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Abstract: As interest in eco-friendly ships increases, methods for status monitoring and forecasting
using in-service data from ships are being developed. Models for predicting the energy efficiency
of a ship in real time need to effectively process the operational data and be optimized for such an
application. This paper presents models that can predict fuel consumption using in-service data
collected from a 13,000 TEU class container ship, along with statistical and domain-knowledge
methods to select the proper input variables for the models. These methods prevent overfitting and
multicollinearity while providing practical applicability. To implement the prediction model, either
an artificial neural network (ANN) or multiple linear regression (MLR) were applied, where the ANN-
based models showed the best prediction accuracy for both variable selection methods. The goodness
of fit of the models based on ANN ranged from 0.9709 to 0.9936. Furthermore, sensitivity analysis
of the draught under normal operating conditions indicated an optimal draught of 14.79 m, which
was very close to the design draught of the target ship, and provides the optimal fuel consumption
efficiency. These models could provide valuable information for ship operators to support decision
making to maintain efficient operating conditions.

Keywords: in-service data; ship fuel consumption; machine learning; variable selection

1. Introduction

The environmental pollution resulting from increased consumption of fossil fuels has
become a target of the international organizations attempting to regulate greenhouse gas
emissions. In 2018, members of the International Maritime Organization agreed to an initial
strategy to reduce ship emissions to half of the 2008 level by 2050 [1]; regulations such
as the Energy Efficiency Design Index, Energy Efficiency Operational Indicator, and Ship
Energy Efficiency Management Plan are being applied to reduce emissions from ships [2,3].
Furthermore, carbon taxes and trading schemes for greenhouse gas emission are being
discussed and implemented on the market regulation side [4]. Shipping companies are also
developing associated procedures [5], and management plans to maintain international
competitiveness and reduce emissions by reducing fuel consumption, which accounts for
nearly 50–60% of the total operating expenses [6–8].

According to the American Bureau of Shipping, there are three main operational
measures for managing the energy efficiency of ships, namely management of: the hull
and propeller condition, the ship systems, and the navigation performance [9]. During
operation of the ship, marine organisms attach to the hull, which increase the weight and
frictional resistance of the hull, resulting in a reduction in the propulsion efficiency [10,11].
Periodic polishing and painting of the hull and propeller surface under the water can
increase the propulsion efficiency of the vessel by up to 10% [12]. Since each device
on-board consumes electricity, ship system management, which involves optimizing the
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device performance and performing maintenance at regular intervals, can also improve
energy efficiency. Among these approaches, setting an optimal speed during navigation,
planning routes considering weather and sea conditions, using proper autopilot modes,
and optimizing draught and trim conditions are effective and direct management methods
that the ship operator can apply to improve the navigational performance [9].

Recent developments in the field of communication technologies, including data
collection and storage, have led to a surge in research related to the management of
navigation performance using ship operating data. Beşikçi et al. [13] developed a model to
predict the fuel efficiency of oil tankers using the noon report data, including vessel speed,
draught, trim, cargo quantity, and weather conditions, where artificial neural network
(ANN) models showed better performance than multiple linear regression (MLR) ones.
Kim et al. [14] attempted to identify the fuel consumption pattern of a container ship
by performing Partial Least Squares (PLS) analysis. In this study, external force factors
affecting ships are classified by Beaufort’s wind scale and the input parameters of the
model which are influential to the fuel consumption were qualitatively selected based on
the experience of experts. Coraddu et al. [15] compared the performance of the white-,
grey-, and black-box models to predict fuel consumption of the handymax chemical tanker,
and used them to optimize the trim of the ship. According to the study, for limited data,
the grey-box model that combines physical relationships and operating data was the most
efficient. Wang et al. [16] developed a fuel consumption prediction model that can be
applied to various operating conditions with in-service data collected from 97 container
ships. They performed the variable selection for voyage parameters using the least absolute
shrinkage and selection operator (LASSO), where LASSO regression models offered better
accuracy than those based on ANN, a support vector machine (SVM), and a Gaussian
process (GP). Gkerekos et al. [17] performed a review of various data-driven methods to
find efficient ways to implement the fuel consumption model. The authors used two ships
with different data configurations in their research and concluded that models based on
measured data could improve the R2 value of the model by 5–7% compared to the use of
data from the noon report. Many other studies have estimated the fuel consumption of
ships by applying machine learning techniques to noon reports, automatic identification
system data, and on-board measurements, and suggested various solutions for energy
optimization [18–22] (see Table A1).

In summary, the existing gaps in the literature are as follows. Although many studies
have been performed, differences between the practical requirements of navigational man-
agement and the predictions of the fuel consumption models persist as the field continues
to rely on the experience of workers at ship sites. The previous studies mainly addressed
optimization at the design level of the vessel through water tank experiments or numerical
simulations, while improvements in the operational performance were not sufficiently
considered from the viewpoint of the ship operator, who is responsible for planning the
voyage and/or monitoring the ship operation. That is, the input variables of this model
need to consist of factors that can be changed on the vessel by the operator’s action in
real-time. On the other hand, when creating an analytical model based on operation data,
it is important to pay attention to the variable selection of the model. This is because
there are many characteristic variables associated with the ship’s operational performance,
some of which are strongly correlated with each other. If these characteristic variables are
directly used in a prediction model, inaccurate estimation of regression coefficients and
multicollinearity between variables may occur [23,24]. Previous studies have rarely shown
solutions to overcome these two perspectives of fuel consumption models.

In this study, we developed two models for predicting the fuel consumption from
in-service data collected from a 13,000 TEU (twenty-foot equivalent units) class container
ship. To select proper independent variables for implementing the prediction model, a
statistical method and a domain-knowledge-based method were used for the first and
second approaches, respectively. These methods were used to solve the multicollinearity
problem between input variables while selecting statistically significant variables, and to
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consider the practical input settings used in ship operation. The models were developed
based on an ANN or MLR, and their performance was verified by an independent test case.
Finally, sensitivity analysis of the draught under normal operating conditions of the target
ship was performed to identify the optimal operating draught that maximized the overall
energy efficiency, which was compared with the design draught of the ship.

2. Materials and Methods
2.1. Modeling Methods and Algorithms

The procedure used in this study is described below.

(i) Data pre-processing: This step was used to remove outliers or noise contained in the
raw data sets that are inappropriate for data analysis before implementation of the
model. Outliers were defined as data points outside of 3 standard deviations from
the simple linear regression line between variables such as power-fuel consumption,
where such values were compared with the trend of the time-series data to determine
the validity of the process. Then, data smoothing with a median filter was performed
to obtain the trend of variables such as draught or trim, as these values change contin-
uously due to movement of the ship. Curve fitting in various functional forms was
used to consider the nonlinear physical relationships between the independent vari-
ables and the dependent variable. Finally, standardization of the data was performed
to match the scales of the independent variables.

(ii) Variable selection: The independent variables of the predictive model that have a sig-
nificant influence on fuel consumption were selected using both domain-knowledge
and statistical methods. To expand the practicability of the model, candidate variables
recommended by ship experts for increasing energy efficiency were considered. In
addition, the LASSO regularization method was used to overcome problems such as
multicollinearity of the model due to the correlation between input variables.

(iii) Model implementation: This step sought to implement a fuel consumption prediction
model using pre-processed data from the previous step. The overall dataset was
randomly divided in a ratio of 7:3, with the former set being used to train the model
(training data set) and the latter as a performance evaluation of the model (test data
set). The variables selected in the previous step (ii) according to the variable selection
of domain-knowledge method or statistical method were used as independent vari-
ables of the model. MLR and ANN methods were used to implement the model. For
ANN models, the appropriate structure was determined by analyzing the accuracy of
the model according to the number of hidden layers and nodes.

(iv) Model validation: The prediction accuracy of the developed models were validated
by comparing the test data set (remaining 30% of the data) with the predicted values.
In addition, the fuel efficiency of the ship over an independent voyage period data,
which never used for training data set or test data set of the model, was predicted and
compared. Finally, a sensitivity analysis on the draught of the ship was performed as
a case study to evaluate the sensitivity of the fuel efficiency to changes in the input
variables over a range of typical operating conditions of the vessel.

2.2. Target Ship and Operational Data

This study was conducted based on data from a 13,000 TEU class container ship with
dimensions, as given in Table 1. The main engine system of the vessel was equipped with a
two-stroke engine rated 68,640 kW and designed for operation at 102 rpm. It was connected
to a fixed-pitch propeller (diameter 8.8 m with 6 blades) with the gearbox between.

The operational data was collected at one-minute intervals from the alarm monitoring
and control system (AMS) of the vessel from January to June 2014. During this period, the
target ship sailed on the Asia-Europe route as described in Table 2, and one round trip
voyage was approximately 83 days. The collected raw data consisted of 65%, 17%, and
18%, of sailing, port stays and maneuvering sections near port areas, and missing data,
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respectively. To investigate the energy efficiency of a ship in service, we used the data only
from the sailing periods.

Table 1. Principal dimensions of the target ship.

Ship Particular Dimension

Total length abt. 360.0 [m]
Length between perpendiculars abt. 350.0 [m]

Moulded breadth abt. 50.0 [m]
Moulded depth abt. 30.0 [m]
Design draught abt. 14.5 [m]
Gross tonnage abt. 141,000.0 [ton]
Displacement abt. 185,000.0 [ton]

Table 2. Voyage schedule of the target ship.

Port Rotation

West Bound
Xingang (China)-Kwangyang (South Korea)-Pusan (South Korea)

-Shanghai (China)-Xiamen (China)-Yantian (China)-Singapore
-Suez (Egypt)-Algeciras (Spain)-Hamburg (Germany)

East Bound
Hamburg (Germany)-Rotterdam (Netherland)-Lehavre (France)

-Algeciras (Spain)-Suez (Egypt)-Singapore-Yantian (China)
-Hongkong (China)-Xingang (China)

In-service data of the target ship including speed, loading condition, power consump-
tion, and environmental factors were collected, and the variables used in the prediction
model are listed in Table 3. The difference between the speed over the ground (SOG)
and speed through water (STW) obtained from the vessel was taken as an external force
variable to consider the momentary effect of the ocean current. The growth of marine
organisms and damage of the hull painting can increase hull roughness, while cleaning
and painting of hull and propeller result in the opposite effect. These factors can affect the
propulsion performance of the vessel. However, the target vessel of this study is a container
ship contracted to serve the Asia–Europe voyage and sailed continuously for 6 months,
except for relatively short cargo operation time in the port. Furthermore, there was no
record of a vessel cleaning or painting of the hull and propeller during the corresponding
period. Therefore, we assumed that the difference in propulsion performance due to the
hull roughness change during the data collection period in this study was not significant.
The fuel consumption of the ship can be expressed as the sum of the fuel consumed by the
main engine, auxiliary engine, boiler, and other components. Only the fuel consumption
measured by the accumulated mass flow meter of the main engine was used to determine
the energy used to propel the ship. As the main engine power of the ship was directly
related to fuel consumption, it was excluded from the candidate parameters for the model.

Many previous studies used fuel consumption per unit hour as their dependent
variable, which is a useful indicator of fuel efficiency assuming similar ship operating
conditions [17,21,22]. However, direct comparison of fuel consumption per hour may be
somewhat inaccurate in different situations, as fuel consumption and the sailing distance
depending on their operating conditions, such as the loading condition of the vessel
or the sea-state and weather of the navigation area. In particular, as the aim of this
study was to develop a fuel consumption model to assist ship operators in the decision-
making process, we propose the use of fuel consumption per unit sailing distance as a
better dependent variable (Equation (1)), which facilitates the determination of the energy
efficiency considering the environmental conditions.
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Fuel e f f iciency [ton/nautical mile] =
Fuel consumption per unit time [ton/hour]

Sailing distance per unit time [nautical mile/hour]
(1)

Table 3. Ship parameters used in the study to predict fuel consumption.

Data Type Parameter Unit Remark

Input

Main engine RPM (RPM) revolution/min
Speed over the ground (SOG) knot
Speed through water (STW) knot
Relative wind speed (RWS) knot

Relative wind direction
(RWD) ° Relative angle against ship

heading
Rudder angle (RUD) °

Mean draught (DFT) m Mean of forward and
afterward draught

Trim (TRM) m (+), (−): Trim by the stern,
the head

Displacement (DIS) ton
Wetted surface area (WSA) m2

Difference between STW and
SOG (DBS) knot

Output Fuel efficiency (FEF) ton/nautical mile

2.3. Data Pre-Processing
2.3.1. Outlier Detection Based on 3σ-Rule

The 3σ-rule is a simple and widespread method for detecting outliers, where about
99.7% of the total data is within three standard deviations of the observed data, and outliers
are defined as data points outside this range [25,26]. As shown in Equation (2), if the least-
squares residual of observation exceeds three times its standard deviation, it is considered
as an outlier, otherwise a normal value.

xi =

{
outlier, if |xi − µ| > 3σ.
normal, otherwise.

(2)

where xi represents the i-th observed data point, µ is the mean of all observed data, and σ
is the standard deviation.

The outliers of the current data set were identified using the relationship between the
power of the main engine and fuel consumption, which was identified by simple linear
regression [27]. Under the assumption that the difference between the values predicted
by the regression analysis and the observed values are normally distributed, the observed
values outside the 3σ range were labeled as outliers. Figure 1 shows a scatter plot of the
fuel consumption vs. engine power, where the solid line is the linear regression result, and
the data points inside and outside the 3σ range are indicated by different symbols. One
major outlier was sampled (as indicated in Figure 1), and the time-series data for the fuel
consumption and engine power at the corresponding point is shown in Figure 2. Given
the trends in both curves over time, the engine power at the sampling point was regarded
as abnormal. Since the ratio of outliers detected at this stage to the total sample size is
relatively small, data sets containing such values were removed from the raw data sets
rather than replacing them with other values.
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Figure 1. Outlier detection using the relationship between fuel consumption and engine power.
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Figure 2. Trend of main engine power and fuel consumption data around sampling point.

2.3.2. Data Smoothing Using a Median Filter

Since the draught or trim values change continuously due to the movement of the
ship through the water, especially in rough weather, it can be difficult to obtain the exact
operating conditions of the ship in a specific moment [28,29]. Therefore, when using
such values for analysis, due consideration of the collection interval and quality of the
data is critical. In this study, the data were collected at one-minute intervals, which are
instantaneous data at the time of the acquisition, not the average value for that period. This
made it difficult to observe consistent overall trends; hence, a median filter was applied to
compensate for this. The median filter replaces the corresponding observation with the
median value of a specified window of the data set arranged in ascending or descending
order, as shown in Equation (3). It is an effective method for reproducing the overall
tendency of the data by removing outliers within a time-series data [30]. Pedersen and
Larsen [31] and Perera and Mo [32] used average filters with a 10–15-min window to
analyze in-service data. Here, we performed filtering based on a 10 min window. In this
study, the heave and pitch motions of the ship could not be accurately measured because
of the unavailability of suitable sensors. However, we incorporated the impact on the
amplitude of the pitch and heave motions indirectly by applying the median filter on the
trim and draught data of one-minute intervals. Figure 3 shows the result of applying the
median filter to the average draught and trim, which are the most volatile of the real-time
operational data. Table 4 shows the results of statistical analysis of the variables after
pre-processing by applying outlier detection and data smoothing.

x̂(t) = median[x(t), x(t + 1), . . . , x(t + i)] (3)
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where x(t) is x value at time t, i is the window size, and x̂(t) is median of x values from
time t to t + i.
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Figure 3. Time-series data filtered by median filter: (a) Mean draught, (b) Trim.

Table 4. Results of statistical analysis of the input parameters after applying outlier detection and
data smoothing.

Parameter Mean Std. Dev Min Max Median Skewness

RPM 63.45 7.47 50.00 90.00 63.00 0.09
SOG 14.71 2.01 8.00 22.40 14.80 0.05
STW 14.54 1.88 7.40 21.80 14.50 0.10
RWS 19.61 10.15 0.00 72.89 18.86 0.56
RWD 43.07 43.45 0.00 180.00 23.60 1.35
RUD 1.64 2.43 0.00 36.10 0.90 4.03
DFT 14.26 0.94 11.25 15.70 14.60 −1.38
TRM −0.05 0.58 −2.30 2.15 −0.15 1.07
DIS 163,225.08 13,240.08 123,466.40 184,009.60 167,898.20 −1.35

WSA 14,047.80 292.93 13,108.02 14,514.28 14,151.05 −1.28
DBS 0.17 0.69 −3.50 3.70 0.20 0.05
FEF 0.21 0.05 0.08 0.48 0.20 0.41

2.3.3. Variable Transformation Using Curve Fitting

The energy consumption of a ship is closely related to its operating parameters and can
be expressed by various physical relationships. Simple linear regression can only accurately
describe highly linear relationships between the variables. Therefore, in this study, various
functional forms, such as quadratic, cubic, inverse, logarithmic, and exponential, were used
in addition to linear fitting to more accurately describe the variables. Figure 4 shows the
top four functions with high coefficients of determination (R2) among the different types
of curve fittings compared with scatter plots of the fuel efficiency as a function of each
ship parameter. Each ship parameter was converted to the appropriate data distribution
using the function with the highest coefficient of determination (see Table 5). However,
if the difference between the coefficients of determination of curve fitting functions was
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not significant, the function with the lower order function was selected to reduce the
complexity of the model.

(a) (b)

(c) (d)

(e) (f)
Figure 4. Cont.
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(g) (h)

(i) (j)

(k)

Figure 4. Curve fitting of ship parameters: (a) RPM, (b) STW, (c) SOG, (d) RWS, (e) RWD, (f) RUD, (g) DFT, (h) TRM, (i) DIS,
(j) WSA, (k) DBS.

Table 5. Results of curve fitting of input variables.

RPM STW SOG RWS RWD RUD DFT TRM DIS WSA DBS

Function L C C Q C C C L C C L
R2 0.7955 0.3943 0.5567 0.1503 0.0771 0.0108 0.3218 0.1482 0.3286 0.3690 0.0541

L = Linear, Q = Quadratic, C = Cubic, I = Inverse, G = Logarithmic, E = Exponential.
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2.3.4. Data Standardization

Since each variable generally uses a different unit system, it is difficult to accurately
determine the influence of the independent variable on the dependent variable when
estimating the regression coefficient. To prevent this, z-score calculations were performed
to standardize the data, as shown in Equation (4). The standardized variable has a mean of
0 and a standard deviation of 1.

zi =
xi − µ

σ
, ∀i = 1, 2, ..., p (4)

where xi is the i-th observed value of each variable, σ is the standard deviation, µ is the
mean, zi is the standardized value, and p is the number of observations for each variable.
In this study, p corresponds to data acquired every minute for six months.

2.4. Variable Selection

A ship’s sailing plan is established in comprehensive consideration of the port sched-
ules, sea and weather conditions, and safe sailing areas, and relies heavily on the knowledge
and experience of the skilled ship operators [33,34]. Several models have been developed to
determine the energy efficiency of ships and support the decision-making of ship operators,
but they do not provide all of the factors necessary for route planning. Most methods
focused on optimizing the ship design, rather than the navigational plan [35]. In addition,
when all available data is used to implement the model, as in some previous studies, the
high correlation between the variables and the use of unnecessary data can cause problems
with multicollinearity and overfitting of the predictive model [23,24], which results in long
computational times and high costs [36,37]. To provide a solution for this, we propose two
variable-selection methods for implementing the model: domain-knowledge method and
statistical method.

2.4.1. Domain-Knowledge Method

If the model is used during pre-sailing planning or during sailing for the purpose
of predicting fuel consumption and energy-efficient sailing, the variables that can be
adjusted on the actual vessel by the ship operator’s actions or environmental variables
that may affect them should be selected as the main input variables. These inputs should
be either directly entered by the user or automatically entered from the on-board system.
Therefore, the main variables of the model were selected considering the experience of
ship operators and the vessel energy efficiency measures published by the American
Bureau of Shipping [9]. These guidelines propose operational measures for reducing fuel
consumption and greenhouse gas emissions. The main operational factors relevant for
reducing fuel consumption are voyage speed optimization, weather routing (considering
both energy efficiency and safety), trim/draught optimization, and autopilot optimization.

Operating the ship at optimum speed is a very effective method for increasing the
energy efficiency, where the variables in the present data set related to the speed include
the main engine RPM, SOG, and STW. The sailing speed of a vessel is generally maintained
above the target speed to reach the destination within a defined port schedule. Although
ship navigation officers control the main engine RPM to meet the target speed, the RPM
may vary depending on the weather or the ship loading conditions, and the final speed
controlled by the RPM is required to make navigation decisions. Therefore, the SOG was
chosen here as the relevant variable for ship speed optimization.

Weather routing provides weather information around the anticipated route in ad-
vance. It has been reported that optimal route support services, which can help ships reach
their destinations under various weather and sea conditions, can reduce fuel consumption
by up to 3% [38]. The main aim of this study was to create a fuel consumption model with
data that can be measured from on-board. From the practical point of view, few vessels
are equipped with wave radars except ocean survey ships and special purpose vessels.
Most cargo ships acquire 72, 48, or 24 h pre-weather forecast data for safe navigation from
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paid weather services subscribed by ship owners, or even worse cases, less accurate data is
achieved. In contrast, Chapter V of the International Convention for the Safety of Life at Sea
(SOLAS), 1974 [39] regulates that all cargo ships with more than 500 tons shall be equipped
with equipment available for measuring wind speed and direction, and the real-time mea-
surement onboard is fairly accurate. Although measured wind data cannot fully describe
all environmental variables in the navigation area (especially wave characteristics), ocean
waves are developed by the local wind which represents a significant portion of the wave
characteristics [40–42]. Thus, this study included wind data as the main environmental
variables in the navigation area. Additionaly, the influence of the external forces due to
ocean currents was defined as the DBS.

The energy consumed by the vessel also depends on the loading conditions [43], and
adjusting the draught and trim of the vessel with the appropriate amount of ballast water
is a simple and inexpensive way to optimize the energy use of the vessel. The hull shape
is traditionally designed to have optimal energy efficiency according to specific draught
and trim. Even with the same volume displacement, ship resistance varies depending on
the draught and the trim, which may affect fuel consumption. In addition, increasing the
amount of cargo increases the draught and displacement of the vessel, which increases
resistance and fuel consumption. In-service data of the several round-trip voyages can
include not only changes in trim and draught due to the consumption of fuel and freshwater
but also changes in trim and draught due to different loading conditions for each port-to-
port section. In this study, we used such data set to implement the model to reflect the
impact of loading conditions on fuel consumption.

The rudder operation used for the course change of a ship creates additional drag [44].
Although resistance due to the steering typically accounts for a small percentage of total
hull resistance, minimizing unnecessary rudder usage and rudder angles can reduce total
fuel consumption by up to 1% [9]. If the vessel is equipped with an autopilot system, the
rudder can automatically be used to maintain a predetermined course, while optimizing
the fuel efficiency of the vessel for specific operating conditions. However, according
to the analysis of the rudder usage data collected in this study, most of the rudder use
was due to continuous control by the auto-pilot system to keep a constant course, and
relatively there were not many manual operations by the navigators. Moreover, since
rudder angle cannot be determined by the ship navigator before the voyage commences
and is not generally used in voyage planning, it was excluded as an input variable for the
fuel efficiency prediction model based on domain-knowledge. Six main input variables
were selected based on the domain-knowledge of experts, namely SOG, RWS, RWD, DFT,
TRM, and DBS.

2.4.2. Statistical Approach Based on LASSO Regularization

LASSO regularization is a method of reducing the regression coefficients of the inde-
pendent variables that are less dependent on the dependent variable due to the assignment
of a tuning parameter to the magnitude of the regression coefficient. Assigning the re-
gression coefficients of insignificant variables as zero allows for variable selection and
thus produces models with high analytical power [45]. LASSO regularization adds a term
that minimizes the sum of absolute regression coefficients as a constraint and minimizes
the sum of the squared residuals normally used in regression analysis, as in Equation (5),
i.e., the objective is to find regression coefficients that minimize the sum of the two terms
(β, λ). As λ increases, the degree of regularization increases, and the regression coefficient
decreases. When λ decreases, the degree of regularization decreases, and when it becomes
0, a general linear regression model is achieved. Figure 5 represents the geometric structure
of the LASSO regression, and the coordinate axis shows the estimator of each regression
coefficient. The residual sum of squares is defined by an elliptic contour, and the constraint
boundary is represented by a square rotated area. The estimated LASSO regression coeffi-
cient converges to zero at the point where the contour and the constraint boundary meet,
allowing the variable selection.
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β̂lasso = argminβ

 n

∑
i=1

(
yi − β0 −

p

∑
j=1

β jxij

)2

+ λ
p

∑
j=1

∣∣β j
∣∣ (5)

where p is the number of independent variables, and λ is the tuning parameter for control-
ling the weight of the existing residual sum of squares and additional constraints.

𝛽2

𝛽1

መ𝛽

Figure 5. Geometric interpretation of LASSO regression.

Since LASSO regularization is a statistical method for selecting variables, to investi-
gate the effect of curve fitting, it was applied to the same data before and after variable
transformation through curve fitting, as described in Section 2.3.3. Here, 10-fold cross-
validation was performed to locate the value that minimizes the mean squared error (MSE),
and the one standard error rule was used to select a tuning parameter within the range
of one standard error from the point where the minimum MSE occurs by performing
cross-validation [26]. The variable selection by LASSO regularization identified 9 variables
(RPM, SOG, STW, RWS, RWD, RUD, TRM, WSA, and DBS), while the addition of curve
fitting resulted in the selection of 6 variables (RPM, SOG, STW, RWS, RUD, and DBS).

2.5. Model Implementation

The prediction model was implemented using the data processed as described in
Section 2.3, with the selected variables listed in Section 2.4. Both MLR and ANN were used
to train the data, and a total of 8 cases were developed according to the variable selection
methods and modeling algorithms, as described in Table 6. To compare the performance
of curve fitting covered in Section 2.3.3, we applied curve fitting to the input variables of
ANN as well as the MLR and included them as comparison cases.

Table 6. Comparison of model cases.

Case Variable Selection Method Modeling Method

1 Domain-knowledge Regression
2 Domain-knowledge Curve fitting + Regression
3 Domain-knowledge ANN
4 Domain-knowledge Curve fitting + ANN

5 LASSO regularization Regression
6 LASSO regularization Curve fitting + Regression
7 LASSO regularization ANN
8 LASSO regularization Curve fitting + ANN
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Ship operations can generally be divided into ballast and laden, and training the
model by dividing these sections would further enhance the reliability of the model by
reflecting the character of each navigation pattern. However, unlike bulk carriers or tankers,
container ships typically load and unload containers at multiple ports during one voyage,
which made it difficult to classify the trade pattern [43]. In addition, some data sections
that were invalid for analysis were removed in the pre-processing procedure, and hence,
the amount of valid data varied for each voyage. Therefore, the model was trained without
distinction by navigation patterns. In other words, the entire data set was randomly
divided with a ratio of 7:3, wherein the former set was used as the training set, and the
latter used for evaluating the developed model.

2.5.1. Multiple Linear Regression Model

Regression analysis is used to describe the relationship between independent and
dependent variables or to predict the output of new input. The basic model of MLR
analysis with k independent variables is expressed by Equation (6). Regression analysis
estimates the regression coefficients β0-βk corresponding to each independent variable. The
least-squares method is used to find the regression coefficients that minimize the residual
sum of squares, as given by Equation (7). The parameters selected in Section 2.4 were used
as each independent variable in the MLR model, and each input value differed depending
on the model cases. For example, in Case 1 and Case 5, the standardized values of each
variable were used as input values, and in Case 2 and Case 6, the standardized values after
variable transformation through curve fitting were used.

yi = β0 + β1x1i + β2x2i + ·+ βkxki + εi (6)

β̂ = argminβ

n

∑
i=1

(
yi − β0 −

p

∑
j=1

β jxij

)2

(7)

where x1i, x2i,. . . , xki are the i-th observed values of independent variables, β1, β2,. . . , βk
are the regression coefficients, β0 is intercept term, εi is a residual, n is the sample size, p is
the number of independent variables, and yi is i-th observed value of dependent variable.

2.5.2. Artificial Neural Network Model

ANN is a simplified model of the human neural network structure, which sums the
products of the input chemical signal coming from the synapse, with the weight of the
connection strength of the synapse, and finally the output value is derived via an activation
function [46]. A simple ANN is expressed by Equations (8) and (9).

v = b +
n

∑
i=1

wixi (8)

y = f (v) (9)

where xi is the ith input, wi is the ith weight, b is the bias, v is the summed output, f is the
activation function, and y is the output.

A multilayer perceptron, composed of three or more layers, has a similar structure
to a single-phase perceptron, but has at least one intermediate layer called a hidden layer
between the input and output layers to enable learning about nonlinear data [47]. The non-
linear relationship between the input and output is given by various activation functions
(e.g., staircase, critical logic, and sigmoid) in the hidden layer. The rectified linear unit
(RELU) is a simple and efficient activation function that helps solve the problem of van-
ishing gradients in neural networks [48,49], as described by Equation (10). The schematic
diagram of the multi-perceptron-based fuel efficiency prediction model implemented in
this study is shown in Figure 6.
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f (x) = max(0, x) (10)

where x is the input to a neuron.

Input layer Hidden layers Output layer

𝑥1

𝑥2

𝑥3

𝑥𝑛−2

𝑥𝑛−1

𝑥𝑛

𝑦
Ship parameters

Fuel efficiency

Figure 6. Architecture of a multilayer perceptron.

This study implemented the ANN model with the parameter settings given in Table 7
using Google’s Keras 2.2.4 library, which is written in Python language and designed to
facilitate the implementation of deep neural networks [50] (The active function is RELU,
optimization is Adam, and for more information regarding parameters, see [51]). The
numbers of hidden layers and hidden neurons used in the model were determined by
comparing the performance according to the number of layers from 1 to 5 and the number
of neurons from 10 to 100, as shown in Figure 7. It can be seen that R2 increases gradually
as the number of hidden neurons and layers increases, and after a certain point there is little
change, followed by a slight decrease. Therefore, we selected the following conditions to
implement the ANN models: Case 3: 5 hidden layers, 95 neurons; Case 4: 5 hidden layers,
85 neurons; Case 7: 5 hidden layers, 100 neurons; and Case 8: 5 hidden layers, 95 neurons.

Table 7. Parameters of the ANN model.

Parameter Value

Activation function RELU
Optimizer Adam

Loss function Mean squared error
Batch size 50

Learning rate 0.001
Maximum training epochs 1000

Maximum validation failures 10
The number of hidden layers 1∼5 (Interval: 1 layer)

The number of neurons in hidden layer 10∼100 (Interval: 10 neurons)



J. Mar. Sci. Eng. 2021, 9, 137 15 of 25

10 20 30 40 50 60 70 80 90 100
Hidden node

0.88

0.90

0.92

0.94

0.96

0.98
R

2 v
al

ue

1 hidden layer
2 hidden layer
3 hidden layer
4 hidden layer
5 hidden layer

(a)

10 20 30 40 50 60 70 80 90 100
Hidden node

0.88

0.90

0.92

0.94

0.96

0.98

R
2 v

al
ue

1 hidden layer
2 hidden layer
3 hidden layer
4 hidden layer
5 hidden layer

(b)

10 20 30 40 50 60 70 80 90 100
Hidden node

0.960

0.965

0.970

0.975

0.980

0.985

0.990

0.995

1.000

R
2 v

al
ue

1 hidden layer
2 hidden layer
3 hidden layer
4 hidden layer
5 hidden layer

(c)

10 20 30 40 50 60 70 80 90 100
Hidden node

0.950

0.955

0.960

0.965

0.970

0.975

0.980

0.985

0.990

R
2 v

al
ue

1 hidden layer
2 hidden layer
3 hidden layer
4 hidden layer
5 hidden layer

(d)

Figure 7. Effect of changing the number of hidden neurons and layers on R2: (a) Case 3, (b) Case 4, (c) Case 7, and (d) Case 8.

3. Results
3.1. Evaluation of Model Prediction Accuracy

As a criterion for evaluating the prediction model, the mean absolute error (MAE) and
R2 were applied, as shown in Equations (11) and (12).

MAE =
1
n

n

∑
i=1
|yi − ŷi| (11)

R2 = 1− ∑N
i=1(yi − ŷi)

2

∑N
i=1(yi − ȳi)

2 (12)

where yi is the i-th observed value, ŷi is the i-th predicted value, ȳ is the mean of the
observed values, and n is the number of observations.

Table 8 lists the predictive performance of the model cases using test data set, and
Figure 8 compares the performance of the models according to the modeling method,
variable selection method, and the application of curve fitting. Box plots were used to
facilitate the observation of the distribution of the model performance, where the bottom
and top of the box represent the first quartile (Q1) and third quartile (Q3), respectively, and
the horizontal line within the box is the median. The top and bottom error bars represent
the Q1 − 1.5 × IQR (interquartile range between Q1 and Q3) and Q3 + 1.5 × IQR of the
data, respectively.
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Table 8. Comparison of the prediction performance of model cases using test data set.

Case R2 MAE

1 0.8000 0.0146
2 0.8103 0.0142
3 0.9720 0.0045
4 0.9709 0.0049

5 0.9641 0.0067
6 0.9445 0.0079
7 0.9936 0.0025
8 0.9808 0.0044

As shown in the figure, among the ANN model cases, Cases 3 and 7 had the highest
accuracy with R2 values of 0.9720 and 0.9936, respectively. Among the regression-based
models, the R2 values of Cases 2 and 5 were 0.8103 and 0.9641, respectively. Figure 8a,b
prove that the ANN model rather than the regression model, and the LASSO regularization
rather than the domain-knowledge method, respectively, provide better overall prediction
performance. This study aimed to consider the nonlinear relationship between independent
variables and the dependent variable in the linear regression model through a variable
transformation using curve fitting. Referring to Table 8 and Figure 8c, some improvements
were achieved in the prediction accuracy of the linear regression model when applying
curve fitting. In contrast, ANN models showed poorer performance by applying curve
fittings, as the nonlinearity was sufficiently described by the hidden layer.
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Figure 8. Cont.



J. Mar. Sci. Eng. 2021, 9, 137 17 of 25

MLR CF+MLR ANN CF+ANN
0.75

0.80

0.85

0.90

0.95

1.00

Co
ef

fic
ie

nt
 o

f d
et

er
m

in
at

io
n

MLR CF+MLR ANN CF+ANN
0.000

0.005

0.010

0.015

0.020

M
ea

n 
ab

so
lu

te
 e

rro
r

Effect of curve fitting

(c)

Figure 8. Box plots of prediction performance for model cases: (a) modeling method, (b) variable
selection method, (c) effect of curve fitting.

3.2. Time-Series Analysis

In Section 3.1, the performance of the model against the test data set, which was ran-
domly extracted from the data set regardless of ballast or laden voyage, was validated. To
validate the performance of the model on the voyage unit, the fuel consumption efficiency
over time for independent voyage data that has not been used to train and test the model
so far was predicted in this Section. As shown in Figure 9, the target vessel sailed from
Yantian to Singapore over a period of about 3 days. The analysis was conducted using data
from the operating section of the voyage, from the point where the ship raised the engine
power outside the harbour to the point of lowering the engine load before entering the
destination port.

Yantian

Singapore

100°E 110°E

0°

10°N

20°N

Figure 9. Navigational route of the target ship.

Figure 10 shows time-series data of the main engine RPM, SOG, STW, RWS, RWS,
RUD, DFT, TRM, WSA, and DBS, while Figure 11 depicts the predicted fuel efficiency
during the corresponding period using the models of Cases 2, 3, 5, and 7. The prediction
results of Cases 2, 3, 5, and 7 follow the overall trend in actual fuel consumption efficiency,
but some discrepancies were observed in the regions of 2200–2700 and 3800–4300. It was
observed that the RWS of the corresponding section was somewhat stronger than that of
other sections and that the vessel changed its RPM considerably in a short time. Therefore,
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the discrepancy between these actual and predicted values could be minimized by adding
sufficient weather information for the navigational areas, such as wave and ocean currents,
and processing data on the unsteady-state of the vessel operation, such as changes in the
ship speed and course.
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Figure 10. Ship parameters collected during a voyage from Yantian to Singapore: (a) RPM, (b) SOG, (c) STW, (d) RWS, (e)
RWD, (f) RUD, (g) DFT, (h) TRM, (i) WSA, (j) DBS.
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Figure 11. Prediction results of developed models for the time-series data.

Over the 1414.85 nautical miles sailed by the target ship from Yantian to Singapore,
the actual fuel consumption was 445.8 tons. The model with Cases 2, 3, 5, and 7 predicted
values of 413.6, 436.0, 431.0, and 453.5 tons, respectively, i.e., prediction errors from −7.3%
to 1.7%. Among them, Cases 3 and 7 using ANN had the lowest errors of −2.2% to 1.7%,
with R2 values above 0.97. Therefore, the use of ANN after selecting variables with domain-
knowledge and LASSO regularization is considered the best method for predicting the fuel
efficiency of the ship. The prediction results of these models are expected to be sufficiently
accurate for predicting the energy efficiency of a vessel and can assist the operator in
selecting suitable voyage variables for optimizing fuel efficiency.

3.3. Sensitivity Analysis on the Ship Draught

In the regression model, it is easy to identify the influence of the independent variable
on the dependent variable from the regression coefficient. In contrast, since the ANN model
is a complex mathematical model, it is difficult to interpret the developed model itself
and get insight from it. Therefore, in this study, we wanted to interpret the results of the
model by identifying the sensitivity from the output changes according to the input. The
one-factor-at-a-time (OAT) method [52,53], which quantifies the variations in the output
while keeping the other input variables as constants and changing only one target variable
independently, was used to evaluate the local sensitivities of the ANN models.

To verify the applicability and effectiveness of sensitivity analysis, a sensitivity analysis
on the draught data of the ship was performed, and among the ANN models, case 3, which
includes draught as an input variable, was used. The other input variables used in the
model were fixed to the average operating conditions, while the draught was increased
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from its minimum to maximum value, and the final predicted fuel efficiency values were
observed, as shown by the solid line in Figure 12. The blue and orange data points are
the observed fuel efficiency when the range of each variable from the average operating
condition is within 15%, and 10%, respectively. Under the average operating conditions
of the ship, the draught resulting in the most efficient fuel consumption was predicted as
14.79 m. The design draught of the target ship is 14.50 m, which is usually designed for
economically optimal operation. Hence, the prediction of the model very closely reproduces
the draught required for the optimal operational performance of the ship. The optimal
draught obtained from this study could be verified by computational fluid dynamics (CFD)
or experiments with scale models of the ship. Then, the results of the model built from
the in-service data could provide a new methodology for establishing optimal operating
conditions for eco-friendly vessels.
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Figure 12. Sensitivity analysis of DFT under average operating conditions of the ship.

4. Conclusions

The development of the fuel consumption prediction models with in-service data
collected from a 13,000 TEU class container ship provided the following insights:

• The inconsistent nature of the ship operation data sets required the identification of
outliers and smoothing of the data. The time-series graph proved that the identified
outliers deviated from the overall data trend.

• Unlike other studies that used the amount of fuel consumed per unit time as a depen-
dent variable, this study adopted fuel consumption per unit distance as a dependent
variable for the fuel efficiency prediction model to complement previous research.

• The domain-knowledge method and LASSO regularization methods resulted in the
selection of different input variables for the prediction model, where the latter resulted
in the selection of more variables. When LASSO regularization was performed after
curve fitting, fewer variables were selected.

• The best overall prediction performance was achieved using the ANN model (rather
than the regression one) and using the LASSO regularization (rather than the domain-
knowledge method). Among the model cases implemented in the study, those using
ANN after selecting variables with domain-knowledge and LASSO regularization
had the smallest prediction error compared with actual fuel consumption and are
recommended for predicting the fuel consumption.

• When curve fitting was applied, the prediction accuracy of the linear regression
model increased, while a poorer performance was observed for ANN models as the
nonlinearity was reflected through the hidden layer.

• Sensitivity analysis on the ship draught allowed further analysis of the energy effi-
ciency and identification of an optimal draught value, which was very similar to the
design draught of the target vessel.
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As the operational status of the ship and weather information in the sailing area is
included in the model, the ship’s navigator can compare the energy efficiency for different
operating conditions, such as optimal draught and trim values, and identify an optimal
route for minimizing fuel consumption considering the weather during the voyage.

Further analyses of various voyage scenarios including navigational routes and operat-
ing environments are required to advance the model, and comparisons with CFD or model
tests in similar conditions are required to reduce the gaps between the results obtained
using fluid mechanics for ship design and data-driven models for eco-friendly vessels. In
addition, more accurate predictions are expected if detailed weather data, including obser-
vations from ships, can be integrated into the model as an environmental load factor. As the
periods of heave and pitch motions of the typical commercial vessel are much shorter than
one minute [54,55], there has been a limitation on the comprehensive capture of the motion
characteristics of the vessel according to the weather conditions at sea using in-service data
at one-minute intervals. It is clear that the model can become more robust if the finer data
set is acquired and converted into spectra to reflect the statistical characteristics (spectral
moment) of the ship’s motion.
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Appendix A

Table A1. Comparison of previous works with this study.

Study Ship Type No. of
Ships Data Period Data Interval No. of

Inputs Output Variable Selection
Method Modeling Method

Besikci et al. (2016) [13] Oil tanker 233 17 months 1 day 7 FOC - ANN, MLR

Kim et al. (2017) [14] Container 1 30 months 10 min 11 FOC, SFOC Domain-knowledge PLSR

Coraddu et al. (2017) [15] Chemical tanker 1 24 months 15 min 41 Shaft power, Shaft
torque, FOC

Statistical method
(BFM, RBM, RFM)

White, Grey, Black
box

Wang et al. (2018) [16] Container 97 36 months - 21 FOC Statistical method
(LASSO)

MLR, SVM, GP,
ANN

Yuan and Nian (2018) [56] Oil tanker 1 18 months - 7 FOC - GP

Jeon et al. (2018) [19] Bulk carrier 1 abt. 42 days 15 min 7 FOC - ANN, MR, SVM

Uyanik et al. (2019) [20] Commercial vessel 1 abt. 35 days 1 day 5 FOC - ANN, MLR

Hu et al. (2019) [21] Container 1 1 year 15 min 10 FOC - GP, ANN

Gkerekos et al. (2019) [17] Reefer vessel, Bulk carrier 2 30 months,
1 month 1 day, 1 h 12 FOC Statistical methods 12 Machine learning

methods

Farag and Ölçer (2020) [22] Oil tanker 1 2 voyages abt. 10 min 11 FOC, BSFC - ANN, MLR

This study Container 1 6 months 1 min 11 Fuel efficiency
Domain-knowledge,

Statistical method
(LASSO)

ANN, MLR

FOC: Fuel oil consumption, SFOC: Specific fuel oil consumption, BSFC: Brake-specific fuel consumption, BFM: Brute force method, RBM: Regularization based method, RFM: Random forest based method, LASSO:
Least absolute shrinkage and selection operator, ANN: Artificial neural network, MLR: Multiple linear regression, SVM: Support vector machine, PLSR: Partial least square regression, GP: Gaussian process.
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