
Improved models for a single vehi
le 
ontinuous-time inventory

routing problem

Agostinho Agra

1
, Marielle Christiansen

2
, Lauren
e Wolsey

3

April 10, 2021

Abstra
t

We 
onsider an inventory routing problem in whi
h a single vehi
le is responsible for the transport

of a 
ommodity from a set of supply lo
ations to a set of demand lo
ations. At ea
h lo
ation the

inventory must be kept within prede�ned bounds, and the lo
ation spe
i�
 supply and demand rates

are 
onstant throughout the time horizon. Ea
h lo
ation 
an be visited several times during the time

horizon, and the vehi
le 
an visit the lo
ations in any order as long as the 
apa
ity of the vehi
le

is not ex
eeded. Two models are presented, ea
h de�ned on a di�erent extended network. In a

lo
ation-event model, the nodes are indexed by the lo
ation and the number of visits made so far to

that lo
ation, while in a vehi
le-event model the nodes are indexed by the lo
ation and the number of

visits so far on the vehi
le route. Both models are based on 
ontinuous time formulations. They are

tightened with valid inequalities, and a new bran
hing algorithm is designed to speed up the solution

time of the models. Computational tests based on a set of maritime transportation instan
es are

reported to 
ompare both models and the 
orresponding tightened variants.

Keywords: Inventory; routing; strong formulations; valid inequalities.

1 Introdu
tion

In this paper we 
onsider an inventory routing problem (IRP) with 
onstant supply and demand rates

at supply and demand lo
ations, respe
tively. A single vehi
le is responsible for transporting a single


ommodity from the supply lo
ations to the demand lo
ations. The vehi
le route and the 
orresponding

pi
kup and delivery operations must be 
oordinated in order to keep the inventory levels at ea
h lo
ation

within prede�ned upper and lower bounds. The vehi
le, whi
h has limited 
apa
ity, starts from a given

initial position, visits the lo
ations in any order along its route, and ends its route at any lo
ation.

Ea
h lo
ation 
an be visited on
e or several times during the planning horizon depending on the size

of the storage, the supply or demand rate, and the quantity pi
ked up or delivered at ea
h visit. The

quantity pi
ked up or delivered at ea
h visit is also variable. Time is regarded as 
ontinuous, and the

planning horizon has a de�ned length. The single vehi
le 
ontinuous-time inventory routing problem

with pi
kups and deliveries (s-CT-IRP-PD) 
onsists of designing routes and s
hedules for the vehi
le in

order to minimize the travel and operational 
osts, and to determine the number of visits at ea
h lo
ation

in
luding the quantities handled without ex
eeding the storage limits.

Although the study of this problem is motivated by maritime transportation problems, su
h problems

may also o

ur in land-based transportation when long travel times and/or long operating times at
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lo
ations are 
onsidered. The main distin
tion 
ompared to many other inventory routing models is that

time is treated as 
ontinuous and the vehi
le may operate 
ontinuously, meaning that the distribution

plan is not split into dis
rete time periods, su
h as hours or days.

As for related problems, su
h as the travelling salesman problem or the inventory routing problem

with pi
kups and deliveries [12℄, the single vehi
le 
ase 
an have pra
ti
al appli
ations on its own. The

reasons may be that only one vehi
le is available or be
ause the geographi
al dispersion of the lo
ations to

be visited leads to a natural partition and thus an assignment of a subset of the lo
ations to ea
h vehi
le.

Su
h assignments 
an also be used to derive heuristi
 s
hemes for the multi-vehi
le 
ase, in whi
h a �rst

step is to sele
t the set of lo
ations to be visited by ea
h vehi
le, see [7℄. The single vehi
le-
ase arises very

naturally as a subproblem when 
olumn generation approa
hes are used to solve multi-vehi
le inventory

routing problems, see for instan
e [2, 34℄.

The purpose of this paper is to investigate and present improved mixed integer formulations for the

inventory routing problem with 
onstant supply and demand rates that 
an be used to solve instan
es

with long time horizons.

Inventory routing problems have been studied for almost four de
ades and have been the subje
t of

several reviews, su
h as [9, 20℄.

For the majority of IRPs 
onsidered in the literature, the planning horizon is partitioned into periods

and it is assumed that arrivals o

ur at the start of the period, demands take pla
e at the end of the

period and that both o

ur instantaneously; see [15, 20℄. However, the quantity pi
ked up or delivered

at a parti
ular time depends on the storage 
apa
ity and the inventory level at that point in time, and

an IRP with dis
retized time periods may be less a

urate than an IRP with 
ontinuous time. That is

the reason why 
ontinuous-time models have been widely used in the past in maritime transportation

[8, 17, 19, 30℄ where several ships transport a 
ommodity between multiple supply ports and multiple

demand ports. In su
h problems, the travel times are usually long and event models are employed in

whi
h an event 
orresponds to a ship visit to a port. Su
h models are similar to the lo
ation-event model

presented in Se
tion 3. When the supply and/or demand rate is varying during the planning horizon, a

dis
rete-time model is applied, see [3, 31℄. In [4℄ 
ontinuous time is 
ombined with dis
rete time to model

a multi-item maritime inventory routing problem in whi
h 
ontinuous time is used to model the visits to

ports while dis
rete time is used to model time-windows in the ports.

Comparisons between 
ontinuous-time and dis
rete-time model are also explored in the literature; see

[5℄ for maritime IRPs. While the dis
rete-time models tested in [5℄ proved to provide smaller integrality

gaps than those obtained with the 
ontinuous-time models, it was also observed that time dis
retizations

may lead to very large sized models when the time horizon is long or if the use of a �ne time dis
retization

is required. This s
alability issue with the dis
rete-time models motivates the need to 
ondu
t a deeper

study of the 
ontinuous-time models.

Continuous-time models have also been used in land transportation, parti
ularly for 
ompanies in the

liquid gas industry. Song and Savelsbergh [32℄ introdu
ed the IRP with 
ontinuous moves in the liquid

gas industry. Here, the produ
t was pi
ked up at di�erent fa
ilities and delivered to 
ustomers spread

over a large geographi
 area, and the transportation teams were on the road for several days. Avella et al.

[13℄ 
onsider an IRP in whi
h one warehouse supplies a set of fuel pumps using a �eet of tru
ks. Re
ently,

Fokkema et al. [26℄ propose a 
ontinuous-time model for a pra
ti
al biogas IRP where 
ontainers a
t as

both storage and transportation units. Multiple suppliers and a single fa
ility are assumed. Furthermore,

Lagos et al. [29℄ study a problem typi
ally found in the liquid gas industry, and they propose a dynami


dis
retization algorithm for IRPs where a time-expanded network formulation is introdu
ed to obtain
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solutions that are 
onverted to 
ontinuous-time solutions. A similar approa
h 
an be found in [16℄ for a


ontinuous-time servi
e network design problem.

A relevant related problem is the 
y
li
 inventory routing problem that aims to �nd routing s
hedules

of a 
ertain length that are repeated in�nitely [1, 24, 26℄. In this variant of the IRP the 
onditions at the

end of the planning horizon 
oin
ide with those at the beginning (inventory levels and vehi
le position).

Moreover, in the single-vehi
le 
y
li
 inventory routing 
ase, only one supplier is usually 
onsidered. Ea
h


ustomer is visited at most on
e in the 
y
le and the 
y
le time of the trip made by the vehi
le is to be

determined [1℄. Hen
e, the solution te
hniques proposed in our paper 
an be used to obtain solutions for

the 
y
li
 inventory routing problem if additional 
onstraints for
ing the �nal 
onditions to mat
h the

initial 
onditions are in
luded (same inventory levels at all lo
ations and the start position of the vehi
le

is equal to its end position). Also, the requirement that ea
h lo
ation is visited at most on
e 
an easily

be in
luded in the model.

Another important 
hara
teristi
 of an IRP is the network stru
ture, where the basi
 IRP 
onsiders

a depot with an unlimited supply of the 
ommodity and many distributed 
ustomer nodes demanding

the 
ommodity, see for instan
e [11, 21℄. However, the opposite stru
ture with a demand depot and

suppliers distributed geographi
ally is also investigated in the literature and 
alled supply-driven IRPs

[23, 26℄. Inventory routing problems with both pi
kup and delivery nodes have been extensively studied

in the maritime 
ontext. We refer to [18, 19℄ for an introdu
tion and an overview of maritime IRPs with

pi
kup and delivery stru
ture. There are also land-based IRPs with pi
kup and delivery nodes studied

in the literature. One important 
lass of su
h problems is the 
losed-loop IRP, whi
h takes into a

ount

the return pro
esses as well as the forward �ows in order to re
over the value from the 
ustomers or

end users. This means that the lo
ations are simultaneously pi
kup and delivery lo
ations. Closed-loop

inventory routing problems for returnable items with simultaneous pi
kup and delivery are studied for

instan
e in [28, 33℄. The lo
ation 
hara
teristi
s deviate from ours be
ause our lo
ations are 
lassi�ed as

either a pi
kup or delivery lo
ation, and we do not allow simultaneous pi
kup and delivery at a 
ustomer.

Another 
ombined inventory management and pi
kup and delivery routing problem is studied in [10℄,

where the authors study a real problem of replenishing automated teller ma
hines (ATM). Also for this

problem an ATM 
an a
t as both a pi
kup and delivery lo
ation and all the vehi
le start from a 
ommon

depot.

The majority of the IRPs studied in the literature, in
luding the 
-CT-IRP-PD, 
onsider the trans-

portation of a single produ
t. However, there is also work 
onsidering multiple produ
ts as in [22℄ for

land based transportation and in [27℄ for maritime transportation.

One relevant issue in the s-CT-IRP-PD is that ea
h lo
ation 
an be visited several times and that the

number of visits is not known in advan
e. The visits must be 
oordinated with the inventory levels at

the di�erent lo
ations. This means that the vehi
le may visit a parti
ular lo
ation several times during

the time horizon pi
king up or delivering small quantities of the 
ommodity at ea
h visit or alternatively

visit the lo
ation just on
e and pi
k up or deliver large quantities. This inventory poli
y is often 
alled

a maximum-level poli
y meaning that the replenishment is �exible, but bounded by the inventory limits,

see [20℄. An alternative is the order-up-to poli
y in whi
h the aim during a visit is to �ll the storage

fa
ility to 
apa
ity at a demand lo
ation and to empty the fa
ility at a supply lo
ation, see [14℄.

Deriving good formulations for model with a variable number of visits to the lo
ations and variable

quantity is 
hallenging. Here, we 
onsider two di�erent models that take the o

urren
e of multiple

visits into a

ount. The �rst is a lo
ation-event model, similar to those used in [8, 17, 30℄, based on an

expanded network in whi
h there is a di�erent node for ea
h possible visit to a lo
ation. The se
ond,
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vehi
le-event model, is based on a layered graph. Here, all lo
ations are present in ea
h layer and the

kth layer represents the kth visit of the vehi
le. Su
h models have also been used for related problems,

see for instan
e [25℄ where a single vehi
le is responsible for 
olle
ting information that is generated at


onstant rates in several lo
ations and delivered to a single depot. As these models have large integrality

gaps, they are tightened with valid inequalities. Based on a set of instan
es for maritime inventory

routing, a 
omputational study is here 
ondu
ted to test and 
ompare both models with and without

valid inequalities.

In addition to the introdu
tion of the layered vehi
le-event model, we des
ribe valid inequalities for

the lo
ation-event model, whi
h are also valid for the multi-vehi
le 
ase, as well as valid inequalities

for the vehi
le-event model. In addition, we present simple approa
hes to provide upper bounds on the

number of events 
onsidered in ea
h model, that is, the number of visits to ea
h of the lo
ations in the

lo
ation-event model, and the total number of visits made by the vehi
le in the vehi
le-event model.

Providing tight upper bounds allows us to limit the size of the 
orresponding models. These approa
hes

suggest a new bran
hing algorithm based on a restri
tion on the number of visits.

The 
ontribution of this work 
an be summarized as follows:

1. The s-CT-IRP-PD is introdu
ed. The single-vehi
le version of the problem is not studied in the

literature previously.

2. Two general mathemati
al formulations of the problem, a lo
ation-event model and a vehi
le-event

model, are presented.

3. New valid inequalities are proposed for both models.

4. New valid inequalities are introdu
ed under the assumption that the vehi
le 
annot return twi
e

to a demand/supply lo
ation without visiting a supply/demand lo
ation in between. When this

assumption does not hold, these inequalities are used to partition the set of feasible solutions and

an exa
t algorithm is proposed.

5. A bran
h-and-
ut algorithm is des
ribed in
luding a new bran
hing algorithm.

6. Ben
hmark instan
es for the s-CT-IRP-PD are generated.

7. A 
omputational study gives information about the e�e
tiveness of the models and the valid in-

equalities and insights into the problem. All the tested instan
es up to 180 periods are solved to

optimality with the best approa
h that 
ombines the main 
ontributions.

The rest of the paper is organized as follows: In Se
tion 2, we present and dis
uss the inventory

routing problem. In Se
tion 3 we present the lo
ation-event model and dis
uss valid inequalities. In

Se
tion 4, the layered vehi
le-event model is introdu
ed and tightened. The estimation of the bounds

on the number of visits is dis
ussed in Se
tion 5. Computational results are presented in Se
tion 6 and

Se
tion 7 
ontains some 
on
luding remarks.

2 Problem des
ription

In this se
tion, we des
ribe the inventory routing problem in more detail. A single vehi
le is trans-

porting a single 
ommodity over a time horizon of length T . Let GN = (N,AN ) denote a graph in whi
h

N is the set of lo
ations to be visited, and AN
is the set of ar
s between the lo
ations. For ea
h lo
ation

i, an initial sto
k S0
i , and a 
onstant supply/demand rate Ri are given. The vehi
le of limited 
apa
ity
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C is responsible for pi
king up the 
ommodity from the supply lo
ations and delivering it to the demand

lo
ations to ensure that the sto
k levels are kept within spe
i�ed minimum Si and maximum levels Si

throughout the time horizon. Initially, the vehi
le 
arries Q0
units of the 
ommodity and, at the end

of the time horizon, it 
an 
arry any amount between 0 and its 
apa
ity C. For a visit to lo
ation i,

minimum Q
i
and maximum Qi pi
kup or delivery quantities are spe
i�ed.

The travel time between lo
ations i and j in
luding also any set-up time required to operate at lo
ation

j is Tij , and the travel time required to travel from the origin to lo
ation i is T 0
i . In addition, TQ

i is the

time required to pi
kup/deliver one unit of the 
ommodity at lo
ation i. The vehi
le is also allowed to

wait before operating at a lo
ation.

To resume, we 
onsider the 
ase in whi
h a single routing and distribution plan must be determined

for the entire time horizon, see [32℄. The vehi
le starts from a given initial position, that 
an be any

lo
ation (e.g. in maritime transportation the initial position 
an be a point at sea), 
an visit any sequen
e

of lo
ations along the route and ends its route at a dummy destination. However, we do not allow that

the vehi
le makes two 
onse
utive visits to the same node. Ea
h lo
ation 
an be visited multiple times,

and the number of visits to ea
h lo
ation is a de
ision resulting from the plan and not an input parameter.

The need to visit a parti
ular lo
ation several times during the time horizon may be due to the vehi
le


apa
ity or the maximum/minimum inventory limits and the amount of the 
ommodity available. After

its last visit, the vehi
le leaves for an unspe
i�ed destination, but the sto
k levels at all the lo
ations

must be feasible up until time T . In Figure 1 we provide an example of a feasible vehi
le route that visits

lo
ations 2 and 3 twi
e and lo
ation 1 on
e. Noti
e that the last lo
ation visited by the vehi
le before

moving to the dummy destination is lo
ation 2.

DO
2 2

3 3

1

Figure 1: Example of a route with N = {1, 2, 3}, in whi
h the vehi
le departs from its origin (node O)

visits lo
ation 3 for the �rst time, then makes a �rst visit to lo
ation 2, returns to lo
ation 3 for a se
ond

visit, then travels to lo
ation 1 followed by a se
ond visit to lo
ation 2. Then the vehi
le leaves for the

destination (node D).

Two types of 
osts are 
onsidered: (i) travel 
osts CT
ij for a trip from lo
ation i to lo
ation j and CT0

i

for a trip from the initial lo
ation of the vehi
le to lo
ation i and (ii) a �xed set-up/operating 
ost CS
i

in
urred every time the vehi
le operates at lo
ation i. The obje
tive is to minimize the transportation

and operating 
osts.

Now we present an example showing that the solution to the inventory routing problem 
an be highly

sensitive to the parameters be
ause the inventory bounds are hard 
onstraints.

Example 2.1 Consider an instan
e with a time horizon of 40 days, 4 lo
ations, in whi
h lo
ation 1

is a supplier and lo
ations 2, 3, 4 are demand lo
ations. Assume the ve
tor of supply/demand rates is

given by (6, 2, 2.5, 1.5) and 
onsider two alternatives for the ve
tor of initial sto
k levels (115, 39, 38,

16) and (115, 39, 38, 15), in whi
h only S0
4 varies by one unit. The vehi
le is lo
ated at lo
ation 1 at

the beginning of the time horizon and the initial load is zero. The pi
kup/delivery rate TQ
i is 80 units

per time unit for all lo
ations. The travel distan
es and the travel 
osts are given by T12 = 7, T13 = 8,

T14 = 5, T23 = 3, T24 = 5, T34 = 8, and CT
12 = 70, CT

13 = 80, CT
14 = 50, CT

23 = 30, CT
24 = 50, CT

34 = 30,

respe
tively. The travel distan
es T 0
i and travel 
osts CT0

i are based on the vehi
le's initial position. The
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set-up and operating 
osts are (7,5,5,5). Figure 2 depi
ts an optimal solution when S0
4 is 16 (in the upper

network) and when S0
4 = 15 (in the lower network). The 
orresponding optimal values are 130.7 and

261.6, respe
tively. In the 
ase when S0
4 = 16 the initial inventory level allows lo
ation 4 to be served at

time period 10.3. This allows the vehi
le to pi
k up enough to serve the net demand at the 3 
onsumer

lo
ations. If S0
4 is redu
ed to 15, lo
ation 4 needs to be served within time 10 whi
h for
es the vehi
le to

leave the supply lo
ation without su�
ient quantity to serve all the demand lo
ations. Hen
e, for
ing a

se
ond visit to lo
ations 1 and 4 leads to a large in
rease in 
ost.

D

O

(19.5, 41)

2

(10.3, 44)

4

(3.5, 147)

1

(15.2, 62)

3

D

O

2

4 4

1 1

3

(17.3, 41)

(10, 42) (38, 3)

(3.2, 145) (24.8, 3)

(13.5, 62)

Figure 2: Optimal solutions with S0
4 = 16 (above) and S0

4 = 15 (below). The label next to ea
h node

represents (start time of visit, quantity pi
ked up/delivered).

Example 2.1 indi
ates at least partially the di�
ulty in 
oordinating the inventory management with

the distribution in inventory routing problems.

Another issue is the end-of-time horizon e�e
t that is often observed in inventory problems. In optimal

solutions, the sto
k level at the end of the time horizon is typi
ally high if the lo
ation is a supplier and

low if it is a demand lo
ation. In order to avoid the end-of-time horizon e�e
t, we introdu
e a parameter

F, that is a fra
tional value between 0 and 1, to 
ontrol the inventory level at the end of the time horizon.

For a supply lo
ation, the sto
k level at time T should not ex
eed (1 − F )Si + FS0
i , and for a demand

lo
ation the sto
k level at time T should be at least (1 − F )Si + FS0
i . Hen
e, setting F = 0 we are not

imposing any additional restri
tions on the inventory levels Si, Si, while in the extreme 
ase, F = 1, we

are imposing that the inventory levels should be at most (least) the initial inventory level at all the supply

(demand) lo
ations. In this 
ase, as the inventory levels at the end of the time horizon mat
h the initial

inventory levels, the solution 
an be 
y
li
ally repeated (if in addition we for
e the destination node to


oin
ide with the origin node), solving the 
orresponding 
y
le inventory routing variant for 
y
le time

T .

3 The lo
ation-event model

In the lo
ation-event model, an extended graph is 
onsidered in whi
h ea
h node 
orresponds to a

visit to a lo
ation. For ea
h lo
ation, we 
onsider an ordering of the visits a

ording to the time of the

visit. The vehi
le path is de�ned on an extended graph GV = (V,AV ) in whi
h ea
h node in the set V

is represented by a pair (i,m), in whi
h i ∈ N indi
ates the lo
ation and m indi
ates the mth
visit to

lo
ation i. Ar
s in the graph GV

orrespond to dire
t vehi
le movements from node (i,m) to node (j, n).

6



Thus ((i,m), (j, n)) ∈ AV
if (i, j) ∈ AN . For ease of notation, ar
s ((i,m), (j, n)) ∈ AV

are represented

by (i,m, j, n) whenever the meaning is 
lear from the 
ontext. Figure 3 shows how the route shown in

Figure 1 is represented in this extended graph.

DO

2,1

2,2

3,1

3,2

1,1

Figure 3: Route given in Figure 1 represented in GV .

3.1 Formulation

For easy referen
e, the parameters and the variables for the lo
ation-event model are given below.

They are followed by the mathemati
al model.

Parameters

Ji if lo
ation i is a supplier then Ji = 1, otherwise Ji = −1

µi upper bound on the number of visits to lo
ation i

Variables

ximjn 1 if the vehi
le travels from node (i,m) dire
tly to node (j, n), and 0 otherwise

x0
i1 1 if the vehi
le travels dire
tly from its initial position to node (i, 1), and 0 otherwise

yim 1 if the vehi
le makes the mth
visit to lo
ation i, and 0 otherwise

zim 1 if the vehi
le ends its route at node (i,m), and 0 otherwise

qim quantity pi
ked up or delivered at node (i,m)

fimjn quantity transported from node (i,m) to node (j, n)

f0
im quantity transported from the initial position of the vehi
le to node (i,m)

fD
im quantity transported from node (i,m) to the destination

tim start time of operation on the mth
visit to lo
ation i

sim sto
k level at the start of operation on the mth
visit to lo
ation i

Variables x0
im and f0

im are set to zero for allm > 1. They are in
luded in the model for ease of notation.

The 
onstraints are separated into four groups: routing 
onstraints, pi
kup and delivery 
onstraints, time


onstraints and inventory 
onstraints.
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Routing 
onstraints

∑

(i,m)∈V

x0
im = 1, (1)

yim −
∑

(j,n)∈V

xjnim − x0
im = 0, ∀(i,m) ∈ V, (2)

yim −
∑

(j,n)∈V

ximjn − zim = 0, ∀(i,m) ∈ V, (3)

yi,m−1 − yim ≥ 0, ∀(i,m) ∈ V : 2 ≤ m ≤ µi, (4)

x0
im, yim, zim ∈ {0, 1}, ∀(i,m) ∈ V, (5)

ximjn ∈ {0, 1}, ∀(i,m, j, n) ∈ AV . (6)

Equation (1) ensures that the vehi
le leaves the origin. Equations (2) and (3) are the �ow 
onservation


onstraints, ensuring that if the vehi
le arrives at a node, it also leaves that node or ends its route.

Constraints (4) state that if lo
ation i is visited m times, then it must also have been visited m−1 times.

Pi
kup and delivery 
onstraints

f0
im +

∑

(j,n)∈V

fjnim + Jiqim =
∑

(j,n)∈V

fimjn + fD
im, ∀(i,m) ∈ V, (7)

f0
im = Q0x0

im, ∀(i,m) ∈ V, (8)

fimjn ≤ Cximjn, ∀(i,m, j, n) ∈ AV , (9)

fD
im ≤ Czim, ∀(i,m) ∈ V, (10)

Q
i
yim ≤ qim ≤ min{C,Qi}yim, ∀(i,m) ∈ V, (11)

fimjn ≥ 0, ∀(i,m, j, n) ∈ AV . (12)

Equations (7) are the �ow 
onservation 
onstraints for the quantity transported by the vehi
le. Equations

(8) determine the quantity transported from the initial position to node (i,m). Constraints (9) and (10)

ensure that the vehi
le 
apa
ity is not ex
eeded, while 
onstraints (11) impose lower and upper limits on

the pi
kup/delivery quantities.

Time 
onstraints

tim + TQ
i qim − tjn + (T + Tij)ximjn ≤ T, ∀(i,m, j, n) ∈ AV , (13)

T 0
i x

0
im ≤ tim, ∀(i,m) ∈ V, (14)

0 ≤ tim ≤ T, ∀(i,m) ∈ V. (15)

Constraints (13) link the start time asso
iated with node (i,m) to the start time asso
iated with (j, n)

when the vehi
le travels dire
tly from (i,m) to (j, n). Constraints (14) ensure that if the vehi
le travels

from its initial position to (i,m), then the start time at (i,m) is at least the traveling time between the

origin and lo
ation i. Lower and upper bounds on the start time at ea
h visit are given by (15).
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Inventory 
onstraints

si1 = S0
i + JiRiti1, ∀i ∈ N, (16)

sim = si,m−1 − Jiqi,m−1 + JiRi(tim − ti,m−1), ∀(i,m) ∈ V : m > 1, (17)

sim + qim −RiT
Q
i qim ≤ Si, ∀(i,m) ∈ V |Ji = −1, (18)

sim − qim +RiT
Q
i qim ≥ Si, ∀(i,m) ∈ V |Ji = 1, (19)

siµi
+ qiµi

−Ri(T − tiµi
) ≥ (1− F )Si + FS0

i , ∀i ∈ N |Ji = −1, (20)

siµi
− qiµi

+Ri(T − tiµi
) ≤ (1− F )Si + FS0

i , ∀i ∈ N |Ji = 1, (21)

sim ≥ Si, ∀(i,m) ∈ V |Ji = −1, (22)

sim ≤ Si, ∀(i,m) ∈ V |Ji = 1. (23)

Equations (16) spe
ify the sto
k level at the start time of the �rst visit to a lo
ation, and equations (17)

relate the sto
k level at the start time of the mth
visit to the sto
k level at the start time of the previous

visit. Constraints (18) and (19) ensure that the sto
k levels are within their limits at the end of ea
h

visit. Constraints (20) impose a lower bound on the inventory level at time T for the demand lo
ations,

while 
onstrains (21) impose an upper bound on the inventory level at time T for the supply lo
ations.

Noti
e that if F is a positive number, then the sto
k level at the end of the time horizon must be greater

than the lower bound Si for demand lo
ations and must be lower than the upper bound Si for the supply

lo
ations. Finally, 
onstraints (22) and (23) ensure that the sto
k levels are within their limits at the

start of ea
h visit.

Here we 
onsider the value of the variables after the last visit to node i. If κi is the number of the last

vehi
le visit to node i, then the routing 
onstraints (2), (3), and (4) for
e variables yim, ximjn and xjnim

to be zero for all m > κi. Then, using the fa
t that these variables are zero, 
onstraints (9) and (11),

for
e variables qim, fimjn and fjnim to be zero for all m > κi. The inventory and time variables, sim and

tim respe
tively, for m > κi, are only restri
ted by their bounds, Si ≤ sim ≤ Si and 0 ≤ tim ≤ T . That

means, multiple alternative values 
an be assigned to these variables. Although su
h variables have no

pra
ti
al meaning, they are ne
essary to for
e the inventory levels at time T to be within the prede�ned

limits. Observe that by adding up 
onstraints (17) for κi + 1 to µi and setting qim to zero, we obtain

siµi
= siκi

+ JiRi(tiµi
− tiκi

).

Using this 
onstraint to eliminate variable siµi
in 
onstraints (20) and (21) we obtain

siκi
−Ri(T − tiκi

) ≥ (1 − F )Si + FS0
i , ∀i ∈ N |Ji = −1,

siκi
+Ri(T − tiκi

) ≤ (1 − F )Si + FS0
i , ∀i ∈ N |Ji = 1.

This implies that the inventory bounds at the end of the time horizon are also satis�ed.

We denote by X the set of feasible solutions satisfying (1) � (23).

Obje
tive fun
tion

The obje
tive is to minimize the total travel and operating 
osts. The obje
tive fun
tion is as follows:

z =
∑

(i,m,j,n)∈AV

CT
ijximjn +

∑

(i,m)∈V

CT0
i x0

im +
∑

(i,m)∈V

CS
i yim. (24)

3.2 Lo
ation-event model tightening

This se
tion presents valid inequalities for the feasible set X. Some inequalities have been used pre-

viously, namely, those imposing a minimum number of visits to ea
h node, see [6℄. There the problem

9




onsidered in
ludes several produ
ts but does not 
onsider upper bounds on the inventories at the supply

lo
ations.

Tighten variable upper bound 
onstraints

Here we 
onsider the tightening of the non-negativity 
onstraints (12):

fimjn ≥ Q
j
ximjn, ∀(i,m, j, n) ∈ AV |Jj = −1, (25)

fimjn ≥ Q
i
ximjn, ∀(i,m, j, n) ∈ AV |Ji = 1, (26)

and the tightening of the variable upper bound 
onstraints (9), linking the �ow variables with the routing

variables for ar
s leaving demand lo
ations in (27) and ar
s arriving supply lo
ations in (28):

fimjn ≤ (C −Q
i
)ximjn, ∀(i,m, j, n) ∈ AV |Ji = −1, (27)

fimjn ≤ (C −Q
j
)ximjn, ∀(i,m, j, n) ∈ AV |Jj = 1. (28)

Lower bounds on the number of visits

A 
ommon approa
h to tighten su
h a formulation is to in
lude 
onstraints imposing a minimum

number of visits to ea
h lo
ation. Let µ
i
denote a lower bound on the number of visits to lo
ation i,

i ∈ N.

For ea
h demand lo
ation i ∈ N , Ji = −1 with S0
i − T ×Ri < Si, let

QN
i = max{T ×Ri − S0

i + Si, Q
i
},

denote the net demand over the time horizon. Otherwise QN
i = 0.

For ea
h supply lo
ation i ∈ N, Ji = 1 with S0
i + T ×Ri > Si, let

QN
i = max{T ×Ri + S0

i − Si, Q
i
},

denote the net supply over the time horizon. Otherwise QN
i = 0.

The number of visits to lo
ation i is at least:

µ
i
=

⌈
QN

i

min{Qi, C}

⌉
.

If there is only one supply lo
ation, then assuming without loss of generality that this lo
ation is

lo
ation 1, we have

µ
1
=

⌈
max{QN

1 ,
∑

i∈N\{1} Q
N
i −Q0}

min{Q1, C}

⌉
.

Thus, the following equalities establishing the minimum number of visits 
an be added:

yiµ
i
= 1, ∀i ∈ N. (29)

The following inequalities establish a minimum number of visits that must be made to a subset of

lo
ations S ⊆ N

∑

(i,m)∈V |i∈S

yim ≥

⌈∑
j∈S QN

j

C

⌉
. (30)

Instead of separating over this family of inequalities we in
lude just two inequalities, one for the set of

suppliers and one for the set the demand lo
ations, respe
tively.

∑

(i,m)∈V |Ji=1

yim ≥

⌈∑
j∈V |Jj=1 Q

N
j

C

⌉
, (31)

∑

(i,m)∈V |Ji=−1

yim ≥

⌈∑
j∈V |Jj=−1 Q

N
j

C

⌉
. (32)
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End-of-visit inequalities

The following inequalities ensure that if the vehi
le makes the mth
visit to lo
ation i then it 
annot

have made the last visit to that lo
ation in one of the previous visits.

∑

n<m

zin + yim ≤ 1, i ∈ N,m > µ
i
. (33)

Travel time valid inequality

Proposition 3.1 Let IQT
denote a lower bound on the time spent pi
king up and delivering. Then the

following travel time inequality is valid for X:

∑

(i,m,j,n)∈AV

Tijximjn ≤ T − IQT . (34)

A possible value for the lower bound is IQT =
∑

i∈N QN
i TQ

i .

Another set of inequalities results from the assumption that no two 
onse
utive visits 
an o

ur at

the same node. Let Ti = minj∈N |(i,j)∈AN ,j 6=i Tij . Then the following inequalities are valid.

tim ≥ ti,m−1 + 2Ti, ∀ (i,m) ∈ V | 1 < m ≤ µ
i
, (35)

tim ≥ ti,m−1 + 2Tiyim, ∀ (i,m) ∈ V | m > µ
i
. (36)

Example 3.1 Continuing Example 2.1, for the 
ase S0
4 = 16 we have:

Lo
ation 1, sin
e S0
1 + TR1 = 115 + 40× 6 = 355 < S1 = 360, then QN

1 = 0.

Lo
ation 2, S0
2 − TR2 = 39− 40× 2 = −41 < S2 = 0. Thus QN

2 = 41.

Lo
ation 3, S0
3 − TR3 = 38− 40× 2.5 = −62 < S3 = 0. Thus QN

3 = 62.

Lo
ation 4, S0
4 − TR4 = 16− 40× 1.5 = −44 < S4 = 0. Thus QN

4 = 44.

We have

∑
i∈N QN

i = 0 + 41 + 62 + 44 = 147 and IQT =
∑

i∈N QN
i TQ

i = 147/80 = 1.8375.

Valid inequalities based on hamiltonian dipath

The following, 
alled (i,m)−(j, n) path inequalities result from lifting the following simple inequalities:

ximjn + xjnim ≤ yim, ∀(i,m, j, n) ∈ AV .

Proposition 3.2 The following inequalities are valid for X.

∑

n′≤n

ximjn′ +
∑

n′≥n

xjn′im ≤ yim, ∀(i,m, j, n) ∈ AV . (37)

Proof. If yim = 0, then all the variables on the left-hand side are zero.

Let yim = 1. For ea
h one of the sums in the left-hand side only one variable 
an be positive sin
e

otherwise, in the �rst sum there would be multiple ar
s leaving node (i,m) and in the se
ond sum there

would be multiple ar
s entering into node (i,m). If two variables ximjn′
with n′ ≤ n and xjn̂im with

n̂ ≥ n are simultaneously one we obtain an in
ompatibility with one ar
 pre
eding the other.

Maximal two-lo
ation 
liques

Next, we introdu
e a family of inequalities of the form:

∑

(i,m,j,n)∈AV

π(i,m, j, n)ximjn ≤ 1

where π ∈ {0, 1}A
V

. These inequalities 
an be regarded as a parti
ular 
ase of 
lique inequalities on a

given 
on�i
t graph.
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We just 
onsider the digraph restri
ted to the nodes for lo
ations i and j and the ar
s on the vehi
le

route between two su
h nodes. Two ar
s are said to be in
ompatible/
ompatible if they 
annot/
an both

form part of a route. Examples of pairs of in
ompatible ar
s are shown in Figure 4. Thus a) two ar
s


annot arrive or leave from the same node, b) two ar
s 
annot form a 2-
y
le, that is, ar
s (i, n, j,m) and

(j,m, i, n) are in
ompatible, and 
) a pair of ar
s (i, n, j,m) and (j,m, i, n′) are in
ompatible if n > n′
.

In Figure 5 we show examples of 
ompatible ar
 pairs.

i, m i,m′

j, n j, n′

m ≤ m′
and n ≤ n′

(i)

i, m i,m′

j, n j, n′

m < m′, n < n′
or m = m′, n′ ≤ n or m′ < m,n = n′

(ii)

Figure 4: In
ompatible ar
 pairs.

j, n j, n′

i,m i,m′

m ≤ m′, n ≤ n′
or m ≥ m′, n ≥ n′

(i)

j, n j, n′

i,m i,m′

m < m′, n < n′

(ii)

Figure 5: Compatible ar
 pairs with (m,n) 6= (m′, n′).

Proposition 3.2 Let A′
be a set of ar
s linking nodes (i,m),m = 1, . . . , µi and (j, n), n = 1, . . . , µj su
h

that neither of the 
on�gurations in Figure 5 appears. Then the following inequality is valid for X.

∑

(i,m,j,n)∈A′

ximjn ≤ 1. (38)

Proof. Suppose that (j, n, i,m) ∈ A′
and xjnim = 1. We show that for all (j, n′, i,m′), (i,m′, j, n′) with

(j, n, i,m) 6= (j, n′, i,m′) either (j, n′, i,m′) /∈ A′
or xjn′im′ = 0 and similarly either (i,m′, j, n′) /∈ A′

or

xim′jn′ = 0.

Case 1. Consider (j, n′, i,m′) with (j, n′, i,m′) 6= (j, n, i,m).

Case 1a. m′ < m.

If n′ < n, (j, n′, i,m′) /∈ A′
by (ii) of Figure 5.

If n′ ≥ n, then by (i) of Figure 4, xjn′im′ = 0.

Case 1b. m′ = m. Again by (i) of Figure 4, xjn′im′ = 0.

Case 1
. m′ > m.

If n′ > n, (j, n′, i,m′) /∈ A′
by (ii) of Figure 5.

Case 2. Consider (i,m′, j, n′).

Case 2a. m′ < m.

If n′ ≤ n, (i,m′, j, n′) /∈ A′
by (i) of Figure 5.

If n′ > n, then by (ii) of Figure 4 xim′jn′ = 0.

Case 2b. m′ = m.

If n′ > n, (i,m′, j, n′) /∈ A′
by (i) of Figure 5.

If n′ ≤ n, then by (ii) of Figure 4 xim′jn′ = 0.

Case 2
. m′ > m.
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visit 1

1
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visit 2

D

1

2

3

visit 3

D

1

2

3

visit 4

D

1

2

3

O

visit 5

D

1

2

3

visit 6

D

1

2

3

visit 7

D

1

2

3

visit 8

D

1

2

3

Figure 6: Example of a path in the extended network for a maximum of eight visits and three lo
ations.

If n′ > n, (i,m′, j, n′) /∈ A′
by (i) of Figure 5.

If n′ ≤ n, then by (ii) of Figure 4 xim′jn′ = 0.

Remark 3.3 Proposition 3.2 
an easily be extended to the 
ase of multiple vehi
les by summing up ea
h

ar
 on the left-hand side for all possible vehi
les.

As an e�
ient separation algorithm for inequalities (38) is not known, we present below two parti
ular

polynomial sub
lasses of the maximal two-lo
ation 
liques.

Proposition 3.3 Let (i,m1), (i,m2), (j, n1), (j, n2) ∈ V with m1 < m2 and n1 < n2. Then the following

inequality is valid for X.

∑

n≤n1

xi,m2,j,n +
∑

m≤m1

xj,n2,i,m + xi,m1,j,n1 + xj,n1,i,m1 ≤ 1. (39)

Proposition 3.4 Let (i,m1), (i,m2), (j, n1), (j, n2) ∈ V with m1 < m2 and n1 < n2. Then the following

inequality is valid for X.

∑

m≥m2

xi,mj,n1 +
∑

n≥n2

xj,ni,m1 + xi,m1,j,n2 + xj,n1,i,m2 ≤ 1. (40)

4 Layered vehi
le-event model

In this se
tion, we propose a di�erent model in whi
h events are linked to the vehi
le. The order of

the events 
orresponds to the order of the vehi
le visits. In this formulation, the vehi
le path is des
ribed

using a layered graph in whi
h ea
h layer 
orresponds to the number of visits made by the vehi
le. Ea
h

layer 
ontains all lo
ations. In Figure 6 we present an example of a path in the extended network for a

maximum of eight visits 
orresponding to the example given in Figure 1. The vehi
le leaves the origin

to visit lo
ation 3 (�rst visit/layer), then moves to lo
ation 2 (se
ond visit/layer), followed by lo
ation

3 (third visit/layer), then lo
ation 1 (fourth visit/layer) and �nally visits lo
ation 2 (�fth visit/layer).

From the last visit, the vehi
le moves to the arti�
ial destination (D).

4.1 Formulation

First, we des
ribe the sets, parameters and variables not de�ned previously. Then, we des
ribe the

mathemati
al formulation of the vehi
le-event model.

Sets and Parameters

k maximum number of vehi
le visits

K set of possible visits {1, . . . , k}

13



Variables

yki = 1 if the kth visit o

urs at lo
ation i, and 0 otherwise

χk
ij = 1 if the (k − 1)th visit is to lo
ation i and the kth to lo
ation j

zki = 1 if the kth visit is to lo
ation i and it is the last visit on the route

fk
ij quantity transported by the vehi
le from the (k − 1)

th
visit at lo
ation i to the kth visit at lo
ation j

f0
i quantity transported by the vehi
le from the origin to the 1st visit at lo
ation i

fDk
i is the amount remaining in the vehi
le when the last visit is the kth visit to lo
ation i

ski sto
k level at lo
ation i at the start of the kth visit of the vehi
le

tk start time of the kth visit

qki quantity pi
ked up/ delivered at lo
ation i during the kth visit of the vehi
le

The obje
tive fun
tion is again to minimize the travel 
osts plus the operating 
osts:

Z = min
∑

(i,j)∈AN

∑

k∈K

CT
ijχ

k
ij +

∑

i∈N

CT0
i y1i +

∑

i∈N

∑

k∈K

CS
i y

k
i . (41)

As before, the 
onstraints are presented separately for the main four 
omponents: path 
onstraints,

pi
kup and delivery 
onstraints, time 
onstraints and inventory 
onstraints.

Path 
onstraints

∑

j∈N

y1j = 1, (42)

yki −
∑

j∈N |i6=j

χk
ji = 0, ∀ i ∈ N, k ∈ K | k > 1, (43)

yk−1
i −

∑

j∈N |j 6=i

χk
ij − zk−1

i = 0, ∀ i ∈ N, k ∈ K | k > 1, (44)

∑

i∈N

∑

k∈K

zki = 1, (45)

yki , z
k
i ∈ {0, 1}, ∀ i ∈ N, k ∈ K, (46)

χk
ij ∈ {0, 1}, ∀ (i, j) ∈ AN , k ∈ K. (47)

Equality (42) ensures that the vehi
le makes a �rst visit. Constraints (43) state that if the vehi
le travels

dire
tly from lo
ation j to lo
ation i and the visit to lo
ation j is the (k − 1)th, then lo
ation i must

re
eive the kth visit. Constraints (44) say that if yk−1
i = 1 then the vehi
le either travels from lo
ation i

to another lo
ation j or ends its route in i. Constraint (45) ensures that the route terminates at or before

the k̄th visit.
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Pi
kup and delivery 
onstraints

f0
i + Jiq

k
i =

∑

j

fk+1
ij + fDk

i , ∀ i ∈ N, k = 1, (48)

∑

i∈N

fk
ij + Jjq

k
j =

∑

ℓ

fk+1
jℓ + fDk

j , ∀ j ∈ N, k ∈ K|k > 1, (49)

f0
i = Q0y1i , ∀ i ∈ N, (50)

fk
ij ≤ Cχk

ij , ∀ (i, j) ∈ AN , k ∈ K, (51)

fDk
i ≤ Czki , ∀ i ∈ N, k ∈ K, (52)

Q
i
yki ≤ qki ≤ min{C,Qi}y

k
i , ∀ i ∈ N, k ∈ K, (53)

fk
ij ≥ 0, ∀ (i, j) ∈ AN , k ∈ K, (54)

fDk
i ≥ 0, ∀ i ∈ N, k ∈ K. (55)

Equations (48)�(49) are the �ow balan
e 
onstraints for the quantity 
arried by the vehi
le. Equations

(50) des
ribe the initial load on the vehi
le. Inequalities (51) � (52) impose upper bounds on the vehi
le

load. These variable upper bound 
onstraints also link the binary routing variables to the 
ontinuous

variables representing the quantities transported. Constraints (53) are the variable lower and upper

bound 
onstraints linking the quantity pi
ked up/delivered with the binary variables representing the

visits to lo
ations.

Time 
onstraints

tk−1 +
∑

i∈N

TQ
i qk−1

i − tk +
∑

(i,j)∈A

Tijχ
k
ij ≤ 0, ∀ k ∈ K|k > 1, (56)

t1 ≥
∑

i∈N

T 0
i y

1
i , (57)

0 ≤ tk ≤ T, ∀ k ∈ K. (58)

Constraints (56) guarantee that the start time of the kth visit 
an only o

ur after the start time of the

(k − 1)th visit plus the pi
kup/delivery time of the (k − 1)th visit plus the traveling time between the

two lo
ations. Constraint (57) ensures that the �rst visit 
annot be made before the vehi
le arrives at

the lo
ation from the origin. Constraints (58) ensure that the start time at a lo
ation is within the time

horizon.

Inventory 
onstraints

s1i = S0
i + JiRit

1, ∀ i ∈ N, (59)

ski = sk−1
i − Jiq

k−1
i + JiRi(t

k − tk−1), ∀ i ∈ N, k ∈ K|k > 1, (60)

ski + qki −RiT
Q
i qki ≤ Si, ∀i ∈ N |Ji = −1, k ∈ K, (61)

ski − qki +RiT
Q
i qki ≥ Si, ∀i ∈ N |Ji = 1, k ∈ K, (62)

ski + qki −Ri(T − tk) ≥ (1− F )Si + FS0
i , ∀i ∈ N |Ji = −1, (63)

ski − qki +Ri(T − tk) ≤ (1− F )Si + FS0
i , ∀i ∈ N |Ji = 1, (64)

ski ≥ Si, ∀i ∈ N |Ji = −1, k ∈ K, (65)

ski ≤ Si, ∀i ∈ N |Ji = 1, k ∈ K. (66)
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Equations (59) and (60) are the inventory balan
e 
onstraints at ea
h lo
ation. Constraints (61) impose

an upper bound on the sto
k level at ea
h lo
ation at the end of ea
h visit for the demand lo
ations,

while 
onstraints (62) impose a lower bound on the sto
k level at ea
h lo
ation at the end of ea
h visit

for the supply lo
ations. Constraints (63) impose a lower bound on the sto
k level at the end of the time

horizon for the demand lo
ations, and 
onstraints (64) impose an upper bound on the sto
k level at ea
h

supply lo
ation at the end of the time horizon. Constraints (65) impose a lower bound on the sto
k level

at ea
h demand lo
ation at the beginning of ea
h visit, while 
onstraints (66) impose an upper bound on

the sto
k level at ea
h supply lo
ation at the beginning of ea
h visit.

Now, we observe what happens with the value of the variables after the last visit. If κ is the number of

the last vehi
le visit, then the path 
onstraints for
e yki and χk
ij to be zero for all k > κ, and 
onstraints (53)

for
e the quantity qki to be zero. Constraints (56) then impose tk ≥ tk−1. Hen
e, 
onsidering 
onstraints

(58), the time of the visits for k > κ (visits that are not made) are restri
ted by tk−1 ≤ tk ≤ T, that means,

multiple alternative values 
an be assigned to these variables. In relation to the inventory variables, for

k > κ, 
onstraints (61), (62), (65), and (66) impose that the inventory levels must be between the

inventory bounds, Si ≤ ski ≤ Si, while 
onstraints (60) 
al
ulate the inventory levels a

ording to the

times assigned to variables tki . These variables t
k
i , s

k
i that have no pra
ti
al meaning are ne
essary to for
e

the inventory levels at time T to be within the prede�ned limits, by 
onstraints (63) and (64).

4.2 Vehi
le-event model tightening

Here we des
ribe valid inequalities to tighten the vehi
le-event model.

The nonnegativity 
onstraints on the �ow variables (54) 
an be tightened as follows:

fk
ij ≥ Q

j
χk
ij , ∀ (i, j) ∈ AN | Jj = −1, k ∈ K, (67)

fk
ij ≥ Q

i
χk
ij , ∀ (i, j) ∈ AN | Ji = 1, k ∈ K. (68)

Also, the variable upper bound 
onstraints (51) 
an be tightened as follows:

fk
ij ≤ (C −Q

i
)χk

ij , ∀ (i, j) ∈ AN | Ji = −1, k ∈ K, (69)

fk
ij ≤ (C −Q

j
)χk

ij , ∀ (i, j) ∈ AN | Jj = 1, k ∈ K. (70)

The end-of-visits inequalities (33) for the lo
ation-event model 
an now be written as follows:

∑

i∈N

k−1∑

k′=1

zk
′

i +
∑

i∈N

yki ≤ 1, ∀ k ∈ K. (71)

Next, we present a set of inequalities that establishes a minimum number of visits , µ
i
, that the vehi
le

must make to ea
h lo
ation.

∑

k∈K

yki ≥ µ
i
, ∀ i ∈ N. (72)

Similarly to inequalities (31) and (32), we de�ne the following inequalities establishing a minimum

number of visits that the vehi
le must make to the suppliers and to the demand lo
ations, respe
tively.

∑

k∈K

∑

j∈N |Jj=1

ykj ≥

⌈∑
j∈N |Jj=1 Q

N
j

C

⌉
, (73)

∑

k∈K

∑

j∈N |Jj=−1

ykj ≥

⌈∑
j∈N |Jj=−1 Q

N
j

C

⌉
. (74)

The following inequalities impose 
onditions on the �rst p visits to ea
h lo
ation. Let νpi denote

the time at whi
h a disruption o

urs (i.e. the time when the inventory level rea
hes the sto
k limit)
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at lo
ation i if that lo
ation re
eived p − 1 visits pi
king up/delivering the maximum possible amount

C̄i = min{Si, C}. For a supply lo
ation we have

νpi =
Si − S0

i

Ri

+
(p− 1)C̄i

Ri

,

and for a demand lo
ation the disruption o

urs at time

νpi =
S0
i − Si

Ri

+
(p− 1)C̄i

Ri

.

If the pth visit to node i is the kth vehi
le visit, then one must have tk ≤ νpi .

Let Tmin = min(i,j)∈AN {Tij} be the minimum travel time between two lo
ations, Tmin
i = minj 6=i{Tij}

the minimum travel time between node i and any other node, and let T 0min = mini∈N{T
0
i } be the travel

time between the origin and the 
losest lo
ation. Hen
e

tk ≥ T 0min + (k − p)Tmin + (p− 1)Tmin
i ∀ k ∈ K | k > 1.

Therefore, T 0min + (k − p)Tmin + (p− 1)Tmin
i ≤ νpi .

Hen
e, for ea
h i ∈ N and ea
h p, we set

kpi = p+

⌊
νpi − T 0min − (p− 1)Tmin

i

Tmin

⌋
.

Proposition 4.1 For i ∈ N and ea
h p ∈ 1, . . . , µ
i
, the following inequality is valid:

k
p

i∑

k=1

yki ≥ p ∀i ∈ N. (75)

The travel time inequalities (34) 
an also be adapted for the vehi
le-event model as follows:

∑

k∈K

∑

(i,j)∈AN

Tijχ
k
ij ≤ T − IQT . (76)

In most pra
ti
al situations the following assumption 
an be assumed.

Assumption 1: The vehi
le 
annot return twi
e to a demand lo
ation without visiting a supply

lo
ation in between, nor return twi
e to a supply lo
ation without visiting a demand lo
ation in between.

When Assumption 1 is valid, a new set of inequalities 
an be derived. Let s =| {i ∈ N |Ji = 1} |, and

r =| {i ∈ N |Ji = −1} | denote the number of supply and demand lo
ations, respe
tively.

First, 
onsider the 
ase Q0 = 0. Then, at least

⌈∑
i∈N |Ji=1 Q

N
i

C

⌉
visits must be made to supply

lo
ations for pi
k-up operations and at least

⌈∑
i∈N |Ji=−1 Q

N
i

C

⌉
loads must be delivered to the demand

lo
ations, whi
h must be pi
ked up at the supply lo
ations. Hen
e, at least

m =

⌈
max{

∑
i∈N |Ji=1 Q

N
i ,

∑
i∈N |Ji=−1 Q

N
i }

C

⌉

visits must be made to supply lo
ations. Observe that a �rst pi
kup operation must be made before the

delivery operations. Hen
e, the �rst visit must be to a supply lo
ation. Using Assumption 1, the vehi
le


an make at most 1 + r visits before making the se
ond visit to a supply lo
ation. That is, amongst the

�rst 2 + r visits, two of them must be made to a supply lo
ation. In general, for p ≤ m, the vehi
le


an make at most p − 1 + (p − 1)r visits before returning for the pth time to a supply lo
ation. Hen
e,

amongst the �rst κp = p+ (p− 1)r visits, at least p of them must be to a supply lo
ation.

IfQ0 > 0, then the minimum number of vehi
le loads to satisfy the total net demand is

⌈∑
i∈N|Ji=−1 QN

i −Q0

C

⌉
.

In this 
ase m =

⌈
max{

∑
i∈N |Ji=1 Q

N
i ,

∑
i∈N |Ji=−1 Q

N
i −Q0}

C

⌉
. Now, we 
annot assume that the �rst

visit is made to a supply lo
ation. In this 
ase, the vehi
le 
an not perform more than κp = rp+ (p− 1)

visits before returning for the pth time to a supply lo
ation, for ea
h p ∈ {1, . . . ,m}.
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Proposition 4.2 When Assumption 1 holds, the following inequalities are valid:

∑

i∈N |Ji=1

κp∑

k=1

yki ≥ p, ∀p = 1, . . . ,m.
(77)

When Assumption 1 does not hold, these inequalities suggest another interesting way to partition the

set of feasible solutions.

Proposition 4.3 Any feasible solution either satis�es (77) or else there is a unique q ∈ {1, . . . ,m} su
h

that

∑

i∈N |Ji=1

κp∑

k=1

yki ≥ p, ∀p = 1, . . . , q − 1,

∑

i∈N |Ji=1

κq∑

k=1

yki ≤ q.

(78)

5 Estimating the number of visits

One of the main 
hallenges when using event based models is to estimate the number of visits. As

the size of the 
orresponding models depends on the number of events, large upper bounds lead to large

sized models. On the other hand, restri
ting the number of events too mu
h may ex
lude feasible and

optimal solutions. Here we propose a s
heme to bound the number of events.

5.1 Establishing upper bounds

Next we des
ribe for ea
h model, how to derive upper bounds on the number of events.

Lo
ation-event model

An upper bound k on the total number of visits 
an be obtained from the model (1) � (23), tightened

with the inequalities introdu
ed in Se
tion 3.2, with the new obje
tive fun
tion

w = max
∑

i∈N

µi∑

m=1

yim. (79)

Instead of solving this model to optimality, one 
an take k = ⌊w⌋ where w is an upper bound for w.

w 
an be the value of the 
orresponding linear relaxation or the best upper bound obtained from the

bran
h-and-
ut after a given time limit.

An upper bound wi on the number of visits to node i 
an be obtained similarly by adding the 
onstraint

∑

i∈N

µi∑

m=1

yim ≤ k,

and taking as obje
tive fun
tion

wi = max

µi∑

m=1

yim. (80)

Again, wi 
an be repla
ed by ⌊wi⌋, where wi is an upper bound of wi, and set µi = ⌊wi⌋.

For models w and wi, when no initial upper bounds µi, i ∈ N are known, we take µi = µ
i
+M where

M is a large number.

Vehi
le-event model

A simple upper bound on the total number of visits 
an be obtained as follows:

k ≤

⌊
T − IQT − T 0min

Tmin

⌋
+ 1 (81)
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where T 0min, Tmin
are given previously.

Another possible approa
h is to 
onsider an upper bound for the model (41) - (66) tightened with the

inequalities introdu
ed in Se
tion 4.2 with the new obje
tive fun
tion:

w = max
∑

i∈N

∑

k∈K

yki (82)

and set k = ⌊w⌋, where w is an upper bound on w.

5.2 Two bran
hing s
hemes

The size of the lo
ation-event and vehi
le-event models depends on the upper bound on the number of

visits. By limiting this number, we obtain restri
ted subproblems whi
h be
ome smaller and, therefore,


an be solved faster, as shown in the 
omputational se
tion. Here we propose a two-level bran
hing

s
heme to solve the inventory routing problem to optimality. In the �rst level we split the problem into

several subproblems by restri
ting the domain of the total number of visits, and in the se
ond level we

solve ea
h subproblem. A good 
hoi
e of the number of subproblems may depend on the length of the

time horizon and the expe
ted total number of visits. Here we present the 
ase for two subproblems, sin
e

this 
hoi
e performed well on the instan
es tested. First, we determine an upper bound on the number of

visits, k, using the pro
edure des
ribed in Se
tion 5.1. Then we split the problem into two subproblems,

one with the 
onstraint

∑
i∈N

∑
k∈K yki ≤ ⌈k/2⌉, and the se
ond with

∑
i∈N

∑
k∈K yki ≥ ⌈k/2⌉+ 1. The

�rst subproblem is solved by bran
h-and-
ut. The value of the best feasible solution found is added as a


ut-o� value for the se
ond subproblem. The full algorithm is detailed in Algorithm 1.

Algorithm 1 A two-level bran
hing approa
h for the inventory routing problem.

1: Determine an upper bound for the number of visits k

2: Add 
onstraint

∑
i∈N

∑
k∈K yki ≤ ⌈k/2⌉

3: Solve the resulting model with a time limit of β se
onds

4: Set z̄1 to the value of the best feasible solution found and +∞ if no solution is found

5: Repla
e 
onstraint given in 2 by 
onstraint

∑
i∈N

∑
k∈K yki ≥ ⌈k/2⌉+ 1

6: Add the 
uto� value z̄1 to the model

7: Solve the resulting model with a time limit of β se
onds with optimal value z̄2

8: Let zi for i = 1, 2 be the value of the best lower bound obtained for ea
h subproblem. Then the best

lower bound is min(z1, z2) and the best upper bound min(z̄1, z̄2).

The se
ond algorithm is based on Proposition 4.3.

Algorithm 2 An m+ 1 bran
h approa
h for the inventory routing problem.

1: Determine the values m and κp
as in Proposition 4.2.

2: Add 
onstraint (77) and solve the resulting model with a time limit of β1 se
onds

3: Set z̄0 to the value of the best feasible solution found and +∞ if no solution is found, and z0 to be

the best lower bound found

4: For q = 1, . . . ,m, repla
e (77) by 
onstraints (78)

5: Add the 
uto� value z̄ = z̄0 to the model

6: Solve the resulting model with a time limit of β2 se
onds with best upper and lower bounds z̄q and

zq, respe
tively. Update the 
uto� value z̄ ← min[z̄, z̄q]

7: On termination, z̄ is the value of the best feasible solution found and the best lower bound is

min(z0, z1, . . . , zm)
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6 Computational results

This se
tion presents 
omputational experiments 
arried out to 
ompare the two models and the

tightening strategies. The formulations are written in Mosel and implemented in Xpress-IVE Version

1.25.02, with 64 bits. All the tests were run on a 
omputer with a CPU Intel(R) Core i7-10510U, with

16GB RAM and using the Xpress Optimizer Version 34.01.03 with the default options.

Part of the motivation for the 
urrent resear
h is related to the results presented in [3℄ for a maritime

inventory routing problem in whi
h only instan
es with a short time horizon were solved to optimality.

Here, a set of fourteen instan
es based on the original seven given in [3℄ are 
onsidered. In 
ontrast to most

of the original instan
es that involved multiple vehi
les (ships), these fourteen instan
es are developed

assuming a single vehi
le is available. Both the 
onstant supply and demand rates and the initial sto
k

levels have been 
hanged. For ea
h of these 14 instan
es, two values for the end-of-time horizon inventory

levels are 
onsidered, F = 0 and F = 0.2. First, we 
onsider two di�erent lengths of the time horizon:

60 and 120 days. Travel and operating 
osts are time invariant. Some of these instan
es are infeasible.

By 
onsidering su
h instan
es we also aim to test whether the models 
an prove infeasibility qui
kly.

Later, in Se
tion 6.2, we 
ondu
t further tests with a horizon of 180 and 240 days with F = 0 and with

additional adjustments to the rates.

6.1 Medium size instan
es

In Table 1 we present some basi
 information regarding the set of instan
es, namely, the number of

lo
ations |N |, the 
orresponding optimal obje
tive fun
tion value (
olumns �Obj�), the total number of

visits in the optimal solution (
olumns �opt�), the upper bound on the number of visits obtained with

formula (81) (
olumns �U�), the upper bounds on the number of visits obtained from the linear relaxation

of (82) (
olumn w̄), and 
olumns w report the optimal value of (82). Note that 
omputing w requires

the solution of a problem similar to the s-CT-IRP-PD, whi
h is very hard. The gains from 
omputing

w instead of the linear relaxation w are minor (on average a little more than one visit for T = 60 and

T = 120) whi
h 
learly indi
ates that the 
omputational e�ort to obtain w is not 
ompensated by a

signi�
ant redu
tion in the size of the model. The �INF� symbol means that the instan
e is infeasible.

The bounds on the number of visits using the lo
ation-event model are worse than those with the

vehi
le-event model and therefore are omitted.

In Table 2 we present the 
omputational results for the lo
ation-event model. Two formulations are

tested. A lo
ation-event formulation (1) � (23) with no additional valid inequalities, 
alled the weak

formulation, and the same formulation tightened with all the inequalities (25) � (29), (31)� (37), (39),

and (40) (wherem1,m2, n1, n2 are bounded by µ
i
+3), 
alled the strong formulation. The number of visits

is determined as des
ribed in Se
tion 5.1 by taking the best upper bounds obtained with bran
h-and-
ut

when solving the problems with obje
tive fun
tions w and wi for 3 se
onds for both models T = 60 and

for the weak formulation with T = 120. For the remaining 
ase (
orresponding to the strong formulation

and T = 120) we run for 5 se
onds to ensure a bound is obtained. Columns �BCw� and �BCs� report

the results obtained with the solver using the bran
h-and-
ut with the default options and a time limit

of one hour on the weak and strong formulations, respe
tively. Columns �ALG1� report the results with

Algorithm 1 using the strong formulation and β = 3600 on ea
h bran
h. The running times presented

in 
olumns �Time� in
lude both the running time of the 
orresponding approa
h and the time spent to

obtain the bounds on the number of the visits. For T = 60, all instan
es are solved to optimality. Hen
e,

only the running times are reported for ea
h approa
h. For T = 120, we report the running time in
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Table 1: Data and information on the optimal solution and number of visits for instan
es with a time

horizon 
onsisting of 60 and 120 days.

T = 60 T = 120

Instan
e F |N| Obj opt U w̄ w Obj opt U w̄ w

A1 0

3

331.3 8 18 16 15 898.2 19 36 30 27

0.2 462.3 10 18 16 14 933.2 20 35 30 27

A2 0

3

331.3 8 19 17 16 877.5 19 37 32 30

0.2 331.3 8 19 17 15 898.2 19 37 32 30

B1 0

4

310.7 7 19 14 14 INF INF 37 26 INF

0.2 310.7 7 19 14 14 INF INF 36 24 INF

B2 0

4

310.7 7 19 14 14 779 15 36 24 22

0.2 310.7 7 19 14 14 779 15 36 24 22

C1 0

4

295.8 6 20 17 16 859.1 13 37 28 27

0.2 397.1 6 19 15 14 859.8 13 36 25 25

C2 0

4

381.3 7 19 16 16 954.1 14 37 27 25

0.2 402.1 7 19 16 15 975.4 16 36 25 25

D1 0

5

320.3 8 15 13 12 714.5 16 27 25 23

0.2 329.5 8 14 13 12 764.9 18 27 24 22

D2 0

5

320.3 8 15 13 12 INF INF 27 24 INF

0.2 366.7 9 14 13 12 INF INF 27 24 INF

E1 0

5

273.3 7 29 24 20 572.4 14 56 44 37

0.2 273.3 7 29 23 19 599.4 15 55 43 36

E2 0

5

298.9 7 29 24 18 662.5 16 56 45 34

0.2 332.3 9 29 23 18 683.3 17 56 44 34

F1 0

4

313.9 6 14 12 12 858.1 15 25 20 16

0.2 313.9 6 14 12 11 INF INF 25 17 INF

F2 0

4

318.7 7 14 12 11 INF INF 24 INF INF

0.2 383 8 13 11 9 INF INF 23 INF INF

G1 0

6

208.5 5 14 13 13 INF INF 26 18 INF

0.2 375.3 6 14 11 10 INF INF 26 17 INF

G2 0

6

158.6 12 15 14 14 804.5 12 29 24 21

0.2 234 12 15 14 14 804.5 12 29 23 23

Average 7.6 18.4 15.4 14.1 15.7 34.8 27.7 26.6
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se
onds, the �nal lower and upper bounds (in 
olumns �LB� and �UB�, respe
tively). For example, for

instan
e B1, F = 0 and T = 120, the BCs approa
h proves that the instan
e is infeasible after 2870.9

se
onds, while the BCw approa
h rea
hes the time limit without proving infeasibility. For this instan
e,

sin
e no feasible solution is found, the upper bound is set to +∞ and the best proven lower bound 772.2

is reported.

Table 2: Computational results for the lo
ation-event model.

T=60 T=120

BCw BCs ALG1 BCw BCs ALG1

Instan
e F Time Time Time Time LB UB Time LB UB Time LB UB

A1

0 31.6 21.7 20.4 3615 656.4 +∞ 3625.0 842.9 +∞ 3922.5 845.4 +∞

0.2 546 26.2 27.2 3614 719.1 +∞ 3625.6 831.6 +∞ 3691.4 847.7 +∞

A2

0 35.2 21.7 17.3 3614 596.7 +∞ 3624.5 724.4 +∞ 5113.1 767.3 947.8

0.2 33.5 23.8 19.6 3615 614.3 +∞ 3625.6 735.3 +∞ 5067.7 769.4 932.5

B1

0 11.5 7.7 8.0 3612 772.2 +∞ 2870.9 INF INF 3619.4 938.9 +∞

0.2 12 3.8 3.3 3612 810.0 +∞ 443.0 INF INF 451.5 INF INF

B2

0 13.3 9.2 9.0 195 779.0 779.0 19.5 779.0 779.0 21.0 779.0 779.0

0.2 13.4 5.2 5.7 114 779.0 779.0 19.1 779.0 779.0 21.0 779.0 779.0

C1

0 20.5 19.9 29.1 204 859.1 859.1 104.2 859.1 859.1 115.6 859.1 859.1

0.2 29.4 21.3 24.9 78 859.9 859.9 39.9 859.9 859.9 32.6 859.9 859.9

C2

0 20.4 14.0 16.5 2907 954.1 954.1 242.2 954.1 954.1 320.9 954.1 954.1

0.2 32.6 19.3 17.8 1983 975.3 975.4 77.1 975.4 975.4 214.1 975.4 975.4

D1

0 89.8 32.5 24.3 3618 530.6 +∞ 3629.8 633.0 780.1 3736.1 645.7 +∞

0.2 135.6 37.1 34.4 3618 557.9 +∞ 3630.3 650.8 +∞ 3672.4 659.6 +∞

D2

0 195.1 37.2 37.0 3618 567.7 +∞ 3629.3 645.4 +∞ 3698.9 664.9 +∞

0.2 283.9 37.3 36.1 3617 574.6 +∞ 3629.4 664.5 +∞ 3659.1 674.2 +∞

E1

0 56.7 30.2 59.4 3617 437.6 +∞ 2795.0 572.4 572.4 5566.7 572.4 572.4

0.2 85.7 33.7 65.1 3618 449.3 +∞ 3630.2 532.7 599.4 5892.5 599.4 599.4

E2

0 166.3 43.0 72.2 3617 446.1 +∞ 3629.8 549.5 677.5 7229.6 547.6 697.9

0.2 235.3 47.7 98.3 3617 455.7 +∞ 3630.1 561.6 +∞ 7229.2 567.2 +∞

F1

0 31.4 19.0 23.8 3614 785.5 +∞ 180.2 858.1 858.1 210.7 858.1 858.1

0.2 55.1 15.9 20.5 3614 894.8 +∞ 31.6 INF INF 31.5 INF INF

F2

0 27.8 16.0 17.6 3615 999.3 +∞ 3.9 INF INF 3.4 INF INF

0.2 23.5 17.0 16.9 3615 1060.0 +∞ 4.1 INF INF 3.1 INF INF

G1

0 20.5 11.5 13.0 3621 882.0 +∞ 617.8 INF INF 198.2 INF INF

0.2 21.7 10.3 10.6 3621 920.9 +∞ 47.7 INF INF 45.9 INF INF

G2

0 21 13.7 13.2 3621 621.1 +∞ 3634.1 673.8 +∞ 6451.4 798.5 804.5

0.2 24.4 23.3 35.9 3621 654.8 +∞ 3634.8 744.8 804.5 5247.2 777.5 804.5

Average 81.2 22.1 27.8 3037.2 1952.7 2695.2

The results from solving the lo
ation-event model show that all instan
es are solved for T = 60. For

these smaller instan
es, using Algorithm 1 on the model with all inequalities is on average mu
h faster

than using the BCw approa
h. For T = 120, only six instan
es are solved with the BCw approa
h whereas

the sear
h is 
ompleted for 15 instan
es when using the two other approa
hes. Although these last two

approa
hes are not dire
tly 
omparable, as the overall running time limits are di�erent, there is no 
lear

indi
ation that Algorithm 1 is better than BCs when working with the lo
ation-event model.

A natural question 
on
erns the usefulness of the valid inequalities added in the strong formulation.

Though the values zLP of the LP relaxations are not reported in the Table, the average values of the gap

zLP−zI
ZLP

∗ 100% were 
al
ulated, where zI is the optimal value. For T = 60 and T = 120 the gaps with

the weak formulation were 28 and 25% respe
tively and with the strong formulation 27 and 24%, so the

bounds are hardly improved. However, the results in the Table show that the valid inequalities lead to a

signi�
ant improvement in the total run times.

Table 3 presents the 
omputational results obtained with the vehi
le-event model. Again, we 
onsider

two formulations, the weak vehi
le-event formulation, given by the inequalities (42) � (66) without valid

inequalities, and the strong vehi
le-event formulation in whi
h the inequalities (67) � (76) are added. The
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number of visits is determined as des
ribed in Se
tion 5.1 by solving the 
orresponding maximization

problem for 3 se
onds. Columns �BCw� and �BCs� report the results obtained with the bran
h-and-
ut

algorithm with the default options, using the weak and strong formulations, respe
tively. A time limit of

one hour is imposed. Columns �ALG1� and �ALG2� report the results with Algorithm 1 (with β = 3600

se
.) and Algorithm 2 (with β1 = β2 = 3600 se
.), respe
tively. Both algorithms are based on the strong

vehi
le-event formulation. Columns �ALG1+2� present the results obtained by 
ombining Algorithms 1

and 2. Spe
i�
ally, in Step 2 of Algorithm 2, the strong formulation with the additional inequalities (77)

is solved using Algorithm 1. Ex
ept for the two instan
es using the BCw approa
h (whose times are

given in bold), all the instan
es are solved to optimality or infeasibility is veri�ed, so only the running

times are presented.

Table 3: Running times using the vehi
le-event model.

T = 60 T = 120

Inst. F BCw BCs ALG1 ALG2 ALG1+2 BCw BCs ALG1 ALG2 ALG1+2

A1 0 5.1 4.9 4.5 1.4 3.1 113 60.7 62.5 9.8 17

0.2 7 6.8 8.1 1.6 4.3 63.5 54.4 59.1 10.9 11.4

A2 0 5.9 5.1 4.3 1.8 2.6 150.6 104 134.5 31.8 24.5

0.2 6.2 10.3 3.6 1.1 3 128.9 103.3 144.2 32.7 27.5

B1 0 2.9 3.8 2 0.1 0.9 9.6 10.5 8.4 2.5 5.3

0.2 3.5 3.7 1.8 0.2 0.4 13.4 7.3 10.3 2.2 3.9

B2 0 3.7 3.6 2.5 0 0.6 4.9 5.8 7.3 1.5 2.5

0.2 3.9 3.3 2.4 0 0.3 4.2 5.1 5.3 0.8 1

C1 0 4.1 6.3 2.5 1.6 2.7 43.9 35.1 28.7 12.7 9.8

0.2 4.9 5.7 3.3 1.4 3.1 18.1 9 9.1 4 6.5

C2 0 4.4 3.9 1.3 1.3 3.1 40.4 40.6 30.5 22.6 28.4

0.2 5 5.4 3.7 1 3.2 36.4 28.5 19.1 9.9 27.8

D1 0 7.2 7.2 6.1 4.5 5.3 468.1 212.2 278.6 174 246.7

0.2 8.5 7.2 7.3 3.3 5.5 517.2 435.7 465.2 134.3 267.8

D2 0 9.6 7.8 7.6 2.8 6.9 494.1 95.6 103.8 262.2 206.5

0.2 9 7.8 8.3 3.7 6.7 636.9 99.3 171.1 93.7 504.4

E1 0 16.4 12.9 8.5 7.3 5.2 1171.7 742.1 125.9 401.1 109.6

0.2 13.8 11.1 8.5 5.9 7.1 1559.2 629.5 163 738.7 197.2

E2 0 25.1 19.9 8.1 7.6 7 3510.3 1330.8 326.2 462.6 243.1

0.2 34.8 23.1 10.2 11.6 7 2097.9 1651.3 442.3 1255.4 225.2

F1 0 4 5.7 3.7 2.1 3.2 13.8 10.6 11.7 7.1 8.7

0.2 4.8 4.6 3.6 0.8 2.8 5.6 6.6 5.6 1.9 4.1

F2 0 6.1 5.3 4.3 1.4 2.7 2.3 0.9 0.9 0.6 0.6

0.2 4.7 5.5 6 1.1 3.1 2.6 1 0.9 1 0.8

G1 0 5.9 3.3 2.7 0.3 2 2290.2 56 54 45.7 38.8

0.2 7.2 8.8 5 3.2 2.7 175.4 18.8 18.5 13.1 18.4

G2 0 6.3 2.9 2.5 0.1 2.7 3602.6 528.7 209.8 756.1 141.6

0.2 6.6 4.9 5.6 1.8 4.5 3602.7 697.4 243.4 496 158.9

Average 8.1 7.2 2.5 4.9 3.6 742.1 249.3 178.0 112.1 90.6

Clearly, 
omparing Tables 2 and 3, we observe that the solution pro
edures based on the vehi
le-
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event formulations outperform the 
orresponding pro
edures based on the lo
ation-event formulations.

In parti
ular, this is true for the infeasible instan
es. We 
an see that the bran
h-and-
ut on the lo
ation-

event strong formulation fails to prove infeasibility on instan
es C2 and the running times for proving

infeasibility on B1 are quite large when 
ompared with the 
orresponding times obtained with the same

approa
h using the vehi
le-event strong formulation.

Considering Table 3, we see that when T = 60 all �ve approa
hes work. For T = 120 we observe

that the running times using the model with inequalities BCs are, on average, around one third of the

times for the model without inequalities BCw (note that for the two unsolved instan
es with the weak

formulation we 
onsider the trun
ated time). Algorithm 1 leads to running times that are between half

and one third of the 
orresponding running times using bran
h-and-
ut with default options. The running

times of the m subproblems solved in Steps 4-6 of Algorithm 2 are negligible for T = 60 and T = 120.

Hen
e, by 
omparing the times in 
olumns ALG2 with those in 
olumns BCs we see the impa
t of adding

inequalities (77) to the strong formulation. For T = 120, these inequalities allow us to redu
e the average

running times of the strong formulation by half. For all the feasible instan
es the optimal solutions satisfy

Assumption 1.

To help in visualizing the results, Figure 7 presents the boxplots of the running times obtained with

the �ve approa
hes (indi
ated on the horizontal axis), where ea
h box is limited by the lower and upper

quartiles of the 
orresponding running time data.

Figure 7: Boxplots for the running times (on the verti
al axis) using the vehi
le event model and T = 120.

The boxplots show that the most signi�
ant di�eren
es between the �BCs� and the �ALG1� approa
hes

o

ur in the right tail, that is, for the harder instan
es, sin
e the median times, indi
ating the maximum

time needed to solve half of the instan
es, are similar. The approa
h �ALG1+2� has the lowest average

time (from the table), a small median time, and is the one that presents the smallest number of outliers,

meaning that it is the most e�e
tive approa
h to 
ontrol the time of the hardest instan
es.

Regarding the linear relaxation of the vehi
le-event formulation (results not reported in the table),

for T = 60 the average gap (

zLP−zI
ZLP

∗ 100%) is 48% with the weak and 25% with the strong formulation.

As for the lo
ation-event formulation, the valid inequalities are not able to provide tight bounds but lead

to a signi�
ant improvement in the total run times. Comparing the strong lo
ation-event and strong
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vehi
le-event formulations, neither formulation leads to an uniformly better linear relaxation bound than

the other.

As the size of the vehi
le-event model varies linearly as fun
tion of the upper bound on the number of

visits, we expe
t the running times to in
rease with the in
rease of this parameter. Above, we motivated

the 
hoi
e of using the linear relaxation w to determine the value of this parameter. Additional tests

were 
ondu
ted with the vehi
le-event model for T = 120, in whi
h the upper bound on the number of

visits was determined using the formula (81). As expe
ted, the results are worse than those presented

in Table 3. Using model BCw, three instan
es are not solved to optimality within the time limit of 1

hour, and the running times are on average 14% higher than those presented in Table 3. Using model

BCs, two instan
es are not solved to optimality and the running times are on average 135.5% higher than

those in Table 3. For algorithms ALG1, ALG2, and ALG1+2, all the instan
es were solved to optimality

and the running times were 126.1%, 31.7% and 24% higher than the 
orresponding values presented in

Table 3. These results show 
learly the importan
e of using tight bounds on the number of visits in

de�ning the vehi
le-event model. Further tests on the impa
t of this parameter on the vehi
le-event

model are dis
ussed in the next se
tion.

6.2 Large size instan
es

In this se
tion, we test the vehi
le-event model on larger instan
es with T = 180 and T = 240. For

these tests, we 
onsider only the 
ase F = 0 given that the ending inventory level is probably less relevant

after su
h a long period. Additionally, the instan
es are adapted sin
e many of them are infeasible for su
h

long time horizons. This may be due to the fa
t that several instan
es are unbalan
ed sin
e the aggregate

supply rate is di�erent from the aggregate demand rate. The instan
es are modi�ed by multiplying both

the supply and demand rates by a parameter ρ (0 < ρ ≤ 1).

For these large instan
es, we make a few 
hanges to Algorithm 1 resulting from the observation that

the two bran
hes 
an result in two signi�
antly unbalan
ed subproblems. Moreover, the number of visits

estimated by the pro
edure des
ribed in Se
tion 5.1 
an be quite large.

To motivate these 
hanges we present bounds based on the number of visits and linear relaxations

in Table 4. Column �ρ� gives the value of ρ, 
olumn �Obj� gives the 
orresponding optimal obje
tive

fun
tion value, 
olumn V gives the number of visits in the optimal solution, and 
olumns w̄ and w

give the number of visits obtained from the linear relaxation of (82), w̄ obtained by rounding down the

value with the maximization problem and w obtained by rounding up the value with the minimization

problem. Columns αw for α ∈ {1, 1.25, 1.5, 1.75, 2} give the bound obtained with the linear relaxation of

the vehi
le-event model tightened with all valid inequalities (strong formulation) and with the additional


onstraint

∑

i∈N

µi∑

m=1

yim ≥ αw (83)

imposing a minimum number of visits. Columns LB1 and LB2 give the linear relaxation of the two

subproblems obtained in Algorithm 1 with k̄ = w̄, respe
tively. Columns LB1A and LB2A give the


orresponding lower bounds obtained from running the bran
h-and-bound for 30 se
onds.

We observe that the bounding 
onstraint (83) has a signi�
ant impa
t on the obje
tive fun
tion value

of the linear relaxation of the strong formulation with this additional 
onstraint. We also observe that

LB1 and LB2 di�er signi�
antly for several instan
es, whi
h may indi
ate that the size of the bran
hes

may be unbalan
ed. Additionally, LB1A is signi�
antly greater than LB1 (observe that the average of

LB1A is 
al
ulated only over the feasible instan
es, whi
h explains that the resulting average is lower
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than the average of LB1) while LB2A is, in general, slightly greater than LB2, whi
h indi
ates that it is

worth spending 30 se
onds to improve the bounds on the �rst bran
h, but not on the se
ond.

Table 4: Bounds based on the number of visits and linear relaxations.

Inst. ρ Opt V w̄ w 1w 1.25w 1.5w 1.75w 2w LB1 LB1A LB2 LB2A

A1 0.7 829.2 17 25 11 646.5 655.2 735.5 802.0 920.0 646.5 681.6 1041.2 1058.7

A2 0.8 933.2 20 50 10 553.5 570.9 649.6 710.3 813.6 553.5 678.5 1020.5 1028.9

B1 0.6 811.4 20 47 12 604.6 663.3 736.1 813.7 902.9 604.6 669.0 924.8 942.1

B2 1 1126.1 21 35 21 1119.4 1217.3 1315.3 INF INF 1119.4 INF 1119.4 1126.1

C1 1 1316.9 19 38 19 1257.5 1333.0 1461.9 1633.8 1813.4 1257.5 1316.9 1262.5 1321.9

C2 1 1452.4 22 37 21 1338.1 1426.7 1574.1 1751.7 INF 1338.1 INF 1338.1 1361.2

D1 0.7 705.7 16 39 11 451.9 518.7 628.7 741.8 852.4 451.9 523.7 814.0 819.1

D2 0.6 610.2 13 40 9 386.0 439.2 511.3 585.6 697.2 386.0 447.4 807.8 814.7

E1 0.9 727.7 18 69 10 419.4 444.1 504.8 546.0 607.5 419.4 459.7 938.5 949.1

E2 0.8 753.5 18 71 9 365.9 404.0 444.9 485.9 547.1 365.9 435.3 940.2 951.4

F1 0.6 609.6 10 37 10 575.4 635.9 727.5 793.7 903.4 575.4 609.6 903.4 907.6

F2 0.55 713.3 12 35 12 672.1 763.1 855.2 968.5 1078.1 672.1 713.3 886.1 910.1

G1 0.75 1030.8 13 31 13 940.3 975.8 1074.3 1192.8 1364.2 940.3 999.6 1000.0 1000.0

G2 0.9 947.7 14 36 11 675.4 719.4 834.4 964.5 1085.4 675.4 710.9 940.1 943.9

Average 897.7 16.6 22.6 12.8 714.7 769.1 861.0 922.3 891.2 714.7 687.1 995.5 1009.6

Based on these observations we propose a re�nement of Algorithm 1, denoted ALG1r, for the larger

instan
es. ALG1r deviates from Algorithm 1 only in the rule used to split the problem into two subprob-

lems. ALG1r uses the information provided by LB1A and LB2 to obtain more balan
ed subproblems.

First, we split the problem into two subproblems, by multiplying k̄ by r as in Steps 2 and 5 of Algorithm 1

(Note that there r = 0.5).

Using the bounds LB1A and LB2, the parameter r is 
hosen as follows: If the �rst subproblem is

infeasible (LB1A = +∞), we take r = 2/3. Otherwise, set r = 0.6 if LB2 < 1.1LB1A; r = 0.45 if

1.1LB1A ≤ LB2 ≤ 1.5LB1A; r = 0.4 if 1.5LB1A < LB2 < 2LB1A and r = 0.3 if LB2 ≥ 2LB1A.

Noti
e that for small size instan
es the time spent in these adjustments may not 
ompensate for the

subsequent gains.

Table 5: Computational results for large size instan
es with T = 180 and T = 240.
BCs ALG1r ALG1r+2

T=180 T=240 T=180 T=240 T=180 T=240

Inst. rho Time UB Time UB Time UB Time UB Time UB Time UB

A1 0.7 209 829.2 7203 1133.9 127 829.2 3631 1129.5 112 829.2 3634 1129.5

A2 0.8 1279 933.2 7203 1385.4 210 933.2 7232 1309.5 63 933.2 3924 1299.5

B1 0.6 9 669 702 1099.7 3 669 62 1099.7 4 669 80 1099.7

B2 1 7 1126.1 10 1594.4 4 1126.1 4 1594.4 2 1126.1 5 1594.4

C1 1 66 1316.9 636 1846 15 1316.9 201 1846.0 28 1316.9 256 1846.0

C2 1 119 1452.4 4157 2045.1 73 1452.4 4092 2045.1 76 1452.4 2619 2045.1

D1 0.7 1805 705.7 7203 1103.2 418 705.7 7236 1167.0 311 705.7 7234 1155.0

D2 0.6 529 601.8 7203 901.3 110 601.8 3636 900.5 102 601.8 3634 888.0

E1 0.9 7202 727.7 7203 1003.6 621 727.7 3644 1061.8 850 727.7 3637 1104.2

E2 0.8 7203 760.1 7203 1208.7 3637 761.5 7244 1181.1 2819 753.5 7237 1179.7

F1 0.6 14 609.6 22 1052.7 9 609.6 13 1052.7 7 609.6 20 1052.7

F2 0.55 19 713.3 204 1282.5 9 713.3 52 1282.5 6 713.3 41 1282.5

G1 0.75 475 1030.8 7203 1524.3 119 1030.8 783 1508.3 119 1030.8 213 1508.3

G2 0.9 7203 947.7 7203 1415.8 699 947.7 7241 1384.7 945 947.7 7240 1476.0

Average 1867 887.4 4525 1328.3 432 887.5 3219 1325.9 390 886.9 2841 1332.9

In Table 5 we 
ompare the standard bran
h-and-
ut on the strong formulation (approa
h BCs) to the

adjusted Algorithm 1 (approa
h ALG1r) and the approa
h obtained by 
ombining Algorithms ALG1r

and 2 (approa
h ALG1r+2) where in Step 2 of Algorithm 2, the strong formulation with the additional

inequalities (77) is solved using algorithm ALG1r. In addition, Steps 4-5 of Algorithm 2 are omitted when
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in Step 2 the problem is not solved to optimality. Noti
e that, in general, the m subproblems are solved

mainly to prove optimality, sin
e in most pra
ti
al situations we expe
t that Assumption 1 is satis�ed.

Columns �UB� give the value of the best feasible solution found. When the number is in bold it means

the algorithm stops without proving optimality.

Table 5 shows that by using the BCs approa
h for T = 180, only three instan
es are not solved to

optimality (E1, E2 and G2) and for T = 240 eight instan
es are not solved. Using the ALG1r+2 approa
h

all instan
es for T = 180 and seven instan
es for T = 240 are solved to optimality. We 
an also observe

that the ALG1r+2 approa
h is mu
h faster than the BCs approa
h for all the solved instan
es. Comparing

the ALG1r and ALG1r+2 approa
hes, we observe that ALG1r+2 is on average faster. ALG1r+2 solves

to optimality two more instan
es than ALG1r (E2 for T = 180 and C2 for T = 240). On the unsolved

instan
es it provides a better bound than ALG1r on 5 instan
es and a worse upper bound on two instan
es

(E1 and G2 for T = 240).

7 Con
lusions and future resear
h

A general single-vehi
le inventory routing problem (IRP) with pi
kups and deliveries is studied. Com-

pared to the majority of land-based IRPs 
onsidered in the literature, where the planning horizon is

partitioned into periods and it is assumed that the routes are made within a time period, the time is here


onsidered as 
ontinuous due to 
onstant supply and demand rates at the supply and demand lo
ations.

The quantity pi
ked up or delivered at a lo
ation depends on the storage 
apa
ity at the lo
ation, the

inventory level at the visit time at the lo
ation, the quantity on the vehi
le as well as the 
apa
ity of

the vehi
le. This type of inventory routing problems is parti
ularly 
omplex due to the high degree of

freedom 
on
erning the variable number of visits to ea
h lo
ation during the time horizon and the vari-

able quantity pi
ked up and delivered at ea
h visit. Deriving strong formulations for the problem is a


hallenge. In this paper we have presented two improved models. One is de�ned on an extended graph in

whi
h the nodes 
orrespond to visits to lo
ations (lo
ation-event model) and the other in whi
h the nodes


orrespond to vehi
le visits (vehi
le-event model). The size of both models depends on the number of

events 
onsidered. We propose a simple method to bound the number of nodes in ea
h extended graph.

Additionally, we propose new valid inequalities to tighten the two models. For ea
h model, a new exa
t

algorithm (Algorithm 1) 
ombining all 
ontributions is proposed to solve the inventory routing problem.

Computational tests based on a set of instan
es from a maritime inventory routing problem are

presented showing that the bran
h-and-
ut algorithm based on the vehi
le-event model performs better

than the lo
ation-event model. The results also show that the method to bound the number of events

as well as the inequalities is important to redu
e the running time. In addition, the vehi
le-event model

outperforms, in general, the lo
ation-event model when it 
omes to verifying infeasibility. Using the

vehi
le-event model our most e�e
tive algorithm solved to optimality all instan
es with a horizon of 180

days and half the instan
es with a 240 day horizon.

We have developed valid inequalities for instan
es satisfying the assumption that the vehi
le 
annot

return twi
e to a demand/supply lo
ation without visiting a supply/demand lo
ation in between. When

this assumption does not hold, these inequalities are used to partition the set of feasible solutions (Algo-

rithm 2). Running Algorithm 1 on the initial problem with these inequalities 
an be seen as a heuristi
.

As all the solved instan
es satisfy this assumption, this heuristi
 potentially generates the optimal solu-

tion to all the instan
es. In addition, Algorithm 2 is valid whatever values are sele
ted for the split fa
tor

(vehi
le visit number), so for other 
lasses of instan
es another 
hoi
e may well be appropriate.

As to future resear
h it would be interesting to investigate further the polyhedral stru
ture of the two
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proposed models, even in the restri
ted Hamiltonian 
ase in whi
h the number of visits to ea
h lo
ation is

�xed. Extending the models to deal with multiple vehi
les is perhaps the major 
hallenge. It might also

be of interest to examine other problems in whi
h some 
ru
ial parameter, in our 
ase the total number

of visits, 
an be used to speed up the solution pro
ess and investigate related bran
hing s
hemes based

on partitions of the set of possible values for that parameter.
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