PointNetSetAbstractionMsg (512 , [0.1, 0.2, 0.4],

Chapter 3. Deep Learning on Point Clouds 31

5 [32 , 64 , 128], 3,
6 [[32 , 32 , 64],
7 [64 , 64 , 128],
8 [64 , 96 , 128]])
9 self.sa2 = PointNetSetAbstractionMsg (128 ,

10 [0.4,0.8],
11 [64 , 128],
12 128+128+64 ,
13 [[128 , 128 , 256],
14 [128 , 196 , 256]])
15

16 self.sa3 = PointNetSetAbstraction (npoint =None , radius =None ,
nsample =None , in_channel =512 + 3,
mlp=[256 , 512 , 1024], group_all =
True)

17

18 self.mlp = nn. Sequential (
19 nn. Linear (1024 , 512),
20 nn. LeakyReLU (),
21 nn. Linear (512 , out_channel))
22

23 def forward (self , xyz):
24 # Set Abstraction layers
25 B,C,N = xyz.shape
26 l0_points = xyz
27 l0_xyz = xyz
28 l1_xyz , l1_points = self.sa1(l0_xyz , l0_points)
29 l2_xyz , l2_points = self.sa2(l1_xyz , l1_points)
30 l3_xyz , l3_points = self.sa3(l2_xyz , l2_points)
31

32 out_data = self.mlp(l3_points . squeeze (-1))
33 return out_data

Chapter 4.

Deep Rotation Regression

4.1. Problem area
Gao et al.[5] initiated the era of deep rotation regression by directly regressing on
rotation matrices constructed from point cloud feature vectors in R3, by using the
axis-angle parameterization (check Section 2.5 for details) to form the rotation
matrix. Figure 4.1 shows a diagram of how PointNet was used in [5] to generate
r ∈ R3. Note that the input dimension is R6×N , as each point has 6 dimension: 3
dimensions for spatial coordinates and 3 dimensions for color information (RGB)
[5].

Figure 4.1.: PointNet with 3-dimensional output. Figure is from [5].

The work of Gao et al.[5] has since been extended in Zhou et al.[6], Peretroukhin
et al.[19], Levinson et al.[7] and Brègier [8]. Recall the parameterization to be
the mapping from an n-dimensional network output to a rotation matrix Rest. A
great challenge in deep rotation regression is to construct learning friendly rota-
tion representations for network training. It is seen that when the full rotation
space is required (θ = [0, 2π]), the network generates provably wrong results for
certain parameterizations, which was revealed by Zhou et al.[6] to be caused by
discontinuities. The root of discontinuities is related to the topological concepts
introduced in Subsection 2.6.2 about homeomorphism between the rotation space
SO(3) and Rn. The discontinuities are limited to 3D and 4D rotation repre-
sentations, which includes the traditionally used quaternions, Euler angles and

Chapter 4. Deep Rotation Regression 33

axis-angles.

Considering the fact that most neural networks are continuous, which allows for
gradient based optimization, discontinuities imposed by rotation representations
generates a negative impact on neural network learning [36]. As already known
from Chapter 2, rotations reside in the non-Euclidean manifold of SO(n), while
the neural network outputs from both PointNet and PointNet++ are nested in
Rn. Zhou et al.[6] proved that the discontinuities are enforced because there are
no homeomorphic embeddings between Rn and the rotation space SO(3), when
n < 5.

[6] proposed parameterization through Gram-Schmidt orthogonalization using 6D
representation and 5D representations. [19] proposed 10D representations, while
[7] proposed a 9D representation and forming the rotation matrix through SVD-
orthogonalization. A recent paper from Chen et al.[1] hypothesises that naively
using Euclidean gradients during backpropagation, usually leads to a new matrix
off SO(3) manifold. The off-manifold components will lead to noise in the gra-
dients of the neural network weights, which will further harm generalization and
convergence [1]. The contribution in [1] offers manifold-aware gradients, which
leverages from Riemannian optimization from Section 2.8 to find the best possi-
ble gradients for backpropagation into the network weights. Thus, the common
objective in all of these promising aforementioned contributions, is narrowing the
gap between Rn and SO(3) manifold, as the desired state is to perform regression
on SO(3) without discontinuities.

4.2. Continuity of rotation representations
This section covers the contributions from Zhou et al.[6] and Brègier [8] on the
topic on learning-friendly rotation representations.

4.2.1. Deep learning pipeline

The deep learning pipeline consists of a forward-and backward pass. In the for-
ward pass, the neural network outputs a raw n-dimensional vector x in a Eu-
clidean space (ambient space) X = Rn. Then the manifold mapping π maps x
to x̂ = π(x) ∈ M, followed by a rotation mapping ϕ(π(x̂)) onto the rotation
manifold SO(3), such that the optimization variable is regressed on SO(3). The
inverse mapping is then a map back to M by ψ.

For network outputs x ∈ R3, the manifold mapping π(x) is not required, as a
Euclidean neural network can output 3D vectors [1]. However, for dimensions
n > 3, the n-dimensional vector lies on a non-Euclidean manifold. A manifold

Chapter 4. Deep Rotation Regression 34

mapping by the form of a normalization/orthogonalization step onto the manifold
π : Rn →M is required [1], such that the output further ends up in the rotation
space SO(3) in the rotation mapping ϕ. Thus, for 4D/10D, 5D/6D and 9D,
the representation mapping induced by π maps the mentioned representations to
S3,V2

(
R3) and SO(3), respectively [1]. Note that representation- and rotation

mapping for 9D output is the identity. Figure 4.2 shows the pipeline in a simpler
form.

Figure 4.2.: Pipeline with input, output and mapping between the representation
space and the original space. Figure is from [6].

4.2.2. Smoothness properties & surjectivity

Results for continuous functions indicate that functions that have better smooth-
ness properties have lower approximation error [6]. The authors in [6] stated that
ψ and ϕ must be continuous in order for the network to be continuous at all times.
The choice of a mapping function and n-dimensional representation is critical to
ensure learning-friendly neural network training.

Discontinuity

Let θ ∈ R be the rotation angle, and R = [0, 2π] a suitable set of angles. Consider
ψ be a mapping function from SO(2) to the representation space R, then ψ
imposes a discontinuous map at the identity rotation at θ = 0 and 2π. It is
noted in [36] that neural networks confronts an obstacle when converting rotation
matrices to quaternions and Euler angles, and produces a geodesic error (dM) of
π radians for some input. Figure 4.3 depicts discontinuities during the inverse
mapping from SO(2) (Original Space) toM (Representation Space). The inverse
mapping ψ in Figure 4.3 is given as g.

Chapter 4. Deep Rotation Regression 35

Figure 4.3.: Discontinuity. Figure is from [6].

The discontinuities imposed when mapping from SO(3) to quaternions have been
discussed in [36]. Let R be a rotation matrix. If tr(R) > −1, the representation
mapping ψ4D : R ∈ SO(3)→ q ∈ S3 is noted to be

ψ(R) =
(
γ

2 ,
1

2γ (R32 −R23) , 1
2γ (R13 −R31) , 1

2γ (R21 −R12)
)

(4.1)

where γ =
√

1 + tr(R). Since quaternions q and −q identifies the same rotation,
any conversion from R to quaternion needs to break ties. The conversion given
Equation 4.1 must break ties towards the first coordinate being positive. Consider
Rz(γ) : [0, 1]→ SO(3) defined by

Rz(γ) =

 cos 2πγ − sin 2πγ 0
sin 2πγ cos 2πγ 0

0 0 1

 , (4.2)

where Rz(γ) as the rotation around z-axis by angle 2πγ. Then ψ(Rz(γ)) =
(cosπγ, 0, 0, sin πγ) when Rz ∈

[
0, 1

2

)
and ψ(Rz(γ)) = (− cosπγ, 0, 0,− sin πγ)

when Rz ∈
(

1
2 , 1
]
. This gives

lim
γ→ 1

2
−
ψ(Rz(γ)) = (0, 0, 0, 1) ̸= (0, 0, 0,−1) = lim

γ→ 1
2

+
ψ(Rz(γ). (4.3)

Thus ψ is not continuous at ψ
(

1
2

)
. Since neural networks typically compute con-

tinuous functions, such a function cannot be computed by a neural network [36].
It is then seen in [6] that for any continuous function ψ4D : SO(3) → S3, there
exists a rotation R ∈ SO(3) such that the geodesic distance gives dM(R1, R2) = π.

Chapter 4. Deep Rotation Regression 36

Continuity

Zhou et al.[6] proposed that in order for a mapping function to be suitable for
deep learning applications, the parameterization ϕ should be surjective and satisfy
a notion of continuity, such that the right inverse ψ : SO(3) → Rn exists. It is
further noted that if the rotation space SO(3) is not homeomorphic to any subset
of the Rn, then there are no continuous representations. This concept was used
by [6] to create mappings from matrices through 5D and 6D representations, by
using the adapted Gram-Schmidt orthogonalization presented in Section 2.5. [8]
considers the preposition of surjectivity from [6] as part of several other proper-
ties that must be fulfilled in order to generate a learning-friendly regression on
manifold.

The notion of ϕ being surjective is required to be able to predict any arbitrary
output ϕ(x) ∈ SO(3). [8] declared that the the space where the regression is
held should be a smooth manifold. As introduced in Subsection 2.7.1, SO(3) is
a differentiable manifold. Moreover, Brègier proposed other desirable properties
such as

• Jacobian of full rank: The Jacobian of ϕ should be the rank of the
dimension of SO(3). This property ensures that one can always find an
infinitesimal displacement to apply to x in order to achieve an arbitrary
infinitesimal displacement of the output ϕ(x), such that there continuously
exists an element to backpropagate during training. It is noted in [8] that
a full rank Jacobian guarantees convergence of gradient descent towards a
global minimum of x̂.

• Pre-images connectivity: Recall the concept of pre-image connectivity
introduced in Subsection 2.6.1. In [8] it is noted that bijective correspon-
dences helps generalization in a neural network, which further leads to the
notion of the existence of homeomorphism between output- and rotation
space.

Thus, Brègier [8] laid the foundation for learning-friendly parameterizations onto
SO(3). Gathering the knowledge of satisfying conditions for learning-friendly
parameterizations, one could then extrapolate which properties are fulfilled in
the various parameterizations introduced in Section 2.5. Euler angles and axis-
angles satisfies surjectivity. However, as their rotation representations are not
homeomorphic to SO(3), there are no pre-images connectivity due to many-to-
one/one-to-many correspondences between. Moreover, both parameterizations do
not fulfill a full rank Jacobian. It is noted in [8] that the axis-angle parameteri-
zation suffers from rank deficiency for input rotations of angles 2πk, k ∈ N. The
axis-angle parameterization is suited for smaller angles [8]. The unit quaternion
satisfies all but pre-images connectivity, while the 6D, 9D and 10D representations

Chapter 4. Deep Rotation Regression 37

satisfies all conditions [8].

4.3. Manifold-aware gradients
Despite discovering learning-friendly rotation representations for network regres-
sion on the SO(3) manifold, a newly published paper from Chen et al.[1] states
that the regression step itself has been overlooked and neglected. The authors
argue that by using Euclidean gradients derived from vanilla auto-differentation
for backpropagation, will usually lead to a new matrix off SO(3) manifold, which
in turn will impose errors in the gradient of neural network weights. Solving this
challenge involves applying geometric deep learning which generalizes the opti-
mization problem onto non-Eulidean domains, i.e leveraging from Riemannian
optimization. The idea of [1] is to construct an intermediate goal rotation Rg

along the geodesic curve between Rest and Rgt, and use the goal rotation to find
the gradient with the smallest norm. The gradient with the smallest norm is em-
ployed to update the output rotation to the goal rotation, and is denoted in [1] as
a manifold-aware gradient. In particular, [1] introduces three manifold-aware gra-
dients, denoted as gM , gP M and gRP M . To find these gradients [1] introduces two
new hyperparameters λ and τ , where tweaking λ in an interval from [0, 1] deter-
mines the type of manifold-aware gradient, while τ determines the goal rotation.
The manifold-aware gradients directly updates the neural network weights in the
backpropagation in the backward pass. Hence, the forward pass in the pipeline
presented in Figure 4.2 will remain unchanged. The modified backward pass in
the pipeline is depicted in Figure 4.4. Note that the term RPMG-layer is not tied
to a specific manifold-aware gradient, but is merely used as a generalization of
the domain where gM , gP M and gRP M are constructed.

Figure 4.4.: Pipeline with RPMG. Figure is from [1].

Chapter 4. Deep Rotation Regression 38

4.3.1. Backpropagation with RPMG-layer

The better gradient with x∗

Noted in [1], consider the ℓ2-loss to be a general regression problem in Rn. The
ℓ2-loss is then given as

arg min ∥x− xgt∥2 , (4.4)

where x is the network output, and xgt is ground-truth. The gradient is then
noted as

g = 2 (x− xgt) (4.5)

Recall the Frobenius norm ∥Rest −Rgt∥2F from Equation 3.3 as a regression prob-
lem on SO(3). Using the notion of g in Equation 4.5, the authors in [1] propose
to find a manifold-aware gradient x∗ ∈ X for a given ground truth Rgt, or a goal
rotation denoted as Rg, where Rg is an intermediate rotation matrix between the
network output Rest and the ground truth Rgt. The new gradient would then be

g = 2 (x− x∗) , (4.6)

which is the gradient to be used to update the neural network weights.

Finding goal rotation Rg

Finding x∗ is not trivial. Computing x∗ involves performing a Riemannian opti-
mization on SO(3) introduced in Subsection 2.8.3 which gives

Rg ← Rk(−τ∇̃L(xk)), (4.7)

where Rg is the goal rotation, and τ is the step size. The Riemannian gradient
is along the geodesic path between Rest and Rgt on SO(3). Thus Rg is noted
to be an intermediate rotation matrix along the geodesic curve. As seen from
Equation 4.7, Rg is dependent on the step size τ . τ = 0 gives Rg = Rest, and
by gradually increasing τ from 0 forces Rg along the geodesic, and making it
approach Rgt. Figure 4.5 depicts the relation between Rest, Rg and Rgt.

Chapter 4. Deep Rotation Regression 39

Figure 4.5.: Illustration of the relation between Rest, Rg and Rgt, where Rg is an
intermediate rotation matrix on the geodesic curve between the estimation and
ground truth.

Finding gM

After computing Rg, the representation mapping ψ can be used to project from
the rotation manifold SO(3) onto the representation manifold M which gives
x̂g = ψ(Rg). The gradient x̂g can be used to construct the manifold gradient
gM = (x− x̂g), which is one of the aforementioned manifold-aware gradients.

Finding gP M

Further inverting π to obtain xg such that π−1(x̂g) ∈ X is a non-trivial problem as
there are multiple xgs that satisfies π(xg) = x̂g, i.e many-to-one correspondences.
[1] call it a multi-ground truth problem which is due to pose symmetries and also
related to the projective nature of the manifold mapping function π. Figure 4.6
illustrates various projection points x̂gps [1].

Chapter 4. Deep Rotation Regression 40

Figure 4.6.: Inversion of π to obtain xg is a multi-ground-truth problem. Figure
is from [1].

To solve this problem, [1] requires x∗ to have the smallest norm to x, and opts to
find the projection point xgp of x to all qualified xg given as

xgp = arg min
π(xg)=x̂g

∥x− xg∥2 , (4.8)

which gives gP M = (x−xgp), and is denoted as a projective manifold gradient. In
[1] the RPMG-layer includes only to quaternions, 6D, 9D and 10D representations.
The inverse projection with π is different for the various rotation representations.
The inverse projections for the mentioned rotation representations are found in
appendix A.1.

Finding gRP M

The authors in [1] adds a regularization term onto gP M which gives the regularized
projective manifold gradient as

gRP M = x− xgp + λ (xgp − x̂g) , (4.9)

where λ is a regularization coefficient. gRP M is noted to solve a problem related
to the norm of the network output, which tends to become small during training,
which further will lead to convergence issues and harm to the network perfor-
mance, which in [1] is denoted as a length-vanishing problem. It is noted in [1]

Chapter 4. Deep Rotation Regression 41

that a requirement to maintain gRP M is to keep λ small. In their work λ = 0.01.
Note that λ = 1, gRP M becomes gM , while λ = 0, gRP M gives gP M [1]. Thus,
hyperparameters in the algorithm of [1] are highly important for network perfor-
mance. Moreover, note from Figure 4.6 that when the angle between x and x̂g

becomes larger than π
2 radians as seen for x3, the projection xgp is in the opposite

direction of x̂g, and thus can not be mapped back to x̂g by π(xgp3) = x̂g, which
will result in a reversed gradient [1]. To tackle this problem, the hyperparameter
τ in Equation 4.7 is chosen to be small in the initial stage of training, such that
Rg is close to Rest. During the latter stages as the network is about to converge,
τ is ramped up to force Rg closer to Rgt for better convergence. The network
is noted to be converging when the geodesic distance (Equation 2.50) between R
and Rgt lessens.

Figure 4.7 illustrates the raw network output x mapped to x̂g by π. The green
arrow shows x̂g of the goal rotation Rg after representation mapping ψ(Rg) onto
M. The blue arrow is shown to be the inverse projection xgp of x̂g. Further
adding the regularization term λ gives gP MG which is shown as the purple line
[1].

Figure 4.7.: The gradients of gM , gP M and gRP M in action. Figure is from [1].

The impact of the manifold-aware gM , gP M and gRP M on the quaternion, 6D,
9D and 10D representations are extensively studied in Chapter 5. The length-

Chapter 4. Deep Rotation Regression 42

vanishing problem related to gP M is depicted and compared against the regular-
ized counterpart in gRP M .

Chapter 5.

Objective & Simulation

5.1. Objective

5.1.1. Task

The simulation in this report is based on the contribution of Chen et al.[1], which
measures the impact of the various manifold-aware gradients gM , gP M and gRP M

equpped on the quaternion, 6D, 9D and 10D representations. The objective in this
thesis is to study the impact of the manifold-aware gradients on the generalization
error produced by the various representations, where all results will be compared
against each other in box-plots, error plots and tables. As mentioned in the
previous chapter, the length-vanishing problem imposed by gP M is depicted and
compared against the regularized gRP M . Noted in [1], the only requirement is to
keep λ strictly larger than 0. The λ employed in [1] is set to λ = 0.01, which is also
the case in this thesis along with an additional adjustment of λ = 0.0005. The new
λ is then tested on the 6D, 9D and 10D representation. All simulations conducted
with the RPMG-layer operates with a τ where τ : τinitial = 1

20 → τfinal = 1
4 in 10

steps as dM(Rest, Rgt)→ 0.

5.1.2. PointNet++ MSG on ModelNet40

The simulation study in Chen et al.[1] involved training and testing PointNet++
MSG on ModelNet40 [37]. ModelNet40 is a widely used benchmark for point
cloud analysis. The data set consists of 12,311 CAD-generated meshes (split into
9,843 for training and 2,468 for testing) in 40 categories (such as airplane, car,
guitar etc.) [37], and is a proposal from Princeton Vision & Robotics Labs to aid
deep learning researchers in computer vision and robotics tasks [32].

Chapter 5. Objective & Simulation 44

5.1.3. Idun HPC

The simulation is conducted on Idun High-Performance Computing (Idun HPC),
which uses Graphical Processing Unit (GPU) computer clusters to solve advanced
computational problems [38]. Idun HPC is an initiative from the Norwegian
Techincal University of Science (NTNU).

5.2. Simulation details
The simulation in this report will train, validate and test the network on meshes
of various models of airplanes.The training lasts for 30k iterations and uses the
Adam optimizer with the initial learning rate set to 1e−3. The learning rate is
decayed by 0.7 every 3000-th iterations. A validation set of test samples is run in
parallel during the training, in order to keep track of progress. Figure 5.1 shows
four distinct raw points clouds of airplane models from ModelNet40 in R3×5632.

Figure 5.1.: Airplane models from ModelNet40 R3×5632.

However, the data sets which are passed through the network for training, vali-
dation and testing are reduced to R3×1024. This reduction is seen in Figure 5.2.
The training set consists of 626 various airplane models, while the test set has 100
distinct airplane models.

Chapter 5. Objective & Simulation 45

Figure 5.2.: Airplane models from ModelNet40 in R3×1024.

The Python-function def train_one_iteration() is a part of loop in another Python-
function called def train(param). def train_one_iteration() accepts a training set
as input, which is passed through for 30k iterations. The function takes a ran-
dom batch (20 batches in this simulation) of input point clouds, and generates a
batch-amount of ground-truth rotation matrices. At each iteration, the batches of
training samples are passed to PointNet++ MSG in one end, and outputs batches
of rotation matrices (Rest) in the other end. The outputted rotation matrices cre-
ates a loss with the ground-truth rotation matrices (Rgt). The gradient of the
loss is then passed to the RPMG-layer, which leverages from Riemannian opti-
mization to create a goal rotation Rg, which further leads to the backpropagation
of the neural network weights with gM , gP M and gRP M . All Python scripts for
conducting the simulations are presented in Appendix B.

1 def train_one_iteraton (pc , param , model , optimizer , iteration , tau):
2 optimizer . zero_grad ()
3 batch=pc.shape[0]
4 point_num = param. sample_num
5

6 ### get training data ######
7 pc1 = torch. autograd . Variable (pc.float ().cuda ()) #num*3
8 gt_rmat = tools. get_sampled_rotation_matrices_by_axisAngle (batch

Chapter 5. Objective & Simulation 46

)#batch*3*3
9 gt_rmats = gt_rmat . contiguous ().view(batch ,1,3,3). expand (batch ,

point_num , 3,3). contiguous ().view
(-1,3,3)

10 pc2 = torch.bmm(gt_rmats , pc1.view(-1,3,1))#(batch* point_num)*3*
1

11 pc2 = pc2.view(batch , point_num , 3) ##batch ,p_num ,3
12

13 ### network forward ########
14 out_rmat , out_nd = model(pc2. transpose (1,2)) # output [batch (*

sample_num),3,3]
15

16 #### compute loss ##########
17 if not param. use_rpmg :
18 loss = ((gt_rmat - out_rmat) ** 2).mean ()
19

20 else:
21 out_9d = rpmg.RPMG.apply(out_nd , tau , param. rpmg_lambda ,

gt_rmat , iteration)
22 loss = ((gt_rmat - out_9d) ** 2).sum ()
23

24 loss. backward ()
25 optimizer .step ()
26

27

28 return loss

5.2.1. Idun HPC

Assuming the reader has access to Idun. Certain bash commands must be exe-
cuted in order to conduct the simulation.

See the following command:
1 $ srun --nodes =1 --partition =GPUQ --gres=gpu :1 --time =100:00:00 --

pty bash
2 $ module load PyTorch /1.7.1 - fosscuda -2020b

5.2.2. Code compilation in Idun

After reserving the GPU-node in Subsection 5.2.1, it should be straight-forward to
follow the Github repository provided by [1] to conduct the simulation. The URL
of the Github repository is https://github.com/JYChen18/RPMG.git. When
Github repository is cloned, follow the next steps to conduct a simulation:

Download dataset from ModelNet40:

https://github.com/JYChen18/RPMG.git

Chapter 5. Objective & Simulation 47

1 $ cd RPMG/ ModelNet_PC
2 $ mkdir dataset && cd dataset
3 $ wget https :// lmb. informatik .uni - freiburg .de/ resources / datasets /

ORION/ modelnet40_manually_aligned .tar
4 $ mkdir modelnet40 && tar xvf modelnet40_manually_aligned .tar -C

modelnet40
5 $ cd ..

Chapter 5. Objective & Simulation 48

Prepocess data:
1 $ cd code
2 $ python prepare .py -d ../ dataset / modelnet40 -c airplane
3 $ cd ..

Train and test: To train and test the network, use configuration-file in Appendix
B.2.1 to set the desired properties on RPMG-layer. The instructions are given in
the config-file.

1 $ cd code
2 $ python train.py --config example . config
3 $ python test.py --config example . config --rotation_map

name_of_rot_map
4 $ cd ..

5.2.3. Transferring files to create tables and graphs

As Graphical User Interface (GUI) in Idun HPC is not available, plotting and
visualizing graphs is inconvenient in Idun HPC. The train.py-file creates a folder
at RPMG/ModelNet_PC/exp, which stores the weights and Tensorboard-files
of the trained representation. Compiling the test.py-file stores the output in
an Excel-file in RPMG/ModelNet_PC/code. Both the Excel-and Tensorboard-
files were then transferred from Idun HPC to PC via WinSCP. WinSCP is a file
transfer application which securely transfers files from a local computer to an
external computer via a SSH protocol [39]. In the local computer, the files were
used to create the graphs and tables shown in Chapter 6. The IDE used during
this thesis was Spyder IDE, which is a free and open source scientific Python
development environment [40].

Chapter 6.

Results & Discussion

This chapter presents the results from the simulations and a discussion of the
results. The results are depicted in tables, box-plots and error plots, where the
objective is to display a comparison between the various settings of rotation repre-
sentations with Euclidean gradients versus the manifold-aware gradients derived
by the inverse mappings of the goal rotation Rg. The results are given in geodesic
errors, noted as dM-error. Table 6.1 serves an overview of all representations. The
RPMG-layer is employed on quaternion, 6D, 9D and 10D representations. The
length-vanishing problem imposed when using gP M which returns zero gradients
are also illustrated and compared against the gradients of gRP M in Figure 6.10.
All results are discussed in Section 6.2.

6.1. Results

6.1.1. Rotation representations

This section depicts the dM-test error of various rotation representations. The
results are shown in box-plots and an error-plot. Figure 6.1 and Figure 6.2 depicts
the geodesic test error. It is seen that 6D, 9D and 10D are dominant in accuracy
compared to the rest, where 6D is seen to be the superior.

Chapter 6. Results & Discussion 50

Figure 6.1.: Median dM-test error of airplane models in different iterations dur-
ing training. Simulation is done without manifold-aware gradients. The plot is a
replication of [6] and [8] trained on ModelNet40. 5D, 6D, 9D and 10D is shown
to be the most optimal rotation representations.

Figure 6.2.: Box plot of rotation representations without manifold-aware gradi-
ents.

6.1.2. Rotation representations with gM

This section depicts the dM-test error of various rotation representations when
using the RPMG-layer in the network. The manifold-aware gradient in this sim-
ulation is gM , which means λ = 1. The results are shown in box-plots and an

Chapter 6. Results & Discussion 51

error-plot. Figure 6.3 and Figure 6.4 depicts the geodesic test error. It is seen
that 6D-MG, 9D-MG and 10D-MG are dominant in accuracy compared to the
Quaternion-MG.

Figure 6.3.: Median dM-test error of airplane models in different iterations
during training. Simulation is performed on an RPMG-layer using gM as the
manifold-aware gradient.

Figure 6.4.: Box plot of rotation representations using gM as a manifold-aware
gradient.

Chapter 6. Results & Discussion 52

6.1.3. Rotation representations with gP M

This section depicts the dM-test error of various rotation representations when
using the RPMG-layer in the network. The manifold-aware gradient in this sim-
ulation is gP M , which means λ = 0. The results are shown in box-plots and an
error-plot. Figure 6.5 and Figure 6.6 depicts the geodesic test error. It is obvi-
ous that the results using gP M are not sufficient, as none of the representations
converges.

Figure 6.5.: Median dM-test error of airplane models in different iterations
during training. Simulation is performed on an RPMG-layer using gP M as the
manifold-aware gradient.

Chapter 6. Results & Discussion 53

Figure 6.6.: Box plot of rotation representations using gP M as a manifold-aware
gradient.

6.1.4. Rotation representations with gRP M

This section depicts the dM-test error of various rotation representations when
using the RPMG-layer in the network. The manifold-aware gradient in this sim-
ulation is gRP M , which in this simulation uses λ = 0.01. The results are shown
in box-plots and an error-plot. Figure 6.7 and Figure 6.8 depicts the geodesic
test error. It is seen that 6D-RPMG, 9D-RPMG and 10D-RPMG are superior of
Quaternion-MG.

Chapter 6. Results & Discussion 54

Figure 6.7.: Median dM-test error of airplane models in different iterations dur-
ing training. Simulation is performed on an RPMG-layer using gRP M as the
manifold-aware gradient.

Figure 6.8.: Box plot of rotation representations using gRP M as a manifold-aware
gradient.

6.1.5. Length-vanishing problem

The length-vanishing problem when using gP M is depicted in Figure 6.9, and com-
pared against the gradient found from gRP M , which is illustrated in Figure 6.10.
The representations simulated in this specific simulation are based on the param-
eterization from 6D, 9D and 10D network output. The plot shows the relation

Chapter 6. Results & Discussion 55

between the gradients and ℓ2-norm of the gradients at a given iteration during
training.

Figure 6.9.: Using gP M imposes vanishing gradients.

Chapter 6. Results & Discussion 56

Figure 6.10.: The gRP M gradient has stable gradients in comparison to gP M .

6.1.6. Overview of results

This section depicts the comparison when employing/not employing the RPMG-
layer on various representations. The results are given in Figure 6.11 and Ta-
ble 6.1.

Chapter 6. Results & Discussion 57

Figure 6.11.: Error plot of rotation representations with and without the RPMG-
layer.

The graph shows the overall performance of all the tested rotation representation
in the simulations. It is seen from Table 6.1 that 6D-RPMG enjoys the most
optimal performance compared to the rest, with a 5◦ geodesic accuracy of 94.9 %.

Chapter 6. Results & Discussion 58

Rotation Representation Loss Min Md 5◦ Acc
Axis-angle 1.361 0.72 8.27 0.198

Euler angles 2.877 0.63 10.35 0.134
Quaternion 1.087 0.37 7.45 0.264

5D 0.356 0.23 5.06 0.493
6D 0.197 0.37 3.95 0.68
9D 0.304 0.25 4.51 0.576

10D 0.228 0.58 4.05 0.632
Quaternion-MG 0.478 0.31 5.26 0.469

6D-MG 0.136 0.16 3.37 0.771
9D-MG 0.127 0.14 3.14 0.811

10D-MG 0.147 0.34 3.14 0.813
Quaternion-PMG 10.805 5.04 26.24 0.0

6D-PMG 7.978 2.09 21.74 0.05
9D-PMG 5.872 0.19 17.53 0.045

10D-PMG 5.042 1.44 17.97 0.027
Quaternion-RPMG 0.151 0.3 2.51 0.899

6D-RPMG 0.066 0.24 2.17 0.949
9D-RPMG 0.076 0.28 2.27 0.946

10D-RPMG 0.074 0.14 2.11 0.943

Table 6.1.: A comparison of rotation representations by loss, minimum- and
median dM-test error, along with 5◦ accuracy of dM-test errors after 30k training
steps. Min, Md and Acc are abbreviations of minimum, median and 5◦ accuracy.
The most optimal 5◦ Acc is marked in blue, and belongs to 6D-RPMG, while red
colorization specifies the superior representation within its respective domain.

Rotation Representation Loss Min Md 5◦ Acc
6D-RPMG 0.489 0.21 2.481 0.871
9D-RPMG 0.411 0.17 2.362 0.896
10D-RPMG 0.556 0.16 2.782 0.803

Table 6.2.: This table shows the results on 6D, 9D and 10D representations
when λ = 0.0005. The results proves that the only requirement is to keep λ > 0
to maintain great generalization errors.

6.2. Discussion
The obtained results from the simulations proves that the contribution of Chen et
al.[1] optimizes the previous work of Zhou et al.[6], Levinson et al.[7], Peretroukhin

Chapter 6. Results & Discussion 59

et al.[19] and Brègier [8]. Table 6.1 indicates that all representations using the
RPMG-layer with manifold-aware gradients enjoys superior performance over the
regular rotation representations using Euclidean gradients. The 6D-RPMG rep-
resentation is overall the best representation, along with a tight follow-up from
9D-RPMG and 10D-RPMG. It is also seen that the gP M -gradient is quite unac-
ceptable, and from Figure 6.5, it is seen that the error plot does not converge
for any representation, which is due to the length-vanishing problem depicted in
Subsection 6.1.5, where it is that the ℓ2-norm of the gradient of gP M converges
to 0. This challenge is tackled by adding the regularization term in Figure 4.7,
which gives stable gradients depicted in Figure 6.10. It is noted in [1] that the
only requirement is setting λ > 0. This claim is tested in Table 6.2 as λ = 0.0005.
As seen from the results, the statement proves to be correct. With a λ close to 0,
9D-RPMG shows to be the better representation.

Chapter 7.

Conclusion

This master’s thesis has studied learning-friendly rotation representations in deep
rotation regression when using PointNet++ MSG as the backbone neural network.
It has been studied that learning-friendly rotation representations are strongly re-
lated to topological concepts on homeomorphism between smooth manifolds. The
homeomorphism preserves properties during bijective mappings between mani-
folds. The manifold mapping of interest in this study are between the Euclidean
Rn and the rotation space SO(3). It is seen that when the full rotation space
(θ = [0, 2π]) is required, certain n-dimensional neural network outputs in Rn are
discontinuous, and imposes difficulties when training on a continuous neural net-
work. The proposal of Zhou et al.[6] along with the contributions of Romain
Brègier [8], Levinson et al.[7] and Peretroukhin et al.[19] proves that discontinu-
ous neural network outputs exists only for vectors less than 5 dimensions. The
simulation in this thesis has proved that 5D, 6D, 9D and 10D representations
are better suited for neural network learning in deep rotation regression, as those
rotation representations are homeomorphic to SO(3). Furthermore, an additional
study from Chen et al.[1] studies the application of geometric deep learning on
various rotation representations. It is seen from the simulations that by employ-
ing Riemannian optimization to derive manifold-aware gradients through a goal
rotation Rg, consistently improves generalization on quaternion, 6D, 9D and 10D
representations when using gM and gRP M as the manifold-aware gradients.

References

[1] J. Chen, Y. Yin, T. Birdal, B. Chen, L. J. Guibas, and H. Wang, “Pro-
jective Manifold Gradient Layer for Deep Rotation Regression,” CoRR,
vol. abs/2110.11657, 2021. arXiv: 2110.11657. [Online]. Available: https:
//arxiv.org/abs/2110.11657.

[2] X. Huang, G. Mei, J. Zhang, and R. Abbas, “A Comprehensive Survey on
Point Cloud Registration,” CoRR, vol. abs/2103.02690, 2021. arXiv: 2103.
02690. [Online]. Available: https://arxiv.org/abs/2103.02690.

[3] H. Yang, J. Shi, and L. Carlone, “TEASER: Fast and Certifiable Point
Cloud Registration,” CoRR, vol. abs/2001.07715, 2020. arXiv: 2001.07715.
[Online]. Available: https://arxiv.org/abs/2001.07715.

[4] Q. Zhou, J. Park, and V. Koltun, “Fast Global Registration,” in Com-
puter Vision - ECCV 2016 - 14th European Conference, Amsterdam, The
Netherlands, October 11-14, 2016, Proceedings, Part II, B. Leibe, J. Matas,
N. Sebe, and M. Welling, Eds., ser. Lecture Notes in Computer Science,
vol. 9906, Springer, 2016, pp. 766–782. doi: 10.1007/978-3-319-46475-
6_47. [Online]. Available: https://doi.org/10.1007/978-3-319-46475-
6%5C_47.

[5] G. Gao, M. Lauri, J. Zhang, and S. Frintrop, “Occlusion Resistant Object
Rotation Regression from Point Cloud Segments,” 2018. doi: 10.48550/
ARXIV.1808.05498. [Online]. Available: https://arxiv.org/abs/1808.
05498.

[6] Y. Zhou, C. Barnes, J. Lu, J. Yang, and H. Li, “On the Continuity of Ro-
tation Representations in Neural Networks,” 2018. doi: 10.48550/ARXIV.
1812.07035. [Online]. Available: https://arxiv.org/abs/1812.07035.

[7] J. Levinson, C. Esteves, K. Chen, N. Snavely, A. Kanazawa, A. Rostamizadeh,
and A. Makadia, “An Analysis of SVD for Deep Rotation Estimation,” 2020.
doi: 10.48550/ARXIV.2006.14616. [Online]. Available: https://arxiv.
org/abs/2006.14616.

https://arxiv.org/abs/2110.11657
https://arxiv.org/abs/2110.11657
https://arxiv.org/abs/2110.11657
https://arxiv.org/abs/2103.02690
https://arxiv.org/abs/2103.02690
https://arxiv.org/abs/2103.02690
https://arxiv.org/abs/2001.07715
https://arxiv.org/abs/2001.07715
https://doi.org/10.1007/978-3-319-46475-6_47
https://doi.org/10.1007/978-3-319-46475-6_47
https://doi.org/10.1007/978-3-319-46475-6%5C_47
https://doi.org/10.1007/978-3-319-46475-6%5C_47
https://doi.org/10.48550/ARXIV.1808.05498
https://doi.org/10.48550/ARXIV.1808.05498
https://arxiv.org/abs/1808.05498
https://arxiv.org/abs/1808.05498
https://doi.org/10.48550/ARXIV.1812.07035
https://doi.org/10.48550/ARXIV.1812.07035
https://arxiv.org/abs/1812.07035
https://doi.org/10.48550/ARXIV.2006.14616
https://arxiv.org/abs/2006.14616
https://arxiv.org/abs/2006.14616

References 62

[8] R. Brégier, “Deep Regression on Manifolds: A 3D Rotation Case Study,”
2021. doi: 10.48550/ARXIV.2103.16317. [Online]. Available: https://
arxiv.org/abs/2103.16317.

[9] K. B. Petersen and M. S. Pedersen, The Matrix Cookbook, 2008. [Online].
Available: http://matrixcookbook.com/.

[10] A. Barrau, “Non-Linear State Error Based Extended Kalman Filters with
Applications to Navigation.,” 2015. [Online]. Available: https : / / tel .
archives-ouvertes.fr/tel-01344622.

[11] A. Iserles, H. Z. Munthe-Kaas, S. P. Nørsett, and A. Zanna, “Lie-group
Methods,” Acta Numerica, 2000. [Online]. Available: http://hans.munthe-
kaas.no/work/Blog/Entries/2000/1/1_Article__Lie-group_methods_
files/iserles00lgm.pdf.

[12] A. Sjoberg and O. Egeland, “An EKF for Lie Groups with Application to
Crane Load Dynamics,” Modeling, Identification and Control, 2019, issn:
1890–1328.

[13] S. Ovchinnikov, Functional Analysis. Springer, 2018. [Online]. Available:
https : / / link . springer . com / content / pdf / 10 . 1007 / 978 - 3 - 319 -
91512-8.pdf.

[14] A. Matsumoto and F. Szidarovszky, Game Theory and Its Applications, 1st
ed. 2016. Springer, 2016. [Online]. Available: https://EconPapers.repec.
org/RePEc:spr:sprbok:978-4-431-54786-0.

[15] M. Moakher, “Means and Averaging in the Group of Rotations,” SIAM
Journal on Matrix Analysis and Applications, vol. 24, no. 1, 2002. doi: 10.
1137 / S0895479801383877. [Online]. Available: https : / / doi . org / 10 .
1137/S0895479801383877.

[16] Zhang Yanchun and Xu, Guandong, and Ozsu, M. Tamer, Singular Value
Decomposition. Boston, MA: Springer US, 2009, isbn: 978-0-387-39940-9.
doi: 10 . 1007 / 978 - 0 - 387 - 39940 - 9 _ 538. [Online]. Available: https :
//doi.org/10.1007/978-0-387-39940-9_538.

[17] I. Yanovsky, QR Decomposition with Gram-Schmidt. [Online]. Available:
https://www.math.ucla.edu/~yanovsky/Teaching/Math151B/handouts/
GramSchmidt.pdf.

[18] K. M. Lynch and F. C. Park, Modern Robotics: Mechanics, Planning, and
Control, 1st. Cambridge University Press, 2017, isbn: 1107156300.

[19] V. Peretroukhin, M. Giamou, W. N. Greene, D. Rosen, J. Kelly, and N. Roy,
“A Smooth Representation of Belief over SO(3) for Deep Rotation Learning
with Uncertainty,” in Robotics: Science and Systems XVI, Robotics: Science
and Systems Foundation, Jul. 2020. doi: 10.15607/rss.2020.xvi.007.
[Online]. Available: https://doi.org/10.15607%2Frss.2020.xvi.007.

https://doi.org/10.48550/ARXIV.2103.16317
https://arxiv.org/abs/2103.16317
https://arxiv.org/abs/2103.16317
http://matrixcookbook.com/
https://tel.archives-ouvertes.fr/tel-01344622
https://tel.archives-ouvertes.fr/tel-01344622
http://hans.munthe-kaas.no/work/Blog/Entries/2000/1/1_Article__Lie-group_methods_files/iserles00lgm.pdf
http://hans.munthe-kaas.no/work/Blog/Entries/2000/1/1_Article__Lie-group_methods_files/iserles00lgm.pdf
http://hans.munthe-kaas.no/work/Blog/Entries/2000/1/1_Article__Lie-group_methods_files/iserles00lgm.pdf
https://link.springer.com/content/pdf/10.1007/978-3-319-91512-8.pdf
https://link.springer.com/content/pdf/10.1007/978-3-319-91512-8.pdf
https://EconPapers.repec.org/RePEc:spr:sprbok:978-4-431-54786-0
https://EconPapers.repec.org/RePEc:spr:sprbok:978-4-431-54786-0
https://doi.org/10.1137/S0895479801383877
https://doi.org/10.1137/S0895479801383877
https://doi.org/10.1137/S0895479801383877
https://doi.org/10.1137/S0895479801383877
https://doi.org/10.1007/978-0-387-39940-9_538
https://doi.org/10.1007/978-0-387-39940-9_538
https://doi.org/10.1007/978-0-387-39940-9_538
https://www.math.ucla.edu/~yanovsky/Teaching/Math151B/handouts/GramSchmidt.pdf
https://www.math.ucla.edu/~yanovsky/Teaching/Math151B/handouts/GramSchmidt.pdf
https://doi.org/10.15607/rss.2020.xvi.007
https://doi.org/10.15607%2Frss.2020.xvi.007

References 63

[20] S. C. Carlson, Topology, 2017. [Online]. Available: https://www.britannica.
com/science/topology.

[21] G. E.Bredon, Topology and Geometry. Springer New York, 1993. doi: https:
//doi.org/10.1007/978-1-4757-6848-0.

[22] D. Chakraborty and K. Sarma, “A Study on Blind Source Separation using
ICA Algorithm in Terms of Invertible System,” Journal of Basic and Applied
Engineering Research, 2019, issn: 2350-0077.

[23] A. Kuronya, Introduction to Topology. CreateSpace Independent Publishing
Platform, 2014, isbn: 9781502795939. [Online]. Available: https://books.
google.no/books?id=3Ov0oQEACAAJ.

[24] A. Sagle and R. Walde, Introduction to Lie Groups and Lie Algebras, ser. Pure
and Applied Mathematics; A Series of Monographs and Tex. Academic
Press, 1973, isbn: 9780126145502. [Online]. Available: https : / / books .
google.no/books?id=3T0mnQEACAAJ.

[25] S. Lovett, Differential Geometry of Manifolds, ser. Textbooks in mathe-
matics. CRC Press, 2019, isbn: 9780367180461. [Online]. Available: https:
//books.google.no/books?id=vB1AxwEACAAJ.

[26] J. Wilson, Manifolds, 2012. [Online]. Available: http://www.math.lsa.
umich.edu/~jchw/WOMPtalk-Manifolds.pdf.

[27] Michaelmas, Smooth Manifolds and Tangent space: Outline, 2013. [Online].
Available: https://www.maths.dur.ac.uk/users/anna.felikson/RG/
RG13/outline1.pdf.

[28] John M. Lee, Introduction to Smooth Manifolds. Springer, 2000. doi: 10.
1007/978-1-4419-9982-5.

[29] F. C. Park, “Distance Metrics on the Rigid-Body Motions with Applications
to Mechanism Design,” Journal of Mechanical Design, vol. 117, no. 1, pp. 48–
54, 1995, issn: 1050-0472. doi: 10.1115/1.2826116. [Online]. Available:
https://doi.org/10.1115/1.2826116.

[30] R. I. Hartley, J. Trumpf, Y. Dai, and H. Li, “Rotation Averaging,” Interna-
tional Journal of Computer Vision, vol. 103, pp. 267–305, 2012.

[31] A. de Ruiter and J. Forbes. [Online]. Available: https : / / sdac . blog .
ryerson.ca/files/2016/02/WahbaSOnpaperJASrevision4.pdf.

[32] S. A. Bello, S. Yu, and C. Wang, “Review: Deep learning on 3d point clouds,”
CoRR, vol. abs/2001.06280, 2020. arXiv: 2001.06280. [Online]. Available:
https://arxiv.org/abs/2001.06280.

[33] C. R. Qi, H. Su, K. Mo, and L. J. Guibas, “PointNet: Deep Learning on Point
Sets for 3D Classification and Segmentation,” 2016. doi: 10.48550/ARXIV.
1612.00593. [Online]. Available: https://arxiv.org/abs/1612.00593.

https://www.britannica.com/science/topology
https://www.britannica.com/science/topology
https://doi.org/https://doi.org/10.1007/978-1-4757-6848-0
https://doi.org/https://doi.org/10.1007/978-1-4757-6848-0
https://books.google.no/books?id=3Ov0oQEACAAJ
https://books.google.no/books?id=3Ov0oQEACAAJ
https://books.google.no/books?id=3T0mnQEACAAJ
https://books.google.no/books?id=3T0mnQEACAAJ
https://books.google.no/books?id=vB1AxwEACAAJ
https://books.google.no/books?id=vB1AxwEACAAJ
http://www.math.lsa.umich.edu/~jchw/WOMPtalk-Manifolds.pdf
http://www.math.lsa.umich.edu/~jchw/WOMPtalk-Manifolds.pdf
https://www.maths.dur.ac.uk/users/anna.felikson/RG/RG13/outline1.pdf
https://www.maths.dur.ac.uk/users/anna.felikson/RG/RG13/outline1.pdf
https://doi.org/10.1007/978-1-4419-9982-5
https://doi.org/10.1007/978-1-4419-9982-5
https://doi.org/10.1115/1.2826116
https://doi.org/10.1115/1.2826116
https://sdac.blog.ryerson.ca/files/2016/02/WahbaSOnpaperJASrevision4.pdf
https://sdac.blog.ryerson.ca/files/2016/02/WahbaSOnpaperJASrevision4.pdf
https://arxiv.org/abs/2001.06280
https://arxiv.org/abs/2001.06280
https://doi.org/10.48550/ARXIV.1612.00593
https://doi.org/10.48550/ARXIV.1612.00593
https://arxiv.org/abs/1612.00593

References 64

[34] C. R. Qi, L. Yi, H. Su, and L. J. Guibas, “PointNet++: Deep Hierarchical
Feature Learning on Point Sets in a Metric Space,” 2017. doi: 10.48550/
ARXIV.1706.02413. [Online]. Available: https://arxiv.org/abs/1706.
02413.

[35] W. J. Marais, R. E. Holz, J. S. Reid, and R. M. Willett, “Leveraging Spa-
tial Textures, Through Machine Learning, to Identify Aerosols and Distinct
Cloud Types from Multispectral Observations,” Atmospheric Measurement
Techniques, vol. 13, no. 10, pp. 5459–5480, 2020. doi: 10.5194/amt-13-
5459-2020. [Online]. Available: https://amt.copernicus.org/articles/
13/5459/2020/.

[36] S. Xiang and H. Li, “Revisiting the Continuity of Rotation Representations
in Neural Networks,” 2020. doi: 10.48550/ARXIV.2006.06234. [Online].
Available: https://arxiv.org/abs/2006.06234.

[37] Princeton ModelNet. [Online]. Available: https://modelnet.cs.princeton.
edu/.

[38] M. Själander, M. Jahre, G. Tufte, and N. Reissmann, “EPIC: An Energy-
Efficient, High-Performance GPGPU Computing Research Infrastructure,”
2019. arXiv: 1912.05848 [cs.DC].

[39] [Online]. Available: https://winscp.net/eng/index.php.
[40] [Online]. Available: https://www.spyder-ide.org/.

https://doi.org/10.48550/ARXIV.1706.02413
https://doi.org/10.48550/ARXIV.1706.02413
https://arxiv.org/abs/1706.02413
https://arxiv.org/abs/1706.02413
https://doi.org/10.5194/amt-13-5459-2020
https://doi.org/10.5194/amt-13-5459-2020
https://amt.copernicus.org/articles/13/5459/2020/
https://amt.copernicus.org/articles/13/5459/2020/
https://doi.org/10.48550/ARXIV.2006.06234
https://arxiv.org/abs/2006.06234
https://modelnet.cs.princeton.edu/
https://modelnet.cs.princeton.edu/
https://arxiv.org/abs/1912.05848
https://winscp.net/eng/index.php
https://www.spyder-ide.org/

Appendix A.

Mathematical Formulations

Mathematical formulations which were too extensive to include in the main sec-
tions of the thesis are included in this appendix. In section A.1 the inverse image
projection xg = π−1(x̂g) quaternion, 6D, 9D and 10D representations are pre-
sented.

A.1. Derivation of inverse projections
All of the following derivations are from Chen et al. [1], and is used to compute
xg in gP M by using the next goal x̂g in an inversion step by π−1 from the repre-
sentation manifold M to the ambient space X . The following codes are directly
extracted from [1].

A.1.1. Quaternion

xgp = arg min
xg∈π−1

q (x̂g)
∥xg − x∥22 , (A.1)

where x is the raw output of our network in ambient space R4, x̂g is the next goal
in representation manifold S3, and xg is the variable to optimize in ambient space
R4. Recall π−1

q (x̂g) = {x | x = kx̂g, k ∈ R and k > 0}, and

∥x− xg∥22 = x2 − 2kx · x̂g + k2x̂2
g (A.2)

Without considering the condition of k > 0, it is noted when k = x·x̂g

x̂2
g

= x · x̂g

the target formula reaches minimum. Note that when using a small τ , the angle
between x̂g and x is always very small, which means the condition of k = x·x̂g > 0

Appendix A. Mathematical Formulations 66

can be satisfied naturally. For the sake of simplicity and consistency of gradient,
the limitation of k is ignored no matter what value τ takes. Therefore, the inverse
projection is xgp = (x · x̂g) x̂g.

A.1.2. 6D representation

For 6D representations, the following must be solved

[ugp, vgp] = arg min
[ug ,vg]∈π−1

6D([ũg ,ṽg])

(
∥ug − u∥22 + ∥vg − v∥22

)
(A.3)

where [u, v] is the raw output of network in ambient space R6, [ûg, v̂g] is the next
goal in representation manifold V2

(
R3) and [ug, vg] is the variable to optimize in

ambient space R6. Recall π−1
6D ([ûg, v̂g]) = {[k1ûg, k2ûg+ k3v̂g] | k1, k2, k3 ∈ R and

k1, k3 > 0}. It is seen that ug and vg are independent, and ug is similar to the
situation of quaternion. So the only considered part is vg given below

∥v − vg∥22 = v2 + k2
2û

2
g + k2

3 v̂
2
g − 2k2v · ûg − 2k3v · v̂g (A.4)

For the similar reason as quaternion, the condition of k3 > 0 is ignored and it is
seen when k2 = v · ûg and k3 = v · v̂g, the target formula reaches minimum. There-
fore, the inverse projection is [ugp, vgp] = [(u · ûg) ûg, (v . ûg) ûg + (v · v̂g) v̂g].

A.1.3. 9D representation

For the 9D representation, obtaining the inverse image π−1
9D is not so obvious.

Recall π9D(x) = UΣ′V ⊤, where U and V are left and right singular vectors of x
decomposed by SVD expressed as x = UΣV ⊤, and Σ′ = diag

(
1, 1,det

(
UV ⊤

))
.

Lemma A.1.1 The inverse image π−1
9D (Rg) = {SRg | S = S⊤

}
satisfies that

{xg | π9D (xg) = Rg} ⊂ π−1
9D (Rg).

Proof:. To find a suitable π−1
9D, the most straightforward way is to only change the

singular values Σg = diag (λ0, λ1, λ2), where λ0, λ1, λ2 can be arbitrary scalars,
and recompose the xg = UΣgV

⊤.

However, it is argued that this simple method will fail to capture the entire set
of {xg | π9D (xg) = Rg}, because different U ′ and V ′ can yield the same rota-
tion Rg. In fact, Ug can be arbitrary if xg = UgΣgV

⊤
g and UgΣ′

gV
⊤

g = Rg.

Appendix A. Mathematical Formulations 67

Assuming Rg is known, one can replace V ⊤
g by Rg and express xg in a dif-

ferent way: xg = UgΣg
1

Σ′
g
U−1

g Rg. Notice that UgΣg
1

Σ′
g
U−1

g must be a sym-
metry matrix since Ug is an orthogonal matrix. Therefore, {xg | π9D (xg) =
Rg} ⊆ π−1

9D (Rg) =
{
SRg | S = S⊤

}
.

Note that such xg ∈ π−1
9D (Rg) can’t ensure π9D (xg) = Rg, because in the im-

plementation of SVD, the order and the sign of three singular values are con-
strained, which is not taken into consideration. Therefore, {xg | π9D (xg) = Rg} ≠
π−1

9D (Rg) . Then one must solve

xgp = arg min
xg∈π−1

9D(Rg)
∥xg − x∥22 (A.5)

where x is the raw output of our network in ambient space R3×3, x̂g is the next goal
in representation manifold SO(3), and xg is the variable to optimize in ambient
space R3×3. One can further transform the objective function as below:

∥xg − x∥22 = ∥SRg − x∥22 =
∥∥∥S − xR⊤

g

∥∥∥2

2
(A.6)

Now one can easily find when S equals to the symmetry part of xR⊤
g , the target

formula reaches minimum. Therefore, the inverse projection admits a simple form

xgp =
xR⊤

g +Rgx
⊤

2 Rg (A.7)

A.1.4. 10D representation

10D representation Recall the manifold mapping π10D :

R10 → S3, π10D(x) = min
q∈S3

q⊤A(x)q, in which (A.8)

A(θ) =

θ1 θ2 θ3 θ4
θ2 θ5 θ6 θ7
θ3 θ6 θ8 θ9
θ4 θ7 θ9 θ10

 . (A.9)

Appendix A. Mathematical Formulations 68

One must solve

xgp = arg min
A(xg)qg=λqg

∥xg − x∥22 , (A.10)

where x is the raw output of our network in ambient space R10, qg is the next goal
in representation manifold S3, and xg is the variable to optimize in ambient space
R10. Note that λ is also a variable to optimize. For the similar reason as before,
for the sake of simplicity and consistency of analytical solution, here one also need
to relax the constraint that λ should be the smallest eigenvalue of A (xg).

To solve Equation A.9, A (xg) qg = λqg is rewritten as

M∆x = λqg −A(x)qg (A.11)

where ∆x = xg − x and

M =

q1 q2 q3 q4 0 0 0 0 0 0
0 q1 0 0 q2 q3 q4 0 0 0
0 0 q1 0 0 q2 0 q3 q4 0
0 0 0 q1 0 0 q2 0 q3 q4

 (A.12)

where qg = (q1, q2, q3, q4)⊤. For simplicity, we denote λqg −A(x)qg as b.

Once one have finished the above steps for preparation, λ and ∆x must be solved
for the minimal problem by two steps as below. First, one assumes λ is known and
the problem becomes that given M and b, we need to find the best ∆x to minimize
∥∆x∥22 with the constraint M∆x = b. This is a typical quadratic optimization
problem with linear equality constraints, and the analytical solution satisfies

(
I M⊤

M 0

)(
∆x
v

)
=
(

0
b

)
(A.13)

where v is a set of Lagrange multipliers which come out of the solution alongside

∆x, and
(

I M⊤

M 0

)
is called KKT matrix. Since this matrix has full rank

almost everywhere, we can multiple the inverse of this KKT matrix in both sides

Appendix A. Mathematical Formulations 69

of Equation A.13 and lead to the solution of ∆x as below:(
∆x
v

)
=
(

I M⊤

M 0

)−1(0
b

)
(A.14)

Recall that b = λqg−A(x)qg, therefore until now one had the solution of ∆x with
respect to each λ :

∆x =
(

∆x
v

)
0:10

= K (λqg −A(x)qg) = λS − T (A.15)

in which K is the upper right part of the inverse of the KKT matrix K =(I M⊤

M 0

)−1

10:14,0:10

, S = Kqg and T = KA(x)qg

Next, one must optimize λ to minimize the objective function ∥∆x∥22. In fact,
using the results of Equation A.15, ∥∆x∥22 becomes a quadratic functions on λ,
thus one can simply <get the final analytical solution of λ and xgp :

{
λ = (S⊤T +T ⊤S)

2S⊤S
xgp = x+ λS − T

(A.16)

Appendix B.

Code Listing

This chapter serves the Python scripts from the Github-repository of Chen et al.
[1] used to conduct the simulation in chapter 5. The Github-files are from folders
inside a Github-repository. To show which folder a given script belongs to, the
folder will be denoted as for example RPMG/ModelNet_PC/code, which means
the folder code in the ModelNet_PC-folder in RPMG. Codes that were not used
are not given in the appendix.

B.1. RPMG/ModelNet_PC/code/

B.1.1. config.py
1 import tensorboardX
2 from os.path import join as pjoin
3 import configparser
4

5 class Parameters ():
6 def __init__ (self):
7 super (Parameters , self). __init__ ()
8

9

10 def read_config (self , fn):
11 config = configparser . ConfigParser ()
12 config .read(fn)
13 self. exp_folder = config .get(" Record "," exp_folder ")
14 self. data_folder = config .get(" Record ", " data_folder ")
15 self. write_weight_folder = pjoin(self.exp_folder , 'weight ')
16 logdir = pjoin(self.exp_folder , 'log ')
17 self. logger = tensorboardX . SummaryWriter (logdir)
18

19 self.lr =float (config .get(" Params ", "lr"))
20 self. start_iteration =int(config .get(" Params ","

start_iteration "))

Appendix B. Code Listing 71

21 self. total_iteration =int(config .get(" Params ", "
total_iteration "))

22 self. save_weight_iteration =int(config .get(" Params ", "
save_weight_iteration "))

23

24 self. out_rotation_mode = config .get(" Params ","
out_rotation_mode ")

25

26 self. use_rpmg = bool(int(config .get(" Params ", " use_rpmg ")))
27 self. rpmg_tau_strategy = int(config .get(" Params ", "

rpmg_tau_strategy "))
28 self. rpmg_lambda = float(config .get(" Params ", " rpmg_lambda ")

)
29 self. sample_num = int(config .get(" Params ", " sample_num "))
30 self. device = int(config .get(" Params "," device "))
31 self.batch = int (config .get(" Params ","batch"))

B.1.2. dataset.py
1

2 import torch
3 import os
4 import numpy as np
5

6 class ModelNetDataset (torch.utils.data. Dataset):
7 def __init__ (self , data_folder , sample_num =1024):
8 super (ModelNetDataset , self). __init__ ()
9 self.paths = [os.path.join(data_folder , i) for i in os.

listdir (data_folder)]
10 self. sample_num = sample_num
11 self.size = len(self.paths)
12 print (f" dataset size: {self.size}")
13

14 def __getitem__ (self , index):
15 fpath = self.paths[index % self.size]
16 pc = np. loadtxt (fpath)
17 pc = np. random . permutation (pc)
18 return pc[:self.sample_num , :]. astype (float)
19

20 def __len__ (self):
21 return self.size

B.1.3. prepare.py
1 '''
2 from mesh to normalized pc
3 '''
4 import numpy as np

Appendix B. Code Listing 72

5 import torch
6 import os
7 from os.path import join as pjoin
8 import trimesh
9 import argparse

10 import sys
11 import tqdm
12 BASEPATH = os.path. dirname (__file__)
13 sys.path. insert (0,pjoin(BASEPATH , '../.. '))
14 import utils.tools as tools
15

16 def pc_normalize (pc):
17 centroid = (np.max(pc , axis=0) + np.min(pc , axis=0)) /2
18 pc = pc - centroid
19 scale = np. linalg .norm(np.max(pc , axis=0) - np.min(pc , axis=0))
20 pc = pc / scale
21 return pc , centroid , scale
22

23 if __name__ == " __main__ ":
24 arg_parser = argparse . ArgumentParser ()
25 arg_parser . add_argument ("-d", "--data_dir ", type=str , default ='

dataset /
modelnet40_manually_aligned ', help
="Path to modelnet dataset ")

26 arg_parser . add_argument ("-c", "--category ", type=str , default ='
airplane ', help=" category ")

27 arg_parser . add_argument ("-f", "--fix_test ", action ='store_false '
, help="for fair comparision ")

28 args = arg_parser . parse_args ()
29

30 sample_num = 4096
31 for mode in ['train ', 'test ']:
32 in_folder = pjoin(args.data_dir , args.category , mode)
33 out_folder = pjoin(args.data_dir , args.category , mode + '_pc

')
34 os. makedirs (out_folder , exist_ok =True)
35

36

37 lst = [i for i in os. listdir (in_folder) if i[-4:] == '.off ']
38 lst.sort ()
39 for p in tqdm.tqdm(lst):
40 in_path = pjoin(in_folder , p)
41 out_path = pjoin(out_folder , p. replace ('.off ','.pts '))
42 if os.path. exists (out_path) and mode == 'train ':
43 continue
44 mesh = trimesh .load(in_path , force='mesh ')
45 pc , _ = trimesh . sample . sample_surface (mesh , sample_num)
46 pc = np.array(pc)
47 pc , centroid , scale = pc_normalize (pc)
48 np. savetxt (out_path , pc)
49

Appendix B. Code Listing 73

50 if mode == 'test ' and args. fix_test :
51 fix_folder = pjoin(args.data_dir , args.category ,

mode + '_fix ')
52 os. makedirs (fix_folder , exist_ok =True)
53 fix_path = pjoin(fix_folder , p. replace ('.off ','.pt ')

)
54 pc = np. random . permutation (pc)[:1024 ,:]
55 #each instance sample 10 rotations for test
56 rgt = tools.

get_sampled_rotation_matrices_by_axisAngle
(10).cpu ()

57 pc = torch.bmm(rgt , torch. Tensor (pc). unsqueeze (0).
repeat (10 ,1,1). transpose (2,1))

58 data_dict = {'pc ':pc. transpose (1,2), 'rgt ':rgt ,'
centroid ':centroid , 'scale ':scale}

59 torch.save(data_dict , fix_path)

B.1.4. test.py
1 import torch
2 import numpy as np
3 import random
4 import os
5 from os.path import join as pjoin
6 import sys
7 import argparse
8 import pandas as pd
9

10 BASEPATH = os.path. dirname (__file__)
11 sys.path. insert (0,pjoin(BASEPATH , '../.. '))
12 sys.path. insert (0,pjoin(BASEPATH , '..'))
13 import config as Config
14 from visualize import visualize
15 import utils.tools as tools
16 from model import Model
17

18 def test(test_folder , model):
19 seed = 1
20 torch. manual_seed (seed)
21 torch.cuda. manual_seed_all (seed)
22 np. random .seed(seed)
23 random .seed(seed)
24

25 geodesic_errors_lst = np.array([])
26 l = 0
27 test_path_list = [os.path.join(test_folder , i) for i in os.

listdir (test_folder)]
28 for i in range(len(test_path_list)):
29 path = test_path_list [i]
30 tmp = torch.load(path)

Appendix B. Code Listing 74

31 pc2 = tmp['pc '].cpu ().cuda ()
32 gt_rmat = tmp['rgt '].cpu ().cuda ()
33 out_rmat , out_nd = model(pc2. transpose (1, 2))
34 l += ((gt_rmat - out_rmat) ** 2).sum ()
35 geodesic_errors = np.array(
36 tools. compute_geodesic_distance_from_two_matrices (

gt_rmat , out_rmat).data. tolist ())
batch

37 geodesic_errors = geodesic_errors / np.pi * 180
38 geodesic_errors_lst = np. append (geodesic_errors_lst ,

geodesic_errors)
39 l /= len(test_path_list)
40

41 return geodesic_errors_lst , l
42

43

44 if __name__ == " __main__ ":
45 arg_parser = argparse . ArgumentParser ()
46 arg_parser . add_argument ("--config ", type=str , required =True ,

help="Path to config ")
47 arg_parser . add_argument ("--rotation_map ",type=str , required =True ,

help = 'add rotation
representation ')

48 arg_parser . add_argument ("-c", "--checkpoint ", type=int , default =
-1, help=" checkpoint number ")

49 args = arg_parser . parse_args ()
50

51 param= Config . Parameters ()
52 param. read_config (pjoin("../ configs ", args. config))
53

54 test_folder = pjoin(param. data_folder , 'test_fix ')
55 if args. checkpoint == -1:
56 allcp = os. listdir (param. write_weight_folder)
57 allcp.sort ()
58 weight_path = pjoin(param. write_weight_folder , allcp[-1])
59 else:
60 weight_path = pjoin(param. write_weight_folder , " model_ %07d.

weight "%args. checkpoint)
61

62 with torch. no_grad ():
63 model = Model(out_rotation_mode =param. out_rotation_mode)
64 print ("Load " + weight_path)
65 f = torch.load(weight_path)
66 model. load_state_dict (f['model '])
67 model.cuda ()
68 model.eval ()
69 errors , l = test(test_folder , model)
70 np.save(param. write_weight_folder . replace ('/ weight ',''), errors)
71 loss = l
72 min_error = np. round(np.min(errors),2)
73 Q1= np.round(np. percentile (errors ,25),2)

Appendix B. Code Listing 75

74 median_error = np.round(np. percentile (errors ,50),2)
75 Q3= np.round(np. percentile (errors ,75),2)
76 mean_error = np. round(errors .mean (), 2)
77 max_error = np. round(errors .max (), 2)
78 std = np.round(np.std(errors), 2)
79 geo_1_deg_error = np. round ((errors <1).sum ()/len(errors),3)
80 geo_3_deg_error = np. round ((errors < 3).sum () / len(errors), 3)
81 geo_5_deg_error = np. round ((errors <5).sum ()/len(errors),3)
82 representation_map = args. rotation_map
83 loss = np.array([l.cpu ()][0])
84 min_error = np.array([min_error])
85 Q1 = np.array([Q1])
86 median_error = np.array([median_error])
87 Q3 = np.array([Q3])
88 max_error = np.array([max_error])
89 std = np.array([std])
90 geo_1_deg_error = np.array([geo_1_deg_error])
91 geo_3_deg_error = np.array([geo_3_deg_error])
92 geo_5_deg_error = np.array([geo_5_deg_error])
93 data = {'rotation map ': representation_map ,'loss ':loss ,
94 'min_error ':min_error ,'Q1':Q1 ,
95 'median_error ': median_error , 'Q3 ':Q3 ,
96 'max ': max_error ,'std ': std ,'geo_1_deg_error ': geo_1_deg_error

,
97 'geo_3_deg_error ': geo_3_deg_error ,'geo_5_deg_error ':

geo_5_deg_error };pd. set_option ('
display . max_colwidth ', None)

98 Table = pd. DataFrame (data)
99 print(Table)

100 Table. to_excel ("{}.xlsx". format (args. rotation_map),sheet_name =
args. rotation_map)

B.1.5. train.py
1 import torch
2 import numpy as np
3 import os
4 from os.path import join as pjoin
5 import argparse
6 import sys
7

8 BASEPATH = os.path. dirname (__file__)
9 sys.path. insert (0,pjoin(BASEPATH , '../.. '))

10 sys.path. insert (0,pjoin(BASEPATH , '..'))
11 import utils.tools as tools
12 import utils.rpmg as rpmg
13 import config as Config
14 from dataset import ModelNetDataset
15 from model import Model
16 from test import test

Appendix B. Code Listing 76

17

18 def train_one_iteraton (pc , param , model , optimizer , iteration , tau):
19 optimizer . zero_grad ()
20 batch=pc.shape[0]
21 point_num = param. sample_num
22

23 ### get training data ######
24 pc1 = torch. autograd . Variable (pc.float ().cuda ()) #num*3
25 gt_rmat = tools. get_sampled_rotation_matrices_by_axisAngle (batch

)#batch*3*3
26 gt_rmats = gt_rmat . contiguous ().view(batch ,1,3,3). expand (batch ,

point_num , 3,3). contiguous ().view
(-1,3,3)

27 pc2 = torch.bmm(gt_rmats , pc1.view(-1,3,1))#(batch* point_num)*3*
1

28 pc2 = pc2.view(batch , point_num , 3) ##batch ,p_num ,3
29

30 ### network forward ########
31 out_rmat , out_nd = model(pc2. transpose (1,2)) # output [batch (*

sample_num),3,3]
32

33 #### compute loss ##########
34 if not param. use_rpmg :
35 loss = ((gt_rmat - out_rmat) ** 2).mean ()
36 else:
37 out_9d = rpmg.RPMG.apply(out_nd , tau , param. rpmg_lambda ,

gt_rmat , iteration)
38 # note here L2 loss should be sum! Or it will affect tau.
39 loss = ((gt_rmat - out_9d) ** 2).sum ()
40

41 # # flow loss. need to use tau=50
42 # loss = ((pc2 - torch. matmul (pc1 , out_9d . transpose (-1,-2)))

**2).mean ()
43

44 # # geodesic loss. need to use tau=1/10 -> 1/2
45 # theta = tools. compute_geodesic_distance_from_two_matrices (

gt_rmat , out_9d)
46 # loss = (theta **2).sum ()
47 loss. backward ()
48 optimizer .step ()
49

50 if iteration % 100 == 0:
51 param. logger . add_scalar ('train_loss ', loss.item (), iteration

)
52 if param. use_rpmg :
53 param. logger . add_scalar ('k', tau , iteration)
54 param. logger . add_scalar ('lambda ', param. rpmg_lambda ,

iteration)
55 param. logger . add_scalar ('nd_norm ', out_nd .norm(dim=1).mean ()

.item (), iteration)
56

Appendix B. Code Listing 77

57 return loss
58

59

60 # pc_lst : [point_num *3]
61 def train(param):
62

63 torch.cuda. set_device (param. device)
64

65 print ("#### Initiate model")
66 model = Model(out_rotation_mode =param. out_rotation_mode).cuda ()
67 optimizer = torch.optim.Adam(model. parameters (), lr=param.lr)
68 if param. start_iteration != 0:
69 read_path = pjoin(param. write_weight_folder , " model_ %07d.

weight "%param. start_iteration)
70 print ("Load " + read_path)
71 checkpoint = torch.load(read_path)
72 model. load_state_dict (checkpoint ['model '])
73 optimizer . load_state_dict (checkpoint ['optimizer '])
74 start_iteration = checkpoint ['iteration ']
75 else:
76 print ('start from beginning ')
77 start_iteration = param. start_iteration
78

79 print ("start train")
80 train_folder = os.path.join(param. data_folder , 'train_pc ')
81 val_folder = os.path.join(param. data_folder , 'test_fix ')
82 train_dataset = ModelNetDataset (train_folder , sample_num =param.

sample_num)
83

84 train_loader = torch.utils.data. DataLoader (
85 train_dataset ,
86 batch_size =param.batch ,
87 shuffle =True ,
88 num_workers =4,
89 pin_memory =True
90)
91

92 iteration = start_iteration
93 while True:
94 for data in train_loader :
95 model.train ()
96

97 #lr decay
98 lr = max(param.lr * (0.7 ** (iteration // (param.

total_iteration // 10))), 1e-5)
99 for param_group in optimizer . param_groups :

100 param_group ['lr'] = lr
101

102 iteration += 1
103 if param. rpmg_tau_strategy == 1:
104 tau = 1/4

Appendix B. Code Listing 78

105 elif param. rpmg_tau_strategy == 2:
106 tau = 1/20
107 elif param. rpmg_tau_strategy == 3:
108 tau = 1 / 20 + (1 / 4 - 1 / 20) / 9 * min(iteration

// (param. total_iteration // 10), 9)
109 elif param. rpmg_tau_strategy == 4:
110 tau = -1
111 elif param. rpmg_tau_strategy == 5:
112 tau = 1 / 10 + (1 / 2 - 1 / 10) / 9 * min(iteration

// (param. total_iteration // 10), 9)
113 elif param. rpmg_tau_strategy == 6:
114 tau = 50
115 train_loss = train_one_iteraton (data , param , model ,

optimizer , iteration , tau)
116 if (iteration % param. save_weight_iteration == 0):
117 print (" ############# Iteration " + str(iteration) +

" ##################### ")
118 print ('train loss: ' + str(train_loss .item ()))
119

120 model.eval ()
121 with torch. no_grad ():
122 angle_list , val_loss = test(val_folder , model)
123 print ('val loss: ' + str(val_loss .item ()))
124 param. logger . add_scalar ('val_loss ', val_loss .item (),

iteration)
125 param. logger . add_scalar ('val_median ',np. median (

angle_list),iteration)
126 param. logger . add_scalar ('val_mean ', angle_list .mean

(),iteration)
127 param. logger . add_scalar ('val_max ', angle_list .max (),

iteration)
128 param. logger . add_scalar ('val_5accuracy ', (angle_list

< 5).sum ()/len(angle_list),
iteration)

129 param. logger . add_scalar ('val_3accuracy ', (angle_list
< 3).sum () / len(angle_list),

iteration)
130 param. logger . add_scalar ('val_1accuracy ', (angle_list

< 1).sum () / len(angle_list),
iteration)

131 param. logger . add_scalar ('lr ', lr , iteration)
132

133 path = pjoin(param. write_weight_folder , " model_ %07d.
weight "% iteration)

134 state = {'model ': model. state_dict (), 'optimizer ':
optimizer . state_dict (), 'iteration
': iteration }

135 torch.save(state , path)
136

137 if iteration >= param. total_iteration :
138 break

Appendix B. Code Listing 79

139

140 if __name__ == " __main__ ":
141

142 arg_parser = argparse . ArgumentParser ()
143 arg_parser . add_argument ("--config ", type=str , required =True ,

help="Path to config ")
144 args = arg_parser . parse_args ()
145

146 param= Config . Parameters ()
147 param. read_config (pjoin("../ configs ", args. config))
148

149 print(f'use RPMG: {param. use_rpmg }')
150 print(f'lambda = {param. rpmg_lambda }')
151 if param. rpmg_tau_strategy == 1:
152 print ('Tau = 1/4')
153 elif param. rpmg_tau_strategy == 2:
154 print ('Tau = 1/20 ')
155 elif param. rpmg_tau_strategy == 3:
156 print ('Tau = 1/20 ->1/4')
157 elif param. rpmg_tau_strategy == 4:
158 print ('Tau = gt ')
159 elif param. rpmg_tau_strategy == 5:
160 print ('Tau = 1/10 ->1/2')
161 elif param. rpmg_tau_strategy == 6:
162 print ('Tau = 50 ')
163 rpmg. logger_init (param. logger)
164 os. makedirs (param. write_weight_folder , exist_ok =True)
165

166 train(param)

B.2. RPMG/ModelNet_PC/configs/

B.2.1. example.config
1 [Record]
2 exp_folder : ../ exps /9 D_RPMG_L2
3 data_folder : ../ dataset / modelnet40 / airplane
4

5 [Params]
6 lr: 0.001
7 start_iteration : 0
8 total_iteration : 30000
9 save_weight_iteration : 1000

10

11 # chocies =[" ortho6d ", " Quaternion ", "svd9d", " axisangle ", "euler",
"10d"]

12 out_rotation_mode :
13

Appendix B. Code Listing 80

14 # chocies =[0, 1]. help = "our RPMG only support ortho6d , Quaternion ,
svd9d and 10d!"

15 use_rpmg :
16

17 # # chocies =[1, 2, 3, 4, 5, 6] help= "1,2,3 is for L2 loss. 4 is for
Tsau_gt . 5 is for geodesic loss. 6 is for flow loss. For

specific strategies , please see train.py"
18 rpmg_tau_strategy : 3
19 rpmg_lambda :
20 batch :20
21 sample_num :1024
22 device : 0

B.3. RPMG/ModelNet_PC/pointnet_lib/

B.3.1. pointnet2_modules.py
1 import torch
2 import torch.nn as nn
3 import torch.nn. functional as F
4 import sys
5 import os
6 BASEPATH = os.path. dirname (__file__)
7 sys.path. insert (0, BASEPATH)
8

9 CUDA = torch.cuda. is_available ()
10 if CUDA:
11 import pointnet2_utils as futils
12

13

14 def knn_point (k, pos2 , pos1):
15 '''
16 Input:
17 k: int32 , number of k in k-nn search
18 pos1: (batch_size , ndataset , c) float32 array , input points
19 pos2: (batch_size , npoint , c) float32 array , query points
20 Output :
21 val: (batch_size , npoint , k) float32 array , L2 distances
22 idx: (batch_size , npoint , k) int32 array , indices to input

points
23 '''
24 if CUDA:
25 val , idx = futils .knn(k, pos2 , pos1)
26 return val , idx.long ()
27

28 B, N, C = pos1.shape
29 M = pos2.shape[1]
30 pos1 = pos1.view(B, 1, N, -1). repeat (1, M, 1, 1)
31 pos2 = pos2.view(B, M, 1, -1). repeat (1, 1, N, 1)

Appendix B. Code Listing 81

32 dist = torch .sum(-(pos1 - pos2) ** 2, -1)
33 val , idx = dist.topk(k=k, dim=-1)
34 return torch.sqrt(-val), idx
35

36

37 def three_nn (xyz1 , xyz2):
38 if CUDA:
39 dists , idx = futils . three_nn (xyz1 , xyz2)
40 return dists , idx.long ()
41

42 dists = square_distance (xyz1 , xyz2)
43 dists , idx = dists.sort(dim=-1)
44 dists , idx = dists[:, :, :3], idx[:, :, :3] # [B, N, 3]
45 return dists , idx
46

47

48 def three_interpolate (points , idx , weight): # points : [B, C, M],
idx: [B, N, 3], returns [B, C, N]

49 if CUDA:
50 return futils . three_interpolate (points , idx.int (), weight)
51

52 B, N = idx.shape[:2]
53 points = points . permute (0, 2, 1) # [B, M, C] --> [B, N, 3, C]
54 interpolated_points = torch.sum(index_points (points , idx) *

weight .view(B, N, 3, 1), dim=2)
55 return interpolated_points . permute (0, 2, 1)
56

57

58 def square_distance (src , dst):
59 """
60 Calculate Euclid distance between each two points .
61 src^T * dst = xn * xm + yn * ym + zn * z m
62 sum(src^2, dim=-1) = xn*xn + yn*yn + zn*zn;
63 sum(dst^2, dim=-1) = xm*xm + ym*ym + zm*zm;
64 dist = (xn - xm)^2 + (yn - ym)^2 + (zn - zm)^2
65 = sum(src **2,dim=-1)+sum(dst **2,dim=-1)-2*src^T*dst
66 Input:
67 src: source points , [B, N, C]
68 dst: target points , [B, M, C]
69 Output :
70 dist: per -point square distance , [B, N, M]
71 """
72 B, N, _ = src.shape
73 _, M, _ = dst.shape
74 dist = -2 * torch. matmul (src , dst. permute (0, 2, 1))
75 dist += torch.sum(src ** 2, -1).view(B, N, 1)
76 dist += torch.sum(dst ** 2, -1).view(B, 1, M)
77 return dist
78

79

80 def index_points (points , idx):

Appendix B. Code Listing 82

81 """
82 Input:
83 points : input points data , [B, N, C]
84 idx: sample index data , [B, S] or [B, S1 , S2 , ..Sk]
85 Return :
86 new_points :, indexed points data , [B, S, C] or [B, S1 , S2 ,

..Sk , C]
87 """
88 device = points . device
89 B = points .shape[0]
90 view_shape = list(idx.shape)
91 view_shape [1:] = [1] * (len(view_shape) - 1)
92 repeat_shape = list(idx.shape)
93 repeat_shape [0] = 1
94 batch_indices = torch. arange (B, dtype=torch.long).to(device).

view(view_shape). repeat (
repeat_shape)

95 new_points = points [batch_indices , idx , :]
96 return new_points
97

98

99 def gather_operation (feature , idx): # [B, C, N], [B, npoint] -> [B,
C, npoint]

100 if CUDA:
101 return futils . gather_operation (feature , idx)
102 return index_points (feature . transpose (-1, -2), idx). transpose (-1

, -2)
103

104

105 def group_operation (feature , idx): # [B, C, N], idx [B, npoint ,
nsample] --> [B, C, npoint ,
nsample]

106 if CUDA:
107 return futils . grouping_operation (feature , idx)
108 return index_points (feature . transpose (-1, -2), idx). permute (0, 3

, 1, 2)
109

110

111 def farthest_point_sample (xyz , npoint):
112 """
113 Input:
114 xyz: pointcloud data , [B, N, 3]
115 npoint : number of samples
116 Return :
117 centroids : sampled pointcloud index , [B, npoint]
118 """
119 if CUDA:
120 idx = futils . furthest_point_sample (xyz , npoint).long ()
121 return idx
122

123 device = xyz. device

Appendix B. Code Listing 83

124 B, N, C = xyz.shape
125

126 centroids = torch.zeros(B, npoint , dtype=torch.long).to(device)
127 distance = torch.ones(B, N).to(device) * 1e10
128 farthest = torch. randint (0, N, (B,), dtype=torch.long).to(device

)
129 batch_indices = torch. arange (B, dtype=torch.long).to(device)
130 for i in range(npoint):
131 centroids [:, i] = farthest
132 centroid = xyz[batch_indices , farthest , :].view(B, 1, 3)
133 dist = torch.sum ((xyz - centroid) ** 2, -1)
134 mask = dist < distance
135 distance [mask] = dist[mask]
136 farthest = torch.max(distance , -1)[1]
137 return centroids
138

139

140 def query_ball_point (radius , nsample , xyz , new_xyz):
141 """
142 Input:
143 radius : local region radius
144 nsample : max sample number in local region
145 xyz: all points , [B, N, 3]
146 new_xyz : query points , [B, S, 3]
147 Return :
148 group_idx : grouped points index , [B, S, nsample]
149 """
150 if CUDA:
151 return futils . ball_query (radius , nsample , xyz , new_xyz).long

()
152

153 device = xyz. device
154 B, N, C = xyz.shape
155 _, S, _ = new_xyz .shape
156

157 group_idx = torch. arange (N, dtype=torch.long).to(device).view(1,
1, N). repeat ([B, S, 1])

158 sqrdists = square_distance (new_xyz , xyz)
159 group_idx [sqrdists > radius ** 2] = N
160 group_idx = group_idx .sort(dim=-1)[0][:, :, : nsample]
161 group_first = group_idx [:, :, 0].view(B, S, 1). repeat ([1, 1,

nsample])
162 mask_first = group_first == N
163 group_first [mask_first] = 0
164 mask = group_idx == N
165 group_idx [mask] = group_first [mask]
166

167 return group_idx
168

169

170 def sample_and_group_all (xyz , points):

Appendix B. Code Listing 84

171 """
172 Input:
173 xyz: input points position data , [B, N, 3]
174 points : input points data , [B, N, D]
175 Return :
176 new_xyz : sampled points position data , [B, 1, 3]
177 new_points : sampled points data , [B, 1, N, 3+D]
178 """
179 device = xyz. device
180 B, N, C = xyz.shape
181 new_xyz = torch.zeros(B, 1, C).to(device)
182 grouped_xyz = xyz.view(B, 1, N, C)
183 if points is not None:
184 new_points = torch.cat([grouped_xyz , points .view(B, 1, N, -1

)], dim=-1)
185 else:
186 new_points = grouped_xyz
187 return new_xyz , new_points
188

189

190 class PointNetSetAbstractionMsg (nn. Module):
191 def __init__ (self , npoint , radius_list , nsample_list , in_channel

, mlp_list , knn=False):
192 super (PointNetSetAbstractionMsg , self). __init__ ()
193 self. npoint = npoint
194 self. radius_list = radius_list
195 self. nsample_list = nsample_list
196 self. conv_blocks = nn. ModuleList ()
197 self. bn_blocks = nn. ModuleList ()
198 self. out_channel = 0
199 for i in range (len(mlp_list)):
200 convs = nn. ModuleList ()
201 bns = nn. ModuleList ()
202 last_channel = in_channel
203 for out_channel in mlp_list [i]:
204 convs. append (nn. Conv2d (last_channel , out_channel , 1)

)
205 bns. append (nn. BatchNorm2d (out_channel))
206 last_channel = out_channel
207 self. out_channel += last_channel
208 self. conv_blocks . append (convs)
209 self. bn_blocks . append (bns)
210 self.knn = knn
211

212 def forward (self , xyz , points):
213 """
214 Input:
215 xyz: input points position data , [B, C, N]
216 points : input points data , [B, D, N]
217 Return :
218 new_xyz : sampled points position data , [B, C, S]

Appendix B. Code Listing 85

219 new_points_concat : sample points feature data , [B, D', S
]

220 """
221

222 B, C, N = xyz.shape
223 S = self. npoint
224 fps_idx = farthest_point_sample (xyz. permute (0, 2, 1), S).int

()
225 new_xyz = gather_operation (xyz , fps_idx) # [B, C, S]
226 new_points_list = []
227 for i, radius in enumerate (self. radius_list):
228 K = self. nsample_list [i]
229 if self.knn:
230 _, group_idx = knn_point (K, new_xyz . transpose (-1, -2

), xyz. transpose (-1, -2))
231 else:
232 group_idx = query_ball_point (radius , K, xyz.

transpose (-1, -2), new_xyz .
transpose (-1, -2)) # [B, S,
nsample]

233 grouped_xyz = group_operation (xyz , group_idx) # [B, C,
S, nsample]

234 grouped_xyz -= new_xyz .view(B, C, S, 1)
235 if points is not None:
236 grouped_points = group_operation (points , group_idx)

[B, D, S, nsample]
237 grouped_points = torch.cat([grouped_points ,

grouped_xyz], dim=1)
238 else:
239 grouped_points = grouped_xyz
240

241 for j in range(len(self. conv_blocks [i])):
242 conv = self. conv_blocks [i][j]
243 bn = self. bn_blocks [i][j]
244 grouped_points = F.relu(bn(conv(grouped_points))) #

[B, D, S, nsample]
245 new_points = torch.max(grouped_points , -1)[0] # [B, D',

S]
246 new_points_list . append (new_points)
247

248 new_points_concat = torch.cat(new_points_list , dim=1)
249 return new_xyz , new_points_concat
250

251

252 class PointNetSetAbstraction (nn. Module):
253 def __init__ (self , npoint , radius , nsample , in_channel , mlp ,

group_all , knn=False):
254 super (PointNetSetAbstraction , self). __init__ ()
255 self. npoint = npoint
256 self. radius = radius
257 self. nsample = nsample

Appendix B. Code Listing 86

258 self. mlp_convs = nn. ModuleList ()
259 self. mlp_bns = nn. ModuleList ()
260 last_channel = in_channel
261 for out_channel in mlp:
262 self. mlp_convs . append (nn. Conv2d (last_channel ,

out_channel , 1))
263 self. mlp_bns . append (nn. BatchNorm2d (out_channel))
264 last_channel = out_channel
265 self. out_channel = last_channel
266 self. group_all = group_all
267 self.knn = knn
268

269 def forward (self , xyz , points):
270 """
271 Input:
272 xyz: input points position data , [B, C, N]
273 points : input points data , [B, D, N]
274 Return :
275 new_xyz : sampled points position data , [B, C, S]
276 new_points_concat : sample points feature data , [B, D', S

]
277 """
278 xyz = xyz. permute (0, 2, 1)
279 if points is not None:
280 points = points . permute (0, 2, 1)
281 if self. group_all :
282 new_xyz , new_points = sample_and_group_all (xyz , points)
283 else:
284 assert 0, 'Not Implemented '
285

286 new_points = new_points . permute (0, 3, 2, 1) # [B, 1, N, 3 +
D] --> [B, 3 + D, N, 1]

287 for i, conv in enumerate (self. mlp_convs):
288 bn = self. mlp_bns [i]
289 new_points = F.relu(bn(conv(new_points)))
290

291 new_points = torch.max(new_points , 2)[0]
292 new_xyz = new_xyz . permute (0, 2, 1)
293 return new_xyz , new_points
294

295

296 class PointNetFeaturePropagation (nn. Module):
297 def __init__ (self , in_channel , mlp):
298 super (PointNetFeaturePropagation , self). __init__ ()
299 self. mlp_convs = nn. ModuleList ()
300 self. mlp_bns = nn. ModuleList ()
301 last_channel = in_channel
302 for out_channel in mlp:
303 self. mlp_convs . append (nn. Conv1d (last_channel ,

out_channel , 1))
304 self. mlp_bns . append (nn. BatchNorm1d (out_channel))

Appendix B. Code Listing 87

305 last_channel = out_channel
306 self. out_channel = last_channel
307

308 def forward (self , xyz1 , xyz2 , points1 , points2):
309 """
310 Input:
311 xyz1: input points position data , [B, C, N]
312 xyz2: sampled input points position data , [B, C, S]
313 points1 : input points data , [B, D, N]
314 points2 : input points data , [B, D, S]
315 Return :
316 new_points : upsampled points data , [B, D', N]
317 """
318 xyz1 = xyz1. permute (0, 2, 1)
319 xyz2 = xyz2. permute (0, 2, 1)
320

321 B, N, C = xyz1.shape
322 _, S, _ = xyz2.shape
323

324 if S == 1:
325 interpolated_points = points2 . repeat (1, 1, N)
326 else:
327 dist , idx = three_nn (xyz1 , xyz2)
328 dist_recip = 1.0 / (dist + 1e-8)
329 norm = torch.sum(dist_recip , dim=2, keepdim =True)
330 weight = dist_recip / norm
331

332 interpolated_points = three_interpolate (points2 , idx ,
weight) # [B, C, N]

333

334 if points1 is not None:
335 new_points = torch.cat([points1 , interpolated_points],

dim=-2)
336 else:
337 new_points = interpolated_points
338

339 for i, conv in enumerate (self. mlp_convs):
340 bn = self. mlp_bns [i]
341 new_points = F.relu(bn(conv(new_points)))
342 return new_points

B.3.2. pointnet2_utils.py
1 import torch
2 from torch. autograd import Variable
3 from torch. autograd import Function
4 import torch.nn as nn
5 from typing import Tuple
6

7 import pointnet2_cuda as pointnet2

Appendix B. Code Listing 88

8

9

10 class FurthestPointSampling (Function):
11 @staticmethod
12 def forward (ctx , xyz: torch.Tensor , npoint : int) -> torch. Tensor

:
13 """
14 Uses iterative furthest point sampling to select a set of

npoint features that have the
largest

15 minimum distance
16 :param ctx:
17 :param xyz: (B, N, 3) where N > npoint
18 :param npoint : int , number of features in the sampled set
19 : return :
20 output : (B, npoint) tensor containing the set
21 """
22 xyz = xyz. contiguous ()
23 # assert xyz. is_contiguous ()
24

25 B, N, _ = xyz.size ()
26 output = torch.cuda. IntTensor (B, npoint)
27 temp = torch.cuda. FloatTensor (B, N).fill_(1e10)
28

29 pointnet2 . furthest_point_sampling_wrapper (B, N, npoint , xyz ,
temp , output)

30 return output
31

32 @staticmethod
33 def backward (xyz , a=None):
34 return None , None
35

36

37 furthest_point_sample = FurthestPointSampling . apply
38

39

40 class GatherOperation (Function):
41

42 @staticmethod
43 def forward (ctx , features : torch.Tensor , idx: torch. Tensor) ->

torch. Tensor :
44 """
45 :param ctx:
46 :param features : (B, C, N)
47 :param idx: (B, npoint) index tensor of the features to

gather
48 : return :
49 output : (B, C, npoint)
50 """
51 features = features . contiguous ()
52 idx = idx. contiguous ()

Appendix B. Code Listing 89

53 assert features . is_contiguous ()
54 assert idx. is_contiguous ()
55

56 B, npoint = idx.size ()
57 _, C, N = features .size ()
58 output = torch.cuda. FloatTensor (B, C, npoint)
59

60 pointnet2 . gather_points_wrapper (B, C, N, npoint , features ,
idx , output)

61

62 ctx. for_backwards = (idx , C, N)
63 return output
64

65 @staticmethod
66 def backward (ctx , grad_out):
67 idx , C, N = ctx. for_backwards
68 B, npoint = idx.size ()
69

70 grad_features = Variable (torch.cuda. FloatTensor (B, C, N).
zero_ ())

71 grad_out_data = grad_out .data. contiguous ()
72 pointnet2 . gather_points_grad_wrapper (B, C, N, npoint ,

grad_out_data , idx , grad_features .
data)

73 return grad_features , None
74

75

76 gather_operation = GatherOperation .apply
77

78 class KNN(Function):
79

80 @staticmethod
81 def forward (ctx , k: int , unknown : torch.Tensor , known: torch.

Tensor) -> Tuple[torch.Tensor ,
torch. Tensor]:

82 """
83 Find the three nearest neighbors of unknown in known
84 :param ctx:
85 :param unknown : (B, N, 3)
86 :param known: (B, M, 3)
87 : return :
88 dist: (B, N, k) l2 distance to the three nearest

neighbors
89 idx: (B, N, k) index of 3 nearest neighbors
90 """
91 unknown = unknown . contiguous ()
92 known = known. contiguous ()
93 assert unknown . is_contiguous ()
94 assert known. is_contiguous ()
95

96 B, N, _ = unknown .size ()

Appendix B. Code Listing 90

97 m = known.size(1)
98 dist2 = torch.cuda. FloatTensor (B, N, k)
99 idx = torch.cuda. IntTensor (B, N, k)

100

101 pointnet2 . knn_wrapper (B, N, m, k, unknown , known , dist2 , idx
)

102 return torch.sqrt(dist2), idx
103

104 @staticmethod
105 def backward (ctx , a=None , b=None):
106 return None , None , None
107

108 knn = KNN.apply
109

110 class ThreeNN (Function):
111

112 @staticmethod
113 def forward (ctx , unknown : torch.Tensor , known: torch. Tensor) ->

Tuple[torch.Tensor , torch. Tensor]:
114 """
115 Find the three nearest neighbors of unknown in known
116 :param ctx:
117 :param unknown : (B, N, 3)
118 :param known: (B, M, 3)
119 : return :
120 dist: (B, N, 3) l2 distance to the three nearest

neighbors
121 idx: (B, N, 3) index of 3 nearest neighbors
122 """
123 unknown = unknown . contiguous ()
124 known = known. contiguous ()
125 assert unknown . is_contiguous ()
126 assert known. is_contiguous ()
127

128 B, N, _ = unknown .size ()
129 m = known.size(1)
130 dist2 = torch.cuda. FloatTensor (B, N, 3)
131 idx = torch.cuda. IntTensor (B, N, 3)
132

133 pointnet2 . three_nn_wrapper (B, N, m, unknown , known , dist2 ,
idx)

134 return torch.sqrt(dist2), idx
135

136 @staticmethod
137 def backward (ctx , a=None , b=None):
138 return None , None
139

140

141 three_nn = ThreeNN . apply
142

143

Appendix B. Code Listing 91

144 class ThreeInterpolate (Function):
145

146 @staticmethod
147 def forward (ctx , features : torch.Tensor , idx: torch.Tensor ,

weight : torch. Tensor) -> torch.
Tensor :

148 """
149 Performs weight linear interpolation on 3 features
150 :param ctx:
151 :param features : (B, C, M) Features descriptors to be

interpolated from
152 :param idx: (B, n, 3) three nearest neighbors of the target

features in features
153 :param weight : (B, n, 3) weights
154 : return :
155 output : (B, C, N) tensor of the interpolated features
156 """
157 features = features . contiguous ()
158 idx = idx. contiguous ()
159 weight = weight . contiguous ()
160 assert features . is_contiguous ()
161 assert idx. is_contiguous ()
162 assert weight . is_contiguous ()
163

164 B, c, m = features .size ()
165 n = idx.size(1)
166 ctx. three_interpolate_for_backward = (idx , weight , m)
167 output = torch.cuda. FloatTensor (B, c, n)
168

169 pointnet2 . three_interpolate_wrapper (B, c, m, n, features ,
idx , weight , output)

170 return output
171

172 @staticmethod
173 def backward (ctx , grad_out : torch. Tensor) -> Tuple[torch.Tensor ,

torch.Tensor , torch. Tensor]:
174 """
175 :param ctx:
176 :param grad_out : (B, C, N) tensor with gradients of outputs
177 : return :
178 grad_features : (B, C, M) tensor with gradients of

features
179 None:
180 None:
181 """
182 idx , weight , m = ctx. three_interpolate_for_backward
183 B, c, n = grad_out .size ()
184

185 grad_features = Variable (torch.cuda. FloatTensor (B, c, m).
zero_ ())

186 grad_out_data = grad_out .data. contiguous ()

Appendix B. Code Listing 92

187

188 pointnet2 . three_interpolate_grad_wrapper (B, c, n, m,
grad_out_data , idx , weight ,
grad_features .data)

189 return grad_features , None , None
190

191

192 three_interpolate = ThreeInterpolate . apply
193

194

195 class GroupingOperation (Function):
196

197 @staticmethod
198 def forward (ctx , features : torch.Tensor , idx: torch. Tensor) ->

torch. Tensor :
199 """
200 :param ctx:
201 :param features : (B, C, N) tensor of features to group
202 :param idx: (B, npoint , nsample) tensor containing the

indicies of features to group with
203 : return :
204 output : (B, C, npoint , nsample) tensor
205 """
206 features = features . contiguous ()
207 idx = idx. contiguous ()
208 assert features . is_contiguous ()
209 assert idx. is_contiguous ()
210 idx = idx.int ()
211 B, nfeatures , nsample = idx.size ()
212 _, C, N = features .size ()
213 output = torch.cuda. FloatTensor (B, C, nfeatures , nsample)
214

215 pointnet2 . group_points_wrapper (B, C, N, nfeatures , nsample ,
features , idx , output)

216

217 ctx. for_backwards = (idx , N)
218 return output
219

220 @staticmethod
221 def backward (ctx , grad_out : torch. Tensor) -> Tuple[torch.Tensor ,

torch. Tensor]:
222 """
223 :param ctx:
224 :param grad_out : (B, C, npoint , nsample) tensor of the

gradients of the output from
forward

225 : return :
226 grad_features : (B, C, N) gradient of the features
227 """
228 idx , N = ctx. for_backwards
229

Appendix B. Code Listing 93

230 B, C, npoint , nsample = grad_out .size ()
231 grad_features = Variable (torch.cuda. FloatTensor (B, C, N).

zero_ ())
232

233 grad_out_data = grad_out .data. contiguous ()
234 pointnet2 . group_points_grad_wrapper (B, C, N, npoint , nsample

, grad_out_data , idx ,
grad_features .data)

235 return grad_features , None
236

237

238 grouping_operation = GroupingOperation . apply
239

240

241 class BallQuery (Function):
242

243 @staticmethod
244 def forward (ctx , radius : float , nsample : int , xyz: torch.Tensor ,

new_xyz : torch. Tensor) -> torch.
Tensor :

245 """
246 :param ctx:
247 :param radius : float , radius of the balls
248 :param nsample : int , maximum number of features in the balls
249 :param xyz: (B, N, 3) xyz coordinates of the features
250 :param new_xyz : (B, npoint , 3) centers of the ball query
251 : return :
252 idx: (B, npoint , nsample) tensor with the indicies of

the features that form the query
balls

253 """
254 new_xyz = new_xyz . contiguous ()
255 xyz = xyz. contiguous ()
256 assert new_xyz . is_contiguous ()
257 assert xyz. is_contiguous ()
258

259 B, N, _ = xyz.size ()
260 npoint = new_xyz .size(1)
261 idx = torch.cuda. IntTensor (B, npoint , nsample).zero_ ()
262

263 pointnet2 . ball_query_wrapper (B, N, npoint , radius , nsample ,
new_xyz , xyz , idx)

264 return idx
265

266 @staticmethod
267 def backward (ctx , a=None):
268 return None , None , None , None
269

270

271 ball_query = BallQuery . apply
272

Appendix B. Code Listing 94

273

274 class QueryAndGroup (nn. Module):
275 def __init__ (self , radius : float , nsample : int , use_xyz : bool =

True):
276 """
277 :param radius : float , radius of ball
278 :param nsample : int , maximum number of features to gather in

the ball
279 :param use_xyz :
280 """
281 super (). __init__ ()
282 self.radius , self.nsample , self. use_xyz = radius , nsample ,

use_xyz
283

284 def forward (self , xyz: torch.Tensor , new_xyz : torch.Tensor ,
features : torch. Tensor = None) ->
Tuple[torch. Tensor]:

285 """
286 :param xyz: (B, N, 3) xyz coordinates of the features
287 :param new_xyz : (B, npoint , 3) centroids
288 :param features : (B, C, N) descriptors of the features
289 : return :
290 new_features : (B, 3 + C, npoint , nsample)
291 """
292 idx = ball_query (self.radius , self.nsample , xyz , new_xyz)
293 xyz_trans = xyz. transpose (1, 2). contiguous ()
294 grouped_xyz = grouping_operation (xyz_trans , idx) # (B, 3,

npoint , nsample)
295 grouped_xyz -= new_xyz . transpose (1, 2). unsqueeze (-1)
296

297 if features is not None:
298 grouped_features = grouping_operation (features , idx)
299 if self. use_xyz :
300 new_features = torch.cat([grouped_features ,

grouped_xyz] , dim=1) # (B, C + 3
, npoint , nsample)

301 else:
302 new_features = grouped_features
303 else:
304 assert self.use_xyz , " Cannot have not features and not

use xyz as a feature !"
305 new_features = grouped_xyz
306

307 return new_features
308

309

310 class GroupAll (nn. Module):
311 def __init__ (self , use_xyz : bool = True):
312 super (). __init__ ()
313 self. use_xyz = use_xyz
314

Appendix B. Code Listing 95

315 def forward (self , xyz: torch.Tensor , new_xyz : torch.Tensor ,
features : torch. Tensor = None):

316 """
317 :param xyz: (B, N, 3) xyz coordinates of the features
318 :param new_xyz : ignored
319 :param features : (B, C, N) descriptors of the features
320 : return :
321 new_features : (B, C + 3, 1, N)
322 """
323 grouped_xyz = xyz. transpose (1, 2). unsqueeze (2)
324 if features is not None:
325 grouped_features = features . unsqueeze (2)
326 if self. use_xyz :
327 new_features = torch.cat([grouped_xyz ,

grouped_features], dim=1) # (B, 3
+ C, 1, N)

328 else:
329 new_features = grouped_features
330 else:
331 new_features = grouped_xyz
332

333 return new_features
334

335

336 class KNNAndGroup (nn. Module):
337 def __init__ (self , radius :float , nsample : int , use_xyz : bool =

True):
338 """
339 :param radius : float , radius of ball
340 :param nsample : int , maximum number of features to gather in

the ball
341 :param use_xyz :
342 """
343 super (). __init__ ()
344 self.radius , self.nsample , self. use_xyz = radius , nsample ,

use_xyz
345

346 def forward (self , xyz: torch.Tensor , new_xyz : torch. Tensor =
None , idx: torch. Tensor = None ,
features : torch. Tensor = None) ->
Tuple[torch. Tensor]:

347 """
348 :param xyz: (B, N, 3) xyz coordinates of the features
349 :param new_xyz : (B, M, 3) centroids
350 :param idx: (B, M, K) centroids
351 :param features : (B, C, N) descriptors of the features
352 : return :
353 new_features : (B, 3 + C, M, K) if use_xyz = True else (B

, C, M, K)
354 """
355

Appendix B. Code Listing 96

356 ##TODO: implement new_xyz into knn
357 if new_xyz is None:
358 new_xyz = xyz
359

360 if idx is None:
361 idx = knn(xyz , new_xyz , self.radius , self. nsample) # B,

M, K
362 idx = idx. detach ()
363

364 xyz_trans = xyz. transpose (1, 2). contiguous ()
365 new_xyz_trans = new_xyz . transpose (1, 2). contiguous ()
366

367 grouped_xyz = grouping_operation (xyz_trans , idx) # B, 3, M,
K

368 grouped_xyz -= new_xyz_trans . unsqueeze (-1) # B, 3, M, K
369 # grouped_r = torch.norm(grouped_xyz , dim=1).max(dim=-1)[0]#B

,M
370 #print(new_xyz .shape[1], grouped_r)
371

372 if features is not None:
373 grouped_features = grouping_operation (features , idx) # B

, C, M, K
374 # grouped_features_test = grouping_operation (features ,

idx)
375 # assert (grouped_features == grouped_features).all ()
376 if self. use_xyz :
377 new_features = torch.cat([grouped_xyz ,

grouped_features], dim=1) # (B, C
+ 3, M, K)

378 else:
379 new_features = grouped_features
380 else:
381 assert self.use_xyz , " Cannot have not features and not

use xyz as a feature !"
382 new_features = grouped_xyz
383

384 return new_features

B.4. RPMG/ModelNet_PC/

B.4.1. model.py
1 import torch
2 import torch.nn as nn
3 import sys
4 import os
5 from os.path import join as pjoin
6

7 BASEPATH = os.path. dirname (__file__)

Appendix B. Code Listing 97

8 sys.path. insert (0,pjoin(BASEPATH , '../.. '))
9 import utils.tools as tools

10 from pointnets import PointNet2_cls
11

12 class Model(nn. Module):
13 def __init__ (self , out_rotation_mode =" Quaternion "):
14 super (Model , self). __init__ ()
15

16 self. out_rotation_mode = out_rotation_mode
17

18 if(out_rotation_mode == " Quaternion "):
19 self. out_channel = 4
20 elif (out_rotation_mode == " ortho6d "):
21 self. out_channel = 6
22 elif (out_rotation_mode == "svd9d"):
23 self. out_channel = 9
24 elif (out_rotation_mode == "10d"):
25 self. out_channel = 10
26 elif out_rotation_mode == 'euler ':
27 self. out_channel = 3
28 elif out_rotation_mode == 'axisangle ':
29 self. out_channel = 4
30 else:
31 raise NotImplementedError
32

33 print (out_rotation_mode)
34

35 self.model = PointNet2_cls (self. out_channel)
36

37

38 #pt b* point_num *3
39 def forward (self , input):
40 out_nd = self.model(input)
41

42 if(self. out_rotation_mode == " Quaternion "):
43 out_rmat = tools. compute_rotation_matrix_from_quaternion

(out_nd) #b*3*3
44 elif(self. out_rotation_mode ==" ortho6d "):
45 out_rmat = tools. compute_rotation_matrix_from_ortho6d (

out_nd) #b*3*3
46 elif(self. out_rotation_mode =="svd9d"):
47 out_rmat = tools. symmetric_orthogonalization (out_nd) #

b*3*3
48 elif (self. out_rotation_mode == "10d"):
49 out_rmat = tools. compute_rotation_matrix_from_10d (out_nd

) # b*3*3
50 elif (self. out_rotation_mode == "euler"):
51 out_rmat = tools. compute_rotation_matrix_from_euler (

out_nd) # b*3*3
52 elif (self. out_rotation_mode == " axisangle "):

Appendix B. Code Listing 98

53 out_rmat = tools. compute_rotation_matrix_from_axisAngle (
out_nd) # b*3*3

54

55 return out_rmat , out_nd

B.4.2. pointnet_utils.py
1 import torch
2 import torch.nn as nn
3 import torch.nn. functional as F
4 from time import time
5 import numpy as np
6

7

8 def timeit (tag , t):
9 print("{}: {}s". format (tag , time () - t))

10 return time ()
11

12 def square_distance (src , dst):
13 """
14 Calculate Euclid distance between each two points .
15 src^T * dst = xn * xm + yn * ym + zn * z m
16 sum(src^2, dim=-1) = xn*xn + yn*yn + zn*zn;
17 sum(dst^2, dim=-1) = xm*xm + ym*ym + zm*zm;
18 dist = (xn - xm)^2 + (yn - ym)^2 + (zn - zm)^2
19 = sum(src **2,dim=-1)+sum(dst **2,dim=-1)-2*src^T*dst
20 Input:
21 src: source points , [B, N, C]
22 dst: target points , [B, M, C]
23 Output :
24 dist: per -point square distance , [B, N, M]
25 """
26 B, N, _ = src.shape
27 _, M, _ = dst.shape
28 dist = -2 * torch. matmul (src , dst. permute (0, 2, 1))
29 dist += torch.sum(src ** 2, -1).view(B, N, 1)
30 dist += torch.sum(dst ** 2, -1).view(B, 1, M)
31 return dist
32

33

34 def index_points (points , idx):
35 """
36 Input:
37 points : input points data , [B, N, C]
38 idx: sample index data , [B, S]
39 Return :
40 new_points :, indexed points data , [B, S, C]
41 """
42 device = points . device
43 B = points .shape[0]

Appendix B. Code Listing 99

44 view_shape = list(idx.shape)
45 view_shape [1:] = [1] * (len(view_shape) - 1)
46 repeat_shape = list(idx.shape)
47 repeat_shape [0] = 1
48 batch_indices = torch. arange (B, dtype=torch.long).to(device).

view(view_shape). repeat (
repeat_shape)

49 new_points = points [batch_indices , idx , :]
50 return new_points
51

52

53 def farthest_point_sample (xyz , npoint):
54 """
55 Input:
56 xyz: pointcloud data , [B, N, 3]
57 npoint : number of samples
58 Return :
59 centroids : sampled pointcloud index , [B, npoint]
60 """
61 device = xyz. device
62 B, N, C = xyz.shape
63 centroids = torch.zeros(B, npoint , dtype=torch.long).to(device)
64 distance = torch.ones(B, N).to(device) * 1e10
65 farthest = torch. randint (0, N, (B,), dtype=torch.long).to(device

)
66 batch_indices = torch. arange (B, dtype=torch.long).to(device)
67 for i in range(npoint):
68 centroids [:, i] = farthest
69 centroid = xyz[batch_indices , farthest , :].view(B, 1, 3)
70 dist = torch.sum ((xyz - centroid) ** 2, -1)
71 mask = dist < distance
72 distance [mask] = dist[mask]
73 farthest = torch.max(distance , -1)[1]
74 return centroids
75

76

77 def query_ball_point (radius , nsample , xyz , new_xyz):
78 """
79 Input:
80 radius : local region radius
81 nsample : max sample number in local region
82 xyz: all points , [B, N, 3]
83 new_xyz : query points , [B, S, 3]
84 Return :
85 group_idx : grouped points index , [B, S, nsample]
86 """
87 device = xyz. device
88 B, N, C = xyz.shape
89 _, S, _ = new_xyz .shape
90 group_idx = torch. arange (N, dtype=torch.long).to(device).view(1,

1, N). repeat ([B, S, 1])

Appendix B. Code Listing 100

91 sqrdists = square_distance (new_xyz , xyz)
92 group_idx [sqrdists > radius ** 2] = N
93 group_idx = group_idx .sort(dim=-1)[0][:, :, : nsample]
94 group_first = group_idx [:, :, 0].view(B, S, 1). repeat ([1, 1,

nsample])
95 mask = group_idx == N
96 group_idx [mask] = group_first [mask]
97 return group_idx
98

99

100 def sample_and_group (npoint , radius , nsample , xyz , points , returnfps
=False):

101 """
102 Input:
103 npoint :
104 radius :
105 nsample :
106 xyz: input points position data , [B, N, 3]
107 points : input points data , [B, N, D]
108 Return :
109 new_xyz : sampled points position data , [B, npoint , nsample ,

3]
110 new_points : sampled points data , [B, npoint , nsample , 3+D]
111 """
112 B, N, C = xyz.shape
113 S = npoint
114 fps_idx = farthest_point_sample (xyz , npoint) # [B, npoint , C]
115 new_xyz = index_points (xyz , fps_idx)
116 idx = query_ball_point (radius , nsample , xyz , new_xyz)
117 grouped_xyz = index_points (xyz , idx) # [B, npoint , nsample , C]
118 grouped_xyz_norm = grouped_xyz - new_xyz .view(B, S, 1, C)
119

120 if points is not None:
121 grouped_points = index_points (points , idx)
122 new_points = torch.cat([grouped_xyz_norm , grouped_points],

dim=-1) # [B, npoint , nsample , C+
D]

123 else:
124 new_points = grouped_xyz_norm
125 if returnfps :
126 return new_xyz , new_points , grouped_xyz , fps_idx
127 else:
128 return new_xyz , new_points
129

130

131 def sample_and_group_all (xyz , points):
132 """
133 Input:
134 xyz: input points position data , [B, N, 3]
135 points : input points data , [B, N, D]
136 Return :

Appendix B. Code Listing 101

137 new_xyz : sampled points position data , [B, 1, 3]
138 new_points : sampled points data , [B, 1, N, 3+D]
139 """
140 device = xyz. device
141 B, N, C = xyz.shape
142 new_xyz = torch.zeros(B, 1, C).to(device)
143 grouped_xyz = xyz.view(B, 1, N, C)
144 if points is not None:
145 new_points = torch.cat([grouped_xyz , points .view(B, 1, N, -1

)], dim=-1)
146 else:
147 new_points = grouped_xyz
148 return new_xyz , new_points
149

150

151 class PointNetSetAbstraction (nn. Module):
152 def __init__ (self , npoint , radius , nsample , in_channel , mlp ,

group_all):
153 super (PointNetSetAbstraction , self). __init__ ()
154 self. npoint = npoint
155 self. radius = radius
156 self. nsample = nsample
157 self. mlp_convs = nn. ModuleList ()
158 self. mlp_bns = nn. ModuleList ()
159 last_channel = in_channel
160 for out_channel in mlp:
161 self. mlp_convs . append (nn. Conv2d (last_channel ,

out_channel , 1))
162 self. mlp_bns . append (nn. BatchNorm2d (out_channel))
163 last_channel = out_channel
164 self. group_all = group_all
165

166 def forward (self , xyz , points):
167 """
168 Input:
169 xyz: input points position data , [B, C, N]
170 points : input points data , [B, D, N]
171 Return :
172 new_xyz : sampled points position data , [B, C, S]
173 new_points_concat : sample points feature data , [B, D', S

]
174 """
175 xyz = xyz. permute (0, 2, 1)
176 if points is not None:
177 points = points . permute (0, 2, 1)
178

179 if self. group_all :
180 new_xyz , new_points = sample_and_group_all (xyz , points)
181 else:
182 new_xyz , new_points = sample_and_group (self.npoint , self

.radius , self.nsample , xyz , points

Appendix B. Code Listing 102

)
183 # new_xyz : sampled points position data , [B, npoint , C]
184 # new_points : sampled points data , [B, npoint , nsample , C+D]
185 new_points = new_points . permute (0, 3, 2, 1) # [B, C+D,

nsample , npoint]
186 for i, conv in enumerate (self. mlp_convs):
187 bn = self. mlp_bns [i]
188 new_points = F.relu(bn(conv(new_points)), inplace =True)
189

190 new_points = torch.max(new_points , 2)[0]
191 new_xyz = new_xyz . permute (0, 2, 1)
192 return new_xyz , new_points
193

194

195 class PointNetSetAbstractionMsg (nn. Module):
196 def __init__ (self , npoint , radius_list , nsample_list , in_channel

, mlp_list):
197 super (PointNetSetAbstractionMsg , self). __init__ ()
198 self. npoint = npoint
199 self. radius_list = radius_list
200 self. nsample_list = nsample_list
201 self. conv_blocks = nn. ModuleList ()
202 self. bn_blocks = nn. ModuleList ()
203 for i in range (len(mlp_list)):
204 convs = nn. ModuleList ()
205 bns = nn. ModuleList ()
206 last_channel = in_channel + 3
207 for out_channel in mlp_list [i]:
208 convs. append (nn. Conv2d (last_channel , out_channel , 1)

)
209 bns. append (nn. BatchNorm2d (out_channel))
210 last_channel = out_channel
211 self. conv_blocks . append (convs)
212 self. bn_blocks . append (bns)
213

214 def forward (self , xyz , points):
215 """
216 Input:
217 xyz: input points position data , [B, C, N]
218 points : input points data , [B, D, N]
219 Return :
220 new_xyz : sampled points position data , [B, C, S]
221 new_points_concat : sample points feature data , [B, D', S

]
222 """
223 xyz = xyz. permute (0, 2, 1)
224 if points is not None:
225 points = points . permute (0, 2, 1)
226

227 B, N, C = xyz.shape
228 S = self. npoint

Appendix B. Code Listing 103

229 new_xyz = index_points (xyz , farthest_point_sample (xyz , S))
230 new_points_list = []
231 for i, radius in enumerate (self. radius_list):
232 K = self. nsample_list [i]
233 group_idx = query_ball_point (radius , K, xyz , new_xyz)
234 grouped_xyz = index_points (xyz , group_idx)
235 grouped_xyz -= new_xyz .view(B, S, 1, C)
236 if points is not None:
237 grouped_points = index_points (points , group_idx)
238 grouped_points = torch.cat([grouped_points ,

grouped_xyz], dim=-1)
239 else:
240 grouped_points = grouped_xyz
241

242 grouped_points = grouped_points . permute (0, 3, 2, 1) # [
B, D, K, S]

243 for j in range(len(self. conv_blocks [i])):
244 conv = self. conv_blocks [i][j]
245 bn = self. bn_blocks [i][j]
246 grouped_points = F.relu(bn(conv(grouped_points)),

inplace =True)
247 new_points = torch.max(grouped_points , 2)[0] # [B, D',

S]
248 new_points_list . append (new_points)
249

250 new_xyz = new_xyz . permute (0, 2, 1)
251 new_points_concat = torch.cat(new_points_list , dim=1)
252 return new_xyz , new_points_concat

B.4.3. pointnets.py
1 import torch.nn as nn
2 import torch
3 import torch.nn. functional as F
4 import os
5 import sys
6 BASEPATH = os.path. dirname (__file__)
7 sys.path. insert (0, BASEPATH)
8 from pointnet_utils import PointNetSetAbstractionMsg ,

PointNetSetAbstraction
9

10

11 class PointNet (nn. Module):
12 def __init__ (self , out_channel):
13 super (PointNet , self). __init__ ()
14 self. feature_extracter = nn. Sequential (
15 nn. Conv1d (3, 64 , kernel_size =1),
16 nn. LeakyReLU (),
17 nn. Conv1d (64 , 128 , kernel_size =1),
18 nn. LeakyReLU (),

Appendix B. Code Listing 104

19 nn. Conv1d (128 , 1024 , kernel_size =1),
20 nn. AdaptiveMaxPool1d (output_size =1)
21)
22

23 self.mlp = nn. Sequential (
24 nn. Linear (1024 , 512),
25 nn. LeakyReLU (),
26 nn. Linear (512 , out_channel))
27

28 def forward (self , x):
29 batch = x.shape[0]
30 x = self. feature_extracter (x).view(batch , -1)
31 out_data = self.mlp(x)
32 return out_data
33

34

35 class PointNet2_MSG (nn. Module):
36 def __init__ (self , out_channel):
37 super (PointNet2_MSG , self). __init__ ()
38 self.sa1 = PointNetSetAbstractionMsg (512 , [0.1, 0.2, 0.4], [

32 , 64 , 128], 3, [[32 , 32 , 64], [
64 , 64 , 128], [64 , 96 , 128]])

39 self.sa2 = PointNetSetAbstractionMsg (128 , [0.4,0.8], [64 ,
128], 128+128+64 , [[128 , 128 , 256]
, [128 , 196 , 256]])

40 self.sa3 = PointNetSetAbstraction (npoint =None , radius =None ,
nsample =None , in_channel =512 + 3,
mlp=[256 , 512 , 1024], group_all =
True)

41

42 self.mlp = nn. Sequential (
43 nn. Linear (1024 , 512),
44 nn. LeakyReLU (),
45 nn. Linear (512 , out_channel))
46

47 def forward (self , xyz):
48 # Set Abstraction layers
49 B,C,N = xyz.shape
50 l0_points = xyz
51 l0_xyz = xyz
52 l1_xyz , l1_points = self.sa1(l0_xyz , l0_points)
53 l2_xyz , l2_points = self.sa2(l1_xyz , l1_points)
54 l3_xyz , l3_points = self.sa3(l2_xyz , l2_points)
55

56 out_data = self.mlp(l3_points . squeeze (-1))
57 return out_data

Appendix B. Code Listing 105

B.5. RPMG/utils/

B.5.1. rpmg.py
1 import torch
2 import sys
3 import os
4 BASEPATH = os.path. dirname (__file__)
5 sys.path. append (BASEPATH)
6 import tools
7

8 def Rodrigues (w):
9 '''

10 axis angle -> rotation
11 :param w: [b,3]
12 : return : R: [b,3,3]
13 '''
14 w = w. unsqueeze (2). unsqueeze (3). repeat (1, 1, 3, 3)
15 b = w.shape[0]
16 theta = w.norm(dim=1)
17 #print(theta[0])
18 #theta = torch.where(t>math.pi/16 , torch. Tensor ([math.pi/16]).

cuda (), t)
19 wnorm = w / (w.norm(dim=1, keepdim =True)+0.001)
20 #wnorm = torch.nn. functional . normalize (w,dim=1)
21 I = torch.eye(3, device =w. get_device ()). repeat (b, 1, 1)
22 help1 = torch.zeros ((b,1,3, 3), device =w. get_device ())
23 help2 = torch.zeros ((b,1,3, 3), device =w. get_device ())
24 help3 = torch.zeros ((b,1,3, 3), device =w. get_device ())
25 help1[:,:,1, 2] = -1
26 help1[:,:,2, 1] = 1
27 help2[:,:,0, 2] = 1
28 help2[:,:,2, 0] = -1
29 help3[:,:,0, 1] = -1
30 help3[:,:,1, 0] = 1
31 Jwnorm = (torch.cat([help1 ,help2 ,help3],1)*wnorm).sum(dim=1)
32

33 return I + torch.sin(theta) * Jwnorm + (1 - torch.cos(theta)) *
torch.bmm(Jwnorm , Jwnorm)

34

35 logger = 0
36 def logger_init (ll):
37 global logger
38 logger = ll
39 print('logger init ')
40

41 class RPMG(torch. autograd . Function):
42 '''
43 full version . See " simple_RPMG ()" for a simplified version .
44 Tips:

Appendix B. Code Listing 106

45 1. Use " logger_init ()" to initialize the logger , if you want
to record some intermidiate

variables by tensorboard .
46 2. Use sum of L2/ geodesic loss instead of mean , since our

tau_converge is derivated without
considering the scalar introduced
by mean loss.

47 See <ModelNet_PC > for an example .
48 3. Pass " weight =\ $YOUR_WEIGHT " instead of directly multiple

the weight on rotation loss , if
you want to reweight R loss and
other losses .

49 See <poselstm -pytorch > for an example .
50 '''
51 @staticmethod
52 def forward (ctx , in_nd , tau , lam , rgt , iter , weight =1):
53 proj_kind = in_nd.shape[1]
54 if proj_kind == 6:
55 r0 = tools. compute_rotation_matrix_from_ortho6d (in_nd)
56 elif proj_kind == 9:
57 r0 = tools. symmetric_orthogonalization (in_nd)
58 elif proj_kind == 4:
59 r0 = tools. compute_rotation_matrix_from_quaternion (in_nd

)
60 elif proj_kind == 10:
61 r0 = tools. compute_rotation_matrix_from_10d (in_nd)
62 else:
63 raise NotImplementedError
64 ctx. save_for_backward (in_nd , r0 , torch. Tensor ([tau ,lam , iter

, weight]), rgt)
65 return r0
66

67 @staticmethod
68 def backward (ctx , grad_in):
69 in_nd , r0 , config ,rgt , = ctx. saved_tensors
70 tau = config [0]
71 lam = config [1]
72 b = r0.shape[0]
73 iter = config [2]
74 weight = config [3]
75 proj_kind = in_nd.shape[1]
76

77 # use Riemannian optimization to get the next goal R
78 if tau == -1:
79 r_new = rgt
80 else:
81 # Eucliean gradient -> Riemannian gradient
82 Jx = torch.zeros ((b, 3, 3)).cuda ()
83 Jx[:, 2, 1] = 1
84 Jx[:, 1, 2] = -1
85 Jy = torch.zeros ((b, 3, 3)).cuda ()

Appendix B. Code Listing 107

86 Jy[:, 0, 2] = 1
87 Jy[:, 2, 0] = -1
88 Jz = torch.zeros ((b, 3, 3)).cuda ()
89 Jz[:, 0, 1] = -1
90 Jz[:, 1, 0] = 1
91 gx = (grad_in *torch.bmm(r0 , Jx)). reshape (-1,9).sum(dim=1

, keepdim =True)
92 gy = (grad_in * torch.bmm(r0 , Jy)). reshape (-1, 9).sum(

dim=1, keepdim =True)
93 gz = (grad_in * torch.bmm(r0 , Jz)). reshape (-1, 9).sum(

dim=1, keepdim =True)
94 g = torch.cat([gx ,gy ,gz],1)
95

96 # take one step
97 delta_w = -tau * g
98

99 # update R
100 r_new = torch.bmm(r0 , Rodrigues (delta_w))
101

102 #this can help you to tune the tau if you don 't use L2/
geodesic loss.

103 if iter % 100 == 0:
104 logger . add_scalar ('next_goal_angle_mean ', delta_w .

norm(dim=1).mean (), iter)
105 logger . add_scalar ('next_goal_angle_max ', delta_w .

norm(dim=1).max (), iter)
106 R0_Rgt = tools.

compute_geodesic_distance_from_two_matrices
(r0 , rgt)

107 logger . add_scalar ('r0_rgt_angle ', R0_Rgt .mean (),
iter)

108

109 # inverse & project
110 if proj_kind == 6:
111 r_proj_1 = (r_new[:, :, 0] * in_nd[:, :3]).sum(dim=1,

keepdim =True) * r_new[:, :, 0]
112 r_proj_2 = (r_new[:, :, 0] * in_nd[:, 3:]).sum(dim=1,

keepdim =True) * r_new[:, :, 0] \
113 + (r_new[:, :, 1] * in_nd[:, 3:]).sum(dim=1,

keepdim =True) * r_new[:, :, 1]
114 r_reg_1 = lam * (r_proj_1 - r_new[:, :, 0])
115 r_reg_2 = lam * (r_proj_2 - r_new[:, :, 1])
116 gradient_nd = torch.cat([in_nd[:, :3] - r_proj_1 +

r_reg_1 , in_nd[:, 3:] - r_proj_2 +
r_reg_2], 1)

117 elif proj_kind == 9:
118 SVD_proj = tools. compute_SVD_nearest_Mnlsew (in_nd.

reshape (-1,3,3), r_new)
119 gradient_nd = in_nd - SVD_proj + lam * (SVD_proj - r_new

. reshape (-1,9))
120 R_proj_g = tools. symmetric_orthogonalization (SVD_proj)

Appendix B. Code Listing 108

121 if iter % 100 == 0:
122 logger . add_scalar ('9d_reflection ', (((R_proj_g -r_new

). reshape (-1,9).abs ().sum(dim=1))>
5e-1).sum (), iter)

123 logger . add_scalar ('reg ', (SVD_proj - r_new. reshape (-
1, 9)).norm(dim=1).mean (), iter)

124 logger . add_scalar ('main ', (in_nd - SVD_proj).norm(
dim=1).mean (), iter)

125 elif proj_kind == 4:
126 q_1 = tools. compute_quaternions_from_rotation_matrices (

r_new)
127 q_2 = -q_1
128 normalized_nd = tools. normalize_vector (in_nd)
129 q_new = torch.where(
130 (q_1 - normalized_nd).norm(dim=1, keepdim =True) < (

q_2 - normalized_nd).norm(dim=1,
keepdim =True),

131 q_1 , q_2)
132 q_proj = (in_nd * q_new).sum(dim=1, keepdim =True) *

q_new
133 gradient_nd = in_nd - q_proj + lam * (q_proj - q_new)
134 elif proj_kind == 10:
135 qg = tools. compute_quaternions_from_rotation_matrices (

r_new)
136 new_x = tools. compute_nearest_10d (in_nd , qg)
137 reg_A = torch.eye(4, device =qg. device)[None]. repeat (qg.

shape[0],1,1) - torch.bmm(qg.
unsqueeze (-1), qg. unsqueeze (-2))

138 reg_x = tools. convert_A_to_Avec (reg_A)
139 gradient_nd = in_nd - new_x + lam * (new_x - reg_x)
140 if iter % 100 == 0:
141 logger . add_scalar ('reg ', (new_x - reg_x).norm(dim=1)

.mean (), iter)
142 logger . add_scalar ('main ', (in_nd - new_x).norm(dim=1

).mean (), iter)
143

144 return gradient_nd * weight , None , None ,None ,None ,None
145

146

147

148 class simple_RPMG (torch. autograd . Function):
149 '''
150 simplified version without tensorboard and r_gt.
151 '''
152 @staticmethod
153 def forward (ctx , in_nd , tau , lam , weight =1):
154 proj_kind = in_nd.shape[1]
155 if proj_kind == 6:
156 r0 = tools. compute_rotation_matrix_from_ortho6d (in_nd)
157 elif proj_kind == 9:
158 r0 = tools. symmetric_orthogonalization (in_nd)

Appendix B. Code Listing 109

159 elif proj_kind == 4:
160 r0 = tools. compute_rotation_matrix_from_quaternion (in_nd

)
161 elif proj_kind == 10:
162 r0 = tools. compute_rotation_matrix_from_10d (in_nd)
163 else:
164 raise NotImplementedError
165 ctx. save_for_backward (in_nd , r0 , torch. Tensor ([tau ,lam ,

weight]))
166 return r0
167

168 @staticmethod
169 def backward (ctx , grad_in):
170 in_nd , r0 , config , = ctx. saved_tensors
171 tau = config [0]
172 lam = config [1]
173 weight = config [2]
174 b = r0.shape[0]
175 proj_kind = in_nd.shape[1]
176

177 # use Riemannian optimization to get the next goal R
178 # Eucliean gradient -> Riemannian gradient
179 Jx = torch.zeros ((b, 3, 3)).cuda ()
180 Jx[:, 2, 1] = 1
181 Jx[:, 1, 2] = -1
182 Jy = torch.zeros ((b, 3, 3)).cuda ()
183 Jy[:, 0, 2] = 1
184 Jy[:, 2, 0] = -1
185 Jz = torch.zeros ((b, 3, 3)).cuda ()
186 Jz[:, 0, 1] = -1
187 Jz[:, 1, 0] = 1
188 gx = (grad_in *torch.bmm(r0 , Jx)). reshape (-1,9).sum(dim=1,

keepdim =True)
189 gy = (grad_in * torch.bmm(r0 , Jy)). reshape (-1, 9).sum(dim=1,

keepdim =True)
190 gz = (grad_in * torch.bmm(r0 , Jz)). reshape (-1, 9).sum(dim=1,

keepdim =True)
191 g = torch.cat([gx ,gy ,gz],1)
192

193 # take one step
194 delta_w = -tau * g
195

196 # update R
197 r_new = torch.bmm(r0 , Rodrigues (delta_w))
198

199 # inverse & project
200 if proj_kind == 6:
201 r_proj_1 = (r_new[:, :, 0] * in_nd[:, :3]).sum(dim=1,

keepdim =True) * r_new[:, :, 0]
202 r_proj_2 = (r_new[:, :, 0] * in_nd[:, 3:]).sum(dim=1,

keepdim =True) * r_new[:, :, 0] \

Appendix B. Code Listing 110

203 + (r_new[:, :, 1] * in_nd[:, 3:]).sum(dim=1,
keepdim =True) * r_new[:, :, 1]

204 r_reg_1 = lam * (r_proj_1 - r_new[:, :, 0])
205 r_reg_2 = lam * (r_proj_2 - r_new[:, :, 1])
206 gradient_nd = torch.cat([in_nd[:, :3] - r_proj_1 +

r_reg_1 , in_nd[:, 3:] - r_proj_2 +
r_reg_2], 1)

207 elif proj_kind == 9:
208 SVD_proj = tools. compute_SVD_nearest_Mnlsew (in_nd.

reshape (-1,3,3), r_new)
209 gradient_nd = in_nd - SVD_proj + lam * (SVD_proj - r_new

. reshape (-1,9))
210 elif proj_kind == 4:
211 q_1 = tools. compute_quaternions_from_rotation_matrices (

r_new)
212 q_2 = -q_1
213 normalized_nd = tools. normalize_vector (in_nd)
214 q_new = torch.where(
215 (q_1 - normalized_nd).norm(dim=1, keepdim =True) < (

q_2 - normalized_nd).norm(dim=1,
keepdim =True),

216 q_1 , q_2)
217 q_proj = (in_nd * q_new).sum(dim=1, keepdim =True) *

q_new
218 gradient_nd = in_nd - q_proj + lam * (q_proj - q_new)
219 elif proj_kind == 10:
220 qg = tools. compute_quaternions_from_rotation_matrices (

r_new)
221 new_x = tools. compute_nearest_10d (in_nd , qg)
222 reg_A = torch.eye(4, device =qg. device)[None]. repeat (qg.

shape[0],1,1) - torch.bmm(qg.
unsqueeze (-1), qg. unsqueeze (-2))

223 reg_x = tools. convert_A_to_Avec (reg_A)
224 gradient_nd = in_nd - new_x + lam * (new_x - reg_x)
225

226 return gradient_nd * weight , None , None ,None ,None ,None

B.5.2. tools.py
1 import torch
2 import torch.nn as nn
3 from torch. autograd import Variable
4 import numpy as np
5

6

7

8 # rotation5d batch*5
9 def normalize_5d_rotation (r5d):

10 batch = r5d.shape[0]
11 sin_cos = r5d[:,0:2] #batch*2

Appendix B. Code Listing 111

12 sin_cos_mag = torch.max(torch.sqrt(sin_cos .pow(2).sum(1)),
torch. autograd . Variable (torch.
DoubleTensor ([1e-8]).cuda ())) #
batch

13 sin_cos_mag = sin_cos_mag .view(batch ,1). expand (batch ,2) #batch*2
14 sin_cos = sin_cos / sin_cos_mag #batch*2
15

16 axis = r5d[:,2:5] #batch*3
17 axis_mag = torch.max(torch.sqrt(axis.pow(2).sum(1)), torch.

autograd . Variable (torch.
DoubleTensor ([1e-8]).cuda ())) #
batch

18

19 axis_mag = axis_mag .view(batch ,1). expand (batch ,3) #batch*3
20 axis = axis/ axis_mag #batch*3
21 out_rotation = torch.cat ((sin_cos , axis),1) #batch*5
22

23 return out_rotation
24

25 # rotation5d batch*5
26 #out matrix batch*3*3
27 def rotation5d_to_matrix (r5d):
28

29 batch = r5d.shape[0]
30 sin = r5d[:,0].view(batch ,1) #batch*1
31 cos= r5d[:,1].view(batch ,1) #batch*1
32

33 x = r5d[:,2].view(batch ,1) #batch*1
34 y = r5d[:,3].view(batch ,1) #batch*1
35 z = r5d[:,4].view(batch ,1) #batch*1
36

37 row1 = torch .cat((cos + x*x*(1-cos), x*y*(1-cos)-z*sin , x*z*(1
-cos)+y*sin), 1) #batch*3

38 row2 = torch .cat((y*x*(1-cos)+z*sin , cos+y*y*(1-cos), y*z*(
1-cos)-x*sin), 1) #batch*3

39 row3 = torch .cat((z*x*(1-cos)-y*sin , z*y*(1-cos)+x*sin , cos+z*
z*(1-cos)), 1) #batch*3

40

41 matrix = torch.cat ((row1.view(-1,1,3), row2.view(-1,1,3), row3.
view(-1,1,3)), 1) #batch*3*3*
seq_len

42 matrix = matrix .view(batch , 3,3)
43 return matrix
44

45 # T_poses num*3
46 # r_matrix batch*3*3
47 def compute_pose_from_rotation_matrix (T_pose , r_matrix):
48 batch= r_matrix .shape[0]
49 joint_num = T_pose .shape[0]
50 r_matrices = r_matrix .view(batch ,1, 3,3). expand (batch ,joint_num ,

3,3). contiguous ().view(batch*

Appendix B. Code Listing 112

joint_num ,3,3)
51 src_poses = T_pose .view(1,joint_num ,3,1). expand (batch ,joint_num ,

3,1). contiguous ().view(batch*
joint_num ,3,1)

52

53 out_poses = torch. matmul (r_matrices , src_poses) #(batch*
joint_num)*3*1

54

55 return out_poses .view(batch , joint_num ,3)
56

57 # batch*n
58 def normalize_vector (v):
59 batch=v.shape[0]
60 v_mag = torch.sqrt(v.pow(2).sum(1))# batch
61 v_mag = torch.max(v_mag , torch. autograd . Variable (torch.

FloatTensor ([1e-8]).to(v. device)))
62 v_mag = v_mag.view(batch ,1). expand (batch ,v.shape[1])
63 v = v/v_mag
64 return v
65

66 # u, v batch*n
67 def cross_product (u, v):
68 batch = u.shape[0]
69 #print (u.shape)
70 #print (v.shape)
71 i = u[:,1]*v[:,2] - u[:,2]*v[:,1]
72 j = u[:,2]*v[:,0] - u[:,0]*v[:,2]
73 k = u[:,0]*v[:,1] - u[:,1]*v[:,0]
74

75 out = torch.cat ((i.view(batch ,1), j.view(batch ,1), k.view(batch ,
1)),1)#batch*3

76

77 return out
78

79

80 #poses batch*6
81 #poses
82 def compute_rotation_matrix_from_ortho6d (poses):
83 x_raw = poses[:,0:3]#batch*3
84 y_raw = poses[:,3:6]#batch*3
85

86 x = normalize_vector (x_raw) #batch*3
87 z = cross_product (x,y_raw) #batch*3
88 z = normalize_vector (z)#batch*3
89 y = cross_product (z,x)#batch*3
90

91 x = x.view(-1,3,1)
92 y = y.view(-1,3,1)
93 z = z.view(-1,3,1)
94 matrix = torch.cat ((x,y,z), 2) #batch*3*3
95 return matrix

Appendix B. Code Listing 113

96

97 #u,a batch*3
98 #out batch*3
99 def proj_u_a (u,a):

100 batch=u.shape[0]
101 top = u[:,0]*a[:,0] + u[:,1]*a[:,1]+u[:,2]*a[:,2]
102 bottom = u[:,0]*u[:,0] + u[:,1]*u[:,1]+u[:,2]*u[:,2]
103 bottom = torch.max(torch. autograd . Variable (torch.zeros(batch).

cuda ())+1e-8, bottom)
104 factor = (top/ bottom).view(batch ,1). expand (batch ,3)
105 out = factor * u
106 return out
107

108 # matrices batch*3*3
109 def compute_rotation_matrix_from_matrix (matrices):
110 b = matrices .shape[0]
111 a1 = matrices [:,:,0]#batch*3
112 a2 = matrices [:,:,1]
113 a3 = matrices [:,:,2]
114

115 u1 = a1
116 u2 = a2 - proj_u_a (u1 ,a2)
117 u3 = a3 - proj_u_a (u1 ,a3) - proj_u_a (u2 ,a3)
118

119 e1 = normalize_vector (u1)
120 e2 = normalize_vector (u2)
121 e3 = normalize_vector (u3)
122

123 rmat = torch .cat ((e1.view(b, 3,1), e2.view(b,3,1),e3.view(b,3,1)
), 2)

124

125 return rmat
126

127

128 #in batch*5
129 #out batch*6
130 def stereographic_unproject_old (a):
131

132 s2 = torch.pow(a,2).sum(1) #batch
133 unproj = 2*a/ (s2+1).view(-1,1). repeat (1,5) #batch*5
134 w = (s2-1)/(s2+1) #batch
135 out = torch.cat ((unproj , w.view(-1,1)), 1) #batch*6
136

137 return out
138

139 #in a batch*5, axis int
140 def stereographic_unproject (a, axis=None):
141 """
142 Inverse of stereographic projection : increases dimension by one.
143 """
144 batch=a.shape[0]

Appendix B. Code Listing 114

145 if axis is None:
146 axis = a.shape[1]
147 s2 = torch.pow(a,2).sum(1) #batch
148 ans = torch. autograd . Variable (torch.zeros(batch , a.shape[1]+1).

cuda ()) #batch*6
149 unproj = 2*a/(s2+1).view(batch ,1). repeat (1,a.shape[1]) #batch*5
150 if(axis>0):
151 ans[:,:axis] = unproj [:,:axis] #batch *(axis -0)
152 ans[:,axis] = (s2-1)/(s2+1) #batch
153 ans[:,axis+1:] = unproj [:,axis:] #batch *(5-axis) # Note

that this is a no -op if the
default option (last axis) is used

154 return ans
155

156

157

158 #a batch*5
159 #out batch*3*3
160 def compute_rotation_matrix_from_ortho5d (a):
161 batch = a.shape[0]
162 proj_scale_np = np.array([np.sqrt(2)+1, np.sqrt(2)+1, np.sqrt(2)

]) #3
163 proj_scale = torch. autograd . Variable (torch. FloatTensor (

proj_scale_np).cuda ()).view(1,3).
repeat (batch ,1) #batch ,3

164

165 u = stereographic_unproject (a[:, 2:5] * proj_scale , axis=0)#
batch*4

166 norm = torch .sqrt(torch.pow(u[:,1:],2).sum(1)) #batch
167 u = u/ norm.view(batch ,1). repeat (1,u.shape[1]) #batch*4
168 b = torch.cat ((a[:,0:2], u),1)#batch*6
169 matrix = compute_rotation_matrix_from_ortho6d (b)
170 return matrix
171

172 # quaternion batch*4
173 def compute_rotation_matrix_from_quaternion (quaternion , n_flag =True

):
174 batch= quaternion .shape[0]
175 if n_flag :
176 quat = normalize_vector (quaternion)
177 else:
178 quat = quaternion
179 qw = quat[...,0].view(batch , 1)
180 qx = quat[...,1].view(batch , 1)
181 qy = quat[...,2].view(batch , 1)
182 qz = quat[...,3].view(batch , 1)
183

184 # Unit quaternion rotation matrices computatation
185 xx = qx*qx
186 yy = qy*qy
187 zz = qz*qz

Appendix B. Code Listing 115

188 xy = qx*qy
189 xz = qx*qz
190 yz = qy*qz
191 xw = qx*qw
192 yw = qy*qw
193 zw = qz*qw
194

195 row0 = torch .cat ((1-2*yy-2*zz , 2*xy - 2*zw , 2*xz + 2*yw), 1) #
batch*3

196 row1 = torch .cat ((2*xy+ 2*zw , 1-2*xx-2*zz , 2*yz-2*xw), 1) #
batch*3

197 row2 = torch .cat ((2*xz-2*yw , 2*yz+2*xw , 1-2*xx-2*yy), 1) #
batch*3

198

199 matrix = torch.cat ((row0.view(batch , 1, 3), row1.view(batch ,1,3)
, row2.view(batch ,1,3)),1) #batch*
3*3

200

201 return matrix
202

203 # axisAngle batch*4 angle , x,y,z
204 def compute_rotation_matrix_from_axisAngle (axisAngle):
205 batch = axisAngle .shape[0]
206 theta = axisAngle [:,0]
207 #theta = torch.tanh(axisAngle [:,0])*np.pi #[-180 , 180]
208 sin = torch.sin(theta/2)
209 axis = normalize_vector (axisAngle [:,1:4]) #batch*3
210 qw = torch.cos(theta/2)
211 qx = axis[:,0]*sin
212 qy = axis[:,1]*sin
213 qz = axis[:,2]*sin
214

215 # Unit quaternion rotation matrices computatation
216 xx = (qx*qx).view(batch ,1)
217 yy = (qy*qy).view(batch ,1)
218 zz = (qz*qz).view(batch ,1)
219 xy = (qx*qy).view(batch ,1)
220 xz = (qx*qz).view(batch ,1)
221 yz = (qy*qz).view(batch ,1)
222 xw = (qx*qw).view(batch ,1)
223 yw = (qy*qw).view(batch ,1)
224 zw = (qz*qw).view(batch ,1)
225

226 row0 = torch .cat ((1-2*yy-2*zz , 2*xy - 2*zw , 2*xz + 2*yw), 1) #
batch*3

227 row1 = torch .cat ((2*xy+ 2*zw , 1-2*xx-2*zz , 2*yz-2*xw), 1) #
batch*3

228 row2 = torch .cat ((2*xz-2*yw , 2*yz+2*xw , 1-2*xx-2*yy), 1) #
batch*3

229

Appendix B. Code Listing 116

230 matrix = torch.cat ((row0.view(batch , 1, 3), row1.view(batch ,1,3)
, row2.view(batch ,1,3)),1) #batch*
3*3

231

232 return matrix
233

234 # axisAngle batch*3 a,b,c
235 def compute_rotation_matrix_from_hopf (hopf):
236 batch = hopf.shape[0]
237

238 theta = (torch.tanh(hopf[:,0])+1.0)*np.pi/2.0 #[0, pi]
239 phi = (torch.tanh(hopf[:,1])+1.0)*np.pi #[0,2pi)
240 tao = (torch.tanh(hopf[:,2])+1.0)*np.pi #[0,2pi)
241

242 qw = torch.cos(theta/2)*torch.cos(tao/2)
243 qx = torch.cos(theta/2)*torch.sin(tao/2)
244 qy = torch.sin(theta/2)*torch.cos(phi+tao/2)
245 qz = torch.sin(theta/2)*torch.sin(phi+tao/2)
246

247 # Unit quaternion rotation matrices computatation
248 xx = (qx*qx).view(batch ,1)
249 yy = (qy*qy).view(batch ,1)
250 zz = (qz*qz).view(batch ,1)
251 xy = (qx*qy).view(batch ,1)
252 xz = (qx*qz).view(batch ,1)
253 yz = (qy*qz).view(batch ,1)
254 xw = (qx*qw).view(batch ,1)
255 yw = (qy*qw).view(batch ,1)
256 zw = (qz*qw).view(batch ,1)
257

258 row0 = torch .cat ((1-2*yy-2*zz , 2*xy - 2*zw , 2*xz + 2*yw), 1) #
batch*3

259 row1 = torch .cat ((2*xy+ 2*zw , 1-2*xx-2*zz , 2*yz-2*xw), 1) #
batch*3

260 row2 = torch .cat ((2*xz-2*yw , 2*yz+2*xw , 1-2*xx-2*yy), 1) #
batch*3

261

262 matrix = torch.cat ((row0.view(batch , 1, 3), row1.view(batch ,1,3)
, row2.view(batch ,1,3)),1) #batch*
3*3

263

264 return matrix
265

266

267 #euler batch*4
268 # output cuda batch*3*3 matrices in the rotation order of XZ'Y'' (

intrinsic) or YZX (extrinsic)
269 def compute_rotation_matrix_from_euler (euler):
270 batch=euler.shape[0]
271

272 c1=torch.cos(euler[:,0]).view(batch ,1)#batch*1

Appendix B. Code Listing 117

273 s1=torch.sin(euler[:,0]).view(batch ,1)#batch*1
274 c2=torch.cos(euler[:,2]).view(batch ,1)#batch*1
275 s2=torch.sin(euler[:,2]).view(batch ,1)#batch*1
276 c3=torch.cos(euler[:,1]).view(batch ,1)#batch*1
277 s3=torch.sin(euler[:,1]).view(batch ,1)#batch*1
278

279 row1=torch.cat ((c2*c3 , -s2 , c2*s3), 1).view
(-1,1,3) #batch*1*3

280 row2=torch.cat ((c1*s2*c3+s1*s3 , c1*c2 , c1*s2*s3-s1*c3), 1).view
(-1,1,3) #batch*1*3

281 row3=torch.cat ((s1*s2*c3-c1*s3 , s1*c2 , s1*s2*s3+c1*c3), 1).view
(-1,1,3) #batch*1*3

282

283 matrix = torch.cat ((row1 , row2 , row3), 1) #batch*3*3
284

285

286 return matrix
287

288 #m batch*3*3
289 #out batch*4*4
290 def get_44_rotation_matrix_from_33_rotation_matrix (m):
291 batch = m.shape[0]
292

293 row4 = torch . autograd . Variable (torch.zeros(batch , 1,3).cuda ())
294

295 m43 = torch.cat ((m, row4),1)#batch*4,3
296

297 col4 = torch . autograd . Variable (torch.zeros(batch ,4,1).cuda ())
298 col4[:,3,0]=col4[:,3,0]+1
299

300 out=torch.cat ((m43 , col4), 2) #batch*4*4
301

302 return out
303

304

305

306 # matrices batch*3*3
307 #both matrix are orthogonal rotation matrices
308 #out theta between 0 to 180 degree batch
309 def compute_geodesic_distance_from_two_matrices (m1 , m2):
310 batch=m1.shape[0]
311 m = torch.bmm(m1 , m2. transpose (1,2)) #batch*3*3
312

313 cos = (m[:,0,0] + m[:,1,1] + m[:,2,2] - 1)/2
314 cos = torch.min(cos , torch. autograd . Variable (torch.ones(batch).

cuda ()))
315 cos = torch.max(cos , torch. autograd . Variable (torch.ones(batch).

cuda ())*-1)
316

317

318 theta = torch.acos(cos)

Appendix B. Code Listing 118

319

320 #theta = torch.min(theta , 2*np.pi - theta)
321

322

323 return theta
324

325

326 # matrices batch*3*3
327 #both matrix are orthogonal rotation matrices
328 #out theta between 0 to pi batch
329 def compute_angle_from_r_matrices (m):
330

331 batch=m.shape[0]
332

333 cos = (m[:,0,0] + m[:,1,1] + m[:,2,2] - 1)/2
334 cos = torch.min(cos , torch. autograd . Variable (torch.ones(batch).

cuda ()))
335 cos = torch.max(cos , torch. autograd . Variable (torch.ones(batch).

cuda ())*-1)
336

337 theta = torch.acos(cos)
338

339 return theta
340

341 def get_sampled_rotation_matrices_by_quat (batch):
342 #quat = torch. autograd . Variable (torch.rand(batch ,4).cuda ())
343 quat = torch . autograd . Variable (torch.randn(batch , 4).cuda ())
344 matrix = compute_rotation_matrix_from_quaternion (quat)
345 return matrix
346

347 def get_sampled_rotation_matrices_by_hpof (batch):
348

349 theta = torch. autograd . Variable (torch. FloatTensor (np. random .
uniform (0,1, batch)*np.pi).cuda ())

#[0, pi]
350 phi = torch. autograd . Variable (torch. FloatTensor (np. random .

uniform (0,2,batch)*np.pi).cuda ())
#[0,2pi)

351 tao = torch. autograd . Variable (torch. FloatTensor (np. random .
uniform (0,2,batch)*np.pi).cuda ())

#[0,2pi)
352

353

354 qw = torch.cos(theta/2)*torch.cos(tao/2)
355 qx = torch.cos(theta/2)*torch.sin(tao/2)
356 qy = torch.sin(theta/2)*torch.cos(phi+tao/2)
357 qz = torch.sin(theta/2)*torch.sin(phi+tao/2)
358

359 # Unit quaternion rotation matrices computatation
360 xx = (qx*qx).view(batch ,1)
361 yy = (qy*qy).view(batch ,1)

Appendix B. Code Listing 119

362 zz = (qz*qz).view(batch ,1)
363 xy = (qx*qy).view(batch ,1)
364 xz = (qx*qz).view(batch ,1)
365 yz = (qy*qz).view(batch ,1)
366 xw = (qx*qw).view(batch ,1)
367 yw = (qy*qw).view(batch ,1)
368 zw = (qz*qw).view(batch ,1)
369

370 row0 = torch .cat ((1-2*yy-2*zz , 2*xy - 2*zw , 2*xz + 2*yw), 1) #
batch*3

371 row1 = torch .cat ((2*xy+ 2*zw , 1-2*xx-2*zz , 2*yz-2*xw), 1) #
batch*3

372 row2 = torch .cat ((2*xz-2*yw , 2*yz+2*xw , 1-2*xx-2*yy), 1) #
batch*3

373

374 matrix = torch.cat ((row0.view(batch , 1, 3), row1.view(batch ,1,3)
, row2.view(batch ,1,3)),1) #batch*
3*3

375

376 return matrix
377

378 # axisAngle batch*3*3s angle , x,y,z
379 def get_sampled_rotation_matrices_by_axisAngle (batch):
380

381 theta = torch. autograd . Variable (torch. FloatTensor (np. random .
uniform (-1,1, batch)*np.pi).cuda ()
) #[0, pi] #[-180 , 180]

382 sin = torch.sin(theta)
383 axis = torch . autograd . Variable (torch.randn(batch , 3).cuda ())
384 axis = normalize_vector (axis) #batch*3
385 qw = torch.cos(theta)
386 qx = axis[:,0]*sin
387 qy = axis[:,1]*sin
388 qz = axis[:,2]*sin
389

390 # Unit quaternion rotation matrices computatation
391 xx = (qx*qx).view(batch ,1)
392 yy = (qy*qy).view(batch ,1)
393 zz = (qz*qz).view(batch ,1)
394 xy = (qx*qy).view(batch ,1)
395 xz = (qx*qz).view(batch ,1)
396 yz = (qy*qz).view(batch ,1)
397 xw = (qx*qw).view(batch ,1)
398 yw = (qy*qw).view(batch ,1)
399 zw = (qz*qw).view(batch ,1)
400

401 row0 = torch .cat ((1-2*yy-2*zz , 2*xy - 2*zw , 2*xz + 2*yw), 1) #
batch*3

402 row1 = torch .cat ((2*xy+ 2*zw , 1-2*xx-2*zz , 2*yz-2*xw), 1) #
batch*3

Appendix B. Code Listing 120

403 row2 = torch .cat ((2*xz-2*yw , 2*yz+2*xw , 1-2*xx-2*yy), 1) #
batch*3

404

405 matrix = torch.cat ((row0.view(batch , 1, 3), row1.view(batch ,1,3)
, row2.view(batch ,1,3)),1) #batch*
3*3

406

407 return matrix
408

409

410 #input batch*4*4 or batch*3*3
411 # output torch batch*3 x, y, z in radiant
412 #the rotation is in the sequence of x,y,z
413 def compute_euler_angles_from_rotation_matrices (rotation_matrices):
414 batch= rotation_matrices .shape[0]
415 R= rotation_matrices
416 sy = torch.sqrt(R[:,0,0]*R[:,0,0]+R[:,1,0]*R[:,1,0])
417 singular = sy<1e-6
418 singular = singular . float ()
419

420 x=torch.atan2(R[:,2,1], R[:,2,2])
421 y=torch.atan2(-R[:,2,0], sy)
422 z=torch.atan2(R[:,1,0],R[:,0,0])
423

424 xs=torch.atan2(-R[:,1,2], R[:,1,1])
425 ys=torch.atan2(-R[:,2,0], sy)
426 zs=R[:,1,0]*0
427

428 out_euler =torch. autograd . Variable (torch.zeros(batch ,3).cuda ())
429 out_euler [:,0]=x*(1- singular)+xs* singular
430 out_euler [:,1]=y*(1- singular)+ys* singular
431 out_euler [:,2]=z*(1- singular)+zs* singular
432

433 return out_euler
434

435 #input batch*4
436 # output batch*4
437 def compute_quaternions_from_axisAngles (self , axisAngles):
438 w = torch.cos(axisAngles [:,0]/2)
439 sin = torch.sin(axisAngles [:,0]/2)
440 x = sin* axisAngles [:,1]
441 y = sin* axisAngles [:,2]
442 z = sin* axisAngles [:,3]
443

444 quat = torch .cat ((w.view(-1,1), x.view(-1,1), y.view(-1,1), z.
view(-1,1)), 1)

445

446 return quat
447

448 # quaternions batch*4,
449 # matrices batch*4*4 or batch*3*3

Appendix B. Code Listing 121

450 def compute_quaternions_from_rotation_matrices (matrices):
451 batch= matrices .shape[0]
452

453 w=torch.sqrt(torch.max(1.0 + matrices [:,0,0] + matrices [:,1,1] +
matrices [:,2,2], torch.zeros(1).

cuda ())) / 2.0
454 w = torch.max (w , torch. autograd . Variable (torch.zeros(batch).

cuda ())+1e-8) #batch
455 w4 = 4.0 * w
456 x= (matrices [:,2,1] - matrices [:,1,2]) / w4
457 y= (matrices [:,0,2] - matrices [:,2,0]) / w4
458 z= (matrices [:,1,0] - matrices [:,0,1]) / w4
459 quats = torch.cat((w.view(batch ,1), x.view(batch , 1),y.view(

batch , 1), z.view(batch , 1)), 1
)

460 quats = normalize_vector (quats)
461 return quats
462

463

464 def compute_v_wave (u, r_new):
465 u_star = r_new[:, :, 0]
466 u_out = normalize_vector (u)
467 u_2 = normalize_vector (cross_product (u_out , u_star))
468 real_angle = torch.acos(torch.clamp ((u_out * u_star).sum(dim=1,

keepdim =True), -1, 1))
469 ro = compute_rotation_matrix_from_axisAngle (torch.cat([

real_angle / 2, u_2], 1))
470 v_new = torch.bmm(r_new. transpose (1, 2), ro)[:, 1, :]
471 return v_new
472

473 def symmetric_orthogonalization (x):
474 """ Maps 9D input vectors onto SO(3) via symmetric

orthogonalization .
475 x: should have size [batch_size , 9]
476 Output has size [batch_size , 3, 3], where each inner 3x3 matrix is

in SO(3).
477 """
478 m = x.view(-1, 3, 3)
479 d = m. device
480 u, s, v = torch.svd(m.cpu ())
481 u, v = u.to(d), v.to(d)
482 vt = torch. transpose (v, 1, 2)
483 det = torch.det(torch.bmm(u, vt))
484 det = det.view(-1, 1, 1)
485 vt = torch.cat ((vt[:, :2, :], vt[:, -1:, :] * det), 1)
486 r = torch.bmm(u, vt)
487 return r
488

489 def compute_SVD_nearest_Mnlsew (R, Rg):
490 '''

Appendix B. Code Listing 122

491 solve the minimum problem Find X to minimizing L2(R - S*
Rg) while S is a symmetry matrix

492 :param R: Network output Rotation matrix [b, 3, 3]
493 :param Rg: next_goal Rotation matrix [b,3,3]
494 : return : M
495 '''
496 S = (torch.bmm(R, Rg. transpose (2,1))+torch.bmm(Rg ,R. transpose (2,

1)))/2
497 M = torch.bmm(S, Rg)
498 return M. reshape (-1,9)
499

500 def convert_Avec_to_A (A_vec):
501 """ Convert BxM tensor to BxNxN symmetric matrices """
502 """ M = N*(N+1)/2"""
503 if A_vec.dim () < 2:
504 A_vec = A_vec. unsqueeze (dim=0)
505

506 if A_vec.shape[1] == 10:
507 A_dim = 4
508 elif A_vec.shape[1] == 55:
509 A_dim = 10
510 else:
511 raise ValueError (" Arbitrary A_vec not yet implemented ")
512

513 idx = torch. triu_indices (A_dim , A_dim)
514 A = A_vec. new_zeros ((A_vec.shape[0], A_dim , A_dim))
515 A[:, idx[0], idx[1]] = A_vec
516 A[:, idx[1], idx[0]] = A_vec
517 # return A. squeeze ()
518 return A
519

520 def convert_A_to_Avec (A):
521 """ Convert BxNxN symmetric matrices to BxM tensor """
522 """ M = N*(N+1)/2"""
523 idx = torch. triu_indices (4, 4)
524 A_vec = A[:, idx[0], idx[1]]
525 return A_vec
526

527 def compute_rotation_matrix_from_10d (x):
528 A = convert_Avec_to_A (x)
529 d = A. device
530 _, evs = torch. symeig (A.cpu (), eigenvectors =True)
531 evs = evs.to(d)
532 q = evs[:,:,0]
533 return compute_rotation_matrix_from_quaternion (q, n_flag =False)
534

535

536 #x: [B, 10] raw output of network
537 #qg: [B, 4] updated quaternion
538 def compute_nearest_10d (x, qg , prev_eigenval =None):
539 # [4,4]*[4,1] -> [4,10]*[10 ,1]

Appendix B. Code Listing 123

540 d = qg. device
541 b = qg.shape[0]
542 assert len(qg.shape) == 2
543 X_matrix = torch.zeros ((b,4,10),device =d)
544 Id = torch.eye(10 , device =d)[None ,...]. repeat (b,1,1)
545 Ze = torch.zeros ((b,4,4),device =d)
546 X_matrix [:, 0,0:4] = qg
547 X_matrix [:, 1,[1,4,5,6]] = qg
548 X_matrix [:, 2,[2,5,7,8]] = qg
549 X_matrix [:, 3,[3,6,8,9]] = qg
550

551 #[[I, X_m^T],[X_m , 0]]
552 KKT_l = torch.cat([Id , X_matrix], dim=1)
553 KKT_r = torch.cat([X_matrix . transpose (-1,-2), Ze], dim=1)
554 KKT = torch.cat([KKT_l , KKT_r], dim=2)
555 KKT_part = torch. inverse (KKT)[:, :10 , -4:]
556

557 qgs = qg. unsqueeze (-1)
558 A = convert_Avec_to_A (x)
559 Aqs = torch.bmm(A, qgs)
560 if prev_eigenval is None:
561 KKT_M = torch.bmm(KKT_part . transpose (-1,-2), KKT_part)
562 eigenval = (torch.bmm(torch.bmm(qgs. transpose (-1,-2), KKT_M)

,Aqs)+torch.bmm(torch.bmm(Aqs.
transpose (-1,-2), KKT_M), qgs))/(2
*torch.bmm(torch.bmm(qgs. transpose
(-1,-2), KKT_M), qgs))

563 else:
564 eigenval = prev_eigenval
565 new_M = torch.bmm(KKT_part , eigenval *qgs-Aqs)
566 new_x = new_M. squeeze ()+x
567 return new_x

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f E

ng
in

ee
rin

g
D

ep
ar

tm
en

t o
f M

ec
ha

ni
ca

l a
nd

 In
du

st
ria

l E
ng

in
ee

rin
g

Fabian Vakhidi

Pose Estimation with Convolutional
Neural Networks

A study of Riemannian optimization with various
rotation representations in deep rotation regression
using convolutional neural networks.

Master’s thesis in Mechanical Engineering
Supervisor: Olav Egeland
June 2022

M
as

te
r’s

 th
es

is

	Acknowledgements
	Abstract
	Sammendrag
	Introduction
	Notations

	Background
	Lie groups
	General Lie groups
	Matrix Lie group
	Special orthogonal group SO(3) and SO(2)

	Norms
	p-norm
	Frobenius norm

	Singular value decomposition
	QR decomposition with Gram-Schmidt
	Rotation representations
	Euler angles
	Axis-angle
	Unit quaternion
	6D representation and Gram-Schmidt orthogonalization
	5D representation
	9D representation and SVD orthogonalization
	10D representation

	Topology
	Surjectivity and homeomorphism
	SO(n) and homeomorphism

	Differential geometry
	Topological- and smooth manifolds
	Riemannian manifolds
	Riemannian metric on SO(3)

	Optimization
	Euclidean optimization
	Riemannian optimization
	Riemannian optimization on SO(3)

	Deep Learning on Point Clouds
	Pose estimation and loss function
	Deep learning on point clouds
	PointNet
	PointNet++
	PointNet++ MSG:

	Deep rotation regression
	PointNet
	PointNet++ MSG

	Deep Rotation Regression
	Problem area
	Continuity of rotation representations
	Deep learning pipeline
	Smoothness properties & surjectivity

	Manifold-aware gradients
	Backpropagation with RPMG-layer

	Objective & Simulation
	Objective
	Task
	PointNet++ MSG on ModelNet40
	Idun HPC

	Simulation details
	Idun HPC
	Code compilation in Idun
	Transferring files to create tables and graphs

	Results & Discussion
	Results
	Rotation representations
	Rotation representations with gM
	Rotation representations with gPM
	Rotation representations with gRPM
	Length-vanishing problem
	Overview of results

	Discussion

	Conclusion
	Mathematical Formulations
	Derivation of inverse projections
	Quaternion
	6D representation
	9D representation
	10D representation

	Code Listing
	RPMG/ModelNet_PC/code/
	config.py
	dataset.py
	prepare.py
	test.py
	train.py

	RPMG/ModelNet_PC/configs/
	example.config

	RPMG/ModelNet_PC/pointnet_lib/
	pointnet2_modules.py
	pointnet2_utils.py

	RPMG/ModelNet_PC/
	model.py
	pointnet_utils.py
	pointnets.py

	RPMG/utils/
	rpmg.py
	tools.py

