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Abstract

Brains in nature have been evolved over millions of years, the connectivity formed by neurons
and synapses is complex and can exist of billions of neurons in a single brain. Neuroevolution
is a field that creates and optimizes artificial neural networks by using evolutionary algorithms.
The evolution of brains in nature heavily inspires the field. Layered deep evolvable substrate
HyperNEAT (DES-HyperNEAT) is a neuroevolution method that evolves a layout of modules
called substrates connected by paths and assembles them into an artificial neural network. The
modularity of DES-HyperNEAT is an example of inspiration taken from the brains in nature.
DES-HyperNEAT has previously outperformed relevant methods on classification problems, this
thesis explores DES-HyperNEAT for reinforcement learning.

Brains in nature have complex connectivity and the location of the neurons matters. This
concept of the locality is explored for DES-HyperNEAT to create a connection control for the
artificial neurons in the assembled artificial neural networks. Another area of exploration is the
addition of bias to the neurons in the assembled artificial neural network, a concept strong in
the field of Deep Learning. How the concepts affect DES-HyperNEAT have been explored by
comparison with related methods and a tailored reinforcement learning algorithm.
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Sammendrag

Hjerner i naturen har utviklet seg gjennom millioner av år, koblingene av nevroner og synapser
er komplekse og det kan være milliarder av nevroner i en hjerne. Neuroevolution er et fagfelt
som lager og optimaliserer kunstige nevrale nettverk ved bruk av evolusjonære algoritmer. Evo-
lusjonen av hjerner fra naturen er en stor inspirasjon til fagfeltet. Layered deep evolvable sub-
strate HyperNEAT (DES-HyperNEAT) er en metode som bruker evolusjon til å utvikle et kun-
stig nevralsk nettverk ved bruk av moduler kalt substrates som er koblet sammen via paths.
Mudulartiteten i DES-HyperNEAT er et eksempel p̊a egenskaper som er hentet fra hjerner i
naturen. DES-HyperNEAT har tidligere utkonkurrerte lignende metoder p̊a klassifiseringsprob-
lemer, denne avhandlingen vil utforske DES-HyperNEAT p̊a et reinforcement learning problem.

Hjerner i naturen har komplekse koblinger og plasseringen av nevroner har betydning. Dette
konseptet av plassering er blitt utforsket for DES-HyperNEAT for å lage kontrollerte koblinger
for nevroner i det kunstige nevrale nettverket. Et annet utforsket omr̊adet er muligheten for
å legge til partiskhet i nevroner i det kunstige nevrale nettverket, et konsept som st̊ar sterkt i
fagfeltet Deep learning. Hvordan disse konspetene p̊avirker DES-HyperNEAT er utforsket ved
sammenlignet med relevante metoder og en spesifisert reinforcement learning algoritme.
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Chapter 1

Introduction

1.1 Background and Motivation

Artificial neural networks (ANNs) are inspired by the biological brain, connecting artificial neu-
rons and synapses to create networks to solve complex problems. The field of neuroevolution
takes inspiration from evolution in nature to create ANNs. By applying evolutionary algorithms
to change the features of the artificial neural networks, the networks have been able to solve
complex problems and even outperformed humansHausknecht et al. [2014]. NeuroEvolution of
Augmenting topologies (NEAT) proposed in Stanley and Miikkulainen [2002] is a neuroevolu-
tion method. NEAT is evolving the structure of an artificial neural network and the weights,
compared to traditional methods where the network structures are fixed and only the weights
are trained. When NEAT are evolving networks the structure is initially small and usually only
consists of input and output nodes, but by adding more nodes and connections between these the
network grows bigger and more complex. By starting small the networks also remain compact
and the solutions found will not be unnecessarily large.

Because NEAT adds nodes and connections gradually there is an upper bound where NEAT
has problems finding feasible networks. This is because the changes made to the network will
become small compared to the size and complexity of the network. The changes made will
not be significant enough to make progress towards a better solution. The solution to this was
the introduction of an indirect encoding of the network where the evolution did not change
the nodes and the connection weighs directly. Hypercube-based NEAT (HyperNEAT) [Stanley
et al., 2009] is an indirect method for creating ANNs. Compositional Pattern-Producing Networks
(CPPNs) were introduced by Stanley [2007], and are networks that take advantage of different
mathematical functions like Sine waves and the geometry in Gaussian functions to create an
outcome with patterns. By having a fixed network structure within a two-dimensional space
called a substrate, HyperNEAT uses a CPPN evolved by NEAT to assign the weights of the
connections. The position of two nodes is sent into the CPPN and the output is the weight for
the connection between the given nodes. The drawback of HyperNEAT is the need for setting a
fixed network structure before running the evolution, which for more complex problems can be
a challenging task.

Evolvable Substrate HyperNEAT (ES-HyperNEAT) Risi and Stanley [2012] is an extension of
HyperNEAT removing the need to set a fixed network structure. The method only requires input
and output nodes to be placed in a substrate. Then the method uses the output of the CPPN
to determine the node position in the final ANN. ES-HyperNEAT starts from the input nodes
and iteratively discovers more nodes by searching for places of high variance. Lastly, the output

1



2 CHAPTER 1. INTRODUCTION

nodes are connected with a final search developing the finished ANN. Because ES-HyperNEAT
uses NEAT to evolve a single CPPN that might need to create more extensive networks, the
single CPPN output needs to become complex to support the variation of weights needed for a
complex ANN. This becomes a challenging task that evolution might not be able to find.

The introduction of multi-spatial substrate (MSS) [Pugh and Stanley, 2013] showed the ben-
efit of having multiple substrates each with its own CPPN output. MSS had a fixed network
structure like HyperNEAT and finding a structure that produces quality ANNs is challenging.

Deep ES-HyperNEAT (DES-HyperNEAT) was introduced by Tenstad and Haddow [2021],
creating a framework that combines the node search from ES-HyperNEAT with multiple sub-
strates. The framework showed promising results on Iris, Wine, and Retina [Tenstad and Had-
dow, 2021] datasets for classification. The framework has yet to be researched on a reinforcement
learning problem where HyperNEAT and ES-HyperNEAT are commonly used.

1.2 Goals and Research Questions

The goal of the thesis is:

Goal Investigates how DES-HyperNEAT can be extended to solve complex reinforcement learning
problems.

It is desired to test how DES-HyperNEAT performs in a complex reinforcement learning prob-
lem where HyperNEAT and ES-HyperNEAT are commonly applied. Two additional extensions
will be added to DES-HyperNEAT.

The first extension is adding a bias to the developed ANN. By adding the bias to the developed
ANN the network created could solve more complex problems by allowing each node to shift the
activation function with a constant. The other extension will be adding Link expression output
to the CPPN to try to exploit the geometric concepts of the substrates.

To accomplish the goal the following research questions are explored:

Research question 1 How should bias be applied to DES-HyperNEAT to positively affect per-
formance?

Research question 2 How do Link Expression Output’s features benefit multiple substrates in
DES-HyperNEAT compared to single substrates in ES-Hyper-NEAT?

Research question 3 How does DES-HyperNEAT perform compared to NEAT, HyperNEAT,
and ES-HyperNEAT in a reinforcement learning environment?

Research question 4 How does the generic La-DES DES-HyperNEAT perform compared to a
tailored state-of-the-art reinforcement learning algorithm?

1.3 Structured Literature Review

This section will cover the structured literature review process, the search words, inclusion cri-
teria, and quality criteria. The literature review phase was conducted initially in the fall of
2021 to gain the knowledge and understanding to be able to answer the research questions. The
focus of the literature search was first broad to the neuroevolution field before the search was
narrowed down to focus on articles relevant to the model. Tenstad [2020] has also been used as
an inspiration for the state of the art structure. The outcome of the literature review is described
in chapter 3.
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The search term hyperneat OR (neuroevolution AND deep) OR (”indirect encoding” AND
network AND evolution) has initially been used to find relevant literature. Additional litera-
ture was found both from cited and citing the initial literature. The publishing platforms and
search engines used are Google scholar, IEEE explorer, Research gate, ACM, SpringerLink and
ScienceDirect.

The inclusion and quality criteria have been used to narrow down the results from the initial
search. The criteria used for this thesis:

IC1 The study is focusing on evolving both the weights and the topology of an artificial neural
network.

IC2 The method does not utilize gradient descent.

IC3 The method is evaluated in a reinforcement learning environment.

IC4 Empirical results are presented.

QC1 The aim of the research is precise.

QC2 The research reflects on the design choices and the consequences of those choices.

QC3 The research is compared to previous research.
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Chapter 2

Background Theory

This chapter contains explanations of concepts and methods needed to understand the rest of
the thesis. The explanation of machine learning is covered to understand the problem domain,
while the background leading to HyperNEAT is covered to understand fundamental parts of the
model.

2.1 Machine Learning

Machine learning is a field in artificial intelligence with a focus on making machines ”learn”
instead of programming them for a specific task. Machine learning is usually split into three
different categories: supervised learning, unsupervised learning, and reinforcement learning. The
problem presented in this thesis is a reinforcement learning problem.

2.1.1 Reinforcement Learning

Reinforcement learning is training a model to take a sequence of actions. The model used
in reinforcement learning is usually called an agent. There are no training data needed in
reinforcement learning. Instead, the agent is rewarded for their action in an environment. The
agent starts with no prior knowledge and takes random actions. The rewards can be both
negative and positive based on the outcome of the action and the agent tries to maximize the
total rewards. If the agent is playing a game the reward will be higher for a win than a tie, and
higher for a tie than a loss. The agent uses this feedback to perform better in the future.

In reinforcement learning, the designer only sets the reward policy, based on the task the
agent needs to solve. It is up to the agent to learn how to gather the most rewards by learning
how to take action in the environment. For example, in a simple maze environment, the agent
will have to take steps to reach a goal. To reach the goal the agent needs to cross multiple tiles,
the tiles are assigned a predefined reward value, where the goal typically has a higher positive
value while normal tiles will get a lower negative or no reward value. The agent starts by taking
random actions and will gradually learn the rules to get better rewards. This way as the agent
optimizes its action policy.

5
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2.2 Artificial neural networks

Artificial neural networks (ANNs) are computer systems inspired by the structure of animal
brains. The ANNs are a collection of connected artificial neurons, also called nodes. These
connected nodes form a graph, from the input nodes to the output nodes. The nodes between
input and output nodes are usually called hidden nodes. In the network, each connected neuron
pair has an associated value, called weight. The output of a single neuron is shown in Equation 2.1
and is calculated as the sum of each of the incoming connection weights, wi, multiplied by the
input value for that connection, xi, plus a bias related to the node in question, b. Then this goes
through an activation function, ϕ.

y = ϕ(

n∑
i=1

wixi + b) (2.1)

Because all single neurons in an ANN are a function the whole ANN forms a function. When
the number of connected nodes increases the complexity of the function also increases. Different
activation functions are used in ANNs for different purposes and it is common to have a different
function at the output nodes than in the rest of the network.

Although the only requirement for an ANN architecture only is a directed graph with input
and output, the most common way in modern machine learning is to use a layered feedforward
network. A layered feedforward neural network is a directed acyclic graph (DAG), going in one
direction from the input layer to the output layer, through an eventually hidden layer. The
advantage of creating layered networks is that they easily can be calculated in parallel.

2.3 Evolutionary Algorithms

Evolutionary algorithms are heuristic search methods based on Darwinian evolution. They are
used to find a solution to optimization problems and do not require gradient information to find
near optimum solutions. The domain that needs to be optimized is called the search space and
the search space for different problems can vary drastically in size. A good representation of
a solution can help navigation in the search space. The algorithms usually take advantage of
parallelism to evaluate the population of solutions.

2.3.1 Genetic Algorithm

Genetic algorithms (GA) are inspired by the evolution of species, where the fittest individuals
in a population are more likely to reproduce offspring. Reproduction in genetic algorithms are
called crossover and combines trait from two or more parents. Even though the offspring got the
traits from their parents the different combinations of traits can be promising. In addition to
crossover GAs usually have the ability to mutate traits in individuals.

The population of a GA is a set of solutions, each individual represents a solution. It is
the designer of the program who chooses how to represent the individuals in the population.
The individuals consist of a genotype and a phenotype. The genotype is the information about
the traits of the individual, and it is what is passed on to offspring. The phenotype is what is
observable and can be evaluated by a fitness function, a function used to determine the fitness
of individuals in an environment.

The process of a genetic algorithm starts with the initialization of the population. The initial-
ization is usually chosen at random but it could also be predetermined by the designer. Figure 2.1
shows all the evolutionary steps in a genetic algorithm. The next step after initialization is to
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Population
initialization Evaluation

No

YesStopping criterion met?

SelectionCrossover

Muatation

Best solution

Figure 2.1: The process in genetic algorithms

evaluate the population using the fitness function. After the evaluation, the GA checks if a stop-
ping criterion is reached. This can be a fitness threshold, a set number of generations, or a time
limit. If the criterion is not reached the fitness from the evaluation is used to select the individ-
uals for mating, this is usually simulating nature where the chance of being selected for mating
increase with the fitness. Then crossover combines individuals from the population into offspring
by taking traits from each parent. The process is usually random and there is no guarantee that
the children will be more fit than the parents. The next step is mutation, a mutation is changing
the traits of an individual to create variation in the population. A mutation is usually a small
change to the genotype and the probability of how often it should happen depends on the choice
of the designer. The goal of mutation is to search for different solutions close to what already
exists. After mutation is finished the algorithm returns to evaluating and the cycle continues
until the stopping criterion is met. When the algorithm terminates the algorithm returns the
best solution.

2.3.2 Encoding

The population in an EA can either be direct or indirect encoded. In a direct encoding, the
individuals directly represent the solution to a problem, there is no need to convert the genotype
to a phenotype in these representations because the individual directly represents the solution.

In an indirect encoding, the genotype does not contain the solution by itself and therefore
it needs to be developed into the phenotype. The development is a one-way mapping and each
genotype can only represent a single phenotype. In this approach, the crossover and mutation
are done on the genome and the conversion to phenotype is done at every generation of the
evolution to calculate the fitness of the individual. An example of indirect encoding found in
nature is DNA which is a genotype and biological development is the mapping to the phenotype.

2.3.3 Speciation

In nature, we divide creatures that share common traits and are able to reproduce with each
other into species. These species share a finite amount of resources and the specie are therefore
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limited in size. This concept can also be used within Evolutionary algorithms, where individuals
with similar traits can compete with each other rather than the whole population.

To include speciation in evolutionary algorithms there is a need to compare how similar
individuals are to each other, a distance measurement is usually used. The distance measurement
can be between both genotype and phenotypes. To determine if two individuals are in the same
species it is common to check if the distance metric is below a threshold.

2.4 Neuroevolution

Neuroevolution (NE) is inspired by the evolution of complex brains in nature, where evolution
has produced brains with billions of neurons and trillions of connections. Instead of a physical
brain neuroevolution evolves Artificial Neural Networks (ANNs) using evolutionary algorithms.

Because ANNs consist of both weights and a network structure NE methods are an umbrella
term for all evolutionary methods that change some part of a neural network. Neuroevolution
methods can have a fixed ANN and just evolve the weights or it can that evolve both weights
and the topology of an ANN.

2.5 Neuroevolution of Augmenting Topologies

NeuroEvolution of Augmenting Topologies (NEAT) [Stanley and Miikkulainen, 2002] is a Neu-
roEvolution method that uses a GA to evolve the topology and weights of an artificial neural
network. The method uses a direct encoding to represent the ANN. The network topology ini-
tially starts out minimally, but gradually evolves in complexity. Mutation in NEAT can change
either the weights or the network topology or both.

The Competing Conventions Problem [Montana et al., 1989; Schaffer et al., 1992] is a problem
that has more than one way of expressing a solution to an optimization problem with a neural
network. When different encoded genomes represent the same solution, crossover is likely to
produce poor offspring. NEAT solves this by using an innovation number for each connection
gene.

The genomes (genotype) in NEAT are a list of connection genes and a list of node genes.
Figure 2.2 show the genome and the ANN of an individual. A node gene includes a node key
and type, the node can also include a bias. The connection gene consists of an in-node and
an out-node, the weight, and an innovation number. The connection genes can be enabled or
disabled by the evolutionary process, disabled connection genes will not show in the developed
ANN. The innovation number is added when a connection is formed and is a global assignment.
The number is used to match genes from different genomes during crossover and calculate the
differences in individuals.

The development of the ANN is NEAT is fairly simple because of the direct encoding. The
node genes are mapped directly to the nodes in the ANN and the connection genes with weights
are included in the network if the gene is enabled.

Mutation in NEAT is done by changing weights in the connection genes, bias in the node
genes, adding or removing a gene from one of the gene lists. When adding a new connection
gene the two random nodes are chosen and the new connection gene is added to the list if the
connection does not already exist. When adding a new node gene to the genome a random
connection is chosen. The connection is disabled and two new connections form. The first
connection is the connection between the old in-node and the new node, the weight for this gene
is set to 1. The other connection formed is from the new node to the old out-node, the weight
for this gene is the same as the weight of the old, now disabled connection gene.
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Figure 2.2: The mapping from genome to phenotype in NEAT [Stanley and Miikkulainen, 2002]

When using crossover on two genomes NEAT takes advantage of the innovation numbers
previously described. When the innovation number for both parents matches the connection
gene is randomly selected from one of the parents. When the genes do not match or are excess
are chosen from the fittest parent.

The population in NEAT is divided into species based on similarities in the topology. Spe-
ciating the population in NEAT allows competition within species instead of across the whole
population. Innovation numbers are used to divide the population, the more genes they share
the more compatible the genes are. The compatibility distance, δ, shown in Equation 2.2, can
be measured by disjoint, D, excess, E genes, and average weight difference of matching genes,
W .

δ =
c1E

N
+

c2D

N
+ c3 ×W (2.2)

Where c1, c2, and c3 are coefficients to adjust the importance of the factors and N are the
number of genes in the larger genome, to normalize for the size.

The compatibility distance can then be used with a threshold δt to speciate the population.
The spices are stored in an ordered list and that changes during evolution. For each generation,
in the evolutionary process, the genomes are sequentially placed in a specie. A random genome
from each of the species from the last generation is chosen to represent that species. For every
genome g in the population, g is placed in the first species where the distance from g to the
species representative is under the threshold, δt, if no such species exist a new species are created
with this genome as a representative. The species uses explicit fitness sharing, where genomes
of the same species share fitness within that species. This will discount the higher-performing
species so other species have a chance to emerge.

NEAT initializes with just input and output nodes, instead of random typologies as some other
neuroevolution methods uses. This way NEAT will have a small search space and incrementally
increase the complexity by adding nodes and connections through mutation. This gives NEAT
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the advantage in performance compared to other methods.

2.6 Compositional pattern producing networks

Compositional pattern-producing networks (CPPNs) [Stanley, 2007] are special types of neural
networks designed to have an outcome that produces patterns. CPPNs differ from traditional
ANNs because it uses a wide range of activation function in the same network. A CPPN consist
of nodes and connection just like ordinary ANNs, but the activation functions used in the nodes
can vary within the CPPN. The list of activation functions varies depending on the wanted
features. Different activation functions produce different patterns, Gaussian functions produce
symmetric patterns while a sine function produces periodic. The activation functions often used
in CPPNs include, but are not limited to, sigmoid, relu, and tahn. The introduction of different
activation functions allows the model to utilize properties of the different functions, and the
output created tends to form more advanced patterns compared to a traditional ANN.

2.7 Hypercube-based NEAT

Hypercube-based NEAT (HyperNEAT)[Stanley et al., 2009] is a neuroevolution method that
utilizes an indirect encoding for creating ANNs. HyperNEAT evolves CPPNs to assign weights
to a fixed topology ANN. CPPNs are evolved using NEAT and in addition to the normal NEAT
features, the activation functions in the node genes are evolved.

The topology of the ANN needs to be predefined in a two-dimensional space called a substrate.
The substrate is a grid from -1 to 1 on both the x and y-axis. The ANN nodes are placed in the
substrates before evolution. Figure 2.3b shows a substrate with five input nodes, four hidden and
three output nodes. During the development of the ANN, the genomes are made into CPPNs
with four input nodes and a single output. The input to the CPPN consist of x1, y1, x2, and
y2 to represent the (x, y) position of nodes in the substrate while the output is the weight, w
of the connection between the nodes. The CPPN, therefore, needs to be executed once for all
connected nodes. If the magnitude of a weight w is under a set threshold a connection will not
be formed. Figure 2.3a shows an example of an evolved CPPN. In addition to the four input
nodes displayed in the figure, it is also possible to add the fifth node- This node is used as a bias
node and will always input a set value to the CPPN.

As described in section 2.2 a bias in a the ANN is added to the sum of incoming connections.
HyperNEAT has two ways of adding a bias to the ANN. One way is to add a bias node in the
substrate and then use the CPPN output from this node to all other nodes as a bias. The CPPN
then needs to set the weight for the connections and the bias for all nodes. The other way of
adding bias to the ANN is to add a second output to the CPPN. The CPPN will then have two
output nodes one for weight, w, and one for bias, b. The bias is then assigned to all nodes by
executing the CPPN with the (x1, y1) position set to (0, 0) and the (x2.y2) set to the position of
the (x, y) position of the nodes.
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Chapter 3

Related work

The following chapter is split into two sections. The first will cover a general state of the Art
for neuroevolution with a focus on NEAT and HyperNEAT methods. The second section will
cover a more detailed background of ES-HyperNEAT and DES-HyperNEAT for the purpose of
extensions and experiments presented later.

3.1 State of the art

The following section covers the state of the art methods for Neuroevolution. subsection 3.1.1
covers Deep Learning, followed by network depth and complexity in subsection 3.1.2, and sub-
section 3.1.3 covers network encoding. subsection 3.1.4 and subsection 3.1.5 covers network
connections and multiple substrates with a focus on HyperNEAT and its extensions.

3.1.1 Deep Learning

Deep Artificial Neural Networks (DNN) have in recent years had great success and even sur-
passed human performance in domains like strategic planning [Vinyals et al., 2019] and board
games [Silver et al., 2016]. Proximal Policy Optimization (PPO) is a Deep Reinforcement learn-
ing method that uses an DNN to develop an action policy, the method utilizes gradient decent
to optimize the neural network and has been able to solve complex RL problems [Vanvuchelen
et al., 2020]. Gradient descent has been able to successfully optimize complex networks with mil-
lions of weights in the field of Deep Learning (DL) [He et al., 2016], but requires a differentiable
error function. It is also normal to manually construct network topologies, requiring a manual
trial and error search approach. Bias is also a great contribution to the correctness of predic-
tions in networks Wang et al. [2019] that needs to be optimized. Even though networks from
NeuroEvolution (NE) also have reached superhuman performance on specific tasks [Hausknecht
et al., 2014], the networks are typically not as complex and deep as in DL. NE has, however, some
desirable traits that are generally not found in DL. Many methods in NE do evolve the network
topology during evolution, reducing the need for user design. NEAT and Evolutionary Acquisi-
tion of Neural Topologies (EANT) [Kassahun and Sommer, 2005] are NE methods evolving the
topology and the weight of the network with no need for human experts. The search is broader
than the single target search in gradient descent because the methods maintain a population of
solutions.

Hybrid models have been proposed to utilize the benefits of DL and NE combined. Sun
et al. [2020] used gradient descent to optimize a CNN that had a topology created by a Ge-

13
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netic Algorithm (GA), commonly used in evolutionary methods. The networks generated by the
method, called CNN-GA, performed comparably to the best human-generated network architec-
tures. Without the need for human expertise, this highlights the power of having a population
of solutions that can search broader than single gradient descent.

Without the need for human expertise in selecting a topology, no need for an error function
and a broad search for solutions NE methods look superior to the alternative of gradient de-
scent. However, the methods generally struggle with large search spaces and higher complexity
[Such et al., 2017]. However, there are methods that are able to generate deep networks using
evolutionary algorithms [Such et al., 2017].

3.1.2 Network depth and complexity

Deeper networks have the advantage of being able to represent more complex functions and
therefore solve more complex problems. The performance of the 152-layered network produced
by He et al. [2016] indicated that deeper networks can be more accurate than shallow networks.
Neuroevolutionary methods like the NEAT algorithm struggles to create networks of this size as
the search space becomes too large [Miikkulainen et al., 2019].

In addition to the 152-layered network, He et al. [2016] also produced an even deeper network
with 1202-layers, this did not perform as well as the 152-layered network, implying that there
is an upper bound where performance drops. He et al. [2016] argued that the deeper 1202-
layered network performed worse because it causes overfitting because the problem did not require
that much complexity. The 152-layered network performed better than both the shallower and
deeper architectures it is likely closer to an optimal network depth. The challenge is therefore
to find an optimal network complexity where the network understands the task but does not
overfit. Miikkulainen et al. [2019] proposed CoDeepNEAT as a method that uses the gradual
complexification from NEAT to find such a network by evolving topology, components, and
hyperparameters and then training the network using backpropagation. The resulting network
from their experiments is comparable to handcrafted methods, with the advantage of a more
automated algorithm.

3.1.3 Network encoding

Because NEAT uses a direct encoding to represent the ANN, the isolated mutations make less
impact the larger the ANN becomes [Gillespie et al., 2017]. NEAT, therefore, has problems with
optimizing larger ANNs and are unlikely to be able to evolve deep and complex ANNs.

To create larger networks Stanley et al. [2009] introduced HyperNEAT, an indirect encoding
for ANNs. section 2.7 describes the HyperNEAT method. Using indirect encoding it is possible
to evolve more complex networks by decreasing the search space. Because of the compressed
search space, the indirect encoding may be more suited for evolving deep and complex networks
[Koutnik et al., 2010]. HyperNEAT uses a CPPN to assign weight to a static ANN topology.
By allowing the evolving the CPPN instead of the ANN directly the mutations have a bigger
impact.

3.1.4 Network connections

There are no limits on the amount connections in the static ANN topology created for Hy-
perNEAT. Not all connections might be necessary and HyperNEAT, therefore, uses pruning to
remove some of the connections. The connections are only included in the network if the absolute
value of the weight, w from the CPPN is under a set threshold [Stanley et al., 2009]. By using
pruning the resulting ANNs are more diverse by not always being fully connected.
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As HyperNEAT uses the weight from the CPPN output, w to both assign weight value
and prune the ANN the single output has two responsibilities. To separate these responsibili-
ties Verbancsics and Stanley [2011] introduced Link Expression Output (LEO) to HyperNEAT
(HyperNEAT-LEO). LEO is a separate output node added to the CPPN, and this node is used
to prune the network. The networks include all connections with a LEO output over zero. This
lets the weight freely change without the connections changing. With HyperNEAT-LEO it is
possible to seed the CPPN with topographical principles by adding nodes connecting the input
nodes to the LEO node with a Gaussian activation function. This increases locality and nodes
will tend to form connections to nodes close in the substrate.

Another approach to limit network connectivity and increase locality is by adding a cost to
each connection. Increasing the cost proportional to the square of the connection length nodes
favors other nodes that are closer in the substrate. Huizinga et al. [2014] extended HyperNEAT
with this technique making, HyperNEAT Connection cost Technique (HyperNEAT-CCT). Their
experience showed that HyperNEAT-CCT was more modular, regular, and higher performing
than HyperNEAT. The networks made were prioritizing connections of nodes closer to each other
and made networks more similar to biological brains.

3.1.5 Adding more substrates

When drawing the weights to a crowded DNN using a single CPPN, the CPPN needs to be able
to produce complex patterns. The connections are defined on an axis between -1 to 1 for each
dimension based on the location of the connected nodes. When the number of connections in a
substrate is in the thousands the distance between the nodes becomes minimal. The close nodes
might need a big variance in weighting and the CPPN needs to produce sufficient weightings for
all the nodes. The CPPN then might not be able to learn the complex patterns of the domain
within the evolution.

Pugh and Stanley [2013] developed Multi-spatial Substrates (MSS) as an extension of Hy-
perNEAT. By extending from a single substrate to multiple the method was able to outperform
HyperNEAT in crowded networks. By putting input and output nodes that are unrelated in dif-
ferent substrates the network avoided the problem of close connections having similar weightings
in crowded networks. In addition, the grouping of correlated nodes evolution finds good weights
more easily. Nodes in MSS are still placed manually in different substrates and the connection
are placed between the substrates. The weights are evolved in a single CPPN with multiple
output nodes, one for each pair of connected substrates.

Pugh and Stanley [2013] used MSS to evolve a multimodal controller to an agent with different
kinds of sensor inputs. By splitting the different sensor types into different substrates MSS
removed the problem of manually placing unrelated input nodes in the same substrate. They
suggested adding LEO or connection cost to complement the method by adding a more organic
approach to modularity.

A similar extension of HyperNEAT is DeepHyperNEAT by Sosa and Stanley [2018]. Instead
of a predefined network topology, DeepHyperNEAT separates itself from MMS by increasing the
depth and breadth of the network by letting evolution add new layers to the substrate. The
input and output nodes are placed in the substrate manually before the evolution starts with a
connection in between. Each output node in the CPPN maps to the connection of two layers.
During evolution mutation adds output nodes to the CPPN, adding more layers. The CPPN
encodes an identity pattern between the newly added layer and the old connected layers to
minimize the disruption in the output. In the experiments run by the researchers, the network
was able to solve the XOR problem to validate the system’s performance, and they suggest the
method could give sufficient results on complex problems.
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While the connection of the layers evolved during evolution the number of nodes within the
added layers is predefined. Since the CPPN determines the weight of the connection based on
the position of the nodes, the number of the nodes is essential for the algorithm to evolve good
weights. Having the wrong number of nodes will poorly affect the performance and in the worst
case, the network will not learn the necessary weights.

3.2 Relevant algorithms and frameworks

This section will cover a relevant algorithm and a framework for the purpose of extensions and
experiments coming later. subsection 3.2.1 will cover the iteration search of Evolvable-Substrate
HyperNEAT (ES-HyperNEAT) [Risi and Stanley, 2011] in detail. subsection 3.2.2 will cover
the Deep ES-HyperNEAT framework [Tenstad and Haddow, 2021] with a focus on the Layered
DES-HyperNEAT implementation.

3.2.1 Evolvable-Substrate HyperNEAT

The model Evolvable-Substrate HyperNEAT (ES-HyperNEAT) by Risi and Stanley [2012] is
covered in this subsection. The model is an extension of the HyperNEAT method explained
in section 2.7. In comparison to HyperNEAT, ES-HyperNEAT does not need a manually con-
structed network topology. Instead, ES-HyperNEAT discovers connections based on the pattern
in the hypercube applied by the CPPN. The nodes used to form the connections are therefore
also included.

Iterative Node Search

ES-HyperNEAT uses an iterative node search algorithm, called Iterative network completion.
Each node search in the algorithm takes a single node position as an input and returns nodes
that it should connect to as an output. The node search is two-phased. The first phase is called
the devision phase and is shown in Figure 3.1. The division phase utilizes a quadtree structure
to recursively split the substrate square, starting from the whole substrate into four new squares
until a given resolution is reached (3.1b). Then the CPPN is queried for all the leaf nodes in the
quadtree (3.1b) and the values are used to determine the variance for all higher nodes in the tree.
The second phase in the iterative search is called pruning phase and uses a depth-first search to
remove all tree nodes with a variance smaller than a given threshold (3.2a). In Figure 3.1 the
grey node, 3, have a variance bigger than the threshold and the leaf nodes for node 3 are therefore
kept after the pruning. The resulting leaf nodes are then checked if whether they are in a band.
Nodes in a band are included, and the others are discarded. To determine if the node is in a band,
the band value are calculated by the function, β = max(min(dtop, dbottom),min(dleft, dright)). If
the band value, β is larger than a predefined threshold the points are included and a connection
will be made from the node at the position where the search was performed from(3.2b).

Each iteration of the iterative node search performs a node search from all unexplored nodes,
starting with the input nodes. The search continues for a predefined number of iterations discov-
ering new hidden nodes for each iteration. An unexplored node will not connect to a node from
a previous iteration to avoid cycles. After the iterative search, there is no guarantee that a path
exists from the input nodes to the output nodes. Therefore one last search is done in reverse
from the output nodes. This will not discover any new nodes. Then the network is cleaned by
removing all nodes that are not connected to both the input and output nodes.
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Figure 3.2: The pruning phase. [Risi et al., 2010]

ES-HyperNEAT LEO and Geometry seeding

As the CPPN used in ES-HyperNEAT does not differ from the traditional HyperNEAT, ES-
HyperNEAT can be extended with LEO [Risi and Stanley, 2012]. The extension adds the ad-
vantage of determining the node density by implicit information in the CPPN. The extension
does however only increase the performance when seeded with geometry and locality information
[Risi and Stanley, 2012]. The geometry and locality seeding for ES-HyperNEAT is performed by
adding two nodes with Gaussian activation functions between the input and the output nodes
during initialization. Figure 3.3 shows a CPPN with such seeding. The G1 takes x1 − x2 as an
input and connects to the LEO node with a bias of −1, while G2 takes y1 − y2 + b as an input
and connects to the weight output node. G1 will therefore peak when the x1 and x2 have the
same value and seeds the CPPN with locality along the x-axis. G2 will create different weights
based on the y position sin the substrate.

weight LEO

x1 y1 x2 y2 bias

G1
G2

Figure 16: X-locality and Geometry Seeding. The CPPN is initialized with two Gaussian
hidden nodes G1 and G2 that take as input x1 − x2 and y1 − y2 + b, respectively. Whereas G1

is connected to the LEO with a bias of -1, G2 connects to the weight output. G1 peaks when x1
and x2 are the same, thereby seeding the initial CPPNs with locality along the x-axis. G2 creates
horizontal stripes of differing weights running through the hypercube, which induces the expression
of multiple hidden layers in the decoded ANN. Positive connections are dark whereas negative
connections are light.

bias towards certain ANN structures (e.g. ANNs with multiple hidden layers and connected inputs

and outputs) that should facilitate the evolutionary search. Especially in the initial generations

ES-HyperNEAT runs the risk of being trapped in local optima where high fitness can be achieved

only by incorporating a subset of the available inputs. The new idea introduced in this paper is

to start the evolutionary search with a bias towards certain ANN topographies, which provide a

mechanism for emulating key biases in the natural world that are provided ultimately by physics.

For example, evolution could be seeded with an ANN topography that resembles the organization

of the cortical columns found in the human brain [51], potentially allowing higher cognitive tasks

to be solved.

Providing such bias means escaping the black box of evolutionary optimization to provide a

kind of general domain knowledge. Even though ES-HyperNEAT could in principle discover the

appropriate ANN topography by itself, biasing the search with a good initial topography should thus

make the search less susceptible to local optima. While ES-HyperNEAT can modify and elaborate

on such initial ANN structure, the original HyperNEAT and HyperNEAT-LEO would likely not

benefit from geometry seeding because they cannot compensate for movement of information within

the hypercube and certain structures are a priori not possible to represent if the nodes are not

placed in the correct locations. Figure 16 shows a CPPN that combines seeded locality and seeded

34

Figure 3.3: X-locality and Geometry seeding for a CPPN. [Risi and Stanley, 2012]
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3.2.2 Deep ES-HyperNEAT

This subsection describes the Deep ES-HyperNEAT (DES-HyperNEAT) framework presented by
Tenstad and Haddow [2021]. DES-HyperNEAT is a framework rather than a method and this
thesis will focus on the Layered DES-HyperNEAT implementation (LaDES). DES-HyperNEAT
utilizes the iterative node search from ES-HyperNEAT to connect and explore multiple sub-
strates.

Layouts

The substrates in DES-HyperNEAT are independent of each other and are connected to each
other with paths. Element is a term used for both substrates and paths. A configuration of
substrates and paths is called layouts. The layout evolved during evolution and is then used to
assemble an ANN. The assembled ANN consists of nodes and connections, that are discovered
during the assembly. It is important to distinguish between the two types because both will form
a directed graph. Figure 3.4 shows the difference between a Layout and an ANN.

Overview

Before the evolution start, the layouts need to be I/O configured. Input and output nodes are
placed in input and output substrates respectably during the configuration. Both input and
output nodes can be grouped into a single substrate or divided into multiple. Once the I/O is
configured the layout and CPPNs are initialized. Elements in DES-HyperNEAT each have a
separate CPPN output in the layout. During assembly of the ANN, the CPPN outputs are used
to perform the iterative node search inside the substrate and cross paths. The assembled ANN is
then evaluated and if the stopping criteria are reached the best ANN is saved. If not the layouts
and CPPN are evolved. Both the layout and CPPNs are evolved using the NEAT algorithm. An
overview of DES-HyperNEAT is shown in Figure 3.5.
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Figure 3.5: Overview of DES-HyperNEAT. Adapted from Tenstad [2020].

Network assemble

The network assembling in DES-HyperNEAT is done in a topological order where all elements
are ordered. In Figure 3.6a the indicates the order of the element. First, an internal iterative
node search is performed in the input substrate #1, but because the depth of the substrate is
set to zero no nodes will be discovered. The substrate depth is evolved during evolution but the
input and output substrates have a fixed zero depth. Input substrates are connected to substrate
#6 by path #2 the node search is therefore performed from all nodes in substrate #1 using the
CPPN output from path #2. When following a path only a single iteration of the node search
is completed. The discovered nodes in substrate #6 are then created and a new node search
is performed from all the nodes in substrate #1 to substrate #4 using the CPPN output from
path #3. Then an internal search is performed in substrate #4 using the CPPN output for this
substrate. The path #5 CPPN output is then used to connect to nodes in substrate #6 from all
nodes in substrate #4, the node search can connect to previously created nodes or create new
nodes. Another internal search is performed, this time in substrate #6 with three iterations.
Then a node search from the nodes in #6 to the output substrate #9 with the CPPN output for
path #7 and one from substrate #4 to the output substrate #9 with the CPPN output of path
#8. Note that because the depth of the output substrate is set to zero no node searches will be
performed internally in substrate #9 and only the connections to the existing node output will
be present in the final network. At the end, the output substrate #9 will search in reverse to all
the substrates with a path between them, and connect to existing nodes. Figure 3.6b shows the
finished ANN. Because of the topological order of the search, no cycles will form.

Implementations

Tenstad and Haddow [2021] introduced three implementations of DES-HyperNEAT with the
framework, Layered DES-HyperNEAT (LaDES), Single-CPPN DES-HyperNEAT (SiDES), and
Coevolutional DES-HyperNEAT (CoDES). All implementation uses NEAT to evolve the layout
but implements the CPPNs in different ways. LaDES uses multiple CPPNs, one for each sub-
strate and path, the CPPNs are evolved alongside the layout for each genome. SiDES uses a
single CPPN with one output node for each substrate and path, the CPPN are evolved together
with the layout for each genome. CoDES uses one CPPN for each substrate and path, but the
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Figure 3.6: The assembly of an ANN. [Tenstad and Haddow, 2021]

layout and CPPN are split into two different populations. Using individual CPPNs for each
element was shown to be highly advantageous and the LaDES implementation was performing
better in all experiments performed. This thesis will therefore focus on expanding the LaDES
implementation.

Layered DES-HyperNEAT uses individual CPPNs for each substrate and path in the layout.
Figure 3.7 shows two layouts, the circles marked with a-l are unique CPPNs. The implementation
is called Layered DES-HyperNEAT because it contains graphs in two layers, the layouts, and
the CPPNs. The layout is evolved using NEAT and the genomes are layouts with a separate
CPPN for each element. When new elements are added to a layout a new CPPN is initiated for
the element. The elements also receive a unique id when created.

The elements are matched with id during crossover, this way crossover is only performed on
CPPN within two matching path or substrates. In Figure 3.7 when crossover is performed on A
and B, the CPPN c would crossover CPPN j as they are both in the substrate with the same
id. The CPPN c would however never crossover with CPPN j or i as the element id would be
different. Crossover is therefore combining both layout and CPPNs. Mutations will evolve both
the layout structure and the CPPNs for the elements.

LaDES DES-HyperNEAT does, like NEAT, supports speciation to enable areas of the network
to be optimized individually. The distance metrics used for speciation combine both the distance
between the layout structure and the distance between their associated CPPNs. By mutating
individuals new species will form.
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Chapter 4

Model

The following chapter introduces the proposed extension of DES-HyperNEAT with a focus on
reinforcement learning. The focus of the thesis will be on LaDES, as it previously was the best
performing implementation of DES-HyperNEAT. Layered DES-HyperNEAT has previously only
been applied to classification problems. The methods DES-HyperNEAT builds on, HyperNEAT
and ES-HyperNEAT, previously have been successful at reinforcement learning (RL) problems.
Therefore, this thesis will evaluate DES-HyperNEAT performance for an RL problem. The
extensions added have a focus on increasing the performance for RL problems, but they are not
exclusive to the domain. The extensions adds bias to the assembled ANN and the other adds an
extra LEO node to each CPPN to let the CPPNs evolve more advanced connectivity.

The layout in DES-HyperNEAT is a graph that consists of substrates connected by paths. As
the LaDES implementation is used, each element (substrate and path) have its own CPPN. Input
and output substrates are manually created (I/O configuration), where input and output nodes
are placed in the corresponding substrates. Multiple input and output substrates are allowed.
The layout is the evolved using the NEAT algorithm to add substrate and paths and mutating
the CPPNs. As the layouts are the basis for ANN assembly in DES-HyperNEAT, nothing is
changed to the layout for this extension as RL problems also need assembled ANNs.

The evolved layouts are used to assemble the ANN during the network assemble phase. During
the assembling of the ANNs, the layout elements are topologically sorted. The iterative node
search algorithm, described in section 3.2.1, is used to discover node positions and connections
both within (using substrate CPPNs) and across (using path CPPNs) substrates. Lastly, a
reverse search is performed from the output nodes in the output substrate to all connected
substrates. This extension of DES-HyperNEAT includes changes to the CPPNs, and therefore
some changes are made during the iterative node search. The changes are described in section 4.1
and section 4.2. After the network assemble, the assembled ANNs can be evaluated, and if no
stopping criterion is reached, the layouts can again be evolved to then assemble new ANNs. By
splitting the evolution of the layouts and the assembly of the ANNs the mutations in layouts
will have a bigger impact on the assembled ANN. This allows the ANNs to grow deeper than the
directly mutating the ANN as in NEAT while still allowing a larger change in the weights than
in dense single substrate alternative. Yet, the network will not grow deeper than needed as the
layout will be evolved with NEAT and start out initially small.
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Figure 4.1: The CPPNs in the multiple CPPN bias variant of DES-HyperNEAT. The bias node
is for bias in the CPPN, while the B node is to apply bias to nodes in the assembled ANN.

4.1 Introducing bias to the assembled ANN

Even though DES-HyperNEAT utilizes bias in the CPPNs (as shown in Figure 4.1), the assembled
ANN does not contain any bias in the nodes. As bias has the ability to contribute to correct
predictions in DNNs, as described in subsection 3.1.1, this would benefit DES-HyperNEAT. This
extension adds two ways of adding bias to the assembled ANN in DES-HyperNEAT utilizing
CPPNs.

4.1.1 Multiple CPPN bias

One way of adding bias to the assembled ANN is inspired by a method used by HyperNEAT,
introduced in section 2.7. By introducing a separate output node in each individual CPPN, the
node output can then be utilized to add bias during the discovery of new nodes. This variant
will be referred to as the multiple CPPN bias variant. All CPPNs will then have two outputs,
one for the weights and another for bias. An example CPPN is shown in Figure 4.1. When a
new node is first discovered during the iterative node search, the output from the bias node, B,
is used to assign the bias to the discovered node. If a node is discovered between substrates, the
bias output from the path CPPN is used. The nodes will then receives bias based on when it is
discovered. As there are multiple CPPNs to discover nodes, the biases may be evolved to suit
a smaller group of nodes, but all CPPNs need to now be able to find good weights and biases.
This will increase the search space for all the CPPNs.

4.1.2 Single CPPN bias

Another way of adding bias to the assembled ANN instead, instead of adding bias to all CPPNs
in the layout, is to add a single bias CPPN to each individual in the population to evolve side
by side with the layout. This variant of adding a bias CPPN will be called the Single CPPN
bias. The single bias CPPN will take the node position (x, y) as the input and output the bias,
B. An example bias CPPN for single CPPN bias is shown in Figure 4.2. As the same bias
CPPN is responsible for assigning bias to all nodes in every substrate, the nodes with the same
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B

Evolved CPPN
topology

x y
Figure 4.2: The CPPN that decides bias in the single CPPN bias variant of DES-HyperNEAT.

position in two different substrates will receive the same bias. The bias CPPN, therefore, needs
to evolve to find biases that suit multiple nodes. As the CPPNs for all the substrates and paths
are unchanged, no extra complexity is needed for the elements CPPNs to find weights and the
only extra complexity added to the single CPPN bias variant is an extra CPPN.

4.2 Adding LEO and geometry seeding

Link expression output (LEO) has the advantage of separating the weight assignment and se-
lection of which connections to include. As this has benefited both HyperNEAT and DES-
HyperNEAT by selecting useful connections while also adding seeding to utilize geometric con-
cept, as described in section 3.2.1. It is also thought to add benefits to DES-HyperNEAT
by combining the advantage of both methods. By adding LEO nodes to all CPPNs in DES-
HyperNEAT, the method should be able to evolve deeper modular ANNs (DES-HyperNEAT),
while separating the chosen hidden nodes to a dedicated output node (LEO). The combined
approach works as described in section 3.2.1. A dedicated LEO node is added to each CPPN in
the layout. All connections discovered by the node search are kept if the output from the LEO
node is greater than zero. As DES-HyperNEAT uses multiple substrates, will the LEO node be
used to determine if connections should form both during node search internally in a substrate
and when searching between different substrates. This will allow the LEO node to optimize to
the specific elements, not just internally in a substrate.

Adding LEO nodes would also allow for seeding the CPPNs towards ANN structures. There-
fore, in addition to the LEO node, this extension include the possibility, not a requirement, of
adding seeding to each CPPN. The seeding is described in section 3.2.1. The addition of seeding
will allow the geometric concepts to be introduced to the CPPNs.

4.3 Implementation details

The implementation was built using Python, even though DES-HyperNEAT previously have been
implemented in Rust. This was chosen because of implementation of NEAT [McIntyre et al.,
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Identity x

Linear


1.0, if x ≥ 1.0

1.0, if x ≤ −1.0

x, otherwise

Step

{
1.0, if x > 0.0

0.0, otherwise

ReLU

{
x, if x > 0.0

0.0, otherwise

Exp ex

Sigmoid
1

1 + e−x

Softplus 0.2 ∗ log(1 + ex)
Tanh tanh(x)

Gaussian e−5∗x2

OffsetGaussian 2 ∗ e−5∗x2 − 1
Sine sin(x)
Square x2

Absolute |x|

Table 4.1: Activation functions implemented. Adapted from McIntyre et al. [2015]; Green [2003].

2015] and ES-HyperNEAT [Westh et al., 2017] previously have been successful, and Python are
used for many reinforcement learning algorithms. The DES-HyperNEAT implementation has
been built on top of python-neat library and the assembling of the network was built using
some elements from the PUREPLES library. The simulator was adapted from Omelianenko
[2019], and has been modified to match the domain described by Risi and Stanley [2012]. The
activation functions used were adapted from earlier work [McIntyre et al., 2015; Green, 2003]
and are presented in Table 4.1.



Chapter 5

Experiments and Results

In this chapter, the experiments to gain the knowledge to answer the research questions are
conducted. In section 5.1 the introduction to parameters, hyperparameters, and results are
given. Then the preliminary testing is presented in section 5.2 followed by the experiment plan
in section 5.3. The experimental setup is given in section 5.4. Then section 5.5 - 5.8 are the
experimental results and analysis.

5.1 Introduction

This section gives a brief introduction to the way parameters and hyperparameters are obtained
and describes how the results will be presented.

In Table 5.1 there are given an example of an experimental setup. All rows are experi-
mental parameters. The methods parameter is covering what methods will be evaluated in the
environment set by the domain parameter. The stop criterion can be a set number of genera-
tions, evaluations, or a time limit. This will be repeated as many times as stated in the repeats
parameter. The parameters will be presented in each experiment section.

To make a complete grid search of all parameter are infeasible for a method with the mount of
hyperparameters that DES-HyperNEAT has. Therefore, it is chosen to adopt hyperparameters
from earlier research to decide what hyperparameters are going to be in the hyperparameter
search. Hyperparameters that are related are grouped together in the search. This is done
to reduce the scope of the search further by only comparing relevant hyperparameters against
each other. In the hyperparameter search, each combination is given a stopping criterion of 120
seconds to evaluate the combination. The hyperparameters with the highest impact are first
found and are then fixed for the next search to reduce the amount of testing needed.

Results are presented with plots, tables and graphs. All experiments are performed multiple

Experiment X
method [NEAT, HyperNEAT, ES-HyperNEAT, DES-HyperNEAT]
domain Hard maze
stop criterion 120 seconds
repeats 20

Table 5.1: Example of experimental parameters
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NEAT HyperNEAT ES-HyperNEAT DES-HyperNEAT
population size 100 100 100 100
survivor ratio 0.2 0.2 0.2 0.2
add node prob 0.02 0.02 0.02 0.025
add connection prob 0.03 0.03 0.03 0.4
remove node prob 0.02 0.02 0.02 0.02
remove connection prob 0.01 0.01 0.01 0.1
weight mutation rate 0.94 0.94 0.94 0.94
mutate bias prob 0.7 0.7 0.7 0.7
mutate activation function 0.5 0.5 0.5
division threshold 0.3 0.05
variance threshold 0.03 0.5
band threshold 0.3 0.0
add substrate prob 0.05
remove substrate prob 0.002
add path prob 0.4
remove path prob 0.05

Table 5.2: Hyperparameters applied in the experiments.

times and graphs shown are an average over all runs. The t-test is used to determine the p-value
where it is presented. When p < 0.05, the results are regarded as significant.

5.2 Preliminary testing

The work in Tenstad and Haddow [2021] identified an optimized set of hyperparameters to DES-
HyperNEAT for classification. During preliminary testing, these parameters have been used as
a foundation and compared with hyperparameters from previous NEAT, HyperNEAT and ES-
HyperNEAT for reinforcement learning problems to find an optimal set of hyperparameters for
DES-HyperNEAT for reinforcement learning. As the input and output nodes need to be placed
inside substrates, different placements have been tested, both with single and multiple substrates
for both input and output node placement.

For the other methods, ES-HyperNEAT, HyperNEAT, and NEAT parameters from previous
work were used as a foundation. Because the population size was set higher in other experiments
compared the ones performed here, a hyperparameter search was performed to explore adjusted
mutation and crossover rates. The placements of input and output nodes inside the substrates
have been taken from Risi and Stanley [2012].

The hyperparameters search performed resulted in the hyperparameters given in Table 5.2
and the activation functions are given in Table 5.3. These are the hyperparameters that will be
applied in the experiments.

The resulting substrate configuration for each method can be seen in Figure 5.1. The green
points are input nodes, the yellow points are hidden nodes, and the blue points are the output
nodes. For HyperNEAT and ES-HyperNEAT, the substrate configuration used are from Risi
and Stanley [2012].



5.3. EXPERIMENTAL PLAN 29

Activation function NEAT HyperNEAT ES-HyperNEAT DES-HyperNEAT
Identity No Yes Yes Yes
Linear No Yes Yes Yes
Step No No No Yes
ReLU No No No Yes
Exp No No No Yes
Sigmoid Yes Yes Yes Yes
Softplus No No No Yes
Tanh No No No Yes
Gaussian No Yes Yes Yes
OffsetGaussian No No No Yes
Sine No Yes Yes Yes
Square No No No Yes
Absolute No Yes Yes Yes

Table 5.3: Activation functions.

(a) HyperNEAT (b) ES-HyperNEAT (c) DES-HyperNEAT

Figure 5.1: The substrates configurations used in the experiments.

5.3 Experimental Plan

To answer the research questions, four experiments have been conducted. Each experiment builds
on the previous experiment. A description of each experiment is given below.

Experiment 1: Evaluate the two ways of adding bias to the assembled ANN in DES-HyperNEAT

Determine which, if any, of the bias variants are beneficial for DES-HyperNEAT.

Experiment 2: Compare the benefits of LEO, with and without seeding, for DES-HyperNEAT
and ES-HyperNEAT

Investigate how LEO impacts the performance of the multi substrate DES-HyperNEAT compared
to the single substrate ES-HyperNEAT. Both LEO with and without seeding will be compared
for both methods.

Experiment 3: Compare the performance of the refined DES-HyperNEAT to NEAT, Hyper-
NEAT, and ES-HyperNEAT on a reinforcement learning problem

Gain the knowledge of how the refined DES-HyperNEAT performs compared to earlier hyper-
NEAT and NEAT methods.

Experiment 4: Compare the refined DES-HyperNEAT to Proximal Policy Optimization

Investigate the performance of the refined DES-HyperNEAT with the state of the art reinforce-
ment learning algorithm Proximal Policy Optimization.
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Heading

Radar

Range-
finders

(a) The agent. Adapted from Risi and Stanley
[2012]. (b) The maze.[Lehman et al., 2008]

Figure 5.2: The hard maze and the agent used in the experiments.

5.4 Experimental Setup

All experiments are performed on an Intel Core i7-7700. All evaluations of networks using
NEAT and HyperNEAT-based methods have been run in parallel using 4 cores. The default
hyperparameters used in all experiments can be found in Table 5.2. Any changes to the default
parameters are highlighted in the individual experiments.

The experiment goal is to evolve a controller for an agent in a maze navigation domain, the
maze experiment was first introduced by Lehman et al. [2008]. The agent is trying to reach
a goal, G, by navigating a maze of walls. The agent has five rangefinder sensors to indicate
the distance to the nearest wall. The rangefinders can be seen as red arrows from the agent in
Figure 5.2a. The agent also has four pie-slice radar sensors that detect the general direction of
the goal. There are three inputs to control the agent, left, L, forward, f , and right, R. The
agent turns (L−R) ∗ 18◦ each action and moves forward f ∗ 20 for each action of the simulation.
The agent setup with sensors is adapted from Risi and Stanley [2012].

The environment chosen is the deceptive hard maze first presented by Lehman et al. [2008]
and is shown in Figure 5.2b. The fitness of the agent is given based on how close the agent is to
the goal at the end of the run. As the maze is deceptive, the agent is rewarded for discovering
stepping stones, called waypoints shown in green points in Figure 5.2b, towards the goal. If
the agent manages to get to the goal, extra fitness is received. The fitness function is given in
Equation 5.1 as in Risi and Stanley [2012], where n is the number of waypoints passed and d is
the distance to the next waypoint scaled to the range [0, 1].

f =

{
10, if agent reach goal,

n + (1 -d), otherwise.
(5.1)

The substrate configurations are shown in section 5.2. For HyperNEAT and ES-HyperNEAT
the rangefinder sensor inputs are put at y coordinate −1.0 and the radar input is at y coordinate
−1.2. For DES-HyperNEAT are the sensor types split into different input substrates.
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Experiment 1
DES-HyperNEAT variant [Normal, Multiple CPPN bias, Single CPPN bias]
domain Hard maze
stop criterion 350 generation or solved maze
repeats 20

Table 5.4: Experimental parameters for experiment 1.

5.5 Experiment 1: Adding bias to the assembled ANN

Experiment 1 evaluates the two different variants of adding bias to the assembled ANN, multiple
CPPN bias and single CPPN bias, described in section 4.1. The parameters for the experiment
are given in Table 5.4.

Hypothesis 1: The multiple CPPN bias variant will produce more complex individual CPPNs
than in the normal and single CPPN bias variant.

Hypothesis 2: The multiple CPPN bias variant will produce more accurate biases than the
single CPPN bias as the bias is more specific for each substrate or path.

Hypothesis 3: Both bias variants will use more time each generation compared to the normal
variant due to the need to assign bias to all nodes in the assembled ANN.

Hypothesis 4: The variants utilizing biases will form less complex ANN networks as the bias
will decrease the need for as many weights in the ANN.

The results of the experiments are presented in Figure 5.3. The fitness is used for comparison
as it is an indicator of how far an agent traverses in the maze. The final fitness of the champion
is used in the boxplot. The champion is the fittest individual in a population.

DES-HyperNEAT with multiple CPPN bias performs significantly (p < 0.05) worse than nor-
mal DES-HyperNEAT while there are no significant differences between Normal DES-HyperNEAT
and DES-HyperNEAT with single CPPN bias. This indicates that hypothesis 2 is incorrect as
the decrease in performance compared to normal DES-HyperNEAT is significant for the multiple
CPPN bias variant. This might be because the additional complexity needed from each CPPN
generally makes it harder to optimize.

The total number of connections in the CPPNs across the layout is significantly higher (p <
0.05) for DES-HyperNEAT with multiple CPPN bias than the other two variants. However,
there are no significant differences between the number of hidden CPPN nodes in any of the
variants. The mean number of connections and nodes in the CPPNs are shown in Table 5.5.
This show an increase in complexity in the form of the number of connections when an additional
CPPN output node is present, proving Hypothesis 1 correct. The total number of ANN nodes
and connections are quite stable across the variants, with no significant difference between the
normal DES-HyperNEAT and the versions with bias proving Hypothesis 4 incorrect. As all
variants are not making ANNs that are not fully functioning controllers, the benefit of adding
bias to reduce the complication of the weights might not be present.

Figure 5.4 show boxplots of the time used by each variant of DES-HyperNEAT. The normal
variant of DES-HyperNEAT used slightly less time than the layout variant, but not significant.
The variant with multiple CPPN bias did, however, use significantly (p < 0.05) more time than
both the single CPPN bias and the normal version. Proving that Hypothesis 3 was incorrect
because only the multiple CPPN bias variant was significanty slower.
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Figure 5.3: The champion fitness for the different variants of DES-HyperNEAT over 20 runs.

DES-HyperNEAT DES-HyperNEAT DES-HyperNEAT
with single CPPN bias with multiple CPPN bias

CPPN connections 28.80 30.25 58.05
CPPN nodes 1.25 1.40 1.45
ANN connections 34.45 33.45 43.75
ANN nodes 5.55 5.75 7.35

Table 5.5: The mean number of connections and nodes in the CPPNs and assembled ANNs of
DES-HyperNEAT.
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Figure 5.4: The time used for the different variants of DES-HyperNEAT over 20 runs.

It is concluded that adding a node to all CPPNs in DES-HyperNEAT with multiple CPPN
bias is not beneficial. As there was no significant difference in the normal variant of DES-
HyperNEAT and the single CPPN bias variant the seems to be no advantage of adding bias by
a separate CPPN either. Further extensions are needed to see if any way of adding bias to the
assembled ANN could increase the performance.

5.6 Experiment 2: LEO

Experiment 2 compares the benefit of LEO in single substrate ES-HyperNEAT and the multi-
substrate DES-HyperNEAT as LEO has shown advantageous to ES-HyperNEAT in the past.
This experiment has been split into two parts. First LEO will be added to ES-HyperNEAT,
both with and without seeding, then LEO will be added to DES-HyperNEAT, also with and
without seeding. The experimental parameters can be found in Table 5.6 for the first part of the
experiment and Table 5.7 for the second part. The hard maze is used to compare the methods
and variants, and all variants have been run a total of 20 times for a sample size. The normal
DES-HyperNEAT has been used as none of the bias variants was significantly better and the goal
of this experiment is to test the benefit of LEO extension to DES-HyperNEAT. The hypothesis
are:

Hypothesis 1: LEO will decrease the number of connections in the best ANNs in both ES-
HyperNEAT and DES-HyperNEAT because the CPPN(s) will include less connections
during the node search.

Hypothesis 2: The fitness will increase with the addition of LEO with geometric seeding in
ES-HyperNEAT and DES-HyperNEAT as the CPPN(s) have more control over the ANN
connections.
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Experiment 2.1
ES-HyperNEAT variant [Normal, with LEO, with LEO and seeding]
domain Hard maze
stop criterion 350 generation or solved maze
repeats 20

Table 5.6: Experimental parameters for experiment 2.1.

Experiment 2.2
DES-HyperNEAT variant [Normal, with LEO, with LEO and seeding]
domain Hard maze
stop criterion 350 generation or solved maze
repeats 20

Table 5.7: Experimental parameters for experiment 2.2.

Hypothesis 3: Both LEO variants will increase the running time of both algorithms as the
CPPNs get more complex.

The results for the ES-HyperNEAT variants are shown in Figure 5.5. Both LEO variants of
ES-HyperNEAT performed slightly but not significantly better than the normal variant. The
boxplot shows the spread is wider for the LEO variants because some runs achieved a higher
fitness, and both variants have an outlier that got a fitness score over 6, showing the potential
that the LEO variants might climb better in the fitness landscape. The performance of ES-
HyperNEAT variants with LEO, both with and without seeding, was very similar as seen in the
Figure 5.5. The results of the DES-HyperNEAT variants are shown in Figure 5.6. As there
was no significant increase in fitness Hypothesis 2 can not be answered without further testing.
The number of ANN connections decreased significantly (p < 0.05) for both variants with LEO
compared to Normal ES-HyperNEAT, and the mean value of nodes went down from 128 to 66
and 78, as shown in Table 5.8, with the LEO and LEO with seeding versions respectively. This
shows that Hypothesis 1 was correct for ES-HyperNEAT.

The Normal version of DES-HyperNEAT performed significantly (p < 0.05) better than both
the LEO variants. None of the LEO variants was able to get fitness as good as the 25% best runs
of Normal DES-HyperNEAT. Hypothesis 2 is therefore incorrect as the LEO output nodes were
shown to decrease the performance of DES-HyperNEAT. The number of ANN connections did
not change significantly, and the mean number of ANN connections increased slightly without
seeding and increased slightly with seeding. Hypothesis 1 is shown to be incorrect for DES-
HyperNEAT.

The mean execution time of 350 generations of each ES-HyperNEAT and DES-HyperNEAT
variant is given in Table 5.8. The difference in the efficiency of adding LEO to ES-HyperNEAT
was insignificant and the mean execution time of the LEO variant was slightly lower than the
normal ES-HyperNEAT. The variant with seeding, however was significantly (p < 0.05) slower
than the other two variants. DES-HyperNEAT was significantly (p < 0.05) slower with the
extension of LEO. DES-HyperNEAT with LEO used was over 60% more time on average and
with LEO and seeding used twice as much time. Hypothesis 3 was, therefore, partly correct as
there was no significant additional running time in ES-HyperNEAT, but DES-HyperNEAT ran
significantly slower with the LEO extension.

Results show that DES-HyperNEAT does not benefit from the addition of LEO even though
ES-HyperNEAT does. DES-HyperNEAT does not need LEO to choose more accurate connec-
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Figure 5.5: The champion fitness for 20 runs with the tree ES-HyperNEAT variants.

Figure 5.6: The champion fitness for 20 runs with the tree DES-HyperNEAT variants.



36 CHAPTER 5. EXPERIMENTS AND RESULTS

Variant Mean time ANN connections
ES-HyperNEAT 1199 128.25
ES-HyperNEAT with LEO 1184 65.85
ES-HyperNEAT with LEO and seeding 1288 72.65
DES-HypperNEAT 1483 34.45
DES-HyperNEAT with LEO 2465 38.40
DES-HyperNEAT with LEO and seeding 3474 27.80

Table 5.8: The mean execution time and number of ANN connections in seconds of 350 genera-
tions of the ES-HyperNEAT and DES-HyperNEAT variants.

Experiment 3
methods [NEAT, HyperNEAT, ES-HyperNEAT-LEO, DES-HyperNEAT]
domain Hard maze
stop criterion 350 generation or solved maze
repeats 20

Table 5.9: Experimental parameters for experiment 3.

tions, and the extension makes optimizing the CPPNs overly complicated and adds significantly
(p < 0.05) more running time to the algorithm. This is likely because of the already existing
modularity in DES-HyperNEAT. When ES-HyperNEAT needs a dense network inside a single
substrate, may DES-HyperNEAT instead create new substrates. This way all connections can
be kept as the density of the nodes does not need to be high.

5.7 Experiment 3: Comparing related methods

Experiment 3 compares DES-HyperNEAT to other NEAT and HyperNEAT methods in the
reinforcement learning problem presented. The methods compared are NEAT, HyperNEAT, ES-
HyperNEAT with LEO, and DES-HyperNEAT. ES-HyperNEAT with LEO was chosen because
of the slight increase in performance in experiment 2 without any significant loss in efficiency.
Table 5.9 show the experimental parameters for experiment 3. Hypothesis 1 is formed based on
earlier work with the maze navigation domain.

Hypothesis 1: Each method will perform better than the one it extends. HyperNEAT will
outperform NEAT, ES-HyperNEAT will outperform HyperNEAT, and DES-HyperNEAT
will outperform ES-HyperNEAT.

Hypothesis 2: The running time of the indirect algorithms will increase compared to the one it
extends. Because of the ES-HyperNEAT search and multiple searches in DES-HyperNEAT
the algorithms running time will be longer for each extension.

The results of the experiment is shown in Figure 5.7. The figure shows the mean fitness
of the champion for each generation in all 20 runs. NEAT performed best of the methods,
and the fitness at the end was significantly (p < 0.05) higher compared to the other methods.
DES-HyperNEAT performed better than HyperNEAT and ES-HyperNEAT with LEO, having
a significantly (p < 0.05) higher fitness after 350 generations. HyperNEAT and ES-HyperNEAT
with LEO had a very similar performance. Figure 5.8 show the number of maze completion over
the 20 runs. Neither HyperNEAT nor ES-HyperNEAT was able to complete the maze in any of
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the 20 runs. NEAT completed the maze in 8 out of 20, while DES-HyperNEAT completed 3 out
of 20. This shows Hypothesis 1 is incorrect because the most simple method NEAT performed
best of the methods. This could be the case because the complexity needed to solve the maze
navigation domain is not requiring an indirect encoding.

Figure 5.7: The mean champion fitness for each generation over 20 runs.

The mean running time for the NEAT algorithm was 491 seconds, which was significantly
faster than the HyperNEAT, which had a mean running time of 783 seconds. HyperNEAT was
then significantly faster than ES-HyperNEAT (1184 seconds) with LEO which was significantly
faster than DES-HyperNEAT (1483 seconds). Hypothesis 2 was therefore correct.

The conclusion is that DES-HyperNEAT performs significantly (p < 0.05) better than both
ES-HyperNEAT and HyperNEAT in the maze navigation domain. It does, however, perform
significantly (p < 0.05) worse than NEAT. It remains to be seen how DES-HyperNEAT performs
in a reinforcement learning problem with a higher number of inputs and outputs as this is a
domain HyperNEAT methods previously have outperformed NEAT.

5.8 Experiment 4: Comparing against Proximal Policy Op-
timization

Experiment 4 compares DES-HyperNEAT to the state of the art Proximal Policy Optimization
(PPO). The experimental parameters are shown in Table 5.10. The PPO implementation used
was created by Raffin et al. [2021]. The implementation has the ability to run on a GPU, there-
fore, the algorithm could be parallelized, and the efficiency could be improved. The efficiency
is therefore not compared in the experiments. As PPO does not utilize the concepts of gener-
ations as DES-HyperNEAT, the number of evaluations is used as a stop criterion to get a fair
comparison. The number of evaluations, 12000, equals 120 generations of DES-HyperNEAT.
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Figure 5.8: The number of times the methods was able to solve the maze in 350 generations out
of 20.

Experiment 4
methods [DES-HyperNEAT, PPO]
domain Hard maze
stop criterion 12000 maze evaluations
repeats 20

Table 5.10: Experimental parameters for experiment 4.

The reward for the agent in PPO is calculated by the movement towards the next stepping
stone. If the agent moves in the wrong direction, it will be penalized. This way, the agent can
not abuse the reward system by going back and forth. If a stepping is passed, a bigger reward is
given, and a maximum reward is given when the agent reach the goal. The agent uses an ANN
with two hidden layers with 64 nodes in each layer for the action policy. This was the default
from the library used for the input type of the agent.

Figure 5.9 shows the results of Experiment 4, the fitness of the resulting ANNs in the maze
domain has been used for comparison. PPO performed significantly (p < 0.05) better than
DES-HyperNEAT, and the fitness for 75% of the runs was over the maximal fitness achieved by
DES-HyperNEAT. The conclusion is that DES-HyperNEAT is still far behind a state of the art
specific reinforcement learning algorithm for the hard maze navigation domain.
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Figure 5.9: Boxplot of DES-HyperNEAT and PPO based on fitness in the maze domain, results
after 12000 evaluations.
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Chapter 6

Conclusion

In this chapter, the goal and research questions are revisited in section 6.1. While section 6.2
and section 6.3 explains the contribution to the field and potential direction for future work.

6.1 Evaluation and Discussion

This section evaluates the four research questions explored to accomplish the goal. The research
questions will be presented, followed by evaluations and further discussion.

Research question 1 How should bias be applied to DES-HyperNEAT to positively affect per-
formance?

Bias was added to DES-HyperNEAT to increase the performance of the assembled ANNs.
Two ways of applying bias to the ANN were proposed. The first way, multiple CPPN bias, was
accomplished by adding an extra output node to each CPPN in the layouts. This node was used
to assign the bias to a node upon discovery. The other way of adding bias to the ANN was
accomplished by having a dedicated bias CPPN for each individual in the population used to
assign bias to all nodes in the assembled ANN. The latter variant was called single CPPN bias.

Single CPPN bias had the best performance out of the two proposed variants compared to the
DES-HyperNEAT with no bias. This was surprising as the multiple CPPN bias variant assigned
more specific biases during discovery, while single CPPN bias was thought of as a more efficient
method by having less complex CPPNs to optimize. The increased search space might have been
the factor that made multiple CPPN bias less advantageous. The evolution might, therefore,
struggle with optimizing the CPPNs for both finding great weights and biases. Single CPPN bias
had, however, not significantly worse performance nor efficiency than DES-HyperNEAT with no
bias, but showed no sign of advantages.

Research question 2 How do Link Expression Output’s features benefit multiple substrates in
DES-HyperNEAT compared to single substrates in ES-Hyper-NEAT?

Link Expression Output (LEO) was added to ES-HyperNEAT and DES-HyperNEAT both
with and without seeding of geometric concepts. The CPPN in ES-HyperNEAT got an extra
LEO node, while in DES-hyperNEAT each CPPN in the layouts got an extra LEO node. When
seeding was added, every new CPPN was initialized with the seed.

The performance of ES-HyperNEAT increased slightly with the LEO node added, but there
was almost no difference in the variants with or without the seeding. The more surprising part
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was that there was no efficiency difference between the ES-HyperNEAT without LEO and ES-
HyperNEAT with LEO and without seeding. This proved the Hypothesis that ES-HyperNEAT
with LEO requires more time as the CPPN needs to be more complex was incorrect. As the
efficiency was significantly worse with the seeding, the variant without seeding would be preferred
for solving the maze navigation domain.

DES-HyperNEAT was not able to get any increase in performance with any of the LEO
variants as the performance got significantly worse with the extension. The efficiency was also
significantly worse with LEO activated. This shows that the modularity in DES-HyperNEAT
decreases the need for LEO compared to ES-HyperNEAT. The ability to add new substrates
instead of increasing the density inside a substrate seems to mitigate the need for LEO as then
all CPPN get more complex.

Research question 3 How does DES-HyperNEAT perform compared to NEAT, HyperNEAT,
and ES-HyperNEAT in a reinforcement learning environment?

Experiment 3 compared multiple related neuroevolution methods in a reinforcement learning
environment that optimizes a controller for an agent in a maze. In the comparison of the direct
encoded method, NEAT performed significantly better than all the indirect encoded methods.
Within the indirect encoded methods, DES-HyperNEAT performed significantly better than both
ES-HyperNEAT with LEO and HyperNEAT, which performed very similarly. The low complex-
ity needed to create a functioning agent controller might be the reason NEAT performed well.
As NEAT generally performs well when evolving small networks as the networks gradually get
more complex. The gradual complexification of NEAT, therefore, finds an appropriate network
size. As this principle is adapted in DES-HyperNEAT to the layouts, the number of substrates
is kept at a suitable number, and the performance might therefore be closer to NEAT.

Research question 4 How does the generic algorithm DES-HyperNEAT perform compared to
a tailored state-of-the-art reinforcement learning algorithm?

The performance of DES-HyperNEAT was compared with Proximal Policy Optimization
(PPO), a tailored reinforcement learning algorithm. The performance of PPO was significantly
better than DES-HyperNEAT after the same number of evaluations. This shows that the generic
indirect encoded DES-HyperNEAT is behind the tailored methods within RL.

Goal Investigates how DES-HyperNEAT can be extended to solve complex reinforcement learning
problems.

The overall goal has partly been accomplished as DES-HyperNEAT was able to evolve func-
tioning controllers for the maze navigation domain. None of the extensions of adding bias to the
assembled ANN showed any advantage in performance. The extension of LEO also performed
worse than DES-HyperNEAT without, both with and without seeding. DES-hyperNEAT was,
however, the best performing method of the indirect encoded NE methods evaluated and has
shown potential in reinforcement learning problems.

6.2 Contributions

The contribution of this thesis has been the extension and comparison of DES-HyperNEAT on
reinforcement learning problems. The extension exists of the proposed variants of bias added to
the assembled ANN and the proposed way of adding LEO to all CPPNs in DES-HyperNEAT. The
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LEO extension has also been added to the ES-HyperNEAT for the maze navigation domain and
a comparison of the effect on single and multiple substrates has been conducted. A comparison of
related methods has been completed, comparing DES-HyperNEAT with NEAT and HyperNEAT-
based methods in addition to a state of the art reinforcement learning algorithm. In addition to
the extension and comparison, the implementation of DES-HyperNEAT for RL is a contribution.

The open-source implementation is also a contribution. The final implementation of DES-
HyperNEAT for Reinforcement Learning is available as a git repository at Svendsen [2022].

6.3 Future Work

The maze navigation domain has been used to evaluate and compare DES-HyperNEAT in this
thesis. The domain has previously been used to evaluate HyperNEAT and ES-HyperNEAT,
which DES-HyperNEAT extends. As DES-HyperNEAT performed better in this domain than
the other indirect encoded methods, it would be beneficial to compare DES-HyperNEAT in
a domain where HyperNEAT methods outperform NEAT. Primarily in domains with a high
number of input nodes. As DES-HyperNEAT both previously and in this work has exceeded
HyperNEAT and ES-HyperNEAT, it will likely perform well in these domains.

Another interesting research topic would be exploring new ways of adding bias to the assem-
bled ANN as neither the single CPPN bias nor the multiple CPPN bias showed improvement in
the experiments. As the extension of LEO showed poor performance, it would be interesting to
do extensive research on how the connectivity between and inside substrates in DES-HyperNEAT
behaves when the size network heavily increases.
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