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Abstract 
Electric vehicle (EV) charging loads have an impact on 
the power grid, but also represent a potential for energy 
flexibility. There is a need for EV data to evaluate effects 
on the power grid and optimal EV charging strategies. A 
stochastic bottom-up model is developed for residential 
EV charging, taking outdoor temperatures into account. 
The model input is based on real-world data from 
residential charging in Norway. The load profile 
generator provides hourly load profiles for any number 
and combination of small and large EVs, assuming 
immediate charging after plug-in. It is found that the 
model generates realistic load profiles for residential EV 
charging, reflecting today’s charging patterns. Data 
generated can be used for load and flexibility simulations 
for residential EV charging. 
Introduction 
The worldwide use of EVs is increasing rapidly (IEA, 
2021). EV charging loads may have a severe impact on 
the peak loads in the power grid, however charging of 
EVs also represent a potential for energy flexibility 
(Gonzalez Venegas et al., 2021). When evaluating effects 
on the power grid and optimal EV charging strategies, 
knowledge is needed on EV charging habits, load profiles 
and flexibility potential (Calearo et al., 2021). However, 
the availability of such real-world EV data  is scarce 
(Calearo et al., 2021). 
Norway had a 75% sales share of EVs in 2020 (IEA, 
2021), and EVs are becoming the major car choice of the 
population. The main locations for EV charging are at 
home and work, where the charging power is limited by 
the charge points (CPs) and the AC onboard charger in the 
EVs. The number of CPs is increasing in Norway, with 
3.6 to 7.4 kW as typical charging power limitations 
(Figenbaum & Amundsen, 2022). 
EV charging habits have a sporadic nature, with e.g. 
varying plug-in/plug-out time, weekly charging 
frequency, and energy charged per charging session. 
Several CP operators (CPOs) provide charging reports to 
their users, with information on the individual charging 
sessions. Such CPO reports have formed the basis for 
recent research on residential charging habits, load 
profiles and flexibility potential (Sørensen et al., 2021a). 
It is found that EV load profiles also depend on the 

characteristics of the EV, such as onboard charging power 
and battery capacity (Sørensen et al., 2022). EVs with a 
smaller charging power and battery capacity tends to be 
charged more frequently, and have a lower annual 
charging need, compared to EVs with larger capacity 
values. The flexibility potential is related to the non-
charging idle time of the charging sessions, when the EV 
is connected to the CP without charging, thus potentially 
offering smart charging or Vehicle-to-grid (V2G) 
services. High charging power, frequent connections, and 
long connection times are positive elements for reaching 
a high flexibility potential (Sørensen et al., 2022). 
It can be challenging to access quality time series with 
residential EV data and load profiles. In some situations, 
there is an advantage to use a model to generate stochastic 
load profiles, compared to analysing original EV data and 
load profiles directly. A stochastic load profile generator 
can provide load profiles for any number of EVs, and with 
EV parameters for different types of EV fleets. In 
addition, local parameters can also be taken into account, 
such as climate or traffic data.   
Several studies have been carried out to model the 
stochastic nature of EV charging, where the probability 
distributions are typically based on factors such as driving 
distances, plug-in/plug-out times, and start state of charge 
(SoC) estimations. Fischer et al. (2019) presented a 
stochastic bottom-up model to assess EVs' impact on load 
profiles at different parking locations. Influencing factors 
and probability distributions were identified, based on 
analysis of a German mobility dataset, with e.g. driven 
distances, driving and parking durations. The model 
outputs were presence at a CP and its corresponding 
electricity demand. Ayyadi et al. (2019) applied 
probability distributions for driven distances and plug-
in/plug-out times by using Monte Carlo simulations. The 
probability distributions were based on a driving 
behaviour survey with GPS data in China. Other studies 
model energy charged instead of driven distances and 
SoC. Flammini et al. (2019) analysed real-world EV data 
from public CPs in the Netherlands, based on data similar 
to the CPO reports used in our work. The researchers 
provided probability distributions for plug-in/plug-out 
times, connected, charge and idle times, and energy 
charged per charging session, by applying a Beta Mixture 
Model approach.  
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This paper presents a stochastic load-profile generator for 
residential EV charging. The methodology used is similar 
to the approach presented by Fischer et al. (2015). The 
methodology is improved by including outdoor 
temperature as an explanatory variable, since a 
dependency is identified between energy charged and 
outdoor temperature. The contributions of the paper are: 
1) The model is based on information typically 

available in CPO reports in Norway, reflecting real 
charging patterns in Norway.  

2) The generator provides hourly charging load profiles 
for individual or aggregated EVs, where the 
charging happens at private CPs, located at the 
residents own parking spaces.  

3) The hourly charging loads are generated for a full 
year, and can be used as input in EV load and 
flexibility simulations.  

4) The composition of an EV fleet can be defined in the 
generator, including  "small" EVs, "large" EVs, or a 
mix of EV types. Such distinguishment makes it 
possible to generate load data for the current EV 
fleet in a certain location, as well as future EV fleet 
composition scenarios.  

Data 
CPO reports for residential EV charging 
The load-profile generator is developed based on data 
from residential charging in Risvollan, Norway, with 
5466 charging sessions from residents using 56 private 
CPs (Sørensen et al., 2021a; Sørensen et al., 2021b). The 
number of CPs are increasing during the period, from zero 
in December 2018 to 56 in January 2020. Each charging 
session includes the following data: user ID, plug-in and 
plug-out times, connection time, and charged energy for 
each charging session. Risvollan housing cooperative (lat. 
63.39470, long. 10.43028) is located approx. 4 km from 
Trondheim city. In our paper EV charging is in focus, but 
also other energy analyses from the apartment buildings 
are available in Sørensen et al. (2019a; 2019b; 2019c).  
Outdoor temperature dependency of EV charging  
The vehicle range of EVs is reduced in cold temperatures, 
e.g. due to the heating the EVs cabin (Al-Wreikat et al., 
2022). Due to the sporadic nature of EV charging, long 
time series are advantageous for identifying whether 
charged energy per user ID may be influenced by outdoor 
temperatures. For the studied data series, only 7 of the 56 
user IDs have a full year data period. Figure 1 shows 
weekly charging need and average outdoor temperatures 
for six of these EV users (the 7th user has few sessions).  
The stochastic character of EV charging is clear in the 
figures. Still, for some users and periods, a temperature 
dependency is visible. Pearson's correlation coefficient 
(Maechler, 2022) is calculated , for weekly charging need 
and outdoor temperatures during week 10 to 52. The three 
users with highest correlation values (TRO_R_AsO2-1, 
TRO_R_Bl2-1, TRO_R_Bl2-2)", have correlation 
coefficients from -0.46 to -0.27 (with p-values from 0.002 

to 0.091), which indicate a correlation. For the three 
remaining users the correlation is weak, with p-values 
from 0.5-0.7. 

 
Figure 1: Real weekly charging need and average 

outdoor temperatures for six EV users.  
Classifying EV user types for the user IDs  
Each EV user ID in the dataset is classified as a "small" 
EV or a "large" EV depending on the maximum charged 
energy per session (which is a proxy for the battery size 
of the car).  If < 25 kWh, the user is classified as a "small 
EV", and if > 25 kWh as a "large EV" (see overview in 
Table 1). The battery threshold value of 25 kWh is 
determined based on EV market information (Sørensen et 
al., 2021a), where most EVs with smaller batteries are 
either plug-in hybrid EVs (PHEVs) or earlier models of 
battery EVs (BEVs), which often have onboard charger 
capacity of about 3.6 kW. Newer BEVs normally have 
larger battery capacity > 25 kWh, and onboard charger 
capacity of at least 7.2 kW. 
The maximum average charging power per user ID is 
evaluated, as shown in Figure 2. Based on this, an average 
charging power of either 3.6 kW or 7.2 kW is allocated to 
each of the user IDs. For the allocation it is assumed that 
at least one session per user ID is ended before the EV is 
fully charged, as described in Sørensen et al. (2022). 
Table 1: Classification of EV types for dataset user IDs. 

 3.6 kW 7.2 kW Total user IDs 
Small EV 84% (26 IDs) 16% (5 IDs) 55% (31 IDs) 
Large EV 12% (3 IDs) 88% (22 IDs) 45% (25 IDs) 

 
Figure 2: Maximum average charging power per user 

ID, and their allocation to a charging power level. 
Methods 
Overall description of the EV load profile generator  
The stochastic bottom-up model is developed in Westad 
(2021), and simulates hourly load profiles for individual 
EVs during a year, assuming immediate charging after 
plug-in. Any number of EVs can be simulated by the 
model, with a specified share of "large" or "small" EVs, 
referring to the charging power and battery sizes of the 
cars. In addition to the hourly load profiles for each EV 
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user, the plug-in and plug-out time, charged energy, and 
non-charging idle hours are provided. Based on the 
individual load profiles, aggregated load profiles are 
created. An illustration of the process for generating EV 
load profiles is shown in Figure 3, while Table 2 lists the 
probability distributions, model parameters, variables 
used, and model outputs from the load profile generator. 
The model is written in the Python programming 
language (Python Software Foundation, 2022). 

 
Figure 3: Process for generating EV load profiles. 

Table 2: Probability distributions, model parameters, 
variables, and outputs from the load profile generator. 
Probability distributions from the data 
Name Description Units 

F Weekly charging frequency - 
E Charging need per session kWh 
TS Plug-in time of session h 
TE Plug-out time of session h 

Model parameters from the generator user 
U Number of EV users - 
 Percentage EV user types (Large EV, 

Small EV). If no input: No distinction 
% 

 Share of charging power for the 
respective EV type (3.6 kW, 7.2 kW) 

% 

 Daily temperatures for the modelled 
year, starting on Monday week 1 

°C 

Model parameters from the data 
Pu Charging power for EV user u kW 
Fu Weekly charging frequency (1...7) - 

Ed,u Charging need per session at day d kWh 
Lt Duration of period t (1 year) h 

TSd,u Plug-in time of session (1...24) h 
TEd,u Plug-out time of session (1...24) h 
Cd,u Connection duration of session (1...24) h 
Γd,u EV user u plugs-in at day d 0/1 

Generator variables 
yt,d,u Load at time t, day d, for EV user u kWh/h 
zt,d,u Remaining charging need at time t, day 

d, for EV user u 
kWh 

αt,d,u EV user u is charging at time t, day d 0/1 
βt,d,u EV user u is connected at time t, day d  0/1 

Model outputs from the generator 
• EV user type (Small EV, Large EV) 
• Charging power per user (3.6 kW, 7.2 kW) 
• Plug-in time each day for a year (1...24) 
• Plug-out time each day for a year (1...24) 
• Connection time each session 
• Energy need per session 
• Connection profile per hour for a year 
• Charging profile per hour for a year 
• Aggregated charging profile for a year 

 
kW 
h:m 
h:m 
h:m 
kWh 
0/1 
kWh/h 
kWh/h 

Identifying probability distributions  
The load profile generator uses 4 stochastic parameters 
for each user ID and day: 1) weekly charging frequency, 
2) charging need per session, and 3) plug-in and 4) plug-
out time of session. The flow chart in Figure 4 shows how 
the stochastic model parameters are obtained from the 
identified probability distributions based on the dataset.  
Several probability distributions were evaluated in the 
process, and a Kolmogorov–Smirnov test was used to 
estimate the goodness of fit between the data and the 
tested distributions, to find the best-fitted distribution for 
the stochastic parameters. A selection of the chosen 
probability distributions is shown in Figure 5 - Figure 6.  

 
Figure 4: Detailed flow chart for obtaining stochastic 

model parameters in the load profile generator. 
1) and 2) Weekly charging frequency and charging 
need per session: In the profile generator, the weekly 
charging frequency is limited to maximum one plug-in 
per day, for simplification. In the dataset, 74% of the 
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charging sessions happen during weeks with maximum 7 
plug-ins, if removing possible faulty sessions (energy 
charged < 1 kWh and 1 user Bl2-5). As shown in Figure 
5a, EVs classified as "small" has higher plug-in 
frequencies than the large EVs, due to their smaller 
battery sizes. The distribution for charging needs per 
session depends on both the EV type, and the weekly 
charging frequency, as shown in Figure 5b-c. 

a) Weekly charging frequency 

 
b) Charging need, small EVs 

 
c) Charging need, large EVs 

 
Figure 5: Probability distributions used in generator for 
weekly charging frequency and session charging need. 

3) and 4) Plug-in and plug-out times of session: The 
plug-in and plug-out times are only dependent on the type 
of day (workday/Saturday/Sunday). A combination of 
different distributions was necessary to describe the plug-
in and plug-out times, since they do not fit well with a 
single distribution, as illustrated in Figure 6a-e.  
The plug-in and plug-out times are found by first 
randomly drawing which distribution to use, and then 
randomly drawing a daily hour from this distribution. The 
plug-in time is separated by type of day only, while the 
plug-out time during workdays is additionally related to 
the plug-in time. The distributions for plug-in times are 
identified for the following groups "Early and late-night 
(0-6)", "Early morning (6-9)", "Late morning (9-12)", 
"Early afternoon (12-15)", "Late afternoon (15-18"), 
"Early evening (18-21)" and "Late evening (21-23)". 
When the plug-in day is a Friday, Saturday or Sunday, the 
plug-out time is related to the day of the plug-in, not the 
hour since there is less data available for these days.  
 

a) Plug-in time workdays 

 
b) Plug-in time Saturdays 

 
c) Plug-in time Sundays 

 
d) Plug-in related plug-out time workdays 

 
e) Plug-in related plug-out time Saturdays 

 
Figure 6: Probability distributions used in generator for 

plug-in and plug-out times. 
Other parameters 
Connection time limitation: In the generator, connection 
time is limited to a maximum of 24 hours, for 
simplification. Less than 1% of the charging sessions in 
the data are connected for longer than 24 hours. Since the 
generator assumes EV charging immediately after 
connection, this simplification will normally not affect the 
charging load results. However, the simplification may 
underestimate the generated non-charging idle times. In 
addition, the connection time one day may be limited by 
the plug-in time the next day, since there are no 
requirements of minimum time between charging 
sessions. For the sessions connected long enough, 
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charging will continue until the charged energy is equal to 
the energy need. When this is not the case, charging will 
last the entire connection duration of maximum 24 hours. 
Outdoor temperature dependency is included in the 
generator. The intention was to use the real-world data to 
calculate the dependency, however since the data period 
is relatively short and knowledge on driving ranges were 
lacking, the scaling factor is based on a temperature-
dependent driving range estimation for Nissan Leaf EVs 
(Nissan, 2022), which per March 2022 is the most sold 
EV in Norway (Edvardsen, 2022). The reference 
temperature is set to 5°C, since this is the average 
temperature for the data period. Charging need per session 
is multiplied with a scaling factor, as shown in Figure 7. 

 
Figure 7: Scaling factor for temperature dependency of 

charging need, with reference temperature 5°C. 
 

  

Model 
Mathematical equations  
The mathematical equations of the generator are 
expressed in equation 1-7. The connection duration 
(equation 1) is a result of the plug-in and plug-out times. 
The hourly load profile (equation 2) depends on the 
maximum charging power level for the EV, and whether 
the EV is charging (equation 3). For the remaining 
charging need at each hour, the calculation depends on 
whether the EV is connected overnight, meaning that 
𝑇𝑇𝑇𝑇𝑑𝑑𝑑𝑑,𝑢𝑢𝑢𝑢

𝑆𝑆𝑆𝑆 + 𝐶𝐶𝐶𝐶𝑑𝑑𝑑𝑑,𝑢𝑢𝑢𝑢 ≤ 24 and  𝑇𝑇𝑇𝑇𝑑𝑑𝑑𝑑,𝑢𝑢𝑢𝑢
𝐸𝐸𝐸𝐸 > 𝑇𝑇𝑇𝑇𝑑𝑑𝑑𝑑,𝑢𝑢𝑢𝑢

𝑆𝑆𝑆𝑆 .   
When the EV is not connected overnight (equation 4), the 
remaining charging need is expressed by the session 
charging need, and if the EV is connected (equation 5). 
When the EV is connected overnight, the charging 
session’s remaining charging need is transferred to the 
next day, expressed by the transferred charging need 
(equation 6), and if the EV is connected (equation 7). 

𝐶𝐶𝐶𝐶𝑑𝑑𝑑𝑑,𝑢𝑢𝑢𝑢 = �
𝑇𝑇𝑇𝑇𝑑𝑑𝑑𝑑,𝑢𝑢𝑢𝑢

𝐸𝐸𝐸𝐸 − 𝑇𝑇𝑇𝑇𝑑𝑑𝑑𝑑,𝑢𝑢𝑢𝑢
 𝑆𝑆𝑆𝑆 , if 𝑇𝑇𝑇𝑇𝑑𝑑𝑑𝑑,𝑢𝑢𝑢𝑢

𝐸𝐸𝐸𝐸 ≥ 𝑇𝑇𝑇𝑇𝑑𝑑𝑑𝑑,𝑢𝑢𝑢𝑢
𝑆𝑆𝑆𝑆

24 − 𝑇𝑇𝑇𝑇𝑑𝑑𝑑𝑑,𝑢𝑢𝑢𝑢
𝑆𝑆𝑆𝑆 + 𝑇𝑇𝑇𝑇𝑑𝑑𝑑𝑑,𝑢𝑢𝑢𝑢

𝐸𝐸𝐸𝐸 , if 𝑇𝑇𝑇𝑇𝑑𝑑𝑑𝑑,𝑢𝑢𝑢𝑢
𝐸𝐸𝐸𝐸 < 𝑇𝑇𝑇𝑇𝑑𝑑𝑑𝑑,𝑢𝑢𝑢𝑢

𝑆𝑆𝑆𝑆  (1) 

𝑦𝑦𝑦𝑦𝑡𝑡𝑡𝑡,𝑑𝑑𝑑𝑑,𝑢𝑢𝑢𝑢 = 𝑃𝑃𝑃𝑃𝑢𝑢𝑢𝑢 × 𝛼𝛼𝛼𝛼𝑡𝑡𝑡𝑡,𝑑𝑑𝑑𝑑,𝑢𝑢𝑢𝑢 (2) 

𝛼𝛼𝛼𝛼𝑡𝑡𝑡𝑡,𝑑𝑑𝑑𝑑,𝑢𝑢𝑢𝑢 = �1, if 𝑧𝑧𝑧𝑧𝑡𝑡𝑡𝑡,𝑑𝑑𝑑𝑑,𝑢𝑢𝑢𝑢  > 0 and 𝛽𝛽𝛽𝛽𝑡𝑡𝑡𝑡,𝑑𝑑𝑑𝑑,𝑢𝑢𝑢𝑢  =  1
0, otherwise                                (3) 

𝑧𝑧𝑧𝑧𝑡𝑡𝑡𝑡,𝑑𝑑𝑑𝑑,𝑢𝑢𝑢𝑢 = 𝐸𝐸𝐸𝐸𝑑𝑑𝑑𝑑,𝑢𝑢𝑢𝑢 − � 𝑃𝑃𝑃𝑃𝑢𝑢𝑢𝑢

𝑁𝑁𝑁𝑁

𝑡𝑡𝑡𝑡=𝑇𝑇𝑇𝑇𝑑𝑑𝑑𝑑,𝑢𝑢𝑢𝑢
𝑆𝑆𝑆𝑆

× 𝛽𝛽𝛽𝛽𝑡𝑡𝑡𝑡,𝑑𝑑𝑑𝑑,𝑢𝑢𝑢𝑢 × 𝐿𝐿𝐿𝐿𝑡𝑡𝑡𝑡,  

for 𝑇𝑇𝑇𝑇𝑑𝑑𝑑𝑑,𝑢𝑢𝑢𝑢
𝑆𝑆𝑆𝑆 ≤ 𝑡𝑡𝑡𝑡 ≤ 24 

(4) 

𝛽𝛽𝛽𝛽𝑡𝑡𝑡𝑡,𝑑𝑑𝑑𝑑,𝑢𝑢𝑢𝑢 = �1, if 𝑇𝑇𝑇𝑇𝑑𝑑𝑑𝑑,𝑢𝑢𝑢𝑢
𝑆𝑆𝑆𝑆 ≤ 𝑡𝑡𝑡𝑡 ≤ 𝑇𝑇𝑇𝑇𝑑𝑑𝑑𝑑,𝑢𝑢𝑢𝑢

𝐸𝐸𝐸𝐸

0, otherwise            
 (5) 

𝑧𝑧𝑧𝑧𝑡𝑡𝑡𝑡,𝑑𝑑𝑑𝑑+1,𝑢𝑢𝑢𝑢 = 𝑧𝑧𝑧𝑧24,𝑑𝑑𝑑𝑑,𝑢𝑢𝑢𝑢 − � 𝑃𝑃𝑃𝑃𝑢𝑢𝑢𝑢

𝑇𝑇𝑇𝑇𝑑𝑑𝑑𝑑,𝑢𝑢𝑢𝑢
𝐸𝐸𝐸𝐸

𝑡𝑡𝑡𝑡=1

× 𝛽𝛽𝛽𝛽𝑡𝑡𝑡𝑡,𝑑𝑑𝑑𝑑+1,𝑢𝑢𝑢𝑢 × 𝐿𝐿𝐿𝐿𝑡𝑡𝑡𝑡,  

for 1 ≤ t ≤ 𝑇𝑇𝑇𝑇𝑑𝑑𝑑𝑑,𝑢𝑢𝑢𝑢
𝐸𝐸𝐸𝐸  

(6) 

𝛽𝛽𝛽𝛽𝑡𝑡𝑡𝑡,𝑑𝑑𝑑𝑑,𝑢𝑢𝑢𝑢 = �1, if 𝑇𝑇𝑇𝑇𝑑𝑑𝑑𝑑,𝑢𝑢𝑢𝑢
𝑆𝑆𝑆𝑆 ≤ 𝑡𝑡𝑡𝑡 ≤ 24

0, otherwise          
 

𝛽𝛽𝛽𝛽𝑡𝑡𝑡𝑡,𝑑𝑑𝑑𝑑+1,𝑢𝑢𝑢𝑢 = �1, if 1 ≤ 𝑡𝑡𝑡𝑡 ≤ 𝑇𝑇𝑇𝑇𝑑𝑑𝑑𝑑,𝑢𝑢𝑢𝑢
𝐸𝐸𝐸𝐸

0, otherwise       
 

(7) 

Scenarios 
Generating load profiles  
To illustrate the output from the load generator, hourly 
load profiles for a whole year are simulated for 1000 EVs. 
Three scenarios are investigated, each with a different mix 
of user types:  
1. "BASE": the mix of "small" and "large" EVs types 

and charging power are identical to the original data 
(ref. Table 1),  

2. "LOW": "small" EVs only, 3.6 kW charging power,  
3. "HIGH": "large" EVs only, 7.2 kW charging power. 
The Root Mean Squared Error (RMSE) is used to evaluate 
the performance, comparing the original data with BASE. 
Coincidence factors  
Coincidence factors are used to calculate the simultaneous 
demand of several customers, while coincident peak 
demand describes the maximum demand for a group of 
customers during periods of peak system demand (Dickert 
& Schegner, 2010). To investigate the coincidence factor 
𝑐𝑐𝑐𝑐 and peak load 𝑌𝑌𝑌𝑌max per EV for an increasing number of 
EVs, a fleet of 100 single load profiles is used. By 
drawing n single load profiles from this fleet, the 
aggregated load profile is found 𝑦𝑦𝑦𝑦𝑡𝑡𝑡𝑡

sum(𝑛𝑛𝑛𝑛) = ∑ 𝑦𝑦𝑦𝑦𝑡𝑡𝑡𝑡,𝑢𝑢𝑢𝑢
𝑛𝑛𝑛𝑛
𝑢𝑢𝑢𝑢=1 , 

and the coincidence factor c(n) and average individual 
peak load  𝑌𝑌𝑌𝑌max,avg(𝑛𝑛𝑛𝑛) are calculated using equation 8 
and 9. This is done for n = 1, ..., 50. The procedure is 
repeated 50 times for each n, and the maximum, minimum 
and mean results are collected. 

𝑐𝑐𝑐𝑐(𝑛𝑛𝑛𝑛) =
max  (𝑦𝑦𝑦𝑦𝑡𝑡𝑡𝑡

sum(𝑛𝑛𝑛𝑛))
∑ max�𝑦𝑦𝑦𝑦𝑡𝑡𝑡𝑡,𝑢𝑢𝑢𝑢�𝑛𝑛𝑛𝑛

𝑢𝑢𝑢𝑢=1
=

𝑌𝑌𝑌𝑌sum,max(𝑛𝑛𝑛𝑛)
∑ 𝑌𝑌𝑌𝑌𝑢𝑢𝑢𝑢

max𝑛𝑛𝑛𝑛
𝑢𝑢𝑢𝑢=1

  (8) 

𝑌𝑌𝑌𝑌max,avg(𝑛𝑛𝑛𝑛) =
𝑌𝑌𝑌𝑌sum,max(𝑛𝑛𝑛𝑛)

𝑛𝑛𝑛𝑛   (9) 

Results and discussion 
Aggregated load profiles  
Load profiles are simulated for 1000 EVs, where the EV 
mix is either BASE, LOW or HIGH. Table 3 presents the 
main results for the three EV scenarios and for the original 
data. The values for the BASE case are closest to the 
original data, which is as expected since this scenario 
reflects the original mix of EV types. The annual charging 
need is about 2500 kWh for BASE, and is 25% higher for 
HIGH compared to LOW. This can be explained by  
higher energy demand for larger EVs and/or longer 
annual driving ranges. However, the difference may also 
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be influenced by the model limitation of maximum one 
charging session per day, since "small" EVs are more 
affected by this simplification. The EVs in LOW charge 
1.7 times more frequent and about half the amount of 
energy per session, compared to HIGH.   
Table 3: Main results for dataset and three scenarios. 
PER EV USER Data BASE LOW HIGH 
Charging need  
per year (kWh) 

2380 2480 2240 2790 

Sessions per week (#) 4.1 3.9 4.7 2.8 
Charging need  
per session (kWh) 

11.2 12.6 9.3 19.4 

Charging time (h/week) 9.5 10.0 12.2 7.6 
Non-charging idle time 
(h/week) 

42.4 32.2 38.5 24.1 

Idle energy capacity 
(kWh/week) 

206 164 139 173 

Charging time and non-charging idle time are part of the 
output for each user, making it possible to analyse EV 
flexibility potentials. The BASE value for average idle 
time per week is 32.2 hours, considerably lower than in 
the original data of 42.4 hours. This can most likely be 
explained by the limitations of maximum one charging 
session per day, and maximum 24 hours connection time. 
Since HIGH has fewer weekly charging sessions 
compared with LOW, the weekly connection time is also 
shorter. HIGH needs less time to charge, but the non-

charging idle time is still shorter than for LOW and 
BASE. However, the potential to move the charging in 
time is higher for HIGH, due to the increased charging 
power: 139 kWh idle energy capacity per week for LOW 
compared to 173 kWh per week for HIGH. 
The average daily load profiles per EV user are shown in 
Figure 8. In all three scenarios, the average daily peak 
load occurs between hour 17 and 18 on workdays, 
between hour 18 and 19 on Saturdays, and between hour 
19 and 20 on Sundays. This is in line with the original data 
(Sørensen et al., 2021a) as shown in Figure 9, and also 
similar to average daily load profiles analysed for other 
residential locations (Sørensen et al., 2022). A 95% 
confidence interval is shown in the figure, where the 
original dataset, with n = 18 to 56 EV users, has a greater 
variability than the BASE scenario, with n = 1000 EV 
users. This is in line with general expectations, that larger 
samples would produce a narrower confidence interval. 
However, a dependency between charging need and type 
of day is indicated in the data. Especially Saturdays stand 
out, with about 15% lower charging need compared to the 
other days. This dependency is not included in the 
generator, resulting in a similar charging need for all type 
of days. Figure 9 also shows the RMSE for each hour of 
the day, comparing the original dataset with the BASE 
scenario. Smaller RSME values indicate higher accuracy. 
The average error is 0.18 kW/user. 

 
Figure 8: Daily average EV load profile per EV user for three scenarios of EV user types. (unstacked) 

 

           
Figure 9: Top: Daily average EV load profile per EV user for original dataset (n = 18 to 56 EV users) and the BASE 
scenario (n = 1000 EV users), with 95% conf.int. Bottom: Root-mean-square error (RMSE) for each hour of the day. 
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Effect of the outdoor temperature dependency 
Figure 10 shows aggregated hourly charging need versus 
outdoor temperatures for the BASE scenario during a full 
year. Figure 11 illustrates an example winter week 
(average temperature of about - 10°C) and an example 
summer week (average temperature of about 20°C). Due 
to the temperature dependency, the charging need 
increases with a factor of about 1.6, assuming similar user 
behaviour. 

 
Figure 10: Hourly EV load profile per EV user for BASE 

scenario versus average daily outdoor temperatures. 

 
Figure 11: Example weeks Winter (January) and 

Summer (July): EV load profile per EV user for BASE 
scenario versus average daily outdoor temperatures. 

 
Figure 12: Coincidence factor and average peak load 

per EV for an increasing number of EVs. BASE scenario. 

 
Figure 13: Mean coincidence factor and average peak 

load per EV. All three scenarios. 
Coincidence factors  
Coincidence factor and coincident peak demand are 
important factors in grid dimensioning (Dickert & 

Schegner, 2010). Figure 12 shows minimum, mean and 
maximum coincidence factors and peak load per EV for 
an increasing number of EVs in the BASE scenario. In 
Figure 13, mean coincidence factor and peak load values 
are shown for all the three scenarios. The figures show 
how the peak load per EV user is stabilizing with an 
increasing number of users. Assuming charging 
immediately after plug-in, the peak load per EV is 
descending towards 1.4 kW in BASE, 1.3 kW for "small" 
EVs (LOW), and 1.9 kW for "large" EVs (HIGH).  
Conclusion and Further work 
A stochastic bottom-up model is developed for residential 
EV charging, taking outdoor temperatures into account. 
The generator is based on data from residential charging 
in Norway, with 5466 charging sessions from 56 private 
CPs. The EV load profile generator provides hourly load 
profiles for any number and combination of "small" and 
"large" EVs, assuming immediate charging after plug-in. 
The data generated can be used for e.g. load and flexibility 
simulations for residential EV charging. 
Load profiles are simulated for 1000 EVs, where the EV 
mix is either BASE (reflecting the dataset mix), LOW 
("small" EVs only) or HIGH ("large" EVs only). For the 
BASE scenario, the charging need is about 2500 kWh per 
year, which is in the range of the original data. Comparing 
the LOW and HIGH scenarios, the EVs in LOW charge 
about 25% less energy on an annual basis. The EVs in 
LOW are charged more frequently than in HIGH (1.7 
times), but charge less energy per session (0.5 times). The 
potential to move the charging in time is higher for HIGH, 
due to the increased charging power.  
Coincident peak demand is an important factor in grid 
dimensioning, and is calculated for the three mixes of user 
types, with the number of EVs increasing from 1 to 50.  
Assuming EV charging immediately after plug-in, the 
average peak load per EV is descending towards 1.4 kW 
for BASE, 1.3 kW for "small" EVs, and 1.9 kW for 
"large" EVs. 
It is found that the model generates realistic hourly load 
profiles for residential EV charging, reflecting today’s 
charging patterns. The results illustrate how charging 
habits and load profiles depend on the EV type, and how 
this affect coincidence factors and coincident peak 
demand. 
It is our intention to further improve the EV load profile 
generator. Prospects for future works include:  
• Creating new probability distributions based on a 

larger dataset, to make the model more robust and 
reflect a more general situation. 

• Considering improvements in the EV load profile 
generator, e.g. to include a dependence between 
energy charged and type of day; to allow more than 
one charging session per day; to allow the connection 
time to be longer than 24 hours; to include a 
dependence between plug-in and plug-out time also 
for plug-ins Friday, Saturday or Sunday; to add a 
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minimum period between two charging sessions, e.g. 
based on a statistical dependence between previous 
plug-out time and the new plug-in time. 

• Improving the temperature dependency based on real 
data, possibly with a difference between "small" and 
"large" EVs. Considering how other seasonal factors 
impact the scaling factor, such as season dependent 
tyres, driving habits, cabin and battery preheating, and 
user behaviour.   

• Differentiate between holiday periods or special days. 
• Characterizing the EV charging sessions and their 

energy loads as flexible or non-flexible, depending on 
the duration of the non-charging idle times.   

• Improving the characteristics of EV types and adding 
hourly battery SoC to the output data, based on 
methods in Sørensen et al. (2022). 

• Considering if hourly local traffic density should be 
included as a possible input from the generator user, 
since correlation is found between plug-in/plug-out 
times and local hourly traffic (Sørensen et al., 2021a). 
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