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On evaluation metrics for medical 
applications of artificial intelligence
Steven A. Hicks1,2*, Inga Strümke1, Vajira Thambawita1,2, Malek Hammou1, 
Michael A. Riegler1, Pål Halvorsen1,2 & Sravanthi Parasa3

Clinicians and software developers need to understand how proposed machine learning (ML) models 
could improve patient care. No single metric captures all the desirable properties of a model, which is 
why several metrics are typically reported to summarize a model’s performance. Unfortunately, these 
measures are not easily understandable by many clinicians. Moreover, comparison of models across 
studies in an objective manner is challenging, and no tool exists to compare models using the same 
performance metrics. This paper looks at previous ML studies done in gastroenterology, provides an 
explanation of what different metrics mean in the context of binary classification in the presented 
studies, and gives a thorough explanation of how different metrics should be interpreted. We also 
release an open source web-based tool that may be used to aid in calculating the most relevant 
metrics presented in this paper so that other researchers and clinicians may easily incorporate them 
into their research.

Improving healthcare applications and supporting decision-making for medical professionals using methods 
from Artificial Intelligence (AI), specifically Machine Learning (ML), is a rapidly developing field with numer-
ous retrospective studies being published every week. We observe an increasing number of prospective studies 
involving large multi-center clinical trials testing ML systems’ suitability for clinical use. The technical and meth-
odological maturity of the different areas varies, radiology and dermatology being examples of the more advanced 
 fields1. In addition to these two examples, we observe a recent surge of studies in the field of  gastroenterology2. 
The use of ML in gastroenterology is expected to significantly improve detection and characterization of colon 
polyps and other precancerous lesions of the Gastrointestinal (GI)  tract3. These potential advances are mainly 
expected from artificial neural networks, specifically deep learning-based  methods4. Currently, the most com-
mon applications of ML in GI are image classification (binary and multi-class)5,6,  detection7, and  segmentation8. 
For the purpose of the present study, we focus on binary classification as an initial step of covering the com-
mon metrics in medical applications of AI. Safe and efficient adoption of ML tools in clinical gastroenterology 
requires a thorough understanding of the performance metrics of the resulting models and confirmation of 
their clinical  utility9. Therefore, the present study focuses on the current development of binary classification 
models in gastroenterology due to its timeliness and relevance. However, our discussions, recommendations, 
and proposed tool are valid and useful in every clinical field adopting and employing ML-based systems for 
binary classification tasks.

Creating strong evidence for the usefulness of ML models in clinical settings is an involved process. In addi-
tion to the relevant epidemiological principles, it requires a thorough understanding of the properties of the 
model itself and its performance. However, despite increased interest in ML as a medical tool, understanding of 
how such models work and how to aptly evaluate them using different metrics is widely lacking. In this article, 
we use examples of metrics and evaluations drawn from a variety of peer-reviewed and published studies in 
gastroenterology to provide a guide explaining different binary classification evaluation metrics, including how 
to interpret them. Note that we do not discuss the quality of these studies, but merely use them to discuss how 
different metrics give different interpretations of the quality of an ML model.

The main contributions are: We present a detailed discussion on metrics commonly used for evaluating binary 
ML classifiers, examine existing research using binary ML in gastroenterology along with reported metrics, and 
we discuss the different metrics’ interpretations, usefulness, and shortcomings. To this end, we recalculate the 
reported metrics and calculate additional ones to further analyze the performance of the presented methods. 
Additionally, we present a web-based open source tool intended to let researchers perform metrics calculations 
easily, both for their own and other reported results to allow for comparison.
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Model evaluation procedure. Model development is typically split into three phases. First, the model is 
trained on a training dataset appropriate for the given task. Second, during training, the model is continuously 
validated on data that is not part of the training data to evaluate the model’s performance on unseen data. Last, 
after the model has finished training, it is tested on a test dataset for which the final metrics should be calculated. 
Regardless of which metric is used, this can only be as informative as the classifier’s performance on the test 
data. Blinding data, i.e., withholding data from those performing the experiment, is an important tool in many 
research fields, such as medicine. In some experiment types, it is difficult to achieve blinding, but the analysis in 
a setting where the data has already been collected can almost always be blinded. Misconceptions regarding the 
objectivity of statistical analysis should not keep researchers from blinding the  data10. For ML analyses, such as 
the ones described in the present work, this means that one should set aside representative data that can be used 
for testing after the training and tuning processes are finished.

Metrics. Binary classification problems can be expressed in terms of a mixture model, the total data distribu-
tion modeled as

where X represents data samples, pP/N denotes the positive/negative class distributions, and α the mixture 
parameter of the positive class, calculated as α = NP

NP+NN
 , with NP/N the total number of positive/negative class 

data samples. Studies in which the classification threshold of model outputs are tuned using a class imbalanced 
dataset, should investigate how these perform on other class admixtures. This is an important step to assess 
whether bias towards either class has been introduced and to what extent. The relevant quantities for calculating 
the metrics for a binary classifier are the four entries in the confusion matrix

which are introduced below. Some metrics have different interpretations in the context of evaluating multi-class 
classification methods. Although these discussions fall outside the scope of the present one, the underlying 
principles still apply in multi-class settings. Furthermore, some methods have their metrics calculated on a per-
finding basis, meaning there can be multiple instances for one image, and hence more positive samples than total 
samples (e.g., images or videos) in a dataset.

True positive (TP). The true positive denotes the number of correctly classified positive samples. For example, 
the number of frames containing a polyp is correctly predicted as having a polyp.

True negative (TN). The true negative denotes the number of correctly classified negative samples. For exam-
ple, the number of frames not containing a polyp is correctly predicted as not having a polyp.

False positive (FP). The false positive denotes the number of samples incorrectly classified as positive. For 
example, the number of frames not containing a polyp is incorrectly predicted as having a polyp.

False negative (FN). The false negatives denotes the number of samples incorrectly classified as negative. For 
example, the number of frames containing a polyp is incorrectly predicted as not having a polyp.

Accuracy (ACC). The accuracy is the ratio between the correctly classified samples and the total number of 
samples in the evaluation dataset. This metric is among the most commonly used in applications of ML in medi-
cine, but is also known for being misleading in the case of different class proportions since simply assigning all 
samples to the prevalent class is an easy way of achieving high accuracy. The accuracy is bounded to [0, 1], where 
1 represents predicting all positive and negative samples correctly, and 0 represents predicting none of the posi-
tive or negative samples correctly.

Recall (REC). The recall, also known as the sensitivity or True Positive Rate (TPR), denotes the rate of positive 
samples correctly classified, and is calculated as the ratio between correctly classified positive samples and all 
samples assigned to the positive class. The recall is bounded to [0, 1], where 1 represents perfectly predicting the 
positive class, and 0 represents incorrect prediction of all positive class samples. This metric is also regarded as 
being among the most important for medical studies, since it is desired to miss as few positive instances as pos-
sible, which translates to a high recall.

Specificity (SPEC). The specificity is the negative class version of the recall (sensitivity) and denotes the rate of 
negative samples correctly classified. It is calculated as the ratio between correctly classified negative samples and 

(1)p(X,α) = αpP(X)+ (1− α)pN (X),

(2)M =
(

TP FN
FP TN

)

,

(3)ACC =
# correctly classified samples

# all samples
=

TP+ TN

TP+ FP+ TN+ FN

(4)REC =
# true positive samples

# samples classified positive
=

TP

TP+ FN
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all samples classified as negative. The specificity is bounded to [0, 1], where 1 represents perfectly predicting the 
negative class, and 0 represents incorrect prediction of all negative class samples.

Precision (PREC). The precision denotes the proportion of the retrieved samples which are relevant and is 
calculated as the ratio between correctly classified samples and all samples assigned to that class. The precision 
is bounded to [0, 1], where 1 represents all samples in the class correctly predicted, and 0 represents no correct 
predictions in the class.

where C denotes “class”, and can in binary classification be either positive (P) or negative (N). The positive case 
of precision is often referred to as the Positive Predictive Value (PPV) and the negative case is often referred to 
as the Negative Predictive Value (NPV). Specifically, the PPV is the ratio between correctly classified positive 
samples and all samples classified as positive, and equals the precision for the positive class.

The NPV is the ratio between correctly classified negative samples and all samples classified as negative, and 
equals the precision for the negative class.

F1 score (F1). The F1 score is the harmonic mean of precision and recall, meaning that it penalizes extreme 
values of either. This metric is not symmetric between the classes, i.e., it depends on which class is defined as 
positive and negative. For example, in the case of a large positive class and a classifier biased towards this major-
ity, the F1 score, being proportional to TP, would be high. Redefining the class labels so that the negative class is 
the majority and the classifier is biased towards the negative class would result in a low F1 score, although neither 
the data nor the relative class distribution has changed. The F1-score is bounded to [0, 1], where 1 represents 
maximum precision and recall values and 0 represents zero precision and/or recall.

Matthews correlation coefficient (MCC). Pearson’s correlation  coefficient11 takes on a particularly simple form 
in the binary case. This special case has been coined the  MCC12, and become popular in ML settings for its 
favorable properties in cases of imbalanced  classes13. It is essentially a correlation coefficient between the true 
and predicted classes, and achieves a high value only if the classifier obtains good results in all the entries of the 
confusion matrix (Eq. 2). The MCC is bounded to [−1, 1] , where a value of 1 represents a perfect prediction, 0 
random guessing and −1 total disagreement between prediction and observation.

Threat score (TS). The TS, also called the Critical Success Index (CSI), is the ratio between the number of cor-
rectly predicted positive samples against the sum of correctly predicted positive samples and all incorrect predic-
tions. It takes into account both false alarms and missed events in a balanced way, and excludes only the correctly 
predicted negative samples. As such, this metric is well suited for detecting rare events, where the model evalu-
ation should be sensitive to correct classification of rare positive events, and not overwhelmed by many correct 
identifications of negative class instances. The TS is bounded to [0, 1], where 1 represents no false predictions in 
either class, and 0 represents no correctly classified positive samples.

We do not consider the AUROC (Area under the Receiver Operating Characteristic Curve) or AUPRC (Area 
under the Precision Recall Curve) since these cannot be calculated without access to the model, or from the 
entries of the confusion matrix. Extensive research has been done on their usefulness, and we refer the interested 
reader  to14.

(5)SPEC =
# true negative samples

# samples classified negative
=

TN

TN+ FP

(6)PREC =
# samples correctly classified

# samples assigned to class
=

TC

TC+ FC
,

(7)PPV =
# correct positive predictions

# samples classified as positive
=

TP

TP+ FP

(8)NPV =
# correct negative predictions

# samples classified as negative
=

TN

TN+ FN

(9)F1 = 2×
precision× recall

precision+ recall
=

2× TP

2× TP+ FP+ FN

(10)MCC =
TP× TN− FP× FN

√
(TP+ FP)(TP+ FN)(TN+ FP)(TN+ FN)

(11)TS =
# correct positive predictions

# correct positive and all false predictions
=

TP

TP+ FN+ FP
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Methods
In the following, we identify a subset of relevant studies for our analysis. Medical studies presenting ML appli-
cations often refer to them simply as “AI systems”. While AI has certainly received an unprecedented amount 
of attention over the past years, and presenting systems using this term emphasizes their novelty, the term is 
imprecise. Hence, we refrain from using this generic term in the following and instead refer to the exact model 
architecture used.

Study selection. The studies used for this work are chosen based on the following rational considerations. 
Our starting point is a recent review of AI in  gastroenterology15. The review contains 138 articles, from which we 
select five studies that represent existing work using ML in gastroenterology. The selection criteria are as follows 

 (i) Report sufficient information (many studies report so few metrics that it is not possible to calculate other 
metrics) for reproducing the reported metrics and calculating metrics not reported.

 (ii) Represent different cases of interest for performance metrics discussions.

Among the papers that fulfilled the aforementioned criteria, we selected papers that illustrated specific pitfalls 
within binary classification evaluation. In addition, we select a recent study reporting results from a large clini-
cal trial, which was not included in the aforementioned review. The process is visualized in Fig. 1. The following 
contains a brief description of the selected studies and reported metrics.

Study 1. Hassan et al.16 introduce an unspecified “AI system” called GI-Genius to detect polyps, trained and 
validated using 2684 videos from 840 patients collected from white-light endoscopy. All 840 patients are ran-
domly split into two separate datasets, one for training and one for validation. The validation dataset contains 
338 polyps from 105 patients, where 168 of the identified polyps are either adenomas or sessile serrated adeno-
mas. The authors report a sensitivity of 99.7% as the main performance metric, which is calculated from 337 TPs 
out of the total 338 positive samples. From this, readers are likely to conclude that only one FN instance is identi-
fied in the validation set. No other metrics are reported, and while it is reported that each colonoscopy contains 
50,000 frames, no further details are given on the exact number of frames per video.

Study 2. Mossotto et al.17 use several ML models to classify diseases commonly found in the GI tract, using endo-
scopic and histological data. The data consist of 287 patients, from which 178 cases are Crohn’s Disease (CD), 80 
cases are Ulcerative Colitis (UC), and 29 cases are Unclassified Inflammatory Bowel Disease (IBDU). Results are 
shown from unsupervised (clustering) and supervised learning. The latter is used to classify CD and UC patients. 
For this, the data is divided into a model construction set consisting of 210 patients ( CD = 143, UC = 67 ), a 
model validation set of 48 patients ( CD = 35, UC = 13 ), and an IBDU reclassification set containing 29 IBDU 
patients. The model is thus not trained on IBDU data, and the latter dataset is excluded from the present discus-
sion. The model construction set is stratified into a discovery set used to tune the parameters for CD versus UC 
discovery, and one for training and testing. For the best performing supervised model, tested on the test set, an 
accuracy of 82.7% , a precision of 0.91, a recall of 0.83 and an F1 score of 0.87 are reported, see Table 2  in17. On 
the validation set, the reported numbers are an accuracy of 83.3% , a precision of 0.86, a recall of 0.83, and an F1 
score of 0.84, see Table 3  in17. These reported results are also listed in Table 1 under study 2.

Study 3. Byrne et al.18 introduce a Convolutional Neural Network (CNN) to differentiate diminutive adenomas 
from hyperplastic polyps. They define the four classes NICE type 1, NICE type 2, no polyp, and unsuitable. The 
training dataset contains 223 polyp videos, consisting of 60,089 frames in total, with 29% containing hyperplas-
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1
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Figure 1.  A visualization of the study selection process.
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tic polyps, 53% containing adenomas polyps, and 18% containing no polyps. The model is tested on 158 videos, 
and 32 of these are removed due to the reported instances in the videos. Three are sessile serrated polyps, 25 are 
identified as normal tissue or lymphoid aggregate, two are fecal material, one video is corrupted, and two con-
tain multiple polyp frames. The resulting 125 videos are used to evaluate the CNN model again, which is unable 
to confidently identify 19 of the 125 polyps. The 19 videos on which the model does not reach this confidence 
threshold are therefore removed from the test dataset, and the model is evaluated using the remaining 106 vid-
eos. Finally, after this data filtering, the model achieves an accuracy of 94% , a sensitivity of 98% , a specificity of 
83% , a PPV of 90% and an NPV of 97% , see Table 1 under study 3.

Study 4. Wang et al.19 present a near real-time deep learning-based system for detecting colon polyps using 
videos from colonoscopies. The model is trained on data collected from 1290 patients and validated on 27,113 
colonoscopy images from 1138 patients showing at least one detected polyp. It is then tested on a public database 
containing 612 images with  polyps20. As the presented method is able to differentiate between different polyps 
within the same image, there may be more true positives than images in the dataset. This is also the reason why 
the metrics are reported on a per-image basis. The reported results show that the method is highly effective, with 
a per-image-sensitivity of 94.38% and a per-image-specificity of 95.92% . As the metrics are reported separately 
for images containing polyps and those that do not, recalculating the metrics as presented provides an inaccurate 
representation of the model’s actual performance. This is because there are either no true positives or no true 
negatives, depending on the metrics used.

Study 5. Sakai et al.21 propose a CNN-based system to automatically detect gastric cancer in images from colo-
noscopies. The model is trained on a dataset of 172,555 images containing gastric cancer and 176,388 images of 
normal colon. For evaluation, the model is tested on 4653 cancer images and 4997 normal images, on which it 
achieves an accuracy of 87.6% , a sensitivity of 80.0% , a specificity of 94.8% (see Table 1  in21), and a PPV of 93.4% . 
A method capable of distinguishing which regions of an image contain signs of gastric cancer is also presented. 
This method uses a sliding-window approach, where the model predicts the presence of gastric cancer in specific 
regions of the image to generate a block-like heat map covering the afflicted areas. This detection model is tested 
on 926 images, where it achieves an accuracy of 89.9% on cancer images and an accuracy of 70.3% on normal 
images.

Results
In this section, we perform a recalculation of all reported and missing metrics in the selected studies. Based 
on this, we discuss the usefulness of different metrics and how to obtain a realistic and complete picture of the 
performance of a classifier. This is done by extracting reported numbers and metrics from each study and using 
these to calculate additional metrics, which gives additional perspectives on the possible evaluations and could 
lead to different conclusions. In some cases, assumptions must be made in order to calculate metrics or assess 
model performances under different conditions. All assumptions made in this study are detailed in the relevant 
discussions.

The following discussion is structured around each selected study, where we highlight specific pitfalls that 
may arise due to incomplete metrics presentations. This includes a discussion on how precision and recall can 

Table 1.  The reported metrics of the selected studies. The STUDY column represents each of the five studies 
selected for metric recalculation. The SET column is the different metrics calculated for the same set of data. 
The REPORTED column is how the metrics were reported in the respective study. To refer to the tables in each 
respective paper, we use T to refer to the table number and R for the row number. The EVALUATION column 
is the method used to generate the metrics. The TOTAL column is the total number of samples used in the 
metrics calculations. The POS and NEG columns represent the total number of positive and negative samples, 
respectively. The remaining columns correspond the aforementioned metric acronyms described in the main 
text.

STUDY SET REPORTED EVALUATION TOTAL POS NEG TP TN FP FN ACC PREC REC F1 SPEC MCC NPV TS

1 1 In-text Per-finding – 338 – 337 – – 1 – – 1.00 – – – – –

2

1 T2.R1 Per-frame 210 143 67 – – – – 0.71 0.89 0.68 0.75 – – – –

1 T2.R2 Per-frame 210 143 67 – – – – 0.77 0.81 0.88 0.83 – – – –

1 T2.R3 Per-frame 210 143 67 – – – – 0.87 0.91 0.84 0.87 – – – –

2 T3.R1 Per-frame 48 13 35 – – – – – 0.65 0.85 0.73 – – – –

2 T3.R2 Per-frame 48 35 13 – – – – – 0.94 0.83 0.88 – – – –

2 T3.R3 Per-frame – – – – – – – 0.83 0.86 0.83 0.84 – – – –

3 1 T1 Per-frame 106 – – 65 33 7 1 0.94 0.90 0.98 – 0.83 – 0.97 –

4

1 T2.R1 Per-frame 6000 6000 0 5663 0 251 337 – – 0.94 – – – – –

1 T2.R2 Per-frame 1414 1414 0 1296 0 41 118 – – 0.92 – – – – –

1 T2.R3 Per-frame 21,572 0 21,572 0 20,691 1004 0 – NA – – 0.96 – – –

2 T2.R4 Per-frame – – – 570 0 42 76 – 0.88 – – – – – –

3 In-text Per-frame 60,914 – – – – – – – – 0.92 – – – – –

4 In-text Per-frame 1,072,483 0 1,072,483 0 – – 0 – – – – 0.95 – – –

5 1 T1 Per-frame – – – 3723 4735 262 930 0.88 – 0.80 – 0.95 – – –
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give vastly different interpretations depending on the class distribution, how different class admixtures may affect 
model parameter tuning, how the method of testing can affect the final results, interpreting negative and positive 
class performance, and the effect of evaluating classes independently. We also present our freely available online 
tool, which allows medical experts to calculate all presented metrics from classifier predictions, or those which 
can be calculated from a subset of metrics. This can be used for a variety of different usage scenarios, like gaining 
a better understanding of studies using ML classifiers, calculate missing metrics for studies which do not report 
them, to double-check calculations, and to calculate metrics for new studies.

Pitfall 1: precision and recall. To reproduce the results of Study 116, it is necessary to make some assump-
tions. Primarily, no information is given regarding the total number of frames for all videos, but as an average of 
50,000 frames per video is reported, we use this to calculate the total number. Further, we calculate two sets of 
metrics, see Table 2 under study 1. For the first row, we calculate TP = 337, TN = 16,730,662, FP = 169,000, and 
FN = 1 using the same per polyp detection evaluation as Study 1. In the second row, we assume that ten seconds 
around the polyp are either detected correctly or missed with a frame rate of 25 fps. This yields TP = 84,500, 
TN = 16,646,500, FP = 169,000, and FN = 250, which are used in our calculations. FP for both calculations are 
obtained based on the reported 1% FPs per video, i.e., 50,000100 = 500 . These assumptions yield two sets of results 
for the evaluation, which, if considered jointly, give a more thorough understanding of the performance. In any 
case, the reported values are not sufficient for reproducibility without making assumptions.

Assuming the most optimistic case amounts to mixture components of 0.995 and 0.005 for the positive and 
negative classes, respectively, meaning extremely imbalanced classes. The authors report a recall of 99.7% , in 
which case we calculate a precision of 0.33. Clearly, the recall must be interpreted with care in cases of strongly 
imbalanced classes. The reason is that precision and recall are both proportional to TP, but have an inverse 
mutual relationship: High precision requires low FP, so a classifier maximizing precision will return only very 
strong positive predictions, which can result in positive events missed. On the other hand, high recall is achieved 
by assigning more instances to the positive class, to achieve a low FN. Whether to maximize recall or precision 
depends on the application: Is it most important to identify only relevant instances, or to make sure that all 
relevant instances are identified? Regardless of which is the case, this should be clearly stated, and both metrics 
should be reported. The balance between the two has to be based on the medical use case and associated require-
ments. For example, some false alarms are acceptable in cancer detection, since it is crucial to identify all positive 
cases. On the other hand, for the identification of less severe disease with high prevalence, it can be important 
to achieve the highest possible precision. A low precision combined with a high recall implies that the classifier 
is prone to set of false alarms (FPs), which can result in an overwhelming manual workload and time wasted.

Pitfall 2: mixture parameter dependent tuning. In Study 2, Mossotto et al.17 split the model construc-
tion dataset into two subsets of equal size and class distribution, with mixture components 0.68 and 0.32 for the 
two classes CD and UC. One of these subsets is used to tune parameters to maximize CD versus UC classifica-
tion, meaning that the classification task is done with the underlying assumption that the class admixture will 
remain constant. This is trivially true for the training and test data, being the other of the two subsets, but not 
for the validation set, where the corresponding mixture components are 0.73 and 0.27. The authors do not men-
tion the deviation from the tuned admixture, nor do they investigate systematically how much a given deviation 
affects the reported performance metrics. Without access to the resulting model, this cannot be investigated 
further in this article or by other interested readers. Consequently, there is no way of knowing the sensitivity the 
presented method has to the class admixture.

Table 2.  The recalculated metrics of the selected papers. Columns represent the same as described in Table 1.

STUDY SET REPORTED EVALUATION TOTAL POS NEG TP TN FP FN ACC PREC REC F1 SPEC MCC NPV TS

1
1 In-text Per-polyp 16,900,000 338 16,899,662 337 16,730,662 169,000 1 0.99 0.00 1.00 0.00 0.99 0.04 1.00 0.00

1 Calculated Per-frame 16,900,000 84,500 16,815,500 84,500 16,646,500 169,000 250 0.99 0.33 1.00 0.50 0.99 0.57 1.00 0.33

2

1 T2.R1 Per-frame 210 143 67 97 55 12 46 0.71 0.89 0.68 0.77 0.82 0.47 0.55 0.63

1 T2.R2 Per-frame 210 143 67 116 40 27 27 0.77 0.81 0.88 0.81 0.59 0.40 0.59 0.68

1 T2.R3 Per-frame 210 143 67 130 54 13 13 0.87 0.91 0.84 0.91 0.81 0.72 0.81 0.83

2 T3.R1 Per-frame 48 13 35 11 29 6 2 0.84 0.65 0.85 0.74 0.83 0.63 0.94 0.58

2 T3.R2 Per-frame 48 35 13 29 11 2 6 0.84 0.94 0.83 0.88 0.86 0.64 0.65 0.79

2 T3.R3 AVG – – – – – – – 0.84 0.80 0.84 0.81 0.84 0.63 0.79 0.69

2 Calculated WAVG – – – – – – – 0.84 0.86 0.84 0.84 0.85 0.64 0.73 0.73

3 1 T1 Per-frame 106 66 40 65 33 7 1 0.92 0.90 0.98 0.94 0.83 0.84 0.97 0.89

4

1 T2.R1 Per-frame 6000 6000 0 5663 0 251 337 0.94 0.96 0.94 0.95 NA − 0.05 0 0.91

1 T2.R2 Per-frame 1414 1414 0 1296 0 41 118 0.92 0.97 0.92 0.94 NA − 0.05 0 0.89

1 T2.R3 Per-frame 21,572 0 21,695 0 20,691 1004 0 0.95 0 NA 0 0.95 NA 1 0

1 Calculated Combined 27,572 6000 21,695 5663 20,691 1255 337 0.95 0.82 0.94 0.88 0.95 0.84 0.98 0.78

1 Calculated Biased POS 27,572 6000 21,695 6000 0 21,695 0 0.22 0.22 1 0.36 0 NA NA 0.22

1 Calculated Biased NEG 27,572 6000 21,695 0 21,695 0 6000 0.78 NA 0 0 1 NA 0.78 0

2 T2.R4 Per-frame 646 646 42 570 0 42 76 0.83 0.93 0.88 0.91 0 − 0.09 0 0.83

3 In-text Per-frame 60,914 – – – – – – – – 0.92 – – – – –

4 In-text Per-frame 1,072,483 0 1,072,483 0 1,023,149 49,334 0 0.95 0 NA 0 0.95 NA 1 0

5 1 T1 Per-frame 9650 4653 4997 3723 4735 262 930 0.88 0.93 0.80 0.86 0.95 0.76 0.84 0.76
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The study does not report any of the confusion matrix entries, thus not facilitating the process of reproduc-
ible results. However, we can derive the TN by multiplying the total number of positive samples with the recall, 
TP = REC× (TP+ FN) . The FP are then obtained via FP = TP

PREC − TP . From this, we can calculate the reported 
and missing metrics. The authors report the positive class precision, which represents the PPV. In addition, the 
NPV should also have been reported for completeness. As shown in Table 2, the NPV is lower for the validation 
datasets where the precision is high, and vice versa. Calculating the MCC, this is stable around 0.63 over all 
validation sets listed in Table 3  of17, although not as high as any of the reported metrics.

Pitfall 3: blinded data. In Study 3, Byrne et al.18 remove data samples for which the classifier does not 
achieve high confidence, as well as videos with more than one polyp. They calculate the model’s performance for 
the different videos in the study, and remove the ones on which the model performs poorly. As such, the results 
reported from the study concerns a very specific selection of their data, made after the model has been adjusted. 
Excluding data on which a model performs poorly leads to a misrepresentation of its abilities and should not be 
done. If the classification task is too difficult or the removed data was faulty, this should instead be reported, and 
a new classifier should be trained for a more limited task. The metrics reported from a study should be calculated 
after the final model calibration and subsequent testing on blinded data.

Pitfall 4: negative and positive class performance. In Study 4, Wang et al.19 report high per-image-
sensitivity (recall) values of 0.94, 0.92 and 0.92, see Table 2  in19, or metric set 1 under study 4 in Table 1. For the 
first two of these, sufficient numbers are reported to reproduce the reported metrics, as well as to calculate the 
corresponding positive class precisions, which are reported as 0.96 and 0.97, respectively. In the third case, the 
positive class precision cannot be calculated since the positive and negative samples are separated for the test. 
No explanation or reason is given regarding why the tests are performed only on the separated classes and not 
together, which would give a better overall impression of the performance. For the first dataset, it is not clear how 
the numbers are calculated, as no test set is mentioned. This could mean that the reported sensitivity is calculated 
on the training data.

Rows five to seven in Table 2 show the results achieved when combining the negative and positive class sam-
ples. Since we do not know if the obtained model is biased towards the negative or positive class, we present three 
evaluations: In row five, we assume that the positive and negative results can simply be combined, which gives an 
overall MCC of 0.84 and NPV of 0.98, indicating good performance. In rows six and seven, we assume that the 
model is biased towards the positive or negative class, respectively. The resulting MCCs are both −0.05 and the 
NPVs both 0. This means that the classifier, which seemed to perform exceptionally well based on the reported 
numbers, is actually severely under-performing on the negative class. Besides these ambiguities, the results 
for the first three datasets indicate strong performance, but using the same numbers to calculate metrics more 
sensitive to bias, reveals severe under-performance (see Tables 1 and 2 for all reported and calculated numbers).

While detection and classification are in principle the same task for a fixed number of instances per class, the 
study  in19 faces a challenge: The negative class is unbounded, i.e., the number of negative instances is undefined. 
The more sensitive the classifier is, the larger the negative class effectively becomes, as the classifier generates FP 
instances, and the negative class instances can be calculated as Neg = TN+ FP . In general, evaluating without 
clearly defining boundaries for the classes is risky, as it can lead to an unclear impression of the model perfor-
mance, in either the positive or negative direction. It is also nearly impossible for follow-up studies to reproduce 
and compare results.

Without a well-defined number of true negatives in a video (or set of images), each of the frames not contain-
ing a polyp and each of the pixels not being part of a polyp are in principle true negatives. Optimally, the classes 
should instead be balanced, at best with a mixture parameter of 0.5. If this is not possible, the study should at 
least be based on well-motivated assumptions informed by real-world properties. For example, a standard colo-
noscopy contains on average n number of frames and m polyps found per examination. Most colonoscopies take 
less than an hour, so assuming a 24 h time frame would be an unreasonable assumption within such boundaries.

Keeping the positive and negative classes separated in an evaluation can lead to misleading results and can 
make a model appear very different in terms of performance, depending on the presentation. The most impor-
tant question that one should ask before performing the evaluation is: Which evaluation and metrics provide 
the most accurate representation regarding how the model will perform in the real world? This needs to be an 
overarching picture including both classes and a set of diverse and well-suited metrics.

Pitfall 5: class dependent performance. Study 521 contains a confusion matrix, enabling us to calculate 
most metrics for the reported results. As shown in Table 1, reported accuracy is 0.88, the specificity 0.95, the 
sensitivity 0.80, and the PPV 0.93. The PPV indicates the precision for the positive class and should be accompa-
nied with the corresponding metric for the negative class, i.e., the NPV, which we calculate to be 0.84. This could 
indicate that the model is better at classifying positive than negative samples correctly, which would be surpris-
ing, given that the model is trained on slightly more negative than positive class images. However, not knowing 
the loss function or which measure the model was optimized for, we cannot investigate this further. What we 
do know is that a large number of FNs directly cause the low NPV: On the test dataset, the model has a signifi-
cantly higher number of FNs, meaning missed detection, than FPs, meaning a false alarm and in this case over-
detection of cancer. The study specifically states reducing misdetection to be the primary motivation for using 
ML assisted diagnosis, and should thus have reported metrics providing a more comprehensive representation of 
the model’s performance in this regard. For instance, the MCC, which measures the correlation between the true 
and predicted classes, and is high only if the prediction is good on the positive and the negative class. By using 
the reported results, we calculate the MCC to be 0.76, which is still an acceptable performance, although not as 
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high as the metrics reported  by21. Which metric values are acceptable depends on non-technical aspects, e.g., the 
human performance baseline or requirements from hospitals or health authorities.

A potential weakness associated with the NPV is its dependence on TNs, which can overwhelm a classifier 
whose purpose is detecting rare events. In such cases, the TS, which does not take TNs into account, can be 
advantageous. From the values reported in Table 1 of  study21, the TS value is 0.76, again indicating that the model 
performs sub-optimally with respect to the objective, despite achieving high accuracy and precision values. In 
conclusion, the reported metrics show that the model, for the most part, performs well on the evaluation dataset. 
When taking the recalculated metrics into account, we see that the model is more prone to misdetection than 
causing false alarms.

MediMetrics. Together with this study, we release a web-based tool called MediMetrics for calculating the 
metrics shown in Table 2, to make them easily accessible for medical doctors and ML researchers alike. From 
the provided input, the tool automatically calculates all possible metrics and generates useful visualizations and 
comparisons the user may freely use in their research. The tool is open-source, and the code is available on 
GitHub (www. github. com/ simula/ medim etrics). In the future, we plan to provide a repository of publicly avail-
able studies that have been evaluated using our tool. Moreover, we plan to expand the tool to support other 
methodologies as well, such as multi-class classification, detection, and segmentation methods.

Discussion
There are many metrics that can be used to evaluate binary classification models. Using only a subset could give 
a false impression of a model’s actual performance, and in turn, yield unexpected results when deployed to a 
clinical setting. It is therefore important to use a combination of multiple metrics and interpret the performance 
holistically. Calculating multiple metrics does not require extra work in terms of study design or time, thus there 
is no apparent reason not to include a set of metrics, besides lack of space, obfuscating actual performance, or 
lack of knowledge regarding classifier evaluation. Besides interpreting the different metrics together, metrics 
for the separate classes should be calculated individually. Special care should be taken in cases of imbalanced 
classes, and the robustness of the classifier’s performance tested over a range of class admixtures. In general, a 
high score in any metric should be regarded with suspicion.

Training and evaluation sets should be strictly separated: Optimally, the data should be split into training, 
validation, and test datasets. The test dataset should be separate from the other partitions to avoid introducing 
bias on the parameters set during the tuning phase. Furthermore, data regarding the same instance should not 
be shared across data splits. For example, frames of the same polyp from different angels should not be shared 
across the training and test datasets. Once the model’s performance has been optimized on the training data, 
including tests on a validation set, it can be finally evaluated using the test set. This last step should thus not 
involve additional tuning, and the test data should not be made available to the analysis before results are fix-
ated for publication. We argue strongly that this should be the standard for studies on the performance of ML 
classifiers used in medicine in the future. If possible, cross-dataset testing should be performed, meaning in this 
context that the training and test data are obtained from different hospitals or at least different patients.

In general, all studies involving classification should report the obtained TP, FP, TN, and FN values for valida-
tion and test data. In addition, the data along with either the source code, the final models or both should be made 
available. If this is not possible, other alternatives, like performing additional evaluation on public datasets, such 
as  Kvasir22 or the Sun  database23, should be considered. If such an alternative is chosen, it is important to check 
if the test data is outside the distribution of the training  data24, and in that case, re-fit the model’s parameters. 
Although public datasets do not match the purpose of the study, evaluating the model on such data, by either 
re-training it or applying it directly on the data if similar to the initial data used for training, would allow others 
to compare methods and results.

Received: 24 June 2021; Accepted: 30 March 2022

References
 1. Nagendran, M. et al. Artificial intelligence versus clinicians: Systematic review of design, reporting standards, and claims of deep 

learning studies. bmj 368, m689. https:// doi. org/ 10. 1136/ bmj. m689 (2020).
 2. Topol, E. J. High-performance medicine: The convergence of human and artificial intelligence. Nat. Med. 25, 44–56. https:// doi. 

org/ 10. 1038/ s41591- 018- 0300-7 (2019).
 3. Schmitz, R. et al. Artificial intelligence in GI endoscopy: Stumbling blocks, gold standards and the role of endoscopy societies. 

Gut. https:// doi. org/ 10. 1136/ gutjnl- 2020- 323115 (2021).
 4. Hoogenboom, S. A., Bagci, U. & Wallace, M. B. AI in gastroenterology. The current state of play and the potential. How will it 

affect our practice and when?. Techn. Gastrointest. Endosc. 22, 150634. https:// doi. org/ 10. 1016/j. tgie. 2019. 150634 (2019).
 5. Patel, K. et al. A comparative study on polyp classification using convolutional neural networks. PLOS ONE 15, 1–16. https:// doi. 

org/ 10. 1371/ journ al. pone. 02364 52 (2020).
 6. Wang, Y., Feng, Z., Song, L., Liu, X. & Liu, S. Multiclassification of endoscopic colonoscopy images based on deep transfer learning. 

Comput. Math. Methods Med. 2021, 2485934. https:// doi. org/ 10. 1155/ 2021/ 24859 34 (2021).
 7. Zhang, R., Zheng, Y., Poon, C. C. Y., Shen, D. & Lau, J. Y. W. Polyp detection during colonoscopy using a regression-based convo-

lutional neural network with a tracker. Pattern Recognit. 83, 209–219. https:// doi. org/ 10. 1016/j. patcog. 2018. 05. 026 (2018).
 8. Jha, D. et al. A comprehensive study on colorectal polyp segmentation with ResUNet++, conditional random field and test-time 

augmentation. IEEE J. Biomed. Health Inform. 25, 2029–2040. https:// doi. org/ 10. 1109/ JBHI. 2021. 30493 04 (2021).
 9. Ahmad, O. F. et al. Establishing key research questions for the implementation of artificial intelligence in colonoscopy—A modified 

Delphi method. Endoscopy. https:// doi. org/ 10. 1055/a- 1306- 7590 (2020).
 10. Polit, D. F. Blinding during the analysis of research data. Int. J. Nurs. Stud. 48, 636–641. https:// doi. org/ 10. 1016/j. ijnur stu. 2011. 02. 

010 (2011).

http://www.github.com/simula/medimetrics
https://doi.org/10.1136/bmj.m689
https://doi.org/10.1038/s41591-018-0300-7
https://doi.org/10.1038/s41591-018-0300-7
https://doi.org/10.1136/gutjnl-2020-323115
https://doi.org/10.1016/j.tgie.2019.150634
https://doi.org/10.1371/journal.pone.0236452
https://doi.org/10.1371/journal.pone.0236452
https://doi.org/10.1155/2021/2485934
https://doi.org/10.1016/j.patcog.2018.05.026
https://doi.org/10.1109/JBHI.2021.3049304
https://doi.org/10.1055/a-1306-7590
https://doi.org/10.1016/j.ijnurstu.2011.02.010
https://doi.org/10.1016/j.ijnurstu.2011.02.010


9

Vol.:(0123456789)

Scientific Reports |         (2022) 12:5979  | https://doi.org/10.1038/s41598-022-09954-8

www.nature.com/scientificreports/

 11. Cramer, H. Mathematical Methods of Statistics (Princeton University Press, 1946).
 12. Matthews, B. Comparison of the predicted and observed secondary structure of T4 phage lysozyme. Biochim. Biophys. Acta (BBA) 

Protein Struct. 405, 442–451. https:// doi. org/ 10. 1016/ 0005- 2795(75) 90109-9 (1975).
 13. Boughorbel, S., Jarray, F. & El-Anbari, M. Optimal classifier for imbalanced data using Matthews correlation coefficient metric. 

PLOS ONE 12, 1–17. https:// doi. org/ 10. 1371/ journ al. pone. 01776 78 (2017).
 14. Saito, T. & Rehmsmeier, M. The precision–recall plot is more informative than the ROC plot when evaluating binary classifiers on 

imbalanced datasets. PLoS ONE 10, e0118432. https:// doi. org/ 10. 1371/ journ al. pone. 01184 32 (2015).
 15. Le Berre, C. et al. Application of artificial intelligence to gastroenterology and hepatology. Gastroenterology 158, 76–94. https:// 

doi. org/ 10. 1053/j. gastro. 2019. 08. 058 (2020).
 16. Hassan, C. et al. New artificial intelligence system: First validation study versus experienced endoscopists for colorectal polyp 

detection. Gut 69, 799–800. https:// doi. org/ 10. 1136/ gutjnl- 2019- 319914 (2020).
 17. Mossotto, E. et al. Classification of paediatric inflammatory bowel disease using machine learning. Sci. Rep. 7, 1–10. https:// doi. 

org/ 10. 1038/ s41598- 017- 02606-2 (2017).
 18. Byrne, M. F. et al. Real-time differentiation of adenomatous and hyperplastic diminutive colorectal polyps during analysis of unal-

tered videos of standard colonoscopy using a deep learning model. Gut 68, 94–100. https:// doi. org/ 10. 1136/ gutjnl- 2017- 314547 
(2019).

 19. Wang, P. et al. Development and validation of a deep-learning algorithm for the detection of polyps during colonoscopy. Nat. 
Biomed. Eng. 2, 741–748. https:// doi. org/ 10. 1038/ s41551- 018- 0301-3 (2018).

 20. Bernal, J. et al. WM-DOVA maps for accurate polyp highlighting in colonoscopy: Validation versus saliency maps from physicians. 
Comput. Med. Imaging Graph. 43, 99–111. https:// doi. org/ 10. 1016/j. compm edimag. 2015. 02. 007 (2015).

 21. Sakai, Y. et al. Automatic detection of early gastric cancer in endoscopic images using a transferring convolutional neural network. 
In Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and 
Biology Society. Annual International Conference 2018, 4138–4141. https:// doi. org/ 10. 1109/ EMBC. 2018. 85132 74 (2018).

 22. Borgli, H. et al. HyperKvasir, a comprehensive multi-class image and video dataset for gastrointestinal endoscopy. Sci. Data 7, 283. 
https:// doi. org/ 10. 1038/ s41597- 020- 00622-y (2020).

 23. Misawa, M. et al. Development of a computer-aided detection system for colonoscopy and a publicly accessible large colonoscopy 
video database (with video). Gastrointest. Endosc. https:// doi. org/ 10. 1016/j. gie. 2020. 07. 060 (2020).

 24. Robey, A., Hassani, H. & Pappas, G. J. Model-based robust deep learning: Generalizing to natural, out-of-distribution data (2020).

Author contributions
S.A.H., I.S., V.T., M.A.R., P.H., M.H., and S.P. conceived the experiment(s). S.A.H., I.S., V.T., and M.A.R. con-
ducted the experiment(s). S.A.H., I.S., V.T., M.A.R. and P.H. analyzed the results. All authors reviewed the 
manuscript.

Competing interests 
Pål Halvorsen: Board member of Augere Medical. Sravanthi Parasa: Consultant Covidien LP; Medical advisory 
board of Fujifilms. Steven A. Hicks: nothing to disclose. Inga Strumke: nothing to disclose. Vajira Thambawita: 
nothing to disclose. Malek Hammou: nothing to disclose. Michael A. Riegler: nothing to disclose.

Additional information
Correspondence and requests for materials should be addressed to S.A.H.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the 
Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

© The Author(s) 2022

https://doi.org/10.1016/0005-2795(75)90109-9
https://doi.org/10.1371/journal.pone.0177678
https://doi.org/10.1371/journal.pone.0118432
https://doi.org/10.1053/j.gastro.2019.08.058
https://doi.org/10.1053/j.gastro.2019.08.058
https://doi.org/10.1136/gutjnl-2019-319914
https://doi.org/10.1038/s41598-017-02606-2
https://doi.org/10.1038/s41598-017-02606-2
https://doi.org/10.1136/gutjnl-2017-314547
https://doi.org/10.1038/s41551-018-0301-3
https://doi.org/10.1016/j.compmedimag.2015.02.007
https://doi.org/10.1109/EMBC.2018.8513274
https://doi.org/10.1038/s41597-020-00622-y
https://doi.org/10.1016/j.gie.2020.07.060
www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	On evaluation metrics for medical applications of artificial intelligence
	Model evaluation procedure. 
	Metrics. 
	True positive (TP). 
	True negative (TN). 
	False positive (FP). 
	False negative (FN). 
	Accuracy (ACC). 
	Recall (REC). 
	Specificity (SPEC). 
	Precision (PREC). 
	F1 score (F1). 
	Matthews correlation coefficient (MCC). 
	Threat score (TS). 

	Methods
	Study selection. 
	Study 1. 
	Study 2. 
	Study 3. 
	Study 4. 
	Study 5. 


	Results
	Pitfall 1: precision and recall. 
	Pitfall 2: mixture parameter dependent tuning. 
	Pitfall 3: blinded data. 
	Pitfall 4: negative and positive class performance. 
	Pitfall 5: class dependent performance. 
	MediMetrics. 

	Discussion
	References


