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A B S T R A C T

Sensor fusion plays a key part in autonomous surface vehicles, however, the high cost of sensors makes the
barrier of entry in this research field quite high. In this work, we present a complete system for sensor fusion
on the milliAmpere autonomous ferry research platform as well as an open sensor fusion dataset for maritime
tracking across two environments. Individual sensors and their detection pipelines are evaluated across various
detection metrics. We also evaluate the tracking performance of the sensors both individually and in fusion
using a multi-sensor extension of the JIPDA multi-target tracker. We find that the different environments have
distinct challenges precluding the use of only a single sensor. Utilizing multiple sensors, either individually or
in fusion, can mitigate these issues increasing the safety margins of the situational awareness system.
1. Introduction

Interest in autonomous surface vehicles (ASV) such as ferries has in-
creased rapidly in the last few years. The potential for safer operations,
reduced cost, and increased availability compared to human-operated
vessels have been key factors behind this interest. Compared to land-
based autonomous vehicles such as cars or trucks the environment an
ASV operates in is comparatively simpler with more open areas and
fewer obstacles and targets for the vehicle to navigate around. Maritime
autonomous operations also have the option of onshore monitoring and
control centers that could take control of an ASV remotely when needed
which should enable more rapid deployment compared to land-based
vehicles.

A key part of autonomous operations is situational awareness. With-
out an accurate understanding of the position and path of other vessels,
both path planning and collision avoidance would be impacted, reduc-
ing the safety margins of the vessel. This situational awareness system
processes raw sensor data from one or more sensors, extracts useful
information in the form of detections, and estimates the current and
future states of the vessels using target tracking.

Target tracking is a form of state estimation used when multiple
measurements can be received, requiring the estimator to evaluate if
a measurement originates from a target or from false alarms. These
tracking methods exist in multiple forms. Single target trackers such as
the Probabilistic Data Association Filter (PDAF) and derivatives such as
the Integrated PDAF (IPDA) (Bar-Shalom and Tse, 1975; Musicki et al.,
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1992) assume only a single target exists in the surveillance region. Each
individual measurement is used to update the state estimate based on
the likelihood of it originating from the target or from false alarms.
If multiple targets are presented one option is to instance individual
single-target trackers for each target. For well-separated targets this
is a valid solution, however, when the targets operate closer together
such as in urban environments this will yield sub-optimal performance,
requiring multi-target tracking.

The key difference in multi-target tracking is the possibility of
a measurement originating from other targets as well as from false
alarms. Multiple methods have been developed to deal with the multi-
tracking problem. Joint PDAF (Fortmann et al., 1980) and Joint IPDA
(Musicki and Evans, 2004) are multi-target extensions of the PDAF
based tracking methods allowing the data association process to con-
sider multiple targets for a measurement’s origin. Other multi-target
tracking methods based on multiple hypotheses such as the track-
oriented multiple hypothesis tracker (TOMHT) also exist (Bar-Shalom
et al., 2002) as an option to the PDAF based trackers.

In the automotive field, several studies have been performed on de-
tection and tracking with sensor fusion (Cho et al., 2014; Chavez-Garcia
and Aycard, 2016), however, the maritime domain has received less
attention. Several works examine tracking with single sensors such as
radars (Schuster et al., 2014; Wilthil et al., 2017; Fowdur et al., 2021)
and cameras (Schöller et al., 2020; Wolf et al., 2010), however, multi-
sensor tracking is not addressed. Haghbayan et al. (2018) presented
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a detection framework using sensor fusion in the maritime domain,
however, no tracking was performed. Cormack et al. (2020) fused radar
with infrared cameras to perform multi-target tracking. Radar was also
fused with AIS in Gaglione et al. (2018) using belief propagation based
sensor fusion. A preliminary exploration of multi-sensor, multi-target
tracking was performed by Helgesen et al. (2019) using a small dataset
from a land-based sensor rig.

While several studies on multi-sensor fusion have been performed,
there is in general a lack of open datasets for maritime situational
awareness and multi-target tracking. In the automotive world, several
datasets exist such as KITTI (Geiger et al., 2012). The maritime domain
is currently lacking this range, however recent contributions do seem
to indicate this is changing. Cheng et al. (2021) published a multi-
sensor dataset for stereo vision, simultaneous localization and mapping,
and water segmentation for ASVs while Brekke et al. (2020) included
an open dataset for multi-target tracking with radar measurements.
The data used in Fowdur et al. (2021) are also available for NATO
or EU member states but only upon request. There is however to the
authors’ knowledge no publicly available multi-sensor tracking datasets
available, increasing the barrier of entry in this field.

Several contributions are presented in this work. A multi-sensor
extension of the JIPDA is detailed and validated experimentally on a
large benchmark dataset with four heterogeneous sensors and multiple
targets with ground truth. This dataset includes radar, lidar, infrared
and electro-optical detections from a vessel-mounted sensor rig in two
distinct environments. The dataset is made publicly available (see link
in the footnote), we also aim to publish the raw sensor data subject to
privacy concerns. The autonomous platform and sensor pipelines are
also explored in detail and evaluated using a range of performance
metrics.

1.1. Notation

The following notation standards are used throughout this work:

• t: lower case bold letters represent vectors.
• R: upper case bold letters represent matrices.
• T/𝑇 /t/t : non-bold letters in both cases, both italic and non-italic,

represent single values.

2. Sensor platform

milliAmpere, Fig. 1, is an urban autonomous passenger ferry pro-
totype/research platform developed at the Norwegian University of
Science and Technology (NTNU). As a research platform, milliAmpere
is equipped with a complete navigation and sensing system designed to
make future all-autonomous operations possible. Two battery-powered
azimuth thrusters allow for rapid course changes due to the small size
of the craft (cf. Fig. 2). Top speed is limited at around 5 knots due to
regulatory reasons which is slower than most similarly sized vessels.

2.1. Navigation system

Accurate positioning is a key component in autonomous operations.
Many of the ownship modules utilize position information, including
both docking and situational awareness systems, where increased ac-
curacy can yield higher safety margins. A dual antenna Hemisphere
Vector VS330 GNSS compass provides both position and heading in-
formation. Real-Time Kinematic (RTK) corrections are transmitted to
the ferry from an antenna situated at the NTNU Gløshaugen campus
yielding a manufacturer specified position accuracy of 10 mm and
heading accuracy of 0.05◦.
2

Fig. 1. milliAmpere, an autonomous ferry research platform.

Fig. 2. Dimensions of milliAmpere as depicted in Vasstein (2021).

2.2. Sensing system

With 10 cameras, a radar, and a lidar, milliAmpere is highly suited
for the collection of datasets for heterogeneous sensor fusion. Minimal
sensor obstruction is achieved by mounting the sensor on top of the
ferry as shown in Fig. 3.

2.2.1. Lidar
Lidar data comes from a Velodyne VLP-16 with a maximum range

of 100 m. 16 rotating laser beams provide a 360x30◦ field of view
3D point cloud at a rate of about 10 Hz. This sensor provides highly
accurate range estimates at ±3 cm. However, the low vertical angular
resolution at 2.0◦ does pose challenges at the far end of its operational
interval where the gap between beams can be as large as 2.8 m (80 m
range). Each point cloud contains a series of points with the following
data format: 𝐩𝑖 =

[

𝑝𝑥, 𝑝𝑦, 𝑝𝑧, 𝑖
]

where 𝑝𝑥∕𝑦∕𝑧 is the Cartesian coordinates
of the return and i the intensity of the return signal.

2.2.2. Radar
Radars have traditionally been the most common sensor system in

maritime applications due to their reliability and range. milliAmpere
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Fig. 3. Sensor system dimensions as depicted in Vasstein (2021).

is equipped with a Simrad Broadband 4G radar which has a built-in
detection system yielding sensor data in the form of radar spokes. Each
spoke is composed of an array of range cells with binary detection
values as well as the associated azimuth angle, 𝜃, giving a series of polar

detections of the form 𝐳𝑖 =
[

𝑟𝑖
𝜃𝑖

]

. Rotating at 48RPM/0.8 Hz the radar

is far slower than the lidar and has a much lower angular accuracy due
to its 5.2◦ beamwidth. The radar was manually tuned using a radar
plotter.

2.2.3. Cameras
The advent of cheap, performant computing hardware and deep

learning based detection methods has made cameras a highly relevant
sensor in autonomous operations. milliAmpere is equipped with a 360◦

camera rig containing 5 electro-optical and 5 infrared cameras. Electro-
optical imaging data comes from FLIR Blackfly S 50-S5C cameras
equipped with a 6 mm lens yielding a horizontal field of view of
77.8◦. With 5 cameras this yields some overlap between the cameras
ensuring complete 360◦ coverage. Each camera is connected to a single
Nvidia Jetson TX2 board embedded in the sensor rig using Power-over-
Ethernet. Due to the bandwidth constraints of the single gigabit link out
of the sensor rig each camera operates at half resolution, 1224x1020,
and at a rate of 5 Hz. Sensor data are transmitted over ethernet in raw
Bayer format. Once received, images are debayered to generate color
images and then undistorted to correct for lens distortions.

Infrared imaging data are supplied by 5 FLIR Boson 640 cameras
with a 4.9 mm lens and a horizontal field of view of 95 degrees.
Using an uncooled vanadium-oxide microbolometer sensor the cameras
provide infrared images at a resolution of 640x512 over USB. Operating
at 9 Hz the cameras are sensitive to long-wave infrared radiation with
a spectral band of 7.5 μm-13.5 μm. Two USB hubs connect all 5 cameras
to the TX2 board which transmits the images over ethernet. Images are
then undistorted before being passed on to the detection pipeline. Both
3

cameras are calibrated according to Zhang (2000) to find their intrinsic
parameters.

3. Detection pipeline

Sensor data usually requires one or more processing steps for it to
be interpretable by an ASVs situational awareness system. This section
presents the detection pipelines used to extract useful information from
raw sensor data provided by the ASVs sensor systems.

3.1. Radar/Lidar pipeline

Both active sensors, the radar and lidar, will yield positive returns
for land and buildings if within range. Further processing of the sensor
data is therefore required to avoid issues in the tracking system. Once
converted to a point cloud, both the radar and lidar share the same
sensor data format allowing the remaining detection pipeline to be
shared. This pipeline was first introduced in Wilthil et al. (2017) and
has later been extended to support lidar point clouds as well.

3.1.1. Radar processing
While the radar already supplies us with detections in the form

of spokes most methods for target tracking assume that a target can
generate at most one measurement per time step. Raw detection data
from the radar does not meet this assumption, any target with radar
returns will almost always generate detections in multiple range cells
and radar spokes.

The first step in the detection pipeline is to convert positive detec-
tions from a single spoke from polar to Cartesian coordinates in the
radar frame (r) according to

𝐳𝑟𝑖 =
⎡

⎢

⎢

⎣

𝑟𝑖 cos 𝜃𝑖
𝑟𝑖 sin 𝜃𝑖

0

⎤

⎥

⎥

⎦

(1)

where 𝑟𝑖 is the range of the detection given by the range cell and 𝜃𝑖 the
azimuth angle of the spoke 𝑖. Using data from the navigation system
each detection is then transformed into a world-fixed local North-East-
Down (NED) frame (w) by a rotation 𝐑𝑤𝑟 and translation 𝐭𝑤𝑟 from the
radar frame according to data supplied by the navigation system.

𝐳𝑤𝑖 = 𝐑𝑤𝑟 𝐳
𝑟
𝑖 + 𝐭𝑤𝑟 (2)

Converted detections from a single radar rotation are then aggregated
into a 2D point cloud of positive detections fixed on the ocean surface
for further processing.

3.1.2. Lidar processing
Sensor data from the lidar is natively supplied as point clouds,

however, a conversion from the sensor frame to a world-fixed NED
frame is still required for further processing. For any point i with
coordinates 𝐩𝑙𝑖 in the lidar frame l the conversion is

𝐩𝑤𝑖 = 𝐑𝑤𝑙 𝐩
𝑙
𝑖 + 𝐭𝑤𝑙 . (3)

3.1.3. Land returns
To avoid land returns from inducing false tracks in the tracking sys-

tem the point clouds are processed according to a land map supplied by
the Norwegian Mapping Authority. A binary occupancy grid centered
on the local NED origin is generated and projected onto the land map.
Each cell overlapping with land is given a positive occupancy value
while cells covering sea will receive a negative value. To compensate
for potential uncertainties in the sensor data transforms and mapping
data the land area is also dilated by a fixed amount.

Additional masking is often required due to a lack of certain features
in the map data such as docks. This is illustrated in Fig. 4 where the
dilated land map does not cover all land returns from the radar. Using
freely available online tools supplementary GeoJSON sensor masks
were manually drawn to cover these features. Combining the land map
with sensor masks ideally yields a point cloud with zero land returns
when any points landing in occupied cells are removed.
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Fig. 4. Radar point cloud overlaid on dilated land map. Black fields are land areas,
gray areas ocean. Radar point cloud is shown as colored squares where color is given
by return intensity.

3.1.4. Clustering
While map-based processing does remove many potential false

tracks a single target can still yield multiple returns due to the reso-
lution of the sensor. For the assumptions of the tracking system to hold
these need to be merged. This is done by clustering the land filtered
point cloud. By assuming that closely spaced detections originate from
the same target the clustering algorithm groups these together into
a cluster. The centroid of this cluster is then assumed to be the true
detection. Points are added to the cluster if the Euclidean distance from
point i to any point j in the cluster is less than a specified threshold T:

‖𝐩𝑖 − 𝐩𝑗‖ ≤ 𝑇 . (4)

The clustering algorithm is an evolution of the method described
in Wilthil et al. (2017) and is based on single-link hierarchical cluster-
ing using k-d trees for optimization purposes. A minimum cluster size of
5 points is also enforced to minimize potential false alarms from wakes.

3.2. Camera pipeline

As passive sensors, both the infrared and electro-optical cameras,
require different detection pipelines than the active sensors. The lack
of native range information in the sensor data requires more complex
detection methods than simple clustering to extract useful information
for the sensor fusion system to utilize.

3.2.1. Image detection
Yolo v4 (Bochkovskiy et al., 2020), a state-of-the-art object de-

tection method based on the Yolo family of detectors, is utilized in
this work to process image data. While EfficientDet (Tan et al., 2020)
can yield greater accuracy for its largest models, Yolo v4 achieves
similar results to the smaller models while running at roughly twice
the speed. Yolo v4 is a single-stage detector as opposed to a two-
stage detector. Two-stage detectors such as Faster R-CNN (Ren et al.,
2015) use a region proposal method to find objects proposals which are
then processed. Single-stage detectors on the other hand skip this part
utilizing a sampling of pre-specified locations resulting in reduced com-
putational complexity and greater speeds. The output of this detection
process is a prediction containing one or more bounding boxes (pixel
coordinates) and their associated classification and confidence score.
The detector was trained on the COCO dataset (Lin et al., 2014) without
target-domain specific data. Fine tuning pre-trained models on domain
specific data has been shown to yield minor improvements in detection
performance and robustness when evaluated on a benchmark dataset
from a similar domain (Landsnes, 2021). The lack of infrared specific
4

training data is a greater issue impacting the detection performance
of the infrared sensors to a larger degree. The use of deep learning
based transformers (Kniaz et al., 2018; Özkanoğlu and Ozer, 2022) on
existing color image datasets to approximate their infrared equivalents
is a possible solution to this issue that does not require the collection
and labeling of large infrared datasets.

3.2.2. Bounding box processing
Images from each type of camera are processed individually by

the detector. For each bounding box corresponding to an object of
interest (boat, kayak, etc.) a measurement is generated from the object’s
pixel coordinates and the camera’s intrinsic and extrinsic calibration
parameters. Due to the passive nature of the cameras, no explicit range
information is given by the sensor data, the bearing of the target is,
therefore, the most natural measurement to extract. Given a bounding
box a for camera b we assume the true center of the target is given by
the bottom center of the predicted bounding box, 𝐩𝑎𝑏 =

[

𝑝𝑥, 𝑝𝑦
]

, which
should in the ideal case correspond with the waterline of the target.
In the camera coordinate system, c, the bearing measurement can be
estimated based on the cameras focal length, 𝐟 =

[

𝑓𝑥, 𝑓𝑦
]

and principal
point, 𝐩𝑝 =

[

𝑐𝑥, 𝑐𝑦
]

, in the camera coordinate system according to

𝜃𝑏𝑎 =
𝑝𝑥 − 𝑐𝑥
𝑤𝑏

𝐹𝑂𝑉 𝑏
𝑥 (5)

where 𝑤𝑏 is the image width in pixels. 𝐹𝑂𝑉 𝑏
𝑥 is the horizontal field of

view of the camera b and is given by

𝐅𝐎𝐕𝑏 =
[

𝐹𝑂𝑉 𝑏
𝑥

𝐹𝑂𝑉 𝑏
𝑦

]

=
⎡

⎢

⎢

⎣

2 arctan 𝑤𝑏

2𝑓 𝑏𝑥
2 arctan ℎ𝑏

2𝑓 𝑏𝑦

⎤

⎥

⎥

⎦

(6)

where ℎ𝑏 is the image height in pixels. Once this process is completed
for all bounding boxes in the image the measurements are then con-
verted to a vessel fixed local NED frame. Due to the cameras being
mounted approximately in the center of the vessel we only need to
compensate for a rotation 𝜙𝑘, given by

𝜙𝑘 = 𝜓𝑘 + 𝜑𝑏𝑣𝑐 (7)

where 𝜓𝑘 is the rotation of milliAmpere relative to a world-fixed NED
frame at time k given by the navigation system and 𝜑𝑏𝑣𝑐 the fixed
rotation between vessel center (𝑣𝑐) and camera 𝑏. This results in the
vessel-fixed (𝑣) NED measurement

𝜃𝑣𝑎 = 𝜃𝑏𝑎 + 𝜙𝑘. (8)

Once images from all cameras of a single type have been processed the
bearing measurements are then aggregated to form a single measure-
ment vector in the vessel NED frame.

4. Multi-sensor JIPDA

The Visibility Interactive Multiple Model JIPDA (VIMMJIPDA)
of Brekke et al. (2021) is a modern formulation of the Markov-Chain
Two JIPDA. Target motion is described using multiple models such
as the constant velocity (CV), constant turn rate (CT) and constant
acceleration (CA) model to improve estimation accuracy. A special case
of this formulation utilizing a single CV motion model is used in this
work which has been extended to support multi-sensor fusion. In this
section we introduce the CV model as well as the key changes made
to support multiple sensors, leaving the complete derivation to Brekke
et al. (2021).

4.1. Motion model

In the CV motion model, target states are described by their position
and velocity, 𝐱 = [𝑝𝑥, 𝑝𝑦, 𝑣𝑥, 𝑣𝑦], in a north-east-down (NED) reference
frame. In continuous-time the model is described by

�̇� = 𝐀𝐱 +𝐆𝐧 (9)
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where n is the process noise modeling target acceleration. This noise is
ssumed to be white with diagonal covariance, described by

∼  (𝟎,𝐃𝛿(𝑡 − 𝜏)) 𝐃 =
[

𝜎2𝑎 0
0 𝜎2𝑎

]

(10)

here 𝜎𝑎 describes the typical acceleration of the target. The matrices
and G are given by

=

⎡

⎢

⎢

⎢

⎢

⎣

00 1 0
0 0 0 1
0 0 0 0
0 0 0 0

⎤

⎥

⎥

⎥

⎥

⎦

𝐆 =

⎡

⎢

⎢

⎢

⎢

⎣

0 0
0 0
1 0
0 1

⎤

⎥

⎥

⎥

⎥

⎦

. (11)

or real-world applications, these equations must be discretized result-
ng in the model

𝑘 = 𝐅𝐱𝑘−1 + 𝐯𝑘 𝐯𝑘 ∼  (0,𝐐) (12)

here 𝐅 is the discretized state transition matrix, 𝐱𝑘 the state at time-
tep k and 𝐯𝑘 the discretized process noise with covariance Q. In the
eal world, target kinematics cannot usually be described accurately by
nly a single motion model, possibly necessitating the full VIMMJIPDA.

well-tuned CV model should however give an acceptable baseline
erformance that other methods can be benchmarked against.

.2. Sensor models

In a heterogeneous sensor fusion system different sensors can have
ifferent measurement models, 𝑝(𝐳𝑘|𝐱𝑘) relating the received detections

to the state estimates. Both active sensors receive measurements in the
form of polar or spherical coordinates. Discarding height information
from the lidar allows us to describe both measurements using an
identical model albeit with different measurement noises,

𝑓 𝑟∕𝑙𝑧 (𝐱𝑘) =
[ √

𝑝2𝑥 + 𝑝2𝑦
arctan(𝑝𝑦∕𝑝𝑥)

]

+ 𝐰𝑟∕𝑙𝑘 𝐰𝑟∕𝑙𝑘 ∼  (0,𝐑𝑟∕𝑙) (13)

where r and l indicate respectively the radar or lidar. Due to non-
linearities in the measurement function, this would usually require
an extended Kalman filter (EKF). However, the measurements are
converted back to Cartesian coordinates resulting in the measurement
model

𝑓 𝑟∕𝑙𝑧 (𝐱𝑘) =
[

𝑝𝑥
𝑝𝑦

]

+ 𝐰𝑟∕𝑙𝑘 𝐰𝑟∕𝑙𝑘 ∼  (0, 𝐉𝐑𝑟∕𝑙𝐉T) (14)

where J is the Jacobian of the polar to Cartesian conversion of the
measurement and R is the measurement noise in polar coordinates. This
eliminates the need for EKFs in the tracking system but requires an
implementation with measurement-specific covariances.

For the passive camera sensor, the measurements begin as a series
of pixel coordinates. If only bearing measurements are used we utilize
the measurement model

𝑓 𝑒𝑜∕𝑖𝑟𝑧 (𝐱𝑘) = arctan(𝑝𝑦∕𝑝𝑥) + 𝐰𝑒𝑜∕𝑖𝑟𝑘 𝐰𝑒𝑜∕𝑖𝑟𝑘 ∼  (0,𝐑𝑒𝑜∕𝑖𝑟) (15)

where R is the sensor noise in bearing and eo/ir indicate the electro-
optical or infrared cameras. If georeferencing (Helgesen et al., 2020) is
applied to estimate detection ranges as well the measurement function
is given by

𝑓 𝑒𝑜∕𝑖𝑟𝑧 (𝐱𝑘) =
[

𝑝𝑥
𝑝𝑦

]

+ 𝐰𝑒𝑜∕𝑖𝑟𝑘 𝐰𝑘 ∼  (0, 𝐉𝐑𝑒𝑜∕𝑖𝑟𝐉T) (16)

where R is the measurement noise in pixel coordinates and J is the
Jacobian of the pixel-to-Cartesian conversion for the measurement
which is evaluated numerically in Helgesen et al. (2020). This increases
the complexity of the measurement model but allows for a more
accurate description of sensor uncertainty. Close to the camera, a single
pixel will only cover a small area, further away this area increases.
Describing uncertainty in pixel coordinates and then converting to
Cartesian will compensate for this, increasing Cartesian uncertainty
5

with the target range. t
4.3. Association probabilities

Other key changes are made to the calculation of the association
probabilities for the different hypotheses in the JIPDA. Different sen-
sors have different performance characteristics, detection ranges are
typically limited and detection performance depends on the range
of the target. By introducing sensor-specific (s) parameters for the
measurement noise, 𝐑𝑠, and sensor and range (r) specific detection
probabilities, 𝑃 𝑠𝐷(𝑟) and false alarm intensities, 𝜆𝑠(𝑟), the tracker is able
to account for the differing characteristics of the various sensors across
all ranges. Defining an association hypothesis, 𝐚𝑘, as 𝐚𝑘 = [𝑎1𝑘,… , 𝑎𝑛𝑘]

here

𝑡
𝑘 =

{

𝑗 if target 𝑡 claims measurement 𝑗
0 if target 𝑡 claims no measurements,

(17)

the association probabilities are then given by

Pr{𝐚𝑘|𝐙1∶𝑘} ∝
∏

𝑗∉𝐚𝑘

𝜆𝑠(𝑟𝑗 )
∏

𝑡∶𝑎𝑡𝑘=0

(1 − 𝜖𝑡𝑘|𝑘−1𝑃
𝑠
D(𝑟

𝑡
𝑘|𝑘−1)𝜂

𝑡
𝑘|𝑘−1)

∏

𝑡∶𝑎𝑡𝑘>0

𝜖𝑡𝑘|𝑘−1𝑃
𝑠
D(𝑟

𝑡
𝑘|𝑘−1)𝜂

𝑡
𝑘|𝑘−1𝑙

𝑡,𝑎𝑡𝑘 (18)

here 𝜖𝑡𝑘|𝑘−1 and 𝜂𝑡𝑘|𝑘−1 are the predicted existence and observability
robabilities of target t and 𝑟𝑡𝑘|𝑘−1 the predicted target range. The
umber of false alarms is modeled as a Poisson point process where
𝑠(𝑟𝑗 ) is the associated range-dependent intensity for sensor s and
easurement j. For passive sensors without range information, a con-

tant false alarm intensity is used. An important assumption in this
odel is that the number of false alarms in bounded sub-regions is

ompletely independent of each other, i.e. the process is completely
andom. Compared to the rest of the elements in this product the
istributions of the detection probability and false alarm intensities
re assumed to be near-constant around the relevant track and mea-
urement, we, therefore, approximate their distribution using mean
alues. State-dependent detection probability has also been explored
n Musicki and Hanselmann (2008) using Gaussian mixtures and is also
resent in Williams (2015) along with non-homogeneous false alarm
ntensities. The track to measurement likelihood, 𝑙𝑡,𝑎

𝑡
𝑘 , is given by

𝑡,𝑎𝑡𝑘 = ∫ 𝑓 𝑠𝑧 (𝐳
𝑎𝑡𝑘
𝑘 |𝐱𝑡𝑘)𝑝

𝑡
𝑘|𝑘−1(𝐱

𝑡
𝑘)d𝐱

𝑡
𝑘

=  (𝐳
𝑎𝑡𝑘
𝑘 ; 𝑓 𝑠𝑧 (�̂�

𝑡
𝑘|𝑘−1),𝐇

𝑠,𝑡
𝑘 𝐏𝑡𝑘|𝑘−1𝐇

𝑠,𝑡T
𝑘 + 𝐑𝑠)

(19)

here 𝑓 𝑠𝑧 (𝐳
𝑎𝑡𝑘
𝑘 |𝐱𝑡𝑘) is the likelihood relating the measurement given by

he association 𝑎𝑡𝑘 to the target t and 𝑝𝑡𝑘|𝑘−1(𝐱
𝑡
𝑘) the predicted state

istribution of the target. �̂�𝑡𝑘|𝑘−1 is the predicted state estimate while
𝑡
𝑘|𝑘−1 is the corresponding state covariance. 𝐇𝑠,𝑡

𝑘 is the measurement
unction Jacobian for sensor s and track t. These equations are based on
he single-sensor derivation of the VIMMJIPDA found in Brekke et al.
2020).

.4. Track management

Real-world applications of tracking in dynamic environments re-
uire some form of track management to initialize new tracks and
erminate existing tracks. Newly formed tracks are given the label
entative tracks but are otherwise considered as fully confirmed tracks
y the tracking system.

.4.1. Track initialization
In any scan, the tracker performs data association between tracks,

oth tentative and confirmed, and the received measurements using a
alidation gate around the track. Once data association is complete any
nassociated measurements, that is measurements not falling within
he validation gate of an existing track, are used to form new tentative

racks. For each timestep, the current unassociated measurements are
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compared to the unassociated measurements from the previous step
from the same sensor based on the distance criterion

‖𝐳𝑖𝑘 − 𝐳𝑗𝑘−1‖ ≤ 𝐯𝑚𝑎𝑥𝛥𝑇𝑘 (20)

where 𝐯𝑚𝑎𝑥 is the expected maximum speed of a target and 𝛥𝑇𝑘 is the
time difference between the steps. If the criterion is met for a pair of
measurements, a new tentative track is initialized. Tentative tracks are
labeled confirmed if the test

𝜖𝑡𝑘 ≥ 𝑇𝑐𝑜𝑛𝑓 (21)

is met where 𝑇𝑐𝑜𝑛𝑓 is a tuning parameter. This test is performed on each
preliminary track after an update and if passed the track is labeled as
confirmed until its eventual termination. Both track types are treated
identically by the tracking system and are thus considered jointly for
data association, predictions, etc. The rest of the autonomy system
could however use track status in their decision making, e.g. only
considering confirmed tracks for path planning. Only active sensors are
used in track initialization due to the lack of range information from
the passive sensors.

4.4.2. Track termination
Existence-based approaches to tracking such as the JIPDA provide

existence probability estimates as part of the tracking process. Once
the update step is completed the existence probability of all tracks is
evaluated using the existence criterion

𝜖𝑡𝑘 ≥ 𝑇𝑟 (22)

where 𝑇𝑟 is a threshold value. For each step without any measurement
associations, a track will experience a reduction in existence probabil-
ity. If the existence probability of a track drops low enough to fail this
test the track is terminated and removed from the list of active tracks.

5. Performance measures

Accurate and reliable detection and tracking is an important part
of a vessel’s situational awareness. In this section, we present a series
of performance measures used to evaluate both of these systems. All
evaluations are performed automatically based on a data association
process between the measurements and the true target position given
by the ground truth, or the state estimate and the ground truth. In this
process, tracks and measurements are assigned to their closest target
given that the measurement error is less than a specified threshold.
For the evaluation, we use a distance threshold of 20 m for the active
sensors in environment 1 due to the size of the target Gunnerus. In
environment 2 this threshold is 10 m. For the passive sensors, we use
a bearing threshold of 10◦ in the detection evaluation. The Stone Soup
Python framework (Thomas et al., 2017) or the MATLAB Sensor Fusion
Toolbox which was used as a base in this work provide many of the
measures presented here.

5.1. RMS error

Perhaps the most basic performance measure, the root mean square
error (RMSE) yields information about the mean error of the individual
sensors or tracks. Defining �̄�𝑖 as the error, RMSE is calculated according
o

MSE =

√

√

√

√

1
𝑛

𝑛
∑

𝑖=1
|�̄�𝑖|2. (23)

For detection errors we first convert active sensor detections to Carte-
sian coordinates, yielding the position RMSE. For passive sensors, the
bearing RMSE is used. For tracking evaluation, the position RMSE
is used to evaluate the tracking estimates against the ground truth
positions.
6

5.1.1. Measurement noise
Measurement noise plays an important part in the tuning of tracking

systems. Inaccurate detection systems will have a higher degree of
detection noise compared to more accurate systems, resulting in predic-
tions being weighted more in the state estimation of targets. Detection
noise is reported as the measurement error covariance matrix, given by

𝐑 = 1
𝑛 − 1

𝑛
∑

𝑖=1
(𝐳𝑖 − 𝑓𝑧(𝐱𝑗 ))(𝐳𝑖 − 𝑓𝑧(𝐱𝑗 ))𝑇 (24)

here 𝑓𝑧 is the measurement function of the sensor.

.2. Detection probability

Another important performance measure for a detection system
s the probability that a target will be detected in any given scan.
everal tracking methods also use this parameter in their bookkeeping
o update a target’s existence and detectability probability.

For a given sensor scan we assume that any target assigned to a
easurement is detected. Keeping track of every targets assignment

tatus allows the calculation of the detection probability, 𝑃𝐷, according
o

𝐷 =
𝑛
∑

𝑖=1

𝑛𝑖𝑑𝑒𝑡
𝑛𝑖𝑡𝑜𝑡𝑎𝑙

(25)

where 𝑛𝑑𝑒𝑡 is the number of targets detected in scan i and 𝑛𝑡𝑜𝑡𝑎𝑙 the
umber of targets present. Additional info can also be gained by
xamining the relationship between the detection probability of a target
nd the target range. We therefore report 𝑃𝐷 in range-specific bins.

5.3. Clutter intensity

Any non-perfect sensor will eventually yield non-target measure-
ments known as clutter or false alarms. The expected clutter intensity is
the expected amount of false detections per sensor scan per area and it
is an important tuning parameter in the JIPDA tracker. We assume that
any measurements not associated with a target are clutter, yielding the
calculation

𝜆 = 1
𝜋𝑟2𝑚𝑎𝑥

∑𝑛
𝑘=1 𝑚

𝑓𝑟𝑒𝑒
𝑘

𝑛𝑘
(26)

where 𝑟𝑚𝑎𝑥 is the maximum range of the sensor, 𝑛𝑘 the total number
of time steps, and 𝑚𝑓𝑟𝑒𝑒𝑘 the number of unassociated measurements at
time-step 𝑘. For the passive sensors the range term in the denominator
is omitted. Readers should note that uniform false alarm rates in polar
coordinates (e.g. radar) will not be uniform in Cartesian coordinates
which could impact the tracking output when the expected number of
false alarms is high. Due to the low false alarm rate of milliAmpere’s
sensors, we approximate this as uniform in Cartesian coordinates as
well. False alarm intensities are evaluated both as uniform across the
entire sensor range and in range-specific bins for the active sensors.

5.4. ANEES

The normalized estimation error squared (NEES) is a measure of
statistical consistency. The tracking output can be said to be statistically
consistent if the state errors are accurately described. NEES evaluates
the relationship between the state error and the estimate covariance
matrix according to

NEES𝑘 = �̄�𝑖𝐏−1
𝑖 �̄�𝑖 (27)

Taking the average of this across all time-steps yields the Average NEES
(ANEES), which is chi-squared distributed. We report both the total
ANEES for all states as well as the position-only ANEES.

ANEES =
𝑛
∑

𝑘=1
NEES𝑘 (28)

This allows us to calculate a confidence interval for the ANEES.
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5.5. Establishment length

Rapid track establishment is a desirable property allowing for in-
creased safety when operating in environments where targets can ap-
pear close to the vessel. Track establishment occurs once a target is first
associated with a track. We report the mean track establishment time
from scenario start across all datasets.

5.6. Track breaks

This performance measure evaluates the tracking system’s ability to
keep tracks alive for valid targets. Certain situations, such as obscure-
ment by larger vessels, might result in several sensor scans where the
track receives no measurement associations. Track management could
then be led to believe the track is false and remove it, resulting in a
track break. We report both the total number of track breaks occurring
as well as the length of the track breaks.

5.7. False tracks

False tracks are tracks that do not originate from valid targets
but from false alarms. These are undesirable for several reasons, they
increase the computational complexity of the tracking problem, they
could interfere in the path-planning and collision avoidance parts of
an autonomy system and they might prevent valid tracks from forming
in their neighborhood. We report both the total number of false tracks
as well as their cumulative length.

5.8. GOSPA

The General Optimal Subpattern Assignment (GOSPA) is a metric
that evaluates multiple aspects of the tracking output taking into ac-
count localization errors, false tracks and missed targets. Defining the
set of tracks at time k as 𝐗𝑘 = [𝐱1𝑘,… 𝐱𝑚𝑘 ] and the set of truths as
𝐘𝑘 = [𝐲1𝑘,… 𝐲𝑛𝑘] the GOSPA metric is given by

GOSPA =

(

min
𝜋∈

∏

𝑛

𝑚
∑

𝑖=1
𝑑(𝑐)(𝐱𝑖𝑘, 𝐲

𝜋(𝑖)
𝑘 )𝑝 + 𝑐𝑝

𝛼
(𝑛 − 𝑚)

)
1
𝑝

(29)

where ∏

𝑛 is the set of all permutations of {1,… , 𝑛}. 𝑑(𝑥, 𝑦) is a metric
for track-truth distance and 𝑑(𝑐)(𝑥, 𝑦) = min(𝑑(𝑥, 𝑦), 𝑐) the distance cut-
off given by the parameter c. In this work we use the unlabeled GOSPA
with a Cartesian distance cut-off parameter of 20 m to match the
track-truth assignment threshold used in other metrics. The rest of the
parameters are set to 𝛼 = 𝑝 = 2.

6. Datasets

Large amounts of sensor data were recorded over two days in
two distinct maritime environments using the sensor systems onboard
milliAmpere. In each environment, reference targets performed various
maneuvers designed to test both the sensing and detection system as
well as the tracking system in scenarios including challenges such as
merged measurements, Fig. 6, and target obscuration, Fig. 5.

6.1. Environments

Two distinct environments were used in the data recording. Envi-
ronment 1 consists of a large area outside Brattørkaia in Trondheim,
Norway. This environment allows for large distances between the
targets and the ASV and is similar to the coastal environments larger
autonomous surface vehicles are expected to operate in. Reference tar-
gets can also operate at greater speeds and perform longer maneuvers
compared to environment 2. These ranges challenge the long-range
performance of the sensing system and might necessitate a greater
7

Fig. 5. Negative detection of Havfruen during obscuration behind target Gunnerus.
Radar point cloud is given by pink squares, lidar point cloud by colored squares.
Blue lines are used for lidar cluster visualization, red lines for radar clusters. Ownship
location is given by red square to the right and target ground truth by the black circles.

Fig. 6. Radar point cloud showing merged measurements. Target range to milliAmpere
is 150 m.

reliance on the radar due to a more limited sensing range from the
other sensors.

Environment 2 is situated in the channel between Brattøra and the
city center in Trondheim. This is an urban environment lined with
buildings and docks for leisure crafts providing returns for both the
active and passive sensors. As the position of these features can be
dynamic the land maps used to process active sensor data might not
cover them resulting in a greater chance of false alarms. Processing of
passive sensor detections to remove docked boats is not performed due
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Fig. 7. Experimental area. Green polygon shows environment 1, red polygon
environment 2. Map data is provided by the Norwegian Mapping Authority
(©Kartverket).

Table 1
Target information.

Havfruen Gunnerus Jetboat

Length 7.3 m 31.3 m 7.4 m
Width 2.8 m 9.6 m 2.9 m
GNSS Ellipse-D ZED-F9P as done in Vasstein (2021)

to a lack of range information. Both speed and maneuverability are
reduced compared to environment 1, however, targets can appear at
much shorter ranges and typically operate at much closer distances in-
troducing different challenges for ASVs. Both environments are shown
in Fig. 7.

6.2. Reference targets

A total of three reference targets were employed during the collec-
tion of this dataset. Two targets were only used in a single environment
each while one was used in both. All reference targets were equipped
with 1 pair of high-precision Global Navigation Satellite System (GNSS)
receivers as shown in Table 1. Gunnerus and Jetboat were equipped with
GNSS receivers from Vasstein (2021). We later used post-processed
kinematics from the open source library (RTKLIB, 2020) to refine
precision and accuracy in this data. Havfruen was equipped with an
SBG Systems Ellipse-D GNSS receiver.

6.2.1. Havfruen
Havfruen is a medium-sized leisure craft owned by the Mannhullet

student association at NTNU. Due to its size and engine power, Havfruen
is capable of rapid maneuvers at high speed putting greater emphasis on
the motion model selection and tuning in the tracking system. Havfruen
was used in both environments and is shown in Fig. 8.

6.2.2. Gunnerus
R/V Gunnerus is an ocean-going research vessel owned by NTNU and

was used as a reference target in environment 1. Compared to Havfruen,
Gunnerus is both slower and less maneuverable due to its far greater
size (cf. Table 1), it is however more representative of vessels a larger
8

Fig. 8. Havfruen in environment 2.

Fig. 9. Gunnerus with Havfruen in the background in environment 1.

ASV might encounter while underways. Due to its size, Gunnerus casts
a large sensor shadow area where other targets will not be detected as
Gunnerus is obscuring them. This is particularly challenging for smaller
targets operating at high speeds. Depending on the position of the
ASV and the targets the ASV might only have seconds to detect and
react to a possible collision putting a greater emphasis on rapid track
establishment. Gunnerus is shown in Fig. 9.

6.2.3. Jetboat
The final reference target used in environment 2 is a water jetboat

designed for professional use. Its low cross-sectional area challenges the
detection system and could allow it to hide behind larger objects and
docks in the channel at range. This target is shown in Fig. 10.

6.3. Environment 1

Data recording in this environment took place on the 4th of May
2021 from 09:44 to 13:41 in partially cloudy weather. 12 scenarios
were recorded, however insufficient ground truth coverage meant sev-
eral datasets had to be discarded, see Table 2 for an overview of ground
truth coverage.

6.3.1. Scenario 2
In this scenario, Havfruen starts to the east while Gunnerus starts

to the west. The targets perform a crossing maneuver in front of
milliAmpere where Havfruen travels behind Gunnerus relative to mil-
liAmpere. Challenges in this dataset include track merging, merged
measurements, track continuation as well as target obscuration. A
visualization is shown in Fig. 11.
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Fig. 10. Jetboat in environment 2.

Table 2
Available data from GNNS receivers for environment 1. Red: not
available, green: available.

GNNS ground truth coverage
Scenario milliAmpere Havfruen Gunnerus

Left Right Front Back Front Back
1
2
3
4
5
6
7
8
9
10
11
12

Fig. 11. Scenario 2. Circles signify starting positions, stars end positions.

.3.2. Scenario 3
In scenario 3 Havfruen start to the north of Gunnerus. Gunnerus holds

relatively steady course southwest while Havfruen maneuvers around
unnerus, passing to the south. Parts of this maneuver take place in

he sensor shadow of Gunnerus, challenging the ability of the tracking
ystem to both predict and keep alive obscured targets. A visualization
s shown in Fig. 12.

.3.3. Scenario 4
Both targets start west of milliAmpere traveling towards it side by
9

ide. Close to milliAmpere Gunnerus performs a maneuver to the north f
Fig. 12. Scenario 3. Circles signify starting positions, stars end positions.

Fig. 13. Scenario 4. Circles signify starting positions, stars end positions.

hile Havfruen continues on its original course. Challenges in this
cenario include target maneuvers and merged radar measurements. A
isualization is shown in Fig. 13.

.3.4. Scenario 5
This scenario includes a high-speed overtake from Havfruen in the

ensor shadow of Gunnerus. Both targets start north of milliAmpere
o the east with Havfruen behind Gunnerus. Obscuration and track
anagement are the main challenges in this dataset. A visualization

s shown in Fig. 14.

.3.5. Scenario 6
Havfruen starts behind Gunnerus with both targets situated westward

f milliAmpere. Gunnerus and Havfruen both travel towards milliAmpere
ith Havfruen directly behind Gunnerus in its sensor shadow. Closer

o milliAmpere Gunnerus maneuvers northwards revealing Havfruen.
hallenges include obscuration and track establishment. A visualization

s shown in Fig. 15.

.4. Environment 2

Data recording in this environment took place on the following day,
he 5th of May 2021 from 10:52 to 11:57 in partially cloudy weather.
imilar ground truth persisted in this environment as well, see Table 3

or a complete overview.
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Fig. 14. Scenario 5. Circles signify starting positions, stars end positions.

Fig. 15. Scenario 6. Circles signify starting positions, stars end positions.

Table 3
Available data from GNNS receivers for environment 2. Red: not
available, green: available.

GNNS ground truth coverage

Scenario milliAmpere Havfruen Jetboat
Left Right Front Back Front Back

13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

6.4.1. Scenario 13
This scenario represents a common scenario in the channel with tar-

gets approaching milliAmpere from each side. milliAmpere is docked to
10

the south which initially obscures both targets due to the surrounding
Fig. 16. Scenario 13. Circles signify starting positions, stars end positions.

Fig. 17. Scenario 16. Circles signify starting positions, stars end positions.

buildings. Rapid track establishment is a key part of this scenario. A
visualization is shown in Fig. 16.

6.4.2. Scenario 16
In this scenario, we repeat the situation from scenario 13 but with

milliAmpere stationary in the middle of the channel. This removes most
of the obscurations from scenario 13 maximizing the detection range
of the sensing system. Both targets travel directly towards milliAmpere
and eventually maneuver around it. A visualization is shown in Fig. 17.

6.4.3. Scenario 17
Both targets approach milliAmpere from the east traveling side by

side. This introduces the potential for merged measurements in the
radar which could be mitigated by introducing additional sensors. A
visualization is shown in Fig. 18.

6.4.4. Scenario 22
This scenario includes a channel crossing from milliAmpere starting

north. Both targets start east and travel westward side by side. Near
milliAmpere one target breaks off to the north continuing under the
bridge. Track merging and track continuation are relevant challenges
in this scenario as well as accurate tracking of target maneuvers. A

visualization is shown in Fig. 19.
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Fig. 18. Scenario 17. Circles signify starting positions, stars end positions.

Fig. 19. Scenario 22. Circles signify starting positions, stars end positions.

7. Results

Based on the automatic evaluation system and performance mea-
sures presented in Section 5 we evaluate the performance of the sensing
and tracking system based on the presented datasets. We evaluate
scenarios from each environment separately to highlight the effect the
surrounding area has on performance.

7.1. Sensing system

In terms of detection probability (𝑃𝐷, cf. Fig. 20), we observe that
the radar is supreme in environment 1 as expected. In more open
coastal areas the radar has few challenges, especially for larger targets
such as those used here. In more adverse conditions rain and sea clutter
might require higher degrees of filtering, potentially removing weaker
radar returns from smaller or less visible targets, however, this was not
required for these datasets. Relative to the other sensors the radar is
equal or leading across all ranges in detection probability, providing
reliable detection out to a range of 300 m. After this detections are
still present but less reliable. The lidar has a near-uniform high detec-
tion probability within its range but drops to zero outside this. One
interesting observation is that the detection range of the lidar exceeds
the manufacturer specified max range possibly owing to the size of the
targets.
11
Fig. 20. Detection probability, environment 1.

Fig. 21. Active sensor false alarm intensities, environment 1.

Both active sensors also show near-identical sensor noise in range
and bearing (cf. Table 4). We observed some cases of merged measure-
ments from the radar when the targets were moving close to each other.
This might be explained by the relatively large beamwidth of the radar
and would have an adverse effect on the bearing performance of the
radar. False alarm intensity (cf. Fig. 21) is higher for the lidar which
exhibits a tendency to generate false alarms from target wakes. In more
challenging conditions with higher sea states and/or precipitation, this
is expected to change. RMS position error is slightly lower for the radar
but not significantly so.

The imaging sensors also exhibit similar behavior in terms of de-
tection probability. For both sensors, it remains near-constant before
dropping off sharply. At more extreme ranges we see that the detection
probabilities converge, however, at every other range, the EO cameras
perform better. Similar error dynamics are also observed for both
cameras. The sensor noise is near identical for both sensors, the same
is the RMS error. False detections are less of an issue with the infrared
cameras but the false alarm intensity is still very equal.

In environment 2 (cf. Fig. 22), the radar detection probability shows
some degradation compared to environment 1. Urban environments
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Table 4
Detection performance, environment 1. R is the diagonal elements of the sensor noise
matrix (covariance). Radar/Lidar noise is in polar coordinates, RMSE in Cartesian
coordinates. EO/IR is defined in bearings. Detection probability is the non-zero average
across all ranges.

Radar Lidar EO IR

R
[

27.54
0.0060

] [

33.78
0.0054

]

0.0015 0.0018

RMSE 8.65 8.82 0.064 0.083
𝜆 4.13e−6 1.42e−5 0.1658 0.1583
𝑃𝐷 0.76 0.92 0.51 0.55

are especially challenging for the radar due to the effects of multipath
propagation and clutter returns from buildings and objects (Tahmoush
et al., 2012). These can also obscure the targets rendering them unob-
servable for the sensor. Lidar performance is also degraded at longer
ranges, however, this might be explained by the reduction in target
size from environment 1 to environment 2. At closer ranges (0-75 m)
performance is near identical.

In addition to detection probability, we also observe performance
changes in terms of detection accuracy in the urban environment.
Sensor noise covariance is significantly reduced for both active sensors
and we also observe a reduction in the RMS position error of the
measurements, Table 5. For the radar, this might be explained by a
reduction in merged measurements. For the lidar, the reduction in
target size could have contributed positively as long-range detections of
targets heading towards or away from milliAmpere tend to only contain
a few points along the front or back of the vessel yielding large position
errors for targets like Gunnerus. False alarm intensity is still low and
while the lidar outperforms the radar overall we observe that the two
sensors are very closely matched (cf. Fig. 23). Aggressive land filtering
was applied to achieve this result. However, due to the dynamic nature
of the environment land maps might require frequent updates or a more
SLAM-like solution with dynamic map updates if these results are to be
maintained.

At shorter ranges, up to 100 m, the detection probability of the
EO cameras is somewhat improved relative to the coastal environment.
Challenging lighting conditions in environment 1 might explain some
of this improvement. Environment 1 had partial cloud coverage with
intermittent sunshine and the dynamic range of the lighting was there-
fore quite large. Underexposure was experienced in some images which
might have impacted the detection probability. At ranges exceeding
100 m detection probability degrades in the urban environment, possi-
bly due to increased background complexity in the images or reduced
target sizes. Infrared performance degraded significantly, in environ-
ment 1 the detection probability hovered around 0.6 up to 200 m range.
In environment 2 detection probability is higher at the very shortest
ranges but rapidly degrades to below 0.5 at ranges greater than 50 m.
Some of this might be corrected with further training, however manual
inspection of the infrared images revealed that separating a valid target
from the background was a significant challenge at longer ranges.

In contrast with the active sensors, we observe increased sensor
noise for both imaging sensors. Compared to environment 1, the in-
frared cameras now exhibit lower sensor noise than the EO cameras
as well as a false alarm intensity one order of magnitude smaller.
Combined with the low detection probability it is likely that both are
caused by a significant reduction in detections, both valid and false
alarms, from the IR pipeline. Readers should be aware that many of
the camera measurements classified as false alarms originate from the
many docked vessels in environment 2. The active sensor pipelines
filter these out using extended land maps, the same methods cannot
be applied to the bearing detections of the cameras due to a lack of
range information.
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Table 5
Detection performance, environment 2. R is the diagonal elements of the sensor noise
matrix (covariance). Radar/Lidar noise is in polar coordinates, RMSE in Cartesian
coordinates. EO/IR is defined in bearings. Detection probability is the non-zero average
across all ranges.

Radar Lidar EO IR

R
[

12.09
0.0031

] [

3.79
0.0024

]

0.0029 0.0025

RMSE 4.43 2.79 0.085 0.072
𝜆 1.89e−5 4.77e−6 2.1387 0.8229
𝑃𝐷 0.70 0.75 0.78 0.32

Fig. 22. Detection probability, environment 2.

Fig. 23. Active sensor false alarm intensities, environment 2.

.2. Tracking system

While detection performance plays a key part in the performance
f a situational awareness system it is the tracking process that yields
he actual state estimates of other targets. In this section, we present
he tracking performance of a selection of sensor combinations for each
ndividual environment.
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7.2.1. Tuning parameters
The detection performance evaluation provides many of the re-

quired tuning parameters of the tracking system with the notable
exception of the process noise of the target motion model. This pa-
rameter was tuned on scenario 2 using radar measurements against
the ANEES performance measure. Some changes were required in the
camera sensor noise covariances to improve statistical consistency. The
rest of the parameters were also tuned on this dataset to minimize track
breaks. The final tuning parameters are presented in Appendix.

7.2.2. Environment 1
The detection performance of the various sensors is well reflected

in the tracking performance as seen in Table 6. Based on the long-
range detection performance of the radar versus the lidar one would
expect the radar to establish tracks faster, as most targets are situated
outside the lidar detection range when the various scenarios start.
As expected the tracking results reveal this is true with the average
lidar track establishment length being almost five times longer. Radar
establishment lengths could be even shorter, the presence of merged
measurements at the start of scenario 4, shown in Fig. 6, and target
obscuration in scenario 6, drastically impacts the establishment lengths
of the radar. Removing these scenarios from the evaluation reduces the
establishment length of the radar to only 2.2 s which is equivalent to
two scans. Position RMS errors are also close to the sensor evaluation
with the lidar slightly trailing the radar for Gunnerus. Due to target
obscuration in scenario 2 the Havfruen track coalesces on Gunnerus,
inflating the RMS position error for this target for radar-only tracking.
Reducing the process noise to 0.5 eliminates this and yields a position
RMS error for Havfruen of only 10.80 m. This does however inflate
ANEES, reducing statistical consistency. Track breaks are far shorter
with the radar due to its long-range detection performance. Both sen-
sors struggle slightly with underestimating the error covariance leading
to reduced statistical consistency, however, the radar is closer to the
expected value. In terms of GOSPA, the lidar has a slight lead which
might be explained by fewer and shorter false tracks.

Introducing sensor fusion yields several performance benefits. Fus-
ing radar and lidar improves RMS position error compared to radar
only tracking for both targets. Compared to lidar only tracking Havfruen
experiences a minor reduction in position accuracy while Gunnerus
improves. Track break lengths are also marginally worse compared to
radar-only tracking but still much better than lidar-only tracking. If
different target vessels with less radar reflectivity such as kayaks are
used, the effects of radar–lidar fusion are expected to provide greater
performance benefits.

When fused with lidar the passive EO cameras introduce an im-
provement in track breaks as well as positioning accuracy at the cost of
some statistical consistency. When fused with radar measurements we
observe a degradation in position accuracy for Havfruen while Gunnerus
remains similar, possibly due to Gunnerus having a larger detection
probability due to its size. Track breaks are also significantly longer but
still better than lidar-only tracking. Fusing both active sensors with one
or more passive sensors does not produce any significant benefits across
most performance measures. The introduction of the infrared cameras
does however lead to a large increase in position error for the Havfruen
target. The cause of this is a series of missed detections from Havfruen
in both scenarios 2 and 5 which results in both tracks coalescing on
Gunnerus, massively increasing the position error of the track associated
with Havfruen. An illustration of this is shown in Fig. 24.

When it comes to false tracks the radar has a much larger problem
than the lidar. While the difference in the number of false tracks is
fairly low, 7 and 27, the length of the false tracks is 10 times longer
for the radar. This suggests that the lidar false tracks are introduced
by transient false alarms while the radar false tracks originate in mea-
surements that are consistently present such as land or sea markings.
Fusing multiple sensors does seem to provide a benefit in reducing the
length of false tracks as false alarms in one type of sensor are unlikely
to be present in other types of sensors. This would reduce the existence
probability of any false track leading to earlier track death.
13
Fig. 24. Track coalescence on Gunnerus, scenario 5.

Table 6
Tracking performance, environment 1. Due to space constraints units
have been excluded. Establishment lengths (Est.L), false track lengths
(F.T.L) and break lengths (Break.L) are in seconds while position RMS
error (posRMSE) is reported in meters per target. GOSPA is reported
as RMS.
Sensors Est.L Break.L posRMSE GOSPA ANEES

L 47.0 83.7 13.98;11.06 17.43 8.43
R 11.2 8.4 29.28;8.92 20.05 5.65
L,R 11.9 10.0 15.97;8.26 18.58 7.72
L,EO 47.6 63.4 10.57;10.96 16.81 11.04
R,EO 12.8 37.2 49.80;9.60 19.41 8.45
L,R,EO 12.1 32.8 85.58;9.91 18.65 9.82
L,R,IR,EO 12.2 86.3 38.91;9.43 20.37 15.84

Sensors Num. false tracks False track length

L 7 61.5
L,R 42 510.9
L,R,EO 75 414.7
L,R,IR,EO 73 402.5

7.2.3. Environment 2
In the urban environment (cf. Table 7), we observe several changes

in the tracking performance for the various sensors. Both sensors have
significantly reduced position errors, possibly due to reduced target
sizes, and the radar also has better statistical consistency. Track break
length for the radar has increased by an order of magnitude highlight-
ing the challenges of radar tracking in urban environments. The lidar
switches from underestimating the error covariance to overestimating
it, an outcome that was expected based on the sensor performance
evaluation. Track establishment lengths remain similar for both active
sensors compared to environment 1.

False tracks are a much greater issue in this environment for the
radar. While the number of false tracks remains similar their length
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Fig. 25. Track divergence due to EO detections from docked boats.

is nearly doubled indicating that most tracks originate from persistent
returns such as docked boats falling outside the land map used for filter-
ing. This is also reflected in the GOSPA metric, despite the improvement
in position errors GOSPA is worse compared to environment 1 due to
track breaks and false tracks. Lidar false tracks remain similar across
both environments leading to an improved GOSPA score due to reduced
positioning errors.

Introducing sensor fusion yields some unexpected results. Lidar–
radar fusion has a negligible effect on establishment length and position
accuracy, however, track breaks are far longer than each individual
sensor. This is most likely due to the tuning parameters originating from
the sensor evaluation in environment 1 where the lidar had greater
long-range performance due to target sizes. In environment 2 the
tracker expects the lidar to perform similarly, reliably detecting targets
out to ranges of 150 m. In reality, a sharp performance drop occurs after
100 m which can lead to premature track death. Fusing passive sensors
with lidar does yield a moderate reduction in track breaks at the cost of
some position accuracy, however, statistical consistency is improved. If
radar is added tracking performance degrades significantly across many
metrics. One potential explanation is that the high update frequency
of the cameras compared to the radar allows detections from docked
boats along the channel to capture valid tracks causing them to diverge
from the actual target (cf. Fig. 25). As track-truth associations are
only broken when the original track is either dead or a new track has
been assigned to the truth, this would lead to a significant increase in
position errors. Passive fusion also has a negative effect on false tracks.
Due to the ambiguity of bearing measurements and the large number of
false alarms most false tracks will experience increased measurement
association thus keeping them alive for longer periods of time. This
is also reflected in GOSPA which is higher for all combinations of
active–passive fusion compared to active-only tracking.

8. Discussion and future work

The performance evaluation of this work points to several potential
performance improvements. Detection performance is adequate for
most sensors in terms of detection probability, however, improvements
are possible for the IR cameras, especially in urban environments.
Additional improvements could also be made to the handling of false
detections for the imaging sensors. This is especially visible in environ-
ment 2 where tracking performance degrades significantly compared to
environment 1. While this environment is towards the more extreme
in terms of detections from docked boats it does well in highlighting
the need for detection filtering for imaging sensors as well. Applying
georeferencing (Helgesen et al., 2020) to estimate ranges is a possible
solution, allowing the land filtering used for the active sensors to be
applied to the cameras as well.

Stationary clutter measurements are not a passive sensor exclusive
issue. In environment 1 the land returns from the radar will in certain
14
Table 7
Tracking performance, environment 2. Due to space constraints units
have been excluded. Establishment lengths (Est.L) and break lengths
(Break.L) are in seconds while position RMS error (posRMSE) is
reported in meters per target. GOSPA is reported as RMS.
Sensors Est.L Break.L posRMSE GOSPA ANEES

L 44.3 76.2 4.49;4.68 15.97 1.34
R 11.8 95.7 9.68;6.94 25.97 4.69
L.R 11.1 188.7 8.22;4.58 24.00 1.83
L,EO 56.2 45.3 20.7;14.75 17.45 4.76
R,EO 13.8 68.0 37.73;75.23 32.1 28.28
L,R,EO 17.4 111.3 30.44;29.93 31.01 12.96
L,R,IR,EO 23.8 200.2 83.53;50.49 30.97 51.90

Sensors Num. False Tracks False Track Length

L 11 47.4
R 28 1026.8
L,R 59 806.13
L,EO 8 117.11
R,EO 66 1417.7
L,R,EO 70 1591.5
L,R,IR,EO 131 2244.7

Table 8
Sensor tuning parameters. R is given as the diagonal
elements of the covariance matrix, active sensors in
polar coordinates and passive sensors as bearings.
Active sensor false alarm intensities are given in the
table below.

R 𝜆

Lidar [33.7763, 0.0054] N/A
Radar [27.5351, 0.0060] N/A
EO 0.0203 0.17
IR 0.0288 0.16

Table 9
Range dependent false alarm intensities (𝜆).

Lidar Radar

0 m–49 m 4.39e−5 1.81e−5
50 m–99 m 1.06e−5 1.78e−6
100 m–149 m 8.16e−6 1.73e−6
150 m–199 m 0 2.53e−6
200 m–249 m 0 3.27e−6
250 m–299 m 0 3.46e−6
300 m–349 m 0 3.36e−6
349 m–399 m 0 3.96e−6

places extend into the water as seen in Fig. 4. Due to these measure-
ments falling in areas with potential targets a trade-off has to be made
between long-range false tracks and the detection of potential targets.
At closer ranges, these measurements disappear possibly necessitating a
dynamic land map or discarding measurements outside a certain range
threshold. For more maneuverable ASVs this could be a valid option as
most targets can be avoided at shorter notice.

In a tracking context, these measurements are also an issue as
they violate the assumptions of the clutter model which assumes all
clutter measurements are independent. Changing the clutter model
to account for this is another possible solution, this might however
require prior knowledge of the operating area to accurately model
clutter densities. Another avenue of research is to introduce sensor-
specific observability probabilities to complement the range-dependent
detection probabilities.

Several improvements to how the track management system inter-
acts with multiple sensors are also possible. With the current method
of track initialization, a target requires two consecutive measurements
from the same active sensor. Allowing tracks to be confirmed by
multiple sensors could yield faster track establishment, especially if
passive sensors are also included.

Recordings from the GNSS receivers (cf. Tables 4 and 5) proved

to be a challenge due to several reasons. The manpower required to
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Table 10
Range dependent detection probabilities.

Lidar Radar EO IR

0 m–49 m 0.99 0.99 0.77 0.64
50 m–99 m 0.96 0.93 0.77 0.54
100 m–149 m 0.79 0.91 0.86 0.63
150 m–199 m 0 0.90 0.66 0.61
200 m–249 m 0 0.66 0.32 0.28
250 m–299 m 0 0.68 0.13 0.33
300 m–349 m 0 0.47 0.36 0
349 m–399 m 0 0.5 0 0

Table 11
JIPDA tuning parameters.
𝜎𝑎 1.5 Process noise
g 3 Gate size
𝜂0 0.5 Init. exi. prob.
𝜖0 1 Init. obs. prob.
𝑇𝑐𝑜𝑛𝑓 0.8 Track confirmation threshold
𝑇𝑟 0.25 Track termination threshold

𝐅𝜂
[

0.99 0.01
0 1

]

Exi. transition matrix

𝐅𝜖
[

0.9 0.1
0.48 0.52

]

Obs. transition matrix

𝐯𝑚𝑎𝑥 10 m/s Track init. max speed

simply conduct the experiments meant no personnel could be dedicated
to monitoring the GNSS equipment during recordings. A mix of pro-
prietary and open-source receivers made it impossible to create any
common remote monitoring or error system to alert the participants
of record failures. The use of redundant receivers on 29 scenarios did
give decent scenario coverage in the end. It is suggested that future
experiments should include a remotely operated system for monitoring
the status of the individual receivers. This would lead to better scenario
coverage, the possibility for estimating precise heading and give a basic
sensor validation for the ground truth data.

9. Conclusion

In this work, we have presented an open dataset for maritime track-
ing with four heterogeneous sensors across two distinct environments
and evaluated a complete detection and tracking system on this data.
Several detection issues were uncovered, such as merged measurements
and sensor shadowing. Both general and multi-sensor specific tracking
issues were found such as stationary clutter measurements and differing
detection ranges requiring range-specific detection probabilities. The
performance evaluation of both the detection and tracking system also
revealed several environment-specific issues that could be mitigated
by introducing multiple types of sensors, either individually or in
fusion, and that sensor fusion provided several performance benefits
for tracking.
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