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Sleep apnea is a common yet severely under-diagnosed sleep related disorder. Unattended sleep monitoring at home with

low-cost sensors can be leveraged for condition detection, and Machine Learning offers a generalized solution for this task.

However, patient characteristics, lack of sufficient training data, and other factors can imply a domain shift between training

and end-user data and reduced task performance. In this work, we address this issue with the aim to achieve personalization

based on the patient’s needs. We present an unsupervised domain adaptation (UDA) solution with the constraint that la-

beled source data are not directly available. Instead, a classifier trained on the source data is provided. Our solution iteratively

labels target data sub-regions based on classifier beliefs, and trains new classifiers from the expanding dataset. Experiments

with sleep monitoring datasets and various sensors show that our solution outperforms the classifier trained on the source

domain, with a kappa coefficient improvement from 0.012 to 0.242. Additionally, we apply our solution to digit classification

DA between three well-established datasets, to investigate its generalizability, and allow for related work comparisons. Even

without direct access to the source data, it outperforms several well-established UDA methods in these datasets.
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1 INTRODUCTION

Sleep apnea is a common yet severely under-diagnosed sleep related breathing disorder. The overall goal of our
work is to enable “anybody” to use low-cost pre-screening solutions at home in which consumer electronics,
like smart phones and smart watches, are used for data acquisition and Machine Learning for data analysis.
We use as foundation for our research data from a large clinical study, called A3 study, at the Oslo University
Hospital and St. Olavs University Hospital. In this study, sleep monitoring data from several hundred patients is
collected and analyzed. A portable sleep monitor certified for clinical diagnosis (i.e., Nox T3 [1]) has been used
for data acquisition. Currently, we achieve with a convolutional neural network (CNN) trained on this data a
classification accuracy of approximately 80% [2]. However, we cannot guarantee that this model can generalize
well to new data from an end-user, because of potential domain shifts. Such domain shifts can for example be
caused by characteristics of individual end-user sleep data that are not represented in the A3 dataset and quality
issues. The latter is based on the fact that a sleep monitor that is certified for clinical diagnosis produces data
with substantially higher quality than that of data collected by end-users at home with consumer electronics.
Furthermore, personalization can improve classification in many cases, because individuals are different in terms
of physiology, prevalence, sensor placement and the same signals might be measured with different sensors, for
example different smartwatch brands.

Domain Adaptation (DA) has recently been successfully applied to address the problem of domain shift.
DA aims to improve learning for a predictive task at a target, assuming a source and a target domain for which
the distributions of source and target differ [3, 4]. The predictive tasks are the same across the two domains. A
sub-field of DA is unsupervised DA, for which labels are provided only for the source data [5], but not for the
target data. The vast majority of unsupervised DA literature focuses on non-medical, easy to label, visual open
data, without specific usage constraints.

Existing DA solutions cannot be applied to create a classifier that is adapted to the end-user data, because
(1) end-users might not want to give us their data for privacy reasons and we do not have the resources to
support many end-users, (2) privacy regulations do not permit to share the A3 dataset (e.g., with end-users or
third parties), and (3) source and target data are processed together in the majority of existing DA solutions.

This scenario can be generalized. Assume a host which has trained a model with labeled data for classification,
but the model cannot be directly used on data collected by an end-user due to the presence of domain shift. Both
entities, i.e., host and end-user, do not want (or cannot) share their data with the other entity, as it is very often
the case in the medical domain. Thus, the only way to create a personalized classifier for the end-user is DA
without direct access to the labeled source data (See Figure 1 for an example of this case, which we investigate
in this work, in comparison to a baseline case). Furthermore, it must be considered that the end-user potentially
has less computing resources than the host (e.g., lack of dedicated hardware components, lack of sufficient GPU
memory to load the data, etc.). As a result even if the host is willing to share her data, performing joint training
on the end-user could be problematic.

To address these issues, we introduce a method called Step-wise Increasing target dataset Coverage based

on high confidence (SICO) to efficiently perform DA at the end-user. SICO performs unsupervised DA with
the use of only a classifier trained on the source domain and unlabeled data from the target domain. One of the
fundamental ideas in this work is to release only the classifier trained on the source domain, since extracting
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Fig. 1. Left: Baseline scenario. A lab gathers data from multiple patients with sensor types S. A classifier is trained with

the collected data. Then a subject gathers data from their home with the use of a different sensor type T -of potentially

lower-quality. Then the trained classifier performs automated inference on the subject’s data. A diagnosis is given based on

the automatic scoring. Right: Source-free DA case. The trained classifier is released to the subject, e.g., via an app. Source-

free DA is then performed for the classifier to adapt to the subjects data. Then the adapted classifier performs inference. A

diagnosis is given based on the automatic scoring from the adapted classifier.

personal information from a classifier, especially for time series data, is harder than having direct access to the
true data of the individual. At the same time, we take into account the possible lack of hardware resources, since
training will be done at the end-user. By using only a single trained classifier and only the data from the end-user,
the proposed approach is less resource intensive than normal unsupervised DA.

In this work, we include the following contributions: (1) we introduce SICO , a DA technique which leverages
the neuronal excitation of the output neurons as a means to iteratively select high confidence regions to train
with. The goal of this process is to incrementally address the existing domain shift, and generalize well to the data
of the end-user; (2) we apply the proposed approach on the real-world problem that we are interested in, namely
sleep apnea detection and we show its effectiveness for different physiological sensors and datasets; (3) we use
the proposed approach to perform DA for a different type of data and for a different task (i.e., digit classification),
showcasing its generalizability and providing a comparison basis with related literature.

The rest of the paper is organized as follows: Section 2 presents the proposed approach. Section 3 compares
SICO with related literature from unsupervised DA and time-series DA. We place our related work in this location
since we discuss methodological differences between SICO and other methods, and we want the reader to know
how our approach works before reading the related work. Section 4 describes the experiments we performed.
Section 5 presents the choices of important hyper-parameters of SICO , and the results from our experiments. In
Section 6 we discuss the key empirical insights. Finally, Section 7 concludes this paper.

2 METHOD

In this section, we describe the proposed approach, and provide insights about how and why it works. Further-
more, we investigate important properties, and analyze choices for the principal components of SICO .
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Fig. 2. Steps of SICO : We trainhsrc onDsrc , and we release it to the end-user (target). The end-user incrementally adapts new

classifiers to its domain based on the iterative beliefs of hsrc ,hCL1...hCLn ,htд and a criterionC . Classifier hCLn corresponds

to the last classifier that contributes labels to the target data, n the final application ofC , and DCLn the last dataset (subset

or equal to Dtд ) that will be used.

2.1 Background

We assume two datasets Dsrc = {(x(1)
S
,y (1)

S
), . . . , (x(MS )

S
,y (MS )

S
)}, and Dtд = {x(1)

T
, . . . , x

(MT )
T
}, where MS ,MT are

the sizes of the respective datasets. All inputs x belong to an input spaceX which is a subset of Rd , where d is the
dimensionality of the input space. A domain shift exists between the two datasets, i.e., the generating processes
of xS and xT differ. All labels belong to a label space Y = {0, . . . ,NY − 1}, where NY is the number of possible
classes.

The goal of Unsupervised DA is to predict the labels for Dtд on the task [3] which the Dsrc labelling corre-
sponds to. To do this, access to both Dsrc and Dtд is assumed, and as such unsupervised DA methods can take
advantage of domain-specific characteristics of each dataset to learn the domain shift during training.

In this work, based on the scenario we are interested in, we investigate a more constrained version of unsuper-
vised DA, namely Source-Free DA. We assume that access to Dsrc is not given. Instead, a classifier hsrc is trained
with Dsrc at the host which has access to this dataset, and afterwards hsrc is released to the end-user patient
(see Figure 2). The end-user has access to the unlabeled dataset Dtд and wants to classify Dtд on the same task
that hsrc has been trained for. As such, during training of SICO , we only have access to Dtд and hsrc . The goal
of SICO is to create a new classifier htд that is adapted to Dtд with the use of hsrc .

2.2 Step-Wise Increasing Target Dataset Coverage based on High Confidence

We assume that hsrc is a neural network which performs density estimation of the true conditional distribution

p (y |x ) . As such, hsrc : X → RNY with
∑

c h
(c )
src = 1. The core idea of the proposed approach (see Figure 2) is

to start with the data of the host Dsrc , and then train hsrc with Dsrc , and release it. From the unlabeled dataset
Dtд of the end-user, we select the subset of Dtд that satisfies a criterionC{hsrc }, which we call DCL0. This subset
shall consist of the data for which hsrc is highly confident about their true label. Thus, we use hsrc to label DCL0,
and train a new classifier hCL1 on DCL0 with these labels. We repeat the procedure with hCL1 labelling from the
remaining data of Dtд − DCL0 in order to create a new dataset DCL1 consisting of DCL0 together with all the
data that satisfyC{hCL1} from Dtд −DCL0. We then train hCL2 from DCL1. We repeat these steps until a terminal
condition is being met (like, e.g., labelling of the whole Dtд or usage of a pre-determined number of classifiers).
In algorithmic form, the method includes the following steps, and is shown with Algorithm 1:

• Step 1: hsrc is trained on Dsrc and is released to the end-user patient.
• Step 2: Based on a given confidence criterion C{hsrc } (for example that the logits of the classifier for a

class are larger than a thresholdT ) choose a subset DCL0 ⊂ Dtд such thatC{hsrc } is satisfied ∀xi
T
∈ DCL0.

• Step 3: Based on the labels YCL0 that hsrc produces for DCL0 train a new classifier hCL1 with DCL0 and
YCL0.
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• Step 4: Set i = 1. Repeat Steps 5, 6, and 7 while DCL(i−1) ⊂ Dtд , and while a terminal condition is not met
(e.g., i ≤ N ).
– Step 5: Based on C{hCLi } choose DCLi such that DCL(i−1) ⊂ DCLi ⊆ Dtд . DCLi is defined as the subset:
DCLi =((Dtд − DCL(i−1)) s.t C{hCLi }) ∪DCL(i−1) . Thus, DCLi contains all DCL(i−1) together with all the
datapoints of (Dtд − DCL(i−1) ) which satisfy C{hCLi }.

– Step 6: Use hCLi to label (DCLi − DCL(i−1) ). Unite with YCL(i−1) to create YCLi .
– Step 7: Based on the labels YCLi that hCLj , j = src, 1, . . . , i have produced for DCLi train a new classifier
hCL(i+1) with DCLi and YCLi . Set i = i + 1.

• Step 8: Return htд = hCLi .

Choosing a good criterion C is important for the success of the algorithm. If we choose an improper C and we
have a demanding terminal condition to meet (like having a high threshold of belief ∀xi

T
∈ Dtд), the algorithm

could “get stuck”, or the performance could suffer. We discuss choices for C in the next subsections.

2.3 Methodological Analysis

We need two core characteristics for the method to work well: (1) hsrc must be sufficiently trustworthy such that
if we satisfy C{hsrc } for a given datapoint xi

T
from the input space, there is a high probability that xi

T
belongs

to the true class that hsrc predicts. Thus, if the data distributions of the host and the end-user are very different,
hsrc , and subsequently htд , will both have difficulty achieving high performance. This observation is in-line with
the theoretical analysis for domain adaptation from [6] (see Theorem 1). (2) hCLi must be trained on a subset
of Dtд with labels for which we are confident to generalize to new data from Dtд with high confidence. This is
equivalent to a classifier generalizing well to new data. Thus, the design of hCLi needs to be good enough, and
also the dataset DCL(i−1) with which hCLi has been trained should be large enough to give hCLi the ability to
generalize well. Characteristic (2) is needed for all classifiers during the algorithm.

At the last step of the algorithm, the empirical risk of htд (for cross-entropy loss) for the last dataset DCLn ⊆
Dtд is:

L̂(htд ) = − 1

|DCLn
|
∑

x
j

T
∈DCLn

∑

c

yc
j,CLiloд

(
hc

tд

(
x

j
T

))

where yc
j,CLi

is the element c of the one-hot encoded-vector of arдmaxc {hc
CLi

(xj
T

)}, with i ∈ {0, . . . ,n}, the index

for the classifier which labelled x
j
T

, and 0 referring to hsrc . Additionally, it is not necessary that DCLn = Dtд as
we could stop the algorithm before the criterion holds for the whole Dtд . Assuming column vectors, we define
the true empirical risk of htд with the true labels as:

L(htд ) = − 1

|DCLn
|
∑

x
j

T
∈DCLn

∑

c

yc
j loд
(
hc

tд

(
x

j
T

))

= − 1

|DCLn
|
∑

x
j

T
∈DCLn

∑

c

yc
j,CLiloд

(
hc

tд

(
x

j
T

))
− 1

|DCLn
|
∑

j

δ
ᵀ
j · loд

(
htд

(
x

j
T

))

= L̂(htд ) +
1

|DCLn
|Δ(htд )

(1)

with δ j = yj − yj,CLi , and yj the true label vector of x
j
T

. Additionally, δ j = 0 when yj = yj,CLi . Intuitively, Δ can
be thought as a form of accumulative error of the algorithm, and the larger it is the bigger the difference of the
true loss and the actual loss we are minimizing. This obviously has a negative impact in the performance on new
data.
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ALGORITHM 1: Step-Wise Increasing Target Dataset Coverage based on High Confidence

Source:

Input: Dataset Dsrc , Host Labels (for Dsrc )

hsrc = Train(hsrc ,Dsrc , Host Labels);

Make hsrc available to Target (Patient), but not Dsrc ;

Output: hsrc

Target:

Input: Dataset Dtд , hsrc

Initialize Criterion C;

DCL0 ← {xtд ∈ Dtд |C{hsrc (xtд )}};
YCL0 ← One-hot(Label(DCL0, hsrc ));

Reinit(hsrc );

hCL1 ← Train(hsrc ,DCL0, YCL0);

i ← 1;

while DCL(i−1) ⊂ Dtд and ¬ TerminalCondition(DCL(i−1) ,YCL(i−1)) do

S ← {xtд ∈ (Dtд \ DCL(i−1) ) |C{hCL(i ) (xtд )}};
DCLi ← DCL(i−1) ∪ S ;

YCLi ← YCL(i−1)∪ One-hot(Label(S , hCLi ));

Reinit(hCLi );

hCL(i+1) ← Train(hCLi ,DCLi , YCLi );

i ← i + 1;

end

htд ← hCLi ;

Output: htд

In the labels YCLi for a dataset DCLi there are as many errors expected as there are made from hCLi ’s general-
ization, plus the errors that were “passed” from the generalizations of the previous classifiers. The generalization
error of hCLi is also dependent on the generalization error from the previous classifiers, because it uses DCL(i−1)

for training with the labels of the previous classifiers. Based on this discussion, and assuming that we use n
classifiers, Δ can be rewritten recursively in the following form:

Δ(htд ) = Δn (htд ;hsrc ,hCL1 . . .hCLn )

= −
∑

x
j

T
:yj�yj,CLi

δ
ᵀ
j · loд

(
htд

(
x

j
T

))

= −
∑

x
j

T
∈(DCLn−DCL (n−1) )

δ
ᵀ
j (hsrc ,hCL1 . . .hCLn ) · loд

(
htд

(
x

j
T

))

+ Δn−1 (htд ;hsrc ,hCL1 . . .hCL(n−1) )

(2)

where we define as Δ0 (htд ;hsrc ) = −∑
x

j

T
∈DCL0

δ j (hsrc ) · loд(htд (xj
T

)). From this form it is straightforward

that the earlier classifiers play a more important role in the performance of htд , since their error in a sense
“propagates” through the next training iterations. Thus, hsrc plays the most important role as the first classifier
in the algorithm.

Furthermore, for every step i of the algorithm, the generalization capability of the classifier hCLi plays an
important role in the accumulative Δ. If hCLi ’s generalization capability is low, it will assign many erroneous
labels during the labelling of its high confidence dataset for criterionC{hCLi }. This will also affect the next steps,
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since we have to expect worse generalization capability for the next classifiers, because these data will become
training data for the next classifiers. The above analysis can be applied to any hCLi and its respective DCL(i−1)

instead of htд and DCLn .

2.4 Choosing the Belief Criterion

An essential part of the proposed method is the criterion C that we use to choose for a classifier hCLi the new
subset of Dtд to include to DCL(i−1) , i.e., (DCLi −DCL(i−1) ). We label this part with hCLi , and then combine it with
DCL(i−1) and use to train hCL(i+1) .C is a very important part of the algorithm, as it is responsible for the choice of
a subset which is largely from erroneous labels. In our case, we assume that allhCLi ,hsrc ,htд are neural networks
with softmax output. We therefore take advantage of the neuronal excitation of the output class neurons, and
use it as an indication of confidence that xi

T
belongs to a certain class. We hypothesize that such high-confidence

datapoints are more likely to indeed belong to their assigned class.
There are many ways we can use the excitation of the output neurons as a criterion to assign labels for a high

confidence sub-dataset. Examples include thresholding, selecting the m datapoints which lead to the strongest
activation for each class neuron, or selecting the top pcl percent of datapoints that activate each class neuron cl
the most.

2.5 SICO and Curriculum Learning

At first glance SICO and Curriculum Learning (CL) [7] can appear to be quite similar. In CL, the training
“starts small” by using a small training set with easy examples identified with the use of a scoring function [8].
Afterwards, CL progressively utilizes more difficult examples which are added to the curriculum. Similarly, we
utilize easier examples in terms of domain similarity, and progressively train with harder datapoints. The pre-
vious classifier’s class probabilities give us a measurement of the datapoints that are easier for the classifier in
terms of the classifiers’ higher confidence regarding these points (lower entropy). We hypothesize that datapoints
that are easier in terms of lower entropy for a classifier trained in a different domain are more likely to be more
similar to datapoints from the source domain, in terms of class separation.

However, the basic vanilla CL uses a static scoring function during training. SICO utilizes instead a sequence
of scoring functions (i.e., hCLi ) that are learned dynamically as the training process continues. The creation of
a new scoring function depends on the dataset and the previous scoring function. Additionally, the first scoring
function, i.e., hsrc , is independently trained and acts as a Teacher that provides the initial scoring paradigm, in
conjunction with the belief criterion used. We compare our method with other more relevant and recent works
of CL for DA in Section 3.

3 RELATED WORK

There is a large body of work in DA, mainly focused on the visual domain, which is to a large extent covered
by existing surveys [9, 10]. In one of these surveys [10] Wang et al. separate DA based on the type of learning
(supervised, semi-supervised, unsupervised), whether or not the feature space is the same in source and target
domains, and whether the work performs one-step or multi-step DA. We follow a similar separation but due
to space limitations we focus on the works that are mostly related to ours. Thus, we separate on the basis of
supervised or unsupervised DA, with more emphasis on unsupervised DA, and for the unsupervised DA case
whether the proposed work has direct or indirect access to the source data (see Figure 3). Furthermore, we
separate for visual and time-series applications or methods. For the works which resemble our work, we compare
and discuss about specific similarities and differences.

For the case of unsupervised visual DA, a large body of literature use variations of adversarial DA for visual
applications [11, 13–17]. A good example of an advanced technique that also includes adversarial elements is
CyCADA [18]. It is a technique for unsupervised DA which uses a team of models trained on a unified loss which
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Fig. 3. Classification of presented related works in supervised or unsupervised DA. We show with blue rhombuses the leaf

subcategories for which we discuss related works.

consists of task losses, cycle-consistent loss [19], GAN losses, and semantic consistency loss. The goal is to adapt
representations at pixel and feature level while enforcing cycle and semantic consistency loss. Other works for
visual applications that do not directly include adversarial training are [20, 21]. Additionally, works exist which,
like our proposed method, make use of pseudo-labelling on the target domain [22–27]. However, all of these
approaches take advantage of both source and target domain data during their training phase. Furthermore,
they use different methods for classifier adaptation on the conditional distribution of the target domain during
their training phase, like entropy minimization, minimization of the conditional distribution’s MMD between
source and target, pseudo-labelling with multiple classifiers, and so on.

As mentioned, most of the above techniques perform unsupervised DA with access to labeled source data
and unlabeled target data. However, we focus on DA at the end-user with access only to unlabeled target data
and a trained classifier at the source data and labels, making it an inherently harder problem. Despite these
additional restrictions, SICO yields an on average comparable or superior performance relative to several other
well-established unsupervised DA works for the digit datasets. As such, one key advantage of SICO relative to
other well-established unsupervised DA approaches is that SICO is inherently designed to handle the source-free
DA case. This means that for SICO to work joint training with the source and target data is not necessary.

Additional works that provide a solution to unsupervised DA without direct access to the labeled source data
include [28–30]. Wulfmeier et al. [28] address the problem of degraded model performance due to continuously
shifting environment conditions. They develop incremental adversarial DA with which they redefine DA as a
stream of incrementally changing domains, to enable a classifier to adapt for example to changing weather condi-
tions or day night circle. Additionally, they propose an extension to use only target data assuming an additional
GAN generator which has learned the encoded feature marginal distribution of the source data. Similarly, our
method uses the source data indirectly via hsrc , but we investigate the normal DA scenario, and not a case of
transitioning incremental domain shifts. Li et al. [29] introduce Adaptive Batch Normalization (AdaBN), and
use only a classifier and the target data. They standardize each neuron’s output with the average and standard
deviation of its output from the images in the target domain. This standardization ensures that each neuron
receives data from a similar distribution, no matter which domain the data come from. Using this idea, Zhang
et al. [31], train a convolutional network with layers of various kernel sizes for fault diagnosis on raw vibration
signals. They then perform AdaBN for the CNN model trained in the source domain. This approach does not
train with the target domain data, and is only a form of cross domain normalization for the trained classifier.
As a result we hypothesize that it does not take full advantage of the knowledge potential of the target sam-
ple. Several recent methods have been developed to address the problem of Source-free DA, like [32], where a
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multi-term adversarial objective with additional contrastive and rotation loss terms is used to achieve Source-
free DA, or [33], which aims to achieve universal Source-free DA (where labels from source and target domains
can both include domain-private labels). SICO differs from these works as we do not use adversarial objective,
and also, for the scenario we study in this work, our source-target label-set relationship is closed-set (same la-
bels in both domains). Additionally, Yang et al. [30] introduce Generalized Source Free DA (G-SFDA). With
G-SFDA, a network is pre-trained on the data and labels of the source domain. Then the pre-trained model is
trained in an unsupervised manner with the data of the target domain. Specifically, the model is trained on
the target domain via identifying the K-closest neighbors of each datapoint based on feature similarity. A class
homogeneity loss on each datapoint is imposed based on the classes of their neighbors. Additionally, to avoid
forgetting source-specific or target-specific patterns sparse domain attention is used, where source and target
masks hinder forward and backward passes for data from each domain. Hence, specific source and target infor-
mation flows are imposed to the learning process of the model. Kim et al. [34] introduce a similar technique for
Source-free DA. By using a trained model from the source domain (feature extractor and classifier), they train
a new feature extractor and two new classifiers which adapt to the target data. One of the two classifiers main-
tains a source loss with the use of the source classifier, mainly for regularization. The other classifier performs
the actual DA via periodically labelling an adaptive low-entropy prototype set per-class. These sets serve as
class-representatives through which a per-class similarity metric is established for all target data. An additional
confidence-based filtering mechanism is applied on the target data with which a reliable sample is established
only when the prototypes of the most similar class are closer than prototypes of the second most similar class.
The final loss takes into account both the source loss and the established self loss defined via the aforementioned
process. One advantage of SICO in comparison to this approach is that inherently SICO is a simpler approach
that needs less memory on a best case scenario. That is since SICO does not need a feature bank and a score bank
which are needed in G-SFDA to identify and compare the closest neighbors, or sufficient memory for utilization
of multiple models, as is the case for [34]. This is an important advantage in our case, since the scenario we are
interested in is inherently resource-constrained (i.e., local device of the end-user patient).

Finally, Chidlovski et al. [35] explore the idea of source-free DA, given access to either a few representative
source samples (specifically class means) or a set of classifiers. In the first case, a stacked Marginalized Denoise

Autoencoder (sMDA) [36] is used. The class means are fed jointly with the target domain data in the sMDA. The
denoised class means are then used to classify the target domain examples, with the use of a weighted softmax
distance. In the second case, the output of the cassifiers is jointly fed with the target samples to the sMDA and
then the reconstructed classifier’s output is used to predict the class of the respective target domain sample.
Both of these approaches differ substantially from our approach. Specifically, SICO does not utilize a generative
denoise framework, and more importantly, the target data modify the classifiers and not directly the labels.

For the case of unsupervised DA for time-series data, Purushotham et al. [37], use Variational Recurrent Neu-
ral Nets [38], and employ adversarial DA to train in order to achieve DA from the latent representations. In [39],
Aswolinskiy et al. propose Unsupervised Transfer Learning via Self-Predictive Modelling. In the proposed ap-
proach, a linear transformation Q is learned that minimizes the error identified by a self-predictive model be-
tween the source and the transformed by Q target domain. Then a classifier trained in the source domain is
applied in the transformed target domain. We assigned this work under the umbrella of unsupervised DA since,
the authors present a general DA framework and because it fits the data access criteria we specify. Other works
include [31, 40, 41]. Chai et al. [40] perform EEG DA for sentiment recognition by using a linear transforma-
tion function that matches the marginal distributions of the source and target feature spaces. They additionally
employ a pseudo-labelling approach to transfer confident target data to the transformed source domain which
relates to our own approach for choosing confident samples. Natarajaan et al. [41] use DA in order to mitigate
the negative effects from the lab-to-field transition for cocaine detection using wearable ECG.

In the context of supervised DA, Persello et al. [42, 43], use Active Learning for DA for classification of remote
sensing images. This approach loosely relates to ours, in the sense that it iteratively trains the classifier with a
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differentiating training set. However, it assumes access to the source data (for data points to be removed from
the training set), and a user in the role of supervisor, which assigns labels for chosen samples.

Finally, other works that are related in the context of our work include [44–46]. Fawaz et al. [44] use transfer
learning for time series classification. They evaluate on the UCR archive for all possible combinations, and use a
method that relies on Dynamic Time Warping to measure the similarity between the different datasets. Regarding
CL, both works included apply DA in the context of semantic segmentation. Zou et al. [45] utilize pseudolabels
and self-training to learn the new domain. Contrary to our work, they use a loss which contains terms for the
loss of the source and the target domain plus a L1-regularization term on the pseudolabels. They optimize in a
two-step fashion, optimizing first the pseudolabels and then the classifier weights. Zhang et al. [46] derive their
curriculum by separating between the hard task of semantic segmentation from the easy task of learning high-
level properties of the unknown labels. They minimize a joint loss which includes terms from both domains. For
their easy task they infer the target labels and landmark pixel labels by utilizing training and labelling in the
source domain (e.g., retrieving the nearest source neighbors for a target image and transfer the labelling).

4 EXPERIMENT DESCRIPTION

The main goal of this work is to perform successful domain adaptation for bio-sensor signals for the purpose
of sleep apnea detection. Additionally, we complement the physiological datasets with datasets for digit clas-
sification, i.e., USPS, MNIST, and SVHN for two reasons: (1) the majority of the related literature uses these
datasets and so we aim to compare SICO with related works on their premises; (2) we want to investigate the
generalizability of our approach for different types of data.

4.1 Datasets

We use the following six datasets to evaluate SICO :

• Apnea-ECG [47] (AE) is an open dataset from Physionet, containing sensor data from chest respiration,
abdomen respiration, nasal airflow (NAF), oxygen saturation and Electrocardiograph (ECG). AE has
been used in the Computers in Cardiology challenge [47] and it contains high quality data. It has been col-
lected with Polysomnography in a sleep laboratory. From the 35 ECG recordings in the dataset, 8 recordings
(from 8 different patients) contain data from all the sensors. Each recording has a duration of 7–10 hours.
The sampling frequency of all sensors is 100Hz, and labels are given for every one-minute window of
breathing. The labels identify which minutes are apneic and which are not (i.e., if a person experiences
an apneic event during this minute). From AE, we use the NAF, chest respiration, and oxygen saturation
signals.
• MIT-BIH [48] (MB) is an open dataset containing recordings from 18 patients. The recordings contain

different respiratory sensor signals. In 15 recordings, the respiratory signal has been collected with NAF.
For this reason, we focus on the NAF signal for theMB dataset. Due to misalignment of the different signals
and lack of labels for the apneic class in four recordings, we utilize 11 of the 15 recordings (slp60, slp41,
and slp45 and slp67x are excluded). The data/labelling quality of the MB dataset is low, which leads to low
classification performance for MB compared to the other respiratory datasets that we investigate [49]. The
labels are given for every 30 seconds and the sampling frequency of all sensors is 250Hz.
• The A3 study [50, 51] (A3) investigates the prevalence, characteristics, risk factors and type of sleep apnea

in patients with paroxysmal atrial fibrillation. The data were obtained with the use of the Nox T3 sleep
monitor with unattended sleep monitoring at home, which in turn results into lower data quality than
data from polysomnography in sleep laboratories. An experienced sleep specialist scored the recordings
manually using Noxturnal software such that the beginning and end of all types of apnea events is marked
in the time-series data. To use the data for the experiments in this paper, we labeled every 60 second window
of the data as apneic (if an apneic event happened during this time window) or as non-apneic. The data
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we use in the experiments is from 438 patients and comprises 241,350 minutes of sleep monitoring data.
The ratio of apneic to non-apneic windows is 0.238. We use only the NAF signal from the A3 data in the
experiments, i.e., the same signal we use from Apnea-ECG.
• MNIST [52] (M) is a dataset containing 60,000 28 × 28 images of digits (handwritten black and white

images of 0–9) as a training set. The test set comprises of 10,000 images.
• USPS [53] (U ) is another handwritten digit dataset (0–9), which contains 7,291 grayscale 16×16 training

and 2,007 test images.
• SVHN [54]: (S) is s a real-world image dataset obtained from house numbers in Google Street View images.

Similarly to the previous datasets, classification is performed for digits 0–9. It contains 73,257 digits (32 ×
32 colored images) for training, 26,032 digits for testing, and 531,131 additional training data. We use only
the original training dataset of 73,257 digits.

4.2 Preprocessing

The data in all sleep apnea datasets is standardized (per physiological signal), downsampled to 1Hz and the
windows are shuffled randomly. The data from the A3 study, are very unbalanced, i.e., it contains many more
non-apneic than apneic one-minute windows. Therefore, we rebalance the dataset to contain equal amount of
apneic and non-apneic one-minute windows. Since the labels in MB are given every 30 seconds, while AE and
A3 are labeled every 60 seconds, we adapt the labelling in MB to 60 seconds by using the following rule: if both
30 second labels are non-apneic then the 60 seconds label is non-apneic, elsewise it is apneic. For A3, we use 80%
of data as training and 20% as test set. For AE we use 25% of the data as test set, and for MB we use 15% of the
data as test set. We use less test set data for MB because we want to utilize more data for training due to the low
quality.

We rescale the data in all digit classification datasets from 0–255 to 0–1. Additionally, forU and S , we restruc-
ture the data so that it is in similar form to the M data. We up-scale the images in U from 16 × 16 to 28 × 28,
and we downscale the images in S from 32 × 32 to 28 × 28. Additionally, we convert the color images in S to
grayscale images.

Finally, it is worth noting that for all classifiers in all experiments we attempt to train them generally for as
few epochs as possible while maintaining their generalization capability. We do this based on findings from our
previous work [55] where we establish that under-training classifiers under label noise can yield performance
advantages when generalizing to new -noise-free- data. In essence, the labelling we obtain from previous classi-
fiers can be considered noisy due to the inherent likelihood of error inclusion (see Equation (2)). As such with
this strategy (i.e., training for fewer epochs), we attempt to alleviate the accumulation of errors, independently
from the good choice of criterion C .

4.3 Experimental Set-Up

We follow in the experiments the steps outlined in Section 2, i.e., we train hsrc such that it can generalize well
for the test set of Dsrc and release hsrc to the end-user. Then we use hsrc and a subset of Dtд to iteratively create
htд . The performance of htд is evaluated with the test set of Dtд . This means that we evaluate the proposed
method on the test set of Dtд . We use the convention Dsrc → Dtд to indicate that hsrc is trained on Dsrc and htд

is evaluated on Dtд . Further details about other minor algorithmic decisions can be found in Appendix A. Since
Dtд is not labeled, we do not have access to a validation set during the training of the proposed method. Thus,
we train each classifier hCLi for a fixed number of batch iterations.

5 EXPERIMENTS AND RESULTS

In this section we present our results. First we discuss how important hyper parameters affect SICO . Then we
present our main results in two sets of experiments. The first set of experiments focuses on sleep apnea detection
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with physiological sensors. The application scenario that we are interested in focuses on the transition from
high quality sensor data to low quality sensor data. Additionally, we investigate combinations for which the low
quality data are used asDsrc , in order to get a more complete picture of the capabilities of the proposed algorithm.
We focus on the NAF signal for the combinations A3 → AE,A3 → MB , MB → AE, AE → MB, AE → A3, and
evaluate the abdominal respiration (Resp A), the chest respiration (Resp C) and the oxygen saturation (Sp02)
sensor signals for the A3 → AE and AE → A3 combinations. The second set of experiments evaluates SICO
for digit classification and showcases comparison with several related works for three combinations that are
commonly used in literature, i.e., M → U , U → M , S → M .

Devices: Please note that for the sleep apnea set of experiments, the devices used are of the same type across
the different datasets (AE,MB andA3) i.e., nasal thermistors for the NAF signal, Respiratory Inductive Plethys-

mography (RIP) (Chest-Abdomen belts) for the Resp A and C signals, and pulse oximeter for the measurement
of oxygen saturation Sp02.

Metrics: For the Digit Classification experiments, we use accuracy as performance metric since it is com-
monly used in related literature for the particular task, assuming a well-balanced dataset. For the apnea detec-
tion experiments, we use the kappa coefficient [56] as performance metric since it better captures performance
characteristics in a single metric than accuracy, as it takes into account the possibility that two annotators (real
labels and predictions in our case) agree by chance. For completion, we present the accuracy, specificity, and
sensitivity results in Appendix B. All experiments are repeated five times, and we present the average results
and the standard error.

5.1 Hyper-Parameters and Tuning

In this subsection we discuss the effects of important hyper-parameters on the SICO algorithm. Specifically, we
analyze the behaviour of SICO for different Belief Criteria and Labelling Subset sizes of classifiers hCLi .

5.1.1 Belief Criteria. We empirically investigated several different methods for the choice of high-or low -
confidence data. Figure 4 showcases the performance for 10 runs of each method for U → M . We outline the
chosen methods:

• All-In: We label all data with hsrc and use them all directly as DCL0.
• Weighted All-In: We label all data with hsrc and use them all directly as DCL0. We weight the loss of each

datapoint with the maximum probability of the softmax output of this datapoint. As such high-confidence
datapoints are prioritized relative to low-confidence datapoints. We relabel with hCLi and repeat the
process.
• Threshold (Low, High): We label Dtд with hsrc . We then use a static threshold (typically between 0.5 and

0.99) to determine high-confidence datapoints, based on whether their top class probability surpasses the
threshold. We train hCL1 with these high-confidence data and repeat the process until we include all Dtд .
• Threshold (Dynamic-Average): We label all data with hsrc . We then calculate for each class the average

threshold of the datapoints that belong to this class based on the labelling from hsrc . We use these thresh-
olds as belief criterion, i.e., we include into DCLi data that surpass any of these thresholds. We again repeat
until we cover the whole Dtд dataset.
• Top-m: Based on labelling of hsrc we choose to include to DCL0 the top m datapoints in terms of class

probability for the respective class. We repeat until we cover all of Dtд .
• Top-p%: Based on labelling of hsrc we choose to include to DCL0 the top p% of datapoints in terms of class

probability for the respective class. We repeat until we cover all of Dtд .
• Min Entropy: Similar to the threshold case, but instead we choose whether or not to include datapoints

to DCLi based on a minimum entropy threshold for the class distribution of each datapoint.
• Low Only: Only use datapoint for which their max class probability is less than a certain threshold (in

order to exploit data near the class separation region instead of high-confidence datapoints).
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Fig. 4. Comparison of several criteria as C . Cyan points show performance (Accuracy) of indiviual runs, and blue points

show average performaces.

• LowHigh: Use datapoint for which their max class probability is less than a certain threshold or greater
than another higher threshold.

Overall, as we observe from Figure 4, most methods did not perform well. We hypothesize this is due to the
biases which are transferred from the source domain to the target domain towards certain classes. These biases
result into unbalanced DCLi , which can negatively affect the overall generalization performance. Given that the
simple All-In case can serve as a baseline, we notice that generally Weighted All-In, Dynamic Threshold, Top-m
and Top-p% cases yield on-average superior results. As expected Weighted All-in case yields superior results
to All-In as it de-prioritizes low-confidence datapoints. Both static threshold cases yield mediocre results rele-
vant to All-In,which can potentially be attributed to the class biases of the source domain. Dynamic Threshold
compensates for this issue by taking averages per-class as thresholds, however, we do not observe significant
improvements relative to the other cases, potentially due to the inclusion of too many medium-confidence dat-
apoints. Interestingly, Min-entropy performed inferior to most Threshold cases. We attribute this behaviour to
the difficulty of choosing appropriate cut-off as minimum entropy. Low-Only performed better than anticipated,
surpassing the Threshold(Low) case. This showcases the viability of including only low-confidence datapoints
to identify the class separation regions for the task we are interested in. Yet Low-Only is not superior to Thresh-
old(High). Finally, LowHigh yields the second best Threshold results, (Only behind Threshold (Dynamic)), which
exhibits the viability of combining low-confidence and high-confidence datapoints.

Overall, Top-m and Top-p% yield the best results. This can potentially be attributed to the selective nature of
these criteria, as we generally use small m and p in our experiments. For this reason, we select them datapoints
per-class which excite the class output neurons the most as belief criterion C{h} in all experiments (except
M → U ). We use this criterion in order to maintain the class balance since all datasets with the exception of U
that are used as Dtд are relatively well-balanced. Since U is not well balanced, we choose a criterion that gives
more “freedom” to the classifier to perform the balancing. Instead of choosing an absolute number N, as C{h},
we select a percentage p of the datapoints which activate a class output neuron the most.

5.1.2 Size of hCLi ’s Labelling Subset. A hyper-parameter that plays an important role in SICO for proper
generalization is the size of the new subset that the classifier hCLi labels (i.e., (DCLi −DCL(i−1) )). In Figure 5, we
show the effect of the size of (DCLi − DCL(i−1) ) on the performance of SICO for U → M , and three sensors of
AE → A3, namely NAF ,RespA, and Sp02. For all cases, the performance improves with increasing subset size
up to a certain point and drops afterwards with larger sizes. That is because if the subset is too small, proper
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Fig. 5. The impact of size of the new subset (DCLi − DCL(i−1) ) in the performance of SICO for M → U (a), and AE → A3

(b) (Blue: NAF , Orange: Sp02, Green: RespA).

generalization cannot happen, and as such all subsequent models yield lower performance. On the other hand, if
the subset is too large, it will contain low certainty regions. Thus, the subset will most likely contain more errors.
An interesting characteristic visible in Figure 5(b) is that the sensors reach peak performance with different
subset sizes. For example, the peak performance of Sp02 : AE → A3 is reached with a much smaller subset size
than the other sensors. Since we want in our experiments to have parametric homogeneity when this is possible,
we tune our parameters such that we strike a performance balance across the different sensor behaviours.

5.2 Source-Free DA for Sleep Apnea Detection

Figure 6 shows examples from the different sleep apnea datasets (before pre-processing). From theMB dataset we
use only the NAF signal in our experiments. For this reason, we include only the NAF signal from MB in Figure 6.
It is difficult to visually assess the respiratory signals and extract the domain specific features, especially since
the variance of the data is very high. This is apparent in Figure 6 when trying to compare between the NAF data
from AE and MB. Generally, though data from MB seem to have higher variance than the data from AE between
apneic and non-apneic periods, and also higher fluctuations in the breathing pattern of the patients.

To perform sleep apnea DA, we use identical architectures for all classifiers, i.e., hsrc ,hCL1...hCLn ,htд . We use
a 1D CNN (see Table 1), and use relu activations, dropout on the fully connected layers, and softmax activations
on the output. When the A3 study is Dsrc , we train hsrc for 15 epochs and when MB, or AE are Dsrc we train
hsrc for 20 epochs (in order to have more training iterations since MB and AE are smaller than A3). We use in
all experiments a batch size of 128, learning rate of 0.001, and the Adam optimizer [57]. All differences in results
between hsrc on the Dtд test set and htд on the Dtд test set are statistically significant based on the one-tailed
paired t-test (for p = 0.05), with the exception of Resp A: A3→ AE , NAF: A3→ MB, and Resp C: AE → A3.

We use in all experiments with AE and MB as Dtд the fixed data criterion with 500 datapoints per-class for
hsrc and 200 datapoints per class for all subsequent hCLi as belief criterion. WithA3 as Dtд , we use the fixed data
criterion with 10,000 datapoints per-class for hsrc and 500 datapoints per class for all subsequent hCLi , since A3
is much larger. The algorithm stops when we do not have any more unlabeled data in Dtд .

Table 2 presents the classification performance of the three combinations for hsrc on Dsrc and htд and hsrc on
Dtд . From Table 2 we initially observe the significant impact of the quality of the datasets on the performance
of hsrc . For MB → AE, the quality of the MB data is low enough that the evaluation of hsrc on the test set of MB
performs worse than the evaluation of hsrc in AE. Since AE is a high quality dataset, it is easier to have much
better performance. This is reflected by the very big difference of kappa (×100) between the two datasets for
hsrc (i.e., 41.69 vs. 94.39). For A3, we expected that it would have better transferability to the other datasets since
it is much larger, thus covering a wider variety of cases (both from patient and from data quality perspective).
Though this holds for the AE case, i.e., A3 → AE, it is not the case for MB, for which (A3 → MB) hsrc performs
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Fig. 6. Different respiratory signals from MB and AE. Rows show randomly chosen 600sec windows of respiratory signals

from MB (first row with NAF) and AE (Second Row with NAF. Third row with Resp A. and Fourth row with Sp02). All AE
data come from the same randomly chosen window.

Table 1. Architectures used for the Experiments (Conv: Input Channels × Output Channels

× Filter, MP: Max Pooling, Fc: Fully Connected, Input × Output)

Layers M ↔ U S → M Sl.Apnea

Conv + MP 1 × 32 × 5 × 5 1 × 32 × 5 × 5 1 × 16 × 4
Conv + MP 32 × 28 × 5 × 5 32 × 64 × 3 × 3 16 × 32 × 4
Conv(+MP) 28 × 28 × 5 × 5 64 × 128 × 5 × 5 32 × 64 × 4
FC (7×7×28)×1024 (7× 7× 128) × 3072 (8 × 64) × 64
FC 1024 × 128 3072 × 1024 64 × 32
out 128 × 10 1024 × 10 32 × 2

Table 2. Performance for DA between Different Dataset Combinations

for the NAF Sensor Signal

SICO htд performance (kappa × 100) for NAF

NAF: hsrc ,Dsrc hsrc ,Dtд htд ,Dtд

A3→ AE: 69.33 ± 0.21 67.46± 5.38 84.07 ± 4.76
A3→ MB: 69.33 ± 0.21 10.26± 1.13 19.30 ± 1.78
AE → MB: 94.39 ± 0.49 11.96± 1.15 13.14 ± 0.63
MB → AE: 41.69 ± 1.60 65.27± 3.03 78.88 ± 2.25
AE → A3: 94.39 ± 0.49 29.67± 1.09 36.68 ± 2.60
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Table 3. Performance of A3→ AE and AE → A3 for Resp A, Sp02, and Resp C

SICO htд Performance (kappa × 100) for different sensors

Resp A Resp C Sp02

A3→ AE: hsrc ,Dsrc : 66.74 ± 0.38 66.91 ± 0.30 71.84 ± 0.67
A3→ AE: hsrc ,Dtд : 78.95 ± 1.92 57.23 ± 8.38 61.23 ± 4.44
A3→ AE: htд ,Dtд : 80.68 ± 0.84 81.47 ± 1.12 74.23 ± 2.07

AE → A3: hsrc ,Dsrc : 92.31 ± 0.50 90.97 ± 0.45 88.93 ± 0.36
AE → A3: hsrc ,Dtд : 27.35 ± 1.04 23.07 ± 1.89 −0.32 ± 0.00
AE → A3: htд ,Dtд : 48.47 ± 1.20 26.00 ± 0.53 19.37 ± 1.58

very poorly. It is important to mention that we get significantly better results with SICO for A3→ MB than for
AE → MB. In summary, we identify Dsrc data quality and variation as two important factors which affect the
performance of hsrc and htд for Dtд .

Generally, htд performs for all cases better than hsrc on Dtд . As expected from Equation (2), hsrc plays a very
critical role in the SICO process, and we cannot get very good results if the performance of hsrc is initially very
low. We discuss this characteristic in more detail in Section 6. Finally, another observation is the very large
standard error for all cases for hsrc on Dtд , and to a lesser extent for SICO . The results for hsrc were not stable
among the different iterations of the experiment, e.g., for A3→ AE the range of kappa × 100 values is 54.3–81.9.
In all cases, htд consistently outperformed hsrc , and it additionally provided a stabilizing effect, as the results for
htд did not vary as much -with the exception of AE → A3.

5.2.1 Other Sensors. We repeat the experiment for the A3 → AE combination for the additional respiratory
sensors which are included in A3 and AE, i.e., Abdominal Respiration (Resp A), Oxygen Saturation (Sp02), and
Chest Respiration (Resp C). We do not use MB for these experiments due to the small number of recordings
per-sensor and the already very low performance it yields for all experiments even with the NAF signal, for
which we have much more data in comparison to the other signals. The other parameters are the same as in the
previous experiments.

The results are found in Table 3. We notice that htд significantly outperforms hsrc on Dtд (with the exception
of Resp A). As before, we have with A3 → AE a very large standard error (big variation) for hsrc , and SICO
seems to have a stabilizing effect on the variation. For these experiments, this phenomenon is more pronounced
than for the NAF experiments. Again, we observe for Resp A: A3 → AE the same interesting pattern that we
observed for NAF: MB → AE , i.e., that hsrc has a higher performance on the target test set than the source test
set. We hypothesize that this happens for similar reasons as before, i.e., due to the better quality and potential
homogeneity of AE relative to A3. This hypothesis is strengthened by the fact that for the A3 → AE adaptation
all sensor signals perform relatively well (with the exception of Resp C). Another interesting characteristic is
that Sp02 which has the best performance for A3, adapts much worse to the new domain, i.e., AE, than Resp A.

In the AE → A3 experiments htд outperforms hsrc again for all cases. This time the variation for hsrc in Dsrc

is smaller than for htд . This could potentially again be attributed to the larger data variety in A3, which can
make DA more stable regardless of the initialization, and training randomness for hsrc . Interestingly, hsrc has
seemingly not generalized in the SpO2 : AE → A3 experiments. Intuitively, this leads us to assume that htд

should also fail. However, the results show that to some extent that htд is still able to learn. For a hsrc trained
with AE on Sp02 and tested on A3 Sp02, we observe that for the train set, the specificity between the pseudo-
labels and the true labels is 0.952 and sensitivity is 0.08. For the same hsrc , for DCL0, specificity is 0.67, sensitivity
0.33. We notice that we achieve already with the first hCL1 a kappa (×100) value of 16. We hypothesize, that the
performance improvement occurs due to the recognition from hCL1 of unique characteristics of each class. This
could be a result of the better balancing between the correct data from each class, together with the potentially
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Fig. 7. Examples of different datapoints from the Digit datasets: First row: examples from SVHN. Second row: examples

from MNIST. Third row: examples from USPS.

uninformative nature of the wrong class data. Due to this uninformative nature, hCL1 does not generalize as
much towards a wrong pattern. Intuitively, this means that hsrc learned a useful structure of the feature space
for both classes. Due to the better balancing of DCL0, the “hidden” structure learned for the minority class is
uncovered for the classifier trained on DCL0, i.e., hCL1, allowing it to generalize better to new data.

5.3 Comparison with Other Domain Adaptation Approaches: Digit Classification

In this experiment we compare SICO with other well-established DA approaches to investigate algorithm’s rela-
tive performance capability and establish its viability. Figure 7 shows examples from the different digit datasets
(before pre-processing). Regarding the digit datasets, the differences between the datasets are more apparent,
in comparison to the sleep apnea data. For example some obvious differences we can identify from Figure 7
are: (1) M and U are handwritten digits, whereas S are artificially made, (2) S in many cases contains additional
numbers in the image, and (3) digits fromU seem to capture a larger part of the image in relation to digits fromM .

We use the same architecture for all classifiers (i.e.,hsrc ,hCL1...hCLn ,htд) in all Digit classification experiments.
This means that for any given instance of the algorithm we have only one model in memory. We use a CNN
with a similar but wider architecture to LeNet-5 with more weights per layer (see Table 1), and one more fully-
connected layer and Convolution layers. We chose this architecture as this is a well-established simple model
that is very often used for digit classification. Note that we do not use Max Pooling on the third Convolutional
layer for the S → M , and M ↔ U experiments. We use more weights to potentially compensate for the larger
datasets (i.e., SVHN) and relu activations to all layers, softmax output, and dropout in the fully-connected layers.
Additionally, we perform Batch Normalization for the network of the S → M experiment. For all experiments,
we use a batch size of 128, learning rate of 0.001, and the Adam optimizer [57]. All differences in results (mean
accuracies) between hsrc on the Dtд test set and htд on the Dtд test set are statistically significant based on the
one-tailed paired t-test (for p = 0.05). We use this test as an indication of the importance of the improvement in
performance that we observe for htд compared to hsrc on the Dtд test set.

We trained hsrc for M → U and U → M for 4,688 batches (i.e., 600K datapoints). For S → M , we trained hsrc

for 7,812 batches (i.e., 106 datapoints), since hsrc does not converge with only 4,688 batches when trained on S .
When Dtд is either M orU we use the fixed number of datapoints criterionC{h} as explained in Section 5.1, with
m = 200 datapoints per-class to construct DCL0, and m = 100 datapoints per-class for all subsequent DCLi . The
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Table 4. SICO htд Performance on Digit Classification DA (Accuracy)

M → U U → M S → M
(SICO): hsrc ,Dsrc : 99.12 ± 0.01 96.62 ± 0.16 90.55 ± 0.40

(DANN, [14]): Source Only: - - 54.90
(DANN, [14]): DANN: - - 73.85

(Assymetric, [24]): Source Only: - - 70.1
(Assymetric, [24]): Assymetric: - - 86.20

(CoGAN, [17]): CoGAN: 91.20 89.10 -

(SICO): hsrc , Dtд (Source Only): 79.83 ± 0.51 69.58 ± 2.00 65.42 ± 0.85
(SICO): htд ,Dtд : 89.32 ± 0.70 90.88 ± 0.69 88.19 ± 0.74

We include comparison with works that use similar convolutional architectures as ours (i.e., small

networks based on LeNet).

exception to this configuration is M → U , where we choose a fixed percentage instead of a fixed number of data
per-class, and use for each hCLi 33% of the data. The algorithm stops when we do not have any more unlabeled
data in Dtд . For more details please refer to Appendix A.

For our experimental comparisons we use two well-established adversarial methods, namely Coupled Gener-

ative adversarial networks [17] (CoGAN) and Domain adversarial training [14] (DANN), and one method
which uses ensemble based pseudo-labelling, namely Assymetric tri-training [24] (assymetric). All related works
utilize in their respective experiments similar models to ours (i.e., convolutional-fully-connected architectures).

Table 4 presents the classification performance of the three combinations for hsrc on Dsrc , and htд and hsrc

on Dtд . From Table 4 we notice that htд outperforms hsrc for all Dsrc → Dtд cases. This could potentially be
attributed to the use of domain specific knowledge (in the form of training data fromDsrc ) to train all subsequent
hCLi and the htд , with a given confidence defined by the used criterion. Notice the steep drop of hsrc in all cases
from Dsrc to Dtд , which are expected due to the domain differences. We observe the largest drop for the case of
S → M (24.61%). The largest improvement is observed again for the case of S → M (22.77%).

In Table 4 we also include the results from the related works from Unsupervised DA. Despite the additional
constraints imposed on the scenario we investigate, i.e., source-free unsupervised DA, SICO manages to achieve
very good performances for the digit classification tasks which are comparable or superior to the other DA
methods we investigated.

5.4 Training Analysis

In SICO , we train sequentially n classifiers, each one to a high-confidence sub-region of the training dataset,
which is a superset of the region that the previous classifier has been trained. Thus, assuming that the accumula-
tive error Δi (htд ;hsrc ,hCL1...hCL(i−1) ) for every classifier hCLi in the sequence does not get too large, we expect
that the cross-entropy loss with the true training labels will become smaller, because each classifier learns with
an increasing number of datapoints from the training dataset.

Figure 8(a) presents the training dataset cross-entropy loss for U → M , for m = 500 per-class for hsrc and
m = 200 per-class for the subsequent hCLi , based on the fixed number of datapoints criterion. As expected,
the loss decreases as the datasets DCLi become larger and the algorithm proceeds. This is mapped also in the
performance on new data as shown in Figure 9(a), which depicts the test set performance in terms of accuracy of
M for all differenthCLi . In this Figure, we also include the performance of the test set ofU (orange) for completion.
The performance of U is as expected degrading as the algorithm proceeds.

Additionally, Figure 9(b) shows the mean cross-entropy with the real labels for DCLi for all i. We observe that
the error initially becomes smaller, which means that the new regions that are included in DCLi to form DCL(i+1)

yield better performance than the previous ones. However, after some iterations this does not hold, and the
performance with the new DCL(i+1) degrades in relation to DCLi . This means that the mean Δi becomes larger.
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Fig. 8. (a) Mean cross-entropy loss with the real labels, and (b) Mean entropy for the whole target training dataset.

Fig. 9. (a) Test accuracy (hypothetical) for all hCLi , (b) Mean cross-entropy loss for each dataset DCL(i−1) for the respective

hCLi . We show the results for every second classifier hCLi (dots) for better readability. All figures were obtained on the same

run.

We hypothesize that this behavior could be attributed to the misalignment between the left out data that later
iterations represent and the initial high confidence region of hsrc .

We expect that for increasing values of i the average entropy of hCLi becomes smaller. Since each new hCLi

uses a larger part of Dtд and trains on hard labels from hCL(i−1) , it will be more “confident” for a larger part of
Dtд . Figure 8(b) showcases this phenomenon. Furthermore, hCLi has been trained with more data and thus can
potentially generalize better to new data.

6 DISCUSSION AND LIMITATIONS

From the above evaluation, we observe that the success of SICO on Dtд depends on how well the initial hsrc

can generalize on Dtд . This observation occurs directly from Equation (2), since the error of hsrc , recursively
propagates for all Δi which constitute the total Δn . Thus, if hsrc does not perform well on Dtд this has a direct
repeated negative impact on the whole SICO algorithm. Interestingly, even for the cases for which hsrc performs
really bad on Dtд (mainly for the cases which include MB and A3 as Dtд) htд is still able to outperform hsrc .
This potentially happens due to the fact that we expect better performance for high-confidence regions than
the average performance, assuming that we trust hsrc adequately. This means that a smaller error propagates
through the algorithm, than for the case in which we have a lower confidence region. This insight is one of the
main inspirations for this work.

However, if we use too few data points as our confidence region, then the classifier trained on this region will
not be able to generalize well enough to new data, and will have higher generalization error for the new regions.
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Thus, there exists a trade-off between confidence and trust on the one hand, and generalization capability on
the other hand. This needs to be taken into account to determine how strict the criterionC{h} should be, as this
decides how many datapoints a new DCLi will have.

A natural question about SICO is why should we use a new model in each step (reinitialize), and not use the
same model. We made this design choice since we want the subsequent models constructed by SICO to focus
on the features of the new domain. As such, the use of a new model at each step, serves as a step towards the
minimization of domain-specific biases carried by hsrc (or its labelling) as SICO progresses.

We identify two main limitations with the current design of SICO. First, the fact that we need to identify
appropriate criterion C in order to decide which datapoints to choose to include in each new DCLi . This choice
can be problematic as it adds additional complexity to the learning task and increases the difficulty of the a

priori algorithmic design. A potential extension to SICO , which could resolve the aforementioned issue, is to
apply a probabilistic criterion, e.g., based on the max class probability of each datapoint, instead of using a “hard”
criterionC as a threshold of acceptance for a given datapoint. This is a more natural approach that better captures
the probabilistic nature of density estimation that the classifiers perform, and importantly removes the need of
tuningC . As such, we hypothesize that it can yield even better results than the original hard acceptance/rejection
method. However, in preliminary experiments (see Section 5.1.1) we were not able to showcase improvement in
performance in relation to the original method.

Second, though the use of SICO guarantees that no data will be exchanged between the lab/hospital and the
end-user patient, hsrc is trained on the lab dataset. As such, the use of information leakage attacks against hsrc

can potentially leak information about the lab dataset. To obtain protection from such attacks, we can, e.g.,
strategically clip and add noise to the gradients of hsrc during training. With such an application, certain dataset
traits could become obfuscated and theoretical guarantees like differential privacy can be obtained. Alternatively,
we can adversarially train hsrc so that certain adversarial defences can be learned to obtain protection against
certain information leakage attacks.

7 CONCLUSION

The primary motivation for our work is to enable end-users to create personal classifiers for health applications
without labeled data. In particular, we foresee a collaboration in which a host releases a classifier hsrc , and the
end-user (i.e., a patient), uses her data and the classifier to create a new personalized classifier which is adapted
to the domain of the end-user. For example, for the sleep apnea case, if we have a person whose datapoints (i.e.,
one-minute windows) are different due to a variety of potential factors than the datapoints hsrc has been trained
with, we can expect that by applying a suitable method we can get a better performing classifier for the particular
individual.

In this work we achieve this by performing SICO . SICO iteratively adapts classifiers to the new domain based
on high-confidence data from the previous classifiers, and without the need of the source data and labels. Based
on our scenario, we are more interested in the case of performing DA at the end-user, but obviously SICO can
also be applied at the host. We apply SICO for the case of sleep apnea detection, and use a large real-world
clinical dataset for its evaluation. Additionally, we experiment with two open sleep monitoring datasets and the
MNIST, SVHN, and USPS datasets for digit classification. By this, we achieve (1) reproducibility, (2) demonstrate
the generalizability of SICO for another task, and (3) achieve comparability with related work. The results from
these experiments show consistently better performance of htд in comparison to hsrc , as expected. Depending
on the dataset, we get an increase in kappa of up to 0.24. For the task of digit classification DA, SICO also
achieves a consistently good performance. Despite the additional limitations of the scenario that we investigate,
the performance of several well-established related works is lower than the presented results of this paper.

As a next step, we are interested in investigating how well can the technique be applied if the source classifier is
trained under differential privacy guarantees. Another interesting application to investigate is the combination
of the proposed approach with a style transfer method with the goal of increasing the DA capabilities of the
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approach for tasks containing different types of sensors. Furthermore, since the digit classification experiments
indicate good generalizability for SICO , it would be interesting to apply SICO on other image-based health
applications (like, e.g., MRI classification on various tasks, or telemedicine applications) in cases where it is
appropriate, i.e., existence of a domain shift and inability of data sharing. Finally, assuming that we choose
proper criterion C , we hypothesize that we could apply SICO to properly adapt in a dataset which is balanced
with different class frequencies in relation to the source dataset. This, in the context of condition detection, means
that we adapt from patients who do not have many pathological datapoints to patients for which the condition
is more expressed.

APPENDICES

A ADDITIONAL DESIGN DECISIONS

In Appendix A, we discuss additional design decisions made during the algorithm.

• Use of hard or soft labels for labelling of DCLi , i = 0..N : In the original approach we use as labels the
one-hot encoding vector based on the maximum argument of the output class probabilities of the classifier
which is doing the labelling for the particular datapoint. Thus, each new classifier is trained on one-hot
encoding labels. Alternatively, we can utilize directly the output class probabilities to act as labels and
for the training of each new classifier. During our experiments, we experimented with this approach. In
almost all cases it yielded worse results than the use of hard labels. As a result we use hard labelling in our
final experiments. The only exception is the MB dataset, for which we hypothesize that due to the poor
labelling quality, there is a stronger discrepancy between the true conditional distribution and the hard
labelling. This would also result in the optimal (Bayes) classifier having a very high true risk because of
the poor labelling. Since we have a finite amount of data, using hard labels could be misrepresentative of
the previous classifiers’ class probabilities.
• Training Iterations for hCLi : Depending on the sizes of the different datasets, we train for a minimum

of 10 (A3) epochs to a maximum of 50 epochs (MB,AE).

B ACCURACY, SPECIFICITY, AND SENSITIVITY FOR APNEA DETECTION EXPERIMENTS

Appendix B shows the Accuracy, Sensitivity, and Specificity for the Apnea detection DA experiments. A char-
acteristic which was not identifiable from the kappa values is the balancing effect SICO has on specificity and
sensitivity. When using hsrc , in many cases we obtain high specificity at the expense of high sensitivity (e.g.,
NAF:A3 → MB, NAF:AE → MB). We observe that for htд this effect is minimized. This means that htд obtains
increased sensitivity compared tohsrc . This is a positive characteristic since sensitivity (i.e., the percentage of the
correctly detected apneic minutes) plays a crucial role in the context of sleep apnea detection as low sensitivity
can lead to a false negative diagnosis, making the system inherently untrustworthy.
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Table B.1.

SICO htд Accuracy for NAF
NAF: hsr c ,Dsr c hsr c ,Dtд htд, Dtд

A3→ AE : 84.75 ± 0.11 84.37 ± 5.62 92.16 ± 2.18
A3→ MB : 84.75 ± 0.11 54.72 ± 0.58 59.56 ± 0.89
AE → MB : 97.32 ± 0.24 55.88 ± 0.57 56.60 ± 0.33
MB → AE : 70.88 ± 0.79 82.90 ± 1.54 89.60 ± 1.13
AE → A3: 97.32 ± 0.24 64.43 ± 0.64 68.71 ± 1.00

SICO htд Sensitivity for NAF
NAF: hsr c ,Dsr c hsr c ,Dtд htд, Dtд

A3→ AE : 85.82 ± 0.78 77.82 ± 0.50 94.99 ± 1.54
A3→ MB : 85.82 ± 0.66 26.29 ± 2.48 52.12 ± 3.54
AE → MB : 96.08 ± 0.24 48.50 ± 0.74 58.34 ± 1.77
MB → AE : 73.38 ± 0.87 86.66 ± 2,23 95.19 ± 0.76
AE → A3: 96.08 ± 0.24 56.78 ± 2.32 74.32 ± 0.96

SICO htд Specificity for NAF
NAF: hsr c ,Dsr c hsr c ,Dtд htд, Dtд

A3→ AE : 83.50 ± 0.73 88.93 ± 4.59 90.29 ± 4.24
A3→ MB : 83.50 ± 0.73 84.06 ± 1.95 67.23 ± 3.71
AE → MB : 98.13 ± 0.31 63.49 ± 1.16 54.79 ± 1.37
MB → AE : 68.28 ± 1.76 80.42 ± 2.29 85.92 ± 1.55
AE → A3: 98.13 ± 0.31 73.39 ± 1.50 62.14 ± 1.21

Table B.2.

SICO htд Accuracy for different sensors
Resp A Resp C Sp02

A3→ AE : hsr c ,Dsr c : 83.51 ± 1.92 83.57 ± 0.16 85.97 ± 0.30
A3→ AE : hsr c ,Dtд : 89.74 ± 0.81 77.68 ± 4.89 80.12 ± 2.4
A3→ AE : htд, Dtд : 90.42 ± 0.43 90.88 ± 0.56 87.44 ± 1.01
AE → A3: hsr c ,Dsr c : 96.32 ± 0.24 95.66 ± 0.02 94.76 ± 0.17
AE → A3: hsr c ,Dtд : 61.79 ± 0.59 59.49 ± 1.08 47.32 ± 1.26
AE → A3: htд, Dtд : 74.44 ± 0.58 63.20 ± 0.23 60.34 ± 0.78

SICO htд Sensitivity for different sensors
Resp A Resp C Sp02

A3→ AE : hsr c ,Dsr c : 86.3 ± 0.51 85.22 ± 0.66 85.40 ± 1.05
A3→ AE : hsr c ,Dtд : 93.83 ± 5.15 92.16 ± 4.44 94.64 ± 0.53
A3→ AE : htд, Dtд : 98.48 ± 0.07 96.91 ± 0.75 89.44 ± 0.79
AE → A3: hsr c ,Dsr c : 95.85 ± 0.43 97.46 ± 0.52 97.48 ± 0.13
AE → A3: hsr c ,Dtд : 30.76 ± 1.27 27.92 ± 2.39 9.53 ± 1.29
AE → A3: htд, Dtд : 77.46 ± 0.54 65.51 ± 0.70 69.16 ± 0.97

SICO htд Specificity for different sensors
Resp A Resp C Sp02

A3→ AE : hsr c ,Dsr c : 80.55 ± 0.60 81.63 ± 0.46 86.63 ± 1.86
A3→ AE : hsr c ,Dtд : 87.04 ± 2.56 68.17 ± 9.66 70.59 ± 3.69
A3→ AE : htд, Dtд : 85.12 ± .0.73 86.91 ± 0.91 86.12 ± 1.53
AE → A3: hsr c ,Dsr c : 96.61 ± 0.24 94.43 ± 0.46 97.48 ± 0.13
AE → A3: hsr c ,Dtд : 98.17 ± 0.20 96.49 ± 0.48 90.40 ± 1.16
AE → A3: htд, Dtд : 70.91 ± 0.87 60.50 ± 0.54 50.00 ± 1.06
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