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Abstract Theoretical models and experimental observa-
tions suggest that gamma-ray bursts (GRB) and high-energy
neutrino bursts travelling through the interstellar space may
reach the Earth at different speeds. We propose and study in
details the mechanism (i), which always exists, where GRB
are slowed down due to the dispersion of light in the inter-
stellar medium. In addition to the standard media such as
electrons and photons as CMB, we consider the medium
with invisible axions. The amount of GRB delays in differ-
ent media are calculated in details utilizing a novel technique
in QFT by using the hitherto known or estimated densities
of particles in the space without introducing any arbitrary
parameter. Previously, the GRB delays have been interpreted
as a sign of Lorentz invariance violation by modifying the
dispersion relation of Special Relativity, which relates the
energy, the momentum and the mass of a particle, based on
different mechanisms (ii), such as a stringy spacetime foam,
coming from a quantum gravity effect and using an adjustable
parameter. Obviously, all the above-mentioned mechanisms
(i) and (ii) are induced (seeming) Lorentz invariance viola-
tions but not an intrinsic (genuine) one. The amount of GRB
delay due to the two aforementioned interpretations can be
distinguished by observing the time of arrival of light with
different frequencies. Namely, dispersion of light (i) predicts
that the higher energy GRB arrive the Earth earlier, while in
the other interpretations (ii), they arrive later. We notice that
the needed amount for delay due to the dispersion of light
shall have the potential power to shed additional light on the
microstructure of interstellar media with respect to the den-
sities of constituent particles and the origins of their sources.
Finally, we indicate the ways to detect the intrinsic Lorentz
invariance violation and to interpret them theoretically.

a e-mail: iver.h.brevik@ntnu.no
b e-mail: masud.chaichian@helsinki.fi (corresponding author)
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1 Introduction

The propagation of gamma-ray bursts (GRB) in the interstel-
lar medium is a topic that has attracted considerable inter-
est. GRB are highly energetic and diverse events, which are
thought to be produced by violent stellar processes, in par-
ticular the supernovas and mergers of binary neutron stars.
Those events may also produce high-energy cosmic rays and
consequently bursts of high-energy neutrinos [1,2]. How-
ever, coincident GRB and neutrino bursts have not been
observed. The possibility that the neutrino burst could be
shifted in time with respect to the GRB is under active study.
The time window τ = tGRB − tν between the arrival times
of a GRB, tGRB , and a neutrino burst, tν , could vary between
seconds or several days. References about this can be found
in the report [3] in connection with the ANTARES neutrino
telescope. Experimental data taken between 2007 and 2012
were analyzed; gamma-ray energies analyzed were up to 100
TeV. Assuming that a GRB and the corresponding neutrino
burst are produced at the same time, a significant delay τ

would indicate that the electromagnetic and neutrino signals
have travelled at different speeds. Note, however, that the
recent experimental studies show only faint neutrino signals
associated with GRB [3,4], and hence the observed delays
may be inaccurate.

Theoretical interpretations of the GRB delay phenomena
have proved to be challenging. Violation of Lorentz invari-
ance at very high energies in the form of modifying the dis-
persion relation has been considered as a potential interpre-
tation of the delay of high-energy GRB [5–8]. This approach
is motivated by various approaches to quantum gravity, as
quantum-gravitational fluctuations may lead to a nontrivial
refractive index [9]. The stringy spacetime foam is a realiza-
tion of such an effect [10]. Those are examples of induced
violation of Lorentz invariance.

We consider a mechanism within the standard physics.
Namely, in the presence of media which interact with pho-
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tons, the dispersion of light always occurs what induces
changes in the speed of light from its value c in the vac-
uum. Along this line we study the dispersion of light in sev-
eral interstellar media and assess the produced GRB delay
when photons and neutrinos are assumed to be emitted from
the same source and simultaneously. Neither an electron–
positron plasma nor a photon medium can account for sig-
nificant GRB delays, taking the observed or the assumed
densities of electrons and photons are too low to slowdown
the high-energy photons sufficiently. By a plasma here it is
meant a medium where the wave-length of the incoming light
is much smaller than the free path of the constituent parti-
cles of the medium. Therefore, we study the properties of
an axionic medium. Axions are pseudoscalar particles that
may both provide a solution to the strong CP problem and as
well be a candidate for cold dark matter (CDM). They are not
electrically charged but can still interact with photons. Axion
electrodynamics has been studied actively and it is connected
to topological insulators [11–14]. While the original axion
model was ruled out by observations, a new version of the
axion, which is called the invisible axion, is consistent with
laboratory experiments and astrophysical observations [15].
Therefore, an axion medium is a plausible cosmic medium
that would have an effect on the propagation of light from
distant galaxies. We derive the dispersion relation in an axion
medium and assess its effect on the GRB delay.

Our approach is based on the quantum field theory and
the optical theorem. We derive the value of of the plasma
frequency ωp, i.e., the term contributing to the change in the
speed of light. To our knowledge such a derivation and the
result has not been given before. Then the corresponding dis-
persion relation in this medium and the produced GRB delay
are derived.Our estimates show that the interaction between
GRB and axions is too weak for producing a significant delay
between the gamma-ray and neutrino signals.

To make our physical picture clear: we assume that the
photons and neutrinos are emitted from the same source at
the same time, and calculate the value of τ in all plausible
media in the interstellar space and for a few selected values of
the incoming GRB frequency. The dispersive effect indicates
that the refractive index will be less than unity, corresponding
to the phase velocity being superluminal, while the group
velocity is subluminal. We neglect the dissipation effect as
this is expected to be weak. At the highest photon frequencies
where the permittivity is very close to unity, the photon group
velocity is slightly lower than c, so that for these frequencies
the delay necessarily has to be the least.

Notice that the interaction of neutrinos with any inter-
stellar medium is extremely weak and hence the disper-
sion of neutrinos is negligible. Secondly, while the neutri-
nos are massive and oscillating, the effect on the speed of
high-energy neutrinos is very small. Consider a GRB with
photon energy 1 TeV and neutrinos with the same energy,

E = 1 TeV. The dispersion relation E2 = p2c2 + m2c4

gives the speed of the neutrinos as vν = dE
dp ≈ c(1 − dν),

where dν = m2c4

2E2 . Averaging over 3 neutrinos, 〈m2c4〉 =
(1/3)(0.1 eV)2, where the masses are estimated with the
heaviest neutrino mass. The speed of neutrinos is given by
dν = 1.7 × 10−27. Thus the delay compared to a signal trav-
elling at the speed c would be measured in nanoseconds even
for signals from furthest galaxies: τ = D × dν/c � 10−9 s,
using a maximal travelling distance D = 1.4×1026 m (effec-
tive distance to farthest galaxies around z = 10). That is a
negligible time delay compared to the GRB delays searched
in experiments. Some theories of neutrino production in GRB
actually predict neutrinos with even higher energy of order
102–107 TeV [1], which means vν might be even closer to c.
These arguments justify to take vν = c in our estimates.

The time delay generated by dispersion of light in a
medium in its form is essentially different from those caused
by the induced Lorentz invariance violations due to quan-
tum gravity effects and in particular a spacetime foam: in
the latter cases, the speed of light becomes less for higher
energy photon and thus the time delays compared with neu-
trino bursts grows, a distinguishable effect opposite to the
effect of light dispersion in all the media. We shall not con-
sider those (induced) Lorentz invariance breakings in detail
here, although some remarks will be given in Sect. 4. We
mention though that by assuming a spacetime foam as the
cosmic medium, it has been found [9,17] that the delay time
is longest for the more energetic photons. This points to an
important observation: if one considers one single GRB, the
dispersive theory predicts the highest frequencies to move
faster, while in the Lorentz violation theory these frequen-
cies will move slower. An experimental test of these theories
is thus possible.

Finally, we will mention some remarks and remind of
some intrinsic Lorentz invariance violation effects.

The Minkowski metric is defined with the signature
(ημν) = diag(+1,−1,−1,−1).

2 GBR delay in usual cosmic media

2.1 Dispersion relation and plasma frequency

A plasma can support both longitudinal and transverse waves.
We are interested in transverse waves. Dispersion relation for
light in a plasma is [18]

ω2 = c2k2 + ω2
p, (1)

where ωp is the plasma frequency, which is due to the plasma
oscillations called Langmuir waves, derived from the classi-
cal Maxwell equations. The angular frequency is also given
as ω = v(k̂) · k = c|k|

n , where n is the refraction index
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and v = c
n k̂ is the phase velocity, where k̂ = k

|k| . Thus the
refraction index is related to the plasma frequency as

n2 = 1 − ω2
p

ω2 . (2)

In an isotropic medium, ω = ω(|k|) and ωp = ωp(|k|),
group velocity is parallel to phase velocity, vg = vg k̂, with
the magnitude given as

vg = ∂ω(|k|)
∂|k| = c

c|k| + 1
2c

∂ω2
p

∂|k|√
ω2
p + c2k2

. (3)

Since superluminal propagation of energy and information
is forbidden, we demand that the plasma frequency ωp(|k|)
must satisfy the following condition for any k,

c|k| + 1
2c

∂ω2
p

∂|k|√
ω2
p + c2k2

≤ 1. (4)

We should note that a superluminal group velocity does not
imply violation of special relativity, since in such a case the
signal velocity is not equal to group velocity [21]. We still
consider only cases with vg ≤ 1 so that the group velocity
can be taken as the signal velocity. If the plasma frequency
is independent of k, which is the case in a usual plasma
with charged particles, and the photon momentum is large
compared to the plasma frequency, c2k2 � ω2

p, we obtain
that group velocity is only slightly lower than c,

vg = ∂ω(|k|)
∂|k|

∼= c

(
1 − ω2

p

2ω2

)
≡ c(1 − d), (5)

where d ≡ ω2
p

2ω2 	 1.

2.2 Electron–positron plasma

For an electron–positron plasma, the plasma frequency is
obtained from classical electrodynamics [18–20] as (in SI
units)

ω2
p = Ne2

ε0me
, (6)

where N is the number density of electrons, e2 is the square
of the electric charge of the electron, ε0 is the permittivity
of vacuum, and the mass of the electron is me = 9.11 ×
10−31 kg = 0.511 MeV/c2. The same result (6) is obtained
from quantum field theory, which is shown in Appendix A.
The lightest charged particles have the greatest effect on the
dispersion of light. The number density of electrons N is left
unspecified for now.

From (6) we get the plasma frequency ωp = 56
√
N̄ rad/s,

where N̄ denotes the number density of electrons as a dimen-
sionless quantity measured in SI units: N̄ = N

[N ] = N × m3,

where [N ] = m−3. The angular frequency for the gamma-
ray energy E is ω = 1.5× Ē×1027 rad/s, where Ē = E

GeV is
gamma-ray energy in GeV units. We obtain the group veloc-
ity (5) of the gamma-ray as

vGRB = c
(

1 − 0.7 × 10−45 × N̄/Ē2
)

. (7)

Assume now that D(z) is the effective distance travelled
by the photons taking into account the expansion of the Uni-
verse. It is defined as [3]

D(z) = c

H0

∫ z

0

(1 + z′)dz′√
Ωm(1 + z′)3 + ΩΛ

, (8)

where z is the redshift, H0 the present Hubble parameter, and
Ωm and ΩΛ are the standard symbols for the relative matter
and dark energy densities. (For an alternative to this method,
see [22].) In principle, the photon transit time is

t = D(z)

vGRB
. (9)

In order to evaluate this, one ought to include the z-
dependence of vGRB due to the varying density of the plasma.
However, we shall ignore the z-dependence of N and vGRB

for now, since we are only dealing with some estimates. The
time delay between two signals travelling at the speeds (5)
and c is obtained as

τ = D × d

c(1 − d)
∼= D × d

c
. (10)

For the electrons (7) we obtain the GRB delay

τ = 0.7 × 10−45 × N̄

Ē2
× D

c
. (11)

As a first estimate, we may consider galaxy filaments, which
are the greatest structures in the universe. The size of the
largest filaments is measured in gigaparsecs. While we do
not know the electron density in the largest known fila-
ments, we can estimate it with the known electron density
of closer filaments. Hence we use the electron density of
galaxy filaments around z = 0.1 [23]: Ne = (4.7 ± 0.2) ×
10−4h1/2

100 cm−3 ≈ 4 × 102 m−3. The effective distance is
chosen as D = 3 Gpc = 9 × 1025 m. The delay produced
by electrons for a GRB propagating through such a structure
is estimated as

τ = 0.8 × 10−25 s

Ē2
, (12)

which is negligible for high-energy photons, in particular for
GRB photons with Ē ≥ 1.

We conclude that the dispersive properties of an electron
gas are not significant enough to account for measurable GRB
time delays. In fact, even the delay of neutrinos caused by
the masses of the neutrinos is much longer than the delay due
to dispersion of light in the cosmic electron medium.
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2.3 Photon medium

Dispersion of light in photon medium also produces a GRB
delay that is far too small to explain the observed delay.
Light-on-light scattering has been studied in particle accel-
erator experiments in great detail. While direct observation
of light-on-light scattering is difficult to achieve in particle
accelerators [24], evidence for it is increasing and it also used
for the search of axion particles [25,26]. When dealing with
strong fields this process has attracted considerable interest
and new types of experiments have been proposed; cf., for
instance, Refs. [27,28].

We obtain from light-on-light scattering [29–33] (see
Appendix A.3)

ω2
p = const. × Nγ e4

ω
, (13)

where Nγ is the number density of photons and ω = √
s/2

in terms of the invariant s. According to the Planck data on
the CMB (Cosmic Microwave Background) radiation, which
constitute the majority of photons in the Universe, we have
the number density of photons Nγ = (4–5) × 108 m−3. The
GRB delay produced by CMB is estimated as

τCMB = 4 × 10−41 GeV3

s3/2

×D

c
= 4 × 10−23

Ē3/2
× D

c
. (14)

For GRB originating from the farthest galaxies the delay
produced by the interaction with CMB is τCMB = 2 ×
10−5 s/Ē3/2; e.g. for a gamma-ray energy E = 100 GeV
the delay is τCMB = 2 × 10−8 s. This is a very short delay
but still much longer than the delay produced by electrons
(12).

The extra-galactic background light (EBL) is the second,
after the CMB, most abundant part of the photon medium in
the Universe. With the data as given in [34,35] (see also [36]),
we obtain the photon number density NEBL = 104 m−3, and
with a typical EBL photon energy of 1 eV, we obtain the
delay τEBL = 10−32/Ē−3/2 × (D/c). Thus, the number of
CMB photons is several orders of magnitude larger than the
number of EBL photons and the same is with τCMB compared
with τEBL.

For high-energy light propagating in the Universe, there
also appears the electromagnetic cascades due to the electron–
positron pair production, what adds an additional contribu-
tion to the ordinary electromagnetic background. However,
this process goes through a higher order in the electromag-
netic coupling constant and its contribution to the delay τ

can be neglected.
Thus the dispersion on background photons does not pro-

duce a significant GRB delay.

3 Axions and their effect on the propagation of
gamma-rays

Since the GRB delay produced by a charged plasma was
found to be proportional to the inverse of the particle mass,
τ ∝ m−1, it becomes natural to look for particles of much
lower mass than the electron. As mentioned above, we will
consider a model where the dark matter consists of axions.
However, since an electrically charged axion is not consistent
with experiments and observations, the plasma frequency for-
mula for charged plasma (6) is no longer valid. Nevertheless,
with the vivid activity in axion electrodynamics [11–14] with
its connection to topological insulators (for experiment, see
CERN Axion Solar Telescope), the assumption of an axionic
plasma with its coupling to photons seems quite appropriate.
The characteristic axion mass for the QCD axion experiments
is about ma = 10−5 eV/c2 [15]. However, the axion mass
may be much smaller: a satisfactory agreement with con-
straints has been reported when the axion mass lies in the
interval 10−18 eV < ma < 10−28 eV [16].

The effective coupling between the axion and two photons
is given by the interaction Lagrangian [15,37]

Laγ γ = −1

4
gγ

α

π

1

fa
a(x)Fμν(x)F̃μν(x), (15)

where α is the fine structure constant and

gγ = 1

2

(Ne

N − 5

3
− md − mu

md + mu

)
. (16)

Here N and Ne are respectively the color anomaly and elec-
tromagnetic anomaly, md and mu are the quark masses, fa
is the axion decay constant, and a(x) is the axion field. The
electromagnetic field strength tensor is Fμν = ∂μAν −∂ν Aμ,
and its dual F̃μν = 1

2εμνρσ Fρσ . We define the effective cou-
pling constant g as

g = gγ

α

π

1

fa
. (17)

If the interaction Lagrangian is written in terms of the elec-
tric E and the magnetic field B, we would have Laγ γ =
−ga(x)E · B. Here we adopt a system of units with
Heaviside–Lorentz electromagnetic units and h̄ = c = 1.

First we note that the optical properties of axion back-
grounds have been explored in [38,39] and references therein
by means of classical axion electrodynamics. The issues con-
cerning GRB have not been considered. The group velocity
of light in the presence of the axion field and without charged
plasma is given as vg = 1+g2(∂μa)2/8k2

0 [38]. If the vector
∂μa is timelike, (∂μa)2 > 1, the group velocity is not the
velocity at which information propagates, and in such cases
one should instead use true signal velocity [21]. In order to
apply the aforementioned formula for vg to the problem of
GRB delay one would need to obtain the value of (∂μa)2

along the route of GRB, or relate (∂μa)2 to the density of
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axions. We shall not do that here. Instead we use an approach
that is based on quantum field theory.

We would like to mention that while the aim of [38] has
been to follow the trajectory of the electromagnetic field to
obtain the polarisation vector and the possibility of bire-
frigence effect, which can occur only in a chiral medium,
e.g. in an axionic one, our aim has been to find out the group
velocity of GRB travelling through different media such as
electron–positron, axion and CMB, each separately, and the
delay time for each of them. For that purpose we have con-
sidered the dispersion of unpolarized light, and the emerging
time delays depending on the photon energy, what is the rele-
vant case for the present GRB experiments. The unpolarized
case is obtained in the quantum field theoretical derivation of
the scattering amplitude by averaging over the initial polar-
ization states and summing over the final polarization states.
In this way the effect of the gyration vector cancels out and
no birefringence appears. In future, when the experimental
facilities and detectors will have the precision of measur-
ing the polarised GRB bursts with different delay times, the
analysis performed in [38] will be most useful.

We derive the dispersion equation (1) for unpolarised com-
ing and detected lights in the axionic matter. A quantum
field theoretical calculation of the plasma frequency ω2

p is
given next. The calculation holds for high-energy photons,
when the photon energy is much higher than the mass of the
axion ma . A calculation like this has to our knowledge not
been given before, neither in classical electrodynamics nor
in quantum field theory.

3.1 Derivation of the dispersion relation of light in axion
medium

3.1.1 Calculation of the scattering amplitude

We use the technique illustrated in Appendix A. The effective
interaction Lagrangian (15) for invisible axion is

Laγ γ = −1

4
gaFμν F̃

μν = −1

2
gaεμνρσ ∂μAν∂ρ Aσ . (18)

The Feyman rule for the interaction vertex is read from the
interaction Lagrangian as i

2gε
μνρσ k(1)

μ k(2)
ρ , where k(1) and

k(2) are the four-momenta of the two photons and the free
indices ν and σ correspond to the first and second photons,
respectively.

We consider scattering of photon on axion, γ +a → γ +a,
at tree level. The scattering amplitude M is a sum of the two
diagrams in Fig. 1.

First we consider the s-channel contribution in detail (first
diagram in Fig. 1). Ingoing photon and axion have four-
momenta k and p, respectively. The resulting virtual pho-
ton propagates with momentum k + p. Outgoing momenta
are primed k′ (photon) and p′ (axion), and four-momentum is

Fig. 1 Feynman diagrams for scattering of photon on axion

conserved k+ p = k′ + p′. The contribution of the s-channel
diagram to the scattering amplitude in Feynman gauge is

iM(s) = i

2
gεαβγ δ(kα + pα)ε∗

β(k′, λ′)k′
γ

−igδσ

(k + p)2

× i

2
gεμνρσ kμεν(k, λ)(kρ + pρ), (19)

where at the right-hand side of the propagator we have the
first vertex. That is simplified as

M(s) = −3!g2

4

(kμ + pμ)ε∗
ν (k′, λ′)k′

ρk
[μεν(k, λ)pρ]

(k + p)2 (20)

using

εμνρσ kρkσ = 0 (21)

and

εαβγ δgδσ εμνρσ = −δ
αβγ

μ′ν′ρ′gμ′μgν′νgρ′ρ

= −3!δ[α
μ′δ

β

ν′δ
γ ]
ρ′ gμ′μgν′νgρ′ρ. (22)

Then we write out the antisymmetrization of the indices μνρ

and use the gauge condition kμεμ(k, λ) = 0,

M(s) = −3g2

2

1

(k + p)2

[
(kμ + pμ)kμ

×ε∗
ν (k′, λ′)εν(k, λ)k′

ρ p
ρ

−(kμ + pμ)kμε∗
ν (k′, λ′)pνk′

ρερ(k, λ)

−pμεμ(k, λ)ε∗
ν (k′, λ′)kνk′

ρ p
ρ

+(kμ + pμ)pμε∗
ν (k′, λ′)kνk′

ρερ(k, λ)

+pμεμ(k, λ)ε∗
ν (k′, λ′)pνk′

ρk
ρ

−(kμ + pμ)pμε∗
ν (k′, λ′)εν(k, λ)k′

ρk
ρ
]
. (23)

Now use k2 = 0 for the initial photon and p2 = m2
a for the

axion:

M(s) = −3g2

2

1

(2k · p + m2
a)

[(
(k · p)(k′ · p)

−(k · p + m2
a)(k

′ · k))ε∗
μ(k′, λ′)εμ(k, λ)

+(
(k · p + m2

a)k
μk′

ν − (k′ · p)kμ pν

−(k · p)pμk′
ν + (k′ · k)pμ pν

)

×ε∗
μ(k′, λ′)εν(k, λ)

]
. (24)

When the momenta of the initial and final photons are
parallel (with an angle θ = 0 between k and k′), we
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have k · k′ = 0, and we also have k′
μεμ(k, λ) = 0 and

kμε∗
μ(k′, λ′) = 0 from the gauge condition. Thus only the

first term of (24) survives in forward scattering. Furthermore,
since the momenta of the initial and final photons are parallel,
their polarization can be described with same vectors, which
are taken to be orthonormal, ε∗

μ(k, λ′)εμ(k, λ) = −δλ′λ.
Therefore for θ = 0 the amplitude (24) becomes

M(s)(0) = 3g2

2
δλ′λ

(k · p)(k′ · p)
(2k · p + m2

a)
. (25)

Then we assume that axions are very cold so that their linear
three-momenta p are very small, ma � pi and k0 � pi

(i = 1, 2, 3). In the scattering amplitude, we can approxi-
mate k · p = k0

√
m2

a + p2 − k · p ∼= k0ma . This approxi-
mation becomes exact in the rest frame of the initial axion,
p = 0, which we shall use as the “laboratory frame” of
our calculation. Furthermore, we obtain from conservation
of four-momentum that (k + p − k′)2 = p′2, where the left-
hand side is 2k · p +m2

a − 2k′
μ p

μ in forward scattering and
the right-hand side is m2

a . This implies k′
0 = k0. We obtain

M(s)(0) = 3g2

2
δλ′λ

k2
0ma

(2k0 + ma)
. (26)

The u-channel contribution (second diagram in Fig. 1) is
similar to the s-channel but with the four-momentum of the
virtual photon k + p replaced by k − p′,

iM(u) = i

2
gεαβγ δ(kα − p′

α)ε∗
β(k′, λ′)k′

γ

−igδσ

(k − p′)2

× i

2
gεμνρσ kμεν(k, λ)(kρ − p′

ρ). (27)

Thus the u-channel contribution to the forward scattering
amplitude is obtained as

M(u)(0) = 3g2

2
δλ′λ

(k · p′)(k′ · p′)
(−2k · p′ + m2

a)
. (28)

Using the conservation of four-momentum, we get

M(u)(0) = 3g2

2
δλ′λ

k2
0ma

(−2k0 + ma)
. (29)

The scattering amplitude for θ = 0 is

M(0) = M(s)(0) + M(t)(0)

= 3g2

2
δλ′λ

(
k2

0ma

(2k0 + ma)
+ k2

0ma

(−2k0 + ma)

)
, (30)

and its square for unpolarized photons is

1

2

∑
λ,λ′

|M(0)|2 =
(

3g2

2

)2
∣∣∣∣∣

k2
0ma

(2k0 + ma)
+ k2

0ma

(−2k0 + ma)

∣∣∣∣∣
2

=
(

3g2
)2

∣∣∣∣∣
k2

0m
2
a

−4k2
0 + m2

a

∣∣∣∣∣
2

. (31)

The amplitude diverges at k0 = 1
2ma , which would generally

require regulation. However, here we are concerned with the
high-energy case k0 � ma .

The differential cross section for unpolarized photons is

dσ = 1

2k0

1

2p0

⎛
⎝1

2

∑
λ,λ′

|M|2
⎞
⎠ dLips, (32)

where the relative velocity of the initial particles is c = 1 (in
any frame) and the Lorentz invariant two-body phase space
is the same one as in the case of photon–electron scattering
(A.12)–(A.14). The differential cross section is written as

dσ = k′
0

64π2k0 p0 p′
0

⎛
⎝1

2

∑
λ,λ′

|M|2
⎞
⎠ dΩ. (33)

We now choose the rest frame of the initial axion and
specialize to forward scattering θ = 0. We have seen that
k′

0 = k0 and p0 = p′
0 = ma , and hence the differential cross

section is

dσ(0) = 1

64π2m2
a

⎛
⎝1

2

∑
λ,λ′

|M(0)|2
⎞
⎠ dΩ

=
(

3g2

8π

)2
∣∣∣∣∣

k2
0ma

−4k2
0 + m2

a

∣∣∣∣∣
2

dΩ. (34)

According to (A.8) the absolute value of the forward scatter-
ing amplitude is given as

| f (0)| = 3g2

8π

ω2ma

|4ω2 − m2
a |

, (35)

where the energy of the photon is given by its angular fre-
quency, k0 = ω. Unlike in the case of electron–positron
plasma, the forward scattering amplitude depends on the pho-
ton energy.

Finally, we note that in the dispersion relation (1) we may
want to write the plasma frequency as a function of momen-
tum |k| instead of ω. Since the photon of the scattering pro-
cess is free, we can simply write ω = |k| in (35),

| f (0)| = 3g2

8π

k2ma

|4k2 − m2
a |

. (36)

3.1.2 Plasma frequency in axion medium

We obtain from (35) that

ω2
p = 3Ng2

2

ω2ma∣∣4ω2 − m2
a

∣∣ . (37)
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Recall that our derivation of (A.4) assumed ω2
p 	 ω2, and

hence (37) is valid when

3
2 Ng2ma∣∣4ω2 − m2

a

∣∣ 	 1. (38)

Furthermore, an energy or momentum dependent plasma fre-
quency must satisfy the condition (4). When ω > 1

2ma , the

result (37) clearly satisfies the condition (4), since
∂ω2

p
∂|k| =

−3Ng2 |k|m3
a

(4k2−m2
a)

2 < 0.

Axions are expected to be very light: ma � 10−5 eV or
possibly ma � 10−18 eV [16]. For photons with energies
well above the axion mass, ω � ma , the plasma frequency
(37) is nearly constant, i.e. independent of the frequency of
the incoming light:

ω2
p = 3

8
Ng2ma

(
1 +

∞∑
n=1

(
m2

a

4ω2

)n
)

∼= 3

8
Ng2ma . (39)

If the axion is very lightma � 10−18 eV, the above result can
even be applied to most radio waves. Notice that the result
for the dispersion of light in axion medium given in (39)
using the Green functions method in quantum field theory,
as performed in this work, is new and has not been previously
given in the literature.

In the case of gamma-ray bursts, we are deep in the high
energy regime. Thus the relevant result is

ω2
p = 3

8
Ng2ma . (40)

Note that (40) is proportional to the mean mass density of
the axions, ρa = Nma , as

ω2
p = 3

8
g2ρa . (41)

Thus only the density of axionic dark matter determines the
dispersion of light in the cosmic axion medium.

3.1.3 The delay of gamma-rays in axion medium

The group velocity of gamma-rays in the axion medium is

vGRB = 1 − d, d = 3

16

g2ρa

ω2 . (42)

Estimating the effective coupling constant to be

g = 10−10 GeV−1, (43)

and assuming, according to the GUT models,

gγ = mu

md + mu
≈ 0.36, (44)

we obtain

d = 1.4 × 10−68 × ρ̄a

Ē2
, (45)

where ρ̄a is the axion density in units GeV/m3 and Ē is
gamma-ray energy in GeV.

Thus the delay of gamma-rays in the axion medium is

τ = 3

16

g2ρa

ω2 × D

c
= 1.4 × 10−68 × ρ̄a

Ē2
× D

c
, (46)

where D the effective distance traveled by the photons. (As
mentioned, we take the velocity of neutrinos to be c.)

As a first estimate, let us consider the Galactic Halo (GH)
where dark matter is assumed to consist of axions. The energy
density of GH is 0.45 GeV/cm3 and the radius of GH is
5 × 1020 m [40]. The delay of GRB propagating through the
GH is

τ = 1.1 × 10−50 s

Ē2
. (47)

As a second example, we consider a massive galaxy fil-
ament. The average axion density is estimated as ρa =
103 GeV/m3 and the effective distance is D = 3 Gpc =
9 × 1025 m. The delay of GRB is obtained as

τ = 0.7 × 10−48 s

Ē2
. (48)

The delay is negligible for high-energy photons, as it also is
in the case of GH.

We may also comment on the importance of the magnetic
field. For an electron–positron plasma, there is no magnetic
contribution. By extending to the case of chiral media, the
magnetic field comes into play giving an enhancement of g
and a reduction of Na . It is known that for a chiral medium,
there is a magnetic contribution to the Casimir effect [41,42].

3.2 Derivation of the dispersion relation of light in photon
medium due to axion exchange

When axions exist, photons can interact with each other
via axion exchange, in addition to the usual photon-by-
photon interaction due to fermion–antifermion loops (box
diagrams).

3.2.1 Calculation of the scattering amplitude

We consider scattering of photon on photon γ γ → γ γ at
tree level. The scattering amplitude M is described by the
diagrams in Fig. 2.

Fig. 2 Feynman diagrams for scattering of photon on photon in axion
electrodynamics
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The scattering amplitude is written as

iM = i

2
gεαβγ δk3αε∗

β(k3, λ3)k4γ ε∗
δ (k4, λ4)

−i

s − m2
a

× i

2
gεμνρσ k1μεν(k1, λ1)k2ρεσ (k2, λ2)

+ i

2
gεαβγ δk2αεβ(k2, λ2)k4γ ε∗

δ (k4, λ4)
−i

t − m2
a

× i

2
gεμνρσ k1μεν(k1, λ1)k3ρε∗

σ (k3, λ3)

+ i

2
gεαβγ δk2αεβ(k2, λ2)k3γ ε∗

δ (k3, λ3)
−i

u − m2
a

× i

2
gεμνρσ k1μεν(k1, λ1)k4ρε∗

σ (k4, λ4). (49)

where s = (k1 + k2)
2 = 2k1 · k2, t = (k1 − k3)

2 = −2k1 · k3

and u = (k1 − k4)
2 = −2k1 · k4.

We use the center-of-momentum frame, where k1 =
(ω, k), k2 = (ω,−k), k3 = (ω′, k′) and k4 = (ω′,−k′).
We have s = 2(ω2 + k2) = 4ω2, t = −2(ωω′ − k · k′) =
−2ωω′(1 − cos θ) and u = −2(ωω′ + k · k′) = −2ωω′(1 +
cos θ), where θ is the scattering angle between k and k′. Con-
servation of energy and momentum ensures that s+t+u = 0,
and implies that ω′ = ω.

The differential cross section in the center-of-momentum
frame for unpolarized photons is

dσ

dΩ
= 1

64π2s

⎛
⎝1

4

∑
λ1,λ2,λ3,λ4

|M|2
⎞
⎠ . (50)

We consider scattering at angle θ = 0. Then the four-
momenta k3 = k1 and k4 = k2, and the same polariza-
tion vectors are used to describe the corresponding initial
and final photons that have the same momenta. In Cartesian
coordinates, we may choose k1 = k3 = (ω, 0, 0, ω) and lin-
ear polarization vectors ε(k1, 1) = ε(k3, 1) = (0, 1, 0, 0)

and ε(k1, 2) = ε(k3, 2) = (0, 0, 1, 0). Correspondingly,
we have k2 = k4 = (ω, 0, 0,−ω) and polarization vec-
tors ε(k2, 1) = ε(k4, 1) = (0, 1, 0, 0) and ε(k2, 2) =
ε(k4, 2) = (0, 0,−1, 0). Then we need to evaluate the ver-
tices of the amplitude (49).

First consider the vertices in the s-channel contribution.
In the vertices we have

εμνρσ k
μ
1 εν(k1, λ1)k

ρ
2 εσ (k2, λ2) = −2ω2 Jλ1λ2 , (51)

and

εμνρσ k
μ
3 ε∗ν(k3, λ3)k

ρ
4 ε∗σ (k4, λ4) = −2ω2 Jλ3λ4 , (52)

where we introduced the two-dimensional anti-diagonal unit

matrix J =
(

0 1
1 0

)
.

In the t-channel contribution, the two momenta involved in
each vertex are identical, and consequently the contribution

vanishes:

εμνρσ k
μ
1 εν(k1, λ1)k

ρ
3 ε∗σ (k3, λ3)

= εμνρσ k
μ
1 εν(k1, λ1)k

ρ
1 ε∗σ (k1, λ3) = 0, (53)

and

εμνρσ k
μ
2 εν(k2, λ2)k

ρ
4 ε∗σ (k4, λ4)

= εμνρσ k
μ
2 εν(k2, λ2)k

ρ
2 ε∗σ (k2, λ4) = 0. (54)

In the u-channel contribution, we obtain

εμνρσ k
μ
1 εν(k1, λ1)k

ρ
4 ε∗σ (k4, λ4) = −2ω2 Jλ1λ4 , (55)

and

εμνρσ k
μ
2 εν(k2, λ2)k

ρ
3 ε∗σ (k3, λ3) = −2ω2 Jλ2λ3 . (56)

The unpolarized squared amplitude for the scattering
angle θ = 0 is

1

4

∑
λ1,λ2,λ3,λ4

|M(0)|2 = g4ω8

(s − m2
a)

2

+ g4ω8

2(s − m2
a)(u − m2

a)
+ g4ω8

(u − m2
a)

2 . (57)

For angle θ = 0 we have s = u = 4ω2 and hence we obtain

1

4

∑
λ1,λ2,λ3,λ4

|M(0)|2 = 5g4ω8

2(4ω2 − m2
a)

2 . (58)

Thus the differential cross section (50) for unpolarized pho-
tons at the scattering angle θ = 0 is

dσ(0)

dΩ
= 5g4

29π2

ω6

(4ω2 − m2
a)

2 . (59)

3.2.2 Dispersion relation and the delay of gamma-rays

The contribution of axions to the photon plasma frequency
is

ω2
p =

√
5Ng2

4
√

2

√
ω6

(4ω2 − m2
a)

2 =
√

5Ng2

16
√

2

ω

1 − m2
a

4ω2

, (60)

where N is the number density of photons. In high energies
ω � m2

a , we have

ω2
p =

√
5Ng2

16
√

2
ω

(
1 +

∞∑
i=1

(
m2

a

s

)i
)

�
√

5Ng2

16
√

2
ω, (61)

where ω = √
s/2 in terms of the invariant s.

The group velocity of gamma-rays in the photon medium
is

vGRB = 1 − d, d =
√

5Ng2

32
√

2ω
. (62)

Using the photon number density of CMB, Nγ = (4–5) ×
108 m−3, and estimating the effective coupling constant to
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be g = 10−10 GeV−1, the contribution of axion exchange to
the GRB delay produced by CMB is given as

τCMB = 3 × 10−54

√
Ē

× D

c
. (63)

For GRB originating from the farthest galaxies (D =
1.4 × 1026 m) the delay produced by the interaction with
CMB is τCMB = 2 × 10−36 s/

√
Ē ; e.g. for gamma-ray

energy E = 100 GeV the delay is τCMB = 2 × 10−37 s,
which is a negligible delay.

4 Remarks on Lorentz invariance violation

The high energy tests of (an intrinsic) Lorentz invariance
violation (LIV), as proposed by [43] with specific examples
for them, have attracted considerable interest in connection
with GRB; see e.g. [5–8,10,44–48]. We shall now compare
the present light dispersion approach to the assumption of
Lorentz invariance violation. Typically, in the LIV approach
motivated by quantum gravity effects the dispersion relation
contains higher-powers of energy,

E2

[
1 + ξ

E

EQG
+ O

(
E2

E2
QG

)]
= p2c2 + m2c4, (64)

where EQG is an effective energy scale for quantum gravity,
commonly taken to be of order 1016 GeV, and ξ is an arbi-
trary parameter. The expression for the group velocity takes
the following form to leading order in E/EQG ,

vg = c

(
1 − ξ

E

EQG

)
. (65)

Then it is assumed that ξ > 0 so that vg as the signal speed
of radiation is subluminal. Thus, the higher energy of GRB,
the greater slowdown of it.

Comparison with the dispersion relation (5) above leads
to an interesting observation: the energy dependencies of the
resulting GRB time delays are qualitatively different, which
can be used to distinguish the two interpretations including
their amounts experimentally. In the case of LIV, the time
delay behaves as τ ∝ E . Dispersion in electron and axion
media produces a time delay as τ ∝ E−2. Thus, if gamma-
rays with the highest energies arrive first, the conventional
dispersive plasma theory with an electron-like coupling is
supported, while if the highest-energy gamma-rays arrive
later, the Lorentz invariance breaking dispersion relation is
supported. It would be quite important to test out this issue
experimentally. An observation of advance of the highest
energy photons would imply that the LIV model would have
to be reconsidered. In order to perform such a test, the spec-
trum of GRB needs to be recorded with as high temporal
resolution as possible.

Since the LIV modification of the dispersion relation
should effect particles of all kinds, and particularly both pho-
tons and neutrinos, it is difficult to explain the delays between
GRB and neutrino bursts coming from the same source. In
this interpretation such a delay could only be possible if the
energy of neutrinos differs from the energy of photons by
several orders of magnitude [7], which is hard to believe.
However, if one would argue that in LIV the dispersions
relations for photon and neutrino are different due to differ-
ent quantum gravity effects on them, then by all means the
whole effect should not be called LIV but the induced LIV.

It is noteworthy that it is not known experimentally
whether the gamma-ray bursts arrive earlier, or later, than
the neutrino bursts – the IceCube in Antarctica has detected
some cosmic neutrinos, but they cannot be associated with
any astrophysical object [49] (for a recent experiment at this
detector, see [4]).

Finally, we would like to mention that an intrinsic viola-
tion of the Lorentz symmetry can be detected in several ways
in precision experiments in different processes as has been in
full details described in [43]. LIV can also occur in a way that
differs from the hitherto used approach to LIV by changing
the Special Relativity dispersion relation. For instance, the
Lorentz group could be broken to certain proper subgroups
of the Poincaré group, to the so-called Very Special Relativ-
ity [53]. It also can occur that the dispersion relation does not
change but the Lorentz symmetry is broken – an example is
the noncommutative field theory [50,51], where we have the
residual twisted Poincaré symmetry [52].

5 Discussion and conclusions

We have considered the propagation of gamma-ray photons
in the interstellar space – a problem of considerable interest
by itself and analyzed in details the dispersion of light trav-
elling through the interstellar space behaving as a plasma
medium.

Dispersive properties of normal matter and background
radiation, CMB, are insufficient to produce a significant GRB
delay, when using some indicative densities of the constituent
particles.

We have considered the media having nonrelativistic con-
stituents – the nonrelativistic approximation can be justified
since the main part of the GRB travel occurs in the interstellar
space, where the delay actually occurs, and the temperature
is so low (as in CMB) that the constituent particles of the
media are practically frozen.

Then we have taken into account the effect of dark mat-
ter by assuming that dark matter consists of very light and
cold particles, the hypothetical axions, with their theoreti-
cally expected coupling to photons. We find that for the hith-
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erto realistic density of dark matter (revealed by its gravita-
tional effect), the produced GRB delay is also very small.

The derived basic formulas for the time delay τ are given
in Eq. (12) for an electron–positron plasma, in Eq. (14) for a
photon plasma as CMB medium, in Eq. (47) for a Galactic
Halo and in (48) for a massive galaxy filament. The numerical
values in those equations are for the realistic values of the
particle densities according to different estimates, or the ones
considered to be more or less reasonable. The derivations of
the light dispersion relation in all the different media in QFT
are presented in the Appendix A and its subsections.

As seen from the Eqs. (12), (14), (47) and (48), the smallest
delay for the high energy gamma-rays comes from dispersion
in an axion plasma, and slightly larger delay for an electron–
positron plasma.

The largest delay comes from the dispersion of light in a
medium such as filled with CMB. In addition, the delay time
as a function of the incoming photon energy in a medium
filled with light radiation is 1/E3/2, while in an electron or
axion medium it is 1/E2. Thus, at higher and higher energies
the dispersion in light medium dominates over the other two
media. The latter, is a quite important issue, since the value
for the delay, which is proportional to the density of parti-
cles, given in Eq. (14) is estimated with the average density
in CMB in only the observed part of the Universe, (being
typically τ ∼ 2 × 10−8 s for a 100 GeV gamma-ray burst
from farthest galaxies), while in other parts of the Universe
the density of photons can be by far larger.

As already mentioned, we have considered the dispersion
for each medium separately, in order to evaluate and find out
which medium gives the largest delay for the dispersion of
light, which comes out to be the CMB medium. Considering
the total dispersion due to all the three media, gives simply
the addition of each of them. This is easily seen from the
derivation of dispersion relations in QFT and the fact that
the interference terms among the scattering amplitudes with
different final states do not give a contribution in the square
of the absolute value of the sum in obtaining the cross sec-
tion and thus the sum will be the addition of the absolute
magnitudes of the diagrams with the same final states.

The very high energies and long travel distances of GRB
have initiated to consider different models of Lorentz viola-
tion by modifying the (mass-energy-momentum) dispersion
relations. Such an approach typically leads to a signal veloc-
ity as in Eq. (65), which decreases as a function of energy.
We also see that such breaking of Special Relativity would
lead to the simultaneous breaking of General Relativity, in
which case many other results should be reconsidered and
revalued. Thus, we believe that before invoking the drastic
assumption of breaking of the Special Relativity to inter-
pret GRB delays, one should also consider all possible ways
to explain the phenomenon within the standard physics, a
special case of which, namely the dispersion of light in the

interstellar space, what always exists, has been presented in
the present work.

As always, the decisive evidence will finally be given by
experiment: in the case of the interpretation in terms of dis-
persion of light, the higher-energy gamma-rays arrive the
Earth earlier and the lower-energy ones later, while in the typ-
ical LIV models hitherto presented based on quantum gravity
effects such as in stringy foam models for the space, it occurs
the opposite.

We should emphasize that all the models considered till
now can only be called as an induced (seeming) LIV and not
simply as LIV, which could imply intrinsic (genuine) LIV.
The wording of simply LIV has been used for brevity in some
recent literature instead of the induced LIV.

Concerning the experimental observation of an intrinsic
(genuine) violation of the Lorentz invariance and its theoreti-
cal interpretation, we have already mentioned at the very end
of Sect. 4 above, and referred to the seminal works in [43] and
[53]. But we would like to recall that all the symmetries and
laws derived from them are based on the existence of some
group of symmetries, no matter whether they are global or
local (gauge), internal or spacetime (external) symmetries
and their breaking described by a residual or subgroup of the
original groups of symmetries or an acceptable deformation
of those groups, i.e. ones with their motivation not based
on the presence of a medium such as gravity or curvature,
but not breaking the Lorentz group in an arbitrary way. The
same should be also in the case of the breaking of the Lorentz
symmetry. The work in [53] is a good example, where the
natural requirements for the residual group of symmetry, i.e.
the broken ones, have been chosen to be a subgroup of the
Poincaré group, and such that both the translational and CPT
invariance remain preserved.

Several experiments, e.g. the recent Refs. [54–56], will
analyze the energy-dependent delay in the arriving time of
photons and will be able to resolve this issue. In the dispersive
approach, the delay of an electromagnetic signal increases at
lower photon energies. Therefore signals with radio frequen-
cies would be a possible way to test the approach. Since the
mass of axion is very low, possibly as low asma ∼ 10−18 eV,
and our derivations hold for photons with energy much higher
than the axion mass, our results may be applicable to many
radio signals as well.

The observation of gravitational waves (GW) and a short
GRB from the merger of two neutron stars in NGC 4993
[57,58] shows that gamma-ray photons do not experience
long delays, since the GRB was observed only 1.7 seconds
after the GW. Electromagnetic signals with lower frequen-
cies were recorded by several teams starting eleven hours
after the GW and ending weeks later, ranging from x-rays
to radio frequencies [58]. Optical and infrared observations
showed a towards-red evolution during 10 days. That is con-
sistent with emissions from a cooling debris of the merger. We
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remark two things. Firstly, the GRB delays caused by disper-
sion of gamma-rays in the cosmic medium, as derived in this
work, are much shorter than the observed delay between GW
170817 and GRB 170817A signals, assuming that the GW
are not effected by the medium. That is expected, since the
gamma-rays are thought to be produced after the gravitational
waves. Secondly, for the dispersive approach the dependency
of the time delay on photon frequency (i.e. higher frequen-
cies are delayed less than lower frequencies) is consistent
with the observations of the merger. The same might not be
the case with LIV models which exhibit an opposite relation
between the time delay and the photon frequency.

In our estimates we have considered only the average
axion densities at great distances, particularly at the level
of galaxy filaments and in the dark matter halo of a typi-
cal galaxy. Any finer details of axion distribution have been
neglected in these estimates. The same concerns the den-
sity of photons, such as in CMB, taken to be as in only the
observed part of the Universe. Therefore, it would be enlight-
ening to study the effects of different axion distributions, as
well as the densities of the photons in the larger distances in
greater detail. In this way, future studies of GRB delays pro-
duced by dispersion of light in media can also shed additional
light on the microstructure of the Universe.

As some final remarks, we would like to emphasize the
following points:
i) in the case of an intrinsic LIV, i.e. a genuine violation

of the Special Relativity, when the usual dispersion relation
between the energy, momentum and mass of a particle is
changed, that means the Minkowski metric is changed. Con-
sequently, the General Relativity, based on the generalisation
of Minkowski metric/diffeomorphism invariance, will break
too and its usual consequences cannot anymore be used for
analysing the experimental data;
ii) in all the models so far proposed concerning the GRB
with the arguments based on quantum gravity effects such as
stringy foam, or connected to the curvature of the space and
interpreting them as LIV, they are actually induced LIV.
Although calling them LIV is intriguing, that is not correct;
iii) the dispersion relation being simply a kinematical equa-
tion, is universal and depends on the metric of the spacetime
and not on the nature of a particle or on any moving body.
Therefore, the above-mentioned kind of models for LIV can-
not explain any delay of high energy GRB compared with
neutrino bursts, since the tiny masses of neutrinos have no
effect on the group velocity, unless one tries to invoke differ-
ent interactions of the media with GRB and neutrino—per se
they are induced Lorentz invariance violations.

Note added
After the completion of our work we were informed about

two previous works [59] and [60] on the propagation of light
in an axion or photon plasmas, respectively, in quite differ-

ent aspects and using different methods of calculation but
without addressing the issue of GRB delay.

The work in [59] gives a comprehensive account of dis-
persion of light in a relativistic plasma theory, including also
some numerical evaluation of the results. Their model is
somewhat different from ours, since it involves nonminimal
gravitational interaction for the pseudoscalar (axion) field,
and the axion field varying linearly with respect to time.
A main objective of their work was to show that the phase
velocity of transverse electromagnetic waves can also be less
than c, providing the possibility of resonant plasma/waves
interactions. Within the permitted space of parameters for
the propagating electromagnetic waves, the squared plasma
frequency, ω2

p, and consequently the effective photon mass
squared, m2

γ , are positive (see Fig. 3).
The work [60] has considered the conversion of high-

energy gamma-rays to axions and a dominant disper-
sion of light in a photon medium corresponding to CMB
effect. Using the nonlinear Euler-Heisenberg electrodynam-
ics Lagrangian they obtain a negative value for the squared
effective photon mass, m2

γ < 0. That would correspond to
a superluminal group velocity for GRB. We believe that this
result is incorrect, possibly due to obscure way of calculating
the plasma frequency ω2

p and obtaining a negative value for
it. Using the same way of calculation for an axion medium,
they would also obtain a negative value of ω2

p.
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ted use, you will need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.
Funded by SCOAP3.

Appendix A: Calculation of the plasma frequency from
quantum field theory

Here we explain how the refraction index and the plasma fre-
quency can be derived from quantum field theory. In order to
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show how it works, we first consider the case of electrons and
photons with standard quantum electrodynamics. Then we
consider the axion with its interaction to the electromagnetic
field (15). We use a system of units with Heaviside–Lorentz
electromagnetic units and h̄ = c = 1.

Appendix A.1: Preliminaries on optical theorem

The refraction index is related to the forward scattering
amplitude f (0) (at zero scattering angle) as [61,62]

n = 1 + 2πN f (0)

ω2 , (A.1)

where N is the number density of scatterers, that is the density
of the constituents of the plasma. The relation (A.1) is valid
when n is close to one, |n − 1| 	 1, and follows from the
inteference between incident and scattered waves. In (A.1), n
is a complex number, where the real part describes dispersion
and the imaginary part describes absorption. Together with
the relation Im n = 2π N Im f (0)/ω2 = Nσ/2π between
the imaginary part of n and the absorption coefficient Nσ ,
where σ is the total cross section, (A.1) leads to the Bohr–
Peierls–Placzek relation [63] (see also [61,62]),

σ = 4π Im f (0)

ω
, (A.2)

also known as the optical theorem.
We notice that within the perturbative quantum field the-

ory the neglect of Im f (0) is naturally satisfied: one can see
from (A.2) that the imaginary part of f (0) is proportional
to the cross section, which is proportional to the square of
the amplitude and thus higher in the order of the small cou-
pling constant than in the corresponding formula in (A.8),
which is of the lower order in the coupling constant, being
proportional to the amplitude itself.

Inserting (2) into (A.1) we obtain a relation between the
plasma frequency and the scattering amplitude,
√

1 − ω2
p

ω2 = 1 + 2πN Re f (0)

ω2 . (A.3)

When the photon frequency is large compared to the plasma
frequency, ω2 � ω2

p, we obtain

ω2
p = −4πN Re f (0). (A.4)

The scattering amplitude f (θ) is defined as a part of the
quantum mechanical wave function at large distance r from
the scatterer,

ψ(r) = C

(
eik·r + f (θ)

eikr

r

)
, (A.5)

where C is a normalization factor. The differential cross sec-
tion is given in terms of the scattering amplitude as

dσ(θ) = | f (θ)|2dΩ. (A.6)

Fig. 3 Feynman diagrams for scattering of photon on electron

The closest thing to the scattering amplitude f in quantum
field theory is the so-called T -matrix defined as the scattering
part of the S-matrix

〈ψ f |S|ψi 〉 = 〈ψ f |ψi 〉 + 〈ψ f |iT |ψi 〉. (A.7)

The T -matrix, i.e. the Green’s function, is related to the Feyn-
man invariant scattering amplitude M. In order to compute
f (0) in quantum field theory, we shall use the differential
cross section. We calculate in quantum field theory the dif-
ferential cross section dσ(θ) and from (A.6) the forward
scattering amplitude follows as

| f (0)| =
(
dσ(0)

dΩ

) 1
2

. (A.8)

After the preliminaries presented above, we shall now pro-
ceed with the derivation of the plasma frequency for electron–
positron plasma in standard quantum electrodynamics, as
well as for a photon medium. Calculation of the plasma fre-
quency for an electron–positron plasma is given here in order
to show that our results coincide with the classical ones which
have been derived before from the classical Maxwell equa-
tions.

Appendix A.2: Electron–positron plasma

Appendix A.2.1: Scattering amplitude in quantum electrody-
namics

We consider photon–electron scattering γ + e− → γ + e−
at tree level. The scattering amplitude M is a sum of the two
diagrams in Fig. 3.

The incoming and outgoing electrons are represented by
the Dirac spinors u( p, s) and u( p′, s′), respectively. The
incoming and outgoing photons are represented by the polar-
ization vectors εμ(k, λ) and ε∗

μ(k′, λ′), respectively. The
amplitude in Feynman gauge is

iM = ū( p′, s′)(−ieγ μ)ε∗
μ(k′, λ′)

i(/p + /k + me)

(p + k)2 − m2
e

×εν(k, λ)(−ieγ ν)u( p, s)

+ū( p′, s′)(−ieγ ν)εν(k, λ)
i(/p − /k′ + me)

(p − k′)2 − m2
e

×ε∗
μ(k′, λ′)(−ieγ μ)u( p, s)

123
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= −ie2ε∗
μ(k′, λ′)εν(k, λ)ū( p′, s′)

×
(

γ μ/kγ ν + 2γ μ pν

2p · k + γ μ/k′γ ν − 2γ ν pμ

2p · k′

)
u( p, s),

(A.9)

where in the second equality we have written p2 = m2
e ,

k2 = 0 and (/p + me)γ
νu( p, s) = 2pνu( p, s).

The photons and electron are not polarized, and hence
we average over initial spin states and sum over final spin
states. In the squared Feynman amplitude, we use the spinor
completeness relations and perform the resulting four traces
of the γ -matrices. The result is

1

4

∑
s,λ,s′,λ′

|M|2 = 2e4
[
p · k′

p · k + p · k
p · k′

+ 2m2
e

(
1

p · k − 1

p · k′

)
+ m4

e

(
1

p · k − 1

p · k′

)2]
.

(A.10)

In order to obtain the forward scattering amplitude f (0), we
obtain the differential cross section and compare to (A.8).
The differential cross section is

dσ = 1

2k0

1

2p0

⎛
⎝1

4

∑
s,λ,s′,λ′

|M|2
⎞
⎠ dLips, (A.11)

where the relative velocity of the initial particles is c = 1 (in
any frame) and the Lorentz invariant two-body phase space
is defined as

dLips = (2π)4δ4(k′ + p′ − k − p)
d3k′

(2π)32k′
0

d3 p′

(2π)32p′
0
.

(A.12)

Integration over p′ is trivial and gives

dLips = 1

(2π)24k′
0 p

′
0
δ(k0 + p0 − k′

0 − p′
0)d

3k′, (A.13)

where d3k′ = k′2d|k′|dΩ . Since we consider a single scat-
tering process in vacuum, the photon energy and momentum
are related by the vacuum dispersion relation k′

0 = |k′|. Inte-
gration over |k′| gives

dLips = (k0 + p0 − p′
0)

2

(2π)24k′
0 p

′
0

dΩ = k′
0

(2π)24p′
0
dΩ. (A.14)

We now choose the rest frame of the initial electron, p =
(me, 0), and specialize to the case when the momenta of
the initial and final photons are parallel. When k and k′ are
parallel, we have k·k′ = k0k′

0−k·k′ = |k||k′|(1−cos θ) = 0,
where θ = 0 is the angle between k and k′. We obtain from
conservation of four-momentum that (p + k − k′)2 = p′2,
where the left-hand side is m2

e + 2p · k − 2p · k′ = m2
e +

2me(k0 − k′
0) and the right-hand side is m2

e . This implies

k′
0 = k0. Since energy is conserved, we also have p′

0 = p0.
For θ = 0 the squared Feynman amplitude (A.10) becomes

1

4

∑
s,λ,s′,λ′

|M(0)|2 = 4e4. (A.15)

Hence the differential cross section for θ = 0 is

dσ(0) = 1

64π2m2
e

⎛
⎝1

4

∑
s,λ,s′,λ′

|M(0)|2
⎞
⎠ dΩ

= e4

16π2m2
e
dΩ. (A.16)

Comparing to (A.8) gives the absolute value of the forward
scattering amplitude as

| f (0)| = α

me
, (A.17)

where α is the fine-structure constant, α = e2

4π
.

Appendix A.2.2: Electron–positron plasma frequency

The plasma frequency is obtained from (A.4) and (A.17) as

ω2
p = 4παNe

me
= Nee2

me
. (A.18)

This is the same result that is obtained from classical electro-
dynamics [18–20]. The electron–positron plasma frequency
has also been obtained from quantum statistical physics by
considering interaction in an electron–ion plasma [64].

5.1 Photon medium

The differential cross section of photon-photon scattering for
high energy ω � me and the angle θ close to zero is given
in the center-of-momentum frame as [33]

dσ = α4

π2ω2 log4
(

ω

me

)
dΩ, θ 	 me

ω
, (A.19)

where ω = √
s/2.

The observations of GRB are performed in a frame where
the GRB photons have very high energies, while the CMB
photons have much lower energies. In such a frame, the aver-
age of s can be obtained by averaging over the angle between
the momenta of the incoming photons for the scattering of
GRB photons on CMB photons: 〈s〉 = 1

π

∫ π

0 2ω1ω2(1 −
cos φ)dφ = 2ω1ω2, where the GRB photon has energy ω1,
and the average energy of CMB photons can be obtained
from blackbody radiation by dividing the energy density

with photon number density: ω2 = u(T )
n(T )

=
48πζ(4)

c3h3 (kBT )4

16πζ(3)

c3h3 (kBT )3
=

3ζ(4)
ζ(3)

kBT = 2.33×10−4 eV
K ×T . Hence we obtain a typical

energy of the process as
√〈s〉 = √

ω1/GeV × 1.1 keV.
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