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Abstrat

We onsider an inventory routing problem in whih a single vehile is responsible for the transport

of a ommodity from a set of supply loations to a set of demand loations. At eah loation the

inventory must be kept within prede�ned bounds, and the loation spei� supply and demand rates

are onstant throughout the time horizon. Eah loation an be visited several times during the time

horizon, and the vehile an visit the loations in any order as long as the apaity of the vehile

is not exeeded. Two models are presented, eah de�ned on a di�erent extended network. In a

loation-event model, the nodes are indexed by the loation and the number of visits made so far to

that loation, while in a vehile-event model the nodes are indexed by the loation and the number of

visits so far on the vehile route. Both models are based on ontinuous time formulations. They are

tightened with valid inequalities, and a new branhing algorithm is designed to speed up the solution

time of the models. Computational tests based on a set of maritime transportation instanes are

reported to ompare both models and the orresponding tightened variants.

Keywords: Inventory; routing; strong formulations; valid inequalities.

1 Introdution

In this paper we onsider an inventory routing problem (IRP) with onstant supply and demand rates

at supply and demand loations, respetively. A single vehile is responsible for transporting a single

ommodity from the supply loations to the demand loations. The vehile route and the orresponding

pikup and delivery operations must be oordinated in order to keep the inventory levels at eah loation

within prede�ned upper and lower bounds. The vehile, whih has limited apaity, starts from a given

initial position, visits the loations in any order along its route, and ends its route at any loation.

Eah loation an be visited one or several times during the planning horizon depending on the size

of the storage, the supply or demand rate, and the quantity piked up or delivered at eah visit. The

quantity piked up or delivered at eah visit is also variable. Time is regarded as ontinuous, and the

planning horizon has a de�ned length. The single vehile ontinuous-time inventory routing problem

with pikups and deliveries (s-CT-IRP-PD) onsists of designing routes and shedules for the vehile in

order to minimize the travel and operational osts, and to determine the number of visits at eah loation

inluding the quantities handled without exeeding the storage limits.

Although the study of this problem is motivated by maritime transportation problems, suh problems

may also our in land-based transportation when long travel times and/or long operating times at
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loations are onsidered. The main distintion ompared to many other inventory routing models is that

time is treated as ontinuous and the vehile may operate ontinuously, meaning that the distribution

plan is not split into disrete time periods, suh as hours or days.

As for related problems, suh as the travelling salesman problem or the inventory routing problem

with pikups and deliveries [12℄, the single vehile ase an have pratial appliations on its own. The

reasons may be that only one vehile is available or beause the geographial dispersion of the loations to

be visited leads to a natural partition and thus an assignment of a subset of the loations to eah vehile.

Suh assignments an also be used to derive heuristi shemes for the multi-vehile ase, in whih a �rst

step is to selet the set of loations to be visited by eah vehile, see [7℄. The single vehile-ase arises very

naturally as a subproblem when olumn generation approahes are used to solve multi-vehile inventory

routing problems, see for instane [2, 34℄.

The purpose of this paper is to investigate and present improved mixed integer formulations for the

inventory routing problem with onstant supply and demand rates that an be used to solve instanes

with long time horizons.

Inventory routing problems have been studied for almost four deades and have been the subjet of

several reviews, suh as [9, 20℄.

For the majority of IRPs onsidered in the literature, the planning horizon is partitioned into periods

and it is assumed that arrivals our at the start of the period, demands take plae at the end of the

period and that both our instantaneously; see [15, 20℄. However, the quantity piked up or delivered

at a partiular time depends on the storage apaity and the inventory level at that point in time, and

an IRP with disretized time periods may be less aurate than an IRP with ontinuous time. That is

the reason why ontinuous-time models have been widely used in the past in maritime transportation

[8, 17, 19, 30℄ where several ships transport a ommodity between multiple supply ports and multiple

demand ports. In suh problems, the travel times are usually long and event models are employed in

whih an event orresponds to a ship visit to a port. Suh models are similar to the loation-event model

presented in Setion 3. When the supply and/or demand rate is varying during the planning horizon, a

disrete-time model is applied, see [3, 31℄. In [4℄ ontinuous time is ombined with disrete time to model

a multi-item maritime inventory routing problem in whih ontinuous time is used to model the visits to

ports while disrete time is used to model time-windows in the ports.

Comparisons between ontinuous-time and disrete-time model are also explored in the literature; see

[5℄ for maritime IRPs. While the disrete-time models tested in [5℄ proved to provide smaller integrality

gaps than those obtained with the ontinuous-time models, it was also observed that time disretizations

may lead to very large sized models when the time horizon is long or if the use of a �ne time disretization

is required. This salability issue with the disrete-time models motivates the need to ondut a deeper

study of the ontinuous-time models.

Continuous-time models have also been used in land transportation, partiularly for ompanies in the

liquid gas industry. Song and Savelsbergh [32℄ introdued the IRP with ontinuous moves in the liquid

gas industry. Here, the produt was piked up at di�erent failities and delivered to ustomers spread

over a large geographi area, and the transportation teams were on the road for several days. Avella et al.

[13℄ onsider an IRP in whih one warehouse supplies a set of fuel pumps using a �eet of truks. Reently,

Fokkema et al. [26℄ propose a ontinuous-time model for a pratial biogas IRP where ontainers at as

both storage and transportation units. Multiple suppliers and a single faility are assumed. Furthermore,

Lagos et al. [29℄ study a problem typially found in the liquid gas industry, and they propose a dynami

disretization algorithm for IRPs where a time-expanded network formulation is introdued to obtain
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solutions that are onverted to ontinuous-time solutions. A similar approah an be found in [16℄ for a

ontinuous-time servie network design problem.

A relevant related problem is the yli inventory routing problem that aims to �nd routing shedules

of a ertain length that are repeated in�nitely [1, 24, 26℄. In this variant of the IRP the onditions at the

end of the planning horizon oinide with those at the beginning (inventory levels and vehile position).

Moreover, in the single-vehile yli inventory routing ase, only one supplier is usually onsidered. Eah

ustomer is visited at most one in the yle and the yle time of the trip made by the vehile is to be

determined [1℄. Hene, the solution tehniques proposed in our paper an be used to obtain solutions for

the yli inventory routing problem if additional onstraints foring the �nal onditions to math the

initial onditions are inluded (same inventory levels at all loations and the start position of the vehile

is equal to its end position). Also, the requirement that eah loation is visited at most one an easily

be inluded in the model.

Another important harateristi of an IRP is the network struture, where the basi IRP onsiders

a depot with an unlimited supply of the ommodity and many distributed ustomer nodes demanding

the ommodity, see for instane [11, 21℄. However, the opposite struture with a demand depot and

suppliers distributed geographially is also investigated in the literature and alled supply-driven IRPs

[23, 26℄. Inventory routing problems with both pikup and delivery nodes have been extensively studied

in the maritime ontext. We refer to [18, 19℄ for an introdution and an overview of maritime IRPs with

pikup and delivery struture. There are also land-based IRPs with pikup and delivery nodes studied

in the literature. One important lass of suh problems is the losed-loop IRP, whih takes into aount

the return proesses as well as the forward �ows in order to reover the value from the ustomers or

end users. This means that the loations are simultaneously pikup and delivery loations. Closed-loop

inventory routing problems for returnable items with simultaneous pikup and delivery are studied for

instane in [28, 33℄. The loation harateristis deviate from ours beause our loations are lassi�ed as

either a pikup or delivery loation, and we do not allow simultaneous pikup and delivery at a ustomer.

Another ombined inventory management and pikup and delivery routing problem is studied in [10℄,

where the authors study a real problem of replenishing automated teller mahines (ATM). Also for this

problem an ATM an at as both a pikup and delivery loation and all the vehile start from a ommon

depot.

The majority of the IRPs studied in the literature, inluding the -CT-IRP-PD, onsider the trans-

portation of a single produt. However, there is also work onsidering multiple produts as in [22℄ for

land based transportation and in [27℄ for maritime transportation.

One relevant issue in the s-CT-IRP-PD is that eah loation an be visited several times and that the

number of visits is not known in advane. The visits must be oordinated with the inventory levels at

the di�erent loations. This means that the vehile may visit a partiular loation several times during

the time horizon piking up or delivering small quantities of the ommodity at eah visit or alternatively

visit the loation just one and pik up or deliver large quantities. This inventory poliy is often alled

a maximum-level poliy meaning that the replenishment is �exible, but bounded by the inventory limits,

see [20℄. An alternative is the order-up-to poliy in whih the aim during a visit is to �ll the storage

faility to apaity at a demand loation and to empty the faility at a supply loation, see [14℄.

Deriving good formulations for model with a variable number of visits to the loations and variable

quantity is hallenging. Here, we onsider two di�erent models that take the ourrene of multiple

visits into aount. The �rst is a loation-event model, similar to those used in [8, 17, 30℄, based on an

expanded network in whih there is a di�erent node for eah possible visit to a loation. The seond,
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vehile-event model, is based on a layered graph. Here, all loations are present in eah layer and the

kth layer represents the kth visit of the vehile. Suh models have also been used for related problems,

see for instane [25℄ where a single vehile is responsible for olleting information that is generated at

onstant rates in several loations and delivered to a single depot. As these models have large integrality

gaps, they are tightened with valid inequalities. Based on a set of instanes for maritime inventory

routing, a omputational study is here onduted to test and ompare both models with and without

valid inequalities.

In addition to the introdution of the layered vehile-event model, we desribe valid inequalities for

the loation-event model, whih are also valid for the multi-vehile ase, as well as valid inequalities

for the vehile-event model. In addition, we present simple approahes to provide upper bounds on the

number of events onsidered in eah model, that is, the number of visits to eah of the loations in the

loation-event model, and the total number of visits made by the vehile in the vehile-event model.

Providing tight upper bounds allows us to limit the size of the orresponding models. These approahes

suggest a new branhing algorithm based on a restrition on the number of visits.

The ontribution of this work an be summarized as follows:

1. The s-CT-IRP-PD is introdued. The single-vehile version of the problem is not studied in the

literature previously.

2. Two general mathematial formulations of the problem, a loation-event model and a vehile-event

model, are presented.

3. New valid inequalities are proposed for both models.

4. New valid inequalities are introdued under the assumption that the vehile annot return twie

to a demand/supply loation without visiting a supply/demand loation in between. When this

assumption does not hold, these inequalities are used to partition the set of feasible solutions and

an exat algorithm is proposed.

5. A branh-and-ut algorithm is desribed inluding a new branhing algorithm.

6. Benhmark instanes for the s-CT-IRP-PD are generated.

7. A omputational study gives information about the e�etiveness of the models and the valid in-

equalities and insights into the problem. All the tested instanes up to 180 periods are solved to

optimality with the best approah that ombines the main ontributions.

The rest of the paper is organized as follows: In Setion 2, we present and disuss the inventory

routing problem. In Setion 3 we present the loation-event model and disuss valid inequalities. In

Setion 4, the layered vehile-event model is introdued and tightened. The estimation of the bounds

on the number of visits is disussed in Setion 5. Computational results are presented in Setion 6 and

Setion 7 ontains some onluding remarks.

2 Problem desription

In this setion, we desribe the inventory routing problem in more detail. A single vehile is trans-

porting a single ommodity over a time horizon of length T . Let GN = (N,AN ) denote a graph in whih

N is the set of loations to be visited, and AN
is the set of ars between the loations. For eah loation

i, an initial stok S0
i , and a onstant supply/demand rate Ri are given. The vehile of limited apaity
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C is responsible for piking up the ommodity from the supply loations and delivering it to the demand

loations to ensure that the stok levels are kept within spei�ed minimum Si and maximum levels Si

throughout the time horizon. Initially, the vehile arries Q0
units of the ommodity and, at the end

of the time horizon, it an arry any amount between 0 and its apaity C. For a visit to loation i,

minimum Q
i
and maximum Qi pikup or delivery quantities are spei�ed.

The travel time between loations i and j inluding also any set-up time required to operate at loation

j is Tij , and the travel time required to travel from the origin to loation i is T 0
i . In addition, TQ

i is the

time required to pikup/deliver one unit of the ommodity at loation i. The vehile is also allowed to

wait before operating at a loation.

To resume, we onsider the ase in whih a single routing and distribution plan must be determined

for the entire time horizon, see [32℄. The vehile starts from a given initial position, that an be any

loation (e.g. in maritime transportation the initial position an be a point at sea), an visit any sequene

of loations along the route and ends its route at a dummy destination. However, we do not allow that

the vehile makes two onseutive visits to the same node. Eah loation an be visited multiple times,

and the number of visits to eah loation is a deision resulting from the plan and not an input parameter.

The need to visit a partiular loation several times during the time horizon may be due to the vehile

apaity or the maximum/minimum inventory limits and the amount of the ommodity available. After

its last visit, the vehile leaves for an unspei�ed destination, but the stok levels at all the loations

must be feasible up until time T . In Figure 1 we provide an example of a feasible vehile route that visits

loations 2 and 3 twie and loation 1 one. Notie that the last loation visited by the vehile before

moving to the dummy destination is loation 2.

DO
2 2

3 3

1

Figure 1: Example of a route with N = {1, 2, 3}, in whih the vehile departs from its origin (node O)

visits loation 3 for the �rst time, then makes a �rst visit to loation 2, returns to loation 3 for a seond

visit, then travels to loation 1 followed by a seond visit to loation 2. Then the vehile leaves for the

destination (node D).

Two types of osts are onsidered: (i) travel osts CT
ij for a trip from loation i to loation j and CT0

i

for a trip from the initial loation of the vehile to loation i and (ii) a �xed set-up/operating ost CS
i

inurred every time the vehile operates at loation i. The objetive is to minimize the transportation

and operating osts.

Now we present an example showing that the solution to the inventory routing problem an be highly

sensitive to the parameters beause the inventory bounds are hard onstraints.

Example 2.1 Consider an instane with a time horizon of 40 days, 4 loations, in whih loation 1

is a supplier and loations 2, 3, 4 are demand loations. Assume the vetor of supply/demand rates is

given by (6, 2, 2.5, 1.5) and onsider two alternatives for the vetor of initial stok levels (115, 39, 38,

16) and (115, 39, 38, 15), in whih only S0
4 varies by one unit. The vehile is loated at loation 1 at

the beginning of the time horizon and the initial load is zero. The pikup/delivery rate TQ
i is 80 units

per time unit for all loations. The travel distanes and the travel osts are given by T12 = 7, T13 = 8,

T14 = 5, T23 = 3, T24 = 5, T34 = 8, and CT
12 = 70, CT

13 = 80, CT
14 = 50, CT

23 = 30, CT
24 = 50, CT

34 = 30,

respetively. The travel distanes T 0
i and travel osts CT0

i are based on the vehile's initial position. The
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set-up and operating osts are (7,5,5,5). Figure 2 depits an optimal solution when S0
4 is 16 (in the upper

network) and when S0
4 = 15 (in the lower network). The orresponding optimal values are 130.7 and

261.6, respetively. In the ase when S0
4 = 16 the initial inventory level allows loation 4 to be served at

time period 10.3. This allows the vehile to pik up enough to serve the net demand at the 3 onsumer

loations. If S0
4 is redued to 15, loation 4 needs to be served within time 10 whih fores the vehile to

leave the supply loation without su�ient quantity to serve all the demand loations. Hene, foring a

seond visit to loations 1 and 4 leads to a large inrease in ost.

D

O

(19.5, 41)

2

(10.3, 44)

4

(3.5, 147)

1

(15.2, 62)

3

D

O

2

4 4

1 1

3

(17.3, 41)

(10, 42) (38, 3)

(3.2, 145) (24.8, 3)

(13.5, 62)

Figure 2: Optimal solutions with S0
4 = 16 (above) and S0

4 = 15 (below). The label next to eah node

represents (start time of visit, quantity piked up/delivered).

Example 2.1 indiates at least partially the di�ulty in oordinating the inventory management with

the distribution in inventory routing problems.

Another issue is the end-of-time horizon e�et that is often observed in inventory problems. In optimal

solutions, the stok level at the end of the time horizon is typially high if the loation is a supplier and

low if it is a demand loation. In order to avoid the end-of-time horizon e�et, we introdue a parameter

F, that is a frational value between 0 and 1, to ontrol the inventory level at the end of the time horizon.

For a supply loation, the stok level at time T should not exeed (1 − F )Si + FS0
i , and for a demand

loation the stok level at time T should be at least (1 − F )Si + FS0
i . Hene, setting F = 0 we are not

imposing any additional restritions on the inventory levels Si, Si, while in the extreme ase, F = 1, we

are imposing that the inventory levels should be at most (least) the initial inventory level at all the supply

(demand) loations. In this ase, as the inventory levels at the end of the time horizon math the initial

inventory levels, the solution an be ylially repeated (if in addition we fore the destination node to

oinide with the origin node), solving the orresponding yle inventory routing variant for yle time

T .

3 The loation-event model

In the loation-event model, an extended graph is onsidered in whih eah node orresponds to a

visit to a loation. For eah loation, we onsider an ordering of the visits aording to the time of the

visit. The vehile path is de�ned on an extended graph GV = (V,AV ) in whih eah node in the set V

is represented by a pair (i,m), in whih i ∈ N indiates the loation and m indiates the mth
visit to

loation i. Ars in the graph GV
orrespond to diret vehile movements from node (i,m) to node (j, n).
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Thus ((i,m), (j, n)) ∈ AV
if (i, j) ∈ AN . For ease of notation, ars ((i,m), (j, n)) ∈ AV

are represented

by (i,m, j, n) whenever the meaning is lear from the ontext. Figure 3 shows how the route shown in

Figure 1 is represented in this extended graph.

DO

2,1

2,2

3,1

3,2

1,1

Figure 3: Route given in Figure 1 represented in GV .

3.1 Formulation

For easy referene, the parameters and the variables for the loation-event model are given below.

They are followed by the mathematial model.

Parameters

Ji if loation i is a supplier then Ji = 1, otherwise Ji = −1

µi upper bound on the number of visits to loation i

Variables

ximjn 1 if the vehile travels from node (i,m) diretly to node (j, n), and 0 otherwise

x0
i1 1 if the vehile travels diretly from its initial position to node (i, 1), and 0 otherwise

yim 1 if the vehile makes the mth
visit to loation i, and 0 otherwise

zim 1 if the vehile ends its route at node (i,m), and 0 otherwise

qim quantity piked up or delivered at node (i,m)

fimjn quantity transported from node (i,m) to node (j, n)

f0
im quantity transported from the initial position of the vehile to node (i,m)

fD
im quantity transported from node (i,m) to the destination

tim start time of operation on the mth
visit to loation i

sim stok level at the start of operation on the mth
visit to loation i

Variables x0
im and f0

im are set to zero for allm > 1. They are inluded in the model for ease of notation.

The onstraints are separated into four groups: routing onstraints, pikup and delivery onstraints, time

onstraints and inventory onstraints.
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Routing onstraints

∑

(i,m)∈V

x0
im = 1, (1)

yim −
∑

(j,n)∈V

xjnim − x0
im = 0, ∀(i,m) ∈ V, (2)

yim −
∑

(j,n)∈V

ximjn − zim = 0, ∀(i,m) ∈ V, (3)

yi,m−1 − yim ≥ 0, ∀(i,m) ∈ V : 2 ≤ m ≤ µi, (4)

x0
im, yim, zim ∈ {0, 1}, ∀(i,m) ∈ V, (5)

ximjn ∈ {0, 1}, ∀(i,m, j, n) ∈ AV . (6)

Equation (1) ensures that the vehile leaves the origin. Equations (2) and (3) are the �ow onservation

onstraints, ensuring that if the vehile arrives at a node, it also leaves that node or ends its route.

Constraints (4) state that if loation i is visited m times, then it must also have been visited m−1 times.

Pikup and delivery onstraints

f0
im +

∑

(j,n)∈V

fjnim + Jiqim =
∑

(j,n)∈V

fimjn + fD
im, ∀(i,m) ∈ V, (7)

f0
im = Q0x0

im, ∀(i,m) ∈ V, (8)

fimjn ≤ Cximjn, ∀(i,m, j, n) ∈ AV , (9)

fD
im ≤ Czim, ∀(i,m) ∈ V, (10)

Q
i
yim ≤ qim ≤ min{C,Qi}yim, ∀(i,m) ∈ V, (11)

fimjn ≥ 0, ∀(i,m, j, n) ∈ AV . (12)

Equations (7) are the �ow onservation onstraints for the quantity transported by the vehile. Equations

(8) determine the quantity transported from the initial position to node (i,m). Constraints (9) and (10)

ensure that the vehile apaity is not exeeded, while onstraints (11) impose lower and upper limits on

the pikup/delivery quantities.

Time onstraints

tim + TQ
i qim − tjn + (T + Tij)ximjn ≤ T, ∀(i,m, j, n) ∈ AV , (13)

T 0
i x

0
im ≤ tim, ∀(i,m) ∈ V, (14)

0 ≤ tim ≤ T, ∀(i,m) ∈ V. (15)

Constraints (13) link the start time assoiated with node (i,m) to the start time assoiated with (j, n)

when the vehile travels diretly from (i,m) to (j, n). Constraints (14) ensure that if the vehile travels

from its initial position to (i,m), then the start time at (i,m) is at least the traveling time between the

origin and loation i. Lower and upper bounds on the start time at eah visit are given by (15).

8



Inventory onstraints

si1 = S0
i + JiRiti1, ∀i ∈ N, (16)

sim = si,m−1 − Jiqi,m−1 + JiRi(tim − ti,m−1), ∀(i,m) ∈ V : m > 1, (17)

sim + qim −RiT
Q
i qim ≤ Si, ∀(i,m) ∈ V |Ji = −1, (18)

sim − qim +RiT
Q
i qim ≥ Si, ∀(i,m) ∈ V |Ji = 1, (19)

siµi
+ qiµi

−Ri(T − tiµi
) ≥ (1− F )Si + FS0

i , ∀i ∈ N |Ji = −1, (20)

siµi
− qiµi

+Ri(T − tiµi
) ≤ (1− F )Si + FS0

i , ∀i ∈ N |Ji = 1, (21)

sim ≥ Si, ∀(i,m) ∈ V |Ji = −1, (22)

sim ≤ Si, ∀(i,m) ∈ V |Ji = 1. (23)

Equations (16) speify the stok level at the start time of the �rst visit to a loation, and equations (17)

relate the stok level at the start time of the mth
visit to the stok level at the start time of the previous

visit. Constraints (18) and (19) ensure that the stok levels are within their limits at the end of eah

visit. Constraints (20) impose a lower bound on the inventory level at time T for the demand loations,

while onstrains (21) impose an upper bound on the inventory level at time T for the supply loations.

Notie that if F is a positive number, then the stok level at the end of the time horizon must be greater

than the lower bound Si for demand loations and must be lower than the upper bound Si for the supply

loations. Finally, onstraints (22) and (23) ensure that the stok levels are within their limits at the

start of eah visit.

Here we onsider the value of the variables after the last visit to node i. If κi is the number of the last

vehile visit to node i, then the routing onstraints (2), (3), and (4) fore variables yim, ximjn and xjnim

to be zero for all m > κi. Then, using the fat that these variables are zero, onstraints (9) and (11),

fore variables qim, fimjn and fjnim to be zero for all m > κi. The inventory and time variables, sim and

tim respetively, for m > κi, are only restrited by their bounds, Si ≤ sim ≤ Si and 0 ≤ tim ≤ T . That

means, multiple alternative values an be assigned to these variables. Although suh variables have no

pratial meaning, they are neessary to fore the inventory levels at time T to be within the prede�ned

limits. Observe that by adding up onstraints (17) for κi + 1 to µi and setting qim to zero, we obtain

siµi
= siκi

+ JiRi(tiµi
− tiκi

).

Using this onstraint to eliminate variable siµi
in onstraints (20) and (21) we obtain

siκi
−Ri(T − tiκi

) ≥ (1 − F )Si + FS0
i , ∀i ∈ N |Ji = −1,

siκi
+Ri(T − tiκi

) ≤ (1 − F )Si + FS0
i , ∀i ∈ N |Ji = 1.

This implies that the inventory bounds at the end of the time horizon are also satis�ed.

We denote by X the set of feasible solutions satisfying (1) � (23).

Objetive funtion

The objetive is to minimize the total travel and operating osts. The objetive funtion is as follows:

z =
∑

(i,m,j,n)∈AV

CT
ijximjn +

∑

(i,m)∈V

CT0
i x0

im +
∑

(i,m)∈V

CS
i yim. (24)

3.2 Loation-event model tightening

This setion presents valid inequalities for the feasible set X. Some inequalities have been used pre-

viously, namely, those imposing a minimum number of visits to eah node, see [6℄. There the problem

9



onsidered inludes several produts but does not onsider upper bounds on the inventories at the supply

loations.

Tighten variable upper bound onstraints

Here we onsider the tightening of the non-negativity onstraints (12):

fimjn ≥ Q
j
ximjn, ∀(i,m, j, n) ∈ AV |Jj = −1, (25)

fimjn ≥ Q
i
ximjn, ∀(i,m, j, n) ∈ AV |Ji = 1, (26)

and the tightening of the variable upper bound onstraints (9), linking the �ow variables with the routing

variables for ars leaving demand loations in (27) and ars arriving supply loations in (28):

fimjn ≤ (C −Q
i
)ximjn, ∀(i,m, j, n) ∈ AV |Ji = −1, (27)

fimjn ≤ (C −Q
j
)ximjn, ∀(i,m, j, n) ∈ AV |Jj = 1. (28)

Lower bounds on the number of visits

A ommon approah to tighten suh a formulation is to inlude onstraints imposing a minimum

number of visits to eah loation. Let µ
i
denote a lower bound on the number of visits to loation i,

i ∈ N.

For eah demand loation i ∈ N , Ji = −1 with S0
i − T ×Ri < Si, let

QN
i = max{T ×Ri − S0

i + Si, Q
i
},

denote the net demand over the time horizon. Otherwise QN
i = 0.

For eah supply loation i ∈ N, Ji = 1 with S0
i + T ×Ri > Si, let

QN
i = max{T ×Ri + S0

i − Si, Q
i
},

denote the net supply over the time horizon. Otherwise QN
i = 0.

The number of visits to loation i is at least:

µ
i
=

⌈
QN

i

min{Qi, C}

⌉
.

If there is only one supply loation, then assuming without loss of generality that this loation is

loation 1, we have

µ
1
=

⌈
max{QN

1 ,
∑

i∈N\{1} Q
N
i −Q0}

min{Q1, C}

⌉
.

Thus, the following equalities establishing the minimum number of visits an be added:

yiµ
i
= 1, ∀i ∈ N. (29)

The following inequalities establish a minimum number of visits that must be made to a subset of

loations S ⊆ N

∑

(i,m)∈V |i∈S

yim ≥

⌈∑
j∈S QN

j

C

⌉
. (30)

Instead of separating over this family of inequalities we inlude just two inequalities, one for the set of

suppliers and one for the set the demand loations, respetively.

∑

(i,m)∈V |Ji=1

yim ≥

⌈∑
j∈V |Jj=1 Q

N
j

C

⌉
, (31)

∑

(i,m)∈V |Ji=−1

yim ≥

⌈∑
j∈V |Jj=−1 Q

N
j

C

⌉
. (32)

10



End-of-visit inequalities

The following inequalities ensure that if the vehile makes the mth
visit to loation i then it annot

have made the last visit to that loation in one of the previous visits.

∑

n<m

zin + yim ≤ 1, i ∈ N,m > µ
i
. (33)

Travel time valid inequality

Proposition 3.1 Let IQT
denote a lower bound on the time spent piking up and delivering. Then the

following travel time inequality is valid for X:

∑

(i,m,j,n)∈AV

Tijximjn ≤ T − IQT . (34)

A possible value for the lower bound is IQT =
∑

i∈N QN
i TQ

i .

Another set of inequalities results from the assumption that no two onseutive visits an our at

the same node. Let Ti = minj∈N |(i,j)∈AN ,j 6=i Tij . Then the following inequalities are valid.

tim ≥ ti,m−1 + 2Ti, ∀ (i,m) ∈ V | 1 < m ≤ µ
i
, (35)

tim ≥ ti,m−1 + 2Tiyim, ∀ (i,m) ∈ V | m > µ
i
. (36)

Example 3.1 Continuing Example 2.1, for the ase S0
4 = 16 we have:

Loation 1, sine S0
1 + TR1 = 115 + 40× 6 = 355 < S1 = 360, then QN

1 = 0.

Loation 2, S0
2 − TR2 = 39− 40× 2 = −41 < S2 = 0. Thus QN

2 = 41.

Loation 3, S0
3 − TR3 = 38− 40× 2.5 = −62 < S3 = 0. Thus QN

3 = 62.

Loation 4, S0
4 − TR4 = 16− 40× 1.5 = −44 < S4 = 0. Thus QN

4 = 44.

We have

∑
i∈N QN

i = 0 + 41 + 62 + 44 = 147 and IQT =
∑

i∈N QN
i TQ

i = 147/80 = 1.8375.

Valid inequalities based on hamiltonian dipath

The following, alled (i,m)−(j, n) path inequalities result from lifting the following simple inequalities:

ximjn + xjnim ≤ yim, ∀(i,m, j, n) ∈ AV .

Proposition 3.2 The following inequalities are valid for X.

∑

n′≤n

ximjn′ +
∑

n′≥n

xjn′im ≤ yim, ∀(i,m, j, n) ∈ AV . (37)

Proof. If yim = 0, then all the variables on the left-hand side are zero.

Let yim = 1. For eah one of the sums in the left-hand side only one variable an be positive sine

otherwise, in the �rst sum there would be multiple ars leaving node (i,m) and in the seond sum there

would be multiple ars entering into node (i,m). If two variables ximjn′
with n′ ≤ n and xjn̂im with

n̂ ≥ n are simultaneously one we obtain an inompatibility with one ar preeding the other.

Maximal two-loation liques

Next, we introdue a family of inequalities of the form:

∑

(i,m,j,n)∈AV

π(i,m, j, n)ximjn ≤ 1

where π ∈ {0, 1}A
V

. These inequalities an be regarded as a partiular ase of lique inequalities on a

given on�it graph.

11



We just onsider the digraph restrited to the nodes for loations i and j and the ars on the vehile

route between two suh nodes. Two ars are said to be inompatible/ompatible if they annot/an both

form part of a route. Examples of pairs of inompatible ars are shown in Figure 4. Thus a) two ars

annot arrive or leave from the same node, b) two ars annot form a 2-yle, that is, ars (i, n, j,m) and

(j,m, i, n) are inompatible, and ) a pair of ars (i, n, j,m) and (j,m, i, n′) are inompatible if n > n′
.

In Figure 5 we show examples of ompatible ar pairs.

i, m i,m′

j, n j, n′

m ≤ m′
and n ≤ n′

(i)

i, m i,m′

j, n j, n′

m < m′, n < n′
or m = m′, n′ ≤ n or m′ < m,n = n′

(ii)

Figure 4: Inompatible ar pairs.

j, n j, n′

i,m i,m′

m ≤ m′, n ≤ n′
or m ≥ m′, n ≥ n′

(i)

j, n j, n′

i,m i,m′

m < m′, n < n′

(ii)

Figure 5: Compatible ar pairs with (m,n) 6= (m′, n′).

Proposition 3.2 Let A′
be a set of ars linking nodes (i,m),m = 1, . . . , µi and (j, n), n = 1, . . . , µj suh

that neither of the on�gurations in Figure 5 appears. Then the following inequality is valid for X.

∑

(i,m,j,n)∈A′

ximjn ≤ 1. (38)

Proof. Suppose that (j, n, i,m) ∈ A′
and xjnim = 1. We show that for all (j, n′, i,m′), (i,m′, j, n′) with

(j, n, i,m) 6= (j, n′, i,m′) either (j, n′, i,m′) /∈ A′
or xjn′im′ = 0 and similarly either (i,m′, j, n′) /∈ A′

or

xim′jn′ = 0.

Case 1. Consider (j, n′, i,m′) with (j, n′, i,m′) 6= (j, n, i,m).

Case 1a. m′ < m.

If n′ < n, (j, n′, i,m′) /∈ A′
by (ii) of Figure 5.

If n′ ≥ n, then by (i) of Figure 4, xjn′im′ = 0.

Case 1b. m′ = m. Again by (i) of Figure 4, xjn′im′ = 0.

Case 1. m′ > m.

If n′ > n, (j, n′, i,m′) /∈ A′
by (ii) of Figure 5.

Case 2. Consider (i,m′, j, n′).

Case 2a. m′ < m.

If n′ ≤ n, (i,m′, j, n′) /∈ A′
by (i) of Figure 5.

If n′ > n, then by (ii) of Figure 4 xim′jn′ = 0.

Case 2b. m′ = m.

If n′ > n, (i,m′, j, n′) /∈ A′
by (i) of Figure 5.

If n′ ≤ n, then by (ii) of Figure 4 xim′jn′ = 0.

Case 2. m′ > m.

12



O

visit 1

1

2

3

visit 2

D

1
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visit 3
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1

2

3

visit 4

D

1

2

3

O
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1
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3
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D

1

2

3

visit 7

D

1

2

3

visit 8

D

1

2

3

Figure 6: Example of a path in the extended network for a maximum of eight visits and three loations.

If n′ > n, (i,m′, j, n′) /∈ A′
by (i) of Figure 5.

If n′ ≤ n, then by (ii) of Figure 4 xim′jn′ = 0.

Remark 3.3 Proposition 3.2 an easily be extended to the ase of multiple vehiles by summing up eah

ar on the left-hand side for all possible vehiles.

As an e�ient separation algorithm for inequalities (38) is not known, we present below two partiular

polynomial sublasses of the maximal two-loation liques.

Proposition 3.3 Let (i,m1), (i,m2), (j, n1), (j, n2) ∈ V with m1 < m2 and n1 < n2. Then the following

inequality is valid for X.

∑

n≤n1

xi,m2,j,n +
∑

m≤m1

xj,n2,i,m + xi,m1,j,n1 + xj,n1,i,m1 ≤ 1. (39)

Proposition 3.4 Let (i,m1), (i,m2), (j, n1), (j, n2) ∈ V with m1 < m2 and n1 < n2. Then the following

inequality is valid for X.

∑

m≥m2

xi,mj,n1 +
∑

n≥n2

xj,ni,m1 + xi,m1,j,n2 + xj,n1,i,m2 ≤ 1. (40)

4 Layered vehile-event model

In this setion, we propose a di�erent model in whih events are linked to the vehile. The order of

the events orresponds to the order of the vehile visits. In this formulation, the vehile path is desribed

using a layered graph in whih eah layer orresponds to the number of visits made by the vehile. Eah

layer ontains all loations. In Figure 6 we present an example of a path in the extended network for a

maximum of eight visits orresponding to the example given in Figure 1. The vehile leaves the origin

to visit loation 3 (�rst visit/layer), then moves to loation 2 (seond visit/layer), followed by loation

3 (third visit/layer), then loation 1 (fourth visit/layer) and �nally visits loation 2 (�fth visit/layer).

From the last visit, the vehile moves to the arti�ial destination (D).

4.1 Formulation

First, we desribe the sets, parameters and variables not de�ned previously. Then, we desribe the

mathematial formulation of the vehile-event model.

Sets and Parameters

k maximum number of vehile visits

K set of possible visits {1, . . . , k}

13



Variables

yki = 1 if the kth visit ours at loation i, and 0 otherwise

χk
ij = 1 if the (k − 1)th visit is to loation i and the kth to loation j

zki = 1 if the kth visit is to loation i and it is the last visit on the route

fk
ij quantity transported by the vehile from the (k − 1)

th
visit at loation i to the kth visit at loation j

f0
i quantity transported by the vehile from the origin to the 1st visit at loation i

fDk
i is the amount remaining in the vehile when the last visit is the kth visit to loation i

ski stok level at loation i at the start of the kth visit of the vehile

tk start time of the kth visit

qki quantity piked up/ delivered at loation i during the kth visit of the vehile

The objetive funtion is again to minimize the travel osts plus the operating osts:

Z = min
∑

(i,j)∈AN

∑

k∈K

CT
ijχ

k
ij +

∑

i∈N

CT0
i y1i +

∑

i∈N

∑

k∈K

CS
i y

k
i . (41)

As before, the onstraints are presented separately for the main four omponents: path onstraints,

pikup and delivery onstraints, time onstraints and inventory onstraints.

Path onstraints

∑

j∈N

y1j = 1, (42)

yki −
∑

j∈N |i6=j

χk
ji = 0, ∀ i ∈ N, k ∈ K | k > 1, (43)

yk−1
i −

∑

j∈N |j 6=i

χk
ij − zk−1

i = 0, ∀ i ∈ N, k ∈ K | k > 1, (44)

∑

i∈N

∑

k∈K

zki = 1, (45)

yki , z
k
i ∈ {0, 1}, ∀ i ∈ N, k ∈ K, (46)

χk
ij ∈ {0, 1}, ∀ (i, j) ∈ AN , k ∈ K. (47)

Equality (42) ensures that the vehile makes a �rst visit. Constraints (43) state that if the vehile travels

diretly from loation j to loation i and the visit to loation j is the (k − 1)th, then loation i must

reeive the kth visit. Constraints (44) say that if yk−1
i = 1 then the vehile either travels from loation i

to another loation j or ends its route in i. Constraint (45) ensures that the route terminates at or before

the k̄th visit.
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Pikup and delivery onstraints

f0
i + Jiq

k
i =

∑

j

fk+1
ij + fDk

i , ∀ i ∈ N, k = 1, (48)

∑

i∈N

fk
ij + Jjq

k
j =

∑

ℓ

fk+1
jℓ + fDk

j , ∀ j ∈ N, k ∈ K|k > 1, (49)

f0
i = Q0y1i , ∀ i ∈ N, (50)

fk
ij ≤ Cχk

ij , ∀ (i, j) ∈ AN , k ∈ K, (51)

fDk
i ≤ Czki , ∀ i ∈ N, k ∈ K, (52)

Q
i
yki ≤ qki ≤ min{C,Qi}y

k
i , ∀ i ∈ N, k ∈ K, (53)

fk
ij ≥ 0, ∀ (i, j) ∈ AN , k ∈ K, (54)

fDk
i ≥ 0, ∀ i ∈ N, k ∈ K. (55)

Equations (48)�(49) are the �ow balane onstraints for the quantity arried by the vehile. Equations

(50) desribe the initial load on the vehile. Inequalities (51) � (52) impose upper bounds on the vehile

load. These variable upper bound onstraints also link the binary routing variables to the ontinuous

variables representing the quantities transported. Constraints (53) are the variable lower and upper

bound onstraints linking the quantity piked up/delivered with the binary variables representing the

visits to loations.

Time onstraints

tk−1 +
∑

i∈N

TQ
i qk−1

i − tk +
∑

(i,j)∈A

Tijχ
k
ij ≤ 0, ∀ k ∈ K|k > 1, (56)

t1 ≥
∑

i∈N

T 0
i y

1
i , (57)

0 ≤ tk ≤ T, ∀ k ∈ K. (58)

Constraints (56) guarantee that the start time of the kth visit an only our after the start time of the

(k − 1)th visit plus the pikup/delivery time of the (k − 1)th visit plus the traveling time between the

two loations. Constraint (57) ensures that the �rst visit annot be made before the vehile arrives at

the loation from the origin. Constraints (58) ensure that the start time at a loation is within the time

horizon.

Inventory onstraints

s1i = S0
i + JiRit

1, ∀ i ∈ N, (59)

ski = sk−1
i − Jiq

k−1
i + JiRi(t

k − tk−1), ∀ i ∈ N, k ∈ K|k > 1, (60)

ski + qki −RiT
Q
i qki ≤ Si, ∀i ∈ N |Ji = −1, k ∈ K, (61)

ski − qki +RiT
Q
i qki ≥ Si, ∀i ∈ N |Ji = 1, k ∈ K, (62)

ski + qki −Ri(T − tk) ≥ (1− F )Si + FS0
i , ∀i ∈ N |Ji = −1, (63)

ski − qki +Ri(T − tk) ≤ (1− F )Si + FS0
i , ∀i ∈ N |Ji = 1, (64)

ski ≥ Si, ∀i ∈ N |Ji = −1, k ∈ K, (65)

ski ≤ Si, ∀i ∈ N |Ji = 1, k ∈ K. (66)
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Equations (59) and (60) are the inventory balane onstraints at eah loation. Constraints (61) impose

an upper bound on the stok level at eah loation at the end of eah visit for the demand loations,

while onstraints (62) impose a lower bound on the stok level at eah loation at the end of eah visit

for the supply loations. Constraints (63) impose a lower bound on the stok level at the end of the time

horizon for the demand loations, and onstraints (64) impose an upper bound on the stok level at eah

supply loation at the end of the time horizon. Constraints (65) impose a lower bound on the stok level

at eah demand loation at the beginning of eah visit, while onstraints (66) impose an upper bound on

the stok level at eah supply loation at the beginning of eah visit.

Now, we observe what happens with the value of the variables after the last visit. If κ is the number of

the last vehile visit, then the path onstraints fore yki and χk
ij to be zero for all k > κ, and onstraints (53)

fore the quantity qki to be zero. Constraints (56) then impose tk ≥ tk−1. Hene, onsidering onstraints

(58), the time of the visits for k > κ (visits that are not made) are restrited by tk−1 ≤ tk ≤ T, that means,

multiple alternative values an be assigned to these variables. In relation to the inventory variables, for

k > κ, onstraints (61), (62), (65), and (66) impose that the inventory levels must be between the

inventory bounds, Si ≤ ski ≤ Si, while onstraints (60) alulate the inventory levels aording to the

times assigned to variables tki . These variables t
k
i , s

k
i that have no pratial meaning are neessary to fore

the inventory levels at time T to be within the prede�ned limits, by onstraints (63) and (64).

4.2 Vehile-event model tightening

Here we desribe valid inequalities to tighten the vehile-event model.

The nonnegativity onstraints on the �ow variables (54) an be tightened as follows:

fk
ij ≥ Q

j
χk
ij , ∀ (i, j) ∈ AN | Jj = −1, k ∈ K, (67)

fk
ij ≥ Q

i
χk
ij , ∀ (i, j) ∈ AN | Ji = 1, k ∈ K. (68)

Also, the variable upper bound onstraints (51) an be tightened as follows:

fk
ij ≤ (C −Q

i
)χk

ij , ∀ (i, j) ∈ AN | Ji = −1, k ∈ K, (69)

fk
ij ≤ (C −Q

j
)χk

ij , ∀ (i, j) ∈ AN | Jj = 1, k ∈ K. (70)

The end-of-visits inequalities (33) for the loation-event model an now be written as follows:

∑

i∈N

k−1∑

k′=1

zk
′

i +
∑

i∈N

yki ≤ 1, ∀ k ∈ K. (71)

Next, we present a set of inequalities that establishes a minimum number of visits , µ
i
, that the vehile

must make to eah loation.

∑

k∈K

yki ≥ µ
i
, ∀ i ∈ N. (72)

Similarly to inequalities (31) and (32), we de�ne the following inequalities establishing a minimum

number of visits that the vehile must make to the suppliers and to the demand loations, respetively.

∑

k∈K

∑

j∈N |Jj=1

ykj ≥

⌈∑
j∈N |Jj=1 Q

N
j

C

⌉
, (73)

∑

k∈K

∑

j∈N |Jj=−1

ykj ≥

⌈∑
j∈N |Jj=−1 Q

N
j

C

⌉
. (74)

The following inequalities impose onditions on the �rst p visits to eah loation. Let νpi denote

the time at whih a disruption ours (i.e. the time when the inventory level reahes the stok limit)
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at loation i if that loation reeived p − 1 visits piking up/delivering the maximum possible amount

C̄i = min{Si, C}. For a supply loation we have

νpi =
Si − S0

i

Ri

+
(p− 1)C̄i

Ri

,

and for a demand loation the disruption ours at time

νpi =
S0
i − Si

Ri

+
(p− 1)C̄i

Ri

.

If the pth visit to node i is the kth vehile visit, then one must have tk ≤ νpi .

Let Tmin = min(i,j)∈AN {Tij} be the minimum travel time between two loations, Tmin
i = minj 6=i{Tij}

the minimum travel time between node i and any other node, and let T 0min = mini∈N{T
0
i } be the travel

time between the origin and the losest loation. Hene

tk ≥ T 0min + (k − p)Tmin + (p− 1)Tmin
i ∀ k ∈ K | k > 1.

Therefore, T 0min + (k − p)Tmin + (p− 1)Tmin
i ≤ νpi .

Hene, for eah i ∈ N and eah p, we set

kpi = p+

⌊
νpi − T 0min − (p− 1)Tmin

i

Tmin

⌋
.

Proposition 4.1 For i ∈ N and eah p ∈ 1, . . . , µ
i
, the following inequality is valid:

k
p

i∑

k=1

yki ≥ p ∀i ∈ N. (75)

The travel time inequalities (34) an also be adapted for the vehile-event model as follows:

∑

k∈K

∑

(i,j)∈AN

Tijχ
k
ij ≤ T − IQT . (76)

In most pratial situations the following assumption an be assumed.

Assumption 1: The vehile annot return twie to a demand loation without visiting a supply

loation in between, nor return twie to a supply loation without visiting a demand loation in between.

When Assumption 1 is valid, a new set of inequalities an be derived. Let s =| {i ∈ N |Ji = 1} |, and

r =| {i ∈ N |Ji = −1} | denote the number of supply and demand loations, respetively.

First, onsider the ase Q0 = 0. Then, at least

⌈∑
i∈N |Ji=1 Q

N
i

C

⌉
visits must be made to supply

loations for pik-up operations and at least

⌈∑
i∈N |Ji=−1 Q

N
i

C

⌉
loads must be delivered to the demand

loations, whih must be piked up at the supply loations. Hene, at least

m =

⌈
max{

∑
i∈N |Ji=1 Q

N
i ,

∑
i∈N |Ji=−1 Q

N
i }

C

⌉

visits must be made to supply loations. Observe that a �rst pikup operation must be made before the

delivery operations. Hene, the �rst visit must be to a supply loation. Using Assumption 1, the vehile

an make at most 1 + r visits before making the seond visit to a supply loation. That is, amongst the

�rst 2 + r visits, two of them must be made to a supply loation. In general, for p ≤ m, the vehile

an make at most p − 1 + (p − 1)r visits before returning for the pth time to a supply loation. Hene,

amongst the �rst κp = p+ (p− 1)r visits, at least p of them must be to a supply loation.

IfQ0 > 0, then the minimum number of vehile loads to satisfy the total net demand is

⌈∑
i∈N|Ji=−1 QN

i −Q0

C

⌉
.

In this ase m =

⌈
max{

∑
i∈N |Ji=1 Q

N
i ,

∑
i∈N |Ji=−1 Q

N
i −Q0}

C

⌉
. Now, we annot assume that the �rst

visit is made to a supply loation. In this ase, the vehile an not perform more than κp = rp+ (p− 1)

visits before returning for the pth time to a supply loation, for eah p ∈ {1, . . . ,m}.
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Proposition 4.2 When Assumption 1 holds, the following inequalities are valid:

∑

i∈N |Ji=1

κp∑

k=1

yki ≥ p, ∀p = 1, . . . ,m.
(77)

When Assumption 1 does not hold, these inequalities suggest another interesting way to partition the

set of feasible solutions.

Proposition 4.3 Any feasible solution either satis�es (77) or else there is a unique q ∈ {1, . . . ,m} suh

that

∑

i∈N |Ji=1

κp∑

k=1

yki ≥ p, ∀p = 1, . . . , q − 1,

∑

i∈N |Ji=1

κq∑

k=1

yki ≤ q.

(78)

5 Estimating the number of visits

One of the main hallenges when using event based models is to estimate the number of visits. As

the size of the orresponding models depends on the number of events, large upper bounds lead to large

sized models. On the other hand, restriting the number of events too muh may exlude feasible and

optimal solutions. Here we propose a sheme to bound the number of events.

5.1 Establishing upper bounds

Next we desribe for eah model, how to derive upper bounds on the number of events.

Loation-event model

An upper bound k on the total number of visits an be obtained from the model (1) � (23), tightened

with the inequalities introdued in Setion 3.2, with the new objetive funtion

w = max
∑

i∈N

µi∑

m=1

yim. (79)

Instead of solving this model to optimality, one an take k = ⌊w⌋ where w is an upper bound for w.

w an be the value of the orresponding linear relaxation or the best upper bound obtained from the

branh-and-ut after a given time limit.

An upper bound wi on the number of visits to node i an be obtained similarly by adding the onstraint

∑

i∈N

µi∑

m=1

yim ≤ k,

and taking as objetive funtion

wi = max

µi∑

m=1

yim. (80)

Again, wi an be replaed by ⌊wi⌋, where wi is an upper bound of wi, and set µi = ⌊wi⌋.

For models w and wi, when no initial upper bounds µi, i ∈ N are known, we take µi = µ
i
+M where

M is a large number.

Vehile-event model

A simple upper bound on the total number of visits an be obtained as follows:

k ≤

⌊
T − IQT − T 0min

Tmin

⌋
+ 1 (81)
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where T 0min, Tmin
are given previously.

Another possible approah is to onsider an upper bound for the model (41) - (66) tightened with the

inequalities introdued in Setion 4.2 with the new objetive funtion:

w = max
∑

i∈N

∑

k∈K

yki (82)

and set k = ⌊w⌋, where w is an upper bound on w.

5.2 Two branhing shemes

The size of the loation-event and vehile-event models depends on the upper bound on the number of

visits. By limiting this number, we obtain restrited subproblems whih beome smaller and, therefore,

an be solved faster, as shown in the omputational setion. Here we propose a two-level branhing

sheme to solve the inventory routing problem to optimality. In the �rst level we split the problem into

several subproblems by restriting the domain of the total number of visits, and in the seond level we

solve eah subproblem. A good hoie of the number of subproblems may depend on the length of the

time horizon and the expeted total number of visits. Here we present the ase for two subproblems, sine

this hoie performed well on the instanes tested. First, we determine an upper bound on the number of

visits, k, using the proedure desribed in Setion 5.1. Then we split the problem into two subproblems,

one with the onstraint

∑
i∈N

∑
k∈K yki ≤ ⌈k/2⌉, and the seond with

∑
i∈N

∑
k∈K yki ≥ ⌈k/2⌉+ 1. The

�rst subproblem is solved by branh-and-ut. The value of the best feasible solution found is added as a

ut-o� value for the seond subproblem. The full algorithm is detailed in Algorithm 1.

Algorithm 1 A two-level branhing approah for the inventory routing problem.

1: Determine an upper bound for the number of visits k

2: Add onstraint

∑
i∈N

∑
k∈K yki ≤ ⌈k/2⌉

3: Solve the resulting model with a time limit of β seonds

4: Set z̄1 to the value of the best feasible solution found and +∞ if no solution is found

5: Replae onstraint given in 2 by onstraint

∑
i∈N

∑
k∈K yki ≥ ⌈k/2⌉+ 1

6: Add the uto� value z̄1 to the model

7: Solve the resulting model with a time limit of β seonds with optimal value z̄2

8: Let zi for i = 1, 2 be the value of the best lower bound obtained for eah subproblem. Then the best

lower bound is min(z1, z2) and the best upper bound min(z̄1, z̄2).

The seond algorithm is based on Proposition 4.3.

Algorithm 2 An m+ 1 branh approah for the inventory routing problem.

1: Determine the values m and κp
as in Proposition 4.2.

2: Add onstraint (77) and solve the resulting model with a time limit of β1 seonds

3: Set z̄0 to the value of the best feasible solution found and +∞ if no solution is found, and z0 to be

the best lower bound found

4: For q = 1, . . . ,m, replae (77) by onstraints (78)

5: Add the uto� value z̄ = z̄0 to the model

6: Solve the resulting model with a time limit of β2 seonds with best upper and lower bounds z̄q and

zq, respetively. Update the uto� value z̄ ← min[z̄, z̄q]

7: On termination, z̄ is the value of the best feasible solution found and the best lower bound is

min(z0, z1, . . . , zm)
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6 Computational results

This setion presents omputational experiments arried out to ompare the two models and the

tightening strategies. The formulations are written in Mosel and implemented in Xpress-IVE Version

1.25.02, with 64 bits. All the tests were run on a omputer with a CPU Intel(R) Core i7-10510U, with

16GB RAM and using the Xpress Optimizer Version 34.01.03 with the default options.

Part of the motivation for the urrent researh is related to the results presented in [3℄ for a maritime

inventory routing problem in whih only instanes with a short time horizon were solved to optimality.

Here, a set of fourteen instanes based on the original seven given in [3℄ are onsidered. In ontrast to most

of the original instanes that involved multiple vehiles (ships), these fourteen instanes are developed

assuming a single vehile is available. Both the onstant supply and demand rates and the initial stok

levels have been hanged. For eah of these 14 instanes, two values for the end-of-time horizon inventory

levels are onsidered, F = 0 and F = 0.2. First, we onsider two di�erent lengths of the time horizon:

60 and 120 days. Travel and operating osts are time invariant. Some of these instanes are infeasible.

By onsidering suh instanes we also aim to test whether the models an prove infeasibility quikly.

Later, in Setion 6.2, we ondut further tests with a horizon of 180 and 240 days with F = 0 and with

additional adjustments to the rates.

6.1 Medium size instanes

In Table 1 we present some basi information regarding the set of instanes, namely, the number of

loations |N |, the orresponding optimal objetive funtion value (olumns �Obj�), the total number of

visits in the optimal solution (olumns �opt�), the upper bound on the number of visits obtained with

formula (81) (olumns �U�), the upper bounds on the number of visits obtained from the linear relaxation

of (82) (olumn w̄), and olumns w report the optimal value of (82). Note that omputing w requires

the solution of a problem similar to the s-CT-IRP-PD, whih is very hard. The gains from omputing

w instead of the linear relaxation w are minor (on average a little more than one visit for T = 60 and

T = 120) whih learly indiates that the omputational e�ort to obtain w is not ompensated by a

signi�ant redution in the size of the model. The �INF� symbol means that the instane is infeasible.

The bounds on the number of visits using the loation-event model are worse than those with the

vehile-event model and therefore are omitted.

In Table 2 we present the omputational results for the loation-event model. Two formulations are

tested. A loation-event formulation (1) � (23) with no additional valid inequalities, alled the weak

formulation, and the same formulation tightened with all the inequalities (25) � (29), (31)� (37), (39),

and (40) (wherem1,m2, n1, n2 are bounded by µ
i
+3), alled the strong formulation. The number of visits

is determined as desribed in Setion 5.1 by taking the best upper bounds obtained with branh-and-ut

when solving the problems with objetive funtions w and wi for 3 seonds for both models T = 60 and

for the weak formulation with T = 120. For the remaining ase (orresponding to the strong formulation

and T = 120) we run for 5 seonds to ensure a bound is obtained. Columns �BCw� and �BCs� report

the results obtained with the solver using the branh-and-ut with the default options and a time limit

of one hour on the weak and strong formulations, respetively. Columns �ALG1� report the results with

Algorithm 1 using the strong formulation and β = 3600 on eah branh. The running times presented

in olumns �Time� inlude both the running time of the orresponding approah and the time spent to

obtain the bounds on the number of the visits. For T = 60, all instanes are solved to optimality. Hene,

only the running times are reported for eah approah. For T = 120, we report the running time in
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Table 1: Data and information on the optimal solution and number of visits for instanes with a time

horizon onsisting of 60 and 120 days.

T = 60 T = 120

Instane F |N| Obj opt U w̄ w Obj opt U w̄ w

A1 0

3

331.3 8 18 16 15 898.2 19 36 30 27

0.2 462.3 10 18 16 14 933.2 20 35 30 27

A2 0

3

331.3 8 19 17 16 877.5 19 37 32 30

0.2 331.3 8 19 17 15 898.2 19 37 32 30

B1 0

4

310.7 7 19 14 14 INF INF 37 26 INF

0.2 310.7 7 19 14 14 INF INF 36 24 INF

B2 0

4

310.7 7 19 14 14 779 15 36 24 22

0.2 310.7 7 19 14 14 779 15 36 24 22

C1 0

4

295.8 6 20 17 16 859.1 13 37 28 27

0.2 397.1 6 19 15 14 859.8 13 36 25 25

C2 0

4

381.3 7 19 16 16 954.1 14 37 27 25

0.2 402.1 7 19 16 15 975.4 16 36 25 25

D1 0

5

320.3 8 15 13 12 714.5 16 27 25 23

0.2 329.5 8 14 13 12 764.9 18 27 24 22

D2 0

5

320.3 8 15 13 12 INF INF 27 24 INF

0.2 366.7 9 14 13 12 INF INF 27 24 INF

E1 0

5

273.3 7 29 24 20 572.4 14 56 44 37

0.2 273.3 7 29 23 19 599.4 15 55 43 36

E2 0

5

298.9 7 29 24 18 662.5 16 56 45 34

0.2 332.3 9 29 23 18 683.3 17 56 44 34

F1 0

4

313.9 6 14 12 12 858.1 15 25 20 16

0.2 313.9 6 14 12 11 INF INF 25 17 INF

F2 0

4

318.7 7 14 12 11 INF INF 24 INF INF

0.2 383 8 13 11 9 INF INF 23 INF INF

G1 0

6

208.5 5 14 13 13 INF INF 26 18 INF

0.2 375.3 6 14 11 10 INF INF 26 17 INF

G2 0

6

158.6 12 15 14 14 804.5 12 29 24 21

0.2 234 12 15 14 14 804.5 12 29 23 23

Average 7.6 18.4 15.4 14.1 15.7 34.8 27.7 26.6
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seonds, the �nal lower and upper bounds (in olumns �LB� and �UB�, respetively). For example, for

instane B1, F = 0 and T = 120, the BCs approah proves that the instane is infeasible after 2870.9

seonds, while the BCw approah reahes the time limit without proving infeasibility. For this instane,

sine no feasible solution is found, the upper bound is set to +∞ and the best proven lower bound 772.2

is reported.

Table 2: Computational results for the loation-event model.

T=60 T=120

BCw BCs ALG1 BCw BCs ALG1

Instane F Time Time Time Time LB UB Time LB UB Time LB UB

A1

0 31.6 21.7 20.4 3615 656.4 +∞ 3625.0 842.9 +∞ 3922.5 845.4 +∞

0.2 546 26.2 27.2 3614 719.1 +∞ 3625.6 831.6 +∞ 3691.4 847.7 +∞

A2

0 35.2 21.7 17.3 3614 596.7 +∞ 3624.5 724.4 +∞ 5113.1 767.3 947.8

0.2 33.5 23.8 19.6 3615 614.3 +∞ 3625.6 735.3 +∞ 5067.7 769.4 932.5

B1

0 11.5 7.7 8.0 3612 772.2 +∞ 2870.9 INF INF 3619.4 938.9 +∞

0.2 12 3.8 3.3 3612 810.0 +∞ 443.0 INF INF 451.5 INF INF

B2

0 13.3 9.2 9.0 195 779.0 779.0 19.5 779.0 779.0 21.0 779.0 779.0

0.2 13.4 5.2 5.7 114 779.0 779.0 19.1 779.0 779.0 21.0 779.0 779.0

C1

0 20.5 19.9 29.1 204 859.1 859.1 104.2 859.1 859.1 115.6 859.1 859.1

0.2 29.4 21.3 24.9 78 859.9 859.9 39.9 859.9 859.9 32.6 859.9 859.9

C2

0 20.4 14.0 16.5 2907 954.1 954.1 242.2 954.1 954.1 320.9 954.1 954.1

0.2 32.6 19.3 17.8 1983 975.3 975.4 77.1 975.4 975.4 214.1 975.4 975.4

D1

0 89.8 32.5 24.3 3618 530.6 +∞ 3629.8 633.0 780.1 3736.1 645.7 +∞

0.2 135.6 37.1 34.4 3618 557.9 +∞ 3630.3 650.8 +∞ 3672.4 659.6 +∞

D2

0 195.1 37.2 37.0 3618 567.7 +∞ 3629.3 645.4 +∞ 3698.9 664.9 +∞

0.2 283.9 37.3 36.1 3617 574.6 +∞ 3629.4 664.5 +∞ 3659.1 674.2 +∞

E1

0 56.7 30.2 59.4 3617 437.6 +∞ 2795.0 572.4 572.4 5566.7 572.4 572.4

0.2 85.7 33.7 65.1 3618 449.3 +∞ 3630.2 532.7 599.4 5892.5 599.4 599.4

E2

0 166.3 43.0 72.2 3617 446.1 +∞ 3629.8 549.5 677.5 7229.6 547.6 697.9

0.2 235.3 47.7 98.3 3617 455.7 +∞ 3630.1 561.6 +∞ 7229.2 567.2 +∞

F1

0 31.4 19.0 23.8 3614 785.5 +∞ 180.2 858.1 858.1 210.7 858.1 858.1

0.2 55.1 15.9 20.5 3614 894.8 +∞ 31.6 INF INF 31.5 INF INF

F2

0 27.8 16.0 17.6 3615 999.3 +∞ 3.9 INF INF 3.4 INF INF

0.2 23.5 17.0 16.9 3615 1060.0 +∞ 4.1 INF INF 3.1 INF INF

G1

0 20.5 11.5 13.0 3621 882.0 +∞ 617.8 INF INF 198.2 INF INF

0.2 21.7 10.3 10.6 3621 920.9 +∞ 47.7 INF INF 45.9 INF INF

G2

0 21 13.7 13.2 3621 621.1 +∞ 3634.1 673.8 +∞ 6451.4 798.5 804.5

0.2 24.4 23.3 35.9 3621 654.8 +∞ 3634.8 744.8 804.5 5247.2 777.5 804.5

Average 81.2 22.1 27.8 3037.2 1952.7 2695.2

The results from solving the loation-event model show that all instanes are solved for T = 60. For

these smaller instanes, using Algorithm 1 on the model with all inequalities is on average muh faster

than using the BCw approah. For T = 120, only six instanes are solved with the BCw approah whereas

the searh is ompleted for 15 instanes when using the two other approahes. Although these last two

approahes are not diretly omparable, as the overall running time limits are di�erent, there is no lear

indiation that Algorithm 1 is better than BCs when working with the loation-event model.

A natural question onerns the usefulness of the valid inequalities added in the strong formulation.

Though the values zLP of the LP relaxations are not reported in the Table, the average values of the gap

zLP−zI
ZLP

∗ 100% were alulated, where zI is the optimal value. For T = 60 and T = 120 the gaps with

the weak formulation were 28 and 25% respetively and with the strong formulation 27 and 24%, so the

bounds are hardly improved. However, the results in the Table show that the valid inequalities lead to a

signi�ant improvement in the total run times.

Table 3 presents the omputational results obtained with the vehile-event model. Again, we onsider

two formulations, the weak vehile-event formulation, given by the inequalities (42) � (66) without valid

inequalities, and the strong vehile-event formulation in whih the inequalities (67) � (76) are added. The
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number of visits is determined as desribed in Setion 5.1 by solving the orresponding maximization

problem for 3 seonds. Columns �BCw� and �BCs� report the results obtained with the branh-and-ut

algorithm with the default options, using the weak and strong formulations, respetively. A time limit of

one hour is imposed. Columns �ALG1� and �ALG2� report the results with Algorithm 1 (with β = 3600

se.) and Algorithm 2 (with β1 = β2 = 3600 se.), respetively. Both algorithms are based on the strong

vehile-event formulation. Columns �ALG1+2� present the results obtained by ombining Algorithms 1

and 2. Spei�ally, in Step 2 of Algorithm 2, the strong formulation with the additional inequalities (77)

is solved using Algorithm 1. Exept for the two instanes using the BCw approah (whose times are

given in bold), all the instanes are solved to optimality or infeasibility is veri�ed, so only the running

times are presented.

Table 3: Running times using the vehile-event model.

T = 60 T = 120

Inst. F BCw BCs ALG1 ALG2 ALG1+2 BCw BCs ALG1 ALG2 ALG1+2

A1 0 5.1 4.9 4.5 1.4 3.1 113 60.7 62.5 9.8 17

0.2 7 6.8 8.1 1.6 4.3 63.5 54.4 59.1 10.9 11.4

A2 0 5.9 5.1 4.3 1.8 2.6 150.6 104 134.5 31.8 24.5

0.2 6.2 10.3 3.6 1.1 3 128.9 103.3 144.2 32.7 27.5

B1 0 2.9 3.8 2 0.1 0.9 9.6 10.5 8.4 2.5 5.3

0.2 3.5 3.7 1.8 0.2 0.4 13.4 7.3 10.3 2.2 3.9

B2 0 3.7 3.6 2.5 0 0.6 4.9 5.8 7.3 1.5 2.5

0.2 3.9 3.3 2.4 0 0.3 4.2 5.1 5.3 0.8 1

C1 0 4.1 6.3 2.5 1.6 2.7 43.9 35.1 28.7 12.7 9.8

0.2 4.9 5.7 3.3 1.4 3.1 18.1 9 9.1 4 6.5

C2 0 4.4 3.9 1.3 1.3 3.1 40.4 40.6 30.5 22.6 28.4

0.2 5 5.4 3.7 1 3.2 36.4 28.5 19.1 9.9 27.8

D1 0 7.2 7.2 6.1 4.5 5.3 468.1 212.2 278.6 174 246.7

0.2 8.5 7.2 7.3 3.3 5.5 517.2 435.7 465.2 134.3 267.8

D2 0 9.6 7.8 7.6 2.8 6.9 494.1 95.6 103.8 262.2 206.5

0.2 9 7.8 8.3 3.7 6.7 636.9 99.3 171.1 93.7 504.4

E1 0 16.4 12.9 8.5 7.3 5.2 1171.7 742.1 125.9 401.1 109.6

0.2 13.8 11.1 8.5 5.9 7.1 1559.2 629.5 163 738.7 197.2

E2 0 25.1 19.9 8.1 7.6 7 3510.3 1330.8 326.2 462.6 243.1

0.2 34.8 23.1 10.2 11.6 7 2097.9 1651.3 442.3 1255.4 225.2

F1 0 4 5.7 3.7 2.1 3.2 13.8 10.6 11.7 7.1 8.7

0.2 4.8 4.6 3.6 0.8 2.8 5.6 6.6 5.6 1.9 4.1

F2 0 6.1 5.3 4.3 1.4 2.7 2.3 0.9 0.9 0.6 0.6

0.2 4.7 5.5 6 1.1 3.1 2.6 1 0.9 1 0.8

G1 0 5.9 3.3 2.7 0.3 2 2290.2 56 54 45.7 38.8

0.2 7.2 8.8 5 3.2 2.7 175.4 18.8 18.5 13.1 18.4

G2 0 6.3 2.9 2.5 0.1 2.7 3602.6 528.7 209.8 756.1 141.6

0.2 6.6 4.9 5.6 1.8 4.5 3602.7 697.4 243.4 496 158.9

Average 8.1 7.2 2.5 4.9 3.6 742.1 249.3 178.0 112.1 90.6

Clearly, omparing Tables 2 and 3, we observe that the solution proedures based on the vehile-
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event formulations outperform the orresponding proedures based on the loation-event formulations.

In partiular, this is true for the infeasible instanes. We an see that the branh-and-ut on the loation-

event strong formulation fails to prove infeasibility on instanes C2 and the running times for proving

infeasibility on B1 are quite large when ompared with the orresponding times obtained with the same

approah using the vehile-event strong formulation.

Considering Table 3, we see that when T = 60 all �ve approahes work. For T = 120 we observe

that the running times using the model with inequalities BCs are, on average, around one third of the

times for the model without inequalities BCw (note that for the two unsolved instanes with the weak

formulation we onsider the trunated time). Algorithm 1 leads to running times that are between half

and one third of the orresponding running times using branh-and-ut with default options. The running

times of the m subproblems solved in Steps 4-6 of Algorithm 2 are negligible for T = 60 and T = 120.

Hene, by omparing the times in olumns ALG2 with those in olumns BCs we see the impat of adding

inequalities (77) to the strong formulation. For T = 120, these inequalities allow us to redue the average

running times of the strong formulation by half. For all the feasible instanes the optimal solutions satisfy

Assumption 1.

To help in visualizing the results, Figure 7 presents the boxplots of the running times obtained with

the �ve approahes (indiated on the horizontal axis), where eah box is limited by the lower and upper

quartiles of the orresponding running time data.

Figure 7: Boxplots for the running times (on the vertial axis) using the vehile event model and T = 120.

The boxplots show that the most signi�ant di�erenes between the �BCs� and the �ALG1� approahes

our in the right tail, that is, for the harder instanes, sine the median times, indiating the maximum

time needed to solve half of the instanes, are similar. The approah �ALG1+2� has the lowest average

time (from the table), a small median time, and is the one that presents the smallest number of outliers,

meaning that it is the most e�etive approah to ontrol the time of the hardest instanes.

Regarding the linear relaxation of the vehile-event formulation (results not reported in the table),

for T = 60 the average gap (

zLP−zI
ZLP

∗ 100%) is 48% with the weak and 25% with the strong formulation.

As for the loation-event formulation, the valid inequalities are not able to provide tight bounds but lead

to a signi�ant improvement in the total run times. Comparing the strong loation-event and strong
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vehile-event formulations, neither formulation leads to an uniformly better linear relaxation bound than

the other.

As the size of the vehile-event model varies linearly as funtion of the upper bound on the number of

visits, we expet the running times to inrease with the inrease of this parameter. Above, we motivated

the hoie of using the linear relaxation w to determine the value of this parameter. Additional tests

were onduted with the vehile-event model for T = 120, in whih the upper bound on the number of

visits was determined using the formula (81). As expeted, the results are worse than those presented

in Table 3. Using model BCw, three instanes are not solved to optimality within the time limit of 1

hour, and the running times are on average 14% higher than those presented in Table 3. Using model

BCs, two instanes are not solved to optimality and the running times are on average 135.5% higher than

those in Table 3. For algorithms ALG1, ALG2, and ALG1+2, all the instanes were solved to optimality

and the running times were 126.1%, 31.7% and 24% higher than the orresponding values presented in

Table 3. These results show learly the importane of using tight bounds on the number of visits in

de�ning the vehile-event model. Further tests on the impat of this parameter on the vehile-event

model are disussed in the next setion.

6.2 Large size instanes

In this setion, we test the vehile-event model on larger instanes with T = 180 and T = 240. For

these tests, we onsider only the ase F = 0 given that the ending inventory level is probably less relevant

after suh a long period. Additionally, the instanes are adapted sine many of them are infeasible for suh

long time horizons. This may be due to the fat that several instanes are unbalaned sine the aggregate

supply rate is di�erent from the aggregate demand rate. The instanes are modi�ed by multiplying both

the supply and demand rates by a parameter ρ (0 < ρ ≤ 1).

For these large instanes, we make a few hanges to Algorithm 1 resulting from the observation that

the two branhes an result in two signi�antly unbalaned subproblems. Moreover, the number of visits

estimated by the proedure desribed in Setion 5.1 an be quite large.

To motivate these hanges we present bounds based on the number of visits and linear relaxations

in Table 4. Column �ρ� gives the value of ρ, olumn �Obj� gives the orresponding optimal objetive

funtion value, olumn V gives the number of visits in the optimal solution, and olumns w̄ and w

give the number of visits obtained from the linear relaxation of (82), w̄ obtained by rounding down the

value with the maximization problem and w obtained by rounding up the value with the minimization

problem. Columns αw for α ∈ {1, 1.25, 1.5, 1.75, 2} give the bound obtained with the linear relaxation of

the vehile-event model tightened with all valid inequalities (strong formulation) and with the additional

onstraint

∑

i∈N

µi∑

m=1

yim ≥ αw (83)

imposing a minimum number of visits. Columns LB1 and LB2 give the linear relaxation of the two

subproblems obtained in Algorithm 1 with k̄ = w̄, respetively. Columns LB1A and LB2A give the

orresponding lower bounds obtained from running the branh-and-bound for 30 seonds.

We observe that the bounding onstraint (83) has a signi�ant impat on the objetive funtion value

of the linear relaxation of the strong formulation with this additional onstraint. We also observe that

LB1 and LB2 di�er signi�antly for several instanes, whih may indiate that the size of the branhes

may be unbalaned. Additionally, LB1A is signi�antly greater than LB1 (observe that the average of

LB1A is alulated only over the feasible instanes, whih explains that the resulting average is lower
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than the average of LB1) while LB2A is, in general, slightly greater than LB2, whih indiates that it is

worth spending 30 seonds to improve the bounds on the �rst branh, but not on the seond.

Table 4: Bounds based on the number of visits and linear relaxations.

Inst. ρ Opt V w̄ w 1w 1.25w 1.5w 1.75w 2w LB1 LB1A LB2 LB2A

A1 0.7 829.2 17 25 11 646.5 655.2 735.5 802.0 920.0 646.5 681.6 1041.2 1058.7

A2 0.8 933.2 20 50 10 553.5 570.9 649.6 710.3 813.6 553.5 678.5 1020.5 1028.9

B1 0.6 811.4 20 47 12 604.6 663.3 736.1 813.7 902.9 604.6 669.0 924.8 942.1

B2 1 1126.1 21 35 21 1119.4 1217.3 1315.3 INF INF 1119.4 INF 1119.4 1126.1

C1 1 1316.9 19 38 19 1257.5 1333.0 1461.9 1633.8 1813.4 1257.5 1316.9 1262.5 1321.9

C2 1 1452.4 22 37 21 1338.1 1426.7 1574.1 1751.7 INF 1338.1 INF 1338.1 1361.2

D1 0.7 705.7 16 39 11 451.9 518.7 628.7 741.8 852.4 451.9 523.7 814.0 819.1

D2 0.6 610.2 13 40 9 386.0 439.2 511.3 585.6 697.2 386.0 447.4 807.8 814.7

E1 0.9 727.7 18 69 10 419.4 444.1 504.8 546.0 607.5 419.4 459.7 938.5 949.1

E2 0.8 753.5 18 71 9 365.9 404.0 444.9 485.9 547.1 365.9 435.3 940.2 951.4

F1 0.6 609.6 10 37 10 575.4 635.9 727.5 793.7 903.4 575.4 609.6 903.4 907.6

F2 0.55 713.3 12 35 12 672.1 763.1 855.2 968.5 1078.1 672.1 713.3 886.1 910.1

G1 0.75 1030.8 13 31 13 940.3 975.8 1074.3 1192.8 1364.2 940.3 999.6 1000.0 1000.0

G2 0.9 947.7 14 36 11 675.4 719.4 834.4 964.5 1085.4 675.4 710.9 940.1 943.9

Average 897.7 16.6 22.6 12.8 714.7 769.1 861.0 922.3 891.2 714.7 687.1 995.5 1009.6

Based on these observations we propose a re�nement of Algorithm 1, denoted ALG1r, for the larger

instanes. ALG1r deviates from Algorithm 1 only in the rule used to split the problem into two subprob-

lems. ALG1r uses the information provided by LB1A and LB2 to obtain more balaned subproblems.

First, we split the problem into two subproblems, by multiplying k̄ by r as in Steps 2 and 5 of Algorithm 1

(Note that there r = 0.5).

Using the bounds LB1A and LB2, the parameter r is hosen as follows: If the �rst subproblem is

infeasible (LB1A = +∞), we take r = 2/3. Otherwise, set r = 0.6 if LB2 < 1.1LB1A; r = 0.45 if

1.1LB1A ≤ LB2 ≤ 1.5LB1A; r = 0.4 if 1.5LB1A < LB2 < 2LB1A and r = 0.3 if LB2 ≥ 2LB1A.

Notie that for small size instanes the time spent in these adjustments may not ompensate for the

subsequent gains.

Table 5: Computational results for large size instanes with T = 180 and T = 240.
BCs ALG1r ALG1r+2

T=180 T=240 T=180 T=240 T=180 T=240

Inst. rho Time UB Time UB Time UB Time UB Time UB Time UB

A1 0.7 209 829.2 7203 1133.9 127 829.2 3631 1129.5 112 829.2 3634 1129.5

A2 0.8 1279 933.2 7203 1385.4 210 933.2 7232 1309.5 63 933.2 3924 1299.5

B1 0.6 9 669 702 1099.7 3 669 62 1099.7 4 669 80 1099.7

B2 1 7 1126.1 10 1594.4 4 1126.1 4 1594.4 2 1126.1 5 1594.4

C1 1 66 1316.9 636 1846 15 1316.9 201 1846.0 28 1316.9 256 1846.0

C2 1 119 1452.4 4157 2045.1 73 1452.4 4092 2045.1 76 1452.4 2619 2045.1

D1 0.7 1805 705.7 7203 1103.2 418 705.7 7236 1167.0 311 705.7 7234 1155.0

D2 0.6 529 601.8 7203 901.3 110 601.8 3636 900.5 102 601.8 3634 888.0

E1 0.9 7202 727.7 7203 1003.6 621 727.7 3644 1061.8 850 727.7 3637 1104.2

E2 0.8 7203 760.1 7203 1208.7 3637 761.5 7244 1181.1 2819 753.5 7237 1179.7

F1 0.6 14 609.6 22 1052.7 9 609.6 13 1052.7 7 609.6 20 1052.7

F2 0.55 19 713.3 204 1282.5 9 713.3 52 1282.5 6 713.3 41 1282.5

G1 0.75 475 1030.8 7203 1524.3 119 1030.8 783 1508.3 119 1030.8 213 1508.3

G2 0.9 7203 947.7 7203 1415.8 699 947.7 7241 1384.7 945 947.7 7240 1476.0

Average 1867 887.4 4525 1328.3 432 887.5 3219 1325.9 390 886.9 2841 1332.9

In Table 5 we ompare the standard branh-and-ut on the strong formulation (approah BCs) to the

adjusted Algorithm 1 (approah ALG1r) and the approah obtained by ombining Algorithms ALG1r

and 2 (approah ALG1r+2) where in Step 2 of Algorithm 2, the strong formulation with the additional

inequalities (77) is solved using algorithm ALG1r. In addition, Steps 4-5 of Algorithm 2 are omitted when
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in Step 2 the problem is not solved to optimality. Notie that, in general, the m subproblems are solved

mainly to prove optimality, sine in most pratial situations we expet that Assumption 1 is satis�ed.

Columns �UB� give the value of the best feasible solution found. When the number is in bold it means

the algorithm stops without proving optimality.

Table 5 shows that by using the BCs approah for T = 180, only three instanes are not solved to

optimality (E1, E2 and G2) and for T = 240 eight instanes are not solved. Using the ALG1r+2 approah

all instanes for T = 180 and seven instanes for T = 240 are solved to optimality. We an also observe

that the ALG1r+2 approah is muh faster than the BCs approah for all the solved instanes. Comparing

the ALG1r and ALG1r+2 approahes, we observe that ALG1r+2 is on average faster. ALG1r+2 solves

to optimality two more instanes than ALG1r (E2 for T = 180 and C2 for T = 240). On the unsolved

instanes it provides a better bound than ALG1r on 5 instanes and a worse upper bound on two instanes

(E1 and G2 for T = 240).

7 Conlusions and future researh

A general single-vehile inventory routing problem (IRP) with pikups and deliveries is studied. Com-

pared to the majority of land-based IRPs onsidered in the literature, where the planning horizon is

partitioned into periods and it is assumed that the routes are made within a time period, the time is here

onsidered as ontinuous due to onstant supply and demand rates at the supply and demand loations.

The quantity piked up or delivered at a loation depends on the storage apaity at the loation, the

inventory level at the visit time at the loation, the quantity on the vehile as well as the apaity of

the vehile. This type of inventory routing problems is partiularly omplex due to the high degree of

freedom onerning the variable number of visits to eah loation during the time horizon and the vari-

able quantity piked up and delivered at eah visit. Deriving strong formulations for the problem is a

hallenge. In this paper we have presented two improved models. One is de�ned on an extended graph in

whih the nodes orrespond to visits to loations (loation-event model) and the other in whih the nodes

orrespond to vehile visits (vehile-event model). The size of both models depends on the number of

events onsidered. We propose a simple method to bound the number of nodes in eah extended graph.

Additionally, we propose new valid inequalities to tighten the two models. For eah model, a new exat

algorithm (Algorithm 1) ombining all ontributions is proposed to solve the inventory routing problem.

Computational tests based on a set of instanes from a maritime inventory routing problem are

presented showing that the branh-and-ut algorithm based on the vehile-event model performs better

than the loation-event model. The results also show that the method to bound the number of events

as well as the inequalities is important to redue the running time. In addition, the vehile-event model

outperforms, in general, the loation-event model when it omes to verifying infeasibility. Using the

vehile-event model our most e�etive algorithm solved to optimality all instanes with a horizon of 180

days and half the instanes with a 240 day horizon.

We have developed valid inequalities for instanes satisfying the assumption that the vehile annot

return twie to a demand/supply loation without visiting a supply/demand loation in between. When

this assumption does not hold, these inequalities are used to partition the set of feasible solutions (Algo-

rithm 2). Running Algorithm 1 on the initial problem with these inequalities an be seen as a heuristi.

As all the solved instanes satisfy this assumption, this heuristi potentially generates the optimal solu-

tion to all the instanes. In addition, Algorithm 2 is valid whatever values are seleted for the split fator

(vehile visit number), so for other lasses of instanes another hoie may well be appropriate.

As to future researh it would be interesting to investigate further the polyhedral struture of the two
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proposed models, even in the restrited Hamiltonian ase in whih the number of visits to eah loation is

�xed. Extending the models to deal with multiple vehiles is perhaps the major hallenge. It might also

be of interest to examine other problems in whih some ruial parameter, in our ase the total number

of visits, an be used to speed up the solution proess and investigate related branhing shemes based

on partitions of the set of possible values for that parameter.
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