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Norwegian spring spawning herring is a migratory pelagic fish stock that seasonally

navigates between distant locations in the Norwegian Sea. The spawning migration takes

place between late winter and early spring. In this article, we present an individual-based

model that simulated the spawning migration, which was tuned and validated against

observation data. Individuals were modelled on a continuous grid coupled to a physical

oceanographic model. We explore the development of individual model states in

relation to local environmental conditions and predict the distribution and abundance

of individuals in the Norwegian Sea for selected years (2015–2020). Individuals moved

position mainly according to the prevailing coastal current. A tuning procedure was used

to minimize the deviations between model and survey estimates at specific time stamps.

Furthermore, 4 separate scenarios were simulated to ascertain the sensitivity of the

model to initial conditions. Subsequently, one scenario was evaluated and compared

with catch data in 5 day periods within the model time frame. Agreement between model

and catch data varies throughout the season and between years. Regardless, emergent

properties of the migration are identifiable that match observations, particularly migration

trajectories that run perpendicular to deep bathymetry and counter the prevailing current.

The model developed is efficient to implement and can be extended to generate

multiple realizations of the migration path. This model, in combination with various

sources of fisheries-dependent data, can be applied to improve real-time estimates of

fish distributions.

Keywords: individual, model, migration, observation, catch, tuning, comparison, spawning

1. INTRODUCTION

Incomplete knowledge or inadequate access to time-sensitive spatial distributions can result in
inefficient harvesting of fish stocks. This is especially true of migratory species that migrate vast
distances for periods of their life cycle. Such species prove difficult to quantify, manage, and exploit
given flexibility and variability in migration strategies (Fernö et al., 1998; Tamario et al., 2019).
However, as fishing operations advance, fishing vessels attain access to more fine grain sources
of data (acoustic, satellite etc.). Specifically, acoustic technology now makes use of a multi-beam
system that can resolve multiple targets at once (Chu, 2011). Such data is an untapped resource
for understanding the development of stocks throughout a fishing season, as it provides good
coverage of stocks in real-time, all-year round (Pennino et al., 2016). One of the limitations of such
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data is bias toward presence data. Regardless, developments
in technology and access to additional observations will likely
improve our ability to quantify abundance and distribution.

The Norwegian spring spawning herring (NSSH) (Clupea
harengus L.) is an Atlanto-Scandian herring that is mainly
distributed along the Norwegian, Faroese, and Icelandic coast.
NSSH is a schooling, migratory pelagic stock that move large
distances during it’s life cycle. The principal fishery for adult
NSSH is along the western Norwegian coast prior to and during
the spawning season (Dragesund et al., 1980). NSSH is one
of the largest stocks in the entire Atlantic, and one of the
most commercially valuable (Touzeau et al., 2000). Although
the bulk of the revenues and employment are in Norway, this
stock is also harvested by Iceland, Russia, the Faroe Islands, and
the EU (Bjørndal et al., 2004). The lack of spatial information
on abundance of this species has contributed to unsustainable
harvesting in the past, specifically to unforeseen stock collapses
(Fernö et al., 1998). For example, collapse of the stock in the
1960s has been attributed to overfishing resulting from advances
in harvesting technology, suboptimal management and climactic
fluctuations (Arnason et al., 2000; Toresen and Østvedt, 2000;
Fiksen and Slotte, 2002; Bjørndal et al., 2004). The fishery closed
in the 1970s to allow recovery of the stock (Bjørndal et al.,
2004). One issue is that attaining reliable spatio-temporal data
is difficult due to interannual fluctuations in abundance and
changing migration patterns (Dragesund et al., 1980). Modelling
migration patterns can improve time-sensitive estimates of
stock distributions.

Bauer and Klaassen (2013) define migratory behaviour
as being persistent and directional with distinct departing
and arrival behaviours. The functions of such migratory
behaviour include reproduction, feeding, and avoidance of
predators (Tamario et al., 2019). NSSH conserve energy through
overwintering in fjords in northern Norway, prior to moving
southwards toward spawning grounds along the Norwegian coast
in spring, before migrating westwards to feed offshore for the
summer months (Varpe et al., 2005). During each installment
of the annual cycle, some drivers are likely to supersede others.
For example, during the overwintering period, movement is
limited and energy is conserved. In contrast, the spawning
migration takes place across a distance of approximately 800 km
counter-current and is characterized by rapid energy depletion
(Slotte and Fiksen, 2000).

Mechanistic models incorporate the main mechanisms by
which discrete individual components in a system may behave
through fundamental assumptions and equations. Differential/
difference equations plus stochastic noise are common features
used to explore variability in these models. The utility of a
model is gauged through its capacity to match observations from
the real system. Transitioning from theory to application of
such models demands a series of stages of refinement through
tuning/calibration and validation of the model (Baker et al.,
2018). There is much theory about what drives the spawning
migration of NSSH. There is a need to translate this theory into
model output that provides estimates throughout the season.

Individual-based models (IBMs) are a class of mechanistic
models that are built to explore the emergent properties at

the population level, arising from individuals interacting with
other individuals and their surrounding environment (Grimm
and Railsback, 2005). IBMs have been used to predict spatial
patterns of many migratory fish species during periods of
their life cycle (Barbaro et al., 2009; Politikos et al., 2015;
Boyd et al., 2020). Coupling models of physical oceanography
with IBMs is an effective method for simulating the complex
interactions between individuals and their local environment.
Furthermore, physical models simulate the main environmental
conditions that force individual behaviour and the physical
transport of larval stages and prey items (Giske et al., 2001;
Alver et al., 2016). In the case of many migratory pelagic species,
environmental variables such as currents and temperature have
been demonstrated to provide useful information for successful
navigation of individuals between distant areas (Barbaro et al.,
2009; Tu et al., 2012). There is evidence NSSH use similar
mechanisms (Fernö et al., 1998; Slotte and Fiksen, 2000). For
Icelandic capelin, current and temperature data, without the
use of forcing terms, reproduced the observed migration route
(Barbaro et al., 2009). Without using forcing terms, one can
easily add noise to IBM components and extend simulations
more efficiently. The novel use of multiple realizations of the
IBM, together with observations, can improve estimates of the
NSSH distribution in real-time. These estimates can support
stakeholder decisions in the fishing industry. The IBM developed
in this article shall be used in this way.

This paper describes the development of an IBM of
the NSSH spawning migration, centred on an individuals
response to environmental forcing. The focus is on modelling
memory- and gradient- based reactive mechanisms (Fernö et al.,
1998). This work also explores sensitivity of the migration to
initial conditions, specifically initial location. Following, model
densities are compared to observed patterns from 2015-2020
catch data using geospatial indices. Ultimately, the IBM was
developed as a tool for comparison and correction with real-
time observations, so this work focuses on model agreement
with available observations, and where and how disagreements
may be resolved. As mentioned before, this can support efficient,
sustainable harvesting of NSSH. The description of the model is
informed by IBM protocol developed by Grimm et al. (2006).

2. METHODS

2.1. Purpose and Structure of Model
The purpose of the model is to predict spatial patterns of
abundance for the spawning migration along the Norwegian
coast. This model provides discrete estimates across the
model area that can be used to compare against concurrent
observations. Furthermore, this model is designed to improve
estimates when observations become available. A brief schedule
of the main operations is presented in Table 1. The movement of
individuals is modelled by changes in orientation and horizontal
speed. In particular, the response of individuals to the Norwegian
Coastal Current (NCC), along with temperature and depth
gradients are modelled. The individuals also utilize knowledge of
previous states, such as orientation angle, when moving.
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TABLE 1 | Overview of the main components of the model algorithm with

reference to associated sections and equations.

Overview of model algorithm

Input data:

• Load environmental data from SINMOD (Section 2.2).

• Load survey and catch data.

Initialization:

• Initialize parameter values (Table 3).

• Initialize position and orientation of individuals (Section 2.3).

• Initialize individuals on 2D grid in mid-January.

Simulation:

• Update date and time.

• Access environmental values based on positions of individuals and current time

(Section 2.3).

• Pass environmental values to functions which calculate the individual’s response

to cues (Section 2.4.2).

• Update horizontal speed, orientation and position respectively (Equation 6, 4

and 1).

Analysis:

• Tuning using survey data (Section 2.5).

• Comparison with catch data (Section 2.6).

2.2. Model System
Estimates of environmental conditions were loaded from
SINMOD, a physical oceanographic model that is based on
the primitive Navier–Stokes equations, and uses a z-coordinate
grid (Slagstad and McClimans, 2005). The configuration used
has 970 × 635 horizontal grid cells with 4km resolution and
centres on the Norwegian Sea. The model is divided into 34
vertical depth layers. The IBM developed in this paper modelled
individuals in a 2D environment where position was updated
on a continuous horizontal plane in a Lagrangian approach
(Figure 1). Environmental variables were calculated based on
assumptions of the herring’s depth preferences, described in
section 2.4.1. State variables were updated at discrete time
steps of 1t = 4h. Temperatures and current speeds were
extracted from SINMOD output from 2015 to 2020, and along
with the bathymetry field of the model area, drove changes
in fish movements.

The model was developed in MATLAB, which is a matrix-
based programming language that is suited for iterative analysis
involving numerous matrix operations. Below, the development
of the model is outlined in regards to the model system, the main
equations, parameters and state variables. Thereafter, we explore
tuning and comparison against observations of the real system.

When referring to vectors that can take on continuous values,
x and y indices will be used, while the index j will indicate
the discrete linear index of a grid cell, ranging from 1 to the
number of elements in the grid. Finally, boldface characters
denote vectors.

2.3. State Variables
The individual state variables used were position p, orientation
angle θ , horizontal speed rb, and horizontal speed offset ro.

Position was updated at each discrete time k, with time step 1t:

p[k+ 1] = p[k]+ 1t
(

vf [k]+ vc[k]
)

(1)

where:

vf [k] = −8vc[k]+ vb[k] (2)

where p is a vector [px py]
T with the x and y coordinates of the

individual in the continuous space of the model grid and vb is a
vector [vbx vby]

T with the horizontal velocity components of an
individual fish in the x and y directions, based on behavioural
cues. Similarly, vc is a vector [vcx vcy]

T with the horizontal
current velocity components in the x and y directions. The
superscript T denotes the transpose of the vector. The spawning
migration proceeds counter to the NCC (Slotte and Fiksen, 2000).
This is modelled by the term −8vc that adds a counter-current
component to the horizontal speed controlled by the parameter
8. An individual’s realized swimming velocity vf is composed
of the counter current term and behavioural responses from vb.
This formulation demands individuals respond to the prevailing
current with higher priority, relative to other cues. To prevent
unrealistic dynamics in the first-order approximation of velocity
(vf + vc), the short 1t of 4h was used. The vector vb was
calculated as:

vb[k] = rb[k]

([

cos(θ[k])
sin(θ[k])

])

(3)

where rb is the horizontal speed of the individual in m s−1 and
θ the orientation angle according to gradient cues. As indicated
before, when ‖vc‖ approaches zero, the individuals approach a
speed of rb with the orientation angle θ . The angle θ was updated
as follows:

θ[k+ 1] = αθ[k]+ (1− α)G[k]

θ[k] = 6 vb[k]
(4)

where α is a weighting parameter, and G is the angle of the
vector inputs calculated from near-field gradients, as explored
in section 2.4.2. It is likely NSSH base their movements on
comparison of conditions from previous experience and present
information when calculating their new orientation (Fernö et al.,
1998). To account for this, α acted as a low-pass filter, avoiding
erratic changes in θ , similar to a formulation by Føre et al.
(2009). Furthermore, rb was calculated as a random process with
a deviation ro from the cruising speed:

rb[k+ 1] = r̄b + ro[k+ 1] (5)

where r̄b was the cruising speed in m s−1 of the individual. The
value was calibrated during the tuning procedure in section 2.5.
The offset ro was then calculated as a Gauss-Markov process
with exponential auto-correlation. This meant ro and rb were
correlated with recent values. The offset was included to model
randomness in the horizontal speed. It was updated as follows:

ro[k+ 1] = e−β1tro[k]+
√

1− (e−β1t)2 N (0, σ 2) (6)
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FIGURE 1 | The continuous model system with individuals plotted at two time stamps in the same simulation scenario. The colourmap and colourbar display the

bottom depth of grid cell j in metres, while the lines of latitude and longitude extend from ticks along the y and x axes, respectively. The map displays the Norwegian

coast and Norwegian Sea from 62 to 72 degrees north, including bathymetry features important in ocean circulation.

from a normal distribution N with zero mean, a standard
deviation σ in swimming speed and shaping parameter
for auto-correlation β .

2.4. Environmental Forcing
The spawning migration follows overwintering, a stationary
period characterized by slow swimming speeds and low energy
use. NSSH mainly spawn in southern regions of coastal Norway
before migrating westwards to feed over summer. The spawning
migration begins early to mid-January and spawning usually
begins in late-February/early-March (Dragesund et al., 1980).
Temperature and current data for the period from mid-January
to the end of February (2015–2020) were loaded from SINMOD,
along with the bathymetry. Below, the responses that play a role
in the spawning migration are outlined.

2.4.1. Environmental Values
Depth is an important variable as it influences the temperature
and currents that an individual experiences. Environmental
values were calculated as a linear combination of values taken
from a depth layer in the upper water column (0–75 m) and the
lower water column (75–300 m):

vc = (1− d)vcl1 + dvcl2 (7)

T = (1− d)Tl1 + dTl2 (8)

where vc is the horizontal current velocity,T is the temperature, l1
and l2 are the vertical indices of layers sampled in the upper and
lower water column, respectively, d was the fraction of daylight
at the sampled time and latitude (hours of daylight/24). This
approximation allows variability in environmental values, rather

than use of values from a constant depth layer. The choice of
d as a variable reflected the individuals need to spend time in
layers that provide light conditions which facilitate the capacity
to school and sense local surroundings (Huse and Ona, 1996).
The vertical indices l1 and l2 were chosen based on min(‖vc‖),
as herring have the ability to choose depth layers with favourable
current speeds (Nøttestad et al., 1996).

2.4.2. Environmental Cues
Apart from the direct response to current, individuals responded
to the temperature and bottom depth gradients at their location.
The orientation angle G was calculated as:

G[k] = w 6 GD[k]+ (1− w) 6 GT[k] (9)

where the angles 6 GD and 6 GT are the gradient dependent
orientation angles calculated based on the depth and temperature
gradients, respectively, andw is the weighting parameter on 6 GD.

Bottom depth: The NSSH spawning migration develops
southward alongside the continental slope (Slotte and Fiksen,
2000). Herring are physostomous with an open swim bladder,
which facilitates more rapid vertical movements (Blaxter, 1985;
Nøttestad, 1998). Vertical escape is considered central in predator
avoidance (Langård et al., 2014). For these reasons, GD was used
to direct individuals movements perpendicular to the direction
of the depth gradient, in the southerly direction:

GD =



















−
∇D[k]

‖∇D[k]‖
, if D ≥ 400

([

0 −1

1 0

])

∇D[k]

‖∇D[k]‖
, otherwise

(10)
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FIGURE 2 | Transformed survey values used to compare against model values on specified dates in 2017. Black dots indicate the weighted sum of trawl values on

the date transcribed above the box. The black lines demarcate the outer boundary of cells included for the comparison. The colourmap indicates estimated number of

individuals in grid cell j.

where ∇D is the bottom depth gradient and D is the
bottom depth at grid point j. The first case reorients
individuals toward the coast, while the second case directs
individuals southwards along isobaths. The y component of
∇D is multiplied by sign(y) prior to the calculation in the
second case.

Temperature: NSSH avoid low temperatures and higher
temperatures are associated with superior body condition (Fernö
et al., 1998). Therefore, individuals oriented toward higher
temperatures, based on the local gradient. If temperatures
reached an upper limit, the herring reoriented toward cooler
waters based on the near field gradient. The function was
formulated as below:

GT =















−
∇T[k]

‖∇T[k]‖
, if T ≥ 12

∇T[k]

‖∇T[k]‖
, otherwise

(11)

where ∇T is the temperature gradient calculated from the T field
in Equation (8).

2.5. Tuning
To develop the individuals responses to environmental
information, the parameters [8 α w]T in Equations (2), (4), and
(9) were tuned and then analysed. Simulations with 2017–2020
environmental values and 4 separate initialization scenarios
were investigated. In order to model reasonable responses of
individuals to their environment the model was tuned using a
numerical optimization algorithm that took parameter values
as input and minimized the deviation between the model and

observed distributions at specific time stamps. NSSH survey data
from the Norwegian Institute of Marine Research was used for
this purpose (Salthaug et al., 2020). The survey data combines
acoustic and trawl data to estimate abundance in predefined
strata areas. To ensure consistency, 2017 and 2018 estimates were
used for tuning, when the dates sampled were in the last two
weeks of February. 2019 and 2020 data provided an independent
data set to validate the optimization.

2.5.1. Tuning: Setup
To allow fine grain comparison on specified dates, the following
transformation of strata values was carried out, converting
observation estimates into numbers per grid cell j:

• A 12 km2 sliding penalty used acoustic zero values to penalize
areas sampled with low abundances. This meant that grid cells
with strata values in close proximity to those with zero acoustic
values were set to zero.

• A 20 km2 slidingmeanwas then calculated to smooth out areas
and maintain spatial patterns of densities.

• The weighted sum of trawl data was used to centre the
comparison for single days from the survey. A 52 km2 grid
was drawn around the centre as a bin for comparison.

• The transformed observation values were then normalized
and scaled according to the number of model individuals
(Figure 2).

This procedure offered individuals specific objective functions
for a set of time stamps on the migration path. Thus, an
optimization routine was used to find theminimum f in Equation
(12). This algorithm tuned the parameters [8 α w]T and
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FIGURE 3 | Latitude and longitude centre points during the migration period from S2. Each point was calculated from the weighted sum of individuals per grid cell j.

constrained them to between 0 and 1. The densities of individuals
were compared with the fraction of modelled individuals at the
sampled date as follows:

f =

∑y
i=1

(√

1
N

∑N
j=1 (xj − x̂j)2

)

y
(12)

where i is the year, y is the number of years, N is the number
of cells, and xj and x̂j are the number of observation and
model individuals in grid cell j, respectively. For simplicity,
indices indicating day are omitted, where the Root Mean Square
Deviation (RMSD) calculation (in parentheses) is executed on the
relevant date (Figure 2).

2.5.2. Tuning: Simulations
One source of uncertainty is the intialization of the spawning
migration. Given we can perform temporal comparisons above,
4 scenarios with different initial locations were selected, based
on information from the NSSH survey and the Norwegian
Directorate of Fisheries. They represented scenarios where the
central mass of individuals were at variable distances from
the coast and variable distances north (Table 2). This design
tested the sensitivity of the migration to initial conditions.
The probability of an individuals presence in grid cell j (pj)
was calculated from a gaussian radial basis function with the

TABLE 2 | Centre points for each scenario.

Scenarios ĉ latitude ĉ longitude

S1 69 12

S2 70 15

S3 71 12

S4 70 9

following equation:

pj = exp

(

−‖cj − Ĉ‖2

2ρ2

)

(13)

where cj are floored x and y coordinates of grid cell j, Ĉ is the
floored centre point x and y coordinates, and ρ is a parameter
that controls the spread around Ĉ, which was calibrated in
conjunction with the optimization routine. This strategy allowed
the fine grain control of initial distribution by proving spatial
correlations in p based on distance from Ĉ. These simulations
aimed not to fully describe the distribution prior to migration,
but provided insights into how such variation can influence
model output.

2.5.3. Tuning: Analysis
Normalized RMSD values between transformed survey values
and model output was used to gauge the sensitivity of parameters
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across to initialization scenarios S1 to S4. The parameter values
from one scenario was then selected for the remainder of the
comparisons. The 2015–2020 SINMOD environmental values
were coupled with the IBM to produce 6 distinct realizations.

To inspect the tuning results at high resolution (section 3.2),
densities of individuals were post-processed. The number of
individuals in each model grid cell j were summed to calculate
density per grid cell. Following, a sliding mean calculation for
20 km2 was used to derive spatial correlations in densities. To

TABLE 3 | Model parameter values.

Parameters Description Unit Value

1t Time step h 4

r̄b Cruising speed m s−1 0.32

σ Standard deviation in swimming speed m s−1 0.1

8 Weight of counter-current response - 0.91

α Weight of previous orientation angle - 0.56

w Weight of depth gradient cue - 0.72

β Gauss-Markov time constant - 0.2

ĉ lat Initialization centre point latitude ◦ lat 70

ĉ long Initialization centre point latitude ◦ long 15

ρ Spread around centre point - 1.57

visualize the central tendency of the trajectory, the weighted sum
of latitude and longitude points of individuals were computed
for each day. Thereafter, acoustic density values from the NSSH
survey were converted to the relative fraction along all transects
for the sampled time. Each grid cell j along the transect was
sampled for the number of model individuals. The model and
observation values were interpolated within 50 m bins from 0
to 500 m based on the bottom depth in grid cell j. Finally, we
calculated the fraction of model and observation values in each
depth bin. This calculation can illustrate the spread of model and
observation values off-coast. The 16-18th of February 2019 and
2020 were chosen for visual inspection.

2.6. Geospatial Comparisons
The model output was compared with 2015–2020 catch data
from Norwegian Fisheries Directorate in 5 day ranges. The
catch data used were the x and y starting locations of trawling
and associated catch weight in kg. The main purpose of this
comparison was to investigate where and when the model
deviates from observations and what this reveals about the
capacity for the IBM to resemble realistic NSSH distributions.
The initial model distribution was fixed in each year to focus on
relative comparisons.

Observation and model densities were allocated 5 day
windows, where catch and model positions and values were

FIGURE 4 | Environmental values that NSSH utilized on the 30th January 2020 relative to their position on the grid. The maps cover the same area as Figure 1: (A)

The bottom depth in m (colourmap) and gradient (arrows) (B) The temperature in ◦C (colourmap) calculated from Equation (8) and gradient (arrows) (C) The x and y

components of vc (arrows) calculated from Equation (7). The colourmap shows the magnitude ‖vc‖ in m s−1 (D) The fraction of daylight d along the Norwegian coast

(colourmap), which was used in Equations (7) and (8).
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FIGURE 5 | Densities of individuals at 3 time stamps along the migration for 2019 (left column) and 2020 (right column). The colourmap shows the number of

individuals in grid cell j.

described by their centre of mass. These were described as
latitude and longitude centre points. Then, model output was
analysed using geospatial comparisons, as described in Woillez
et al. (2007). The global index of collocation (GIC) indicates
how geographical distinct two ditributions are. It is based
on the distance between the centre points and the variance
around these centres (inertia). A value of 0 means there is no
overlap, whilst a value of 1 implies identical distributions. The
average GIC value for each year was used to score the model
and observation overlap. In addition, RMSD values indicated
the average error for the year. Using GIC and RMSD indices
illuminate where the model and observations disagree. It also
offers insight into potential limitations of comparing model and
observation output.

3. RESULTS

3.1. Sensitivity Analysis
Of the 4 simulation scenarios run, 3 scenarios produced
reasonable migration patterns. S1, S2, and S3 performed relatively
well (Supplementary Material). S4 is far from continental slope,
which is vital information for orientation and therefore couldn’t
minimize Equation (12) properly. The average8 value, produced
by the tuning process for the four scenarios, was quite high
and displayed higher variability (0.78 ± 0.2) compared to α

(0.59 ± 0.08) and w (0.65 ± 0.1). This illustrates the sensitivity

of the response to the current in relation to starting point. The
relatively high α value also shows the importance of fish retaining
knowledge of previous states in the migration. These simulations
highlight the centrality of the continental slope as a landmark
in the migration and how individuals are likely to utilize it.
Further comparisons from 2015 to 2020 were made using the
fitted parameter values based on S2 values (Table 3).

3.2. Scenario Analysis
3.2.1. Trajectory
There was variation in the trajectories of individuals in the
migration, especially with regards to longitude (Figure 3).
In all cases, the beginning of the migration is quite slow,
reflecting the strong current magnitude around the Lofoten basin
(Figure 4C). For example, in 2020, the Latitude centre point
moves approximately 1 degree from 15/1 - 25/1, in comparison
with 1.5 degrees from 9/2 - 19/2. In addition, the longitude
centre is more consistent amongst years from 15/1 - 25/1, again
reflecting the convergence of environmental cues at this stage,
especially ∇D (Figure 4A). There is divergence after this point
due to inter-annual variation in T and vc. This demonstrates
that environmental variability can produce distinct realizations
of the IBM.

The spatial distribution of individuals illustrates the emergent
structures from the simulation (Figure 5). For example, in the
2019 simulation, midway through the migration, emergence of
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FIGURE 6 | Fraction of estimated model and observation values along acoustic transects at 3 time stamps in 2019 (left column) and 2020 (right column), with

associated bottom depth.

FIGURE 7 | Model output (colourmap) with catch points (black circles) overlayed for selected periods in 2015. Size of circle is scaled to the catch weight. The

colourmap gives the average number of individuals in grid cell j for a 5 day period.
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FIGURE 8 | Model output (colourmap) with catch points (black circles) overlayed for selected periods in 2016. Size of circles are scaled according to the catch weight

in kg. The colourmap gives the average number of individuals in grid cell j for a 5 day period.

two branches of migration trajectories appeared. One branch
extends alongside the continental slope, whilst another curves
down toward the coast at approximately 67 degrees latitude and 9
degrees longitude. The 2020 simulation shows similar branching
but there is more movement between branches. Toward the end
of the migration the individuals push further off-coast, with high
densities at 64 degrees latitude and 6 degrees longitude. The two
branches join at this point and form a continuous tail that is
prominent at the end of February.

3.2.2. Survey Comparison
The high resolution comparison of densities of individuals along
acoustic transects with acoustic estimates was useful. It revealed
that the model predicts a high spread off coast, not bunching
individuals at one particular location (Figure 6). Due to the
design of the model, densities are high before tailing off at deep
bathymetry (D ≥ 400m), a pattern present in the acoustic
data also.

3.3. Comparison With Catch Data
3.3.1. Qualitative Analysis
In 2/3 of the years there is good agreement between model and
catch values (2016, 2017, 2019, and 2020). However, there is
intra- and inter-annual variation that can be the result of changes
in both fish and vessel behaviour. Below, two simulations are

presented with poorer and better agreement between model and
observations, respectively (Figures 7, 8).

In 2015, the model migration proceeds southerly in a manner
that appears slower than the development of catch during this
period, particularly from the end of January to the beginning of
February, where there are catches in traditional spawning areas
at a very early stage of the migration (Figure 7). Survey estimates
of abundance from this year were uncertain, where a shift in
strong NSSH year classes and immigration from off-coast areas
in early February listed as possible explanations for discrepancies
(Slotte et al., 2015). Given the comparisons here, it seems there is
immigration from off-coast regions.

In contrast, the 2016 catches take place along branches of the
migration where the model predicts higher densities (Figure 8).
The development of catches overlap with the model evolution.
Survey distribution also corroborate findings in early February
with observations of high densities around 66–67 degrees latitude
(Slotte et al., 2016). The figures from 2017 to 2020 are included in
the Supplementary Material.

3.3.2. Quantitative Analysis
The centre points for fishing activity is in the northern fjords
in mid-January, and the simulations were designed around
these starting points. The longitude varies more in this period,
suggesting that that the variability is mainly off-coast. In 2018,
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FIGURE 9 | Model and observation comparison across all years. The x axis displays the time period (inclusive). The y axis displays the latitude centre point for catch

and model values in the time period. The error bar shows the square root of the inertia values in each time interval.

there was an high off-coast component of catches at the
beginning of the season. The least overlap (GIC) and the largest
error (RMSD) in location comes from this time (Figures 9, 10).
Toward the end of the 2018 seasonmany catches shift to northern
regions. The simulation in 2015 deviated from catches also, for
reasons which are described in the previous section.

In general, early February showed the highest GIC values,
with lowest RMSD values, suggesting the model dynamics in this
period provide reliable geospatial estimates. Both the model and
observations shift southward during the simulation time frame.
The southern evolution of the catch and the model relate to how
NSSH migrates. The spatial variation in centre points (inertia)
varies more in observations than model estimates. There are
many time periods where there appear catch points spread in
space (19/2-23/2 2018) and others when catches are concentrated
in one area (4/2-8/2 2018). As the model is physics-based, it has
a more constant spatial distribution (inertia and centre points),
although there are local differences (Figures 7, 8).

4. DISCUSSION

In general, the model showed good agreement with survey
and catch observations (Figures 9, 10). Emergent properties
of the migration trajectory overlap with vessel catch data.
Regardless, there are limitations to modelling behaviour at such
low resolutions. There are many sources of uncertainty not fully
resolved in this model. Therefore, in conjunction with discussion

about the simulations in this paper, we shall detail how models
can be improved in future work to improve estimates.

4.1. Model Development
Themodel formulation requiredmany steps of refinement to give
reasonable output. In Equations (1) and (2), the response of the
individual was formulated to account for the physical response
directly against the prevailing current. Removing the counter-
current response led to passive drifting northwards. Running
simulations with environmental variables sampled close to the
surface resulted in similar drifting patterns, as the magnitude
of vc is very high close to the surface, especially around the
Lofoten basin (Figure 4C). A formulation that incorporated
vertical conditions was important to model, as in Equations (7)
and (8).

It is difficult to decouple the low resolution effects of
local environmental values on model states, as they are
spatially correlated in the horizontal plane. However, the
combined effect of reacting to gradients from deep bathymetry,
and current patterns seemed the most consistent properties
amongst simulations (Figure 4). This study shows that memory-
and gradient based reactive mechanisms can be used to
model the migration of pelagic fish species such as NSSH
(Fernö et al., 1998).

The energetic states of individuals were not included in this
study, but may provide more insight into variations in observed
patterns. Further work in this project aims to incorporate
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FIGURE 10 | Model and observation comparison across all years. The x axis displays the time period (inclusive). The y axis displays the longitude centre point for

catch and model values in the time period. The error bar shows the square root of the inertia values in each time interval.

Dynamic Energy Budget theory, that can be used to model
energetic costs of migration (Kooijman, 2000). Thus, state-
dependent selection of spawning grounds can be explored, testing
the effect of body length and condition on choice of area (Slotte
and Fiksen, 2000). Natural mortality may also be included here.
Interactions between individuals was explored, such as attraction
and repulsion, but deemed difficult to model at the 4 km2 scale.
There may be a case to model interactions between schools,
where information transfer could potentially give access to novel
information, but this is beyond the scope of the project at
this stage.

It should be mentioned that the ocean models that
force the behaviour of the IBM are subject to their own
limitations. Ocean model outputs have uncertainty caused by
limits in model resolution, our knowledge of the processes
resolved by the model, uncertainty in initial values, boundary
conditions, parameter values, and inaccuracies in numerical
implementations (Lermusiaux et al., 2006). Additionally, climatic
fluctuations can play an important role in survival of recruits and
thus, biomass estimates (Toresen and Østvedt, 2000). Therefore,
understanding how variability in climate can manifest as
variability in individual state and parameter values is important
moving forward.

4.2. Initialization and Tuning
The initialization procedure presented above functioned to
generate a generic distribution that was applied to all model

scenarios. This provided a realistic initial distribution as
input for the tuning procedure. In reality, there is much
uncertainty around the initial distribution of NSSH. This may
be explained by changes in winter stay areas, which has historic
precedent (Dragesund, 1970). Thus, in future work, we shall
model initial distributions based on prescient knowledge of
winter stay areas and recent catch observations preceding the
model run.

Tuning the migration model against survey data allowed for
high resolution, time-sensitive estimates of fish densities. There
was good agreement between tuned models and independent
datasets. Nevertheless, developing the means to calibrate the
model was challenging. One difficulty was the progression of
the migration in comparison to surveys. The survey starts in
southern Norway and progresses northward, the inverse of the
NSSH migration. This meant estimates at the beginning and end
of survey largely consisted of acoustic absence. In the course
of this work, many objective functions for tuning of different
resolutions were provided for the individuals and there is room
for further experimentation here.

The model was trained using data that has its own biases
(e.g., gear selectivity) which may bias the model tuning as a
result. Additionally, fisheries data is sparse in space and time.
Immigration and recruitment will also sporadically alter fish
abundance. As such, one model realization cannot encapsulate
the full variation in fish distributions. Adding noise terms
to model parameters can be used to produce an ensemble
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of estimates through Monte Carlo experiments. State and
parameter estimates can be obtained effectively in this way
(Ward et al., 2016).

4.3. Comparison With Catch Data
The catch data served to judge the performance of the model
across the time frame and highlight discrepancies. This shows
what the model can and cannot resolve, and at what scales.
The physics- based model used assumptions of responses to
the prevailing current and gradients to reproduce the likely
migration at large-scale. In contrast, catch data reflects which
locations were targeted based on market value, quotas, weather
conditions, etc. This is variability the model cannot capture. The
model output is useful in predicting relevant catch locations
in space and time at low resolutions (Figures 9, 10). It gives
insight into where the development of model densities is
matched with fishing activity and where it does not. The output
will have operational use when it is combined with real-time
fisheries-dependent data, as described below. The novel use
of real-time observations can give time-sensitive estimates that
are more reliable than use of model or observation values
in isolation.

4.4. Future Developments
In future, information on vessel activity will be incorporated
to improve observation quality. Classifying vessels in terms of
search vs. fishing activity can provide fine-grain, continuous
information on the behaviour of fishermen. Thus, one can
improve coverage of observations and incorporate absence data.
Finally, using a data assimilation procedure, we can improve
estimates by combining a model, such as the one developed
here, with observation data. Such estimates require expansion
of the model to include uncertainties in initial conditions,
environmental variables, parameters, etc. We have developed one
realization of the model here, but modelling such uncertainties
produces multiple realizations, from which one can calculate the
most probable estimate of the model state (Evensen, 2009).

DATA AVAILABILITY STATEMENT

Publicly available datasets were analyzed in this study. This
data can be found at: https://www.fiskeridir.no/Tall-og-analyse/
AApne-data/AApne-datasett/elektronisk-rapportering-ers.

AUTHOR CONTRIBUTIONS

CK: wrote the manuscript, developed the model, processed data,
ran the simulations, and produced figures. FM: helped with
accessing and processing data, feedback on written work and
simulations. JK: input on herring research, feedback on written
work. MA: helped with conception of the project, aided with
setting up the model, gave constant feedback and suggestions on
every aspect of the project. All authors contributed to the article
and approved the submitted version.

FUNDING

The work is part of the FishGuider project, which was
funded by the project participants and the Norwegian Research
Council (Project Number 296321). North Atlantic Institute of
Sustainable Fishing (NAIS) is an industry partner that funds 50%
of this project.

ACKNOWLEDGMENTS

We greatly acknowledge the support, input and feedback from
the project participants: NTNU, SINTEF, NAIS, and UiB.We also
acknowledge useful input from discussions with Øystein Varpe
at UiB.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fmars.
2021.754476/full#supplementary-material

REFERENCES

Alver, M. O., Broch, O. J., Melle, W., Bagøien, E., and Slagstad, D. (2016).

Validation of an Eulerian population model for the marine copepod

Calanus finmarchicus in the Norwegian Sea. J. Mar. Syst. 160, 81–93.

doi: 10.1016/j.jmarsys.2016.04.004

Arnason, R., Magnusson, G., and Agnarsson, S. (2000). The Norwegian spring-

spawning herring fishery: a stylized game model. Mar. Resour. Econ. 15,

293–319. doi: 10.1086/mre.15.4.42629328

Baker, R. E., Peña, J.-M., Jayamohan, J., and Jérusalem, A. (2018). Mechanistic

models versus machine learning, a fight worth fighting for the biological

community? Biol. Lett. 14:20170660. doi: 10.1098/rsbl.2017.0660

Barbaro, A., Einarsson, B., Birnir, B., Sigurðsson, S., Valdimarsson, H.,

Pálsson, O., Sveinbjörnsson, S., and Sigurðsson, o. (2009). Modelling and

simulations of the migration of pelagic fish. ICES J. Mar. Sci. 66, 826–838.

doi: 10.1093/icesjms/fsp067

Bauer, S., and Klaassen, M. (2013). Mechanistic models of animal migration

behaviour - their diversity, structure and use. J. Anim. Ecol. 82, 498–508.

doi: 10.1111/1365-2656.12054

Bjørndal, T., Gordon, D. V., Kaitala, V., and Lindroos, M. (2004). international

management strategies for a straddling fish stock: a bio-economic simulation

model of the Norwegian spring-spawning herring fishery. Environ. Resour.

Econ. 29, 435–457. doi: 10.1007/s10640-004-1045-y

Blaxter, J. H. S. (1985). The herring: a successful species? Can. J. Fish. Aquat. Sci.

42, s21–s30. doi: 10.1139/f85-259

Boyd, R., Sibly, R., Hyder, K., Walker, N., Thorpe, R., and Roy, S. (2020).

Simulating the summer feeding distribution of Northeast Atlantic mackerel

with a mechanistic individual-based model. Progr. Oceanogr. 183:102299.

doi: 10.1016/j.pocean.2020.102299

Chu, D. (2011). Technology evolution and advances in fisheries

acoustICS. J. Mar. Sci. Technol. 19:2. doi: 10.51400/2709-69

98.2188

Dragesund, O. (1970). Factors influencing year-class strength of norwegian

spring spawning herring (clupea harengus l.). Fiskeridirektoratets Skrifter Serie

Havundersøkelser 15, 381–450.

Dragesund, O., Hamre, J., and Øyvind, U. (1980). Biology and population

dynamics of the Norwegian spring- spawning herring. Rapports et Procès-

Verbaux des Rèunions 177, 43–71.

Evensen, G. (2009). Data Assimilation: The Ensemble Kalman Filter. Berlin:

Springer.

Fernö, A., Pitcher, T. J., Melle, W., Nøttestad, L., Mackinson, S., Hollingworth, C.,

et al. (1998). The challenge of the herring in the Norwegian sea: making optimal

Frontiers in Marine Science | www.frontiersin.org 13 January 2022 | Volume 8 | Article 754476

https://www.fiskeridir.no/Tall-og-analyse/AApne-data/AApne-datasett/elektronisk-rapportering-ers
https://www.fiskeridir.no/Tall-og-analyse/AApne-data/AApne-datasett/elektronisk-rapportering-ers
https://www.frontiersin.org/articles/10.3389/fmars.2021.754476/full#supplementary-material
https://doi.org/10.1016/j.jmarsys.2016.04.004
https://doi.org/10.1086/mre.15.4.42629328
https://doi.org/10.1098/rsbl.2017.0660
https://doi.org/10.1093/icesjms/fsp067
https://doi.org/10.1111/1365-2656.12054
https://doi.org/10.1007/s10640-004-1045-y
https://doi.org/10.1139/f85-259
https://doi.org/10.1016/j.pocean.2020.102299
https://doi.org/10.51400/2709-6998.2188
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/marine-science#articles


Kelly et al. Model of Herring Spawning Migration

collective spatial decisions. Sarsia 83, 149–167. doi: 10.1080/00364827.1998.104

13679

Fiksen, Ø., and Slotte, A. (2002). Stock environment recruitment models for

norwegian spring spawning herring (clupea harengus). Can. J. Fish. Aquat. Sci.

59, 211–217. doi: 10.1139/f02-002

Føre, M., Dempster, T., Alfredsen, J. A., Johansen, V., and Johansson,

D. (2009). Modelling of Atlantic salmon (Salmo salar L.) behaviour

in sea-cages: a Lagrangian approach. Aquaculture 288, 196–204.

doi: 10.1016/j.aquaculture.2008.11.031

Giske, J., Huse, G., and Berntsen, J. (2001). Spatial modelling for marine

resource management, with a focus on fish. Sarsia 86, 405–410.

doi: 10.1080/00364827.2001.10420482

Grimm, V., Berger, U., Bastiansen, F., Eliassen, S., Ginot, V., Giske, J., et al. (2006).

A standard protocol for describing individual-based and agent-based models.

Ecol. Model. 198, 115–126. doi: 10.1016/j.ecolmodel.2006.04.023

Grimm, V., and Railsback, S. F. (2005). Individual-Based Modeling and Ecology.

Princeton: Princeton University Press, 3–21.

Huse, I., and Ona, E. (1996). Tilt angle distribution and swimming speed of

overwintering Norwegian spring spawning herring. ICES J. Mar. Sci. 53, 863–

873. doi: 10.1006/jmsc.1996.9999

Kooijman, S. A. L. M. (2000). Dynamic Energy and Mass Budgets in Biological

Systems, 2 Edn. Cambridge: Cambridge University Press.

Langård, L., Fatnes, O., Johannessen, A., Skaret, G., Axelsen, B., Nöttestad, L., et al.

(2014). State-dependent spatial and intra-school dynamics in pre-spawning

herring Clupea harengus in a semi-enclosed ecosystem. Mar. Ecol. Progr. Ser.

501, 251–263. doi: 10.3354/meps10718

Lermusiaux, P. F., Chiu, C., Gawarkiewicz, G., Abbot, P., Robinson, A.,

Miller, R. N., et al. (2006). Quantifying uncertainties in ocean predictions.

Oceanography 19, 90–103. doi: 10.5670/oceanog.2006.93

Nøttestad, L. (1998). Extensive gas bubble release in Norwegian spring-spawning

herring (Clupea harengus) during predator avoidance. ICES J. Mar. Sci. 55,

1133–1140. doi: 10.1006/jmsc.1998.0416

Nøttestad, L., Aksland, M., Beltestad, A., Fernö, A., Johannessen, A., and

Arve Misund, O. (1996). Schooling dynamics of norwegian spring spawning

herring (Clupea harengus L.) in a coastal spawning area. Sarsia 80, 277–284.

doi: 10.1080/00364827.1996.10413601

Pennino, M. G., Conesa, D., López-Quílez, A., Muñoz, F., Fernández, A., and

Bellido, J. M. (2016). Fishery-dependent and -independent data lead to

consistent estimations of essential habitats. ICES J. Mar. Sci. 73, 2302–2310.

doi: 10.1093/icesjms/fsw062

Politikos, D., Somarakis, S., Tsiaras, K., Giannoulaki, M., Petihakis, G., Machias, A.,

and Triantafyllou, G. (2015). Simulating anchovy’s full life cycle in the northern

Aegean Sea (eastern Mediterranean): a coupled hydro-biogeochemical–IBM

model. Progr. Oceanogr. 138, 399–416. doi: 10.1016/j.pocean.2014.09.002

Salthaug, A., Stenevik, E., Vatnehol, S., Anthonypillai, V., Ona, E., Anthonypillai,

V., et al. (2020). Distribution and Abundance of Norwegian Spring Spawning

Herring During the Spawning Season in 2020. Technical Report, Institute of

Marine Research, Bergen, Norway.

Slagstad, D., and McClimans, T. A. (2005). Modeling the ecosystem dynamics

of the barents sea including the marginal ice zone: i. physical and chemical

oceanography. J. Mar. Syst. 58, 1–18. doi: 10.1016/j.jmarsys.2005.05.005

Slotte, A., and Fiksen, Ø. (2000). State-dependent spawning migration

in Norwegian spring-spawning herring. J. Fish Biol. 56, 138–162.

doi: 10.1111/J.1095-8649.2000.TB02091.X

Slotte, A., Johnsen, E., Pena, H., Salthaug, A., Utne, K., Anthonypillai, V., et al.

(2015). Distribution and Abundance of Norwegian Spring Spawning Herring

During the Spawning Season in 2015. Technical Report, Institute of Marine

Research, Bergen, Norway.

Slotte, A., Salthaug, A., Utne, K., Ona, E., Vatnehol, S., and Pena, H. (2016).

Distribution and Abundance of Norwegian Spring Spawning Herring During

the Spawning Season in 2016. Technical Report, Institute of Marine Research,

Bergen, Norway.

Tamario, C., Sunde, J., Petersson, E., Tibblin, P., and Forsman, A. (2019). Ecological

and evolutionary consequences of environmental change and management

actions for migrating fish. Front. Ecol. Evol. 7:271. doi: 10.3389/fevo.2019.

00271

Toresen, R., and Østvedt, O. (2000). Variation in abundance of norwegian

spring-spawning herring (clupea harengus, clupeidae) throughout the 20th

century and the influence of climatic fluctuations. Fish Fisheries 1, 231–256.

doi: 10.1111/j.1467-2979.2000.00022.x

Touzeau, S., Lindroos, M., Kaitala, V., and Ylikarjula, J. (2000). Economic and

biological risk analysis of the norwegian spring-spawning herring fishery. Ann.

Oper. Res. 94, 197–217. doi: 10.1023/A:1018973217951

Tu, C.-Y., Tseng, Y.-H., Chiu, T.-S., Shen, M.-L., and Hsieh, C.-H. (2012). Using

coupled fish behavior-hydrodynamic model to investigate spawning migration

of Japanese anchovy, Engraulis japonicus, from the East China Sea to Taiwan:

Spawning migration model of Japanese anchovy. Fish. Oceanogr. 21, 255–268.

doi: 10.1111/j.1365-2419.2012.00619.x

Varpe, Ø., Fiksen, Ø., and Slotte, A. (2005). Meta-ecosystems and biological energy

transport from ocean to coast: the ecological importance of herring migration.

Oecologia 146, 443. doi: 10.1007/s00442-005-0219-9

Ward, J. A., Evans, A. J., and Malleson, N. S. (2016). Dynamic calibration of

agent-based models using data assimilation. R. Soc. Open Sci. 3, 150703.

doi: 10.1098/rsos.150703

Woillez, M., Poulard, J.-C., Rivoirard, J., Petitgas, P., and Bez, N. (2007).

Indices for capturing spatial patterns and their evolution in time,

with application to European hake (Merluccius merluccius) in the

Bay of Biscay. ICES J. Mar. Sci. 64, 537–550. doi: 10.1093/icesjms/

fsm025

Conflict of Interest: The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be construed as a

potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated organizations, or those of

the publisher, the editors and the reviewers. Any product that may be evaluated in

this article, or claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

Copyright © 2022 Kelly, Michelsen, Kolding and Alver. This is an open-access article

distributed under the terms of the Creative Commons Attribution License (CC BY).

The use, distribution or reproduction in other forums is permitted, provided the

original author(s) and the copyright owner(s) are credited and that the original

publication in this journal is cited, in accordance with accepted academic practice.

No use, distribution or reproduction is permitted which does not comply with these

terms.

Frontiers in Marine Science | www.frontiersin.org 14 January 2022 | Volume 8 | Article 754476

https://doi.org/10.1080/00364827.1998.10413679
https://doi.org/10.1139/f02-002
https://doi.org/10.1016/j.aquaculture.2008.11.031
https://doi.org/10.1080/00364827.2001.10420482
https://doi.org/10.1016/j.ecolmodel.2006.04.023
https://doi.org/10.1006/jmsc.1996.9999
https://doi.org/10.3354/meps10718
https://doi.org/10.5670/oceanog.2006.93
https://doi.org/10.1006/jmsc.1998.0416
https://doi.org/10.1080/00364827.1996.10413601
https://doi.org/10.1093/icesjms/fsw062
https://doi.org/10.1016/j.pocean.2014.09.002
https://doi.org/10.1016/j.jmarsys.2005.05.005
https://doi.org/10.1111/J.1095-8649.2000.TB02091.X
https://doi.org/10.3389/fevo.2019.00271
https://doi.org/10.1111/j.1467-2979.2000.00022.x
https://doi.org/10.1023/A:1018973217951
https://doi.org/10.1111/j.1365-2419.2012.00619.x
https://doi.org/10.1007/s00442-005-0219-9
https://doi.org/10.1098/rsos.150703
https://doi.org/10.1093/icesjms/fsm025
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/marine-science#articles

	Tuning and Development of an Individual-Based Model of the Herring Spawning Migration
	1. Introduction
	2. Methods
	2.1. Purpose and Structure of Model
	2.2. Model System
	2.3. State Variables
	2.4. Environmental Forcing
	2.4.1. Environmental Values
	2.4.2. Environmental Cues

	2.5. Tuning
	2.5.1. Tuning: Setup
	2.5.2. Tuning: Simulations
	2.5.3. Tuning: Analysis

	2.6. Geospatial Comparisons

	3. Results
	3.1. Sensitivity Analysis
	3.2. Scenario Analysis
	3.2.1. Trajectory
	3.2.2. Survey Comparison

	3.3. Comparison With Catch Data
	3.3.1. Qualitative Analysis
	3.3.2. Quantitative Analysis


	4. Discussion
	4.1. Model Development
	4.2. Initialization and Tuning
	4.3. Comparison With Catch Data
	4.4. Future Developments

	Data Availability Statement
	Author Contributions
	Funding
	Acknowledgments
	Supplementary Material
	References


