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Abstract

We consider an inventory routing problem in which a single vehicle is responsible for the transport
of a commodity from a set of supply locations to a set of demand locations. At each location the
inventory must be kept within predefined bounds, and the location specific supply and demand rates
are constant throughout the time horizon. Each location can be visited several times during the time
horizon, and the vehicle can visit the locations in any order as long as the capacity of the vehicle
is not exceeded. Two models are presented, each defined on a different extended network. In a
location-event model, the nodes are indexed by the location and the number of visits made so far to
that location, while in a vehicle-event model the nodes are indexed by the location and the number of
visits so far on the vehicle route. Both models are based on continuous time formulations. They are
tightened with valid inequalities, and a new branching algorithm is designed to speed up the solution
time of the models. Computational tests based on a set of maritime transportation instances are

reported to compare both models and the corresponding tightened variants.

Keywords: Inventory; routing; strong formulations; valid inequalities.

1 Introduction

In this paper we consider an inventory routing problem (IRP) with constant supply and demand rates
at supply and demand locations, respectively. A single vehicle is responsible for transporting a single
commodity from the supply locations to the demand locations. The vehicle route and the corresponding
pickup and delivery operations must be coordinated in order to keep the inventory levels at each location
within predefined upper and lower bounds. The vehicle, which has limited capacity, starts from a given
initial position, visits the locations in any order along its route, and ends its route at any location.
Each location can be visited once or several times during the planning horizon depending on the size
of the storage, the supply or demand rate, and the quantity picked up or delivered at each visit. The
quantity picked up or delivered at each visit is also variable. Time is regarded as continuous, and the
planning horizon has a defined length. The single vehicle continuous-time inventory routing problem
with pickups and deliveries (s-CT-IRP-PD) cousists of designing routes and schedules for the vehicle in
order to minimize the travel and operational costs, and to determine the number of visits at each location
including the quantities handled without exceeding the storage limits.

Although the study of this problem is motivated by maritime transportation problems, such problems

may also occur in land-based transportation when long travel times and/or long operating times at
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locations are considered. The main distinction compared to many other inventory routing models is that
time is treated as continuous and the vehicle may operate continuously, meaning that the distribution
plan is not split into discrete time periods, such as hours or days.

As for related problems, such as the travelling salesman problem or the inventory routing problem
with pickups and deliveries [12], the single vehicle case can have practical applications on its own. The
reasons may be that only one vehicle is available or because the geographical dispersion of the locations to
be visited leads to a natural partition and thus an assignment of a subset of the locations to each vehicle.
Such assignments can also be used to derive heuristic schemes for the multi-vehicle case, in which a first
step is to select the set of locations to be visited by each vehicle, see [7]. The single vehicle-case arises very
naturally as a subproblem when column generation approaches are used to solve multi-vehicle inventory
routing problems, see for instance [2, 34].

The purpose of this paper is to investigate and present improved mixed integer formulations for the
inventory routing problem with constant supply and demand rates that can be used to solve instances
with long time horizons.

Inventory routing problems have been studied for almost four decades and have been the subject of
several reviews, such as [9, 20].

For the majority of IRPs considered in the literature, the planning horizon is partitioned into periods
and it is assumed that arrivals occur at the start of the period, demands take place at the end of the
period and that both occur instantaneously; see [15, 20]. However, the quantity picked up or delivered
at a particular time depends on the storage capacity and the inventory level at that point in time, and
an IRP with discretized time periods may be less accurate than an IRP with continuous time. That is
the reason why continuous-time models have been widely used in the past in maritime transportation
[8, 17, 19, 30] where several ships transport a commodity between multiple supply ports and multiple
demand ports. In such problems, the travel times are usually long and event models are employed in
which an event corresponds to a ship visit to a port. Such models are similar to the location-event model
presented in Section 3. When the supply and/or demand rate is varying during the planning horizon, a
discrete-time model is applied, see [3, 31]. In [4] continuous time is combined with discrete time to model
a multi-item maritime inventory routing problem in which continuous time is used to model the visits to
ports while discrete time is used to model time-windows in the ports.

Comparisons between continuous-time and discrete-time model are also explored in the literature; see
[5] for maritime IRPs. While the discrete-time models tested in [5] proved to provide smaller integrality
gaps than those obtained with the continuous-time models, it was also observed that time discretizations
may lead to very large sized models when the time horizon is long or if the use of a fine time discretization
is required. This scalability issue with the discrete-time models motivates the need to conduct a deeper
study of the continuous-time models.

Continuous-time models have also been used in land transportation, particularly for companies in the
liquid gas industry. Song and Savelsbergh [32] introduced the IRP with continuous moves in the liquid
gas industry. Here, the product was picked up at different facilities and delivered to customers spread
over a large geographic area, and the transportation teams were on the road for several days. Avella et al.
[13] consider an IRP in which one warehouse supplies a set of fuel pumps using a fleet of trucks. Recently,
Fokkema et al. [26] propose a continuous-time model for a practical biogas IRP where containers act as
both storage and transportation units. Multiple suppliers and a single facility are assumed. Furthermore,
Lagos et al. [29] study a problem typically found in the liquid gas industry, and they propose a dynamic

discretization algorithm for IRPs where a time-expanded network formulation is introduced to obtain



solutions that are converted to continuous-time solutions. A similar approach can be found in [16] for a
continuous-time service network design problem.

A relevant related problem is the cyclic inventory routing problem that aims to find routing schedules
of a certain length that are repeated infinitely [1, 24, 26]. In this variant of the IRP the conditions at the
end of the planning horizon coincide with those at the beginning (inventory levels and vehicle position).
Moreover, in the single-vehicle cyclic inventory routing case, only one supplier is usually considered. Each
customer is visited at most once in the cycle and the cycle time of the trip made by the vehicle is to be
determined [1]. Hence, the solution techniques proposed in our paper can be used to obtain solutions for
the cyclic inventory routing problem if additional constraints forcing the final conditions to match the
initial conditions are included (same inventory levels at all locations and the start position of the vehicle
is equal to its end position). Also, the requirement that each location is visited at most once can easily
be included in the model.

Another important characteristic of an IRP is the network structure, where the basic IRP considers
a depot with an unlimited supply of the commodity and many distributed customer nodes demanding
the commodity, see for instance [11, 21]. However, the opposite structure with a demand depot and
suppliers distributed geographically is also investigated in the literature and called supply-driven IRPs
[23, 26]. Inventory routing problems with both pickup and delivery nodes have been extensively studied
in the maritime context. We refer to [18, 19] for an introduction and an overview of maritime IRPs with
pickup and delivery structure. There are also land-based IRPs with pickup and delivery nodes studied
in the literature. One important class of such problems is the closed-loop IRP, which takes into account
the return processes as well as the forward flows in order to recover the value from the customers or
end users. This means that the locations are simultaneously pickup and delivery locations. Closed-loop
inventory routing problems for returnable items with simultaneous pickup and delivery are studied for
instance in [28, 33]. The location characteristics deviate from ours because our locations are classified as
either a pickup or delivery location, and we do not allow simultaneous pickup and delivery at a customer.
Another combined inventory management and pickup and delivery routing problem is studied in [10],
where the authors study a real problem of replenishing automated teller machines (ATM). Also for this
problem an ATM can act as both a pickup and delivery location and all the vehicle start from a common
depot.

The majority of the IRPs studied in the literature, including the c-CT-IRP-PD, consider the trans-
portation of a single product. However, there is also work considering multiple products as in [22] for
land based transportation and in [27] for maritime transportation.

One relevant issue in the s-CT-IRP-PD is that each location can be visited several times and that the
number of visits is not known in advance. The visits must be coordinated with the inventory levels at
the different locations. This means that the vehicle may visit a particular location several times during
the time horizon picking up or delivering small quantities of the commodity at each visit or alternatively
visit the location just once and pick up or deliver large quantities. This inventory policy is often called
a maximum-level policy meaning that the replenishment is flexible, but bounded by the inventory limits,
see [20]. An alternative is the order-up-to policy in which the aim during a visit is to fill the storage
facility to capacity at a demand location and to empty the facility at a supply location, see [14].

Deriving good formulations for model with a variable number of visits to the locations and variable
quantity is challenging. Here, we consider two different models that take the occurrence of multiple
visits into account. The first is a location-event model, similar to those used in [8, 17, 30], based on an

expanded network in which there is a different node for each possible visit to a location. The second,



vehicle-event model, is based on a layered graph. Here, all locations are present in each layer and the
k" layer represents the k*" visit of the vehicle. Such models have also been used for related problems,
see for instance [25] where a single vehicle is responsible for collecting information that is generated at
constant rates in several locations and delivered to a single depot. As these models have large integrality
gaps, they are tightened with valid inequalities. Based on a set of instances for maritime inventory
routing, a computational study is here conducted to test and compare both models with and without

valid inequalities.

In addition to the introduction of the layered vehicle-event model, we describe valid inequalities for
the location-event model, which are also valid for the multi-vehicle case, as well as valid inequalities
for the vehicle-event model. In addition, we present simple approaches to provide upper bounds on the
number of events considered in each model, that is, the number of visits to each of the locations in the
location-event model, and the total number of visits made by the vehicle in the vehicle-event model.
Providing tight upper bounds allows us to limit the size of the corresponding models. These approaches

suggest a new branching algorithm based on a restriction on the number of visits.

The contribution of this work can be summarized as follows:

1. The s-CT-IRP-PD is introduced. The single-vehicle version of the problem is not studied in the

literature previously.

2. Two general mathematical formulations of the problem, a location-event model and a vehicle-event

model, are presented.
3. New valid inequalities are proposed for both models.

4. New valid inequalities are introduced under the assumption that the vehicle cannot return twice
to a demand/supply location without visiting a supply/demand location in between. When this
assumption does not hold, these inequalities are used to partition the set of feasible solutions and

an exact algorithm is proposed.
5. A branch-and-cut algorithm is described including a new branching algorithm.
6. Benchmark instances for the s-CT-IRP-PD are generated.

7. A computational study gives information about the effectiveness of the models and the valid in-
equalities and insights into the problem. All the tested instances up to 180 periods are solved to

optimality with the best approach that combines the main contributions.

The rest of the paper is organized as follows: In Section 2, we present and discuss the inventory
routing problem. In Section 3 we present the location-event model and discuss valid inequalities. In
Section 4, the layered vehicle-event model is introduced and tightened. The estimation of the bounds
on the number of visits is discussed in Section 5. Computational results are presented in Section 6 and

Section 7 contains some concluding remarks.

2 Problem description

In this section, we describe the inventory routing problem in more detail. A single vehicle is trans-
porting a single commodity over a time horizon of length T. Let G = (N, AY) denote a graph in which
N is the set of locations to be visited, and A% is the set of arcs between the locations. For each location

i, an initial stock S?, and a constant supply /demand rate R; are given. The vehicle of limited capacity



C is responsible for picking up the commodity from the supply locations and delivering it to the demand
locations to ensure that the stock levels are kept within specified minimum S; and maximum levels S;
throughout the time horizon. Initially, the vehicle carries Q° units of the commodity and, at the end
of the time horizon, it can carry any amount between 0 and its capacity C. For a visit to location i,
minimum Qz and maximum @, pickup or delivery quantities are specified.

The travel time between locations ¢ and j including also any set-up time required to operate at location
j is Ti;, and the travel time required to travel from the origin to location i is 7. In addition, TiQ is the
time required to pickup/deliver one unit of the commodity at location 7. The vehicle is also allowed to
wait before operating at a location.

To resume, we consider the case in which a single routing and distribution plan must be determined
for the entire time horizon, see [32]. The vehicle starts from a given initial position, that can be any
location (e.g. in maritime transportation the initial position can be a point at sea), can visit any sequence
of locations along the route and ends its route at a dummy destination. However, we do not allow that
the vehicle makes two consecutive visits to the same node. Each location can be visited multiple times,
and the number of visits to each location is a decision resulting from the plan and not an input parameter.
The need to visit a particular location several times during the time horizon may be due to the vehicle
capacity or the maximum/minimum inventory limits and the amount of the commodity available. After
its last visit, the vehicle leaves for an unspecified destination, but the stock levels at all the locations
must be feasible up until time 7. In Figure 1 we provide an example of a feasible vehicle route that visits
locations 2 and 3 twice and location 1 once. Notice that the last location visited by the vehicle before

moving to the dummy destination is location 2.

Figure 1: Example of a route with N = {1,2,3}, in which the vehicle departs from its origin (node O)
visits location 3 for the first time, then makes a first visit to location 2, returns to location 3 for a second
visit, then travels to location 1 followed by a second visit to location 2. Then the vehicle leaves for the

destination (node D).

Two types of costs are considered: (i) travel costs C’% for a trip from location i to location j and C7°
for a trip from the initial location of the vehicle to location i and (ii) a fixed set-up/operating cost C
incurred every time the vehicle operates at location i. The objective is to minimize the transportation
and operating costs.

Now we present an example showing that the solution to the inventory routing problem can be highly

sensitive to the parameters because the inventory bounds are hard constraints.

Example 2.1 Consider an instance with a time horizon of 40 days, 4 locations, in which location 1
is a supplier and locations 2, 3, 4 are demand locations. Assume the vector of supply/demand rates is
given by (6, 2, 2.5, 1.5) and consider two alternatives for the vector of initial stock levels (115, 39, 38,
16) and (115, 89, 38, 15), in which only SY varies by one unit. The vehicle is located at location 1 at
the beginning of the time horizon and the initial load is zero. The pickup/delivery rate TiQ is 80 units
per time unit for all locations. The travel distances and the travel costs are given by T1o = 7, T13 = 8§,
Ty =5, Tos =3, Toy =5, Ty4 = 8, and CL, = 70, Cf; = 80, CI, = 50, CL = 30, C%, = 50, CL, = 30,

respectively. The travel distances T and travel costs CI° are based on the vehicle’s initial position. The



set-up and operating costs are (7,5,5,5). Figure 2 depicts an optimal solution when S is 16 (in the upper
network) and when SY = 15 (in the lower network). The corresponding optimal values are 130.7 and
261.6, respectively. In the case when S§ = 16 the initial inventory level allows location 4 to be served at
time period 10.3. This allows the vehicle to pick up enough to serve the net demand at the 3 consumer
locations. If SY is reduced to 15, location 4 needs to be served within time 10 which forces the vehicle to
leave the supply location without sufficient quantity to serve all the demand locations. Hence, forcing a
second wvisit to locations 1 and 4 leads to a large increase in cost.

(19.5, 41)
(3.5, 147)

o @/@\»D

(15.2, 62)

(10.3, 44)
(17.3, 41)
(3.2, 145) @-\-()243,3)
® D
(13.5, 62)
(10, 42) (38, 3)

Figure 2: Optimal solutions with S = 16 (above) and S = 15 (below). The label next to each node

represents (start time of visit, quantity picked up/delivered).

Example 2.1 indicates at least partially the difficulty in coordinating the inventory management with
the distribution in inventory routing problems.

Another issue is the end-of-time horizon effect that is often observed in inventory problems. In optimal
solutions, the stock level at the end of the time horizon is typically high if the location is a supplier and
low if it is a demand location. In order to avoid the end-of-time horizon effect, we introduce a parameter
F, that is a fractional value between 0 and 1, to control the inventory level at the end of the time horizon.
For a supply location, the stock level at time 7' should not exceed (1 — F)S; + FS?, and for a demand
location the stock level at time T" should be at least (1 — F)S; + FSY. Hence, setting F' = 0 we are not

imposing any additional restrictions on the inventory levels S;, S;, while in the extreme case, F' =1, we
are imposing that the inventory levels should be at most (least) the initial inventory level at all the supply
(demand) locations. In this case, as the inventory levels at the end of the time horizon match the initial
inventory levels, the solution can be cyclically repeated (if in addition we force the destination node to

coincide with the origin node), solving the corresponding cycle inventory routing variant for cycle time

T.

3 The location-event model

In the location-event model, an extended graph is considered in which each node corresponds to a
visit to a location. For each location, we consider an ordering of the visits according to the time of the
visit. The vehicle path is defined on an extended graph GV = (V, A") in which each node in the set V'
h

is represented by a pair (i,m), in which ¢ € N indicates the location and m indicates the m'" visit to

location 4. Arcs in the graph GV correspond to direct vehicle movements from node (i,m) to node (j, n).



Thus ((i,m), (j,n)) € AV if (i,5) € AN. For ease of notation, arcs ((i,m), (j,n)) € AV are represented

by (¢,m,j,n) whenever the meaning is clear from the context. Figure 3 shows how the route shown in

Figure 1 is represented in this extended graph.

o

O® ® D

Figure 3: Route given in Figure 1 represented in GV.

3.1 Formulation

For easy reference, the parameters and the variables for the location-event model are given below.

They are followed by the mathematical model.

Parameters
Ji if location i is a supplier then J; = 1, otherwise J; = —1
; upper bound on the number of visits to location 7
Variables
Zimjn 1 if the vehicle travels from node (i, m) directly to node (j,n), and 0 otherwise
z¥ 1 if the vehicle travels directly from its initial position to node (7, 1), and 0 otherwise
Yim 1 if the vehicle makes the m!” visit to location i, and 0 otherwise
Zim 1 if the vehicle ends its route at node (i,m), and 0 otherwise
Qim quantity picked up or delivered at node (i,m)
fimjn quantity transported from node (i,m) to node (j,n)
o quantity transported from the initial position of the vehicle to node (i, m)
D quantity transported from node (i,m) to the destination
tim start time of operation on the mth visit to location i
Sim stock level at the start of operation on the m!”* visit to location i

Variables z = and f9, are set to zero for all m > 1. They are included in the model for ease of notation.

The constraints are separated into four groups: routing constraints, pickup and delivery constraints, time

constraints and inventory constraints.



Routing constraints

Z x?m =1, (1)

(i,m)ev

Yim = D Tjnim — a0, =0, V(i,m) €V, 2)
(4,m)eV

Yim — Z Timjn — Zim — 0; V(Za m) € Va (3)
(7,m)eV

Yim—1 — Yim > 07 V(lvm) eV:2 <m< ﬁiu (4)

29 Yims zim € {0,1}, Y(i,m) €V, (5)

Timjn € {0,1},  V(i,m,j,n) € AV. (6)

Equation (1) ensures that the vehicle leaves the origin. Equations (2) and (3) are the flow conservation
constraints, ensuring that if the vehicle arrives at a node, it also leaves that node or ends its route.

Constraints (4) state that if location ¢ is visited m times, then it must also have been visited m — 1 times.

Pickup and delivery constraints

o+ Z finim + JiGim = Z fimjn + 1, Y(i,m) €V, (7)
(4,m)eV (j,m)ev

= Q0. Y(i,m) €V, (8)

fimjn < CZimjn, Y(i,m,j,n) € AV, (9)

D < C2im, Y(i,m) €V, (10)

Qyim < tom < min{C, Q}yims Wiy m) €V, (1)

fimjn >0, ¥(i,m,j,n) e A, (12)

Equations (7) are the flow conservation constraints for the quantity transported by the vehicle. Equations
(8) determine the quantity transported from the initial position to node (i, m). Constraints (9) and (10)
ensure that the vehicle capacity is not exceeded, while constraints (11) impose lower and upper limits on

the pickup/delivery quantities.

Time constraints

tim + /—TlQQZm - tjn + (T + Tij)ximjn S T7 V(l, maju n) € Avu (13)
T2, <tim,  V(i,m)eV, (14)
0<tim <T,  Y(i,m)eV. (15)

Constraints (13) link the start time associated with node (i,m) to the start time associated with (j,n)
when the vehicle travels directly from (i,m) to (j,n). Constraints (14) ensure that if the vehicle travels
from its initial position to (¢,m), then the start time at (i,m) is at least the traveling time between the

origin and location 4. Lower and upper bounds on the start time at each visit are given by (15).



Inventory constraints

sip =S+ JiRitin, Vi € N, (16)
Sim = Si;m—1 — JiGi,m—1 + JiRi(tim — tim-1), Y(i,m) €V :m>1, (17)
Sim + Gim — RiT 2 qim < S5, V(i,m) € V|J; = —1, (18)
Sim — Qim + RiT 2 qim > S;,  Y(i,m) € V|J; =1, (19)
sig, + Qip, — Ri(T —tiz,) > (L— F)S; + FSY,  Vie N|J; = -1, (20)
sig, — @i, + Ri(T —tiz,) < (1= F)S; + FSY, Vie N|J; =1, (21)
Sim > S, Y(i,m) € V|J; = —1, (22)
Sim < Si, V(i,m) € V|J; = 1. (23)

Equations (16) specify the stock level at the start time of the first visit to a location, and equations (17)
relate the stock level at the start time of the m!” visit to the stock level at the start time of the previous
visit. Constraints (18) and (19) ensure that the stock levels are within their limits at the end of each
visit. Constraints (20) impose a lower bound on the inventory level at time 7" for the demand locations,
while constrains (21) impose an upper bound on the inventory level at time T for the supply locations.
Notice that if F' is a positive number, then the stock level at the end of the time horizon must be greater
than the lower bound S, for demand locations and must be lower than the upper bound S; for the supply
locations. Finally, constraints (22) and (23) ensure that the stock levels are within their limits at the
start of each visit.

Here we consider the value of the variables after the last visit to node 7. If ; is the number of the last
vehicle visit to node ¢, then the routing constraints (2), (3), and (4) force variables Yim, Timjn and jnim
to be zero for all m > k;. Then, using the fact that these variables are zero, constraints (9) and (11),
force variables @im, fimjn and fjnim to be zero for all m > x;. The inventory and time variables, s;,, and
tim respectively, for m > k;, are only restricted by their bounds, S; < sim < S; and 0 < t;, < T. That
means, multiple alternative values can be assigned to these variables. Although such variables have no
practical meaning, they are necessary to force the inventory levels at time 7" to be within the predefined

limits. Observe that by adding up constraints (17) for x; + 1 to &, and setting g;,, to zero, we obtain
Sip, = Siny + JiRi(tig, — tix,)-
Using this constraint to eliminate variable s;z, in constraints (20) and (21) we obtain
Sin; — Ri(T —tin,) > (1= F)S, + FSY, Vi€ N|J;, = —1,
Sims + Ri(T —tin,) < (1= F)S; + FS?, Vi€ N|J;=1.
This implies that the inventory bounds at the end of the time horizon are also satisfied.
We denote by X the set of feasible solutions satisfying (1) — (23).
Objective function

The objective is to minimize the total travel and operating costs. The objective function is as follows:

(i,m,j,n)eAV (i,m)eV (i,m)eV
3.2 Location-event model tightening

This section presents valid inequalities for the feasible set X. Some inequalities have been used pre-

viously, namely, those imposing a minimum number of visits to each node, see [6]. There the problem



considered includes several products but does not consider upper bounds on the inventories at the supply

locations.
Tighten variable upper bound constraints
Here we consider the tightening of the non-negativity constraints (12):
fimjn > Qj'rimjnv V(i,m,j, n) S AV|Jj = _17 (25)
fimjn Z Qiximjnu V(Z, m7j7 n) € AV|Ji = 17 (26)

and the tightening of the variable upper bound constraints (9), linking the flow variables with the routing

variables for arcs leaving demand locations in (27) and arcs arriving supply locations in (28):

fimjn < (C - Qi)ximjna V(i,m,j, TL) € AV|Ji =-1, (27)

fimjn S (O _Qj)ximjn; V(iamajv n) € AV|Jj =1 (28)

Lower bounds on the number of visits

A common approach to tighten such a formulation is to include constraints imposing a minimum
number of visits to each location. Let ©, denote a lower bound on the number of visits to location ¢,
1€ N.

For each demand location ¢ € N, J; = —1 with S? —TxR; <8, let
QN = maz{T x R — 59+ 5,, Q},

denote the net demand over the time horizon. Otherwise Q¥ = 0.

For each supply location i € N, J; =1 with S? + T x R; > S, let
QY =max{T x R + S = 5;, Q},

denote the net supply over the time horizon. Otherwise QY = 0.

The number of visits to location 4 is at least:

- [
If there is only one supply location, then assuming without loss of generality that this location is

location 1, we have

[ max{QY, Yien 1y @F — Q%)
b= min{Q@,,C} '

Thus, the following equalities establishing the minimum number of visits can be added:
Yip, =1, Vi € N. (29)

The following inequalities establish a minimum number of visits that must be made to a subset of
locations S C N
Djes @Y
T {T | (50)
(i,m)eV]ieS
Instead of separating over this family of inequalities we include just two inequalities, one for the set of

suppliers and one for the set the demand locations, respectively.

B N
SN e o
(i,m)eV|]J;=1 ¢
B N
Z n > ZjeV‘Jj:—l Q] —‘ (32)
(i,m)eV|J;=-1 ¢

10



End-of-visit inequalities

th

The following inequalities ensure that if the vehicle makes the m*"* visit to location 4 then it cannot

have made the last visit to that location in one of the previous visits.

Zzin+yim§17 i€N,m>p. (33)

n<m
Travel time valid inequality

Proposition 3.1 Let I9T denote a lower bound on the time spent picking up and delivering. Then the
following travel time inequality is valid for X:
Z TijTimjn < T — I°7. (34)
(i,m,j,n)eAV

A possible value for the lower bound is 197 = ¥, v QNTS.
Another set of inequalities results from the assumption that no two consecutive visits can occur at

the same node. Let T; = minjen|(;, j)ean j»i Tij- Then the following inequalities are valid.

tim > tim—1 + 275, V(i,m)eV]|l<m< B (35)
tim > tim—1 + 2T3Yim., V(i,m)eV|m>p. (36)
Example 3.1 Continuing Example 2.1, for the case S = 16 we have:
Location 1, since S + TRy = 115+ 40 x 6 = 355 < S7 = 360, then QY = 0.
Location 2, S9 — TRy =39 — 40 x 2 = —41 < S, = 0. Thus Q¥ = 41.
Location 3, S§ — TR3 =38 —40 x 2.5 = —62 < S5 = 0. Thus Q¥ = 62.
Location 4, S — TRy =16 —40 x 1.5 = —44 < S, = 0. Thus QY = 44.

We have > ;e QN =0+ 41462 + 44 = 147 and I®T =3, QNT® = 147/80 = 1.8375.

Valid inequalities based on hamiltonian dipath

The following, called (i, m)—(j, n) path inequalities result from lifting the following simple inequalities:
Timjn +Ijnim < Yim, V(iamajv n) € AV'
Proposition 3.2 The following inequalities are valid for X.

Z Timjn' + Z Tjnrim < Yim, Y(i,m,j,n) € AV, (37)
n’'<n n'>n
Proof. If y;,, = 0, then all the variables on the left-hand side are zero.
Let y;,» = 1. For each one of the sums in the left-hand side only one variable can be positive since
otherwise, in the first sum there would be multiple arcs leaving node (¢, m) and in the second sum there
would be multiple arcs entering into node (¢,m). If two variables @;m s with n’ < n and z;7;, with

n > n are simultaneously one we obtain an incompatibility with one arc preceding the other.

Maximal two-location cliques

Next, we introduce a family of inequalities of the form:

Z (3, m, j, M) Timjn <1
(i,m,j,n)EAV

where 7 € {0, 1}AV. These inequalities can be regarded as a particular case of clique inequalities on a

given conflict graph.
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We just consider the digraph restricted to the nodes for locations ¢ and j and the arcs on the vehicle
route between two such nodes. Two arcs are said to be incompatible/compatible if they cannot/can both
form part of a route. Examples of pairs of incompatible arcs are shown in Figure 4. Thus a) two arcs
cannot arrive or leave from the same node, b) two arcs cannot form a 2-cycle, that is, arcs (i,n, j,m) and
(j,m,i,n) are incompatible, and c) a pair of arcs (i,n,j,m) and (j,m,i,n’) are incompatible if n > n’.

In Figure 5 we show examples of compatible arc pairs.

’ ! ! ’ ’ ’ ’ ’
m<m' andn <n m<m,n<n orm=m,n <norm <m,n=mn

() (ii)

Figure 4: Incompatible arc pairs.

m<m/,n<n orm>m',n>n’ m<m/,n<n’

® (i)

Figure 5: Compatible arc pairs with (m,n) # (m/,n’).

Proposition 3.2 Let A" be a set of arcs linking nodes (i,m),m = 1,...,[i; and (j,n),n =1,...,7; such
that neither of the configurations in Figure 5 appears. Then the following inequality is valid for X.
Z Timjn < 1. (38)
(i,m,j,n)€A’
Proof. Suppose that (j,n,i,m) € A" and nim = 1. We show that for all (j,n',i,m’), (¢, m',j,n") with
(4,n,i,m) # (j,n',i,m’) either (4,n',i,m’) ¢ A’ or zjnim = 0 and similarly either (i,m’,j,n’) ¢ A’ or
Tim/jn' = 0.
Case 1. Consider (j,n’,i,m’) with (j,n',i,m’) # (j,n,i,m).
Case 1la. m’ < m.
Ifn' <n, (4,n,i,m’) ¢ A" by (ii) of Figure 5.
If n’ > n, then by (i) of Figure 4, ;p/im = 0.
Case 1b. m' = m. Again by (i) of Figure 4, z,/ipm = 0.
Case 1c. m’ > m.

Ifn' >n, (j,n',i,m’) ¢ A’ by (ii) of Figure 5.

Case 2. Consider (i,m’, j,n’).

Case 2a. m’ < m.

Ifn' <mn, (i,m',j4,n') ¢ A’ by (i) of Figure 5.
If n’ > n, then by (ii) of Figure 4 ;s = 0.
Case 2b. m' =m.

Ifn' >n, (i,m,j,n") ¢ A’ by (i) of Figure 5.
If n’ < n, then by (ii) of Figure 4 2, s = 0.

Case 2c. m' > m.

12



visit 1 visit 2 visit 3 visit 4 visit 5 visit 6 visit 7 visit 8

®
®
@
©

Figure 6: Example of a path in the extended network for a maximum of eight visits and three locations.

Ifn' >n, (i,m,j,n') ¢ A’ by (i) of Figure 5.

If n’ < n, then by (ii) of Figure 4 2, = 0.

Remark 3.3 Proposition 3.2 can easily be extended to the case of multiple vehicles by summing up each

arc on the left-hand side for all possible vehicles.

As an efficient separation algorithm for inequalities (38) is not known, we present below two particular

polynomial subclasses of the maximal two-location cliques.

Proposition 3.3 Let (i,m1), (i,m2), (j,n1), (j,n2) € V with m1 < ma and n1 < na. Then the following
inequality is valid for X.
Z Tima.jn + Z Timo.im + Timy jint + Tinim < 1 (39)
n<ng m<my
Proposition 3.4 Let (i,m1), (i,m2), (j,n1), (j,n2) € V with m1 < ma and n1 < na. Then the following
inequality is valid for X.

E Timjny + E Tjnismy + Tiymy jine T Tjngims < 1. (40)

m>mso n>no

4 Layered vehicle-event model

In this section, we propose a different model in which events are linked to the vehicle. The order of
the events corresponds to the order of the vehicle visits. In this formulation, the vehicle path is described
using a layered graph in which each layer corresponds to the number of visits made by the vehicle. Each
layer contains all locations. In Figure 6 we present an example of a path in the extended network for a
maximum of eight visits corresponding to the example given in Figure 1. The vehicle leaves the origin
to visit location 3 (first visit/layer), then moves to location 2 (second visit/layer), followed by location
3 (third visit/layer), then location 1 (fourth visit/layer) and finally visits location 2 (fifth visit/layer).

From the last visit, the vehicle moves to the artificial destination (D).

4.1 Formulation

First, we describe the sets, parameters and variables not defined previously. Then, we describe the

mathematical formulation of the vehicle-event model.

Sets and Parameters

k maximum number of vehicle visits

K set of possible visits {1,...,k}

13



Variables

y¥ = 1if the k*" visit occurs at location 4, and 0 otherwise

x§; = 1if the (k — 1) visit is to location ¢ and the k' to location j
k
3

zF =1 if the k' visit is to location 4 and it is the last visit on the route

k

;; quantity transported by the vehicle from the (k — 1)th visit at location i to the k" visit at location j

12 quantity transported by the vehicle from the origin to the 1% visit at location i
fP* is the amount remaining in the vehicle when the last visit is the k" visit to location i
s® stock level at location i at the start of the k*" visit of the vehicle
tF  start time of the k' visit
quantity picked up/ delivered at location i during the k*" visit of the vehicle
The objective function is again to minimize the travel costs plus the operating costs:
Z=min Y Y CIxE+Y %+ > ciyk. (41)
(4,))€AN keK iEN ieN keK
As before, the constraints are presented separately for the main four components: path constraints,

pickup and delivery constraints, time constraints and inventory constraints.

Path constraints

dyp=1, (42)

JEN

- > Xk =0, VieNkeK|[k>1, (43)
JENli#]

k—1 k k=1 _ ;

Yi Z Xij —% =0, VieNkeK|[k>1, (44)

JEN|j#

PIEE w0

i€EN keK

yr,zr € {0,1}, Vie N, k€K, (46)

x5 € {0,1}, vV (i,j) € AN,k € K. (47)

Equality (42) ensures that the vehicle makes a first visit. Constraints (43) state that if the vehicle travels

directly from location j to location i and the visit to location j is the (k — 1)**, then location i must

receive the k" visit. Constraints (44) say that if yffl = 1 then the vehicle either travels from location ¢
to another location j or ends its route in 4. Constraint (45) ensures that the route terminates at or before

the k" visit.
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Pickup and delivery constraints

Fo+ Tl =5+ PR VieNk=1, (48)
J
SOk Td =Y T+ P VijeNkeKl|k>1, (49)
1€EN 4
2 =Q%;, Viée N, (50)
k k .. N
ijgcxz‘ja V(Z,j)EA 7k€K7 (51)
fPE < o2k, VieNkeK, (52)
Q. < ¢f <min{C,Q;}yF, VieNkeK, (53)
k T N
i >0, vV (i,j) € AV ke K, (54)
fPE>o, VieNkeK. (55)

Equations (48)—(49) are the flow balance constraints for the quantity carried by the vehicle. Equations
(50) describe the initial load on the vehicle. Inequalities (51) — (52) impose upper bounds on the vehicle
load. These variable upper bound constraints also link the binary routing variables to the continuous
variables representing the quantities transported. Constraints (53) are the variable lower and upper
bound constraints linking the quantity picked up/delivered with the binary variables representing the

visits to locations.

Time constraints

LAY TR 4+ Y Tyxk <0, Ve K[k> 1, (56)
iEN (1,7)€A
t' >y Tyl (57)
€N
0<th<T, VkeK. (58)

Constraints (56) guarantee that the start time of the k*" visit can only occur after the start time of the
(k — 1)t visit plus the pickup/delivery time of the (k — 1) visit plus the traveling time between the
two locations. Constraint (57) ensures that the first visit cannot be made before the vehicle arrives at
the location from the origin. Constraints (58) ensure that the start time at a location is within the time

horizon.

Inventory constraints

s =8+ JRit', Vi€ N, (59)
sF =" — JigFt + LR (tF — R, Vie N ke Klk>1, (60)
sF 4 g — RTOF <3, Vie N|J; = -1,k € K, (61)
s —qf + RTP¢F > 8, Vie N|J; =1,k € K, (62)
P4 gf —R(T—tF) > (1-F)S, + FSY, Vie N|J; = —1, (63)
st — g + R(T—tF) < (1 - F)S; + FS?, Vie N|J; =1, (64)
sF> 8. Vie N|J;=—-1,k€eK, (65)
sP <8, Vie N|J;=1,ke K. (66)
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Equations (59) and (60) are the inventory balance constraints at each location. Constraints (61) impose
an upper bound on the stock level at each location at the end of each visit for the demand locations,
while constraints (62) impose a lower bound on the stock level at each location at the end of each visit
for the supply locations. Constraints (63) impose a lower bound on the stock level at the end of the time
horizon for the demand locations, and constraints (64) impose an upper bound on the stock level at each
supply location at the end of the time horizon. Constraints (65) impose a lower bound on the stock level
at each demand location at the beginning of each visit, while constraints (66) impose an upper bound on
the stock level at each supply location at the beginning of each visit.

Now, we observe what happens with the value of the variables after the last visit. If x is the number of
the last vehicle visit, then the path constraints force y* and ij to be zero for all k > «, and constraints (53)
force the quantity qf to be zero. Constraints (56) then impose t* > t*~1. Hence, considering constraints
(58), the time of the visits for k > & (visits that are not made) are restricted by t*~1 < t*¥ < T, that means,
multiple alternative values can be assigned to these variables. In relation to the inventory variables, for
k > &k, constraints (61), (62), (65), and (66) impose that the inventory levels must be between the
inventory bounds, S; < s¥ < S;, while constraints (60) calculate the inventory levels according to the

times assigned to variables t¥. These variables t¥, s¥ that have no practical meaning are necessary to force

275

the inventory levels at time T to be within the predefined limits, by constraints (63) and (64).

4.2 Vehicle-event model tightening

Here we describe valid inequalities to tighten the vehicle-event model.

The nonnegativity constraints on the flow variables (54) can be tightened as follows:

i = Qi V(i,j)e AV | Jj=-1k€K, (67)

k k .o N
= XG5 V(i.j)e AV | Ji=1LkeK. (68)

ij
Also, the variable upper bound constraints (51) can be tightened as follows:

£l < (C = Q)X V(i,5) € AN | Ji= -1,k €K, (69)

5 < (C= Q) V(i) €AV [Jj=1keK (70)

The end-of-visits inequalities (33) for the location-event model can now be written as follows:

k—1
SN > <, VkeK. (71)

iEN k=1 ieN
Next, we present a set of inequalities that establishes a minimum number of visits , By that the vehicle
must make to each location.
Yoy, VieN. (72)
keK
Similarly to inequalities (31) and (32), we define the following inequalities establishing a minimum

number of visits that the vehicle must make to the suppliers and to the demand locations, respectively.

Y jent =1 Q)
P I el (73)
kEK jeN|J;j=1
D jents =1 Q)
Z Z Yk > % _ (74)
kK jEN|J;=—1

The following inequalities impose conditions on the first p visits to each location. Let ¥ denote

the time at which a disruption occurs (i.e. the time when the inventory level reaches the stock limit)
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at location ¢ if that location received p — 1 visits picking up/delivering the maximum possible amount

C; = min{S;, C}. For a supply location we have

S-S (p-1)C;
p i i 1
Vi = Rz + Rz )

and for a demand location the disruption occurs at time

8P =8 (-1
D 3 =
v; 7, + R, .

If the p*" visit to node i is the k*" vehicle visit, then one must have t* < /7.
Let T™" = min; j)e a~ {T3;} be the minimum travel time between two locations, T;™*" = min;;{T};}
the minimum travel time between node i and any other node, and let 7% = min;c y {7} be the travel

time between the origin and the closest location. Hence
th > T0min 4 (k — p)T™™ 4 (p — 1)T™" VkeK|k>1.

Therefore, TO™™" + (k — p)T™" + (p — )T/ < P,

Hence, for each i € N and each p, we set

kp - I/;»D _ TOmin _ (p _ I)Tlmzn
i =P Tmin '
Proposition 4.1 Fori € N and eachp e 1,... sy, the following inequality is valid:

K

Sy >p Vi € N. (75)
k=1

The travel time inequalities (34) can also be adapted for the vehicle-event model as follows:

S>> Ty <T-1°" (76)

kEK (i,j)e AN

In most practical situations the following assumption can be assumed.
Assumption 1: The vehicle cannot return twice to a demand location without visiting a supply

location in between, nor return twice to a supply location without visiting a demand location in between.

When Assumption 1 is valid, a new set of inequalities can be derived. Let s =| {i € N|J; =1} |, and

r =| {i € N|J; = —1} | denote the number of supply and demand locations, respectively.

EieNLh:l QY
C

N
ZiEN\h:—l Q

c : loads must be delivered to the demand

locations, which must be picked up at the supply locations. Hence, at least

B ’Vmax{zieNJi_l invzieNU»:fl va}—‘
N c

First, consider the case QY = 0. Then, at least —‘ visits must be made to supply

locations for pick-up operations and at least

visits must be made to supply locations. Observe that a first pickup operation must be made before the
delivery operations. Hence, the first visit must be to a supply location. Using Assumption 1, the vehicle
can make at most 1 + r visits before making the second visit to a supply location. That is, amongst the
first 2 4 r visits, two of them must be made to a supply location. In general, for p < m, the vehicle
can make at most p — 1 + (p — 1)r visits before returning for the p** time to a supply location. Hence,
amongst the first kK = p+ (p — 1)r visits, at least p of them must be to a supply location.

N_ 0
If Q° > 0, then the minimum number of vehicle loads to satisfy the total net demand is [ZiEN"icl @ —Q —‘ )

max{zieN\JFl ina EiENIJi:—l Qi\’ - Q%
c

visit is made to a supply location. In this case, the vehicle can not perform more than k? = rp+ (p — 1)

In this case m = . Now, we cannot assume that the first

visits before returning for the p'” time to a supply location, for each p € {1,...,m}.

17



Proposition 4.2 When Assumption 1 holds, the following inequalities are valid:

S > ukzp Wp=1,...m (77)

iEN|J;=1k=1
When Assumption 1 does not hold, these inequalities suggest another interesting way to partition the

set of feasible solutions.

Proposition 4.3 Any feasible solution either satisfies (77) or else there is a unique ¢ € {1,...,m} such
that

Z nyEp,szl,...,q—l,

iEN|J=1k=1 (78)

P
> du<a

iEN|Ji=1 k=1
5 Estimating the number of visits

One of the main challenges when using event based models is to estimate the number of visits. As
the size of the corresponding models depends on the number of events, large upper bounds lead to large
sized models. On the other hand, restricting the number of events too much may exclude feasible and

optimal solutions. Here we propose a scheme to bound the number of events.

5.1 Establishing upper bounds

Next we describe for each model, how to derive upper bounds on the number of events.

Location-event model

An upper bound k on the total number of visits can be obtained from the model (1) — (23), tightened

with the inequalities introduced in Section 3.2, with the new objective function

w = mazx Z i Yim.- (79)

€N m=1
Instead of solving this model to optimality, one can take k = |w]| where @ is an upper bound for w.
w can be the value of the corresponding linear relaxation or the best upper bound obtained from the
branch-and-cut after a given time limit.
An upper bound w; on the number of visits to node ¢ can be obtained similarly by adding the constraint
iy _
> 2 ym <k,
ieN m=1

and taking as objective function ~
Hi
w; = max Z Yim.- (80)
m=1
Again, w; can be replaced by |w;|, where w; is an upper bound of w;, and set &, = |w; .
For models w and w;, when no initial upper bounds z;,? € N are known, we take @r; = M+ M where
M is a large number.

Vehicle-event model

A simple upper bound on the total number of visits can be obtained as follows:

_ T — IQT — TOmin
k< { e J+1 (81)
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where 7™ T™n are given previously.
Another possible approach is to consider an upper bound for the model (41) - (66) tightened with the
inequalities introduced in Section 4.2 with the new objective function:

w = max Z Z yr (82)

i€EN k€K

and set k = |w|, where w is an upper bound on w.

5.2 Two branching schemes

The size of the location-event and vehicle-event models depends on the upper bound on the number of
visits. By limiting this number, we obtain restricted subproblems which become smaller and, therefore,
can be solved faster, as shown in the computational section. Here we propose a two-level branching
scheme to solve the inventory routing problem to optimality. In the first level we split the problem into
several subproblems by restricting the domain of the total number of visits, and in the second level we
solve each subproblem. A good choice of the number of subproblems may depend on the length of the
time horizon and the expected total number of visits. Here we present the case for two subproblems, since
this choice performed well on the instances tested. First, we determine an upper bound on the number of
visits, k, using the procedure described in Section 5.1. Then we split the problem into two subproblems,
one with the constraint >, e x ¥F < [k/2], and the second with >, >, o y¥ > [k/2] + 1. The
first subproblem is solved by branch-and-cut. The value of the best feasible solution found is added as a

cut-off value for the second subproblem. The full algorithm is detailed in Algorithm 1.

Algorithm 1 A two-level branching approach for the inventory routing problem.

1: Determine an upper bound for the number of visits &

2: Add constraint >, >y c i yF < [k/2]

3: Solve the resulting model with a time limit of S seconds

4: Set z! to the value of the best feasible solution found and +oo if no solution is found
5: Replace constraint given in 2 by constraint >, .y >, cp yF > [k/2] + 1

6: Add the cutoff value z' to the model

7: Solve the resulting model with a time limit of 3 seconds with optimal value z>

8: Let 2% for ¢ = 1,2 be the value of the best lower bound obtained for each subproblem. Then the best

lower bound is min(z!, 2?) and the best upper bound min(z!, z2).

The second algorithm is based on Proposition 4.3.

Algorithm 2 An m + 1 branch approach for the inventory routing problem.

1: Determine the values m and <P as in Proposition 4.2.

2: Add constraint (77) and solve the resulting model with a time limit of 8; seconds

3: Set z° to the value of the best feasible solution found and 4oo if no solution is found, and z° to be
the best lower bound found

4: For ¢ =1,...,m, replace (77) by constraints (78)

5: Add the cutoff value z = z° to the model

6: Solve the resulting model with a time limit of B2 seconds with best upper and lower bounds z¢ and
29, respectively. Update the cutoff value z < min[z, 9]

7: On termination, z is the value of the best feasible solution found and the best lower bound is

m

min(z°, 21, ..., 2™)
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6 Computational results

This section presents computational experiments carried out to compare the two models and the
tightening strategies. The formulations are written in Mosel and implemented in Xpress-IVE Version
1.25.02, with 64 bits. All the tests were run on a computer with a CPU Intel(R) Core i7-10510U, with
16GB RAM and using the Xpress Optimizer Version 34.01.03 with the default options.

Part of the motivation for the current research is related to the results presented in [3] for a maritime
inventory routing problem in which only instances with a short time horizon were solved to optimality.
Here, a set of fourteen instances based on the original seven given in 3] are considered. In contrast to most
of the original instances that involved multiple vehicles (ships), these fourteen instances are developed
assuming a single vehicle is available. Both the constant supply and demand rates and the initial stock
levels have been changed. For each of these 14 instances, two values for the end-of-time horizon inventory
levels are considered, FF = 0 and F' = 0.2. First, we consider two different lengths of the time horizon:
60 and 120 days. Travel and operating costs are time invariant. Some of these instances are infeasible.
By considering such instances we also aim to test whether the models can prove infeasibility quickly.
Later, in Section 6.2, we conduct further tests with a horizon of 180 and 240 days with F' = 0 and with

additional adjustments to the rates.

6.1 Medium size instances

In Table 1 we present some basic information regarding the set of instances, namely, the number of
locations |N|, the corresponding optimal objective function value (columns “Obj”), the total number of
visits in the optimal solution (columns “opt”), the upper bound on the number of visits obtained with
formula (81) (columns “U”), the upper bounds on the number of visits obtained from the linear relaxation
of (82) (column w), and columns w report the optimal value of (82). Note that computing w requires
the solution of a problem similar to the s-CT-IRP-PD, which is very hard. The gains from computing
w instead of the linear relaxation w are minor (on average a little more than one visit for T = 60 and
T = 120) which clearly indicates that the computational effort to obtain w is not compensated by a
significant reduction in the size of the model. The “INF” symbol means that the instance is infeasible.

The bounds on the number of visits using the location-event model are worse than those with the

vehicle-event model and therefore are omitted.

In Table 2 we present the computational results for the location-event model. Two formulations are
tested. A location-event formulation (1) — (23) with no additional valid inequalities, called the weak
formulation, and the same formulation tightened with all the inequalities (25) — (29), (31)- (37), (39),
and (40) (where my, m2, 1, n2 are bounded by . +3), called the strong formulation. The number of visits
is determined as described in Section 5.1 by taking the best upper bounds obtained with branch-and-cut
when solving the problems with objective functions w and w; for 3 seconds for both models 7" = 60 and
for the weak formulation with 7" = 120. For the remaining case (corresponding to the strong formulation
and T = 120) we run for 5 seconds to ensure a bound is obtained. Columns “BCw” and “BCs” report
the results obtained with the solver using the branch-and-cut with the default options and a time limit
of one hour on the weak and strong formulations, respectively. Columns “ALG1” report the results with
Algorithm 1 using the strong formulation and 5 = 3600 on each branch. The running times presented
in columns “Time” include both the running time of the corresponding approach and the time spent to
obtain the bounds on the number of the visits. For T' = 60, all instances are solved to optimality. Hence,

only the running times are reported for each approach. For T' = 120, we report the running time in
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Table 1: Data and information on the optimal solution and number of visits for instances with a time

horizon consisting of 60 and 120 days.

T = 60 T =120
Instance F | |[N|] Obj opt U w w Obj  opt U w w
Al 0 331.3 8 18 16 15 | 898.2 19 36 30 27
0.2 ’ 462.3 10 18 16 14 19332 20 35 30 27
A2 0 331.3 8 19 17 16 | 8775 19 37 32 30
0.2 i 331.3 8 19 17 15 | 898.2 19 37 32 30
B1 0 3107 7 19 14 14 INF INF 37 26 INF
0.2 ! 3107 7 19 14 14 INF INF 36 24 INF
B2 0 310.7 7 19 14 14 779 15 36 24 22
0.2 ! 3107 7 19 14 14 779 15 36 24 22
C1 0 2958 6 20 17 16 | 859.1 13 37 28 27
0.2 ! 397.1 6 19 15 14 | 898 13 36 25 25
C2 0 381.3 7 19 16 16 | 9541 14 37 27 25
0.2 ! 402.1 7 19 16 15 | 9754 16 36 25 25
D1 0 3203 8 15 13 12 | 7145 16 27 25 23
0.2 ° 329.5 8 14 13 12 764.9 18 27 24 22
D2 0 3203 8 15 13 12 INF INF 27 24 INF
0.2 ’ 366.7 9 14 13 12 | INF INF 27 24 INF
E1l 0 273.3 7 29 24 20 | 5724 14 56 44 37
0.2 ° 273.3 7 29 23 19 | 5994 15 59 43 36
E2 0 2989 7 29 24 18 | 662.5 16 56 45 34
0.2 i 3323 9 29 23 18 | 683.3 17 56 44 34
F1 0 313.9 6 14 12 12 | 858.1 15 25 20 16
0.2 ! 3139 6 14 12 11 INF INF 25 17 INF
F2 0 3187 7 14 12 11 INF INF 24 INF INF
0.2 ! 383 8 13 11 9 INF INF 23 INF INF
Gl 0 2085 5 14 13 13 | INF INF 26 18 INF
0.2 6 3753 6 14 11 10 INF INF 26 17 INF
G2 0 158.6 12 15 14 14 | 804.5 12 29 24 21
0.2 0 234 12 15 14 14 | 804.5 12 29 23 23
Average 76 184 154 14.1 15.7 348 27.7 26.6
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seconds, the final lower and upper bounds (in columns “LB” and “UB”, respectively). For example, for
instance B1, F' = 0 and T" = 120, the BCs approach proves that the instance is infeasible after 2870.9
seconds, while the BCw approach reaches the time limit without proving infeasibility. For this instance,
since no feasible solution is found, the upper bound is set to +00 and the best proven lower bound 772.2

is reported.

Table 2: Computational results for the location-event model.

T=60 T=120
BCw BCs ALG1 BCw BCs ALG1

Instance F Time Time Time | Time LB UB Time LB UB Time LB UB
0 31.6 21.7 20.4 3615 656.4 400 3625.0 842.9 +o0 3922.5 845.4 +o0
Al 0.2 546 26.2 27.2 3614 719.1 400 3625.6  831.6 400 3691.4  847.7 +o0
0 35.2 21.7 17.3 3614 596.7 400 3624.5 724.4 +o0 5113.1  T767.3  947.8
A2 0.2 33.5 23.8 19.6 3615 614.3 +o00 3625.6  735.3 +o00 5067.7 769.4  932.5
0 11.5 7.7 8.0 3612 772.2 +o00 2870.9 INF INF 3619.4  938.9 400
B 0.2 12 3.8 3.3 3612 810.0 +o00 443.0 INF INF 451.5 INF INF
) 0 13.3 9.2 9.0 195 779.0 779.0 19.5 779.0 779.0 21.0 779.0 779.0
b2 0.2 13.4 5.2 5.7 114 779.0 779.0 19.1 779.0 779.0 21.0 779.0 779.0
0 20.5 19.9 29.1 204 859.1 859.1 104.2 859.1  859.1 115.6 859.1  859.1
ot 0.2 29.4 21.3 24.9 78 859.9 859.9 39.9 859.9  859.9 32.6 859.9  859.9
0 20.4 14.0 16.5 2907 954.1 954.1 242.2 954.1  954.1 320.9 954.1  954.1
@2 0.2 32.6 19.3 17.8 1983 975.3 975.4 7.1 975.4  975.4 214.1 975.4  975.4
0 89.8 32.5 24.3 3618 530.6 +o00 3629.8 633.0 780.1 | 3736.1  645.7 400
b 0.2 | 135.6 37.1 34.4 3618 557.9 +o00 3630.3  650.8 +o00 3672.4  659.6 400
) 0 195.1 37.2 37.0 3618 567.7 400 3629.3  645.4 +oo 3698.9  664.9 +o0
b2 0.2 | 283.9 37.3 36.1 3617 574.6 400 3629.4  664.5 400 3659.1  674.2 +o0
0 56.7 30.2 59.4 3617 437.6 400 2795.0 572.4 5724 | 5566.7 572.4 572.4
B 0.2 85.7 33.7 65.1 3618 449.3 400 3630.2  532.7 599.4 | 5892.5 599.4 599.4
0 166.3 43.0 72.2 3617 446.1 +o00 3629.8 549.5 677.5 | 7229.6 547.6  697.9
b2 0.2 | 235.3 47.7 98.3 3617 455.7 +o00 3630.1 561.6 +o00 7229.2  567.2 400
0 31.4 19.0 23.8 3614 785.5 +o00 180.2 858.1  858.1 210.7 858.1  858.1
i 0.2 55.1 15.9 20.5 3614 894.8 400 31.6 INF INF 31.5 INF INF
. 0 27.8 16.0 17.6 3615 999.3 +oo 3.9 INF INF 3.4 INF INF
i 0.2 23.5 17.0 16.9 3615 1060.0 +o0 4.1 INF INF 3.1 INF INF
0 20.5 11.5 13.0 3621 882.0 400 617.8 INF INF 198.2 INF INF
Gl 0.2 21.7 10.3 10.6 3621 920.9 +o00 47.7 INF INF 45.9 INF INF
0 21 13.7 13.2 3621 621.1 +o00 3634.1 673.8 +o00 6451.4 798.5  804.5
@2 0.2 24.4 23.3 35.9 3621 654.8 +o00 3634.8 744.8 804.5 | 5247.2 777.5 804.5

Average 81.2 22.1 27.8 3037.2 1952.7 2695.2

The results from solving the location-event model show that all instances are solved for 7" = 60. For
these smaller instances, using Algorithm 1 on the model with all inequalities is on average much faster
than using the BCw approach. For T' = 120, only six instances are solved with the BCw approach whereas
the search is completed for 15 instances when using the two other approaches. Although these last two
approaches are not directly comparable, as the overall running time limits are different, there is no clear
indication that Algorithm 1 is better than BCs when working with the location-event model.

A natural question concerns the usefulness of the valid inequalities added in the strong formulation.
Though the values zrp of the LP relaxations are not reported in the Table, the average values of the gap
% * 100% were calculated, where z; is the optimal value. For T = 60 and T = 120 the gaps with
the weak formulation were 28 and 25% respectively and with the strong formulation 27 and 24%, so the
bounds are hardly improved. However, the results in the Table show that the valid inequalities lead to a

significant improvement in the total run times.

Table 3 presents the computational results obtained with the vehicle-event model. Again, we consider
two formulations, the weak vehicle-event formulation, given by the inequalities (42) — (66) without valid

inequalities, and the strong vehicle-event formulation in which the inequalities (67) — (76) are added. The
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number of visits is determined as described in Section 5.1 by solving the corresponding maximization
problem for 3 seconds. Columns “BCw” and “BCs” report the results obtained with the branch-and-cut
algorithm with the default options, using the weak and strong formulations, respectively. A time limit of
one hour is imposed. Columns “ALG1” and “ALG2” report the results with Algorithm 1 (with g = 3600
sec.) and Algorithm 2 (with 81 = B2 = 3600 sec.), respectively. Both algorithms are based on the strong
vehicle-event formulation. Columns “ALG1+2” present the results obtained by combining Algorithms 1
and 2. Specifically, in Step 2 of Algorithm 2, the strong formulation with the additional inequalities (77)
is solved using Algorithm 1. Except for the two instances using the BCw approach (whose times are
given in bold), all the instances are solved to optimality or infeasibility is verified, so only the running

times are presented.

Table 3: Running times using the vehicle-event model.
T = 60 T = 120

Inst. F | BCw BCs ALGl ALG2 ALGl1+2| BCw BCs ALGl ALG2 ALGIl+2
Al 0 5.1 4.9 4.5 14 3.1 113 60.7 62.5 9.8 17
0.2 7 6.8 8.1 1.6 4.3 63.5 54.4 59.1 10.9 114
A2 0 5.9 5.1 4.3 1.8 2.6 150.6 104 134.5 31.8 24.5
02| 6.2 103 3.6 1.1 3 128.9 103.3 1442 32.7 27.5
B1 0 2.9 3.8 2 0.1 0.9 9.6 10.5 8.4 2.5 5.3
0.2] 3.5 3.7 1.8 0.2 0.4 13.4 7.3 10.3 2.2 3.9
B2 0 3.7 3.6 2.5 0 0.6 4.9 5.8 7.3 1.5 2.5
0.2 39 3.3 24 0 0.3 4.2 5.1 5.3 0.8 1
C1 0 4.1 6.3 2.5 1.6 2.7 43.9 35.1 28.7 12.7 9.8
0.2] 49 5.7 3.3 14 3.1 18.1 9 9.1 4 6.5
C2 0 44 3.9 1.3 1.3 3.1 40.4 40.6 30.5 22.6 284
0.2 ) 5.4 3.7 1 3.2 36.4 28.5 19.1 9.9 27.8
D1 0 7.2 7.2 6.1 4.5 9.3 468.1 212.2  278.6 174 246.7
0.2 85 7.2 7.3 3.3 5.9 517.2 435.7 4652 1343 267.8
D2 0 9.6 7.8 7.6 2.8 6.9 4941 95.6 103.8  262.2 206.5
0.2 9 7.8 8.3 3.7 6.7 636.9 99.3 171.1 93.7 504.4
E1 0 16.4 129 8.5 7.3 5.2 1171.7 7421 1259  401.1 109.6
0.2 138 111 8.5 5.9 7.1 1559.2  629.5 163 738.7 197.2
E2 0 25.1 199 8.1 7.6 7 3510.3 1330.8 326.2  462.6 243.1
0.2 ] 348 231 10.2 11.6 7 2097.9 1651.3 4423 12554 225.2
F1 0 4 5.7 3.7 21 3.2 13.8 10.6 11.7 7.1 8.7
02| 438 4.6 3.6 0.8 2.8 5.6 6.6 5.6 1.9 4.1
F2 0 6.1 9.3 4.3 14 2.7 2.3 0.9 0.9 0.6 0.6
02| 4.7 5.5 6 1.1 3.1 2.6 1 0.9 1 0.8
G1 0 5.9 3.3 2.7 0.3 2 2290.2 56 54 45.7 38.8
02] 7.2 8.8 5} 3.2 2.7 1754 18.8 18.5 13.1 18.4
G2 0 6.3 29 2.5 0.1 2.7 3602.6 528.7 209.8 756.1 141.6
0.2 6.6 4.9 5.6 1.8 4.5 3602.7 6974 2434 496 158.9
Average 8.1 7.2 2.5 4.9 3.6 742.1 249.3 178.0 1121 90.6

Clearly, comparing Tables 2 and 3, we observe that the solution procedures based on the vehicle-
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event formulations outperform the corresponding procedures based on the location-event formulations.
In particular, this is true for the infeasible instances. We can see that the branch-and-cut on the location-
event strong formulation fails to prove infeasibility on instances C2 and the running times for proving
infeasibility on B1 are quite large when compared with the corresponding times obtained with the same
approach using the vehicle-event strong formulation.

Considering Table 3, we see that when 7' = 60 all five approaches work. For 7" = 120 we observe
that the running times using the model with inequalities BCs are, on average, around one third of the
times for the model without inequalities BCw (note that for the two unsolved instances with the weak
formulation we consider the truncated time). Algorithm 1 leads to running times that are between half
and one third of the corresponding running times using branch-and-cut with default options. The running
times of the m subproblems solved in Steps 4-6 of Algorithm 2 are negligible for T = 60 and 7" = 120.
Hence, by comparing the times in columns ALG2 with those in columns BCs we see the impact of adding
inequalities (77) to the strong formulation. For T' = 120, these inequalities allow us to reduce the average
running times of the strong formulation by half. For all the feasible instances the optimal solutions satisfy
Assumption 1.

To help in visualizing the results, Figure 7 presents the boxplots of the running times obtained with
the five approaches (indicated on the horizontal axis), where each box is limited by the lower and upper

quartiles of the corresponding running time data.
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Figure 7: Boxplots for the running times (on the vertical axis) using the vehicle event model and T = 120.

The boxplots show that the most significant differences between the “BCs” and the “ALG1” approaches
occur in the right tail, that is, for the harder instances, since the median times, indicating the maximum
time needed to solve half of the instances, are similar. The approach “ALG1+2” has the lowest average
time (from the table), a small median time, and is the one that presents the smallest number of outliers,
meaning that it is the most effective approach to control the time of the hardest instances.

Regarding the linear relaxation of the vehicle-event formulation (results not reported in the table),
for T' = 60 the average gap (*.2—=L x 100%) is 48% with the weak and 25% with the strong formulation.
As for the location-event formulation, the valid inequalities are not able to provide tight bounds but lead

to a significant improvement in the total run times. Comparing the strong location-event and strong
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vehicle-event formulations, neither formulation leads to an uniformly better linear relaxation bound than
the other.

As the size of the vehicle-event model varies linearly as function of the upper bound on the number of
visits, we expect the running times to increase with the increase of this parameter. Above, we motivated
the choice of using the linear relaxation @ to determine the value of this parameter. Additional tests
were conducted with the vehicle-event model for 7' = 120, in which the upper bound on the number of
visits was determined using the formula (81). As expected, the results are worse than those presented
in Table 3. Using model BCw, three instances are not solved to optimality within the time limit of 1
hour, and the running times are on average 14% higher than those presented in Table 3. Using model
BCs, two instances are not solved to optimality and the running times are on average 135.5% higher than
those in Table 3. For algorithms ALG1, ALG2, and ALG1+2, all the instances were solved to optimality
and the running times were 126.1%, 31.7% and 24% higher than the corresponding values presented in
Table 3. These results show clearly the importance of using tight bounds on the number of visits in
defining the vehicle-event model. Further tests on the impact of this parameter on the vehicle-event

model are discussed in the next section.

6.2 Large size instances

In this section, we test the vehicle-event model on larger instances with 7' = 180 and 7" = 240. For
these tests, we consider only the case F' = 0 given that the ending inventory level is probably less relevant
after such a long period. Additionally, the instances are adapted since many of them are infeasible for such
long time horizons. This may be due to the fact that several instances are unbalanced since the aggregate
supply rate is different from the aggregate demand rate. The instances are modified by multiplying both
the supply and demand rates by a parameter p (0 < p < 1).

For these large instances, we make a few changes to Algorithm 1 resulting from the observation that
the two branches can result in two significantly unbalanced subproblems. Moreover, the number of visits
estimated by the procedure described in Section 5.1 can be quite large.

To motivate these changes we present bounds based on the number of visits and linear relaxations
in Table 4. Column “p” gives the value of p, column “Obj” gives the corresponding optimal objective
function value, column V gives the number of visits in the optimal solution, and columns @ and w
give the number of visits obtained from the linear relaxation of (82), w obtained by rounding down the
value with the maximization problem and w obtained by rounding up the value with the minimization
problem. Columns aw for a € {1,1.25,1.5,1.75,2} give the bound obtained with the linear relaxation of
the vehicle-event model tightened with all valid inequalities (strong formulation) and with the additional

constraint

> Z Yim = 0w (83)

€N m=1

imposing a minimum number of visits. Columns LB1 and LB2 give the linear relaxation of the two
subproblems obtained in Algorithm 1 with & = 1w, respectively. Columns LB1A and LB2A give the
corresponding lower bounds obtained from running the branch-and-bound for 30 seconds.

We observe that the bounding constraint (83) has a significant impact on the objective function value
of the linear relaxation of the strong formulation with this additional constraint. We also observe that
LB1 and LB2 differ significantly for several instances, which may indicate that the size of the branches
may be unbalanced. Additionally, LB1A is significantly greater than LB1 (observe that the average of

LB1A is calculated only over the feasible instances, which explains that the resulting average is lower
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than the average of LB1) while LB2A is, in general, slightly greater than LB2, which indicates that it is

worth spending 30 seconds to improve the bounds on the first branch, but not on the second.

Table 4: Bounds based on the number of visits and linear relaxations.

Inst. P Opt \% w w 1w 1.25w 1.5w 1.75w 2w LB1 LB1A LB2 LB2A
Al 0.7 | 8292 17 25 11 646.5  655.2  735.5  802.0  920.0 | 646.5  681.6  1041.2  1058.7
A2 0.8 | 933.2 20 50 10 553.5  570.9  649.6  710.3  813.6 | 553.5  678.5  1020.5 1028.9
B1 0.6 | 811.4 20 47 12 604.6  663.3  736.1  813.7  902.9 | 604.6  669.0  924.8  942.1
B2 1 1126.1 21 35 21 1119.4 1217.3 1315.3  INF INF | 1119.4 INF 11194 1126.1
c1 1 1316.9 19 38 19  1257.5 1333.0 1461.9 1633.8 1813.4 | 1257.5 1316.9 1262.5 1321.9
o2 1 1452.4 22 37 21 1338.1 1426.7 1574.1 1751.7  INF | 1338.1  INF  1338.1 1361.2
D1 0.7 | 705.7 16 39 11 451.9  518.7  628.7  741.8  852.4 | 451.9  523.7  814.0  819.1
D2 0.6 | 610.2 13 40 9 386.0  439.2  511.3  585.6  697.2 | 386.0  447.4  807.8  814.7
E1 0.9 | 727.7 18 69 10 419.4  444.1  504.8  546.0  607.5 | 419.4  459.7 9385  949.1
E2 0.8 | 753.5 18 71 9 365.9  404.0  444.9  485.9  547.1 | 365.9 4353  940.2  951.4
F1 0.6 | 609.6 10 37 10 575.4  635.9  727.5  793.7  903.4 | 5754  609.6  903.4  907.6
F2 0.55 | 713.3 12 35 12 672.1  763.1  855.2  968.5 1078.1 | 672.1  713.3  886.1  910.1
G1 0.75 | 1030.8 13 31 13 940.3  975.8  1074.3  1192.8  1364.2 | 940.3  999.6  1000.0  1000.0
G2 0.9 | 947.7 14 36 11 675.4  719.4  834.4  964.5 1085.4 | 675.4  710.9  940.1  943.9

Average 897.7  16.6 22.6 12.8 7147  769.1  861.0  922.3  891.2 | 714.7  687.1 9955  1009.6

Based on these observations we propose a refinement of Algorithm 1, denoted ALGIr, for the larger
instances. ALG1r deviates from Algorithm 1 only in the rule used to split the problem into two subprob-
lems. ALGI1r uses the information provided by LB1A and LB2 to obtain more balanced subproblems.
First, we split the problem into two subproblems, by multiplying k by 7 as in Steps 2 and 5 of Algorithm 1
(Note that there r = 0.5).

Using the bounds LB1A and LB2, the parameter r is chosen as follows: If the first subproblem is
infeasible (LB1A = +00), we take r = 2/3. Otherwise, set » = 0.6 if LB2 < 1.1LB1A; r = 0.45 if
11LB1A < LB2 < 1.5LB1A; r = 04 if 1.53LB1A < LB2 < 2LB1A and r = 0.3 if LB2 > 2LB1A.
Notice that for small size instances the time spent in these adjustments may not compensate for the

subsequent gains.

Table 5: Computational results for large size instances with 7" = 180 and T = 240.

BCs ALGI1r ALG1r+2
T=180 T=240 T=180 T=240 T=180 T=240

Inst. rho Time UB Time UB Time UB Time UB Time UB Time UB
Al 0.7 209 829.2 7203 1133.9 127 829.2 3631 1129.5 112 829.2 3634 1129.5
A2 0.8 1279 933.2 7203 1385.4 210 933.2 7232 1309.5 63 933.2 3924 1299.5
B1 0.6 9 669 702 1099.7 3 669 62 1099.7 4 669 80 1099.7
B2 1 7 1126.1 10 1594.4 4 1126.1 4 1594.4 2 1126.1 5 1594.4
C1 1 66 1316.9 636 1846 15 1316.9 201 1846.0 28 1316.9 256 1846.0
C2 1 119 1452.4 4157 2045.1 73 1452.4 4092 2045.1 76 1452.4 2619 2045.1
D1 0.7 1805 705.7 7203 1103.2 418 705.7 7236 1167.0 311 705.7 7234 1155.0
D2 0.6 529 601.8 7203 901.3 110 601.8 3636 900.5 102 601.8 3634 888.0
E1l 0.9 7202 727.7 7203 1003.6 621 727.7 3644 1061.8 850 727.7 3637 1104.2
E2 0.8 7203 760.1 7203 1208.7 | 3637 761.5 7244 1181.1 | 2819 753.5 7237 1179.7
F1 0.6 14 609.6 22 1052.7 9 609.6 13 1052.7 7 609.6 20 1052.7
F2 0.55 19 713.3 204 1282.5 9 713.3 52 1282.5 6 713.3 41 1282.5
G1 0.75 475 1030.8 7203 1524.3 119 1030.8 783 1508.3 119 1030.8 213 1508.3
G2 0.9 7203 947.7 7203 1415.8 699 947.7 7241 1384.7 945 947.7 7240 1476.0

Average 1867 887.4 4525 1328.3 432 887.5 3219 1325.9 390 886.9 2841 1332.9

In Table 5 we compare the standard branch-and-cut on the strong formulation (approach BCs) to the
adjusted Algorithm 1 (approach ALG1r) and the approach obtained by combining Algorithms ALG1r
and 2 (approach ALG1r+2) where in Step 2 of Algorithm 2, the strong formulation with the additional

inequalities (77) is solved using algorithm ALG1r. In addition, Steps 4-5 of Algorithm 2 are omitted when
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in Step 2 the problem is not solved to optimality. Notice that, in general, the m subproblems are solved
mainly to prove optimality, since in most practical situations we expect that Assumption 1 is satisfied.
Columns “UB” give the value of the best feasible solution found. When the number is in bold it means
the algorithm stops without proving optimality.

Table 5 shows that by using the BCs approach for T' = 180, only three instances are not solved to
optimality (E1, E2 and G2) and for T' = 240 eight instances are not solved. Using the ALG1r+2 approach
all instances for 7' = 180 and seven instances for T' = 240 are solved to optimality. We can also observe
that the ALG1r+2 approach is much faster than the BCs approach for all the solved instances. Comparing
the ALG1r and ALGI1r+2 approaches, we observe that ALG1r+2 is on average faster. ALG1r+2 solves
to optimality two more instances than ALG1r (E2 for T' = 180 and C2 for T' = 240). On the unsolved
instances it provides a better bound than ALG1r on 5 instances and a worse upper bound on two instances

(E1 and G2 for T = 240).

7 Conclusions and future research

A general single-vehicle inventory routing problem (IRP) with pickups and deliveries is studied. Com-
pared to the majority of land-based IRPs considered in the literature, where the planning horizon is
partitioned into periods and it is assumed that the routes are made within a time period, the time is here
considered as continuous due to constant supply and demand rates at the supply and demand locations.
The quantity picked up or delivered at a location depends on the storage capacity at the location, the
inventory level at the visit time at the location, the quantity on the vehicle as well as the capacity of
the vehicle. This type of inventory routing problems is particularly complex due to the high degree of
freedom concerning the variable number of visits to each location during the time horizon and the vari-
able quantity picked up and delivered at each visit. Deriving strong formulations for the problem is a
challenge. In this paper we have presented two improved models. One is defined on an extended graph in
which the nodes correspond to visits to locations (location-event model) and the other in which the nodes
correspond to vehicle visits (vehicle-event model). The size of both models depends on the number of
events considered. We propose a simple method to bound the number of nodes in each extended graph.
Additionally, we propose new valid inequalities to tighten the two models. For each model, a new exact
algorithm (Algorithm 1) combining all contributions is proposed to solve the inventory routing problem.

Computational tests based on a set of instances from a maritime inventory routing problem are
presented showing that the branch-and-cut algorithm based on the vehicle-event model performs better
than the location-event model. The results also show that the method to bound the number of events
as well as the inequalities is important to reduce the running time. In addition, the vehicle-event model
outperforms, in general, the location-event model when it comes to verifying infeasibility. Using the
vehicle-event model our most effective algorithm solved to optimality all instances with a horizon of 180
days and half the instances with a 240 day horizon.

We have developed valid inequalities for instances satisfying the assumption that the vehicle cannot
return twice to a demand/supply location without visiting a supply/demand location in between. When
this assumption does not hold, these inequalities are used to partition the set of feasible solutions (Algo-
rithm 2). Running Algorithm 1 on the initial problem with these inequalities can be seen as a heuristic.
As all the solved instances satisfy this assumption, this heuristic potentially generates the optimal solu-
tion to all the instances. In addition, Algorithm 2 is valid whatever values are selected for the split factor
(vehicle visit number), so for other classes of instances another choice may well be appropriate.

As to future research it would be interesting to investigate further the polyhedral structure of the two

27



proposed models, even in the restricted Hamiltonian case in which the number of visits to each location is
fixed. Extending the models to deal with multiple vehicles is perhaps the major challenge. It might also
be of interest to examine other problems in which some crucial parameter, in our case the total number
of visits, can be used to speed up the solution process and investigate related branching schemes based

on partitions of the set of possible values for that parameter.
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