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Preface 

Five years ago, I worked as a maintenance manager at a plant in the process industry. 

One of my challenges in this job was that we often had to base our maintenance 

decisions on experience and gut feeling because of a lack of data. One day, a 

colleague introduced me to a local firm that had started producing some wireless 

sensors for condition monitoring. We decided to test this product. These wireless 

sensors were so easy to install and harvest data from that I thought that “this really 

has the potential to change how we do maintenance”. 

In my experience, gathering real-time sensor data from equipment has 

traditionally been so expensive and cumbersome that this is mainly done for process 

control and for ensuring safe operation. Because installing traditional wired sensors 

requires cables for power supply and signals and engineers to make the data available 

in the SCADA system, implementing one new signal can take weeks and typically 

cost 10 000 EUR or more. Sometimes there is also a need for long production stops 

to install all the cables. With the new wireless sensors, technicians could install new 

sensors in minutes, and the data became immediately available from a cloud solution. 

I was at this time unaware of concepts such as the fourth industrial revolution, 

Smart Maintenance, or prognostics and health management. Nonetheless, I decided 

that this was something I wanted to learn more about. I was fortunate to get a position 

as a Ph.D. candidate at the BRU21 program with the working title “Industry 4.0 and 

smart predictive maintenance” and set out to explore how the introduction of digital 

technologies can be used to improve maintenance performance. The Ph.D. project 

was carried out at the Department of Mechanical and Industrial Engineering (MTP) 

at the Norwegian University of Science and Technology (NTNU) in Trondheim, 

Norway, from November 2018 to September 2022. The work was accomplished 

under the supervision of Professor Jørn Vatn and Associate professor Per Schjølberg. 

This thesis’s target readers include researchers and practitioners interested in 

the digitalization of maintenance in the oil and gas industry, but also the process 

industry in general. It is assumed that the readers have basic knowledge of 

maintenance management, reliability, and maintenance optimization.  
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Summary 

This Ph.D. project belongs to the BRU21 program. BRU21 stands for Better Resource 

Utilization in the 21st century and is NTNU's research and innovation program in 

digital and automation solutions for the Oil and Gas (O&G) industry. 

The basis for the BRU21 research program is a series of facts findings 

meeting between NTNU and companies related to the Norwegian O&G industry 

conducted in 2016. In these meetings, the industry expressed a belief that 

digitalization is vitally important to secure the industry's competitiveness and that the 

O&G industry is lagging behind other industry sectors, such as manufacturing. 

The most prominent concept for performance improvement in the 

manufacturing industry has in recent years been Industry 4.0. The main economic 

potential of Industry 4.0 lies in the ability to make faster and better decisions. This 

ability is facilitated by the recent development in sensor technology, combined with 

improvements in systems for collecting, storing, and analyzing large amounts of data. 

This technological development facilitates the introduction of digital twins, i.e., 

digital representations of physical assets, processes, or systems. Having digital 

representations of physical assets that are not developed for specific needs but instead 

can act as a single source of the truth, for all business area and use cases, help reduce 

the time and effort needed for collecting the necessary data for making high-quality 

data-driven decisions.   

A large stream of papers proposing quantitative models for data-driven 

decision making in maintenance has been published in the last 50 years, but there is 

little empirical evidence of these models being used in the industry. Availability of 

the necessary data has traditionally been a challenge, but introducing concepts such 

as Industry 4.0 and digital twins may change this. 

Six articles have been written in this Ph.D. project. The first three articles 

aimed to gain insight into the potential and current use of digitalization of 

maintenance in the O&G industry in the Norwegian Continental Shelf (NCS). In 

Article I, financial data from an example O&G production platform was analyzed to 

assess the economic value of improving maintenance. Articles II and III found 

indications that some Norwegian O&G companies have entered a virtuous circle of 

data collection and model development, increasing the benefits of data-driven 

decision making in maintenance. 

The remaining three articles use the insights gained in the previous papers to 

propose how the industry can move forward with data-driven decision making in 

maintenance. Article IV proposes a framework for implementing Smart Maintenance 

that builds on elements from system engineering and lean production. Article V 

develops a CBM optimization model that accounts for the decision maker's risk 

aversion. Article VI presents a CBM optimizing model for a system subject to hard 

failure, imperfect repair, maintenance windows, and maintenance delay. 
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Structure of thesis 

This thesis is divided into two parts: 

- Part I gives an overview of the background, scope, and objectives of this

Ph.D. project and the research methods used. This part also presents the main

results and the integrated nature of the work.

- Part II consists of the collection of articles that make up the main part of the

work carried out in this Ph.D. project. The articles included in this thesis and

my contribution to each of these are listed in Table 1.

Table 1. List of articles. 

No. Article Declaration of authorship 

I Pedersen TI, Schjølberg P. The 

Economic Dimension of Implementing 

Industry 4.0 in Maintenance and Asset 

Management. In: Y. W, K. M, T. Y, K. 

W, editors. Advanced Manufacturing 

and Automation IX IWAMA 2019. 

Plymouth; United Kingdom: Springer, 

Singapore; 2020. p. 299-306 

Pedersen and Schjølberg 

conceptualized the paper. 

Pedersen conducted the 

literature review, collected the 

data, and wrote the paper 

under the supervision of 

Schjølberg.  

II Pedersen TI, Vatn J, Jørgensen KA. 

Degradation Modeling of Centrifugal 

Pumps as Input to Predictive 

Maintenance. In: Baraldi P, Di Maio F, 

Zio E, editors. The 30th European 

Safety and Reliability Conference and 

the 15th Probabilistic Safety Assessment 

and Management Conference. Venice, 

Italy: Research Publishing, Singapore; 

2020 

Pedersen conceptualized the 

paper and collected the data 

with the help of Jørgensen. 

Pedersen conducted the 

literature review, analyzed the 

data, and developed the 

methodology under the 

supervision of Vatn. Pedersen 

wrote the paper with feedback 

from Jørgensen and Vatn. 

III Pedersen TI, Størdal HG, Bjørnebekk 

HH, Vatn J. A Survey on the Use of 

Digital Twins for Maintenance and 

Safety in the Offshore Oil and Gas 

Industry. In: Castanier B, Cepin M, 

Bigaud D, Berenguer C, editors. 31st 

European Safety and Reliability 

Conference. Angers, France 2021.  

Pedersen conceptualized the 

paper. Pedersen, Størdal and 

Bjørnebekk conducted the 

literature review. Pedersen 

developed the questionnaire 

together with Størdal and 

Bjørnebekk and with feedback 

from Vatn. Pedersen collected 

the data and wrote the paper 

with feedback from Vatn. 
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Table 1. (continued) 

IV Pedersen TI, Haskins C. Framework for 

the Implementation of Smart 

Maintenance. In: Castanier B, Cepin M, 

Bigaud D, Berenguer C, editors. 31st 

European Safety and Reliability 

Conference. Angers, France 2021 

Pedersen conceptualized the 

paper and conducted the 

literature review. Pedersen 

created the framework and 

wrote the paper under the 

supervision of Haskins.  

V Pedersen TI, Vatn J. Optimizing a 

condition-based maintenance policy by 

taking the preferences of a risk-averse 

decision maker into account. Reliability 

Engineering & System Safety 2022 Vol. 

228, 108775 

Pedersen: Conceptualization, 

Methodology, Software, 

Validation, Formal analysis, 

Investigation, Writing – 

original draft, Visualization. 

Vatn: Methodology, 

Supervision, Writing – review 

& editing. 

VI Pedersen TI, Liu X, Vatn J. Maintenance 

optimization of a system subject to two-

stage degradation, hard failure, and 

imperfect repair. Manuscript submitted 

to the journal Reliability Engineering 

and System Safety. 

Pedersen: Conceptualization, 

Methodology, Software, 

Validation, Formal analysis, 

Investigation, Resources, Data 

Curation, Writing - Original 

Draft, Visualization  

Liu: Methodology, Validation, 

Formal analysis, Writing - 

Original Draft, Writing - 

Review & Editing  

Vatn: Methodology, Writing - 

Review & Editing, 

Supervision. 
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1 Introduction 

1.1 The BRU21 research project 
Based on a drop in the oil price in combination with rising costs and an increasing 

focus on environmental factors, NTNU recognized in 2015 a need to update the 

university’s strategy for education, innovation, and research related to the Norwegian 

oil and gas (O&G) industry (NTNU, 2017). In response to this, a series of fact-finding 

meetings with exploration and production (E&P) companies, service providers, 

authorities, and interest organizations was organized in 2016. In a report from 2017 

that describes this process, the new strategy is presented as: “to identify technologies 

and solutions to assure future petroleum activities at low oil prices and build 

petroleum fields of the future that are environmentally friendly and have the highest 

standards of safety”  (NTNU, 2017). One of the outcomes of this strategy process was 

the formation of a new research program called BRU21, which this Ph.D. project is 

a part of.  

BRU21 stands for Better Resource Utilization in the 21st century and is a 

research and innovation program focusing on digital and automation solutions for the 

oil and gas industry (NTNU, 2019). The fact-finding meetings mentioned above 

revealed a consensus among the industry actors that digitalization is “critically 

important for future competitiveness” of the O&G industry on the Norwegian 

Continental Shelf (NCS) (NTNU, 2017,p.49). Based on this, the objective of the 

BRU21 program is defined as “to boost efficiency and enable new technologies for 

the oil and gas industry through digital and automation solutions”  (NTNU, 

2017,p.50). The BRU21 program is organized into six program areas:  

- Exploration efficiency.

- Field development and economics.

- Drilling and well.

- Reservoir management and production optimization.

- Operations, maintenance, safety, and security.

- New business and operational models.

This Ph.D. project belongs to the program area of “Operations, maintenance,

safety and security” and was funded by NTNU. The title of the Ph.D. project is 

“Industry 4.0 and Smart Predictive Maintenance”. 

By 2019, the research project consisted of 33 Ph.D. and PostDoc positions. 

NTNU funded ten positions, and 23 were funded by nine industry partners(NTNU, 

2019). The Ph.D. projects are linked to industrial use cases. The motivation for this 

is to secure that the research meets the needs of the industry.  



Introduction 

13 

1.2 Background 

1.2.1 Potential benefits of digitalization of maintenance 

One way that digital solutions can help improve maintenance performance that has 

received much attention is the use of sensors to monitor the condition of equipment 

and, based on this, make predictions on when the equipment will fail (de Jonge, 

Teunter and Tinga, 2017). Online sensor-based condition monitoring has historically 

been very costly (Ahmad and Kamaruddin, 2012), and time-based maintenance has 

often been the best alternative for equipment with a defined wear-out period. In recent 

years, sensor technology developments and the falling cost of collecting and 

analyzing sensor data have allowed for wider use of online condition-based 

maintenance (CBM) (Alaswad and Xiang, 2017; Vrignat, Kratz and Avila, 2022).  

Many papers on degradation modeling and maintenance optimization using 

condition monitoring data have been published in the last several decades. See, e.g., 

reviews by Alaswad and Xiang (2017), Lei et al. (2018), Zhang et al. (2018), or Olde 

Keizer, Flapper and Teunter (2017). The potential to improve maintenance 

performance by switching from time-based to condition-based maintenance policies 

has been demonstrated in several numeric examples in the academic literature. 

Examples are de Jonge, Teunter and Tinga (2017) and Van Horenbeek and Pintelon 

(2013). However, the quantitative models proposed in these papers are rarely tested 

on industrial data (de Jonge and Scarf, 2020), and studies on the use of these models 

in the industry are few (Fraser, Hvolby and Tseng, 2015). 

On the other hand, several reports and white papers from consultancy and 

software companies present claims on the benefits of implementing digital solutions 

in maintenance. One example is a McKinsey report claiming that a 10 – 40 % 

maintenance cost reduction can be achieved by fitting products with sensors that 

monitor conditions and usage (Manyika et al., 2011). Another report from the same 

company claims that “typically, predictive maintenance decreases the total machine 

downtime by 30 to 50 percent and increases machine life by 20 to 40 percent” (Baarup 

et al., 2015, p. 24). Similar statements of the potential improvements have been 

presented in reports by the consultancy firms Accenture (Spelman et al., 2017) and 

PwC together with Mainnovation (Haarman et al., 2018). The software company 

Cognite states in a white paper that “in offshore environments, condition-based 

maintenance (and eventually, predictive maintenance) has the potential to 

revolutionize business models and reduce bottom lines” (Cognite, 2019, p. 13). 

Similar claims related to the potential benefits of introducing predictive maintenance 

in the upstream O&G industry are made by the software company Aspentech (Beck, 

2017). However, these reports give few details on how the potential benefits are 

calculated. 

But there are also those that paint a more moderate picture. An example is 

the software company Arundo which states that “true predictive maintenance is not 

immediately applicable for most equipment, due to the paucity of relevant data” 

(Dobson and Misra, 2019, p. 8). Another example is the consultancy firm Staufen, 

which, based on a survey of 450 German companies, states that the “added value of 

predictive maintenance is likely to be far lower than is often claimed” (Staufen, 2018, 

p. 35).
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There is so far limited empirical evidence of the effect of data-driven 

maintenance in the asset-heavy industry (Bokrantz et al., 2020b), but some studies 

have been found in the academic literature. In a case study from the Dutch process 

industry, Veldman, Klingenberg and Wortmann (2011, p. 49) found that “all the firms 

claimed to be struggling with prognostic condition-based maintenance tasks”. In a 

later case study, also in the Dutch process industry, Van De Kerkhof, Akkermans and 

Noorderhaven (2015, p. 235) found that “many firms in the process industry struggle 

with systematically employing CBM activities in general and prognostic CBM 

approaches in particular”. Based on interviews with maintenance experts from 

multiple industry sectors in the UK, Golightly, Kefalidou and Sharples (2018, p. 640) 

found that “full, predictive maintenance solutions were extremely challenging”. A 

survey of practitioners in the Swedish automotive industry found that many 

respondents believed that transitioning their maintenance organization into being 

more data-driven has benefits (Savolainen et al., 2020). However, the same study also 

found that most maintenance decisions were based on experience rather than data and 

concluded that because of “lack of competences, poor data quality, digitalized 

systems which are hard to use and inadequate approaches to implementing new 

systems, the organization has a hard time to transition towards a data-driven future” 

(Savolainen et al., 2020, p. 99). A case study on the implementation of digital 

solutions to maintenance in a Swedish company within energy production found 

several hindering factors related to organizational and cultural aspects, such as: 

unclear aims, resistance to change, lack of cooperation between business functions, 

and lack of resources (Lundgren, Bokrantz and Skoogh, 2022). The long timeframes 

in maintenance were also identified as a challenge, as it may take years before the 

effects of initiatives can be measured. Another challenge was that the company was 

“determined to pursue development towards digitization and data-driven decision-

making” (Lundgren, Bokrantz and Skoogh, 2022, p. 633), but management found it 

difficult to identify specific activities for achieving this goal. 

Because of the many contradicting claims and few empirical studies, it is hard 

to assess the potential benefit of using condition monitoring data to improve 

maintenance performance. Another challenge when assessing the current state of the 

art in the digitalization of maintenance is a lack of coherent terminology among the 

different actors. An example is the terms CBM and predictive maintenance (PdM). 

While some understand these as synonyms, others understand these as different 

maintenance policies.   

During this Ph.D. project, I have primarily followed the definitions given in 

EN 13306:2017 “Maintenance terminology” (CEN, 2017), and ISO 13372:2012 

“Condition monitoring and diagnostics of machines — Vocabulary“ (ISO, 2012b). 

1.2.2 Making maintenance decisions 

Two important ingredients when performing data-driven decision making are data 

and models. A model is a simplified version of a real system (Kossiakoff et al., 2011). 

These models can be mental models based on intuition and previous experience that 

only exist in the decision maker’s mind. Alternatively, these models can be formal 

quantitative models implemented in a computer program or a spreadsheet (Bratvold 

and Begg, 2009a). There are advantages and disadvantages to both these approaches. 
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An advantage of formally expressed quantitative models compared to mental models 

is that they make it easier for other people to examine the assumptions and elements 

that are included and excluded from the models. This makes the decision process 

more transparent (Bratvold and Begg, 2009a). A disadvantage of quantitative models 

is that they encourage a focus on only the aspects that are easy to quantify. Because 

of this, it will often be beneficial to combine data, quantitative models, and human 

judgment for decision augmentation (Bokrantz et al., 2020c). However, humans are 

“imperfect information processors” (Bratvold and Begg, 2009a, p. 15), so in other 

situations, it may be preferable to use the data and quantitative models for decision 

automation without involving human intuition (Figure 1). Quantitative models can 

offer value when used both for decision automation and augmentation. In the 

remainder of this thesis, the term “model” is understood as a formal quantitative 

model unless described as a mental model. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Illustration of decision augmentation and decision automation in maintenance. The quantitative 

model is shown in grey in the upper flowchart to illustrate that condition monitoring data can be used 

for decision augmentation without quantitative models. Inspired by (Bousdekis et al., 2018) and 

(Bokrantz et al., 2020c) 

Decision analysis is a discipline that evolved in the 1950s and 1960s (Russell 

and Norvig, 2016). It offers procedures and tools for “transforming opaque decision 

problems into transparent decision problems by a sequence of transparent steps” 

(Howard, 1988, p. 680). A decision is within this discipline defined as a “choice 
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between two or more alternatives that involve an irrevocable allocation of resources” 

(Howard and Abbas, 2016, p.30). This means that a mental commitment to follow a 

particular course of action is not counted as a decision (Bratvold and Begg, 2009b). 

While the primary focus of decision analysis in the early days where on guiding 

human decision makers in making decisions in line with their preferences, there has 

in recent years been an increasing focus on the use of decision analysis to ensure that 

automated decision processes behave as desired (Russell and Norvig, 2016).  

A high-quality decision is “an action we take that is logically consistent with 

our objectives and preferences, the alternatives we perceive, and information we 

have” (Bratvold and Begg, 2009a, p.28). Howard and Abbas (2016) use a metaphor 

of a three-legged stool when depicting the elements that constitute a good decision. 

The basis for the decision is the three legs: the alternatives we perceive, “what we can 

do”; the information that we have, “what we know”; and our objectives and 

preferences, “what we want”. If any of these three elements are missing, the stool tips 

over. For instance, if there is only one option, then there is no decision to make. The 

seat that holds these three legs together is the logic that decision analysis is based on. 

By using this logic, the best decision for a given decision basis, i.e., the three legs, 

can be found. The location of the stool symbolizes the frame of the decision. This 

determines what alternatives, information, and preferences are useful to that specific 

decision. For instance, if an operator wants to improve an asset’s competitive 

strength, the operator may frame this as a decision to find the maintenance 

optimization model that minimizes the expected cost. Alternatively, the operator may 

use a larger frame that includes modifying the asset to eliminate failures or increase 

throughput. 

The most important element in this metaphor is the person sitting on the stool. 

This is the decision maker who frames the decision and whose objectives and 

preferences should be considered when evaluating the alternatives. There is no 

decision without a decision maker that constructs the elements of the stool and assigns 

the necessary resources to implement the decision. Identifying the decision maker(s) 

can sometimes be challenging, especially for complex decisions in large 

organizations (Bratvold and Begg, 2009a). It is also important to be aware of agent-

principal problems. For a corporation, such as an O&G company, the decision 

maker’s objectives should be aligned with the shareholders.   

Decision analysis and decision theory have seen little use in the maintenance 

literature, but de Almeida and Bohoris (1995) give an introduction to how decision 

theory can be used for maintenance decisions. Because maintenance decisions in the 

O&G industry can have severe consequences, it may be pertinent to account for the 

decision maker’s attitudes towards risk when evaluating alternatives (Bratvold and 

Begg, 2009a). Expected utility theory (EUT) is a framework for taking attitudes 

towards risk into consideration when assessing alternatives with uncertain outcomes. 

The basis of EUT is axioms for describing the preferences of a rational decision 

maker faced with decisions under uncertainty (Clemen, 1991). Aven (2012) argues 

that EUT, as a normative theory for how to find the optimal decision in a 

mathematical framework, can be useful as a reference for assessing the quality of 

decisions. 
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For an introduction to decision analysis, see, e.g., Bratvold and Begg (2009a), 

who focus on application in the O&G industry. For a more comprehensive 

introduction, see, e.g., Clemen (1991), Keeney and Raiffa (1993), or Howard and 

Abbas (2016). 

1.2.3 Digitalization of maintenance in the O&G industry 

As mentioned in Chapter 1.1, there is a sentiment in the O&G industry that the 

implementation of digital solutions is important to improve the cost-efficiency of the 

industry (KonKraft, 2018; Settemsdal, 2019; Mogos, Eleftheriadis and Myklebust, 

2019; DNV-GL, 2020; Larsen et al., 2020; Hanssen, Myklebust and Onshus, 2021). 

Devold, Graven and Halvorsrød (2017) claim that many O&G companies 

have invested in new technology but have failed to adapt the organizational structures 

and work process to realize this technology’s potential. According to a survey of the 

O&G industry conducted by DNV-GL (2020), the lack of standardization and 

integration of systems for collecting and storing data is a major obstacle preventing 

companies from realizing the potential of digitization. Because of this, already 

collected data require manual handling before it can be turned into information 

(KonKraft, 2018). A McKinsey report gives an example from an offshore oil and gas 

platform where only 1 percent of the collected data were analyzed. Even worse, the 

results of these analyzes were rarely used to “drive decision making” (Baarup et al., 

2015, p. 20).   

In interviews by Machado (2019), industry experts from Norway and Brazil 

express that the offshore O&G industry is immature when it comes to the use of CBM 

and that data silos are a problem. Another obstacle is proving the economic potential 

of condition monitoring and CBM. In a survey by Mogos, Eleftheriadis and 

Myklebust (2019), suppliers to the O&G industry reported cost saving as an important 

motivation for digitalization. However, in the same survey, a high proportion of these 

respondents reported having “little knowledge” of concepts such as Industry 4.0 

(46%) and cyber-physical systems (CPS) (70%) (Mogos, Eleftheriadis and 

Myklebust, 2019). Many respondents also reported a lack of knowledge and skills as 

barriers to implementing Industry 4.0. 

In a study of six O&G companies operating on the NCS, Øien, Hauge and 

Grøtan (2020) found that all the companies had plans to implement predictive 

maintenance for both production equipment and safety barriers, but few of them had 

implemented this at the time of the survey. In a more recent study, Hanssen, 

Myklebust and Onshus (2021) found that suppliers and E&P companies in the 

Norwegian O&G industry are rapidly implementing digital solutions to achieve more 

effective operations. Nevertheless, they found that the level of digital maturity varies 

among the actors. When comparing the finding from Hanssen, Myklebust and Onshus 

(2021) with (Mogos, Eleftheriadis and Myklebust, 2019), data collected in 2017, and 

(Øien, Hauge and Grøtan, 2020), data collected in 2018, it seems that the 

digitalization of the O&G industry is happening at a rapid pace.  

1.2.4 Industry 4.0 

In the facts-finding meeting leading up to the formation of the BRU21 program, 

industry experts expressed a belief that the O&G industry is “lagging behind other 
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industry sectors”, like manufacturing, in adopting digital solutions (NTNU, 2017, p. 

49). The most prominent concept for performance improvement in the manufacturing 

sector in recent years has been Industry 4.0 (Buer et al., 2020). Inspired by this, there 

has been a focus on Industry 4.0 in this Ph.D. project. 

The term Industry 4.0 or “Industrie 4.0” was coined by a working group 

created by the German government to strengthen the competitive position of the 

German manufacturing industry (Kagermann et al., 2013). According to Kagermann 

et al. (2013), a fourth industrial revolution is coming as a result of the introduction of 

the Internet of Things (IoT) and Internet of Services (IoS) into the manufacturing 

sector. 

Although most of the literature on Industry 4.0 so far has been conceptual, 

some empirical studies on the effect of this concept have started to emerge (Da Silva 

et al., 2020; Buer, 2020). In a survey of Indian manufacturing companies, Kamble, 

Gunasekaran and Dhone (2020) found a significant positive effect of the 

implementation of Industry 4.0 on performance. In another survey conducted in 

Brazil, Dalenogare et al. (2018) found that some of the technologies related to 

Industry 4.0 are positively associated with improving operational performance (e.g., 

big data collection and analysis) and negative for some (e.g., additive manufacturing). 

However, these studies have been conducted on a high level (business units) (Ciano 

et al., 2021) and have not focused on maintenance. 

In recent years, concepts related to Industry 4.0 has started to emerge also in 

the oil and gas industry. Examples of these are “Oil and Gas 4.0” (Lu et al., 2019) 

and “Topsides 4.0” (La Grange, 2018). However, according to Lu et al. (2019), 

Industry 4.0 is still in its infancy in this industry sector.  

A challenge with Industry 4.0, as with many of the other emerging concepts 

related to digitalization, is that the academic community has not converged on the 

content of Industry 4.0 (Bokrantz et al., 2020a). A large proportion of the literature 

on Industry 4.0 focuses on specific technologies (Silvestri et al., 2020; Rüßmann et 

al., 2015). However, according to Kagermann, Industry 4.0 is more than technology 

(Schuh et al., 2017). While previous concepts for the digitalization of manufacturing, 

like Computer Integrated Manufacturing (CIM), had a vision of complete automation 

without human intervention (Schneider, 2018; Schmidt et al., 2020), there is in 

Industry 4.0 an emphasis on the “interactive collaboration between human beings and 

technological systems” (Kagermann et al., 2013, p. 16). However, this focus on the 

socio-technological aspect of Industry 4.0 appears to have been overlooked in much 

of the following literature (Davies, Coole and Smith, 2017).  

The understanding of Industry 4.0 used in this Ph.D. project is based on a 

report by the German research organization Acatech (Schuh et al., 2017). They define 

Industry 4.0 as “real-time, high data volume, multilateral communication and 

interconnectedness between cyber-physical systems and people” (Schuh et al., 2017, 

p. 11). According to Acatech, the economic potential in Industry 4.0 lies mainly in 

the possibilities of faster and better decision making and adaptation. This is based on 

the following four factors (Schuh et al., 2017):  

- The ability to capture data and realize that something is happening. 
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- The ability to analyze the data and turn it into information that can provide 

insight into the implications. 

- The presentation of the information, e.g., visualization, to decision makers 

for decision augmentation and use of data for decision automation. 

- The integration of processes and systems to ensure that decisions are 

implemented and have the desired effect. 

Acatech defines six stages of Industry 4.0 maturity. The first two stages, 1) 

Computerization and 2) Connectivity, are related to aspects needed for creating the 

basis for Industry 4.0. The third stage, 3) Visibility, is to make a digital twin of the 

factory that can act as a single source of the truth in the virtual world. An important 

point to note is that the efforts needed to develop models for analyzing online data 

often are small compared to the costs of securing that the input data remain valid over 

time (Sculley et al., 2015). Unless a holistic approach to data collection and 

presentation is used, these costs will exceed the potential benefit for many use cases. 

This can be avoided by creating a digital twin, e.g., an up-to-date model of the entire 

production unit, that is “not tied to individual data analysis” (Schuh et al., 2017, p. 

17). The next stage is 4) Transparency, which is about analyzing the data in the digital 

twin using engineering knowledge and root cause analysis to improve the 

understanding of what happens in the production process. The insight gained in the 

fourth stage can be used to build 5) Predictive Capability. This can help companies 

implement proactive measures to avoid unvented events such as machine 

breakdowns. The final stage is named 6) Adaptability and is about implementing 

solutions that can act autonomously, i.e., without human assistance, to make 

decisions. Because it is demanding to succeed with the implementation of 

autonomous solutions, it is often best to carefully assess the risk and cost-benefit 

ratios on a case-by-case basis before moving to this stage (Schuh et al., 2017). 

1.2.5 Smart Maintenance  

Several terms are used in the literature to describe maintenance concepts that exploit 

the possibilities offered by the fourth industrial revolution (Roda and Macchi, 2021). 

Examples are Maintenance 4.0 (Jasiulewicz-Kaczmarek and Gola, 2019), Prognostic 

and Health Management (PHM) (Sun et al., 2012), E-maintenance (Márquez, 2007), 

Predictive Maintenance (PdM) (Golightly, Kefalidou and Sharples, 2018), and Smart 

Maintenance (Akkermans et al., 2016).  

In this thesis, the term Smart Maintenance is used. This is mainly because of 

the thorough conceptualization of Smart Maintenance by Bokrantz et al. (2020c). 

They define Smart Maintenance as “an organizational design for managing 

maintenance of manufacturing plants in environments with pervasive digital 

technologies”. Based on interviews with 110 industry experts, Bokrantz et al. (2020c) 

have identified four important dimensions of Smart Maintenance:  

- data-driven decision making,  

- human capital resource,  

- internal integration, and  

- external integration.   
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Of these four dimensions, data-driven decision making is the focus of this thesis. A 

recent literature review of Smart Maintenance and other maintenance concepts related 

to Industry 4.0 is presented in (Roda and Macchi, 2021).  

1.2.6 Characteristics of the O&G industry relevant to maintenance. 

The O&G industry has, together with other asset-intensive process industries, some 

characteristics that make it more challenging to implement digital capabilities 

compared to other industry sectors (ISO, 2019). For the process industry in general, 

Suzuki (1994) and Van De Kerkhof, Akkermans and Noorderhaven (2015) point to 

aspects such as: 

- Complex processes and complex installations with many different equipment 

types and equipment-related problems. 

- Higley integrated production processes where upstream and downstream 

equipment may affect each other.    

- High financial and safety risks associated with breakdowns, making a “move 

fast and break things”-approach to innovation less suitable for this industry.  

- The processes are often subject to change, making comparing data over time 

difficult. 

- A large proportion of the equipment is custom-made, and every production 

context is slightly different, making comparisons between production units 

difficult. 

- Long lifespans for assets and conservative maintenance programs results in 

limited failure data.  

Because production units in offshore O&G are often made “one-off”, they do not 

benefit from the programs for refinement and improvement that can be used for assets 

produced in long production series. Because of this, poor design and integration of 

different components is often a challenge in the process industry (Suzuki, 1994). Even 

if the system were correctly designed in the first place, changes to the production 

process, e.g., as the oil reservoir gets depleted, may cause systems to be operated 

outside optimal conditions, leading to accelerated wear. 

These are all important aspects to consider when assessing the potential 

benefits of Smart Maintenance in the O&G industry and how concepts used in other 

industry sectors may be adapted.  

1.2.7 Assessing the effect of maintenance.  

A key barrier to implementing digital maintenance solutions is the difficulty of 

demonstrating the economic value of these solutions (Roda, Macchi and Fumagalli, 

2018; Golightly, Kefalidou and Sharples, 2018). This is not surprising, as it is 

generally difficult to assess the effect of maintenance. There are mainly two reasons 

for this.  

The first is related to the long timeframes in maintenance. This can lead to 

principal-agent conflicts if managers expect to leave the firm or get promoted to other 

positions before the effect of lacking maintenance appears (Young and O'Byrne, 

2001; Zimmerman, 2011; Stewart, 2013; Brealey, Myers and Allen, 2017). Likewise, 

it is reasonable to assume that if a large backlog of maintenance has accumulated, 
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there will be a corresponding delay from the allocation of additional maintenance 

resources until performance is fully restored. 

Even without principal-agent conflicts, the long timeframes remain an issue 

when assessing maintenance performance. Adding to this is the asymmetry between 

the cost of performing maintenance and the potential cost of failures. The cost of 

performing maintenance is usually known while predicting the consequences of not 

performing a certain maintenance activity is harder. This is because the potential 

consequences may range from the asset working perfectly fine to a catastrophic 

failure. Because catastrophic events are rare, they will not appear in lagging 

performance indicators. Because of this, measuring the actual long-run performance 

of maintenance is challenging. 

The other reason is that maintenance is a support function (Rosqvist, Laakso 

and Reunanen, 2009). Because of this, the direct cost of maintenance is easy to 

identify, while the benefits are shown in other areas, such as an increase in production, 

lower inventory levels, or better quality of the end product (Van Horenbeek and 

Pintelon, 2014). Because maintenance is so closely related to other business 

functions, both good and poor performance in maintenance can be hard to spot 

(Waeyenbergh and Pintelon, 2002).   

In this Ph.D. project, two approaches for quantifying the effect of 

improvement in maintenance have been used. The first is the Value Driven 

Maintenance (VDM) sensitivity analysis used in Article I. This approach considers 

that maintenance is a support function by assessing how maintenance improvements 

can influence the business unit's economic performance (Haarman and Delahay, 

2016). The VDM approach is explained further in Chapter 3.1 and Article I. The other 

approach is maintenance optimization models, which are treated in the next sub-

chapter.  

1.2.8 Maintenance optimization models 

A maintenance optimization model is by Dekker (1996, p. 229) defined as: “a 

mathematical model in which both costs and benefits of maintenance are quantified 

and in which an optimum balance between both is obtained”. According to Dekker, 

maintenance optimization can be broken down into four steps (Figure 2).  

 

 

Figure 2. Four steps to establish a maintenance optimization model. Based on Dekker (1996). 

Maintenance optimization can be used to find the optimal timing for active 

maintenance or inspections under a certain policy, e.g., the optimal renewal period 

under an age replacement policy, and to compare and rank alternative maintenance 
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policies, e.g., by comparing the expected cost for an age and a block replacement 

policy (Dekker, 1996). 

Several authors have, over the years, pointed out that despite the popularity 

of maintenance optimization models in the academic community, there is little 

evidence of these models being used in practice (Dekker, 1996; Fraser, Hvolby and 

Tseng, 2015; Veldman, Klingenberg and Wortmann, 2011; de Jonge and Scarf, 2020; 

Christer, 1999). With the assumption that maintenance managers want to maximize 

profit, the lack of use of the available maintenance optimization models can be seen 

as a paradox (Zio, 2009).  

Based on a review of the application of maintenance optimization models, 

Dekker (1996) lists six aspects that can explain the gap between academia and 

industry when it comes to maintenance optimization models:  

- Because of its stochastic nature, maintenance optimization models are 

challenging to understand and interpret for industry practitioners. 

- Use of mathematical analysis and techniques as opposed to solutions to real 

problems is the focus of many published papers. 

- Practitioners have little incentive to publish their results in the academic 

literature. 

- Different technical systems deteriorate differently, and there is little knowledge 

on which models suit the different practical situations. 

- The potential gains from developing optimization models are often insufficient 

to justify the development cost. 

- Optimization models focus too much on planned revision and overhauls. 

In some sense, this gap between academics and industry practitioners is 

natural because they have different incentives. Academics must be able to point to 

novelty in their proposed models to get published, giving them an incentive to make 

increasingly complex models. On the other hand, practitioners must balance the cost 

of developing, validating, and maintaining these models against the potential benefits 

of their use. Intuitively, making simpler models preferable to industry.  

Another challenge that has been pointed to is the lack of data (Dekker and 

Scarf, 1998; de Jonge and Scarf, 2020; Scarf, 1997). Welte (2008, p. 62) describes 

this as a “vicious circle where missing data cause a lack of models, and missing 

models cause a lack of data”. See Figure 3. 

Industry 4.0 and especially the concepts of digital twins can contribute to reducing 

the barrier related to the availability of relevant data. By implementing a digital twin 

that combines existing sources of data like enterprise resource planning (ERP) system 

and computerized maintenance management system (CMMS) with sensors from the 

shop floor in a single source of truth, the speed and cost of acquiring the necessary 

data can be improved (Schuh et al., 2017; Malakuti et al., 2020).  

As pointed out by Agrawal, Gans and Goldfarb (2018), the economic theory 

of complementary goods says that when the cost of an input, e.g., condition 

monitoring data, is reduced, the value of complementing inputs, e.g., models used for 

data-driven decisions, will increase. The increase in value of data analytics and 

degradation models as condition monitoring data become more available are, for 
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instance, pointed out in the Delphi studies conducted by Akkermans et al. (2016) and 

Bokrantz et al. (2017) on scenarios for the future of maintenance. 

Based on this, it is reasonable to believe that, as data becomes more available, 

operators will leave the vicious cycle experienced by Welte (2008) and instead enter 

a virtuous cycle where the availability of data gives an incentive to make models, and 

models give an incentive to collect more data. 

 

 

Figure 3. Vicious circle of data collection and model development. Figure is redrawn from (Welte, 2008, 

p. 63) 

1.2.9 Degradation modeling approaches  

The degradation modeling is an essential part of maintenance optimization (Zhang et 

al., 2018). Degradation modeling approaches can be divided into five categories: 

physics-based, stochastic, knowledge-based, data-driven, or a hybrid approach which 

is a combination of the other approaches (ISO, 2015).  

Physics-based models will often be impractical because of the complicity of 

industrial production systems (Wen et al., 2018). Stochastic models are often better 

suited because the models are based on collected degradant data and can handle some 

unexplained randomness. Because of this, they do not require the same level of 

understanding of the system compared to a physics-based model (Wen et al., 2018). 

Data-driven models, especially neural network models, have drawbacks in that they 

need a lot of data for training (Gorjian et al., 2009; Vrignat, Kratz and Avila, 2022). 

As pointed out earlier, access to data can be an issue, especially in the O&G industry, 

because of a limited number of similar equipment.  

Lack of interpretability and transparency is another issue with data-driven 

methods such as neural networks (Deng, Bucchianico and Pechenizkiy, 2020). 

Hanssen, Myklebust and Onshus (2021) point out that in the O&G industry, decisions 

that have safety implications must be explainable to comply with safety regulations. 

This makes data-driven models such as artificial neural networks challenging to use 

for decision automation for maintenance decisions in an O&G context. Compared 

with data-driven models, stochastic models are generally more explainable (Gorjian 

et al., 2009) and better at quantifying the uncertainty in the output from the models 

(Deng, Bucchianico and Pechenizkiy, 2020).  
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Alaswad and Xiang (2017) group stochastic degradation models into three 

classes: discrete, proportional hazard models, and continuous degradation (Figure 4). 

In situations where the degradation is happening continuously, and the condition can 

be measured through sensors, the continuous degradation models are most relevant 

(Alaswad and Xiang, 2017). The Gamma and Inverse Gaussian (IG) processes are 

only suitable to model monotonically increasing degradation (Liu and Wang, 2020), 

while the Wiener process can be used to model non-monotonic degradation processes. 

This thesis uses variants of the Wiener process in Articles II, V, and VI. A review of 

Wiener process-based methods for degradation modeling is given in (Zhang et al., 

2018). 

 

 

Figure 4. Overview of stochastic degradation models. Redrawn from (Alaswad and Xiang, 2017) 

1.3 Objective and research questions 
This thesis aims to explore if and how the introduction of elements from Industry 4.0 

to maintenance can improve the competitiveness of the O&G industry on the 

Norwegian Continental Shelf (NCS). 

The first three research questions are aimed at understanding the current 

situation in the Norwegian O&G related to potential benefits and current use of data-

driven decision making in maintenance: 

RQ1: How can implementing digital solutions in maintenance help improve the 

competitive position of the Norwegian O&G industry? 

RQ2: Is the necessary data for breaking the “vicious circle of data collection and 

model development” available today in the Norwegian O&G industry? 
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RQ3:  What types of quantitative maintenance models are preferred in the O&G 

industry on the NCS? 

 

In the fourth research question, the focus is on how the industry should move 

forward when planning to implement quantitative models for data-driven decision 

making in maintenance: 

RQ4: How should companies proceed when planning to implement Smart 

Maintenance? 

  

The two final research questions are related to specific aspects of 

maintenance optimization models: 

RQ5: How can CBM optimization models be developed, taking the preferences of 

a risk-averse decision maker into account? 

RQ6: How can the principles from Industry 4.0 be utilized when developing CBM 

optimization models? 

1.4 Delimitations 

1.4.1 Boundaries related to industry sectors and equipment types 

The focus of this thesis is limited to the maintenance of topside equipment in offshore 

oil and gas production on the NCS. However, a case from the process industry is used 

in Article VI because the O&G industry has many of the same characteristics (work 

practices, software, and hardware) as other asset-intensive process industries (ISO, 

2019).  

1.4.2 Technology and techniques related to Industry 4.0 and maintenance 

Aspects of Industry 4.0 that are related to digital twins and data-driven decision-

making have been explored. This means that technologies sometimes associated with 

Industry 4.0 and maintenance, such as augmented or virtual reality (Zheng et al., 

2018), additive manufacturing (Frank, Dalenogare and Ayala, 2019), or blockchain 

technology (Lu et al., 2019), have not been considered.  

1.4.3 Safety implications of digitalization of the O&G industry 

Ensuring safe operation is essential in the O&G industry. The Norwegian Petroleum 

Safety Authority (PSA) has initiated studies on how digitization may impact safety, 

e.g., (Øien et al., 2018; Øien et al., 2019; Øien, Hauge and Grøtan, 2020). In one 

study commissioned by the PSA, Hanssen, Myklebust and Onshus (2021) point to 

challenges related to the rapid introduction of new IT systems for harvesting and 

analyzing data from production and safety-instrumented systems. Concerns on how 

increasing interconnectedness and complexity may affect safety are not new. For 

example, Perrow's (1999) "Normal accident theory" claims that increasing 

complexity makes failures inevitable. 

Because the core idea of Industry 4.0 is to increase integration and 

interconnectedness, the safety implications of implementing Industry 4.0 is an 
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important topic. However, safety has been studied in several other Ph.D. projects 

related to the O&G industry in recent years, for instance, in Ph.D. projects related to 

the SUBPRO program, e.g., (Srivastav, 2021; Zhang, 2021; Zikrullah, 2022; Xie, 

2022). Because of this, the safety implications of digitalization are beyond the scope 

of this thesis. 
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2 Research approach 

2.1 Introduction 
The Oxford English Dictionary defines research as “a careful study of a subject, 

especially in order to discover new facts or information about it” (Oxford, 2022). 

When conducting this type of investigation, it is vital to follow a sound research 

methodology so others can scrutinize and evaluate the research. This chapter presents 

and discusses the research methodology and methods used in this Ph.D. project. The 

difference between research method and methodology is that the former describes a 

technique for data collection and analysis while the latter describes the general stance 

of the researcher (Evans, Gruba and Zobel, 2014).  

The research work in this Ph.D. project is applied science. The aim is to 

generate new knowledge and insight that can help increase the cost-effectiveness of 

the O&G industry. 

2.2 Research philosophy 
The researcher is often regarded as a dispassionate outsider in the science, 

technology, engineering, and mathematics (STEM) disciplines (Evans, Gruba and 

Zobel, 2014). In these fields, researchers usually follow a positivistic research 

tradition where the researcher’s worldview is not important. This applies to the part 

of the RAMS discipline dealing with mathematical modeling. A substantial part of 

the work conducted in this Ph.D. project is related to mathematical modeling, but 

methods for collecting empirical data have also been used. Examples are the survey 

in Article III and the archival research and interviews for the case studies in Articles 

I, II, and VI. Because of this, there is a need to make the reader aware of my 

philosophical position when conducting the research. This is because my beliefs and 

assumptions have influenced my research process (Bryman, 2016).  

The term “research philosophy” refers to “a system of beliefs and 

assumptions about the development of knowledge” (Saunders, Lewis and Thornhill, 

2019, p. 130). Three areas where philosophical positions in research differ are: 

ontology, “what is the nature of reality?”; epistemology, “how can we know what we 

know?”; and axiology, “what are the roles of values in research?”. An overview of 

how five prominent philosophical positions differ in these three areas is presented in 

Table 2. 

To improve the awareness of my own philosophical position as a researcher, 

I have used a reflexive tool called HARP (Heightening your Awareness of your 

Research Philosophy), presented in (Saunders, Lewis and Thornhill, 2019). This tool 

has helped me become self-aware of my worldview and how this may have influenced 

my research. The result of the HARP test is shown in Table 3.  
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Table 2. Comparison of five major philosophical positions in research and how ontology (researcher’s 

view on reality), epistemology (researcher’s view on what constitutes acceptable knowledge), and 

axiology (researcher’s view on the role of values in research) are understood in these philosophies. Table 

is adapted from (Saunders, Lewis and Thornhill, 2019, pp. 144-5). 

Ontology Epistemology Axiology 

Positivism 

- Real, external, 

independent 

- One true reality 

 

- Observable and 

measurable facts 

- Causal explanation and 

prediction as 

contribution 

- Value-free research 

- Researcher is detached, 

neutral, and 

independent of what is 

researched 

Critical realism 

- Layered understanding 

of reality (the 

empirical, the actual, 

and the real) 

- External and 

independent 

- Knowledge historically 

situated and transient 

- Historical causal 

explanation as 

contribution 

- Researcher 

acknowledges bias by 

world view, cultural 

experience, and 

upbringing 

- Researcher is as 

objective as possible 

Interpretivism 

- Socially constructed 

through culture and 

language 

- Multiple meanings, 

interpretations, and 

realities 

- Theories and concepts 

are too simplistic 

- New understandings 

and worldviews as 

contribution 

- Researchers are part of 

what is researched 

(subjective) 

- Researcher’s 

interpretation is key to 

contribution 

Postmodernism 

- Social constructionism 

through power 

relations 

- Some meanings, 

interpretations, and 

realities are dominated 

by and silenced by 

others 

- What counts as “truth” 

and “knowledge” is 

decided by dominant 

ideologies 

- Exposure of power 

relations and challenge 

of dominant views as 

contribution 

- Researcher and 

research embedded in 

power relations 

- Some research 

narratives are repressed 

and silenced at the 

expense of others 

Pragmatism 

- “Reality” is the 

practical consequence 

of ideas 

- Flux of processes, 

experiences, and 

practices 

- Practical meaning of 

knowledge in specific 

contexts 

- Problem-solving and 

informed future 

practice as contribution 

- Value-driven research 

- Research initiated and 

sustained by the 

researcher’s doubts and 

beliefs 
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Table 3. Results from the HARP test taken by the author of this thesis. A researcher strongly agreeing 

(or disagreeing) with all statements related to a certain philosophy will reach a score of 18 (or – 18). The 

HARP is presented in (Saunders, Lewis and Thornhill, 2019). 

Philosophy SUM 

Pragmatism 15 

Critical Realism 10 

Post modernism 9 

Interpretivism 6 

Positivism -4 

 

According to the HARP test, pragmatism is the philosophical position I agree with 

most, while positivism is at the other end of the scale. According to pragmatism, 

“concepts are only relevant when they supports action” (Saunders, Lewis and 

Thornhill, 2019, p. 151). Theories, concepts, and ideas are to be evaluated based on 

their “practical consequences in a specific context” (Saunders, Lewis and Thornhill, 

2019, p. 151). I am not surprised by this result, and although I only took this test at 

the end of my Ph.D. project, I believe that I had the similar preferences at the 

beginning of this Ph.D. project. 

Because the researcher’s philosophical position is usually not presented in 

the maintenance literature, it is hard to assess how much of the previous literature 

adheres to the various philosophical positions listed in Table 2. However, my 

impression is that many of the authors in this field favor a positivistic research 

philosophy. This is based on the focus on observable and measurable facts often 

found in the maintenance literature. 

Nonetheless, some elements of pragmatism can be found. For example 

Fraser, Hvolby and Tseng (2015), state that researchers are obliged “to society to 

spend taxpayer funded research on addressing social needs and real-world problems”. 

Another example is Scarf (1997, p. 493), which claims that maintenance models only 

have value as pure mathematics or to the extent they have an “impact upon the 

solution of real maintenance problems”. 

An effect of my preference for pragmatism is that I, throughout the Ph.D. 

project, have tried to understand how maintenance modeling can be used in specific 

contexts. Another effect is that I believe there are many ways of interpreting the world 

and that no single point of view can ever give the entire picture. This has motivated 

my use of mixed methods during this Ph.D. project. 

2.3 The overall process of work 
The Ph.D. project has gone through different phases. In the first semesters, 

completion of mandatory courses was the main activity. The focus then gradually 

shifted to writing articles. Literature was reviewed throughout the project period. 
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2.3.1 Literature review 

According to Saunders, Lewis and Thornhill (2019), there are three reasons why 

conducting a critical review of the literature is important. Firstly, to help generate and 

refine research ideas at the beginning of the research project. Secondly, to provide 

context and frameworks for the research. Thirdly, to place the findings in relation to 

existing knowledge.  

The literature review conducted in this Ph.D. project included academic 

articles from journals and conference proceedings on maintenance management, 

maintenance modeling, decision analysis, and Industry 4.0. Textbooks on relevant 

topics have also been used. In the initial phase of the Ph.D. project, standards, reports, 

and white papers from organizations and service providers such as consultancy firms 

were also reviewed. The motivation for including non-academic literature in the 

literature review was twofold. Firstly, to get an overview of the current knowledge 

and perceptions on digitalization of maintenance held by the actors in the industry. 

Secondly, because of the emergent character of the research topic, limited academic 

literature is available related to some of the aspects studied in this Ph.D. project, 

especially on the implementation and use of Smart Maintenance in the industry. 

2.3.2 Research methods used 

A mix of methods has been used in this Ph.D. project. Mixed methods research is 

often associated with the philosophical positions of pragmatism and critical realism 

(Saunders, Lewis and Thornhill, 2019). The research carried out during this Ph.D. 

project can be divided into two phases. The first phase focused on collecting empirical 

data answering RQ1, RQ2, and RQ3. The second phase emphasized using the insights 

from the first phase to propose solutions to the remaining research questions. 

An abductive approach has been used in this Ph.D. project, moving back and 

forth between observations and theory as a better understanding of studied topics has 

emerged (Saunders, Lewis and Thornhill, 2019). The research method in the first 

phase can be characterized as sequential multi-phase and started with two studies 

where archival research was used (Saunders, Lewis and Thornhill, 2019). Financial 

statements, governmental documents, and company presentations were studied in 

Article I, while maintenance records and sensor reading from a data historian were 

studied in Article II. A quantitative study was used in the survey in Article III. 

The choice of research methods has also been influenced by practical 

considerations such as timeline, available resources, my skills at the start of the 

project, and the research interests of my supervisors. When choosing the research 

methods and conceptualizing the different studies, I have tried to choose approaches 

where I have had some form of competitive advantage to make a scientific 

contribution. I have identified mainly three such advantages. Firstly, I have had 

access to industry experts and corporate computer systems from an O&G company 

through the BRU21 research program. This has been helpful when gathering the 

empirical data used in articles I, II, and V. Secondly, I have been part of a research 

group that is strong on maintenance modeling. This has been useful, especially for 

Articles II, V, and VI. Thirdly, my seven years of experience with maintenance in the 

process industry have made it easier for me to communicate with industrial 

practitioners. 
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The COVID19 pandemic, with lockdowns and other restrictions, limited the 

possibilities for company visits and collecting empirical data related to maintenance 

management from the industry in Norway in 2020 and 2021. In part because of this, 

I decided to shift the focus of this Ph.D. project from maintenance management to 

maintenance modeling halfway through the project. Because of this, a major part of 

the contribution in the second phase of the research carried out are the two 

maintenance optimization models proposed in Articles V and VI. 

2.4 Assessing the quality of the research. 
The understanding of how to judge and assess scientific quality differs between 

research traditions and philosophical positions (Saunders, Lewis and Thornhill, 

2019). However, according to the Norwegian Research Council (NRC, 2000), there 

seems to be a general agreement that the following three aspects are important when 

assessing research quality: 

- Originality: the extent to which the research represents a novelty in base 

research or innovative use of theory and methods in applied research. 

- Solidity and rigor: in the form of good substantiation of claims and 

conclusions and fairness in argumentation and presentation of data. This 

is related to data quality, use of recognized scientific methods, good 

source referencing, consistency and coherence between claims made, and 

clear presentation of the research work. 

- Relevance: both in an academic context and the extent to which the 

research has practical relevance. Academic relevance is judged by the 

extent the research help fill gaps in previous research and lays the 

foundation for future research. The practical relevance is judged based 

on the practical benefit to professional development in the studied field 

or benefits to society as a whole. 

There can be contradictions between these aspects. For instance, a narrow 

focus on theoretical and methodological rigor may have an adverse effect on practical 

relevance (Saunders, Lewis and Thornhill, 2019). Because both aspects are important, 

the researcher must ensure that the research is valid and reliable and, at the same time, 

seen as relevant to practitioners so that they are interested in giving access to data and 

supporting the research. Because of this, tradeoffs must often be made when planning 

and executing applied research. 

Different methods have been used to ensure the quality of the research carried 

out during this Ph.D. project. I have presented my findings at scientific conferences, 

seminars, and workshops, and received feedback from my peers. Books on research 

methods and methodology have been consulted. Industry representatives have also 

been consulted formally and informally throughout the Ph.D. project. In Articles I 

and II, participant validation (Saunders, Lewis and Thornhill, 2019) was performed 

by presenting the results to representatives from the organization where the data was 

collected during and at the completion of these studies. For both papers, the 

representatives from the organization gave feedback that the stated findings 

corresponded with their experience as practitioners.  
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3 Main results 

This chapter serves three purposes. Firstly, to summarize the findings and discussions 

from the individual articles in this thesis. Secondly, to present how these separate 

pieces of work help answer the formulated research questions. Thirdly, to 

demonstrate the coherence of the thesis. The main results from the articles and their 

relation to the research questions are listed in Table 4. For the convenience of the 

reader, the research questions are restated below:   

 

RQ1: How can implementing digital solutions in maintenance help improve the 

competitive position of the Norwegian O&G industry? 

RQ2: Is the necessary data for breaking the “vicious circle of data collection and 

model development” available today in the Norwegian O&G industry? 

RQ3: What types of quantitative maintenance models are preferred in the O&G 

industry on the NCS? 

RQ4: How should companies proceed when planning to implement Smart 

Maintenance? 

RQ5: How can CBM optimization models be developed, taking the preferences of 

a risk-averse decision maker into account? 

RQ6: How can the principles from Industry 4.0 be utilized when developing CBM 

optimization models? 

Table 4. The main results from each of the articles and link to the research questions. 

Article Main results Research 

question 

I 

 

The choice of digital solutions should be based on how 

maintenance improvements can contribute to economic 

value in that specific context. 

RQ1 

II A study of maintenance records and sensor data from an 

example O&G production platform found that quantitative 

models fed with online condition monitoring data were 

used. These models were mainly based on engineering first 

principles and used for anomaly detection.  

RQ2, 

RQ3 

III Respondents to a survey report to have achieved benefits 

from using digital twins in several areas, including cost and 

HSEQ. Results from the survey also indicate that some 

companies have broken the "vicious cycle", while others 

still see a lack of access to data as the main barrier. First 

principle / physics-based is the type of model that is most 

commonly used. 

RQ1, 

RQ2, 

RQ3 

IV A framework for the implementation of Smart Maintenance 

is proposed. 

RQ4 
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Table 4. (continued) 

V A CBM optimization model that takes into account the 

decision maker's risk aversion is presented. A case study is 

used to demonstrate that using minimization of the long-

run cost rate as optimization criteria may lead to decisions 

that are not in line with the preferences of a risk-averse 

decision maker. The case study also illustrates that the 

choice of modeling of the degradation process should be 

adapted based on the decision maker's risk preferences. 

RQ5 

VI A numerical procedure for maintenance optimizing of a 

system subject to two-stage degradation, hard failure, 

imperfect repair, maintenance windows, and maintenance 

delay is developed. A case study exemplifies the benefit of 

tailoring a maintenance policy for a specific system in a 

targeted manner.  

RQ6 

3.1 Article I: The economic dimension of implementing 

Industry 4.0 in maintenance and asset management 

3.1.1 Introduction and motivation 

As identified in the initial literature review, the prime motivation for the O&G 

industry to implement digital solutions is to secure the competitive position of this 

industry. Based on this, implementing Industry 4.0 is not an end, but a means to 

generate economic value. 

In order to better understand how maintenance and asset management can be 

used to generate economic value in the offshore O&G industry, the sensitivity 

analysis tool from the Value Driven Maintenance (VDM) framework developed by 

Haarman and Delahay (2016) was used. Secondly, a literature review was performed 

to get an overview of how the digitalization of maintenance can be used to improve 

economic performance. 

3.1.2 Method 

The VDM sensitivity analysis builds on the Economic Value Added (EVA) 

framework developed by the Stern Stewart Corporation (Otley, 1999). The basic 

premise of this framework is that the primary goal of any corporation is to maximize 

shareholder value (Young and O'Byrne, 2001). In the EVA framework, a company 

generates value if operating profit is higher than the opportunity cost of capital 

employed (Zimmerman, 2011). 

EVA is a metric based on accounting data and is, because of this, a lagging 

indicator. To counter this, the concept of value drivers is defined in the EVA 

framework as factors that can help create economic value in the future (Young and 

O'Byrne, 2001). Haarman and Delahay (2016) have defined six valued drivers related 

to maintenance and asset management in their VDM framework. These are: asset 

utilization; cost control; safety, health, environment, and quality (SHEQ) control; and 
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capital allocation. Capital allocation is again divided into the value drives: 

investments, spare parts inventory, and lifetime extension.  

According to (Haarman and Delahay, 2016), the different value drivers often 

conflict with each other. It is intuitively harder to increase availability and, at the 

same time, reduce maintenance costs and capital tied up in spare parts inventory. 

Based on this (Haarman and Delahay, 2016) argue that companies must prioritize 

which of the six value driver to focus on.  

The VDM sensitivity analysis first calculates the change in cash flow from 

one percentage point improvement for each value driver. Then the Incremental 

Present Value (IPV) from the one percentage point improvement is calculated over 

the asset's remaining expected lifetime. 

3.1.3 Results 

The IPV for the six value drivers was calculated based on publicly available data from 

an example O&G offshore production platform (Figure 5). Because the forecasted 

production volumes for this O&G platform is expected to decline as the reservoir gets 

depleted, asset utilization is only the largest value driver when year 2 through 5 is 

used as the base year. Cost control becomes the value driver with the highest IPV 

from years 6 through 14. From year 15 and onwards, lifetime extension has the largest 

IPV. 

The fact that the value drivers with the highest IPV is expected to change 

over the lifetime of this asset illustrates the importance of understanding the context 

of the specific O&G platform when planning to implement digital solutions to 

improve maintenance.  

 

 

Figure 5. The relative size of the incremental present value (IPV) for the different value drivers as the 

base year of the VDM sensitivity analysis increases.  

 

The next step was to conduct a literature review on how the introduction of Industry 

4.0 and related concepts can help improve the six value drivers. The results are 
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presented in Table 5. Inspired by Frank, Dalenogare and Ayala (2019) and 

Akkermans et al. (2016), we identified three dimensions of how digitalization can 

improve the six value drivers: 

- Smart maintenance is related to deploying online sensors, collecting 

data, and using degradation models to develop better CBM policies, 

thereby reducing unplanned corrective maintenance and unnecessary 

preventive maintenance, resulting in increased asset utilization 

(Akkermans et al., 2016). 

- Smart working is related to using mobile devices, 3D, and augmented 

reality to make the execution of active maintenance more effective and 

efficient (Frank, Dalenogare and Ayala, 2019; Elia, Gnoni and 

Lanzilotto, 2016).  

- Smart products are physical products with sensors that can exchange 

data with the operator, the manufacturer, and other products (Porter and 

Heppelmann, 2014). Smart products may facilitate new ways of 

cooperation between manufacturers, operators, and service providers that 

deliver value to all three parties. An example is servitization, where 

manufacturers sell the outcome of a product on a pay-as-you-go basis 

and not the product itself  (Porter and Heppelmann, 2015; Grubic, 2018). 

  

Table 5. The link between technology and value drivers based on the literature review. The + and – 

indicate whether the technology is expected to positively or negatively impact the corresponding value 

driver. Parentheses indicate less strong relationships. 

    Technology dimension 

  Front-end tech. Smart maintenance Smart work Smart products 

  Base technologies Sensors Mobile solutions Same as 

    Big data 3D & VR smart maint. 

    IIoT  + servitization 

E
co

n
o
m

ic
 d

im
en

si
o
n

 

Income       

 Asset utilization + (+) (+) 

- Cost 
   

Cost control (+) + − 

SHEQ control + + 0 

- Capital charge 
   

Investments (−) (−) + 

Spare parts 0 0 + 

Lifetime extension (+) 0 + 
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3.1.4 Discussion and concluding remarks 

This article helped shed light on RQ1. The O&G industry perceives implementing 

digital solutions as essential to ensure its competitive position. The VDM sensitivity 

analysis of an O&G production platform presented in this study exemplifies how the 

aspects of maintenance where an incremental improvement has the largest effect on 

economic performance may change over the platform's lifetime. However, the VDM 

sensitivity analysis only assesses incremental changes and is thus not suitable for 

assessing the economic potential of step changes. Examples of such step changes are 

the use of new technology and maintenance concepts allowing for the development 

of unmanned production platforms on the NCS. Nonetheless, this article exemplifies 

the importance of understanding the context when wanting to implement digital 

solutions to improve performance. 

Another contribution from this article was to identify three areas where 

implementing digital maintenance solutions may contribute to improving 

maintenance performance. This study thus influenced the decision to focus on Smart 

Maintenance in the remainder of the Ph.D. project.  

3.2 Article II: Degradation modeling of centrifugal pumps as 

input to predictive maintenance 

3.2.1 Introduction and motivation 

While we in Article I used financial data to get a bird’s eye view of the potential 

benefits of improving maintenance, we shifted to a bottom-up view in Paper II to get 

another angle on how digitalization can be used to improve maintenance performance 

in the O&G industry. At the time of writing this article, my focus was primarily on 

RUL prediction and predictive maintenance, while later in the Ph.D. project, the focus 

shifted to data-driven decision making maintenance in general. Because of this, the 

aspects of the study presented in this chapter differ from those presented in the article. 

3.2.2 Method 

Through the BRU21 program, I gained access to sensor data and maintenance records 

from an O&G production platform. This was a relatively new platform with a large 

number of sensors installed. The operating company had put much effort into 

developing health indicators for the equipment at the platform. 

Because there were several thousand health indicators defined for the O&G 

platform, I could not study all of them. I chose to focus on the fixed-speed centrifugal 

pumps because this was a group of equipment with several similar units installed on 

the platform. Another advantage of fixed-speed centrifugal pumps is that this is 

relatively simple equipment where it is possible to monitor several important failure 

modes with condition monitoring techniques (Beebe, 2004).  

Data from the first four years of production were collected. The dataset 

contained data from 232 sensors and health indicators describing the health and 

ambient condition of 15 pumps. All pumps but one was installed in pairs with one of 

the pumps operating at the time. 
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The data from last year was reserved as the test dataset. The training dataset, 

the sensor data from the first three years, was then explored for possible faults where 

predictive maintenance could have been used. This was done by examining all the 

work orders issued for these pumps and then examining the relevant sensor data for 

indications of degradation leading up to the failures. Of 248 work orders in the 

training dataset, 21 involved restoring the condition of a degraded or failed pump. 

3.2.3 Results   

In this study, it was observed that the operating company had implemented a large 

number of models based on engineering first principles and simple physical models 

that were used for decision augmentation. Alarm thresholds had been defined for 

many of these health indicators, and the model parameters and alarm thresholds were 

tuned and adjusted as the operator gained experience from using this system. A sign 

of increasing focus on these models where the introduction of a new work order 

category to identify incipient failures detected based on the condition monitoring 

data. Another sign of this was the introduction of a new position in the maintenance 

organization whose main responsibility was to monitor and continue developing the 

condition monitoring system. 

When it comes to the 21 work orders on the centrifugal pumps, they were 

caused by the following faults: 

- Damaged seals (10) 

- Bearing damage (3) 

- Oil leakage (3) 

- Impeller damage (2) 

- External shock (2) 

- Sealing medium leakage (1) 

In only three of these work orders, signs of degradation were visible in the condition 

monitoring data before the component had failed or the degradation had been 

discovered through other means, mainly visual inspections – these where one of the 

failures labeled as damaged seals, and both the failures labeled as impeller damage. 

The time from observable degradation in the condition monitoring data to failure was 

only three days for the instances of damaged seals. For faults where the time from 

observable degradation to failure is only a few days, the practical advantage of PdM 

over CBM is presumably small. Because of this, only the faults related to impeller 

damage were investigated further in Article II. 

The pumps experiencing this failure were operated at a lower flow than 

anticipated in the design phase, only 20 to 30 % of the best efficiency point. This is 

known to cause cavitation and impeller wear (Karassik and McGuire, 1998). The 

degradation paths from the training dataset for these pumps are shown in Figure 6.  
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Figure 6. Degradation paths from the training dataset. The warning and failure levels marked in the 

plot were defined by the operating company.   

Because the degradation increments appeared to be close to normally distributed, 

RUL predictions based on the assumption of a Wiener process were made. A 

comparison between this RUL prediction and the only degradation path in the training 

dataset going past the defined warning level is shown in Figure 7.  

 

 

Figure 7. Comparison of the median RUL prediction (green line) based on the training dataset and the 

actual RUL (orange line) for a degradation path from the test dataset. The blue line shows the 

development of the health indicator for that degradation path.  

No maintenance optimization model was developed in this paper, and the potential 

economic benefit was not quantified. However, as only one of the pumps needed to 

operate at the time and the pumps were located topside on a manned O&G platform, 

they were easily accessible for maintenance. Because of this, the added value of 

predicting the RUL was probably low in this case.  
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3.2.4 Discussion and concluding remarks 

The archival research of condition monitoring data from the centrifugal pumps on the 

example O&G production platform shows that a large amount of data was collected 

and fed into models used for decision augmentation. Observations indicated that the 

operator company perceived the models as valuable and was working to improve the 

models as they collected more data. Based on this, Article II shows an example where 

the “vicious circle” described by Welte (2008) has been broken. Article II thus helps 

answer RQ2.  

Article II also sheds light on RQ3. The operating company used mainly 

simple first principles, physics-based models, for anomaly detection. The data and 

models were used for decision augmentation and not decision automation. The use of 

maintenance optimization models or models for RUL predictions was not observed. 

However, when writing Article II, my focus was on degradation modeling as 

input for predictive maintenance (PdM). The motivation for this was the extensive 

attention to PdM and degradation modeling in the literature. Article II illustrates some 

challenges when developing PdM optimization models. Assets such as centrifugal 

pumps have been used in industrial processes for more than a hundred years and are 

a well-known and reliable technology. Because of this, the necessary data for fitting 

prediction models will often not be available. The only failure mode where the 

degradation was observable in the health indicator well before the failure was caused 

by a design error when building the O&G platform. At the time of writing Article II, 

the operating company had ordered a set of smaller pumps to replace the pumps that 

had a problem with impeller wear. Based on a survey on the implementation of 

Industry 4.0 in the German manufacturing industry, the consulting firm Staufen 

reports similar findings: “companies have extensive experience with wear and tear on 

their machines as well as suitable on-site maintenance intervals, making the added 

value of predictive maintenance lower than is often asserted” (Staufen, 2019,p.34). 

There are several limitations to the approach used in Article II to investigate 

whether the necessary condition monitoring data to implement PdM policies were 

available. For instance, vibration monitoring data were not available in this study. 

According to Beebe (2004), this is one of the most valuable sources of condition 

monitoring data for rotary machinery such as pumps. However, only three work 

orders in the dataset were related to bearing failures. Another limitation is that the 

pumps were regularly subject to visual inspections. Leakages caused by failure modes 

such as damaged seals and oil leakages might eventually have been observable in the 

condition monitoring data if they had not been identified and fixed based on visual 

inspection. Finally, because installing wired sensors have a high cost, when designing 

the O&G platform, the choice of sensors had been based primarily on process control 

and not on condition monitoring of the assets. If a larger amount of sensors had been 

installed and a method such as Failure Mode and Symptoms Analysis (FMSA) (ISO, 

2012a) had been used to ensure early detection of all relevant failure modes, the 

situation might have been different. 

Nonetheless, Article II still illustrates the challenge of collecting the 

necessary data to succeed with PdM policies. In this study, the only asset with enough 

degradation paths to fit an RUL model was subject to accelerated degradation caused 

by a design error. RUL models will be easier to develop for an operator of a large 
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fleet of similar equipment because more data will be available. In addition, the cost 

of developing the models can be divvied over a much larger number of assets. This 

is in line with the category Smart Products and servitization as presented in Article I. 

These last three paragraphs illustrate the importance of not starting with a 

specific technical solution, such as predictive maintenance, when wanting to improve 

maintenance performance but instead starting with the stakeholders' needs and a 

proper problem formulation. This is in line with the framework proposed in Article 

IV.    

3.3 Article III: A survey on the use of digital twins for 

maintenance and safety in the offshore oil and gas 

industry 

3.3.1 Introduction and motivation 

An important barrier to realizing the potential of digitalization in the O&G industry 

is the use of proprietary software solutions and the lack of standardization which have 

led to data silos (Devold, Graven and Halvorsrød, 2017; Zborowski, 2018; ISO, 2019; 

DNV-GL, 2020). Because of this, manual work is needed to collect, convert, transfer, 

and validate the available data before it can be analyzed (KonKraft, 2018). 

Digital Twin (DT) has been presented as an approach to reduce the data silo problem 

(Tao et al., 2018; Schulte, Lheureux and Velosa, 2018; Malakuti et al., 2020; van der 

Valk et al., 2020). Because of this, DTs have been labeled a key enabler for 

succeeding with Industry 4.0 (Boss et al., 2020). 

A challenge with the DT concept is the lack of a generally accepted definition 

(Uhlenkamp et al., 2019; van der Valk et al., 2020). There are generally two different 

views of the DT concept. Most academics focus on ultra-high fidelity models for 

accurate simulations of physical entities (van der Valk et al., 2020). Industry 

practitioners, like the Industrial Internet Consortium (IIC) (Malakuti et al. 2020) and 

the advisory company Gartner (Schulte, Lheureux and Velosa, 2018), but also some 

academics (Grieves and Vickers 2017) assert that DTs are mainly about data 

handling. 

To gain a better understanding of how DTs are used for maintenance and 

safety in the offshore oil and gas industry, we conducted a survey among O&G 

practitioners.  

3.3.2 Method 

Responses to the questionnaire were collected from industry practitioners invited to 

a seminar on the use of DT for maintenance, safety, and control in the offshore O&G 

industry. The seminar was organized in November 2020 by SUBPRO (2021), a 

research project focusing on technology innovation for subsea production and 

processing, and the BRU21 program. 

Fifteen responses were included in the final sample giving a response rate of 

22%. About half of the respondents (47%) assessed their organization as leading in 

digital maturity, which is higher than answers to similar questions in a survey of the 
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global oil industry (DNV-GL, 2019). This is not surprising as a convenience sample 

of participants in a seminar on DT was used.  

3.3.3 Results 

Because of the sampling method (convenience sampling), a low number of 

respondents, and the bias among the respondents towards more digitally mature 

companies, results from this survey cannot be used for theory building. Nonetheless, 

Article III still sheds light on three of the research questions formulated for the thesis. 

When it comes to how the implementation of digital solutions in maintenance 

can help improve the competitive position of the O&G industry on the NCS, the 

respondents report a benefit from the use of DT in several different areas, as shown 

in Table 6.  

Table 6. Answers to the question: “Which of the following benefits have your organization or customers 

already achieved by using digital twin(s)?” (N/R = not relevant, n = 9) 

Benefits achieved Yes No 
Don't 

know 
N/R 

Cost reduction. 100 % 0 % 0 % 0 % 

Reduction of safety, health, 

environment & quality risks. 
78 % 0 % 22 % 0 % 

More effective operations. 78 % 0 % 22 % 0 % 

Improved business decision 

making. 
67 % 11 % 11 % 11 % 

Improved energy efficiency. 56 % 0 % 22 % 22 % 

Better product design. 44 % 22 % 33 % 0 % 

Lifetime extension of aging 

asset. 
44 % 11 % 22 % 22 % 

New revenue streams. 33 % 11 % 33 % 22 % 

 

Regarding RQ2, when asked what they consider the most important barrier to using 

digital twins in the oil and gas industry in general, 33% answered “Lack of data / 

system integration”. Based on this, lack of data or access to the data because of 

missing system integration is perceived as an issue by many respondents. However, 

among respondents who have already implemented digital twins, all reported having 

implemented models that monitor the current health of equipment and processes, 

while seven out of nine reported having implemented models that “predict future 

states of equipment or processes” (Table 7). Because of the poor formulation of these 

questions, the proportion of the respondents that have implemented models mainly 

for maintenance or production control is unknown. When asked whether automated 

decision making for maintenance is used, only one of the respondents answered yes. 

Even if more than half have answered “don’t know” to this question, taken together 

with the other answers, this indicates that the data and models are mainly used for 

decision augmentation and not decision automation. 
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Table 7. Answers to the question: “What of the elements are currently part of the digital twin(s) used in 

your organization or in your products/services?” (n = 9). 

Elements in digital twin Yes No 
Don't 

know 

3D representation of equipment / installations / 

plants. 
89 % 11 % 0 % 

Real-time visualization of process/production status. 89 % 0 % 11 % 

Real-time visualization of equipment status. 78 % 0 % 22 % 

Real-time visualization of safety barriers. 33 % 0 % 67 % 

Simulations used for employee training. 67 % 11 % 22 % 

Simulations used for planning or production 

optimization. 
78 % 0 % 22 % 

Models that monitor the current health of equipment 

or processes. 

100 

% 
0 % 0 % 

Models that can identify cause-and-effect 

relationships between different process steps and/or 

equipment by combining data from different sources. 

44 % 22 % 33 % 

Models that make predictions on future states of 

equipment or processes. 
78 % 0 % 22 % 

Self-learning models (i.e. models that adapt as new 

data emerges). 
44 % 33 % 22 % 

Automated decisions making related to process 

control. 
44 % 11 % 44 % 

Automated decisions making related to maintenance. 11 % 33 % 56 % 

Automated decisions making related to safety. 0 % 33 % 67 % 

 

Table 8. Answers to the question: “Which of the following types of models are used in the digital twin(s) 

in your organization or in your products/services?” (n = 9) 

Types of models  Yes No 
Don't 

know 

White box (first 

principle / physics-

based) 

78 % 0 % 22 % 

Grey box (statistical / 

stochastic modeling) 
33 % 22 % 44 % 

Black-box (machine 

learning, neural 

networks etc.) 

56 % 11 % 33 % 
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The results from Article III also provide indications for answers to RQ3 on 

the types of models the practitioner prefers. Seven out of nine respondents use white 

box first principle physics-based models (Table 8). In response to the statement, 

“Reasonable estimations are normally sufficient to benefit from the use of digital 

twins,” 60 % of the respondents agree, while only 13% disagree. In response to the 

statement, “Ultra-high fidelity models are needed in order to give sufficient level of 

accuracy in digital twins,” only 20% agree. 

Based on these responses, it seems that many industry practitioners prefer 

simple and understandable white box models. However, black-box models are also 

used, and some believe more complicated high-fidelity models are needed. 

3.3.4 Discussions and concluding remarks 

The survey in Article III illuminates the first three research questions defined for this 

thesis. Regarding RQ1, the respondents reported benefits from using DTs across 

several areas. Some respondents report missing access to data as the main barrier, but 

all the respondents who had implemented DT reported using models. This indicates 

that some companies have started breaking the vicious circle in RQ2. Regarding RQ3, 

a large proportion of the respondents use white box models and seem not to prefer 

the ultra-high fidelity models often associated with DTs in academic papers. The 

models seem to be used chiefly for decision augmentation and not decision 

automation. 

Limitations to this study regarding the sampling method and the number of 

respondents have already been mentioned. Another limitation is that the size of the 

benefits from implementing DT has not been estimated, and we do not know if the 

reported results are achieved through small-scale pilots or full-scale implementations. 

We also do not know whether respondents from supplier companies refer to benefits 

achieved in their organization or by their customers. 

However, the survey still indicates that some O&G companies have reached 

a level of digital maturity where they can utilize concepts such as DT to realize real 

business value. 

3.4 Article IV: Framework for the implementation of Smart 

Maintenance 

3.4.1 Introduction and motivation 

As previously mentioned in Section 2, most of the research related to Industry 4.0 

and maintenance has focused on technical aspects, and less attention has been given 

to how to organize and manage maintenance to take advantage of the new 

opportunities offered by the fourth industrial revolution. However, in empirical 

studies, organizational factors are often identified as a limiting factor in succeeding 

with data-driven maintenance (Savolainen et al., 2020; Lundgren, Bokrantz and 

Skoogh, 2022; Golightly, Kefalidou and Sharples, 2018; Roda, Macchi and 

Fumagalli, 2018). Based on this, I wanted to propose a framework for implementing 

Smart Maintenance that addressed this as a socio-technical challenge. 
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Because integration and interconnectedness of IT systems, processes, and people are 

central aspects of Industry 4.0 (Schuh et al., 2017), approaches to utilize the potential 

of this concept will require an interdisciplinary and holistic approach. Systems 

Engineering (SE) offers methods and proven industrial practices for managing this 

type of complexity (Kossiakoff et al., 2011). Based on this, SE principles were used 

when formulating the framework in Article IV. 

3.4.2 Background 

Before Industry 4.0, Lean production (LP) was the most prominent concept for 

performance improvement in the manufacturing industry (MacKelprang and Nair, 

2010; Buer, 2020; Schuh et al., 2017). LP is here understood in line with Shah and 

Ward (2007, p. 791) as an “integrated socio-technical system whose main objective 

is to eliminate waste by concurrently reducing or minimizing supplier, customer, and 

internal variability”. In a foreword to Schuh et al. (2017), Kagermann suggests that 

experience from LP implementation holds valuable lessons for how to succeed with 

the implementation of Industry 4.0. Recent empirical studies suggest that there are 

complementary effects between LP and Industry 4.0 (Tortorella and Fettermann, 

2018; Rossini et al., 2019; Kamble, Gunasekaran and Dhone, 2020; Buer et al., 2020). 

However, these studies on the relationship between Industry 4.0 and LP have been 

conducted on a high level (Ciano et al., 2021). Empirical studies that investigate the 

effect of Industry 4.0 and lean principles on maintenance have not been found in the 

literature, but in a conceptual paper by Sanders et al. (2017), Total Productive 

Maintenance (TPM) is postulated to be the LP tool that will benefit the most from 

Industry 4.0 technology. 

3.4.3 Results  

A framework was proposed in Article IV using contributions from LP, systems 

engineering, and maintenance management. The framework is shown in Figure 8.   

The overall layout of the framework is inspired by a LP concept called hoshin 

kanri (HK), which is a tool for linking strategy with the operational level (Jolayemi, 

2008). The influence of HK is illustrated with a Plan-Do-Study-Act (PDSA) loop at 

the tactical level. 

Elements from System Engineering (SE) are included in the proposed 

framework by having the SPADE framework developed by Haskins (2008) at the 

strategic level. SE mainly uses a top-down approach that emphasize stakeholders 

needs and the broader context before focusing on specific solutions (Utne, 2007). 

This is based on the understanding that the whole is more than the sum of its parts. 

Another important feature in SE is a constant focus on iteratively evaluating the 

process. The processes at all levels in Figure 8 are circular to illustrate the iterative 

nature of continuous improvement. 

The process at the operational level is illustrated with a variant of the PDSA 

cycle inspired by the steps for a successful CBM program defined by Van De 

Kerkhof, Akkermans and Noorderhaven (2015). At the core of this cycle is data-

driven decision making. An essential part of this cycle is using the insight gained 

through data analysis to eliminate failures. This is in line with the LP principle of 

continual improvement. Maintenance does not have intrinsic value, so operators 
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should focus on eliminating recurrent failures by identifying root causes and changing 

procedures or equipment design (Van De Kerkhof, Akkermans and Noorderhaven, 

2015). This is especially important in the O&G industry because of the characteristics 

presented in Chapter 1.2.6. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8. The proposed framework. The strategic level is based on the SPADE model by Haskins (2008), 

The four phases at the operational level are inspired by Van De Kerkhof, Akkermans and Noorderhaven 

(2015).  
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3.4.4 Discussion and concluding remarks 

The connection between LP and Industry 4.0 has received much attention from the 

operations research community in the last five years (Buer, Strandhagen and Chan, 

2018; Rossini et al., 2019). Several authors have proposed that LP forms an important 

foundation for succeeding with Industry 4.0, and empirical evidence that support this 

has started to emerge (Ciano et al., 2021). These studies have been done at a high 

level, and the links between specific principles from LP and Industry 4.0 and their 

effect on maintenance are still unclear. There are nonetheless compelling arguments 

that the introduction of lean principles such as standardization, focused improvement, 

and empowerment can provide a good basis for the successful implementation of 

Industry 4.0. 

Implementation of Smart Maintenance requires performing a complicated set 

of activities, and no model or framework can cover all aspects. Because of this, there 

will be a need for different models and frameworks with different levels of abstraction 

to support this process (Rauzy and Haskins, 2019). The framework in Article IV was 

developed with the aim of making a simple model that is well suited for facilitating 

communication among all the stakeholders and that provides a holistic overview for 

implementing Smart Maintenance. Because of this, the illustration in Figure 8 has a 

high level of abstraction, and the labels are purposely generic so they can fit a wide 

range of organizations with different maturity levels regarding Industry 4.0 and 

maintenance management. There will be a need for several other models, 

frameworks, and tools for succeeding with the implementation of Smart 

Maintenance. Some of these have been mentioned in Article IV. 

Article IV proposes an answer to RQ4. Empirically evaluating the proposed 

framework's effectiveness is challenging because of the long timeframes in 

maintenance and the high level of abstraction used in the framework. Interviews with 

industry representatives could have been used to assess the soundness of the proposed 

framework, but this was not done in this Ph.D. project. However, the framework's 

design was inspired by existing theory and proven industrial practices from SE and 

LP, in addition to findings from empirical studies on factors that characterize 

companies that succeed with Industry 4.0 and digital transformations. 

3.5 Article V: Optimizing a condition-based maintenance 

policy by taking the preferences of a risk-averse decision 

maker into account  

3.5.1 Introduction and motivation 

According to established practice in System Engineering (Kossiakoff et al., 2011; 

Haskins, 2008) and decision analysis (Bratvold and Begg, 2009a; Howard and Abbas, 

2016), it is important to understand the preferences of the stakeholders and conduct a 

proper problem formulation in order to understand the current situation before diving 

into specific solutions. However, a recent literature review on maintenance 

optimization states that “most studies do not elaborate on the prerequisites for using 

their models in practice” (de Jonge and Scarf, 2020, p. 818).  
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When trying to conceptualize a study for my first manuscript targeted as a 

journal article, I wanted to use the degradation data found in Article II in an 

optimization model for predictive maintenance. I came up with the idea of 

introducing maintenance time as one of the decision variables. Maintenance time is 

here understood as the time needed for active maintenance together with 

administrative, technical, and logistic delay (CEN, 2017). The basis for this idea is 

the high cost of having maintenance personnel and spare parts readily available on 

offshore O&G platforms. If the operator has access to accurate RUL predictions, this 

facilitates the introduction of a maintenance concept where maintenance costs are 

reduced by only mobilizing the necessary resources on a just-in-time basis. If several 

different options for organizing the maintenance, with different cost and maintenance 

time, are available, there will be a certain response time that minimizes the overall 

cost, including downtime costs. The optimal threshold will depend on the 

characteristics of the degradation process and the cost structure. 

I discussed this idea with a maintenance manager from an O&G company 

and learned that for some maintenance decisions with potentially severe economic 

consequences, they preferred more conservative options than the ones indicated as 

the most cost-effective in their analysis. In other words, this company sometimes 

deviated from using the minimization of expected cost as decision criteria because of 

risk aversion. Based on this discussion, I realized that a maintenance optimization 

model where a reduction in the long-run cost is traded with an increase in the 

variability of cost might not be accepted if the decision maker is risk-averse. 

Motivated by this, I set out to develop a CBM optimization model that considers the 

decision maker's risk preferences. 

3.5.2 Background 

The long-run cost rate is the most used criterion for optimizing CBM policies (van 

Noortwijk, 2009; Cherkaoui, Huynh and Grall, 2018; Zhang et al., 2018; Vu et al., 

2021). One reason for this is that the long-run cost rate is relatively easy to calculate 

compared to the cost in a finite time (Rausand and Høyland, 2004; Cheng, Pandey 

and van der Weide, 2014). One must also keep in mind that the solution that 

minimizes the expected cost will result in the lowest costs in the long run, given the 

ability to absorb any losses (Welsh and Begg, 2008). Because of this, it is reasonable 

to assume risk neutrality and use expected cost as optimization criteria when the 

stakes involved are small compared to the decision maker’s total assets (Clemen, 

1991; Russell and Norvig, 2016). However, even for large corporations, there will be 

some decisions where the potential consequences are so severe that minimization of 

expected cost is not desirable (Pratt, Raiffa and Schlaifer, 1995; Walls and Dyer, 

1996).  

Expected utility theory (EUT) is a framework for taking attitudes towards 

risk into consideration when assessing alternatives with uncertain outcomes. The 

basis of EUT is axioms for describing the preferences of a rational decision maker 

faced with decisions under uncertainty (Clemen, 1991). 

An important concept in EUT is the certainty equivalent (CE). This is an 

amount such that the DM is indifferent between the consequences of an uncertain 

decision and receiving that amount for certain. As long as the utility function is 
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monotonic (a large gain is always preferred to a smaller gain), the alternative with the 

highest CE will also be the alternative with the highest expected utility (Keeney and 

Raiffa, 1993). Because CE is in monetary terms, comparisons with the expected value 

can be made. As we are dealing with costs and not gains in Article V, the decision 

maker prefers the option that minimizes the CE in this paper. 

3.5.3 Results  

When calculating the expected utility of an option, the full probability distribution of 

potential outcomes must be found. In order to do this, we built on a procedure by 

Cheng et al. (2012). An exponential utility function was used to represent the 

preferences of the risk-averse decision maker. A numerical example and a case study 

were used to demonstrate that the preferred threshold for the decision variables 

changes when the decision maker is risk averse. A comparison of the expected cost 

and the certainty equivalent for a risk-averse decision maker from the example in 

Article V is shown in Figure 9 (b). 

 

Figure 9. Plot (a) shows combinations of renewal cost (𝑐𝑅) and maintenance time (𝑀𝑇) available to the 

decision maker (DM) in the example in Article V. Plot (b) shows the expected cost, E[𝐶𝜏], and certainty 

equivalent of a decision maker with low risk-tolerance, CE(𝑅𝑇), depending on maintenance time. While 

a risk-neutral decision maker will prefer a maintenance time of 16 days in this example, the risk-averse 

decision maker prefers 10 days.  

Another finding from Article V is that the decision maker's risk preferences should 

be considered when modeling the degradation process. The degradation increments 

in the case presented in Article V were close to normally distributed but with some 

excess kurtosis. The results in our paper showed that the assumption of a Wiener 

process was reasonable when optimizing the maintenance policy for a risk-neutral 

decision maker. However, using an alternative model that better represented the 

excess kurtosis of the degradation increments had a larger effect on the preferred 

thresholds for the decision variables when the decision maker was risk-averse. 

3.5.4 Discussion and concluding remarks  

Article V answers RQ5 on how a CBM optimization model can be developed so that 

the preferences of a risk-averse decision maker are taken into account. Expected 
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utility theory (EUT) has previously seen little use in maintenance decision making, 

and to the best of my knowledge, an approach for optimizing a CBM policy for a risk-

averse decision maker has not previously been presented. 

For decisions where the potential outcomes are small compared to the overall 

economic resources of the organization, it is reasonable to assume risk neutrality and 

use minimization of the expected costs as the optimization criterion. Introducing EUT 

in maintenance optimization models may nonetheless be useful for two reasons. 

The first reason is related to how a move from decision augmentation to 

decision automation will require different models. When models and data are used 

for decision augmentation, a human makes the final decision. The decision maker 

then uses his or her judgment and understanding of the limitations of the quantitative 

model in the specific context and either accepts the output from the quantitative 

model or makes an adjustment. EUT can be used to implement the stakeholders’ 

preferences in the quantitative model and may thus facilitate the introduction of 

decision automation.   

The other reason for incorporating utility theory into the optimization model 

is that different actors in the same organization may have different risk preferences. 

Explicitly formulating the risk tolerance in quantitative models may make it easier to 

achieve a coherent level of risk-taking throughout the organization. This can be useful 

in situations with principal-agent conflicts. For instance, the principal, e.g., company 

owners, might want to maximize the expected return from their investments, while 

agents, such as maintenance managers, might primarily want to avoid any incidents 

that can cause unpleasant focus from senior management. In studies of risk attitudes 

in O&G companies, Walls (2005) found that the most risk-averse companies 

generated a lower return on their assets. Based on this, Walls (2005, p.139) argues 

that “firms who can identify their appropriate risk tolerance level, and make 

allocation decisions based on that risk tolerance, will demonstrate significantly higher 

returns than those firms implementing lower and perhaps inappropriate risk tolerance 

levels.” 

3.6 Article VI: Maintenance optimization of a system subject 

to two-stage degradation, hard failure, and imperfect 

repair 

3.6.1 Introduction and motivation 

In the final paper in this Ph.D. project, I wanted to explore how principles from 

Industry 4.0 can be used when developing a maintenance optimization model. I also 

wanted to use data from an industrial case to gain insight into how data from an actual 

industrial environment can be used when developing such a model. 

In a meeting with a manager from the process industry, I was presented with 

a case they believed was a good candidate for data-driven decision making in 

maintenance. I was allowed access to that company's sensor data and maintenance 

records. I also interviewed employees and studied corporate documents to understand 

this industrial case. Inspired by this case, we developed the maintenance optimization 

model presented in Article VI. 
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3.6.2 Background 

Core features of Industry 4.0 are the horizontal, vertical, and end-to-end integration 

of data streams, models, and processes (Kagermann et al., 2013). Horizontal 

integration is related to exchanging information between the different functional units 

and steps in the production process. Vertical integration is related to the exchange of 

information between the different hierarchical levels, e.g., from sensors to the 

corporate planning level. End-to-end integration refers to the integration of the 

engineering process across the different lifecycle phases of an asset, e.g., between the 

design and use phases. The idea of potential benefits from better end-to-end 

integration is also often mentioned in literature on digital twins (Wuest, Hribernik 

and Thoben, 2015; Tao et al., 2018; West and Blackburn, 2018; Liu et al., 2021). 

Another important feature of Industry 4.0 is viewing the production environment as 

a social-technical system (Schneider, 2018). According to Kagermann et al. (2013), 

it is vital to ensure the involvement and commitment of employees in all parts of the 

production process in order to effectively utilize their knowledge and creativity to 

improve system performance. 

We investigate in Article VI the optimization of a hybrid CBM policy for a 

two-component system, where the degradation level of the upstream component (UC) 

influences the failure rate of the downstream component (DC). The UC in the system 

is a cable supplying cooling water, whereas the DC is a component that needs cooling. 

The performance of the UC is gradually declining, which results in a drop in the water 

flow rate. Meanwhile, the demand for cooling of the DC fluctuates depending on 

several factors related to the production process and the ambient condition. Generally, 

the risk of hard failure in the DC increases as the flow rate in the UC decreases. Hard 

failure is in Article VI understood as a type of failure characterized by a sudden 

breakdown. This contrasts with soft failures, where a component is considered failed 

when the degradation reaches a predefined threshold (Zhu, Fouladirad and Bérenguer, 

2016). Furthermore, the ability of the UC to fulfill its required function is easily 

monitored with online sensors, while the health of the DC cannot be revealed without 

prohibitively expensive inspections.   

The degradation of the UC happens in a two-stage process. The component 

is healthy until the arrival of a shock that introduces a potential failure. The first phase 

is named the stable phase (S-phase). The second phase is named the degradation 

phase (D-phase). In the case study, the change from the S to the D-phase was defined 

as the first time the health indicator was found to be below a defined lower control 

limit (LCL) for the third time in a row. The datapoints used in the case study where 

the mean value per hour.  

Maintenance actions for this system include imperfect repair (IR), a cleaning 

procedure that partially restores the performance of the UC, and preventive renewal 

(PR), which requires a shutdown of the system and causes an unavailability cost. 

Although IR can temporarily restore the flow rate, it does not influence the 

degradation rate. As the degradation rate increases with time, IRs are needed more 

and more often, and eventually, the system reaches a state where it is no longer 

economical to continue performing IRs. PR, on the other hand, brings both the UC 

and the DC to the as-good-as-new (AGAN) state. Figure 10 shows a sample 

degradation path.  



Main results 

51 

 

 

Figure 10. An example of a degradation path from the industrial dataset. 

3.6.3 Results 

Article VI presents four different maintenance policies. First, a procedure for finding 

the long-run cost rate for a simple preventive renewal (PR) policy without imperfect 

repair (IR) is presented. We then adjust the policy to include maintenance windows. 

Subsequently, the same is presented for IR policies with and without maintenance 

windows. Using parameters from the industrial case, we found that the hybrid 

maintenance policy with IR and PR resulted in only a 3% cost reduction compared to 

a pure PR policy when maintenance is performed immediately at the renewal 

threshold. However, when the PR is postponed to the first maintenance window after 

the PR threshold is reached, the hybrid policy achieved a 34% reduction in cost 

compared to the PR policy. This exemplifies the benefit of having the option to 

perform imperfect repairs so the performance of the UC can be kept in check while 

waiting for the next maintenance window to arrive. 

3.6.4 Discussion and concluding remarks  

Article VI aims to illuminate RQ6. A discussion on how the proposed model relates 

to the core features of Industry 4.0 is presented in the following.  

An example of horizontal integration is that information from the 

maintenance function, i.e., the condition of the UC, and production function, i.e., 

planned maintenance windows, are combined in the model. Using IRs to postpone 

renewal to a preplanned maintenance window help reduce the disturbance to 

production. 

An example of vertical integration is that information from different 

hierarchical levels of the organization is combined in the models. Examples are 

sensor data as input to the health indicator, data from the SCADA system on alarm 

limits to assess the maintenance delay for IR, and data from the ERP system as input 

to calculate the cost of performing maintenance and production loss. 

End-to-end integration of engineering was not used in the case in Article VI 

as there was no exchange of information with the actors that had designed and 

produced the components in the maintained system. However, an example of how 
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end-to-end integration of engineering might have been used to improve maintenance 

is presented below. 

Operators in the process industry are generally reluctant to run equipment to 

hard failure and thus instead base maintenance decisions on defined failure 

thresholds. However, as the hard failure threshold is usually a random variable that 

depends on the characteristics of the operating condition and the characteristic of the 

component (Liu et al., 2017), this may lead to unnecessarily conservative 

maintenance policies. Because the operators have limited experience of how the 

system behaves above these defined failure thresholds, it is challenging to accurately 

model the probability of hard failure and thereby assess whether the maintenance 

policy is unnecessarily conservative. 

The company that designed the maintained component may have made 

models for assessing the probability of failure when making their design choices. 

Such information from the design phase may facilitate better modeling of the 

probability of hard failure in the use phase. Further, this may help the operator reduce 

the maintenance cost and help the designer by testing the assumptions from the design 

phase in the use phase. Achieving integration of the engineering processes in the 

design and use phases may thus contribute to an iterative improvement cycle for the 

component where the actors in both phases benefit from the exchange of information 

(Tao et al., 2018). 

The case study in Article VI also exemplifies the importance of the human-

centered perspective of Industry 4.0. The ability to perform IR without disturbances 

to production resulted from a modification made by the mechanic in charge of 

maintaining the system. This exemplifies the potential for cost savings by combining 

maintenance modeling and optimization with the inventiveness of frontline personnel 

to develop maintenance policies tailored to the maintained system and maintenance 

capabilities at hand. 

While the hybrid CBM model with maintenance windows achieved a smaller 

long-run cost rate compared to the other models, an apparent downside to a model 

with so many parameters is the efforts needed to develop, validate, and maintain the 

model. As operators in the process industry often use custom-made equipment or 

unique configurations of mass-produced components, there will often not be a large 

fleet of similar assets to share these costs on. This may make the cost of developing 

and maintaining such models higher than the potential gain. 

Another aspect is the challenge of poorly designed and specified equipment 

often encountered in the process industry. There are indications that the failure mode 

studied in Article VI is caused by poor design. In addition to the two furnaces 

mentioned in Article VI, data were collected from four other furnaces. The gradual 

decline in cooling water flow was not found at these furnaces. Based on this, it is 

likely that the failure mode studied in Article VI could have been removed with some 

modifications to the system. Employees at the company had different theories on the 

root cause of this failure mode, but these theories were not investigated in the study 

leading up to Article VI. 

From an academic perspective, this was an exciting dataset to use as 

inspiration for proposing a maintenance optimization model. From a business 

perspective, I believe that the primary objective of the operator should be to find the 
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root cause of the failure mode and try to eliminate it through modifications before 

trying to implement a quantitative model for maintenance optimization. 

This case and the example in Article II exemplify the importance of 

eliminating failures, as presented in the framework in Article IV.  



Conclusions and further work 

 

54 

 

4 Conclusions and further work 

A widely held belief among industry actors in the Norwegian O&G industry is that 

the introduction of digital and automation solutions is vitally important to ensure the 

competitiveness of this industry sector. It is also believed that the upstream O&G 

industry is lagging behind industry sectors such as manufacturing in digitalization. 

Maintenance, Industry 4.0, and digital transformations are broad fields that 

require knowledge in many areas. Because of this, a comprehensive answer to how 

the introduction of digital solutions can be used to improve maintenance performance 

is not possible within the limitations of a Ph.D. project. This thesis has focused on 

the use and development of quantitative models for maintenance decisions in the 

O&G industry on the Norwegian Continental Shelf (NCS). I have tried to shed light 

on this topic by approaching it from different angles and using a mix of methods. 

There has been a lot of hype around predictive maintenance (PdM) based on 

online condition monitoring data. Companies that sell products and services related 

to the digitalization of maintenance have claimed that the potential benefits of CBM 

and PdM based on online condition monitoring data are substantial. On the other 

hand, empirical studies indicate that the industry is struggling with realizing this 

potential in practice, especially when it comes to PdM. Two key ingredients to data-

driven decision making are data and models. Numerous quantitative maintenance 

models have been proposed in the academic literature in recent decades, but there is 

little empirical evidence that these models are used in the industry. Welte (2008) 

presents a vicious cycle where lack of data gives missing incentives to use models 

and vice versa. However, developments in sensor technology and the introduction of 

concepts such as digital twins make condition monitoring data increasingly available. 

The economic theory of complementary goods says that when one input becomes 

cheaper, demand for a complementary input increases. Assuming that condition 

monitoring data and maintenance models are complementary goods, increasing 

access to condition monitoring data will increase the value of quantitative models for 

data-driven decision making in maintenance. 

4.1 Main conclusions 
The research carried out in this Ph.D. project can be divided into two phases. The first 

three research questions and the first three articles focus on the potential benefits and 

current use of data-driven decision making for maintenance by O&G companies on 

the NCS. 

The most important finding from this part of the thesis is that the Norwegian 

O&G industry is implementing digital solutions in a rapid phase, and there are 

indications that some companies in this industry have broken the vicious cycle 

described by Welte (2008). Articles II and III indicate that these companies have 

instead entered a virtuous circle where data collection gives incentives to develop 

model, leading to increasing use of data-driven decision making in maintenance. 

These are, however, only exploratory studies. As there are signs that digital 

technologies are being adopted at a rapid pace, there is now a need for further 
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empirical studies to understand how these technologies are adopted and their effects 

on performance.   

The remaining three research questions and articles focus on how the insight 

gained from the first phase of the Ph.D. project can be used to develop further the use 

of data-driven decision making in maintenance. The main takeaway from this part of 

the thesis is the importance of understanding the context before starting to develop 

quantitative maintenance models. As Ron Howard, one of the founders of decision 

analysis has expressed: “the real problem in decision analysis is not making analyses 

complicated enough to be comprehensive, but rather keeping them simple enough to 

be affordable and useful” (from Bratvold and Begg, 2009b, p.21). 

In order to understand when a quantitative model is “affordable and useful”, 

one must understand the needs of the stakeholders and how maintenance can 

contribute to economic value in the specific context. The framework in Article IV 

aims to give guidance on how this can be done by using established practices from 

systems engineering and lean management. 

Further, the decision analysis discipline offers practical guidance for making 

decisions in line with the stakeholders’ objectives and preferences. Article V presents 

an approach for optimizing a CBM policy that considers the stakeholders’ risk 

aversion. 

It is also important to understand that maintenance is a support function and 

that there should be a focus on using the insight gained from sensor data to find the 

root causes of recurring failures and eliminate them. This is especially important in 

the process industry, where custom-made equipment and unique configurations may 

lead to poor design, causing accelerated wear, as discussed in Articles II and VI. 

4.2 Suggestions for further work 
There is a need for further exploratory research on data-driven decision-making in 

maintenance to understand better the current use in the O&G industry. There is also 

a need for explanatory and evaluative studies to assess the benefits of introducing 

data-driven decision making, and digital maintenance solutions in general to the 

industry. Empirical studies should be developed to generate and disseminate useful 

knowledge to industry partitioners. 

Relevant research methods are case studies, surveys, or grounded theory. 

Another approach is action research, which may be used to gain better insight and 

help with theory building on how to succeed with the implementation of Smart 

Maintenance. The instrument for measuring the four dimensions of Smart 

Maintenance developed in (Bokrantz et al., 2020a) may be helpful in such empirical 

studies.  

Possible topics to investigate are: 

- Explore the types of quantitative models used in the industry and the gains 

achieved from using these models. 

- Collect empirical data to quantify the potential benefits of using digital twins 

in maintenance. 
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- Identifying the most important enablers, barriers, and benefits of data-driven 

decision making in the industry. 

- Explore the use of decision augmentation and decision automation and in the 

industry. 

- Assess the potential benefits of decision augmentation versus decision 

automation and how quantitative models can support in realizing this 

potential. 

- Collect empirical data on attitudes towards risk in maintenance decisions and 

evaluate the potential benefit of using expected utility theory in maintenance 

optimization models. 

- Explore how the introduction of digital twins can facilitate better integration 

between design, production, and use phase of assets, and how this can be 

used to improve maintenance. 
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Degradation Modelling of Centrifugal Pumps as Input to Predictive Maintenance 
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The current development in sensor technology combined with improvements in systems for collecting, storing and 

analyzing large amounts of data, often associated with the term Industry 4.0, offers the opportunity to identify a 

larger proportion of faults before they turn into failures. A more proactive maintenance strategy has the potential to 

reduce maintenance costs by allowing maintenance organizations to focus resources on the right equipment at the 

right time, and to improve safety and availability by reducing the level of unplanned corrective maintenance. This 

paper explores the possibilities for predictive maintenance on a set of centrifugal pumps used at an offshore oil 

platform. As a basis for the analysis, sensor data and maintenance records for 15 centrifugal pumps collected over 

a period of four years is used. The data is split into a training and a test dataset.  Causal tree diagnostic modelling is 

used to establish the link between failure mode and symptoms for one selected fault, impeller damage. Remaining 

useful life predictions (RUL) for impeller damage is developed based on a stochastic approach. The paper ends with 

a discussion of how the insights from the analysis can be used to improve maintenance performance. 

Keywords: Degradation modelling, oil and gas industry, prognostics, Industry 4.0, predictive maintenance, causal

tree diagnostic modelling, RUL, centrifugal pumps. 

1. Introduction

In this paper the possibilities for predictive 

maintenance based on data from online 

monitoring is explored on a set of fixed speed 

centrifugal pumps installed on an offshore oil 

platform. The oil platform in question has an 

extensive system for online monitoring and is 

because of this considered as a good candidate for 

trying to apply predictive maintenance in practice. 

In the next section of this paper theory related to 

Industry 4.0 and predictive maintenance is 

presented. In section three the example used in 

this paper is presented, followed by the result in 

section four. The paper ends with a discussion and 

conclusion in section five and six. 

2. Industry 4.0 and Predictive Maintenance

2.1  Industry 4.0 
The recent development in sensor technology and 

systems for collecting, storing and analyzing large 

amounts of data has the potential to bring big 

changes across business functions and industry 

sectors (Porter and Heppelmann 2015). When it 

comes to maintenance in the era of Industry 4.0, it 

is often predictive maintenance (PdM) that is 

highlighted as an application that can have a big 

impact (STAUFEN.AG 2019). 

The falling cost of online monitoring has made 

it possible to monitor not only a handful of 

carefully selected critical equipment, but to 

monitor parameters throughout the whole process 

(Schuh et al. 2017, 16). In the offshore oil and gas 

industry this is an important technology in order 

to make remote-operated, unmanned production 

facilities possible.  This can bring considerable 

savings in operating cost, but also in capital cost 

because platforms without living quarters can be 

made simpler and lighter, compared to manned 

installation (Offshore-technology 2019). 

The disadvantage with unmanned platforms is 

that it will take longer time and cost more to 

mobilize for active maintenance. This calls for 

predictive maintenance in order to keep the 

number of visits to the platform at a minimum 

while at the same time obtaining acceptable 

availability. 

2.2  Predictive maintenance (PdM) 
PdM is in CEN 13306:2017 defined as 

“condition-based maintenance carried out 

following a forecast derived from repeated 

analysis or known characteristics and evaluation 
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of the significant parameters of the degradation of 

the item” (CEN 2017). 

Prognostics is a corresponding term that is used 

in the ISO standards, and is defined as “analysis 

of the symptoms of faults to predict future 

condition and residual life within design 

parameters” (ISO 2012b).  

According to ISO 13381-1:2015 “The goal of 

prognostics is to provide the user with the 

capability to predict remaining useful life (RUL) 

with a satisfactory level of confidence” (ISO 

2015,4). RUL is in the same standard defined as 

“remaining time before system health falls below 

a defined failure threshold”.  

The terms fault and failure will in this paper be 

used in line with ISO 13372:2012. Fault is in this 

standard defined as the “condition of a machine 

that occurs when one of its components or 

assemblies degrades or exhibits abnormal 

behavior, which may lead to the failure of the 

machine”. While failure is defined as 

“termination of the ability of an item to perform a 

required function” (ISO 2012b). However, in 

practice often machines are shut down at a more 

conservative level than the level where failure is 

expected to occur, in order to avoid the hazards 

often associated with failures. This level will then 

be the defined failure threshold (ISO 2015, 7).  

PdM can offer value compared with a more 

traditional CBM approach where one wait for 

measured condition to reach a defined level 

before active maintenance is executed. This is 

because PdM with RUL-predictions allow for 

longer mobilization times for spares and 

maintenance. This can bring considerable savings 

in remote locations like offshore oil platforms. 

Another advantage is that it can allow for 

grouping of maintenance jobs in a way that 

improve both availability and maintenance cost.  

But for predictive maintenance to be possible 

one need a good overview of the relevant failure 

modes and one must have the capability to 

observe the progression of these failure modes. In 

addition, the rate of degradation or the PF-interval 

must have a level of consistency so that 

predictions can be made with a reasonable level 

of accuracy (ISO 2015).  

Failure mode is here understood as the 

“observable manifestation of a system fault” (ISO 

2012b) and PF-interval is the time from a fault is 

observable to failure occur (Rausand and Høyland 

2004, 395).  

2.3  Failure modelling  
In order to make a RUL-prediction a model of the 

degradation until failure has to be made. 

According to ISO 13381-1:2015, failure modeling 

can be grouped into five different approaches: 

physics-based; statistical (or stochastic); heuristic 

(or knowledge based); data-driven; or hybrid 

modeling, which is a combination of the 

approaches above (ISO 2015,19).  

In this paper a stochastic approach will be used 

to estimate the RUL.  

3.  Example from an Offshore Oil Platform 

All the data in this section is collected from an 

offshore oil platform located on the Norwegian 

Continental Shelf (NCS).  

The oil platform is continuously manned with 

internal maintenance personnel that are 

responsible for the daily maintenance, while 

contracted personnel and specialist are used for 

overhauls and modifications. A technical support 

organization located onshore supports the 

offshore organization with maintenance planning 

and advise.  

There is a total of 22 fixed speed centrifugal 

pumps installed at the platform. Seven of the 

pumps have however seen very little use (less than 

one month) and have been excluded from further 

study.  

For the 15 remaining pumps, sensor data from 

the four first years of production has been 

collected together with the maintenance records.  

For the sensor data only one data point has been 

collected for each day (at 00:00:00). This has been 

considered as a high enough sampling rate for this 

application. 

The data has been split into two datasets where 

the first three years has been labeled as the 

training dataset. This dataset has then been 

explored for possible faults where predictive 

maintenance can be used. The remaining one year 

of data has been labeled the test dataset. This 

dataset has been saved for validation of possible 

findings from the training dataset.  
14 of the pumps are set up with two pumps in 

parallel, but only one pump running at the time. 

The remaining 15th pump has no redundancy. All 

pumps have sensors that measure pressure before 

and after the pump in addition to flow. Some of 

the pumps are fitted with additional sensors like 

temperature sensors. In total data from 123 

sensors that monitor different aspects related to 
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the operation condition and performance of the 15 

pumps has been collected. 

To assist in the monitoring of the health of the 

pumps an asset monitoring software is used to 

present the sensor readings to the maintenance 

personnel. In addition, several health indicators 

are calculated as well. Among these are: Net 

Positive Suction Head deviation (NPSHd), pump 

efficiency and head deviation. 

A set of symptoms of faults are defined for the 

pumps and warning, and alarm limits are set for 

all these symptoms. 

3.1  Maintenance records  
The maintenance records for the 15 pumps 

contains 248 corrective maintenance (CM) and 

preventive maintenance (PM) workorders in the 

time period of the training dataset. 21 of these 

workorders are corrective maintenance according 

to CEN 13306:2017 definition (“maintenance 

carried out after fault recognition and intended to 

restore an item into a state in which it can perform 

a required function”) (CEN 2017). Workorders 

not related to active maintenance on physical 

parts (like software changes) has been excluded.  

Grouped by the fault that caused the workorder 

to be initiated the list look like this:  

 Damaged seals (10) 

 Bearing damage (3) 

 Oil leakage (3) 

 Impeller damage (2) 

 External shock (2) 

 Sealing medium leakage (1) 

Some of the faults in this list are clearly not 

possible to predict given the available data. One 

example is faults caused by external shock, where 

one of the workorders for instance was caused by 

someone stepping on a delicate part of the pump. 

Another is the category “bearing damage” given 

that vibration monitoring, or data from other 

sensors directed at bearings not have been 

collected.  

The faults labelled oil leakage and sealing 

medium leakage has all been discovered by visual 

inspection before the faults have shown up in the 

sensor data. Visual inspection has also been used 

to discover nine of the ten instances of damaged 

seals. One of the instances of damaged seals was 

however discovered by online condition 

monitoring, but the time from observable fault to 

failure was only three days. For faults with this 

short PF-interval, predictive maintenance offers 

little practical advantage over CBM. 

This leaves only the faults related to impeller 

damage as a good candidate for predictive 

maintenance in this dataset.  

3.2  Impeller damage 
The remainder of this section will focus on 

impeller damage.  

To get a better understanding of this fault a 

causal three diagnostic model has been made. See 

figure 1 below. 
 

 
Fig. 1. Causal three diagnostic model based on (ISO 

2012a). The causal links from root cause to symptom 

are based on Karassik and McGuire (1998). BEP = Best 

Efficiency Point. NPSHd = Net Positive Suction Head 

deviation. 

 

From figure 1 one can see that head deviation is 

a symptom that one can expect as a result of the 

selected fault. Head deviation is here defined as: 

=  
 (  )

              (1) 

The expected value of the head (Heade) is based 

on the head-flow curve provided by the pump 

manufacturer. The value of the actual head 

(Heada) is calculated based on the measured 

pressure before and after the pump. This is then 

converted into head based on the specific gravity 

of the pumping medium and adjusted based on 

coefficients for the system friction. These 

coefficients have been provided by the operator of 

the oil platform. 
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Both the two instances of impeller damage 

listed above are from two pumps that are installed 

in parallel and perform the same function. These 

pumps will be called the A and B pump. In 

addition, there is a third workorder (at the B 

pump), that was initiated because of an oil 

leakage, where a new impeller has been installed 

in the training data time period. Figure 2 a and b 

below shows the trend of the head deviation.  

 

 

 
Fig. 2 a and b. The two figures above show how the 

degradation develop over time for the two pumps.  

 

 
Fig. 3. The separate degradation paths in the training 

data split into separate lines. The dashed lines indicate 

the warning level of degradation and the defined failure 

threshold set by the operator of the oil platform. 

 

In figure 3 one can see that the head deviation 

starts at different levels for the different 

degradation paths. This is most likely because not 

all the parts that has been subject to wear, like for 

instance impeller casing, has been replaced in the 

repairs.   

 

 
Fig 4. The change in head deviation from one sample to 

the next compared to the normal distribution. 

 

The histogram in figure 4 show the change in 

head deviation from one sample to the next 

( headdev). The mean is 0.049 and standard 

deviation is 0.804. The histogram appears similar 

to the normal distribution. However, based on 

D'Agostino's K-squared test the null hypothesis 

that the sample comes from a normal distribution 

is rejected with p-value 3*10-38.  

Below in figure 5 is a plot of the test data. We 

will only use the degradation path that goes past 

the warning level in our testing. 

 

 
Fig. 5. The test data. 

4.  Prognosis for Impeller Damage 

Based on the trend in head deviation and the fact 

that the pumps are running at flow of only 20 to 
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30 % of BEP the diagnostic model in figure 1 

indicate that the pumps are subject to cavitation.  

Closer inspection of one of the impellers 

removed from the pumps show damage to the 

outside of the impeller vanes and on the inside of 

the impeller inlet. Something that reinforces the 

assumption that the root cause of the impeller 

erosion is discharge and suction recirculation 

(Karassik and McGuire 1998,567).  

After the diagnosis the next step in prognostics 

is to make a RUL-prediction.   

4.1  Predicting remaining useful life (RUL) 
In this section a stochastic approach based on the 

Inverse Gaussian distribution (IG) is used to 

predict RUL.  

IG is a probability distribution that can be used 

to model the first passage time of a Wiener 

process. For a process to be a Wiener process each 

increment has to be independent and the 

difference between each consecutive step has to 

be normally distributed (Chhikara and Folks 

1989, 23).  

As shown in the previous section the 

requirement of normal distribution is not fulfilled 

in this example. But according to Chhikara and 

Folks: “[a]lthoug it is appealing to base the use of 

the IG distribution upon an underlying Wiener 

process, it is not at all critical”. They make a 

comparison with the normal distribution which 

has become “acceptable to use (…) to describe all 

sorts of data” and that “[t]he situation with the IG 

distribution seems to be similar” (Chhikara and 

Folks 1989, 159-160).  

We then formulate the degradation process as a 

Wiener process in line with Zhang et al. (2018): 

( ) = +  + ( )                (2) 

Where x0 is the level of degradation at t = 0,  is 

the drift parameter and  is the diffusion 

coefficient. Further on xt is the level of 

degradation at time t and T is the first passage time 

of the failure threshold (L). 

Because we have no degradation path in the test 

dataset that goes all the way to the failure 

threshold (20%), we will instead use the 10% 

warning level as our L when predicting the RUL 

in this paper. 

Next we assume that T can be modelled by the 

Inverse Gaussian (IG) distribution with mean μ 

and shape  (Rausand and Høyland 2004,p 50): 
 

 ~ ( , )                     (3) 

Where = ( )/  and =  ( ) /

. 

In order to validate how well the IG distribution 

fits our data we have done a Monte Carlo (MC) 

simulation with 104 runs. The MC has been done 

by drawing random samples of xt from the 

training dataset and counting the number of draws 

until  L.   

In figure 6 a and b below the Probability Density 

Function (PDF) and Cumulative Density Function 

(CDF) of the IG distribution is compared with 

histograms based on the MC simulation. The MC 

simulation seems to fit reasonably well with the 

IG distribution. Something that reinforces the 

assumption that the IG distribution can be used in 

this case. 

However, one weakness of using the MC 

simulation for validation in this case is that both 

the MC simulation and the IG distribution have 

the assumption that the degradation is happening 

in independent steps. 

 

 

 
 
Fig. 6 a and b. Comparison of the PDF of the IG 

distribution (dashed line) and the MC simulation 

(histogram). Both are based on the training dataset. 
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The average RUL in the training data, and 

expected value based on the IG (E[T]) is 206 days. 

But based on the CDF of our IG-model, at this 

time the pump will already have failed in 69 % of 

the cases.  

Because the cost associated with doing 

maintenance to late is often much higher than the 

other way around a more conservative 

measurement for the RUL prediction will 

normally be sensible to use.  

This can be optimized if one knows the expected 

cost of PM and CM. But because we don’t have 

access to this data, we have chosen the 10th 

percentile when estimating RUL. We then get 

RUL(IG,10) = 40 days at x0 = 0.  

The corresponding RUL based on the MC is 

RUL(MC,10) = 44 days, a 10% deviation against 

the IG. 

4.2  RUL prediction based on training data  
In the first approach for predicting RUL 

(RULtrain) we assume that v and  are constant, 

and the parameters for Wiener process will be 

based on the training data ( = and 

train = s x(train)). 

Next we calculate the parameters for the IG:  

= ( )/  and =  ( ) / . 

In figure 7 it is visualized how RULtrain at the 

median and 10th percentile perform against the 

actual RUL (RULa) as the degradation 

approaches L. RULa for the one degradation path 

that reaches 10% deviation in the test dataset is 

121 days with x0 = 0,33. 

 

Fig. 7. Predicted RUL at the 10th percentile and median 

(RULtrain_10 and RULtrain_50) compared to the 

actual RUL (RULa), as RULa goes to 0 in the test 

degradation path. The degradation path is shown on the 

right y-axis.  

 

As one can see from the plot in figure 7 the 

median RUL prediction (RULtrain_50) is within 

+/- 20 days of RULa throughout the degradation 

path. The RUL prediction at the 10th percentile is 

however much lower than RULa. This gives that 

if one chooses this as the measure for when to 

mobilize for active maintenance, the decision to 

mobilize will be made much earlier than is needed 

in the specific example in figure 7. 

4.3  RUL prediction with Bayesian inference  
In this section we open for the possibility that v 

and  can change with new degradation paths. 

One rationale for this can be that for every repair, 

small differences in how the pumps are 

reassembled together with the state of parts that 

have not been repaired can affect the subsequent 

performance and degradation of the pumps.  

If this assumption is true, we can never know the 

actual v and  when predicting RUL for a future 

degradation path. One way to meet this challenge 

is to use Bayesian inference to update our 

prediction as data from the current degradation 

path becomes available.  

In this paper we will perform the analysis first 

assuming that drift is unknown and that the 

diffusion coefficient is fixed, and then the other 

way around. Both these assumptions are 

admittingly not very realistic, but they simplify 

the problem of finding the posterior for the 

unknown parameters and make it possible find 

analytical solutions. 

4.3.1  A  
In this approach we will use  /N as our 

prior estimate for the drift, with precision =

1 / ( ). Where  is the drift for the i-th 

degradation path and N is the number of 

degradation paths in the training dataset.   

We will use the degradation path in our test 

dataset to update our posterior distribution as the 

data becomes available. The estimate of the drift 

parameter based on the test data at time t will then 

be:  with precision  = 1 / , .  

Based on Cowles (2013, 87) the posterior 

distribution for the drift at time t ( ) can be found 

with the following expression: 

|   ( 
2 + 0

2
0

2+ 0
2

 ,
1

2+ 0
2
) (4) 
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Based on Eq. (4) we can find the expected value 

and 95% credible interval for the posterior of the 

drift. We then update the mean for our IG 

distribution: , = ( )/ . We keep the 

same shape parameter as in the previous 

approach: =  ( y ) / . 

As we can see from the graphs in figure 8 the 

RUL prediction at the 10th percentile is almost the 

same whether v is based on the training data or the 

posterior from Eq. (4).  

The reason for this is that the variance in the 

different trends of the degradation paths in the 

training dataset is so much smaller than the 

variance of x in the test degradation path.  

 

 
Fig. 8. The solid lines are the actual RUL (RULa) and 

RUL prediction based on Bayesian inference 

(RUL_B_10 and RUL_B_50) with shaded regions for 

the 95% credible interval for v. The dashed lines are the 

RUL predictions based on the training data. 

4.3.2   
In this approach we assume that the trend in the 

Wiener process is constant and the diffusion 

coefficient is changing. Based on Cowles (2013, 

98) the posterior distribution for the precision of 

a normal distribution ( 2) can be expressed as: 

2|   ( +
2

 , +
,

2

2
)     (5)  

We estimate the  and  parameters for the 

gamma distribution for 2 based on the following 

formulas:  

= ln  ln ( )      (6) 

  
 ( )

            (7) 

=   (8) 

Where  in Eq. (6) is the precision of the i-th 

degradation path, and N is the number of 

degradation paths in the training dataset. Based on 

Eq. (6 – 8) we get  = 8.3 and  = 3.7. Based on 

this we can estimate expected value and 95% 

credible interval for = 1 . We then use this 

to update the shape parameter for the IG 

distribution  , =  ( y ) /( ), while the 

mean is kept the same: = ( )/ . 

 

 
Fig. 9. RUL prediction based on Bayesian inference 

with 95% credible interval for  (solid lines with shaded 

region). The dashed lines are RUL the predictions 

based on training data. 

 

Of cause a more realistic assumption would be 

to assume both v and  as unknown at the same 

time. This is something that can be pursued in 

future work either by numerical integration or by 

using the Markov chain Monte Carlo method 

(Cowles 2013). 

But the calculations in the two previous sub-

section demonstrate that the uncertainties in v and 

 have a considerable impact on the RUL-

prediction. 

5.  Discussion  

As presented in the introduction and section two, 

there are high expectations to the possibilities of 

PdM in relation to the fourth industrial revolution. 

However as seen in this paper there are several 

challenges related to successful employment of 

PdM. 

One challenge met in this paper was that few of 

the faults of the pumps in question was observable 

with the available sensor data.  
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One possible solution to this challenge is to 

install more sensors. In order to find out what 

sensors to install and data to collect a method 

called Failure Mode and Symptoms Analysis 

(FMSA) can be used. This method offers a 

systematic approach to ensure that the installed 

sensors can monitor the relevant failure modes 

(ISO 2012a). 

Another challenge met in this paper was that 

because of the limited time period and number of 

equipment in the dataset the number of identified 

faults was few. This contributes to the large 

uncertainty in the predicted RUL. 

One possible approach to face this challenge is 

to get a bigger dataset in order to get better 

predictions. This could be in partnership with the 

equipment manufacturers or other operators of 

similar equipment.  

The challenges related to successful 

implementation of predictive maintenance has 

also been recognized in a survey of 323 German 

companies in 2019. According to the consulting 

firm Staufen: “companies have extensive 

experience with wear and tear on their machines 

as well as suitable on-site maintenance intervals, 

making the added value of predictive maintenance 

lower than is often asserted.” (STAUFEN.AG 

2019). 

6.  Conclusion 

Given the complexity of implementing predictive 

maintenance the added value of this in traditional 

plants like the oil platform in this paper is 

probably limited. 

However, in other settings where cost and/or 

mobilization time for active maintenance are 

considerable larger the kind of RUL prediction 

done in this paper can be an important 

contribution.  

As pointed out in section two unmanned 

offshore platforms can offer considerable savings 

in terms of investment and operating cost, and 

unmanned solutions can be a necessity in order to 

make some marginal offshore oilfield in remote 

locations profitable.  

But in order to secure the profitability of such a 

solution predictive maintenance with accurate 

RUL-predictions will be crucial in order to 

achieve acceptable availability and maintenance 

cost.  
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Companies in the oil and gas industry have, since the fall in oil price in 2014, been under pressures to cut costs and improve the 
effectiveness of their operations. Digitalization is generally considered as an important contributor to achieve this. One barrier to benefit 
from digitalization that is increasingly being recognized by the industry is data silos. Digital twin is a concept that has been proposed to 
alleviate this problem, but there is a lack of common understanding of what this concept entails and the potential benefits of this 
concept. To gain a better understanding of how digital twins are used for maintenance and safety in the offshore oil and gas industry, we 
have conducted a survey in the form of a web-based questionnaire among practitioners from this industry. 15 responses to the 
questionnaire was included in the final sample. Nine of these where from respondents that reported to have implemented digital twins in 
their own organization or in their products or services. Because of the low number of responses, the results cannot be used to draw 
conclusion on the current state of digital twins for maintenance and safety in the offshore oil and gas industry in general. But the results 
offer some insights that can be useful for further research.  
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1. Introduction 

After the fall in oil price in 2014, companies in the oil and 
gas (O&G) industry have been under pressure to cut costs 
and increase the efficiency of their operations (Aalberg et 
al. 2019; Wanasinghe et al. 2020; DNV-GL 2020b). There 
seems to be a consensus among the industry actors that 
digitalization is important to secure the future 
competitiveness of this industry (Mogos, Eleftheriadis, and 
Myklebust 2019; DNV-GL 2020b; KonKraft 2018; NTNU 
2017).  

The potential benefits of digitalization lie mainly in 
the ability to collect data; turn this data into information 
and then use this information to make faster and better 
decisions (Feder 2020; Wanasinghe et al. 2020; Schuh et 
al. 2020). Collecting and analyzing large streams of data is 
something that O&G industry have done for decades 
(Spelman et al. 2017) but the infrastructure has 
traditionally been built for specific purposes (DNV-GL 
2020b). Data silos are increasingly been recognized as an 
important barrier for effective use of the collected data 
(KonKraft 2018; Zborowski 2018; Malakuti et al. 2020; 
Devold, Graven, and Halvorsrød 2017). 

Digital twin (DT) is a concept that has been proposed 
to improve this situation and has been described as a “key 
enabler for the digital transformation” (Kritzinger et al. 
2018, 1016). But “there is currently no common 
understanding of the term Digital Twin” (van der Valk et 
al. 2020, 2) and the understanding of DT has changed over 
time and vary depending on the application context (Boss 
et al. 2020). 

To better understand the current use of this concept in 
the offshore O&G industry, a survey has been conducted. 
The survey was organized as a web-based questionnaire. 

Invitations to the survey was submitted to 69 practitioners 
from operator companies and service provides invited to a 
webinar on the current status and challenges related to the 
use of DT in the Norwegian O&G industry. 15 responses 
to the questionnaire was included in the final sample. 
Because the survey is based on a convenience sample 
(Bryman 2016) and have a low number of responses the 
results cannot be used to draw conclusions on the current 
state of DT for maintenance and safety in the offshore 
O&G industry in general. But the results still offer some 
insights that can be useful for further research.  

The next section of this paper gives a presentation of 
the current challenges related to digitalization of the O&G 
industry and presents the DT concept. The method used in 
the survey is described in Section 3. Section 4 presents the 
results. The paper ends with a discussion in Section 5 and 
conclusions in Section 6. 

 
2. Background 

2.1. Digitalization of the Oil and Gas Industry 
One of the barriers to realizing the potential of 
digitalization in the O&G industry is the use of proprietary 
software solutions and lack of standardization which have 
led to data silos (Zborowski 2018; ISO 2019; Devold, 
Graven, and Halvorsrød 2017; KonKraft 2018). Because 
of this, manual work is needed to collect, convert, transfer, 
and validate the available data before it can be analyzed. 
The problem of data siloes has also been recognized in 
other industry sectors (Tao, Cheng, et al. 2018; Grieves 
and Vickers 2017; van der Valk et al. 2020; Hoffmann et 
al. 2021).  

DTs are presented as an approach to reduce the data 
silo problem (Malakuti et al. 2020; Schulte, Lheureux, and 
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Velosa 2018; van der Valk et al. 2020; Tao, Cheng, et al. 
2018). But how to design digital twins to best address this 
problem is a challenge that remains to be solved 
(Hoffmann et al. 2021; Tao, Zhang, et al. 2018). One of 
the challenges with the DT concept is the lack of a 
generally accepted definition (Uhlenkamp et al. 2019; van 
der Valk et al. 2020). This is in parts because the 
understanding of DT has evolved over time and vary 
between application areas (Boss et al. 2020).  

According to Grieves and Vickers (2017) the basic 
concepts of DT have however been stable over time. The 
first of these is the idea of the DT as a virtual model of a 
physical asset that is an entity of its own (Sharma et al. 
2018; Zborowski 2018). Another is that these two entities, 
the physical asset and its digital twin, are linked through 
the different life cycle phases of the asset (Grieves and 
Vickers 2017; Tao, Cheng, et al. 2018; Liu et al. 2021).    

A key aspect of the DT is to establish a digital model 
that represents one universally accepted version of the 
truth that the different stakeholders can use to get the 
information they need of the physical object (Malakuti et 
al. 2020). The advantages of this is mainly twofold. 
Firstly, having the information on the physical object 
readily available in a digital format makes collecting the 
information much easier and faster (Schuh et al. 2020). 
The cost of collecting the information will also be reduced 
because redundant and overlapping work related to 
collecting and transferring data from the source is 
eliminated (Malakuti et al. 2020; Schulte, Lheureux, and 
Velosa 2018). The other main advantage is that it 
facilitates sharing of data between the different lifecycle 
phases of the asset, both backwards (e.g. sensor data from 
use phase as feedback to improve design), and forwards 
(e.g. simulation models developed in the design phase as 
decision support tools in the use-phase) (Wuest, Hribernik, 
and Thoben 2015; Tao, Cheng, et al. 2018). 

One of the areas of controversy related to DT is the 
need for accuracy in the digital models (Liu et al. 2021; 
van der Valk et al. 2020). Academics, especially those 
related to aerospace and aviation (West and Blackburn 
2018; Glaessgen and Stargel 2012) but also manufacturing 
(Tao, Cheng, et al. 2018), have focused on the modelling 
aspect of DT, and the need for ultra-high fidelity models in 
order to make accurate simulations of the physical entities. 
Industry practitioners like the Industrial Internet 
Consortium (IIC) (Malakuti et al. 2020), and some 
academics (Grieves and Vickers 2017) are focusing more 
on aspects related to data handling.  

2.2. Previous Surveys on the Digitalization of the Oil and 
Gas Industry.  
Previous surveys on the use of DTs in the O&G industry 
have not been found in the literature. But some surveys 
related to digitalization of this industry have been found 
and is presented in this subsection.  

In a survey of 13 Norwegian supplies to the O&G 
industry Mogos, Eleftheriadis, and Myklebust (2019) 
found that the industry view digitalization as important to 
cut costs and increase efficiency in order to stay 
competitive. But they also found that a high proportion of 
the respondents reported to have little knowledge of 

concepts such as IoT, Industry 4.0 and CPS. When asked 
to rate important barrier for the implementation of digital 
strategies, categories related to knowledge and skills was 
most frequently chosen by the respondents. 

Another source of information on the current use of 
digital solutions in the O&G industry is the annual survey 
of the global O&G industry conducted by DNV-GL.  
These surveys also report that the industry perceives 
digitalization as important to cut cost and increase 
production (DNV-GL 2019). In the most recent survey 
DNV-GL (2020b) reports that there is an increasing 
attention in the industry to secure that the collected data is 
available and have the right quality for analysis. 

Øien, Hauge, and Grøtan (2020) have conducted a 
survey of six O&G operators on the Norwegian 
Continental Shelf (NCS). The focus of this survey was on 
the use of digital solutions for barrier management and 
potential vulnerabilities that can be introduced with 
digitalization.  

Øien, Hauge, and Grøtan (2020) found that most of 
the operators use barrier panels to visualize the status of 
the safety barriers on the offshore O&G platforms. The 
barrier status is mainly based on manually collected data 
such as workorders and reports from the incident 
management systems.  All the companies had examples of 
safety critical equipment subject to condition monitoring, 
but none of the operators had automatic updating of the 
barrier panels based on condition monitoring alarms. 
Several of the operators reported plans for implementing 
predictive maintenance (PdM), but few had implemented 
this maintenance concept. Most operators believe that 
vulnerabilities will arise from new digital solutions. But 
the operators do not regard digital security as a major 
concern when it comes to barrier management because of 
the limited interconnects between the barrier panels and 
physical objects (Øien, Hauge, and Grøtan 2020).  

2.3. The Application of Digital Twins 
In this paper we focus on the application of DT related to 
maintenance and safety.  

Maintenance is the application of DT that has 
received the most attention in the academic literature (Liu 
et al. 2021). Potential benefits from introducing DT is the 
ability of combining data from several sources and use this 
to introduce predictive and prescriptive maintenance 
policies (Errandonea, Beltrán, and Arrizabalaga 2020). 
Another application is the use of high fidelity simulations 
to make synthetic failure data that that can be used to train 
algorithms for anomality detection and prediction of 
remaining useful life of equipment (Rao 2020). See 
Errandonea, Beltrán, and Arrizabalaga (2020) for a 
literature review on the use of DT for maintenance.  

The use of DT for safety is much less prominent in 
the literature. But Grieves and Vickers (2017) states that 
the purpose of DT is to mitigate or eliminate unpredicted 
undesirable behavior from complex systems. They use the 
Deepwater Horizon disaster (BP 2010) as an example 
where better situational awareness and predictive 
capabilities offered by the DT could have helped alerted 
the operator of the potential consequences of their 
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decisions and by that avoid the accident (Grieves and 
Vickers 2017).  

2.4. Frameworks for Classification of Digital Twins 
Several authors have proposed different frameworks for 
classifying DTs. One of these are Kritzinger et al. (2018) 
which defines three categories of DTs based on the level of 
integration between the digital and physical entities. 
Digital models are systems which only have manual data 
flow between the physical and digital object. Systems with 
automatic data flow from physical to digital object are 
labeled digital shadows. Systems with automatic dataflow 
in both directions are labeled digital twins.  

DNV-GL (2020a) divide DTs into six stages based 
on capability: standalone, descriptive, diagnostic, 
predictive, prescriptive and autonomy. The first and last of 
these corresponds to the digital model and twin as defined 
by Kritzinger et al. (2018). DNV-GL (2020a) also 
categorizes the confidence levels that is needed of the 
output from the DTs. The required confidence level is 
calculated as the product of capability and potential 
consequences. DTs with high capability and high 
consequence have the highest requirements for confidence. 
DNV-GL (2020a) also offers procedures for assuring that 
the required confidence level of the DTs is met.  

2.5. Research Questions 
DT has become a popular concept but lacks a universally 
accepted definition. There is also a lack of agreement on 
how to create and deploy DTs (Liu et al. 2021).  

Based on the literature review, we have formulated 
the following research questions:  

 What do the practitioners in the offshore O&G 
industry perceive as the most important barriers and 
triggers for implementing DT? 

 What are the potential benefits of DT, and is the 
offshore O&G industry able to realize these benefits?  

 What are the capability levels of DTs used by the 
offshore O&G industry? 

 What is the understanding of DT among the 
practitioners in the offshore O&G industry compared 
to the academic literature? 

3. Research Method 

3.1. Sampling  
Responses to the questionnaire was collected from 
industry practitioners that was invited to a seminar on the 
use of DT for maintenance, safety, and control in the 
offshore O&G industry. The seminar was organized in 
November 2020 by SUBPRO (2021), a research project 
focusing on technology innovation for subsea production 
and processing, and BRU21 (2021), a research project 
focusing on the digitalization of the O&G industry. Both 
research projects are collaborations between the 
Norwegian University of Science and Technology 
(NTNU) and operators and service providers connected to 
the NCS. Because a convenience sample was used in the 
survey the results cannot be assumed to be generalizable to 
the offshore O&G industry in general (Bryman 2016). 

The survey was organized as an anonymous web-
based questionnaire using the service Nettskjema (2021). 
Invitations to the questionnaire was sent out by email to all 
the 69 participants from the industry, two days before the 
seminar. During the seminar a short presentation of the 
survey was given to all participants followed by a short 
break to complete the survey. No responses were collected 
after the seminar. 
 
Table 1. Demographics of the final sample (n = 15). 

 n % 
Primary industry    
   Supplier / service provider 8 53% 
   Operator company 7 47% 
Primary role   
   Engineering 4 27 % 
   R&D 3 20 % 
   General management 2 13 % 
   IT 2 13 % 
   Operations 2 13 % 
   Risk management 1 7 % 
   Sales 1 7 % 
Digital maturity compared to peer 
   Leading 7 47 % 

   Average 6 40 % 

   Lagging 1 7 % 
   Don't want to disclose /  
   Not relevant 

1 7 % 

Ability to profit from digitalization 
   Leading 4 27 % 

   Average 5 33 % 

   Lagging 2 13 % 
   Don't want to disclose /  
   Not relevant 

1 7 % 

   Don't know 3 20 % 
 
Of the 16 respondents that completed the survey, one 
respondent reported the education sector as primary 
industry and was removed from the final sample. This 
gives a final sample rate of 22%. The demographics of the 
final sample is presented in Table 1. 

When asked to rate the digital maturity of their 
organization, about half of the respondents (47%) assessed 
their organization as being leading compared to their 
peers. In comparison only 21% reported to be “industry 
leaders in digitalization” in a survey by DNV-GL (2019, 
26) of the global O&G industry, indicating that the sample 
in our survey probably are more digital mature than the 
average O&G company. This is not surprising given that 
the selected sample for the survey, participants to a 
seminar on DT.  
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3.2. Survey Design 
Because of the immaturity of the DT concept an 
exploratory design has been chosen for the survey (Forza 
2002). Previous measurement instruments for 
implementation of DT for maintenance and safety was not 
identified in the literature, so the questions for the survey 
was constructed based on previous surveys on use of PdM 
(Haarman et al. 2018), Industry 4.0 (Staufen 2019; Mogos, 
Eleftheriadis, and Myklebust 2019) and digital 
transformations (Kane et al. 2016).  

One challenge when designing this survey is the lack 
of a commonly accepted understanding of the concept DT. 
In the introduction to the survey the term digital twin was 
defined as “a digital representation of a real-world entity 
or system”.  

 
4. Results 

The results of the survey are presented in a series of 
frequency tables in this section. 

4.1 General Questions Related to the use of Digital Twins 
in the Oil and Gas Industry  
All respondents were asked about their perception on the 
barriers and benefits of DT to the O&G industry in 
general. The answers in Table 2 through 4 are sorted based 
on frequency.  
 
Table 2. Answers to the question: “What do you consider to be 
the most important benefit of using digital twins in the oil and 
gas industry in general?” (n = 15). 

The most important benefit n % 
More effective operations 7 47 % 
Cost reduction 3 20 % 
Reduction of safety, health, 
environment & quality risks 3 20 % 

Improved business decision making 1 7 % 
Lifetime extension of aging asset 1 7 % 
Improved energy efficiency 0 0 % 
Better product design 0 0 % 
New revenue streams 0 0 % 

 
The results in Table 2 are in line with the survey by 
Mogos, Eleftheriadis, and Myklebust (2019) on the 
motivation for implementing I4.0 in the O&G industry. 
But in contrast to the same survey few of the respondents 
reported skills and knowledge as the main barrier (Table 
3).  

When it comes to the most important trigger for the 
implementation of DT, 67% of the respondents regarded 
commercial factors, exemplified by higher demands for 
effectiveness and efficiency, as being the most important. 
Only 27% considered the technological development to be 
the most important trigger. This is in line with 
observations from the literature survey that the O&G 
industry regards digitalization as an important contributor 
to cut costs and increase effectiveness (DNV-GL 2020b).  

Table 3. Answers to the question: “What do you consider to be 
the most important barrier to the use of digital twins in the oil and 
gas industry in general?” (n = 15). 

The most important barrier n % 

Lack of data / systems integration 5 33 % 
Lack of business case 3 20 % 
Lack of organizational agility 2 13 % 
Lack of management understanding / 
commitment 2 13 % 

Too many competing priorities 1 7 % 
Insufficient technical skills 1 7 % 
Don’t know 1 7 % 
Security concerns 0 0 % 
None / no barriers exist 0 0 % 

 
Table 4. Answers to the question: “Which of the following 
benefits has your organization or customers already achieved by 
using digital twin(s)?” (N/R = not relevant, n = 9). 

Benefits achieved Yes No Don't 
know N/R 

Cost reduction. 100 % 0 % 0 % 0 % 
Reduction of 
safety, health, 
environment & 
quality risks. 

78 % 0 % 22 % 0 % 

More effective 
operations. 78 % 0 % 22 % 0 % 

Improved business 
decision making. 67 % 11 % 11 % 11 % 

Improved energy 
efficiency. 56 % 0 % 22 % 22 % 

Better product 
design. 44 % 22 % 33 % 0 % 

Lifetime extension 
of aging asset. 44 % 11 % 22 % 22 % 

New revenue 
streams. 33 % 11 % 33 % 22 % 

 
Table 5.  Answers to the question: “Which of the following types 
of models are used in the digital twin(s) in your organization or 
in your products/services?” (n = 9). 

Types of models used Yes No Don't 
know 

White box (first principle / 
physics-based) 78 % 0 % 22 % 

Grey box (statistical / 
stochastic modelling) 33 % 22 % 44 % 

Black-box (machine learning, 
neural networks etc.) 56 % 11 % 33 % 
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Table 6. Answers to the question: “What of the elements are currently part of the digital twin(s) used in your organization  
or in your products/services?” (n = 9). 

Elements in digital twin Yes No Don't 
know 

3D representation of equipment / installations / plants. 89 % 11 % 0 % 
Real-time visualization of process/production status. 89 % 0 % 11 % 
Real-time visualization of equipment status. 78 % 0 % 22 % 
Real-time visualization of safety barriers. 33 % 0 % 67 % 
Simulations used for employee training. 67 % 11 % 22 % 
Simulations used for planning or production optimization. 78 % 0 % 22 % 
Models that monitor the current health of equipment or processes. 100 % 0 % 0 % 
Models that can identify cause-and-effect relationships between different 
process steps and/or equipment by combining data from different sources. 44 % 22 % 33 % 

Models that make predictions on future states of equipment or processes. 78 % 0 % 22 % 
Self-learning models (i.e. models that adapt as new data emerges). 44 % 33 % 22 % 
Automated decisions making related to process control. 44 % 11 % 44 % 
Automated decisions making related to maintenance. 11 % 33 % 56 % 
Automated decisions making related to safety. 0 % 33 % 67 % 

 
Table 7. Answers to the question: “To what extent to do you agree with the following statements related to the use of digital  
twins in your organization” (n = 15). 

Statements Strongly 
agree Agree Neither agree 

nor disagree Disagree Strongly 
disagree 

Don’t know / 
Not Relevant 

Digital twins are trusted when it comes 
to safety critical decisions. 0 % 20 % 33 % 33 % 0 % 13 % 

Operators should only use solutions 
that are provided from one vendor in 
their digital twin. 

0 % 7 % 7 % 33 % 47 % 7 % 

Determining the source of 
inconsistencies between model and 
measurements is a major challenge in 
digital twins. 

13 % 53 % 27 % 7 % 0 % 0 % 

Reasonable estimations are normally 
sufficient to benefit from the use of 
digital twins. 

0 % 60 % 20 % 13 % 0 % 7 % 

A digital model is only a proper digital 
twin if there is automated dataflow in 
both direction between the two entities 
(i.e. the model can control the physical 
object). 

0 % 7 % 20 % 53 % 20 % 0 % 

Operators should combine elements 
from the suppliers that are best in their 
niche when organizing the digital twin 
for their assets. 

27 % 33 % 27 % 7 % 0 % 7 % 

Ultra-high fidelity models are needed 
in order to give sufficient level of 
accuracy in digital twins. 

0 % 20 % 40 % 13 % 13 % 13 % 
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4.2. Company Specific Questions Related to the use of 
Digital Twins 
Nine of the respondents reported to have implemented DT 
in their own organization or products/services. Only one 
respondent considered the implementation of DT not 
relevant and reported no plans for implementing this in the 
future. Table 4 shows that the companies that have 
implemented DT report benefits over a wide range of 
areas. Table 5 shows that physics-based models are the 
modelling approach that is most widely used. 

As can be seen from Table 6, several of the 
companies have a level of integration that corresponds to 
digital shadow as defined by Kritzinger et al. (2018). Only 
one respondent (11%) confirmed to have automated 
feedback from the digital model to the physical asset for 
maintenance and none when it comes to safety. 

Another observation from Table 6 is that the 
capability level, as defined by DNV-GL (2020a) is higher 
for  maintenance compared to safety. 78% reported 
predictive capabilities related to equipment status. On the 
other hand, only one third (33%) of the respondents 
reported that the DT have descriptive capabilities when it 
comes to safety.  

4.3. Statements Related to Digital Twins 
When it comes to the level of detail that is needed for the 
DT only 20% agreed that ultra-high fidelity models are 
needed, while 60% expressed that reasonable estimates 
normally are sufficient (Table 7). Only one respondent 
(7%) agreed that there must be automatic dataflow in both 
directions for a system to be labeled as a digital twin. 
Regarding implementation of DT more than half the 
respondents agreed that the operators should combine 
elements from several providers, while only one 
respondent disagreed to this statement.  
 
5. Discussion 

Several of the results in this survey are in line with 
previous surveys and literature on digitalization of the 
O&G industry. Commercial factors was reported to be the 
most important trigger for the implementation of DT and 
more effective operations and cost reductions was reported 
as the most importation benefits.    

Among surprising results are the level of maturity 
when it comes to the use of DT compared to previous 
surveys on digitalization of the Norwegian O&G industry. 
Few respondents reported lack of technical skills and 
management commitment or understanding as the main 
barrier to DT implementation. This is in contrast to the 
survey conducted by Mogos, Eleftheriadis, and Myklebust 
(2019) in 2017 where lack of knowledge and skills was 
reported as important barriers by a majority of the 
respondents. Equally surprising is the high capability level 
of DTs related to maintenance that was found in our 
survey. While few of the operators was found to have 
implemented PdM in the survey by Øien, Hauge, and 
Grøtan (2020) conducted in 2019, about half (47%) of the 
total population in our survey reported to have 

implemented DTs with predictive capabilities for 
maintenance in their organization of products/services.   

Both these results indicate that there has been a rapid 
development in the digital maturity of the O&G companies 
in the recent years. But this can also be a result of bias in 
our sample towards more digitally mature companies as 
indicated in Section 3. 

This survey also provides some general insights on 
how to create and deploy DTs. The respondents report that 
the implemented DTs have contributed to improvements 
over a wide range of areas, but their understanding of this 
concept differs somewhat from the main tendencies in the 
literature. The first of these differences is related to the 
level of fidelity needed of the digital models. A majority of 
the respondents prefer reasonable accurate models over 
high-fidelity models. In comparison only 22% of papers in 
a literature review by van der Valk et al. (2020) refers to 
DTs as partial representations of their physical 
counterparts. Another area where the respondents in our 
survey disagree with the majority of publications is 
regarding the level of integration that is needed between 
the digital and physical counterparts (van der Valk et al. 
2020). Only one respondent agree with the classification 
by Kritzinger et al. (2018) that require that there is 
automatic data flow in both directions between digital and 
physical entities in digital twins.  

One possible explanation for this deviation from 
existing literature is that the need of DTs differs between 
application areas. Maintenance is one of the most human 
centric process within manufacturing (Brundage et al. 
2019), and human judgement and knowhow is normally 
applied in addition to input from digital models (Bokrantz 
et al. 2020) when making maintenance decisions.  

The need for fidelity in the digital models and the 
need for integration in order to profit from the use of DT 
for maintenance and safety may because of this be lower 
compared to other areas such as process optimization 
where existing models are more complex and decision 
cycles are faster.  

This survey also shed some light on how to deploy 
DTs. A majority of the respondents preferred “best of 
breed” solutions over solutions from only one provider. 
This, together with the preference of reasonable accurate 
models, indicate that a gradual implementation strategy for 
DT that start with a minimum viable product and then 
improves from this can be a suitable option for the O&G 
industry. This is in line with recommendations for how to 
implement DT from the IIC (Malakuti et al. 2020) and the 
advisory firm Gartner (Schulte, Lheureux, and Velosa 
2018).  

 
5. Conclusion 

In this study we have conducted an exploratory survey on 
the perception and use of DT among industry practitioners 
related to the Norwegian O&G industry. The contributions 
from this study can be divided into two parts. 

The first is related to the development in the digital 
maturity of the Norwegian O&G industry. The respondents 
report that benefits from use of DTs has been achieved 
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across several areas, and few of the respondents consider 
lack of skills or knowledge as the most important barrier to 
the implementation of this concept. This indicates that the 
Norwegian O&G industry has reached a level of digital 
maturity where it can utilize concepts such as DT to realize 
real business value. 

The other contribution is to shed light on the 
preferences for design and implementation of DTs for 
maintenance and safety in the O&G industry. The 
respondents report that benefit from DTs have been 
achieved over a wide range of areas even if they prefer 
simple models over high-fidelity models and lower level of 
integration between digital and physical entities than 
normally described in the literature. 

There are several limitations to this study in addition 
to the ones already mentioned. One of them is that several 
of the questions have a high ratio of respondents that have 
chosen “don’t know”. A possible explanation for this is 
lack of clarity in the questionnaire. Closer examination of 
the data show that the background of the respondents that 
have chosen “don’t know” changes with the different 
questions. The number of samples are however too small 
to conduct quantitative analyses of differences based on 
the respondents’ backgrounds.  

Another limitation is that the size of the benefits from 
implementing DT have not been estimated, and we do not 
know if the reported results are achieved through small 
scale pilots or full-scale implementations. We also do not 
know if the respondents from the suppliers are referring to 
benefits achieved in their own organizations or by their 
customers. 

Further research should continue to investigate the 
use of DT, the potential benefits associated with this 
concept and different perceptions among suppliers and 
operators in the O&G industry. 

Our survey indicates that the use of DTs offers real 
business value for the O&G industry. An interesting topic 
for further research is to investigate more in detail the 
magnitude of these benefits and how these has been 
achieved, either through interviews or case studies. Such a 
study could also investigate if and how the introduction of 
DTs affects the relationship between operators, suppliers 
and, third party service providers.  

Because of the low number of respondents in our 
survey, quantitative analysis to identify correlations 
between the achieved results and the methods and 
capability level of the implemented DTs was not possible 
to conduct. A new survey with a sample size large enough 
to allow for such an analysis might provide valuable 
information on how to best implement DT. 
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Recent developments in sensor technology and systems for connecting digital and physical systems, often associated with the terms 
Industry 4.0 and cyber-physical systems, are expected to bring substantial changes to how maintenance and asset management will be 
conducted in the coming years. Most of the research related to Industry 4.0 and maintenance have focused on technical aspects, and less 
attention has been given to how to organize and manage maintenance in order to take advantage of the new possibilities offered by the 
fourth industrial revolution. While many claims have been made about the potential improvements related to maintenance that can be 
achieved from implementing Industry 4.0, empirical studies suggest that industry practitioners are struggling to realize these 
improvements. There are also signs that there exists overall a poor understanding of how to implement Industry 4.0. The contribution of 
this paper is to address these socio-technical challenges with a multidisciplinary framework for the implementation of Smart Maintenance. 
The framework is divided into three levels: strategic, tactical, and operational, and is influenced by lean production, systems engineering 
and maintenance management. 

Keywords: Industry 4.0, Predictive Maintenance (PdM), Plan-Do-Study-Act (PDSA), systems engineering, SPADE, Smart Maintenance, 
cyber-physical systems (CPS), Prognostics and Health Management (PHM), maintenance management, Lean Production (LP), Hoshin 
Kanri (HK). 

1. Introduction 

The notion of a fourth industrial revolution instigated by the 
introduction of internet technology into the manufacturing 
industry has been popularized under the term Industry 4.0 
(I4.0) (Schneider 2018). The introduction of I4.0 is believed 
to have the potential for large improvements across industry 
sectors and business functions, including maintenance and 
asset management (Zio 2016).  

 Several manufacturing companies have started or are 
planning to implement I4.0 (Staufen 2019), but according to 
Oztemel and Gursev (2020, 166) “there is still a high 
uncertainty and fuzzy understanding among the 
manufacturers with respect to the way to implement 
Industry 4.0 philosophy”. They further claim that “it is now 
main responsibility of the research community to develop 
technological infrastructure with physical systems, 
management models, business models as well as some well-
defined Industry 4.0 scenarios in order to make the life for 
the practitioners easy” (Oztemel and Gursev 2020, 127).  

The increase in complexity and interconnectivity 
associated with the introduction of I4.0, has elevated the 
importance of maintenance and Smart Maintenance has 
been defined as “the enabler of Industry 4.0” (DIN/DKE 
2018, 59).  Predictive maintenance (PdM) based on online 
condition monitoring is often the first specific application 
of I4.0 mentioned (Bokrantz et al. 2020; Staufen 2019). But 
empirical studies suggest that industry are struggling with 
the implementation of data-driven PdM (Golightly, 
Kefalidou, and Sharples 2018; Veldman, Klingenberg, and 
Wortmann 2011; Van De Kerkhof, Akkermans, and 
Noorderhaven 2015).  

This paper will address these socio-technical 
challenges by offering a framework for the implementation 

of concepts related to I4.0 in maintenance in the 
manufacturing industry. Because integration and 
interconnectedness of IT-systems, processes and people are 
central aspects of I4.0 (Schuh et al. 2017), approaches to 
utilize the potential of this concept will require an 
interdisciplinary and holistic approach. Systems 
engineering methods have proven useful in managing this 
type of complexity (Kossiakoff et al. 2011). Based on recent 
empirical studies that suggest that there are complementary 
effects between Lean Production (LP) and I4.0, the 
suggested framework also uses principles from LP. 

The next section presents a brief literature review of 
I4.0 and Smart Maintenance. A framework for the 
implementation of Smart Maintenance in an I4.0 context is 
proposed in Section 3. The paper ends with a discussion in 
Section 4 and conclusions in Section 5. 

 
2. Literature Review 

2.1. Industry 4.0 - overview 
The term Industry 4.0 or “Industrie 4.0” was first coined by 
a working group sponsored by the German government with 
the aim of strengthening the competitive position of the 
German manufacturing industry. According to Kagermann 
et al. (2013) a fourth industrial revolution is inevitable as a 
result of the introduction of Internet of Things and Internet 
of Services into the manufacturing sector. 

As noted by Drath and Horch (2014), I4.0 is the first 
industrial revolution to be announced before it happens. The 
research on I4.0 has so far mostly been conceptual (Buer 
2020) and there is still no commonly accepted definition of 
I4.0 (Oztemel and Gursev 2020).  
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Previous concepts for the digitalization of 
manufacturing, like Computer Integrated Manufacturing 
(CIM) had a vision of complete automation without human 
intervention (Schneider 2018; Schmidt et al. 2020). In 
Kagermann et al. (2013) there are several references to the 
need for considering the socio-technological aspect in order 
to take full advantage of I4.0, but this appears to have been 
overlooked in much of the following literature (Davies, 
Coole, and Smith 2017). 

The understanding of I4.0 that will be used in the 
remainder of this text is based on a report by the German 
research organization Acatech. Acatech defines I4.0 as 
“real-time, high data volume, multilateral communication 
and interconnectedness between cyber-physical systems 
and people” (Schuh et al. 2017, 11). This definition clearly 
places I4.0 in the category of socio-technical challenges. 

2.2. Industry 4.0 and lean production 
Lean production (LP) has for several decades been the most 
prominent concept for performance improvement in the 
manufacturing industry (MacKelprang and Nair 2010). 
There are however several examples of LP implementation 
projects that have failed to improve performance 
(Bortolotti, Boscari, and Danese 2015), and Schuh et al. 
(2017) suggest that experience from LP implementation 
holds valuable lesson for how to succeed with the 
implementation of I4.0. According to lean literature these 
failures are often caused by insufficient attention to 
organizational culture and too much focus on hard lean 
practices (tools and techniques) (Liker 2004; Rother 2010). 
In a survey on organizational culture and lean 
implementation Bortolotti, Boscari, and Danese (2015) 
found that plants that succeed are characterized by an 
organizational culture that focus on high institutional 
collectivism, future orientation, and humane orientation 
alongside the lean soft practices: problem solving, 
employee training, supplier partnership, customer 
involvement and continuous improvement.  

There are still disagreements among academics and 
practitioners of what comprises LP (MacKelprang and Nair 
2010). In this paper LP is understood in line with Shah and 
Ward (2007, 791) as an “integrated socio-technical system 
whose main objective is to eliminate waste by concurrently 
reducing or minimizing supplier, customer, and internal 
variability.”  

The notion that LP and I4.0 complement each other is 
popular among industry practitioners (Staufen 2015) and 
academics (Buer, Strandhagen, and Chan 2018), and the 
connection between these two concepts is a topic that has 
received increasing attention in operations research 
literature in the last 5 years (Ciano et al. 2021).  

Surveys of European (Rossini et al. 2019) and 
Brazilian manufacturers (Tortorella and Fettermann 2018) 
has shown that there is a significant association between 
implementation of I4.0 technologies and LP practices 
among high performing companies. 

In a survey of Indian manufacturing companies 
Kamble, Gunasekaran, and Dhone (2020) found a 
significant positive effect from implementation of I4.0 on 
performance, but when controlling for implementation of 

LP the effect became negative and insignificant. In contrast 
to this Buer et al. (2020), in a survey of Norwegian 
companies, found that companies that have implemented 
both I4.0 and LP performed better than can be explained by 
their individual effects.  

Common to all these studies is that the relationship 
between I4.0 and LP has been studied on a high level. There 
is a need for further research on the relationships between 
the specific elements of I4.0 and LP to increase the 
understanding of how to succeed with implementation of 
both I4.0 and LP (Rossini et al. 2019; Ciano et al. 2021).  

Empirical studies that investigate the effect of I4.0 and 
lean principles on maintenance have not been found in the 
literature, but in a conceptual paper by Sanders et al. (2017) 
Total Productive Maintenance (TPM) is postulated to be the 
LP tool that will benefit the most from I4.0 technology, 
while LP principles such as standardization, quick 
changeover and value-stream mapping are presented as LP 
tools that can support the implementation of I4.0.  

2.3. Industry 4.0 and maintenance 
There is an abundance of reports and white papers from 
consultancy and software companies related to the potential 
benefits to maintenance by implementing I4.0. One 
example is a report from McKinsey where it is estimated 
that a 10 – 40 % reduction in maintenance cost can be 
achieved from fitting products with sensors that monitor 
both condition and usage (Manyika et al. 2011). In another 
report from the same company it is claimed that “typically, 
predictive maintenance decreases the total machine 
downtime by 30 to 50 percent and increases machine life by 
20 to 40 percent” (Baarup et al. 2015, 24). Similar 
statements of the potential improvements have been 
presented in reports by the consultancy firms Accenture 
(Spelman et al. 2017) and PwC together with Mainnovation 
(Haarman et al. 2018). However, all these reports offer few 
details on how the potential benefits are achieved. 

Other sources paint a more moderate picture. One 
example of this is the software company Arundo that claims 
that “true predictive maintenance is not immediately 
applicable for most equipment, due to the paucity of 
relevant data” (Dobson and Misra 2019, 8). Another 
example is the consultancy firm Staufen that based on a 
survey of 450 German companies states that the “added 
value of predictive maintenance is likely to be far lower than 
is often claimed” (Staufen 2018, 35). 

The potential for improvement by implementing data-
driven PdM and related maintenance concepts are also 
presented in the academic literature, with claims of the 
potential to reduce maintenance costs, improve availability, 
reduce risk and provide valuable information to the design 
process of new equipment (Zonta et al. 2020; Porter and 
Heppelmann 2014; Lee et al. 2014; Sun et al. 2012). But the 
focus in the academic literature on maintenance 
optimization is mainly on developing new models with few 
examples of the use of data-driven PdM available in the 
literature (de Jonge and Scarf 2020). There are empirical 
studies that suggest that it is hard to succeed with the 
implementation of data-driven PdM in practice. In a 
multiple case study of Dutch process industry Veldman, 
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Wortmann, and Klingenberg (2011, 49) found that “all the 
firms claimed to be struggling with prognostic condition-
based maintenance tasks.” In a later case study of Dutch 
process industry Van De Kerkhof, Akkermans, and 
Noorderhaven (2015, 236) found that “many firms in the 
process industry struggle with systematically employing 
CBM activities in general and prognostic CBM approaches 
in particular.” Based on a series of interviews of 
maintenance experts from UK industry, Golightly, 
Kefalidou, and Sharples (2018, 640) found that 
implementing “full, predictive maintenance solutions were 
extremely challenging.” 

2.4. Smart Maintenance 
Several terms are being used in the academic literature for 
describing maintenance concepts that can exploit the 
possibilities offered by the fourth industrial revolution 
(Bokrantz et al. 2020). Examples are Maintenance 4.0 
(Jasiulewicz-Kaczmarek and Gola 2019), Prognostic and 
Health Management (PHM) (Sun et al. 2012), E-
maintenance (Márquez and Pham 2007), Predictive 
Maintenance (PdM) (Golightly, Kefalidou, and Sharples 
2018), and Smart Maintenance (Akkermans et al. 2016).  

In this paper we use the term Smart Maintenance 
because we believe that this term best describes the distinct 
characteristics of maintenance in an I4.0 context. Smart 
Maintenance is defined by Bokrantz et al. (2020, 11) as “an 
organizational design for managing maintenance of 
manufacturing plants in environments with pervasive digital 
technologies.” Based on interviews with 110 industry 
experts Bokrantz et al. (2020) analyzed the elements that 
constitute Smart Maintenance. These have been grouped 
into the four categories: data-driven decision-making, 
human capital resource, internal integration, and external 
integration (Bokrantz et al. 2020).   

According to Golightly, Kefalidou, and Sharples 
(2018), one important contribution to the complexity of 
data-driven maintenance is that knowledge and competence 
are needed on a wide range of topics: the equipment that is 
monitored; the sensor technology to collect the data; the 
ICT-system to log and transmit the data; methods to analyze 
the data and make predictions; understanding of the 
operational context; visualizations to present the 
information to the decision makers, and a thorough 
understanding of the actions the maintenance department 
can take based on this information. This diversity of 
elements makes collaboration within and across different 
organizations necessary.  

Roda, Macchi, and Fumagalli (2018) conducted 
interviews with 20 maintenance experts from Italian 
companies and concluded that the most important barriers 
are lack of a culture for data-based decisions making, lack 
of cooperation internally and between organizations, and 
lack of skills in digital technology accentuated by the 
difficulty of calculating the payback of the digital 
transformation of maintenance. 

  
3. The Proposed Framework 

This section proposes a framework for the introduction of 
Smart Maintenance, based on the challenges identified in 

the literature review. The proposed framework is built using 
contributions from LP, systems engineering, and 
maintenance management, as illustrated in Figure 1.   

In accordance with Tsang, Jardine, and Kolodny 
(1999) the framework has been split into three different 
levels: strategic, tactical, and operational. Strategic 
decisions are understood as long-term decisions, for 
instance the selection of the maintenance management 
system. The tactical level is related to the use of available 
resources to realize the strategy in an effective and efficient 
way. The operational level is concerned with the execution 
of the daily maintenance activities. The different stages of 
the framework are explained in the rest of this section. 

3.1. The overall layout 
The overall layout of the framework is inspired by a LP 
concept called hoshin kanri (HK) which is a tool for linking 
strategy with the operational level (Jolayemi 2008). HK is 
more participative than traditional western approaches for 
strategy deployment, which makes management more 
process minded and is considered more effective to manage 
change (Witcher and Butterworth 2001).  

The use of HK in connection with I4.0 has previously 
been explored by Villalba-Diez et al. (2018) and Schmidt et 
al. (2020) but these studies are rather conceptual and do not 
mention maintenance. Empirical studies on use of HK in 
connection with I4.0 and maintenance has not been found in 
the literature, but there are compelling arguments that the 
HK process is well suited for implementation of Smart 
Maintenance.  

The first of these arguments is the focus in HK of 
having a thorough process for establishing the values, 
mission, and vison of the organization in order to establish 
the direction for the organization (Jolayemi 2008). 
Golightly, Kefalidou, and Sharples (2018) have found that 
because of the large number of stakeholders and lengthy 
time frames involved, a clear strategy is vital to succeed in 
a project with the aim of implementing data-driven PdM.  

The next aspect is the process of vertical and 
horizontal integration when deploying this strategy 
(Jolayemi 2008). The approach for achieving this 
integration in HK often is referred to as catchball, which 
refers to a game of throwing a ball back and forth between 
players. In a corporate environment it can be defined as a 
facts-based dialog, up, down, and horizontally in the 
organization to align objectives and iterate towards the 
vision (Jolayemi 2008). This fits well with the need for 
internal and external integration that are central aspects of 
Smart Maintenance (Bokrantz et al. 2020). The use of 
PDSA is important to structure the catchball process 
(Jolayemi 2008).  

The influence of HK is illustration in Fig. 1 by having 
a strategy and operational process that are connected by a 
PDSA-loop at the tactical level. Between all three levels are 
arrows to illustrate the constant dialogue and feedback 
between the different levels (the catchball process). The 
processes at all levels are circular to illustrate the iterative 
nature of continuous improvement.  
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Fig 1. The proposed framework. The strategic level is based 
on the SPADE-model by Haskins (2008). The four phases 
at the operational level are inspired by Van De Kerkhof, 
Akkermans, and Noorderhaven (2015).  

 

3.2. The Strategic level 
The basic idea of I4.0 is to improve performance by 
combining many elements onto one system by vertical, 
horizontal, and end-to-end integration (Kagermann et al. 
2013). Systems engineering is a discipline that offers 
principles and practices for how to handle such complex 
systems (Kossiakoff et al. 2011). At the same time, the 
introduction of I4.0 will affect large parts of the 
organization, and the framework must be easy to 
communicate to people who are not familiar with I4.0 or 
systems engineering. The SPADE-framework developed by 
Haskins (2008) was created to support this kind of situation 
and embodies the essential aspects of systems engineering 
in a simple and jargon-free way.  

3.2.1. Stakeholders 
Because of the importance of internal and external 
integration in Smart Maintenance (Bokrantz et al. 2020) it 
is essential to identify all the stakeholders involved. This is 
normally the starting point in the SPADE-model and 
involves finding all the relevant stakeholders, 
understanding their roles, and resolving conflicting interests 
among them (Haskins 2008).  

3.2.2. Problem formulation 
The important factors in this part of the SPADE framework 
are (Haskins 2008): 

 to understand the current situation and the problem 
that needs to be solved, 

 to imagine possible alternative futures, 
 to establish measures of effectiveness that solutions 

developed at later stages can be measured against. 

For a maintenance strategy to be effective it must be 
consistent with the manufacturing and business strategy 
(Pintelon, Pinjala, and Vereecke 2006). It is also important 
to assess the maturity of the maintenance organization 
(Suzuki 1994) and the digital maturity of the organization 
as a whole (Schumacher, Schumacher, and Sihn 2020) to be 
able to later set realistic targets for its implementation. 
Finally, in the problem formulation one must develop 
measures of effectiveness (Sproles 2000). See Lundgren, 
Skoogh, and Bokrantz (2018) for a review of models for 
quantifying the effect of maintenance.  

3.2.3. Alternatives  
There are several different alternative strategies available 
when implementing Smart Maintenance (Pedersen and 
Schjølberg 2020). The viewpoints collected during the 
problem formulation will be natural starting points for 
development of solutions to solve the problems (Haskins 
2008).  

3.2.4. Decision-making 
When making decisions about the strategy for 
implementing a new technology one needs to consider not 
only technological aspects but also commercial aspects and 
organizational culture (Phaal, Farrukh, and Probert 2004). 
Among the choices the organization must make is what 
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capabilities to develop internally and what to outsource 
(Porter and Heppelmann 2014).  

A specific example related to Smart Maintenance is 
the recent development in remote sensing technology which 
has opened new possibilities for servitization of physical 
assets (Grubic 2018). One potential benefit of servitization 
is better alignment of operators and manufacturers when 
both have an incentive to maximize availability (Grubic and 
Jennions 2018). But relying heavily on an external service 
provider will reduce the possibility to develop the 
maintenance capability as a source of competitive 
advantage (Pintelon, Pinjala, and Vereecke 2006).  

3.2.5. Evaluation  
This is an activity that must be done continuously in order 
to secure that all relevant stakeholders are included; that the 
problem formulation is still relevant; and that feedback is 
used to make improvements (Haskins 2008).  

3.3. The Tactical level 
This level is related to the process of implementing the 
strategy. In other words, putting the strategy to work. 
According to a study by Kane et al. (2016) one of the main 
characteristics of the organizations that are successful in 
their digital transformation is a culture that emphasizes risk-
taking and rapid experimentation. Based on this the Plan-
Do-Study-Act cycle (PDSA), which is a tool for iterative 
improvement by testing ideas in practice (Hayes 2010), is 
chosen to illustrate the process at the tactical level.  

3.3.1. Plan 
In order to implement new maintenance concepts in a 
controlled way they must be segmented into manageable 
parts. Waeyenbergh and Pintelon (2002) have developed a 
framework for developing and implementing maintenance 
concepts that are suited to the needs of the organization. 
Several authors have proposed to use financial measures, 
such as return on investments, when prioritizing and 
planning for the implementation of Smart Maintenance and 
related maintenance concepts (Zio 2016). Calculating the 
return from the implementation of Smart Maintenance can 
however be hard in practice (Roda, Macchi, and Fumagalli 
2018). According to the experience of Waeyenbergh and 
Pintelon (2004), in a manufacturing environment normally 
it is sufficient to elicit the most important system from the 
operators and begin there to implement any new plan.  

3.3.2. Do  
This is the point where the ideas and concepts from the 
strategic level meets the real world. Running pilots can be 
an effective way of testing out the new digital solutions and 
learn how to use them (Hayes 2010, 254). But it is important 
to keep in mind that a major part of the potential of I4.0 is 
the integration of data, processes and organizational 
infrastructure, and that certain benefits only can be achieved 
when implementation has reached a certain scale (Schuh et 
al. 2017; Schneider 2018).  

3.3.3. Study 
Because activities normally do not go as planned it is 
important to study and compare the actual results against the 

expected results (Hayes 2010). This stage is often referred 
to as the check-stage, but Deming, who is one of the most 
important contributors to the development of the PDSA-
cycle, has argued that study is a better word because it better 
indicates the importance of learning (Moen and Norman 
2006) from the real-world feedback.  

3.3.4. Act 
Based on the results and lessons learned, together with 
feedback from the strategic levels, actions are taken and 
adjustments are made. A new plan informed by the 
accumulated learning is developed, and the PDSA-cycle is 
restarted (Moen and Norman 2006). 

3.4. Operational level 
This is the level where the digital solutions are used to 
achieve improved maintenance performance. Maintenance 
decision have traditionally been dominated by experience 
and intuition (Van De Kerkhof, Akkermans, and 
Noorderhaven 2015). The aim of Smart Maintenance is to 
improve performance by data-driven decision-making. The 
process that is needed to achieve this is illustrated with a 
variant of the PDSA-cycle that is inspired by the steps for a 
successful CBM program defined by Van De Kerkhof, 
Akkermans, and Noorderhaven (2015).  

3.4.1. Collect data 
Maintenance optimization models have been a popular topic 
for research for several decades (de Jonge and Scarf 2020), 
but lack of data has traditionally been a barrier for using 
these models in practice (Dekker and Scarf 1998; Bokrantz 
et al. 2020; Sikorska, Hodkiewicz, and Ma 2011). The 
increase in availability of data from recent technological 
developments offers the possibility to lower this barrier (Zio 
2016).  

3.4.2. Analyze data 
This step is about making assessments of equipment health 
and estimating remaining useful life based on the collected 
data. A large number of review papers for prognostics 
models for maintenance are available in the literature. See 
for instance Lee et al. (2014), Sikorska, Hodkiewicz, and 
Ma (2011), Si et al. (2011), Carvalho et al. (2019) or Zhang, 
Yang, and Wang (2019). 

3.4.3. Active maintenance 
Data collection and analysis have value only to the extent 
that it contributes to better decisions (Bokrantz et al. 2020). 
These decisions have been split into two groups: decisions 
related to when and how to perform active maintenance and 
decisions related to improvements that eliminates the causes 
of failures.  

3.4.4. Eliminate failures 
PdM will fail in an environment with too much variability 
(Suzuki 1994). It is important to continuously improve 
procedures and equipment design to reach sufficient level 
of stability (Van De Kerkhof, Akkermans, and 
Noorderhaven 2015).   
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4. Discussion  

It is a widely held belief among both academics and industry 
practitioners that I4.0 and CPS have the potential to bring 
large changes to manufacturing environments and 
maintenance is one of the business functions that will be 
affected. But there is no consensus definition of what I4.0 
entails or how to implement this concept. The large number 
of overlapping and sometimes poorly defined concepts for 
describing maintenance in a I4.0 context has contributed to 
the confusion.   

The technological development and falling cost of 
sensors and systems for collecting and analyzing data have 
led to an increasing interest in CBM, and several claims 
have been made on the potential for improving maintenance 
by using condition monitoring data to estimate remaining 
useful life of assets. But empirical studies indicate that the 
manufacturing industry struggles with the implementation 
of data-driven PdM in practice.  

The connection between LP and I4.0 has received 
much attention from the operations research community in 
the last 5 years. Several authors have proposed that LP 
forms an important foundation for succeeding with I4.0 and 
empirical evidence that support this has started to emerge. 
These studies have been done at a high level and the links 
between specific principles from LP and I4.0 and their 
effect on maintenance are still unclear. There are however 
compelling arguments that the introduction of lean 
principles such as standardization, focused improvement 
and empowerment can form a basis for successful 
implementation of I4.0.  

We propose in this paper a framework for the 
implementation of Smart Maintenance to help alleviate the 
challenges related to the introduction of I4.0 and data-
driven PdM identified in the literature study. The 
implementation of Smart Maintenance is a complicated set 
of activities and no model or framework can cover all 
aspects. Because of this there will be a need for different 
models and frameworks with different levels of abstraction 
to support this process (Rauzy and Haskins 2019). The 
framework in this paper has been developed with the aim of 
making a simple model that is well suited for facilitating 
communication among all the stakeholders and that 
provides a holistic overview for implementing Smart 
Maintenance. Because of this, the illustration in Fig. 1 has a 
high level of abstraction and the labels are purposely generic 
so it can fit a wide range of organizations with different 
levels of maturity when it comes I4.0 and maintenance 
management. There will be a need for several other models, 
frameworks, and tools for succeeding with the 
implementation of Smart Maintenance and some of these 
have been mentioned in Section 3.  

 
5. Conclusion  

As reported in this paper there are indications that industry 
is struggling with the implementation of I4.0 and data-
driven predictive maintenance, and that there is a need for 
models and frameworks for alleviating this situation. The 
framework proposed in this paper, which combines the 
underlying principles of I4.0 with existing models and 

frameworks from systems engineering, maintenance 
management and lean production is intended to inspire other 
researchers and offer pragmatic assistance to industry 
practitioners. 
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A B S T R A C T   

Reasonably accurate remaining-useful-life (RUL) predictions allow for the introduction of maintenance policies 
where resources, such as spare parts and personnel, are only acquired based on the predicted need. For some 
assets, such a policy will help reduce the cost of renewals but will also increase the probability of renewal cycles 
with long downtime and associated large losses. From a decision theoretical point of view decision makers are 
often risk-averse and therefore their financial risk tolerance should be considered. This paper presents a pro-
cedure based on expected utility theory for the optimization challenge. To calculate the expected utility the 
characteristic function is used to find the full probability mass function of the maintenance cost in a finite time 
interval. A numerical example and a case study, based on data from an offshore oil and gas platform, are pre-
sented to illustrate the proposed model. These examples show that using the long-run cost rate to optimize the 
presented maintenance policy may lead to decisions that are not in line with the preferences of a risk-averse 
decision maker.   

1. Introduction 

1.1. Background 

Technological developments in the last few decades related to con-
dition monitoring and systems for collecting, storing, and analyzing 
large amounts of data have the potential to considerably improve the 
maintenance of industrial assets [1–10]. Condition monitoring data can 
be used to discover degradation at an early stage, so that measures can 
be implemented to avoid the potential safety issues and production 
disturbances associated with unplanned corrective maintenance [11]. 
This information can also be used to reduce maintenance costs by 
helping maintenance organizations to focus their resources on the right 
equipment at the right time [12–16]. 

Examples of how predictions of remaining useful life (RUL) based on 
degradation models can be used to reduce maintenance costs are for 
instance provided in a number of studies on grouping of maintenance for 
multi-component systems with dependencies [17]. Examples of these 
studies are [18–22]. Other studies have combined degradation models 
with information on fluctuations in the cost related to maintenance over 
time to improve timing of active maintenance and by this reduce the 
overall costs. These temporal changes can be related to the direct cost of 

performing maintenance, for instance through changes in the price of 
spare parts [23] or related to unavailability losses. Unavailability loss 
caused by maintenance can be reduce by timing active maintenance 
with externally induce production stops [24] or periods when the pro-
duction rate or marked prices are low [25]. 

The potential benefit of degradation models that is the focus of this 
paper is the use of RUL predictions to reduce the need for having a short 
maintenance time. In line with the European standard for maintenance 
terminology, maintenance time is in this paper understood as the com-
bination of the time needed for active maintenance together with 
administrative, technical, and logistic delay [26]. Logistic delay is the 
time needed to mobilize the necessary resources, such as personnel and 
spare parts, to complete the active maintenance [26] and will for some 
assets constitute a large part of the total maintenance time. In a litera-
ture review on logistics and supply chain management for maintenance 
of offshore wind farms [27] presents several trade-offs between logistic 
delay and cost that managers must make on a strategic, tactical, and 
operational level. Examples are location of spare parts, e.g., central or 
distributed warehouses, or means of transport for maintenance 
personnel, e.g., boat or helicopter. In a study by [28] of maintenance in 
an electrical power company the cost of repair contracts fall exponen-
tially as the specified response time is increased. In a review of benefits 
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and challenges of prognostics for maintenance [16] presents several 
examples of how RUL predictions can be used to reduce costs, for 
example by purchasing spare parts “just-in-time” based on the RUL 
prediction. Comparted to a traditional spare parts policy of having spare 
parts in stock, such a spare parts policy will increase the time from 
maintenance decision is made to renewal can be completed. 

The potential for using RUL predictions for cost reductions can be 
particularly large for assets in remote locations [15,29,30]. An example 
of this is offshore oil and gas production, where the costs of having 
personnel and spare parts readily available are high. Settemsdal [31] 
presents a case study of an oil and gas platform where remote condition 
monitoring and predictive maintenance were used to achieve cost re-
ductions by reducing the level of personnel and spare parts offshore and 
at the same time achieve high availability. On the Norwegian conti-
nental shelf, unmanned production platforms are assumed to have the 
potential to achieve as much as 50% reduction in operating cost and 
30% reduction in capital cost compared with traditional concepts [32]. 
An important contribution to this cost reduction is that unmanned 
platforms can be made much simpler. Unmanned oil and gas platforms 
are however rare on the Norwegian continental shelf. A challenge with 
such concepts is longer maintenance time, which may result in down-
time losses that offset the savings [32]. In [33] unmanned platforms are 
grouped in five categories based on complexity. Different platform de-
signs will affect not only the logistic delay for maintenance, but may also 
influence the technical delay, administrative delay, and active mainte-
nance time. When developing the design and operating concept for such 
an oil and platform, several tradeoffs must be made between mainte-
nance time and cost. 

With a reasonable accurate RUL prediction, one can implement a 
maintenance policy with long logistic, administrative, and technical 
delay, while ensuring high availability. With improvements in technol-
ogy for remote condition monitoring and degradation modeling, main-
tenance policies with longer maintenance time becomes more attractive 
for assets where the cost of performing maintenance can be reduce by 
increasing maintenance time. A disadvantage of a maintenance policy 
with a long maintenance time is that this increases the probability of 
renewal cycles with long downtime. Because of this, assuring the 
robustness of such a maintenance policy is important. Cherkaoui et al. 
[34] defines two types of robustness for maintenance policies. The first is 
related to imperfect modeling and parameter estimation of the degra-
dation or failure and the extent to which miss-specification in these 
factors lead to higher maintenance cost. The second is related to the 
variability in cost from one renewal cycle to the next. The latter of these 
two is the focus of this study. 

The variability of the cost is usually not considered when evaluating 
maintenance policies, and most of the existing literature on maintenance 
optimization uses the long-run cost rate as the objective function to 
minimize [23,34–36]. Because choosing the alternative with the lowest 
expected cost will minimize costs in the long run, this is the best course 
of action for a risk-neutral decision maker (DM) who can endure any 
losses [37]. However, most managers are not risk-neutral and even large 
corporations can be harmed by single events with major consequences 
[38]. Based on this, it may be beneficial to take the decision maker’s risk 
tolerance into consideration when evaluating a maintenance policy 
where one trades a reduction in the expected cost with an increase in the 
variability of the costs between renewal cycles. 

1.2. Objectives 

The first objective of this paper is to propose a condition-based 
maintenance (CBM) policy with maintenance threshold (M) and main-
tenance time (MT) as the decision variables. The second objective is to 
present a procedure that takes into account the decision maker’s 
financial risk tolerance when optimizing such a maintenance policy. 

1.3. Contributions 

The first contribution of this paper is the presentation of an approach 
to minimize the long-run cost rate, including downtime costs, of a CBM 
policy by optimizing the maintenance threshold (M) and maintenance 
time (MT). A CBM policy with maintenance time as one of the decision 
variables has, to the best of our knowledge, not previously been pre-
sented in the maintenance literature. 

The second contribution of this paper is to demonstrate how such a 
CBM policy can be optimized based on the decision maker’s financial 
risk tolerance using expected utility theory (EUT). To achieve this, we 
build on an approach previously offered by Cheng et al. [39] to find the 
full probability mass function of maintenance costs in finite time for a 
system that is subject to a stochastic degrading process. We expand on 
Cheng et al. [39] in three areas:  

• Degradation process: While Cheng et al. [39] models the degradation 
as a gamma process, we propose a more general procedure that can 
handle non-monotonic degradation processes such as the Wiener 
process.  

• Maintenance policy: Cheng et al. [39] present a CBM policy where 
the inspection interval is the decision variable to optimize and the 
costs of preventive and corrective maintenance are fixed. In our 
paper, we assume a CBM policy with online monitoring and main-
tenance threshold (M) and maintenance time (MT) as the decision 
variables. The cost of corrective maintenance is in our model not 
fixed but depends on the length of the downtime.  

• Optimization criteria: While Cheng et al. [39] use value-at-risk (VaR) 
as optimization criteria, we use expected utility theory to find the 
maintenance policy that is best in line with the preferences of a 
risk-averse decision maker. 

1.4. Limitations 

Among the limitations of this paper are the following aspects:  

• We have not collected empirical data on the risk tolerance related to 
maintenance decisions. In the case study, a simple utility function 
based on empirical studies of financial risk tolerance in the oil and 
gas industry [40,41] was used to demonstrate the proposed main-
tenance policy. Any use of expected utility theory must be based on 
the preferences of the relevant DM for that specific case [42].  

• An important factor to consider when eliciting the decision maker’s 
preferences is the existence of agency problems [43]. Agents, such as 
maintenance managers, may have incentives to be more, or less, 
risk-averse than the organization’s principals, and because of this 
make choices that are not in line with the organization’s overall 
objectives [38,40,41]. Such considerations are however not in the 
scope of this paper, and we have assumed that the DM represents the 
preferences of the relevant stakeholders. 

• In this study, we have assumed that the maintenance time is deter-
ministic. This is probably not the case in most actual situations and a 
more realistic model with stochastic maintenance time can be 
developed in further work. 

• It is important to evaluate the prognostic accuracy when imple-
menting a CBM policy that is optimized based on a degradation 
model [44]. This was however not the focus of this paper, and 
evaluation of model and parameter accuracy was not performed for 
the case study.  

• A simple grid search was used to find the optimal thresholds for our 
decision variables. A more sophisticated optimization method would 
have improved the speed and accuracy of the proposed approach 
[45], but this was not the focus of this paper. 
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1.5. Organization 

The remainder of this paper is organized as follows. In Section 2, we 
review some of the existing literature on approaches for taking the 
variability of the cost into account when evaluating maintenance pol-
icies. In Section 3, we present the maintained system and the proposed 
maintenance policy. Section 4 introduces a numerical example, followed 
by a case study based on data collected from two pumps operated at an 
offshore oil and gas platform in Section 5. A discussion and conclusions 
are presented in Sections 6 and 7. The notations used in this paper are 
listed in Table 1. 

2. Alternatives to long-run cost rate as optimization criteria 

The long-run cost rate is the most used criterion for optimization of 
CBM-policies [23,34–36]. One reason for this is that the long-run cost 
rate is relatively easy to calculate compared to the cost in finite time [46, 
47]. Use of the long-run cost rate is well suited for less expensive com-
ponents and when the mean life is short compared to the planning ho-
rizon of the maintenance program [39]. One must also keep in mind that 
the solution that minimizes the expected cost will result in the lowest 
costs in the long run, given the ability to absorb any losses [38]. Because 
of this, it is reasonable to assume risk neutrality and use expected cost as 
optimization criteria when the stakes involved are small compared to 
the decision maker’s total assets [48,49]. However, even for large cor-
porations there will be some decisions where the potential consequences 
are so severe that minimization of expected cost is not desirable [41,50]. 
Empirical studies on attitudes towards risk normally finds that managers 
are risk-averse [40,51]. An effect of risk-averse behavior is the insurance 
industry [49,52]. Without risk aversion, the insurance industry would 
not be able to charge premiums that are greater than the expected costs 
from insurance claims, and thus would not be able to make a profit [48]. 

Most maintenance decisions will not have probable outcomes so 
severe that they can cause bankruptcy. Large fluctuations in costs may 
still be undesirable because they lead to inconveniences when preparing 
budgets [34] and can affect the organization’s terms for external 
financing [53]. Large losses can also cause side effects such as loss of 

management focus and reduced reputation among suppliers and cus-
tomers [43]. 

Few papers in the maintenance literature have presented approaches 
for taking the variability of the cost into account when evaluating 
maintenance policies [34,35]. One exception is Pandey et al. [54] which 
presents a method for finding the variance of the cost of a CBM policy in 
finite time. This is further developed by the same authors in Cheng et al. 
[39] where a method for finding the full probability mass function of the 
maintenance cost in finite time is presented. The Value-at-Risk (VaR) at 
the 95th percentile, which is the level of cost that it is only 5% proba-
bility of exceeding, is then used to evaluate the optimal inspection in-
terval. Use of measures such as variance and VaR gives a better 
understanding of the variability of the cost and VaR is widely used for 
managing financial risk [53]. A challenge with both these approaches is 
that they tell nothing about the possibility of extreme values above the 
defined threshold [53]. This is not a large problem if the distribution of 
the cost is normally distributed, and the tail risk quickly goes to zero 
[55], but this is not always the case. As show in [56] the skewness and 
kurtosis of maintenance cost in finite time can vary considerably as the 
decision variables are changed. 

Another approach for taking the variability of cost into account when 
optimizing maintenance policies are presented in [34,57]. Both builds 
on the concept of portfolio selection from Markowitz [58], where the 
basic idea is to minimize the sum of the expected cost and variance 
depending on some weighting coefficient. A challenge with this 
approach is that experience has shown that decision makers may have 
preferences between alternatives with the same expected value and 
variance [42, Ch. 4]. This is especially the case if there are potential 
outcomes among the alternatives with severe consequences and low 
probability. The reason for this is that the decision maker’s preferences 
may be influenced by attitudes towards risk [37]. When the decision 
maker has an aversion to potential large losses, this will influence the 
preference in ways that cannot be captured by using the expected value 
or the other methods presented above in this section [42]. 

Expected utility theory (EUT) is a framework for taking attitudes 
towards risk into consideration when assessing alternatives with un-
certain outcomes. The basis of EUT is axioms for describing the prefer-
ences of a rational decision maker faced with decisions under 
uncertainty [49]. EUT has previously seen little use in maintenance 
decisions [59], but some use of multi-attribute utility theory has been 
presented in the maintenance literature [60]. Examples are [61] who 
find the optimal inspection interval for a CBM-policy considering both 
preferences for cost and downtime and [28] for selecting the repair 
contract that offers the best tradeoff between cost and response time. 

Cumulative prospect theory (CPR) is another approach for taking the 
decision maker’s preferences for risk into account. CPR has been used in 
some studies related to optimization of the design and maintenance of 
civil infrastructure [62–64]. The CPR theory was first proposed by [65] 
and is more descriptive than EUT when modeling the preferences of the 
decision makers [66]. For comparisons between the use of EUT and CPT 
for maintenance decisions, see [63,67]. 

This paper applies a unidimensional expected utility theory 
approach and demonstrates how EUT can be used to take into account 
the preferences of a risk-averse DM. For an introduction to EUT see for 
instance Clemen [49] or Keeney and Raiffa [42]. 

3. Maintenance policy 

3.1. Description of the maintained system 

To reap a benefit from having a degradation model there must be 
some way of using the predictions of future states of the component to 
improve availability or reduce costs [13]. In this paper it is assumed that 
the RUL-predictions from the degradation model can be used to achieve 
cost reductions by increasing the maintenance time (MT). Maintenance 
time is in this paper understood as the time interval from a decision to 

Table 1 
Notation.  

Y(t) Degradation at time t. 
L Defined failure threshold. 
M Maintenance threshold, (threshold where mobilization for renewal is 

started). 
TM,TL First hitting time (FHT) of the thresholds M and L. 
TD Length of downtime for one renewal cycle. 
MT Maintenance time, (total time from TM to renewal is completed including 

logistic delay). 
TR Length of one renewal cycle (TR = TM + MT). 
cR(MT) Cost of renewal as a function of the maintenance time (MT). 
cF(MT, τ) Fixed maintenance cost for the period (0, τ] as a function of the 

maintenance time (MT). 
θ Shape factor for cR and cF . 
cD Downtime cost per unit of time. 
RTH,

RTL 

High and low risk tolerance coefficient. 

ν, σB Drift and diffusion coefficient of the Wiener process. 
B(t) Standard Brownian motion. 
λ, μ Shape and mean parameter for the inverse Gaussian (IG) distribution. 
τ The time horizon for which maintenance cost is evaluated. 
μT, μM Mean time to failure (E[TL ]), mean time between TM and TL (E[TL − TM]). 
ρ Unit cost (greatest common divisor of costs). 
C(τ) Maintenance cost in the time interval (0, τ]. 
ϕ(ω, τ) The characteristic function of C(τ). 
c∞ Long-run cost rate. 
qM(k) Probability of mobilization for maintenance starting at time k. 
qD,k(a) Probability that both TD = a and TM = k occurs. 
qC(c, τ) Probability of maintenance cost c in time interval (0, τ]. 
nC An integer such that nCρ is the upper bound for C(τ). 
u(⋅), l(⋅) Utility function, loss function.  
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mobilize for maintenance is made to the renewal is completed (Fig. 1). It 
is assumed that changing the MT can affect costs in two ways. The first is 
that the cost of renewal, cR(MT), is reduced when the required main-
tenance time is increased. As an example, if a short response time is 
required from a maintenance contractor, the contractor will likely 
charge a higher price for each renewal than if the required response time 
is extended [28]. The other assumption is that ensuring a short main-
tenance time may require costs that are not related to a specific renewal. 
This may for instance be the cost of having a service vessel on call so 
maintenance personnel can be transported to the site at short notice. 
This is referred to as fixed cost as a function of maintenance time: 
cF(MT). An increase in maintenance time can be adjusted for by setting a 
more conservative threshold on the health indicator for when the de-
cision to mobilize for maintenance is made. If the RUL prediction has a 
reasonable level of accuracy, this adjustment can be made without 
having an increase in downtime costs that offset the savings from 
increasing the maintenance time. 

There are two decision variables in this policy. The first is the 
maintenance threshold (M). When the health indicator passes M for the 
first time, a decision to mobilize for maintenance is made. This time is 
labeled TM = inf[t : Y(t) ≥ M]. Maintenance time (MT) is the other de-
cision variable. This is the time from mobilization for maintenance is 
started to renewal is completed and includes active maintenance time 
together with logistic, technical and administrative delay [26]. Fig 1 
illustrates the parts that make up maintenance time. MT is assumed 
deterministic. 

The length of one renewal cycle (TR) is TM + MT. The asset is 
considered failed and taken out of production if the health indicator 
passes the failure threshold L. This time is labeled TL = inf[t : Y(t) ≥ L]. 
If TL < TR there is a downtime (TD) of length TR − TL. The cost rate of 
downtime is cD. If failure happens in the time increment that mobili-
zation is completed (TL = TR) there is no downtime. Fig 2 shows an 
illustration of a sample degradation path. Renewal is assumed to bring 
the asset back to “as-good-as-new” condition. 

3.2. Long-run cost rate when assuming a Wiener process 

In cases where active maintenance brings the component back to as- 
good-as-new condition, renewal theory can be used to find the expected 
maintenance cost [46]. The long-run cost rate, the expected average cost 
per unit of time in an unbounded timeframe, can be found by dividing 
the expected renewal cycle cost by the expected renewal cycle length 
[36]. 

lim
τ→∞

E[C(τ)]
τ =

E[C(TR)]

E[TR]
= c∞ (1) 

The Wiener process can be used to model the degradation when the 
degradation increments are independent and normally distributed [68]. 
The Wiener degradation model is often expressed as [35]: 

Y(t) = y0 + vt + σBB(t) (2)  

where y0 is the level of degradation at time t = 0, v is the drift and σB is 
the diffusion coefficient. B(t) represents the standard Brownian motion. 
If degradation data is available the parameters ν and σB can be estimated 
by maximum likelihood estimation (MLE) [35]. One convenient prop-
erty of the Wiener process is that the first passage time to a fixed 
threshold follows an inverse Gaussian (IG) distribution [68]. If no 
maintenance is performed TL ∼ IG(μ, λ), with μ = (L − y0)/v and λ =

(L − y0)
2
/σ2

B [69]. The probability density function (PDF) of TL can be 
written as [46]: 

fT(t; μ, λ) =
̅̅̅̅̅̅̅̅̅

λ
2πt3

√

exp

(

−
λ(t − μ)2

2μ2t

)

(3) 

Based on this the long-run cost rate can be found by the following 
expression: 

c∞(M,MT) =
cR(MT) + cD

∫ MT

0
fT(t; μM , λM)(MT − t)dt

M/ν + MT
+ cF(MT),

M ∈ [0, L − νMT]
(4)  

with μM = (L − M)/ν, and λM = (L − M)
2
/σ2

B. Further on, cR(MT) is the 
cost of renewal as a function of maintenance time, cD is the downtime 
cost rate and cF(MT) is the part of fixed costs affected by the mainte-
nance time. 

Using Eq. (4) the combination of M and MT that minimizes the long- 
run cost rate, including downtime cost, can be found by performing a 
grid search. For some assets, depending on the variance of the degra-
dation process and reduction in cR and cF as MT is increased, there will 
be some value larger than the minimum value of MT that minimize the 
long-run cost rate. However, as described in the introduction and Sec-
tion 2 it is not always appropriate to use only the expected cost when 
optimizing a maintenance policy. Especially in this policy, where by 
increasing the maintenance time we trade a reduction in the expected 
cost by increasing the variability of costs between renewal cycles, it can 
be argued that the decision maker’s financial risk tolerance should be 
considered. Because of this, an alternative approach to optimizing this 
maintenance policy, which considers the preferences of a risk-averse 
DM, is presented Section 3.3. 

3.3. Taking the preferences of a risk-averse decision maker into account 

This Section presents how expected utility theory (EUT) can be used 
Fig. 1. Maintenance time consists of logistic, administrative, and technical 
delay in addition to active maintenance time. Illustration is inspired by [26]. 

Fig. 2. Illustration of a sample degradation path. Mobilization for maintenance 
is started the first time the health indicator passes the maintenance threshold M. 
This time is labeled TM . Maintenance time (MT) is the sum of logistic delay and 
active maintenance time (AMT), i.e., time from TM to renewal is completed. The 
total time for one renewal period is thus: TM + MT = TR. If the failure threshold 
L is passed before TR there will be a downtime (TD) with duration TR − TL. 
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to take into account the preferences of a risk-averse decision maker 
(DM). It has been shown that if one can assign an appropriate utility to 
every possible outcome for a range of decision, then choosing the de-
cision with the highest expected utility is the best course of action [42]. 
Because the range of possible outcomes can be large, it is often conve-
nient to model the preferences with a utility function [49]. The shape of 
the utility function indicates the DMs preferences towards risk. If the 
utility function forms a straight line the DM is defined as risk-neutral. 
For the risk-neutral DM, the decision the maximizes the expected 
value will also maximize the expected utility. If the utility function is 
concave the DM is defined as risk-averse. A risk-averse DM is willing to 
pay more to avoid an uncertain situation with potential large losses than 
the expected cost of the outcome [64]. Due to this, the use of expected 
cost as optimization criterion for a risk-averse DM may lead to decisions 
that are not in line with the preferences of this DM. 

There are several different techniques for defining utility functions, 
and the choice of utility function must be based on the preferences of the 
relevant DM and the context for the decision [42]. The exponential 
function is however often a good first choice because of its simplicity 
and interpretability [70]. This is often written as u(x) = − exp( −
x /RT), where RT is the risk tolerance coefficient and x is the variable of 
interest, for instance net present value [40,42]. The RT-coefficient can 
be estimated by asking the DM to choose between doing nothing and 
entering a lottery with an equal probability of receiving RT or − RT /2. 
The RT where the DM is indifferent between entering the lottery or 
doing nothing indicates the risk tolerance [40,42,49]. 

In this paper we are dealing with maintenance cost and thus it is 
more appropriate to use the term loss function (l) [59]: 

l(Cτ) = exp
(

Cτ

RT

)

, 0 ≤ Cτ ≤ cu (5) 

A challenge with using an exponential loss function is that if the 
probability of the outcomes does not go to zero fast enough, there will be 
some consequences so undesirable that it becomes challenging to make 
meaningful comparisons of alternatives [49]. Due to this, the loss 
function must have an upper bound [50] denoted cu in Eq. (5). 

An important concept in EUT is the certainty equivalent (CE). This is 
an amount such that the DM is indifferent between the consequences of 
an uncertain decision and receiving that amount for certain, i.e. l(CE) =
E[l(Cτ)] [42]. As long as the loss function is monotonic (a small loss is 
always preferred to a larger loss) the alternative with the smallest CE 
will also be the alternative with the smallest expected loss (conversely 
the highest expected utility) [42]. Because CE is in money terms, com-
parisons with the expected value can be made [49]. The difference be-
tween the expected value and the CE is called the risk premium [64]. 
When the CE is related to a loss, this is often referred to as an insurance 
premium [50]. This is the amount a DM would pay to avoid the financial 
responsibility of the possible outcomes of an uncertain condition [42]. 
Based on the loss function specified in Eq. (5) the CE can be found by the 
following expression: 

CE(RT) = ln(E[l(Cτ)])RT = ln

(
∑c=cu

c=0
qC(c, τ)exp

( c
RT

)
)

RT (6) 

To solve Eq. (6), the probability mass function of the maintenance 
cost in a finite time horizon (0, τ] must be found: qC(c,τ) = Pr[C(τ) = c]. 
This is the topic of the next Section. 

3.4. The probability mass function of maintenance cost in finite time 

This Section is based on a method by Cheng et al. [39] for finding the 
probability mass function (PMF) of maintenance cost in a finite time 
interval with use of the characteristic function. We have made some 
adjustments to this method to fit with our assumptions of a 
non-monotonic degradation process and varying downtime length. 

In line with Cheng et al. [39] cost and time have been discretized for 

practical reasons because this simplifies the computation of the distri-
bution of the maintenance cost in finite time. Discretization of time can 
be justified because maintenance decisions are often made at fixed in-
tervals, for instance at daily planning meetings. Discretization of time 
can however cause distortions when calculating the downtime cost if the 
evaluated downtime length is short compared to the time increments. 
This should be considered when setting the intervals when discretizing 
time. 

3.4.1. The characteristic function of the maintenance cost in finite time 
According to Cheng et al. [39] the PMF of the maintenance cost in a 

finite time interval can be found by the following discrete Fourier 
transform (DFT): 

qC(c, τ) = cF +
1

nc + 1
∑nC

m=0
ϕ(ωm, τ)e− iωmc (7)  

where ϕ(ω, τ) = E[exp(iωC(τ))] is the characteristic function of C(τ), i =
̅̅̅̅̅̅̅
− 1

√
is the imaginary number and ω is the angular frequency [71]. Since 

the method for finding the characteristic function of C(τ) used in this 
paper is based on [39], only the key formulas are presented here. The 
reader is directed to [39] for a more detailed description of this part of 
the method. For simplicity we omit the fixed cost (cF) in the remainder of 
this section. 

We discretize the maintenance cost, C(τ), in steps 0, ρ, 2ρ, …, nCρ. 
Where nCρ is an upper limit of the cost such that Pr[C(τ)> nCρ] ∼ 0. 
The angular frequency, ω, is discretized in the quantities: 0, Δω, 2Δω,

…, nCΔω. The unit frequency is defined as [39]: 

Δω =
2π

(nC + 1)ρ (8) 

If the level of nC is set too low, the probability mass outside the range 
[0, (nC +1)ρ] is arbitrarily moved inside this range when the DFT is 
performed, thus distorting the results [71]. Setting a too high level for nC 

will on the other hand give a long computational time because Eq. (10) 
must be solved τ(nc +1) times. Because the length of maintenance time 
has a large effect on the upper bound for maintenance cost, we propose 
the following adjustment to Eq. (19) in [39] which offers a pragmatic 
tradeoff between accuracy and computational effort when calculating 
nC: 

nC(MT) =
⌈

10
̅̅̅̅̅̅̅̅
MT

√
cDτ

μT ρ

⌉

(9)  

where ⌈. • ⌉ is an integer ceiling function and μT is the mean time to 
failure (L/ν). 

The initial value of the characteristic function is ϕ(ω,0) = 1 for all 
values of ω since Cτ(0) = 0. As show in Eq. 27 in Cheng et al. [39] the 
characteristic function of the maintenance cost for the time interval (0, τ]
can be found by the following renewal type equation: 

ϕ(ω, τ) =
∑τ

k=1
ϕ(ω, τ − k)qϕ(ω, k) + Gϕ(ω, τ) (10)  

where qϕ(ω, τ) represents the characteristic function of a first renewal 
cycle, T1, and Gϕ(ω, τ) represents a not completed renewal cycle at the 
end of the time interval (0,τ]. The cost of one renewal cycle is: cDTD + cR, 
where TD = [0,1,…,MT] is the length of downtime and cD and cR are the 
costs of downtime and renewal. Based on this, qϕ at time k + MT can be 
expressed as: 

qϕ(ω, k + MT) =
∑MT

a=0
eiω(cD(MT − a)+cR)qD,k(a),

k ∈ [0, τ − MT]
(11) 

Where a = MT is preventive maintenance (i.e., that TM + MT ≤ TL) 
and no downtime cost is incurred. To solve Eq. (11) we need to find the 
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PMF for the length of downtime (qD)when the mobilization time TM = k. 
This is treated in the next two Sections. 

3.4.2. The distribution of the first hitting time (FHT) of the maintenance 
threshold (TM)

We now relax the assumption that the degradation follows a Wiener 
process. We keep the assumption that the degradation follows a Lévy 
process with the following properties [72]:  

1 The starting point is known: Pr[Y(t = 0) = 0] = 1.  
2 Increments are independent: For any 0 ≤ t1 < t2 < … < tn < ∞,

Yt2 − Yt1 , …, Ytn − Ytn− 1 are independent.  
3 Increments are stationary: Y(t) − Y(s) has the same distribution as 

Y(t − s), ∀ s ≤ t.  
4 Y(t) is continuous in probability, for any ε > 0 and t ≥ 0, it holds that 

lim
h→0

Pr[|Yt+h − Yt | > ε] = 0.

Because the increments are independent and stationary (property 2 
and 3), the degradation in any time increment is a random variable Y(t +
dt) − Y(t) = S(dt), with the PDF g(s). Because the starting point is 
known (property 1), the level of the health indicator at the first time- 
increment is: Y(k = 1) = Y(k = 0)+ S(dt).

In the numerical approach both the time and health indicator are 
discretized. k = 0, 1, …, ∞ is a time index corresponding to t = 0,dt,
2dt,…, and n is an index for the health indicator. To discretize the health 
indicator, equally sized intervals of length Δy are used. By setting the 
increment Δy sufficiently small, we can approximate the continuous 
degradation process arbitrarily close. A vector fk is used to hold the PMF 
of Y(k⋅dt), where fk[n] = Pr([n − 0.5]Δy ≤ Y(k⋅dt)< [n + 0.5]Δy). The 
range of n is limited by a lower value nl such that 
Pr(Y(k⋅dt) ≤ [nl − 0.5]Δy) is sufficiently small to be ignored. 

The PMF of the degradation in one time increment dt is discretized 
with the same interval Δy. In the numerical procedure g is a vector to 
hold the PMF bounded by some lower and upper values sl and su such 
that almost all probability mass is within these values. Typically, the 
bounds are defined by +/- 5 to 10 standard deviations from the expected 
degradation in one time increment, depending on the desired accuracy. 

An upper value of the vector fk is pragmatically set to nu = nL + su, 
where nL represents the failure threshold (L). Further nM is the index 
corresponding to the maintenance threshold (M), thus we have (nL − 0.5)
Δy = L and (nM − 0.5)Δy = M. Note that nl < 0, such that if our pro-
gramming language does not allow negative indexes, we may shift all 
indexes to the right. 

From the law of total probability, a discrete convolution may be used 
to update the PMF of the health indicator at the first time increment (k =

1): 

fk=1[n] = (fk=0 ∗ g)[n] =
∑su

m=sl

fk=0[n − m]g[m] (12)  

where ∗ is the convolution operator. As time evolves, i.e., for k = 2, 3,… 
the PMF is similarly updated by letting fk[n] = (fk− 1 ∗g)[n]. 

Special treatment is required when we search for the first hitting time 
of M, i.e., TM. A new vector fk,M is introduced to represent the first hitting 
time, i.e., 

fk,M [n] =
(
fk− 1,M(k − 1|Y(t⋅dt)<M,∀t< k) ∗ g

)
[n] (13) 

The probability that TM occurs at time k is thus: 

qM(k) = Pr[TM= k|Y(t⋅dt)<M,∀t< k] =
∑nu

n=nM

fk,M [n] (14) 

After the calculation of qM(k) we set fk,M[n] = 0, n ≥ nM to account for 
the condition that Y(t⋅dt) < M,∀t < k. 

3.4.3. The PMF of the downtime length (TD) 
To find the distribution of the cost associated with one renewal cycle, 

the PMF of the downtime length, TD, must be found for all values of k: 

qD,k(a) =Pr[TD =MT − a∩TM = k]
=Pr[Y((k+a)dt)≥ L∩TM= k|Y(t⋅dt)< L,∀t< (k+a)],a∈ [0,MT]

(15) 

The probability that the health indicator passes both the mainte-
nance (M) and defined failure threshold (L) in a single time increment 
(TD = MT) can be found by the following expression: 

qD,k(a = 0) = Pr[TD = MT ∩ TM= k|Y(t⋅dt) < L, ∀t < k]

=
∑nu

n=nL

fk,M [n]
(16) 

A vector fa,L,k is introduced to hold the probability mass of the health 
indicator that enters the interval [nM, nL) at time increment k. The evo-
lution of this probability mass can be updated by using a recursive 
routine similar to the one used in the previous Section: 

fa,L,k[n]
=
(
fa− 1,L,k(a − 1 ∩ TM = k|Y(t⋅dt) < L, ∀t < (k + a)) ∗ g

)
[n] (17) 

The probability of a downtime length of a = j, j ∈ [1,MT) when k =

TM can be found by, 

qD,k(a= j) =
∑nu

n=nL

fa=j,L,k[n] (18) 

Similar to the previous Section, we set fa,L,k[n] = 0, n ≥ nL at the end 
of each iteration to account for the condition that Y(t⋅dt) < L,∀t < (k +

a). 
If the FHT of the failure threshold, L, has not occurred before TM +

MT there is no downtime, and the renewal cycle is ended with pre-
ventive maintenance. The probability of preventive maintenance, i.e., 
a = MT, is: 

qD,k(a = MT) = Pr[TD = 0 ∩ TM= k|Y(t⋅dt) < L, ∀t < (k + MT)]

=
∑nu

n=nl

fa=MT,L,k[n]
(19)  

3.4.4. The cost of the last renewal cycle 
This Section presents calculation of the cost of the last renewal cycle 

in the time interval (0,τ]. If mobilization for maintenance is started in the 
time interval: (τ − MT, τ], downtime costs may be incurred from an 
incomplete renewal cycle. To take account of this, the probability of all 
combinations of TM and TD for an incomplete renewal cycle at the end of 
the defined time horizon must be calculated. The cost of renewal does 
not accrue for the last renewal cycle if TM + MT > τ. The last term in Eq. 
(10) can thus be expressed as: 

Gϕ(ω, τ) =
∑MT

a=0

∑MT

b=1

[
eiωcq(a,b)qD,k(TD =MT − a, TM = τ − (MT − b))

]
+ QM(k)

(20) 

Where cq(a,b), is the downtime costs from a renewal cycle that is not 
completed before τ: 

cq(a, b) =
{
(MT − a − b + 1)cD if (a + b) ≤ MT

0 otherwise. (21) 

If the mobilization threshold is not reached in the time interval (0,τ], 
i.e.: TM,1 > τ, there is no costs related to downtime or renewal (i.e., Cτ =

0). The last part of Eq. (20) is thus: 

QM(k) = 1 −
∑k

j=1
qM(j) (22) 

If we want to include the downtime and renewal costs from the last 
renewal cycle that accrue after τ this can be done by substituting Eq. 
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(20) by Eq. (22) and calculating Eq. (11) for k ∈ [0,τ]. This may in some 
cases be more appropriate if the asset is to remain in operation after the 
defined time interval (0, τ]. 

4. Illustrative example 

This section presents an example of how the proposed policy can be 
applied. The parameters are given in Table 2. Units have not been 
specified because they have no practical relevance. 

We assume that the degradation increments are normally distributed: 
g(s) ∼ N(ν, σ2

B). This gives a mean time to failure of: L /ν = 100. We 
further assume that the cost of performing renewals decreases exponen-
tially when the maintenance time (MT) is increased. An example of this 
cost structure could be the price a maintenance contractor requires to enter 
a contract for performing a renewal, given the maintenance time required. 
We remind the reader that the maintenance time in this study is defined as 
the total time from the decision to mobilize for maintenance is made and 
until the renewal is completed. If the required maintenance time is short, 
the contractor may need to use an expensive means of transportation for 
maintenance personnel, e.g., a helicopter, to ensure a short enough logistic 
delay to complete the renewal in the required time. If the required main-
tenance time is increased, the need for expensive measures to ensure that 
the renewal is completed within the required time is reduced, and the costs 
of such measures approach zeros as the MT is further increased. A similar 
cost structure for repair contracts has previously been presented in [28]. In 
practice, the decision maker will probably have a discrete number of 
combinations of renewal cost and maintenance time to choose from. In this 
example the equation cR(MT) = cR1 + cR2exp(− (MT − 1)/θ), MT ≥ 1 is 
used to represent combinations of renewal cost and maintenance time 
(MT) available to the decision maker (Fig 3). Because cost is a discrete 
variable, as specified in Section 3.4, cR(MT) is rounded to the nearest 
multiple of the unit cost (ρ). The fixed cost, cF, is in this example assumed 
to not change with MT and can thus be removed from the equation. The 
health indicator has been discretized with increments Δy = 0.01. 

The PMF of the maintenance cost was calculated using Eq. (7) over a 
grid with combinations of the decision variables. The maintenance time 
(MT) was varied from 1 to 29 with a step size of 1 and the maintenance 
threshold (M) from 0 to 9.9 with a step size of 0.1. Two examples of the 
PMF for the maintenance cost with different threshold for the decisions 
variables are shown in Fig 4. A drawback of using discrete Fourier 
transform to find the probability distribution of maintenance cost is that 
some distortions are introduced [73]. The distortions are so small that 
they do not affect the calculation of the expected cost but can pose a 
challenge when calculating the loss function. This is because of the rapid 
rise of the exponential function in Eq. (5) when the cost becomes large. 
We introduce a cutoff level at 10− 15 and remove all probabilities below 
this level. This will also remove some of the actual probability distri-
bution of Cτ. Different cutoff levels where tested and it was found that as 
long as the level is below 10− 7, the choice of decision variables in this 
example is not affected. 

Fig 5 shows a surface plot of the expected cost, E[Cτ], for combina-
tions of M and MT. The expected cost based on the long-run cost rate, the 
expected cost based on the finite time approach, and the certainty 
equivalent (CE) for a risk-averse DM are compared in Fig 6 and Table 3. 
The optimal decision for a risk-neutral DM is to choose the combination 
of decision variables that gives the lowest expected cost. The two ap-
proaches based on the long-run cost rate and the expected cost in a finite 
time horizon both result in practically the same optimal decision vari-
ables in the example. Based on this, a risk-neutral DM has little to gain 
from using the more involved procedure specified in Section 3.3 and 3.4 
to find the cost in finite time compared to using only the long-run cost 
rate in Eq. (4). 

As expected, a more conservative maintenance threshold, M = 3.4, 
and a shorter maintenance time, MT = 10, is preferred when the 
minimization of the CE for a risk-averse DM is used as decision criterion. 
We remind the reader that, as presented in Section 3.3, the CE represents 
an amount such that the DM is indifferent between the consequences of 
an uncertain decision and receiving this amount for certain. The 
preferred thresholds for the decision variables for the risk-averse DM 
give an expected cost of 3.6. This is almost twice as high as the expected 
cost when choosing the thresholds for the decision variables preferred 
by a risk-neutral DM (1.9). 

On the other hand, a risk-averse DM facing the PMF of the mainte-
nance cost when the decision variables are based on the minimization of 
the long-run cost rate (MT= 16, M= 3.2) would be willing to pay up to 
100.0 to be relieved of this uncertainty. This means that the insurance 
premium (CE − E[Cτ]) that the risk-averse DM would be willing to pay 
would be very high and demonstrates that using the long-run cost rate as 
decision criterion will give a choice of decision variables not in line with 
the preference of that DM. If minimization of CE is used as decision 
criterion, this will give a CE = 4.3 for the risk-averse DM. This is less 
than one twentieth of the CE when the minimization of the expected cost 
is used as decision criterion. This shows that the minimization of the CE 
is a better choice of decision criterion for the risk-averse DM in this 
example. 

The circular markers in Fig 6 show results of Monte Carlo (MC) 
simulations with 106 sample paths. The MC simulations was performed 
on the NTNU IDUN computing cluster [74]. Even with this large number 
of samples, there are some deviations from the results of the numerical 
routine for the CE when MT > 10. This is because the exponential form 
of the loss function in Eq. (5) puts a large weight on outcomes with high 
cost when the risk tolerance is low. 

Table 2 
Parameters used in the example.  

Parameter Value 

Failure threshold  
L 10 
Evaluation horizon  
τ 100 
Degradation process  
ν,σB 0.1,0.5 
Cost structure  
cD ,cR1, cR2,θ 10,1,9,5 
Unit cost:  
ρ 1 
Risk tolerance  
RT 5  

Fig. 3. Plot of combinations of renewal cost (cR) and maintenance time (MT)
available to the decision maker (DM). We assume that a part of the renewal cost 
is fixed (cR1) while the rest of the cost decrease (cR2) with increasing MT. 
Maintenance time is the time from a maintenance decision is made until 
renewal is completed. 
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5. Case study 

5.1. Background 

The case study is based on data collected from two pumps operated at 
an offshore oil and gas platform. These pumps have previously been 
described in [75] and more information on the pumps can be found in 
that paper. Both pumps have a problem with cavitation. This leads to 
degradation of the impeller. A health indicator based on the deviation 
between the expected and actual head delivered by the pumps has 
proven to be a good indicator of the condition of the impeller. The 
operating company has defined a 20% deviation on this health indicator 
as the failure threshold for these pumps. It is assumed that the pumps are 
shut down when the health indicator exceeds the defined failure 

threshold, and that this cause a loss of production until renewal of the 
failed pump is completed. It is further assumed that low output because 
of impeller wear is the only failure mode. 

In contrast to the example in Section 4, we assume in the case study 
that the cost of performing renewals, cR, is not affected by a change in 
maintenance time, i.e., cR is constant in this section. Instead, we assume 
that having a short maintenance time requires costs that are not related 
to a specific renewal. For example, if the required maintenance time on 
an offshore oil and gas platform is very short, this can only be achieved if 
the necessary resources, such as maintenance personnel, are perma-
nently stationed on the platform. Having personnel stationed offshore 
will incur costs regardless of whether renewals are performed or not. An 
alternative with lower fixed costs, but longer maintenance time is to 
have maintenance personnel on call onshore and then transport them to 
the site when needed. Along the same line of reasoning, several different 
combinations of cost and maintenance time can be thought of based on 
factors such as spare parts policy, means of transport, or available tools. 
Data on costs and maintenance time for specific alternatives have not 
been collected for the case study, instead the equation 
cF(MT) = cF1exp(− (MT − 1)/θ), MT ≥ 1 is used to represent a tradeoff 
between maintenance time (MT) and fixed maintenance cost (cF) 
available to the DM. Fig 7 shows degradation paths and renewal times 
from the case study. 

5.2. Assuming normally distributed degradation increments 

The autocorrelation plot in Fig 8 indicates that the degradation 
process has independent increments. Fig 9(a) shows that the histogram 
of the degradation increments has a bell-shaped curve with both positive 
and negative increments. Of the three most popular stochastic models 
for continuous degradation (Wiener, gamma and, inverse Gaussian [9]), 
the Wiener process fits best with this dataset. When assuming a Wiener 
process the MLE for the drift parameter is ̂ν = 0.0459, and the estimate 
for the diffusion coefficient is σ̂B = 0.3050. 

5.3. Alternative model of the degradation increments 

As can be seen in Fig 9(b), the tails of the case data do not fit well 

Fig. 4. Plots of the probability mass function of the maintenance cost in finite time with decision variables (a): MT = 3, M = 8.1 and (b): MT = 16, M = 3.2. 
When the MT is increased, the cost of performing renewal is reduced, but the possibility of renewal cycles with long downtime is introduced, resulting in a long tail 
of possible outcomes with high costs but low probability in (b). 

Fig. 5. A gridplot of the decision variables and the resulting expected cost. The 
solid line shows the maintenance threshold (M) which minimize the expected 
cost depending on the maintenance time (MT). 
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with the assumption of normally distributed degradation increments. To 
better represent the excess kurtosis of the historical data, a second 
approach for modeling the degradation increments was introduced. In 
this approach, the degradation increments were assumed to come from a 

combination of three different normal distributions. The GaussianMix-
ture model, from the Python library Scikit-learn [76], was used to esti-
mate the mean, variance and weight of the three distributions (Fig. 4). 
This gives a representation of the degradation increments that are closer 
to the historical data, especially in the tails (dotted line in Fig 9). This is 
labeled the GaussMix-degradation increments. 

5.4. Risk tolerance in the case study 

The operating company’s risk tolerance related to maintenance de-
cisions was not investigated in this case study. In an empirical study of 
capital allocations to petroleum exploration projects, Walls found the 
risk tolerance of US-based oil companies to range between 1 and 100 
MUSD. We have used these values to represent risk-averse decision 
makers with low and high risk tolerance in the case study, labeled as RTL 
and RTH, respectively. The rest of the parameters used in the case study 
are shown in Table 5. 

Fig. 6. Comparison of the expected cost (E[Cτ]) and certainty equivalent (CE) depending on risk tolerance, shown in (a), and the optimal maintenance threshold (b) 
depending on maintenance time (MT). As show in (b), a risk-averse decision maker will prefer a more conservative maintenance threshold. The circular points 
represent the Monte Carlo simulations. 

Table 3 
The optimal decision variables based on the preferences of the decision maker 
(DM). A risk-averse DM prefers a more conservative maintenance threshold (M)

and maintenance time (MT), resulting in an expected cost almost twice as high.  

Decision criteria Optimal decision variables E[Cτ] CE(RT)

E[Cτ ] (long-run) MT = 16,M = 3.1 1.9a 96.2 
E[Cτ ] (finite time) MT = 16,M = 3.2 1.9 100.0 
CE(RT = 5) MT = 10,M = 3.4 3.6 4.3  

a The expected cost in the interval (0, τ] when the choice of decision variables 
is based on the minimization of the long-run cost rate. The estimated cost when 
using Eq. (4) is: c∞τ = 2.4.  

Fig. 7. Degradation paths for the two pumps used in the case study. The data used in the analysis is the mean value of each day. The vertical dashed lines represent 
times when the impellers have been renewed. 
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5.5. Results 

A grid search for the optimal decision variables was performed for 
both models of the degradation increments. Monte Carlo simulations 
with 105 sample paths were performed for validation. As in the example 
in Section 4, the cutoff level was set to 10− 15, removing all instances of 
Cτ with probabilities less than this level. Again, the results were not 
affected as long as the cutoff level was kept below 10− 7.  

The results of the grid search based on normally distributed degra-
dation increments are shown in Table 6 and Fig 10. As in the example in 
Section 4, the optimal thresholds for the decision variables are practi-
cally the same for both approaches based on minimizing the expected 
cost. The risk-neutral DM will thus come to practically the same decision 
by using minimization of the long-run cost rate compared with the more 
involved approach of calculating the expected cost in finite time. 

Fig. 8. Plot of the autocorrelation function (ACF) of the degradation in-
crements in the case study. The dashed lines illustrate the 95% confidence in-
terval (1.96/√n), assuming an i.i.d. normal random variable [72]. 

Fig. 9. Two approaches have been used to model the degradation increments. The first approach assumes that the degradation increments are normally distributed: 
N(ν̂, σ̂B) (dashed lines). The second approach, labelled GaussMix, assumes that the degradation increments are a combination of three different normal distributions 
(dotted lines). The second approach gives a better representation of the excess kurtosis of the case data. 

Table 4 
The parameters of the three normal distributions that constitutes the Gaussian 
mixture model.  

Distribution Mean Std. Weight 

1 ∼ 0 0.724 0.09 
2 0.054 0.053 0.42 
3 0.048 0.006 0.48  

Table 5 
Parameters used in the case study.  

Parameter Value 

L 20 
τ 730 days 
ν,σB 0.0459,0.3050 
cD 800 kUSD/day 
cR 200 kUSD 
cF,1 200 kUSD 
θ 7 days 
ρ 200 kUSD 
RTL 1 MUSD 
RTH 100 MUSD  

Table 6 
The optimal decision variables based on the preferences of the decision maker 
(DM), assuming normally distributed degradation increments.  

Decision criteria Optimal decision variables E[Cτ ] CE(RTH) CE(RTL)

E[Cτ] (long-run) M = 15.7,MT = 16 346a 346 422 
E[Cτ] (finite time) M = 15.8,MT = 16 346 346 454 
CE(RTH) M = 15.7,MT = 16 346 346 – 
CE(RTL) M = 15.5,MT = 14 355 – 367  

a The expected cost in the interval (0, τ] when the choice of decision variables 
is based on the minimization of the long-run cost rate. The estimated cost when 
using Eq. (4) is: c∞τ = 440 kUSD.  
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Introducing minimization of the CE as decision criteria does not affect 
the optimal choice of decision variables when the high risk tolerance 
coefficient, RTH, is used. If the DM has a low risk tolerance, RTL, the 
optimal thresholds for the decision variables becomes slightly more 
conservative (M = 15.5, MT = 14). This gives a (355 − 346)/346 ≈ 3% 
increase in expected cost. 

Table 7 and Fig 11 show the results when using the GaussMix model 
for the degradation increments. The long-run cost rate based on Eq. (4), 
which assumes a Wiener degradation process, no longer gives the same 
result as the approach based on the expected cost in finite time. But the 
difference in expected cost between these two approaches is only (372 −

364)/364 ≈ 2%. The optimal thresholds for the decision variables for a 
DM with high risk tolerance are still the same as for a risk-neutral DM. 

Because the GaussMix-distribution has heavier tails, the optimal 
thresholds for the decision variables for a DM with low risk tolerance 
becomes more conservative (M = 15.0, MT = 10). This choice of deci-
sion variables gives an increase in expected cost of 
(395 − 364)/364 ≈ 9% compared to the optimal decision variables for a 
risk neutral DM. On the other hand, a DM with a low risk tolerance 
would be willing to pay up to 1985 kUSD to be relieved of the uncer-
tainty caused by use of the decision variables preferred by the risk- 
neutral DM (M = 15.2, MT = 16). If minimization of the CE is used as 
decision criteria for the DM with low risk tolerance, this gives an CE of 
412 kUSD which is considerable smaller than the CE if the two other 
decision criteria are used. 

6. Discussion 

Minimization of the long-run cost rate is often used as optimization 
criterion for maintenance policies [23,34–36,39]. In this paper we have 
found that such an approach is reasonable when the decision maker is 
risk-neutral. Use of the more involved procedure for finding the com-
plete probability distribution of cost in finite time had practically no 
impact on the optimal decision variables for a risk-neutral decision 
maker for the maintenance policy presented in this paper. This was 
found to change if the decision maker has a low risk tolerance compared 

to the potential outcomes of the maintenance policy. If this is the case, 
using minimization of the long-run cost rate as the decision criterion 
may lead to decisions that are not in line with the preferences of the 
decision maker. Based on this, it is important to consider the financial 
risk tolerance of the decision maker when developing an optimization 
model for maintenance. 

Another assumption often made when modeling continuous sto-
chastic degradation processes is that the degradation increments follow 
either the gamma, Wiener, or inverse Gaussian distribution [9,35,77]. In 
the case study in Section 5, the degradation increments were close to 
normally distributed, but with some excess kurtosis. The results in our 
paper show that the assumption of a Wiener process is reasonable to 
make when optimizing the maintenance policy for a risk-neutral deci-
sion maker. However, for a decision maker with low risk tolerance, 
accurate modeling of the degradation process becomes more important. 
This is in our paper exemplified by using an alternative probability 
distribution with heavier tails to represent the degradation increments. 
This demonstrates the need to consider both types of robustness as 
specified by Cherkaoui et al. [34] when the decision maker is 
risk-averse. 

Maintenance decision have traditionally been based on gut feeling 
and intuition [15,78–80]. Besides [62], little empirical data on the 

Fig. 10. Comparison of the expected cost and the certainty equivalent (CE) when normally distributed degradation increments are assumed (a). Optimal mainte-
nance threshold (M) given maintenance time (MT) is shown in (b). When the high risk tolerance coefficient (RTH) is used, the results are practically the same as for 
the expected cost in finite time. These results are therefore not shown in the figure. The circular points represent the Monte Carlo simulations. 

Table 7 
The optimal decision variables based on the preferences of the decision maker 
(DM) using the GaussMix model of the degradation increments with heavier 
tails.  

Decision criteria Optimal decision variables E[Cτ ] CE(RTH) CE(RTL)

E[Cτ] (long-run) M = 15.7,MT = 16 372a 373 3844 
E[Cτ] (finite time) M = 15.2,MT = 16 364 364 1985 
CE(RTH) M = 15.2,MT = 16 364 364 – 
CE(RTL) M = 15.0,MT = 10 395 – 412  

a The expected cost in the interval (0, τ] when the choice of decision variables 
is based on the minimization of the long-run cost rate. The estimated cost when 
using Eq. (4) is: c∞τ = 440 kUSD.  
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financial risk tolerance for maintenance decisions is available in the 
literature, but it is reasonable to assumed that maintenance managers 
are risk-averse, as is normally the case for managers in general [42,49, 
70]. As developments in sensor technology and maintenance models 
enable the introduction of decision automation [80] and prescriptive 
maintenance policies, with models that prescribe which maintenance 
measures to conduct at what time [81], it becomes important that the 
outputs from the models are in line with the preferences of the decision 
makers [78]. This can be ensured by including elements from expected 
utility theory in the models [48,59]. 

7. Conclusion 

The decision maker’s risk tolerance may affect the preferred 
thresholds for the decision variables for the CBM policy proposed in this 
paper. For decisions where the potential outcomes are small compared 
to the overall economic resources of the organization, it is reasonable to 
assume risk neutrality and use the minimization of the expected costs as 
the optimization criterion. Most maintenance decisions probably fall 
into this category, and minimization of the long-run cost rate is normally 
used as optimization criterion for maintenance policies. This changes 
when the risk tolerance of the decision maker is small compared to 
potential outcomes of the maintenance policy. Because of this, it is 
important to assess the risk tolerance of the relevant decision makers 
when developing maintenance policies. 

An approach for finding the expected utility of a CBM policy for a 
single unit system has been presented in this paper. This has been done 
by using the characteristic function to find the probability mass function 
of the maintenance cost in finite time, and an exponential utility func-
tion to calculate the expected utility. The numerical procedure in this 
paper was found to be more efficient than Monte Carlo simulations. 

Further research can be done along several axis. The maintenance 
model can be made more realistic by changing the variable mobilization 
time, MT, from deterministic to stochastic. Another possible expansion 
of the model is to introduce sequential decisions in the maintenance 
policy. For example, by introducing one or several thresholds where 

measures are taken to shorten the maintenance time as the degradation 
progresses. 

Another possible direction of further research is to collect more 
empirical data on the risk tolerance related to maintenance decisions. 
This may clarify the need for approaches that take into account the 
variability of the cost when optimizing maintenance policies. 
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