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Abstract. City-level CO2 emissions inventories are foundational for supporting the EU’s decarbonization goals.
Inventories are essential for priority setting and for estimating impacts from the decarbonization transition. Here
we present a new CO2 emissions inventory for all 116 572 municipal and local-government units in Europe,
containing 108 000 cities at the smallest scale used. The inventory spatially disaggregates the national reported
emissions, using nine spatialization methods to distribute the 167 line items detailed in the National Inventory
Reports (NIRs) using the UNFCCC (United Nations Framework Convention on Climate Change) Common
Reporting Framework (CRF). The novel contribution of this model is that results are provided per administrative
jurisdiction at multiple administrative levels, following the region boundaries defined OpenStreetMap, using a
new spatialization approach. All data from this study are available on Zenodo https://doi.org/10.5281/zenodo.
5482480 (Moran, 2021) and via an interactive map at https://openghgmap.net (last access: 7 February 2022).

1 Background

While climate goals are set at the national and international
level, it is often local governments and citizens who are most
intimately involved in the accomplishment of these goals and
who must adapt to the implied changes. The European Com-
mission has been clear that cities will play a central role in
reaching European climate goals. As with nation-states, a
greenhouse gas (GHG) inventory is the first step to prepar-
ing a local climate action plan (CAP). Cities often use one of
the various protocols available or develop their own method-
ology to create an emissions inventory. And this is for good
reason – an inventory informs all levels of municipal decision
making, from long-term planning strategies to infrastructure
investments and day-to-day management of building permits.

Nevertheless, many local governments in Europe still do not
have a good estimate of their own GHG emissions. Establish-
ing an emissions inventory is laborious and can be costly for
jurisdictions that do not have in-house expertise. Hence, as
the spotlight turns to cities to effect and manage a successful
transition to carbon neutrality, many see the preparation and
maintenance of a local emissions inventory as a considerable
challenge.

Cities can develop their own inventories using a protocol
such the Global Protocol for Community-Scale Greenhouse
Gas Emissions Inventories (Fong et al., 2016), a joint initia-
tive of the WRI (World Resources Institute), C40 (C40 Cities
Climate Leadership Group), Global Covenant of Mayors for
Climate & Energy, and ICLEI (International Council for Lo-
cal Environmental Initiatives; Kona et al., 2021). An inven-
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tory informs all levels of municipal decision making, from
long-term planning strategies to infrastructure investments
and day-to-day management of building permits.

A number of GHG monitoring, reporting and verification
(MRV) solutions have been put forward. These include sen-
sor networks (both ground- and space-based) and a range of
accounting and model-based approaches. No one of these
approaches is ideal: they differ in terms of accuracy, preci-
sion, cost and scalability. In response it has therefore been
suggested that MRV efforts should aim at triangulating true
CO2 emissions using a mix of empirical, modeling and sta-
tistical methods (Lauvaux et al., 2020; Mallia et al., 2020).
The model presented here should be seen as one estimate,
to be combined with other estimation approaches and local
knowledge, to triangulate towards an actionable emissions
inventory.

One approach for cities to monitor emissions is by us-
ing atmospheric measurement of GHG concentrations and
“inverting” that for an emission quantity. These efforts re-
quire atmospheric transport models to translate the atmo-
spheric mixing ratios into surface fluxes of GHGs (Davis
et al., 2017; Ghosh et al., 2021). Concentration measure-
ments can include dense, low-cost sensors (Kim et al., 2018),
high-precision tower-mounted instruments (Turnbull et al.,
2019; Whetstone, 2018), aircraft- and satellite-based mea-
surements (NASA, 2021; Wu et al., 2020), the EU’s CoCO2
and ICOS Cities (Integrated Carbon Observation System)
projects, NASA’s OSSE project (Observing System Simula-
tion Experiment; Ott et al., 2017), and/or combinations of
all of the above. By combining these approaches with high-
resolution emission data products built using bottom-up ap-
proaches, attribution to emitting source by sector or fuel is
possible and has shown good convergence (Basu et al., 2020;
Lauvaux et al., 2020; Mueller et al., 2021).

Many estimates of emissions using techniques indepen-
dent of atmospheric monitoring have also been accom-
plished. These inventory approaches are often described as
being either “top-down” or “bottom-up” (though in fact mod-
els may use a combination of these approaches). Top-down
models begin from national statistics, such as national energy
use or fuel import statistics, while bottom-up approaches es-
timate emissions at the point of combustion or emission re-
lease based on deterministic information (e.g., fuel combus-
tion characteristics, leak rates) and then aggregate these to an
implied national total. The top-down approach uses spatial
proxies such as gridded population, nighttime lights, gross
domestic product (GDP) estimates and other available spa-
tial proxy variables to allocate national total emissions across
grid cells in each country. Bottom-up techniques often use a
mixture of data such as direct flux monitoring (e.g., power
plant stack monitors), local fuel or utility data, and traffic
monitoring.

Several global- and country-scale spatially explicit GHG
inventories have been developed based on either bottom-
up or top-down approaches. The JRC EDGAR v6.0 (Joint

Research Centre Emissions Database for Global Atmo-
spheric Research; Crippa et al., 2020) and ODIAC (Open-
Data Inventory for Anthropogenic Carbon dioxide; Oda and
Maksyutov, 2011; Oda et al., 2018) inventories are well-
established examples of global emission data products, but
others have been developed (Andres et al., 1996, 2016b;
Asefi-Najafabady et al., 2014; Nassar et al., 2013; Rayner
et al., 2010; Wang et al., 2013), including some at the na-
tional/regional scale (Bun et al., 2019; Zheng et al., 2021a;
Jones et al., 2021; Kurokawa et al., 2013; Meng et al., 2014).
A number of these models use nighttime lights data as one
input signal (or gridded population datasets, which in turn
may be based on nighttime lights), though at least one study
has found this is only moderately predictive (Gaughan et al.,
2019).

Spatially explicit bottom-up GHG inventories have been
accomplished at the regional, national and urban scale. For
example, the US 1 km2 hourly Vulcan CO2 emissions data
product (Gurney et al., 2020a, b, 2009) and the northeastern
US 1 km2 ACES (Anthropogenic Carbon Emissions System;
Gately and Hutyra, 2018) data product. Similarly, work in
Poland has achieved similar success (Bun et al., 2010, 2019).
Building-/street-scale bottom-up efforts have also been ac-
complished with the HESTIA Project which has estimated
hourly urban CO2 data products in four US cities (Gurney et
al., 2019, 2012; Patarasuk et al., 2016; Roest et al., 2020).

Finally, urban emissions have been estimated at the whole-
city scale using both top-down and bottom-up techniques as
individual city studies or as collections of urban areas (Ra-
maswami and Chavez, 2013; Chen et al., 2019a; Harris et al.,
2020; Jones et al., 2021; Meng et al., 2014; Shan et al., 2018;
Shan et al., 2017; Zheng et al., 2021a; Long et al., 2021) as
well as results focused on city results in England (Baiocchi
et al., 2015), China (Liu et al., 2020a; Wang et al., 2017)
and Europe (Baur et al., 2015). Many of these studies extend
analysis to include Scope 3 or consumption emissions.

Here we provide a new pan-European model estimating
emissions at the municipality level (Moran, 2021). This is
intended to be useful for cities which have not conducted
their own inventory. The inventory disaggregates the totals
from the official national CO2 inventory, summarizing the
167 line items of the UNFCCC’s (United Nations Frame-
work Convention on Climate Change) Common Reporting
Framework (hereafter, CRF) (IPCC, 2006) into nine emis-
sions categories. The model identifies up to five levels of ad-
ministrative hierarchy across 34 European nations including
the UK.

This paper proceeds by first situating this contribution with
respect to similar work. We then present the methodology
and results, including a pixel- and city-level comparison with
EDGAR and ODIAC and a first validation against 43 existing
urban emissions inventories assembled by individual cities.
We conclude with a discussion in which we reflect on use
cases and next steps.
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The JRC EDGAR database, ODIAC, and GCP-GridFED
(Global Carbon Project gridded fossil emissions dataset)
databases are obvious points of comparison to the model we
present in this study. Section 3 presents a conceptual and
numerical comparison of these datasets. The main innova-
tions presented by this model over EDGAR and ODIAC are
that (a) results are provided for administrative jurisdictions
rather than on a raster grid and (b) the use of OpenStreetMap
is novel. Additionally, our model is targeted to be useful to
citizens and local governments, at the city level, by identi-
fying the sources of their city’s CO2 emissions. This influ-
ences some of our modeling approaches, such as emissions
attribution from ships and planes to ports and airports rather
than along their physical voyage tracks. But it is the provi-
sion of ready-to-use results at the city, county and state level
across Europe which we believe is the core contribution of
this database.

The method described here is intended for creating an in-
ventory of direct emissions. It is worthwhile to recall the dis-
tinction between Scope 1, 2 and 3 emissions inventories as
defined in the WRI’s Greenhouse Gas Protocol nomencla-
ture (WRI et al., 2014). An inventory of direct emissions is
called a Scope 1 inventory, a territorial emissions account or
a production-based emissions account (PBA). A Scope 2 in-
ventory will be largely identical to a Scope 1 inventory but re-
allocate the emissions from electricity production to the loca-
tion where that electricity is directly used. A Scope 3 inven-
tory, also called a footprint or a consumption-based account
(CBA), will further expand the scope and attribute to con-
sumers all emissions associated with imported goods and ser-
vices produced domestically or abroad and emissions associ-
ated with waste exported outside the jurisdictional bounds.
For urban areas with little production and much consump-
tion, Scope 3 emissions can be substantial: studies estimate
that for many urban cores their Scope 1 emissions are 30 %–
50 % of their total Scope 3 footprint. Scope 3 inventories are
estimated using trade and supply chain databases and rely on
robust (i.e., well-modeled or empirically validated) Scope 1
inventories as a starting point. There is an active commu-
nity working to prepare Scope 3 assessments at the city level
(Chen et al., 2019b, a; Heinonen et al., 2020; Minx et al.,
2013; Moran et al., 2018; Pichler et al., 2017; Ramaswami et
al., 2021; Wiedmann et al., 2021; Zheng et al., 2021b).

2 Methods

The approach presented here spatializes the national emis-
sions inventory using activity data from OpenStreetMap
(OSM), the EU’s Emissions Trading System (ETS) registry
of point source emitters and traffic data for airports. This
method sums to a national total equal to the national inven-
tory, generates results as both a gridded dataset and per ad-
ministrative unit, and preserves detail on the sources of emis-

sions. The intention is to best locate emissions to where they
physically or legally occur.

As the spatial resolution of the inventory increases an in-
teresting consideration emerges, namely that there is some
discretion in where emissions should be spatially located.
The emissions for a passenger ferry for example could be
spatially located over water where they physically occur, at
the office of the ferry company which is legally responsible,
at an industrial harbor where the boat takes on fuel or at the
passenger terminals where it traffics. At larger grid cell sizes
these four locations are more likely to share the same grid
cell, but with highly resolved models this becomes a model-
ing choice. Our choices on such decisions are documented in
the relevant section of methods which describes each emis-
sions category, but as a general principle we opt to locate
emissions where it makes most sense for communication and
outreach by those using the results, where policy tools are
easiest to apply or where they physically occur, in that order.

The scope of coverage is the following: the model is cur-
rently built for the year 2018. This is the most recent year
for which official national inventories were available from
Eurostat (European Statistical Office) when the model was
assembled. The list of countries covered is provided in the re-
sults section of this paper. The UK is included in the model.
Regarding the impact of the UK’s exit from the EU, we an-
ticipate this will not substantially reduce the ability to use
this model for the UK, since the UK has established its
own UK ETS, and, we presume, will continue to publish
an emissions inventory in CRF format. This study focuses
only on CO2 emissions; other greenhouse gases are not in-
cluded. In each relevant section in Methods a discussion is
included about how the model could be extended to handle
other GHGs. One rationale for this choice is that the second-
largest GHG, CH4, is heavily driven by agricultural activities
and rogue emissions, and these are some of the hardest to ac-
curately spatialize. Furthermore, the intention in this study is
to focus on fossil fuel use and not short-cycle carbon such
as emissions related to land use and agriculture. Therefore,
the model does not include emissions from land use, land-
use change and forestry (LULUCF). The choice to exclude
these from the model was based on considerations includ-
ing that (a) estimates of total LULUCF emissions are often
poorly constrained; (b) they are difficult to spatialize accu-
rately; (c) local-government policies have fewer immediate
policy options for managing these emissions; (d) national cli-
mate targets often exclude LULUCF emissions; and (e) there
are diverse approaches to account for LULUCF and carbon
sinks, leading to significant variability (Grassi et al., 2018;
Petrescu et al., 2020).

The model assembly procedure can be summarized as fol-
lows. Further detail and discussion on each aspect is pro-
vided in the following subsections. First, emissions which
can be attributed to point source facilities reporting under
the ETS are separated from the national inventory. ETS-
registered emissions are geolocated at the street address reg-

https://doi.org/10.5194/essd-14-845-2022 Earth Syst. Sci. Data, 14, 845–864, 2022



848 D. Moran et al.: Estimating CO2 emissions for 108 000 European cities

istered for that permit holder. In the cases where the location
of emissions differs from the registered address (e.g., off-
shore oil activities or some company activities) this approach
can still be rationalized, since (a) physically locating all fa-
cilities which are not at their mailing address will be difficult
and (b) legally, the control of the emissions is likely at the
registered address, so there is sense in calling attention to
emissions which are controlled from there. Emissions from
vehicles are apportioned equally to fuel stations as located
in OSM. The model amortizes total national vehicle fuel use
evenly across all fuel stations, though this will correctly nei-
ther capture subtleties such as fleet and trucking-only fuel
depots nor differentiate between small (one to two pumps)
stations and large filling stations with multiple pumps. Emis-
sions which are associated with buildings (heating and cool-
ing, construction, and light commercial activity), plus the
residual industrial emissions which cannot be attributed to
ETS sources, are apportioned equally onto all buildings reg-
istered in OSM. (OSM does allow for buildings to be tagged
with extended attributes such as floor size, stories and use,
but in our investigations <1 % of buildings use these at-
tributes, so for now we have not attempted to utilize those
fields.) Emissions from marine bunker fuels are apportioned
equally to harbors as located in OSM (note that diesel fuel for
small vessels will be treated as vehicle fuel). Emissions from
aviation bunker fuel are spatialized onto airports proportional
to the volume of passenger traffic handled at each airport, as
reported by Eurostat. Fugitive emissions and emissions from
petroleum byproducts are spatialized equally across national
refineries and associated oil storage facilities. CO2 emissions
from farming and forestry are apportioned to farmed areas as
located in OSM (these are based on the EU CORINE – Coor-
dination of Information on the Environment – land-use map).
Emissions from trains are mapped to passenger train stations.

Figure 1 displays the total emissions covered in the model,
excluding LULUCF and carbon sinks, grouped according to
the methods used to spatialize those emissions, and color-
coded according to the approximate level of difficulty or de-
gree of uncertainty of that spatialization, with grayer colors
representing more easily spatialized emissions and brighter
colors indicating emissions categories which, in the authors’
experience, are more difficult to confidently spatialize.

2.1 Mapping point source emissions regulated by the
EU Emissions Trading System

The EU’s Emission Trading System (ETS) requires large
point source emitters to report emissions and report an ad-
dress for every permit holder. A geolocation API (applica-
tion programming interface) was used to translate these ad-
dresses into latitude–longitude coordinates. While for many
facilities the address where the emissions are legally con-
trolled is the same as the facility’s physical address or in a
nearby town, in some cases the two locations can differ more
substantially (emissions from Norwegian offshore activities

Figure 1. Composition of emissions across the 34 European coun-
tries covered. ETS shows the volume of emissions associated with
ETS-registered point source emitters; fuel stations show emissions
from vehicles; the “buildings” category comprises emissions from
building heating, cooling, construction and light commercial activ-
ity. Non-ETS point source emissions is a residual category repre-
senting the difference between industrial emissions as reported in
the national inventory and the sum of emissions reported by facil-
ities participating in the ETS. Nearly half (42 %) of these occur in
Turkey, which as of publication does not participate in the ETS, but
this discrepancy is also observed in large emitters like Germany,
France, the UK and Poland. These residual emissions are spatial-
ized using OSM records instead of ETS addresses.

are largely legally controlled in the city of Stavanger, for ex-
ample). The emissions associated with ETS-permitted facili-
ties are then subtracted from the CRF inventory, thus leaving
fewer total emissions remaining to be spatialized. The allo-
cation of CRF emissions to ETS facilities is done as follows.
For a number of CRF sectors (for example, “Fuel combus-
tion in manufacture of iron and steel” (1.A.2.A)), some or all
of the sector’s emissions are attributable to ETS facilities. We
constructed a priority-ranked concordance table to determine
which CRF emissions are already covered by ETS-registered
permits. Normally the ETS-reported emissions for a given
activity are less than or equal to the CRF-reported emissions
for that category, and there is only a small residual between
the CRF-reported value and sum across pertinent ETS per-
mits; however in some cases this residual is substantial.

The mapping between ETS categories and CRF categories
is not always one-to-one. For example, the ETS uses the
code “24: Production of pig iron or steel”. These facilities
may correspond to the CRF activities, Fuel combustion in
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manufacture of iron and steel (1.A.2.A), Iron and steel pro-
duction (2.C.1), or Ferroalloys construction (2.C.2). In our
ranked concordance matrix approach, a rank of 1 is given
to the first CRF activity; a rank of 2 is given to the second
CRF activity; and a rank of 3 is given to the third CRF ac-
tivity. The emissions from those ETS facilities from code 24
are first attributed to the rank 1 CRF activity until it is sated;
then excess ETS emissions are assumed to come from the
rank 2 activity until that volume is sated; the same for rank 3,
and so on. Using the above example that could mean that all
emissions under the first two CRF categories would be fully
attributed to ETS iron and steel facilities and a portion of
the emissions under rank 3, Ferroalloys construction (2.C.2),
which cannot be attributed to ETS facilities, would remain to
be spatialized.

In some cases it is unclear what the ranking of CRF
activities should be. For example after allocating ETS
emissions from “production of lime, or calcination of
dolomite/magnesite” (ETS category 30) first to lime pro-
duction (2.A.2) and secondarily to glass production (2.A.3),
should excess ETS facility emissions from code 30 best be
attributed to Cement production (2.A.1), Fuel combustion in
manufacture of non-metallic mineral products (1.A.2.F), or
Fuel combustion in other manufacturing industries and con-
struction (1.A.2.G)? In this case the last three sectors are
sated in smallest-to-largest order until no ETS emissions re-
main to be allocated. The rationale for the ascending sort or-
der is that larger CRF categories will be easier to spatial-
ize using other methods. In the earlier example of aluminum
production, any surplus reported in ETS which exceeds the
CRF reported aluminum production emissions is then as-
signed to the rank 2 CRF category of “Fuel combustion in
other manufacturing industries and construction”, decreasing
the amount of emissions in that CRF category which remain
to be spatialized. We also note that not all facilities use the
expected ETS activity code. For example we have observed
some fertilizer plants reporting emissions under ETS activity
code 42 “Other bulk chemicals” instead of activity 41 “Am-
monia production”. Such misattributions can introduce dis-
tortions in the model results. To characterize the impact of
these distortions the allocation of ETS emissions through the
ranked priority allocation system into CRF would need to be
followed manually in detail.

After linking ETS-reported emissions to the national in-
ventory, the remaining CRF-reported emissions are spatial-
ized using the methods described as follows.

2.2 Vehicles

These are emissions from the following five CRF categories:

– 1.A.3.B.i Fuel combustion in cars

– 1.A.3.B.ii Fuel combustion in light duty trucks

– 1.A.3.B.iii Fuel combustion in heavy duty trucks and
buses

– 1.A.3.B.iv Fuel combustion in motorcycles

– 1.A.5.B Mobile fuel combustion sectors n.e.c.

These emissions are specialized according to the location
of vehicle fueling stations as documented in OpenStreetMap.
We make the assumption that the number of vehicle fuel sta-
tions in an area is proportional to the volume of traffic served.
This is a simplifying assumption, and it is clearly commu-
nicated in the model presentation. In future development of
the model, localizing vehicle emissions will be a top prior-
ity (for comparison, we note the Carbon Monitor project’s
use of TomTom live vehicle location data to spatialize traffic
(Liu et al., 2020b)). This approach assumes that every fuel
station supplies a similar level of vehicle traffic. It could be
the case that some stations are small single-pump gas sta-
tions, while others are large facilities, for example such as
those located along a major highway rest stop. To address
this, one future solution could be introduce better road traffic
estimates. While traffic load estimates are available for some
roads, these estimates tend to be for only a few dozen spe-
cific highways. Fu and colleagues (Fu et al., 2017) proposed
a method using neural networks to estimate vehicle flow on
every road using OSM data and gridded population models.
Osses et al. (2021) recently prepared a high-resolution map
of emissions from vehicles in Chile. Better modeling of ve-
hicle traffic, not only fuel station availability, would make
the model more accurate in spatially estimating vehicle fuel
emissions. Another potential solution would be to identify
data on fuel station volume, e.g., sales estimates or number
of pumps installed, but this may be challenging in practice.
A second assumption is that every station serves a homoge-
neous mix of vehicles. It may be the case that some stations
serve a specific fleet, for example a city bus fleet, and bet-
ter identifying the mix of vehicles served by each fuel sta-
tion would allow for the above five emissions categories to
be more precisely spatialized. Insofar as electric-car adop-
tion drives some fuel stations to close, the model will reflect
lower vehicular emissions in areas with more electric vehi-
cles. An interesting note is that in some urban centers light-
truck traffic is suspected to be a larger emission source than
passenger vehicles. Better distinguishing types of traffic and
vehicles would be useful for helping guide decarbonization
plans that are most appropriate for various areas.

2.3 Trains

Trains are a relatively minor source. Emissions for Fuel com-
bustion in railways (1.A.3.C) were spatialized using passen-
ger train stations as reported in OSM. Every train station was
allocated an equal share of the total emissions. A limitation
of this approach is that it may be that not all train traffic
is equally fuel-intensive: some individual trains or sections
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of the rail network could be fully electrified, and other ar-
eas could not be. Another limitation is that the method allo-
cates total train emissions (both passenger and cargo) equally
across passenger stations, yet passenger stations are not all
equally used, and cargo train activity would be more ap-
propriately localized at freight yards. Reporting train emis-
sions at passenger terminals does service a communicative
value, as it reminds viewers that train traffic is not entirely
emissions-free.

2.4 Buildings

In the following categories, only a portion of the emissions
can be spatialized to ETS locations, but there remain emis-
sions which must be spatialized onto buildings:

– 1.A.2.G Fuel combustion in other manufacturing indus-
tries and construction

– 1.A.4.A Fuel combustion in commercial and institu-
tional sector

– 1.A.4.B Fuel combustion by households

– 1.D.3 Biomass – CO2 emissions (memo item)

– 2.D.3 Other non-energy product use.

The largest shares of these remaining emissions are driven
by building heating and cooling and fuel combustion by light
industry and construction.

Correctly spatializing these emissions associated with
buildings is a substantial challenge. OSM is sometimes
known as “open buildings map”, since the database actually
contains more buildings than streets. The OSM dataset re-
ports an extensive number of buildings, but little data are
available to characterize each building. OSM does not record
all buildings. In many areas, including small towns, only a
street address is marked, but there is no point or polygon
data indicating what is built at that address. While it might
be possible to obtain maps of all buildings from national
cadaster agencies, part of our intention in the model is to
develop methods which are replicable across other countries
and do not rely on single-country datasets. Of the buildings
recorded in OSM, only a small percentage (1 %–5 %, de-
pending on the country) contain any information character-
izing the building such as the number of floors, main usage
activity, building material type or building age. Some recent
offerings which provide building footprints (e.g., products
from Maxar or Predicio building footprint data, free offer-
ings from Bing/Microsoft, and academic initiatives such as
coordinated through https://spacenet.ai, last access: 7 Febru-
ary 2022) could be used to identify at least the building foot-
print size and potentially height or construction material.

The approach used in the model is to apportion all of the
emissions associated with buildings equally among all build-
ings and registered street addresses in each country. It is im-
portant to recall that for buildings heated by electricity, CO2

emissions associated with electricity production will be lo-
cated at ETS-registered power plants. As noted above, there
is a paucity of information available by which we could fur-
ther characterize building size or use.

2.5 Aviation

These total emissions are associated with kerosene used for
aviation fuel (the sum of the CRF categories “Fuel combus-
tion in domestic aviation” (1.A.3.A) and “International avi-
ation” (1.D.1.A)) reported by EU member states and calcu-
lated compliant with IPCC (Intergovernmental Panel on Cli-
mate Change) 2006 guidelines (Maurice et al., 2006). These
emissions are attributed to airports proportionally to total
passenger kilometers (pkm). Fuel use from military aviation
is excluded.

Total pkm data are derived from the combination of Euro-
stat statistics of route traffic and passenger traffic per airport.
This procedure is preferred over an attribution based solely
on total passenger or flight numbers, since we here implicitly
incorporate information of both the flight length and aircraft
size. These parameters are two major drivers for fuel con-
sumption and emissions (Yanto and Liem, 2018).

2.6 Farming activity

The CRF uses the following three categories for farming-
associated activities:

– 1.A.4.C Fuel combustion in agriculture, forestry and
fishing

– 3.G Liming

– 3.H Urea application.

The largest of these, category 1.A.4.C, is challenging to
spatialize for two reasons: first, the inclusion of fishing ac-
tivity means emissions in this category overlap with emis-
sions in marine traffic. To handle this, emissions from fish-
ing would have to be estimated, removed from this amount
and spatialized separately. Even then, the remaining emis-
sions from fuel combustion in agriculture and forestry would
still be difficult to spatialize. Second, we have not been able
to identify a suitable dataset to use to divide and appropri-
ately spatialize forestry as distinct from farming.

Our approach is to map these collected emissions onto lo-
cations of farmland as identified by the EU’s CORINE land-
use dataset, which is already incorporated into OSM. The
above emissions were evenly allocated to the centroid points
of all polygons tagged as farmland from CORINE. This ap-
proach will not correctly spatialize emissions associated with
forestry. Also, this approach allocates the emissions evenly
across every polygon tagged as farmland, regardless of the
size of each patch. A future improvement could be to weight
this allocation by patch size and thus assume every hectare
of farmland is equally emissions-intensive to manage or to
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introduce activity-level data for agriculture, such as integrat-
ing maps of dairy cattle operations (Neumann et al., 2009) or
similar.

As discussed in the Introduction, as well as in Sect. 2.10
below on short-cycle carbon, currently the model intention-
ally excludes emissions from land use, land-use change, and
biotic processes such as cattle digestion and manure han-
dling.

The following categories in the CRF report also relate to
farming:

– 3 Agriculture

– 3.1 Livestock

– 3.A Enteric fermentation

– 3.B Manure management

– 3.C Rice cultivation

– 3.D Managed agricultural soils

– 3.E Prescribed burning of savannas

– 3.F Field burning of agricultural residues.

2.7 Marine

Emissions from the maritime sector are part of international
bunker fuel emissions together with international aviation. In
both cases, emissions are calculated as part of the national
GHG inventories but not included in national totals.

Emissions in this sector are comprised of the following
CRF emissions categories:

– 1.A.3.D 4 Fuel combustion in domestic navigation

– 1.D.1.B 4 International navigation.

This covers tank-to-wake emissions that stem from fuel
combustion. Total fuel consumption is calculated by a top-
down assessment based on annual sales of bunker fuel in each
country, comprising marine gas oil (MGO) and heavy fuel
oils and distillates (HFO), and geospatially distributed across
the 888 ports.

Port allocation of bunkered fuels is based on the total
transport work for berth-to-berth ship voyages, as obtained
from IHS Markit, totaling 773 000 port calls. Ship voyages
are combined with their ship’s respective average fuel con-
sumption as reported by ship owners to the European Union’s
emissions monitoring scheme (EU MRV; monitoring, report-
ing and verification), given as kilograms of fuel per nau-
tical mile. This covers all vessels operating in EU ports
above 5000 Gt, totaling approximately 11 000 vessels. The
distance covered with each voyage is calculated by apply-
ing Dijkstra’s algorithm (Dijkstra, 1959) to find the short-
est path between two ports, followed by a curve-smoothing
process by the Ramer–Douglas–Peucker algorithm (Douglas

and Peucker, 1973; Ramer, 1972). The average fuel con-
sumption and distance sailed is used to estimate total bunker
demand at the port level, by weighing the national reported
bunker sales. This approach is expected to be gradually re-
placed by the bottom-up emission inventory provided by the
MariTEAM (Maritime Transport Environmental Assessment
Model) model (Kramel et al., 2021).

This assessment includes neither leisure crafts, considered
negligible in comparison to cargo vessels; warships; naval
auxiliaries; nor fish-catching or fish-processing ships that are
exempt from reporting their activity to MRV.

2.8 Other

The following are some emissions which are difficult to spa-
tialize:

– 1.C Transport and storage of CO2 (memo item)

– 2.A.4 Other process uses of carbonates

– 2.D.1 Lubricant use

– 2.D.2 Paraffin wax use.

In the model these emissions are included in and spatial-
ized using the same strategy as emission from buildings as
described above.

2.9 Refineries

The following CRF emissions categories are associated with
oil refineries and fossil fuel infrastructure:

– 1.B Fuels – fugitive emissions

– 1.B.1 Solid fuels – fugitive emissions

– 1.B.2 Oil, natural gas and other energy production –
fugitive emissions

– 2.B.8 Petrochemical and carbon black production.

Carbon black, item 2.B.8, used to produce black ink, is
a byproduct from fracking at refineries. Fugitive emissions
(1.B.2) are by their nature difficult to spatialize (Plant et
al., 2019). A number of studies in California have tried to
characterize fugitive emissions from the aging oil wells and
modern fracking equipment in the region (Hsu et al., 2010;
Rafiq et al., 2020; Townsend-Small et al., 2012; Wennberg
et al., 2012). In our model all fugitive emissions are at-
tributed evenly across refineries and associated storage tanks
as located in OSM. The fugitive emissions are apportioned
equally among the buildings tagged (industrial as refinery)
or (industrial as oil) in OSM. This approach has the disad-
vantage of not correctly spatializing fugitive emissions at the
various wellheads and pumping and storage locations where
such emissions physically occur but has the advantage of at-
tributing fugitive emissions to refineries so that policy plan-
ning can recognize that fossil fuel creates emissions not only
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when it is combusted but also during its production. This ap-
proach follows the guiding philosophy of locating emissions
where they best connect to the relevant policy discussion.

2.10 Land use, forestry, stock change and waste
(short-cycle carbon)

Our model is focused on reporting CO2 emissions from fossil
fuel combustion and industrial processes. We explicitly set
aside so-called “short-cycle carbon”, that is, carbon which is
already in the biosphere stock. We limit the model to focus
on emissions of carbon taken from the fossil stock.

Carbon put into sinks (under CRF table 5 – Waste), nei-
ther natural (terrestrial, aquatic or marine) nor man-made
(e.g., timber construction or paper or biomass put into land-
fill), is spatialized or included in the results. Negative emis-
sions from carbon capture and storage facilities are presently
excluded from the model.

CO2 emissions from CRF category 4, encompassing land
use, land-use change and forestry, are also not included. Our
intention is to spatialize fossil fuel combustion associated
with agriculture and forestry but not emissions associated
with landscape-scale soil and biotic processes. We reason
that such landscape-scale emissions are both large and very
challenging to address using locally available policy tools.
Including them in a city-oriented plan, particularly in rural
municipalities, could lead to a situation where the results are
heavily dominated by an emissions category with few viable
solutions.

In future iterations of the model it may be preferable to
allow users to easily include or exclude the emissions in the
model results. Currently our model does not include direct
CH4 emissions from cattle digestion and manure fermenta-
tion. This is a substantial emissions category with some re-
mediation options, so it may be useful to include this in a
future iteration of the model.

Another detail in this category is sewage treatment and
landfills. These act as both sources and sinks of carbon. It is
unclear whether net emissions from sewage plants and land-
fills are included inside the CRF category “Long-term stor-
age of carbon in waste disposal sites” (5.F.1) or in another
category. As category 5.F.1 is not included in the model,
if net emissions from sewage are included in this category,
those emissions will not be included in the model. Quanti-
fying emissions associated with sewage treatment and local
landfills would be an improvement to the model.

3 Benchmarking

We do not intend here to provide an exhaustive survey of
available spatial emissions models. Here we only compare
the OpenGHGMap model with some widely used global-
level models. A full comparison of spatial emissions models,
including several strong single-country models, would be a
valuable contribution to the field but is not within the scope

of the present paper. For one such comparison we refer to
Hutchins et al. (2017).

Table 1 provides an overview and comparison of
OpenGHGMap with ODIAC (Oda and Maksyutov, 2011),
JRC’s EDGAR (Crippa et al., 2020, 2019) and the Global
Carbon Project’s GCP-GridFED (Jones et al., 2021) spatial
emissions models.

Regarding a comparison to EDGAR and GCP-GridFED,
which uses EDGAR’s spatialization layer, at the time of
writing, the report with the methodology used for EDGAR
v6.0 has not been published. Based on the data sources
mentioned on the EDGAR website it appears that activity-
level data have been obtained for various industrial ac-
tivities (e.g., farming, fertilizer production, steel refineries,
electricity generation), and plane and ship emissions are
mapped to voyage tracks, but it is not published how emis-
sions from buildings, light commercial activity and vehicles
are spatialized, except that the GHS-POP (Global Human
Settlement) gridded population dataset is mentioned. Since
OpenGHGMap uses ETS facility-level data to map indus-
trial emissions (an advantage afforded by its Europe-only
focus), it may be that the two models will come to simi-
lar results for mapping industrial emissions, since presum-
ably the activity-level datasets for industry used by EDGAR
will be largely identical to the facility-level data from ETS.
If EDGAR uses population density as a proxy to map vehicle
and building emissions, this is a slightly different approach
than OpenGHGMap’s use of fuel stations and building loca-
tions from OSM.

Regarding a comparison to ODIAC, the original ODIAC
was a ground-breaking project and introduced the approach
of using power plant locations and nighttime lights as a
proxy for emission activities. Since that project, more recent
projects have introduced more proxy variables and activity
inventories. In our results comparison (below) the ODIAC
results still agree, but ODIAC does not present results with
sector/activity detail which is important for further insight
and to guide action.

In addition to this conceptual comparison of methods we
also compare the numerical results. To compare the results
of the OpenGHGMap model to ODIAC and EDGAR v6.0,
the OpenGHGMap model was rasterized to a 30 arcsec raster
(approximately 650 m2 cells at 45◦ latitude) to permit a di-
rect cell-level comparison across emissions models and the
GHS-POP gridded population model. The EDGAR dataset
version is v6.0, data year 2018, with a native resolution of
0.1◦ (360 arcsec) before re-gridding. For ODIAC, the model
version is 2020, with data for 2018, with a native resolu-
tion of 1 km2 cells. The three modeled inventories report
slightly different totals for total European emissions. This is
due to (a) differences in emissions categories covered; (b) for
ODIAC, the monthly allocation; and (c) for EDGAR, the fact
that in EDGAR, aviation and marine emissions are spatial-
ized over ship and flight traffic routes rather than allocated to
grid cells in the country. For this initial cross-model compar-
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Table 1. Comparative overview of several spatial emissions datasets.

Resolution Itemization Temporal Results by jurisdiction Scope Method synopsis

ODIAC 1 km Total emissions Monthly Country Global Spatialized national emissions
using nighttime lights and
power plant locations

EDGAR v6.0 0.1◦ (11 km at the
Equator)

31 IPCC CRF cate-
gories

Up to hourly Country Global Collected activity-level data
sources (e.g., steel industry,
FAO for farming activity,
ship and flight tracks)

GCP-GridFED 0.1◦ (11 km at the
Equator)

Total emissions, per
five fossil fuels

Monthly Country Global National totals from GCP, spa-
tialized using EDGAR

OpenGHGMap
(our model)

Point source, 1 km
grid or per munici-
pality

9 categories Annual Country, state, county,
municipality, facility

Europe Spatialized national emissions
using activity data from Open-
StreetMap

ison, the three datasets were normalized to include only grid
cells covered by all three models and then the total emissions
across the three models were normalized so that we compare
solely the spatial allocation. This is a simplified method for
cross-model comparison and leaves considerable scope for
future work on cross-model comparison. Our main aim here
is to document this new model and conduct a preliminary
validation, not conduct a robust cross-model comparison.

The cross-model cell-level comparison (Fig. 2) shows the
degree of convergence between the OpenGHGMap and the
EDGAR model. The OpenGHGMap reports more cells with
low (<100 t CO2 yr−1) and very high (>1000 t CO2 yr−1)
emissions. The OpenGHGMap model also reports higher
cell-level variability than ODIAC: the ODIAC model re-
ports that most cells have emissions in the range of 102–
104, whereas the OpenGHGMap model reports cells with a
range of 101–105 t CO2 yr−1. This could potentially be an ar-
tifact due to the aggregation of ODIAC. The ODIAC model
is natively provided at 1 km2 resolution, corresponding to a
cell size of 0.07–0.04 arcsec depending on latitude, and it
could be that the aggregation to 30 arcsec cells for the pur-
pose of comparison has masked higher variability within the
30 arcsec grid. Another hypothesis is that this homogene-
ity is due to ODIAC’s use of nighttime lights data and that
while illumination is relatively homogenous across urban
and peri-urban areas, the emissions within similarly lit areas
can be starkly different. Another noteworthy feature is that
OpenGHGMap reports many more areas with low (<100 t)
emissions compared to both EDGAR and ODIAC. One hy-
pothesis is that this is related to the method of spatializing
emissions from vehicle fuels to fuel stations. Since fuel sta-
tions often are spaced >650 m apart, especially in rural areas,
this could result in many pixels in rural areas being assigned
zero fuel emissions. As discussed elsewhere, the decision to
localize vehicle emissions at fuel stations was a deliberate
design choice in this model. Other models may choose to
localize these emissions on roads or prorate them across a
gridded population map on a per capita basis.

Next, we converted the administrative-region definitions
from OpenGHGMap to a raster map compatible with the
EDGAR v6.0 and ODIAC gridded datasets, and we com-
pared the results aggregated by administrative level across
the models at the city level (i.e., by city) across the models.
We compared results both at the city level, i.e., at the highest
level of regional detail per country, and at the county level,
i.e., the administrative level one step above that. These results
are presented in Fig. 3.

Currently no methodology has been developed to quan-
tify uncertainty in the model. In addition to being technically
challenging, it is difficult to quantify uncertainty in any sin-
gle portion of the model, much less the whole. Even if the
national inventory or ETS inventory is taken to be 100 % re-
liable, errors and biases introduced during the various steps
of spatializing these emissions are difficult to quantify. De-
veloping a strategy for parameterizing reliability of model
results would be a valuable next step in the research. Previ-
ous studies which have investigated techniques for parame-
terizing uncertainty in gridded spatial proxy models could be
useful (Andres et al., 2016a; Bun et al., 2010; Hogue et al.,
2016; Hutchins et al., 2017; Woodard et al., 2014).

3.1 Validation against city inventories

The main objective of the OpenGHGMap database is to pro-
vide easily accessible estimates for GHG emission invento-
ries at the municipal level to assist local governments in de-
veloping more detailed inventories or in developing their own
climate action plan (CAP). We compare our OpenGHGMap
estimates for external validation with existing municipal
GHG inventories compiled from a variety of sources in a
dataset of 343 cities (Nangini et al., 2019). These emis-
sions inventories are largely self-reported, are of varying
quality and follow different protocols but still provide the
most concrete point of comparison for our Scope 1 emis-
sions estimates at the municipal level. In total, Scope 1
emission values for 44 European cities can be found in the
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Figure 2. Emissions per standardized grid cell, cross-model comparisons and frequency analysis. Compared to the ODIAC dataset (a, c),
OpenGHGMap reports higher cell-level variability ranging from 101 to 105 t CO2 yr−1, while ODIAC reports most cells in the range of
102–104 t CO2 yr−1. Compared to the EDGAR v6.0 dataset (b, c), the OpenGHGMap dataset reports more cells with small (<102 t CO2)
emissions and fewer cells with high (>104 t CO2) emissions. The OpenGHGMap dataset reveals a higher variability in emissions per cell
than do other models.

Figure 3. Cross-model comparison of CO2 emissions per city (using the finest level of regional detail) and per county (using the next-finest
level of regional detail per country).
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database, which are compared to the OpenGHGMap esti-
mates in Fig. 4.

The figure shows very high agreement (Pearson correla-
tion coefficient of 0.937), despite the different methods and
timing of the city inventories (emission years between 1994
and 2016 with a median of 2013). Only Ravenna, Italy, dif-
fers by several orders of magnitude, but the value in the 343-
city database is not realistic (11 kt CO2 for a population of
150 000 is unrealistically low).

4 Main findings

4.1 Results overview

An overview of the results for Europe is shown in Fig. 5.
The results are presented both in absolute and per capita
terms. Some noteworthy features are the high emissions in
the coastal Netherlands, associated with marine activity, and
the high emissions from the island of Gotland in the Baltic
Sea, driven by one large cement facility there. Emissions
in France are remarkably concentrated into a few, primarily
coastal, cities.

One limitation which must be kept in mind when looking
at the results at the municipal level is that municipalities vary
in size between countries. In continental Europe municipali-
ties are quite small, while in the Scandinavian countries the
most local administrative units are relatively large and thus
aggregate more emissions and are more visually prominent.
For some analyses, gridded maps, where the spatial unit of
analysis is consistent, are preferable to political maps.

Population per administrative area was estimated by over-
laying the administrative boundary on the GHS-POP gridded
population map. Gray areas indicate areas where no model
results are available. In some cases (as seen for example in
Ukraine and Romania) the administrative regions at that level
are not exhaustive.

In many countries, emissions are remarkably concentrated
in a few regions. As seen in Fig. 6, in 21 of the 34 countries
assessed, >30 % of national emissions arise from 10 munic-
ipalities. This implies that focused changes in a few political
regions could contribute substantially to achieving national
reduction targets.

The important role of high-emitting municipalities is seen
at the European level as well. Figure 7 presents a Lorenz
curve showing the contribution of municipality to the to-
tal European emissions. A striking degree of concentration
is visible, with 10 municipal regions across Europe driving
7.5 % of emissions, 100 driving 20 % and the top 10 cities
in each country collectively driving 33.4 % of total European
emissions. These highest-emitting regions are not necessar-
ily the most populous, since in many cases outlying industrial
facilities are major drivers of emissions.

4.2 Case study of Norway

To demonstrate the results provided by the model, we inves-
tigate Norway as a case study. In Norway there are just two
levels of administrative hierarchy: counties (fylke) and mu-
nicipalities (kommune), corresponding to the NUTS-2 and
NUTS-3 (Nomenclature of Territorial Units for Statistics)
levels respectively. This is a relatively simple configuration;
for many European countries the system of administrative
hierarchy is complex and deeply historical. For example in
Germany some cities are peers with states, and the adminis-
trative configuration is slightly different between states (in
some states there is a level 7 administrative subdivision,
while in other states there is not); in Switzerland not all can-
tons use subdivisions; and in some places, statistic agglomer-
ations of areas, such as capital cities with their suburbs, may
be more relevant than the judicial regions. Our model pro-
vides results at all administrative levels in a country as de-
fined in OSM. There are up to 10 levels available (we do not
include level 11, which is for neighborhoods and parishes),
and most countries use between levels 2 and 5.

The results for Norway at the NUTS-2 (fylke) level (Fig. 8)
show concentration and highlight the importance of indus-
trial sources in Norway. The fylke of Rogaland is the high-
est emitting. This is because in Stavanger, a city in Roga-
land known as “the oil capital of Norway”, in addition to re-
ported emissions from petroleum facilities physically around
the city, many of the ETS-registered point source emissions
from offshore facilities are legally registered to company of-
fices in Stavanger.

Viken, the region of greater Oslo, has 5.8 Mt of CO2 emis-
sions. The model results show that 32 % of these emissions
come from vehicles and 36 % from buildings. Fossil fuel
heating has been phased out of most buildings in Norway,
so these emissions are from light commercial activity, such
as small burners, boilers and generators not reporting to the
ETS. A full 20 % of emissions in Viken (1.1 Mt) are as-
sociated with Norway’s largest airport, the Oslo Airport at
Gardermoen. As described in Methods, total emissions from
aviation bunker fuel use in the country are allocated across
airports in the country, prorated by 2018 passenger volume.
This approach could be biased, and emissions from cargo
flights, long-haul flights and military aviation should be lo-
cated at airports different from those handling the most pas-
senger traffic. This is a limitation of the current model.

Table 2 presents results at the municipality (kommune, or
LAU-1; local administrative unit) level for the top 20 munic-
ipalities. The relatively low emissions from the cities of Oslo
(ranked 11th), Bergen (ranked 10th) and Trondheim (ranked
19th) is surprising given these are the three largest cities in
Norway. Industrial emissions from ETS sources are the pri-
mary emissions drivers for the top four cities. The city-level
results do also reveal some challenges with the model. The
“refineries” category is defined as the residual between the
national total emissions associated with industrial facilities
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Figure 4. Comparison between OpenGHGMap results and the community-level emissions inventories of 44 European cities. Color coding
is used to indicate whether the city self-reports CO2 or GHG (CO2eq) emissions. Since OpenGHGMap reports only CO2 emissions, this is
limited to an indicative comparison, not a precise comparison.

Figure 5. OpenGHGMap.net website screenshots. CO2 emissions per municipality in absolute terms (a) and per capita terms (b). Darker
colors (browns, purples) indicate higher emissions (absolute values can be found at the website http://openghgmap.net, last access: 7 Febru-
ary 2022). Base map © OpenStreetMap contributors 2022. Distributed under the Open Data Commons Open Database License (ODbL)
v1.0.

and the total reported by the ETS facilities, and this resid-
ual is allocated evenly across facilities tagged as refineries in
OSM. Overall this residual is small, but since there are few
refineries, for individual cities it is substantial. Also notewor-
thy are the major emissions from harbors in the residential
island archipelago of Øygarden. Currently emissions from
marine bunker fuel are allocated evenly across all facilities

tagged as “harbor” in OSM. In Øygarden there are many
small-boat facilities, often not even selling fuel, yet at the
same time the island region outside of Bergen is also heav-
ily trafficked by large offshore work ships and cargo ships.
Improving the methods used for spatializing emissions from
marine bunker fuel use would help improve the model for
Norway and other countries with extensive marine traffic.
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Figure 6. Share of national emissions arising from the top 10 emitting municipalities (or smallest finest administrative distinct) in each
country. (Liechtenstein is not shown because the country only has 11 municipalities.)

Table 2. Estimated CO2 emissions for 2018 for the top 20 emitting municipalities in Norway, as generated by OpenGHGMap.

Region name Total (t CO2) t CO2 Airports Buildings ETS Farms Fuel stations Harbors Refineries TiOx Trains
per capita

Stavanger 12 109 439 79.7 – 149 270 11 779 396 4935 146 650 28 932 – – 256
Porsgrunn 2 079 447 58.6 – 17 446 1 989 186 441 67 040 4822 – – 512
Sola 1 395 161 63.9 208 654 23 320 1 100 663 448 37 710 24 110 – – 256
Tønsberg 1 262 066 22.1 – 81 972 347 759 3731 67 040 4822 756 230 – 512
Ullensaker 1 223 520 34.9 1 128 279 29 898 – 1981 62 850 – – – 512
Haugesund 1 202 557 33.3 – 17 292 1 133 338 1015 46 090 4822 – – –
Øygarden 1 088 329 30.3 – 37 224 67 910 2695 79 610 144 660 756 230 – –
Sandnes 905 490 12.5 – 56 100 – 980 92 180 – 756 230 – –
Alver 864 906 28.5 – 31 174 – 9198 58 660 9644 756 230 – –
Bergen 729 745 2.6 331 913 157 344 30 033 3353 205 310 – – – 1792
Oslo 724 800 1.1 – 386 628 10 468 2002 322 630 – – – 3072
Sunndal 694 376 94.5 – 8008 670 648 3 150 12 570 – – – –
Karmøy 616 538 14.6 27 177 20 218 442 562 413 58 660 67 508 – – –
Bamble 596 183 37.7 – 3388 541 806 77 46 090 4822 – – –
Rana 584 501 22.4 20 400 7920 503 573 6006 46 090 – – – 512
Vefsn 530 372 38.6 14 620 34 936 446 234 294 33 520 – – – 768
Fredrikstad 518 362 6.4 – 186 010 71 105 8722 117 320 9644 – 125 305 256
Årdal 467 475 82.8 – 2288 456 373 434 8380 – – – –
Trondheim 458 851 2.4 – 233 640 45 422 2289 167 600 9644 – – 256
Senja 451 891 30.6 – 27 962 304 611 266 41 900 77 152 – – –

The model can be explored as tabular data or as a grid-
ded raster model or visualized on a map. Figure 9 provides
an overview of the distribution of emissions across Norway,
aggregated at the county and municipality levels. A concen-
tration of emissions in Stavanger (in the southwestern corner)
and Porsgrunn (an industrial area in the south) is clearly vis-
ible.

Internally, the model attributes all national emissions to
points across the country. It is possible to zoom in and view
these emission point sources. Figure 10 provides a screen-
shot from the model visualization for the city of Trondheim,

a city of 200 000 located in central Norway. The dots over
each building, farm, fuel station and ETS facility are scaled
according to the estimated amount emissions coming from
that point. Orange dots show ETS-registered facilities. Pur-
ple dots in the figure show fuel stations. The fine gray dots
in the figure show all buildings registered in OSM. As de-
tailed in Methods, emissions from several categories are allo-
cated to buildings. The use of fossil fuel for building heating
is extremely rare in Norway. The emissions in the building
category in Norway are mostly from light commercial activ-
ity: boilers, generators, ovens and the similar emissions from
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Figure 7. Lorenz curve showing the cumulative contribution to total
emissions from each municipality.

light commercial activity which are below the ETS reporting
threshold. As discussed above, it is difficult to characterize
buildings (e.g., buildings as different as a hospital, mall, auto
body shop and small cottage are not distinguishable, nor can
mansions be differentiated from cottages) (Milojevic-Dupont
et al., 2020), but this is clearly a frontier where further work
is merited.

5 Code availability

The source code is not available at the time of writing. The
authors plan to clean up the code and prepare a publicly us-
able version in the future. This will be linked on the Zenodo
data repository and project website (https://doi.org/10.5281/
zenodo.5482480, Moran, 2021).

6 Data availability

Datasets are available via Zenodo at https://doi.org/10.5281/
zenodo.5482480 (Moran, 2021).

The model website, with an interactive map, is https:
//openghgmap.net (last access: 7 February 2022).

7 Limitations, uncertainties and future work

One limitation of the approach presented in this paper – and
a potential source of difficult-to-detect bias – could be in-
consistent coverage in OpenStreetMap. As OSM is a crowd-
sourced dataset, there is no assurance of homogeneous cover-
age. Some areas of the country may be well-covered in OSM
and others only sparsely (Hecht et al., 2013). This could in-
troduce biases such as underreporting the number of fueling

stations and thus underestimating vehicle traffic. The authors
are not aware of any effort to characterize the consistency of
OSM coverage; this would be a valuable next step both for
the work presented here as well as for the OSM project and
work derived therefrom.

For countries which do not participate in the ETS and do
not have a similar domestic MRV system for large point
source carbon emitters, spatializing emissions from point
source polluters will be a challenge. Resources such as OSM
and the Global Power Plant Database, which have con-
siderable information at the facility level (e.g., output in
megawatts and fuel source for power plants), could be of use.

The spatialization of emissions from vehicles and build-
ings – the two largest emissions categories – is challeng-
ing. The assumption in OpenGHGMap that every fuel sta-
tion serves an equal volume and mix of vehicles is simplis-
tic. The lack of even basic data characterizing buildings by
height, area, age or material makes it impossible to differen-
tiate buildings as varied as a terrace house block, separated
house, mall or hospital. Some novel approaches for charac-
terizing building stocks have recently been proposed (Haberl
et al., 2021; Milojevic-Dupont et al., 2020; Peled and Fish-
man, 2021) which could be used. Developing more accurate
town-level models of building emissions may require differ-
ent modeling approaches, such as utilizing data from national
building cadaster registries or from advanced remote sensing
datasets such as from synthetic aperture radar satellite con-
stellations, airborne lidar sensors, and machine learning used
with mobile airborne or ground cameras.

OpenGHGMap treats the CRF National Inventory Reports
(NIRs) as authoritative. However, these inventories contain
uncertainties. The NIR reports provide annexes which dis-
cuss uncertainties at the sector, sub-sector and activity lev-
els. The current version of the OpenGHGMap model does
not exploit this uncertainty information, but future versions
may. At the present time OpenGHGMap focuses on spatially
distributing the reported national emissions totals and limits
uncertainties to that spatialization exercise rather than includ-
ing also the uncertainties within the NIR itself. Related to
this it is noteworthy to mention related work on intercompar-
ison of national emissions totals (Elguindi et al., 2020) and
an assessment of uncertainty in the bottom-up EDGAR v6.0
model (Solazzo et al., 2021). Since OpenGHGMap treats na-
tional inventories as a fixed constraint with no uncertainty,
the sources of uncertainty in the model are purely related to
the spatialization of emissions. These uncertainties, as well
as modeling choices, are discussed in the relevant section of
Methods above.

Our emissions inventory can support local authorities in
their journeys towards climate neutrality in multiple man-
ners. The inventory can help make local and regional sources
of emissions more tangible for diverse politicians, city ad-
ministrations and local communities and provides a good
starting point, especially for communities that lack a detailed
GHG emissions inventory. Making an abstract concept such
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Figure 8. CO2 emissions per NUTS-2 region (fylke) in Norway. The very high emissions in Stavanger (Rogaland) are driven largely by
ETS-registered point sources. Stavanger is known as the oil capital of Norway. Note that the fylke of Oslo itself is small (ranked 11th),
coextensive with only the heart of the city, and that Viken (ranked 4th) is the region which encompasses the greater Oslo region.

Figure 9. Screenshot of the website heatmap visualization of OpenGHGMap-estimated CO2 emissions at the NUTS-2 county level (a) and
municipality level (b) in Norway. Regions are color-coded from green to red for the lowest to highest-emitting region in the country. Base
map © OpenStreetMap contributors 2022. Distributed under the Open Data Commons Open Database License (ODbL) v1.0.

as greenhouse gas emissions more visible will enable discus-
sions regarding the localization and upgrading of facilities
and infrastructures and will provide a basis for emblematic
changes with a high impact potential for the region. Connect-
ing the inventory to digital urban twins with detailed infor-
mation regarding built environment characteristics may help
overcome the current limitations of lack of building data.

In order to further develop the model, we will actively dis-
cuss and test it with local authorities to fine-tune it to their
needs in order to make informed decisions. Furthermore, we
will explore how we can further refine data collection, anal-
ysis and spatialization through the use of a geographic in-

formation system (GIS) combined with crowdsourcing and
citizen science.

We foresee a number of use cases for the results presented
here. For one, many local governments in Europe do not have
an emissions inventory. The estimated inventory presented
here presents a baseline initial estimate. This can be used
to reveal which are the priority areas for reduction in each
locale. For example, while vehicle electrification is highly
promoted, it could be the case that for some regions emis-
sions from residential or commercial buildings or industrial
sources are multiple times higher than from private cars and
thus represent more important reduction opportunities. The
results presented here are not a full replacement for an inven-
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Figure 10. Example visualization of spatialized CO2 emissions inventory for Trondheim, a city of 200 000 in central Norway, and the
surrounding region. Small gray dots represent individual buildings; purple dots are emissions from fuel stations; and the large orange dots
are ETS-registered point source facilities (a waste incineration plant and a factory making mineral wool). This detailed view, while only an
estimate, can provide residents and government agencies a thought-provoking view of what decarbonization will look like for their town.

tory prepared using a tool like the GHG Protocol for Cities.
A bespoke inventory will be more detailed, but the approach
presented here can act as a starting point, help with clas-
sifying emissions and provide a benchmark against which
estimates can be compared or even calibrated. The process
of preparing the inventory itself usually triggers discussions
about solutions. As the body of solutions grows it is possible
to imagine cities soon being able to construct a climate ac-
tion plan based on a menu of options. An estimated inventory
like the one presented here could be used to prioritize or fil-
ter a longer list of solutions into the shorter set most suitable
for each city. Finally, the results presented here have some
communication value. There is much discussion about de-
carbonization at the national and EU level, but many are cu-
rious about what this should look like at their town, building
or business level. The results presented here can help people
translate macro-level concerns into a more tangible vision of
what should change in their hometown and how they can par-
ticipate in that transition.

To conclude, we present a new European emissions inven-
tory which disaggregates national CO2 inventories to city-
and county-level administrative jurisdictions. The model is
broadly consistent with the ODIAC and EDGAR results but

shows higher cell-level variability and provides results per
jurisdiction rather than in a gridded form. The estimated in-
ventories provided by this model can help local governments
begin establishing an emissions inventory.
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