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Stroke genetics informs drug discovery and 
risk prediction across ancestries



Previous genome-wide association studies (GWASs) of stroke — the second leading 
cause of death worldwide — were conducted predominantly in populations of 
European ancestry1,2. Here, in cross-ancestry GWAS meta-analyses of 110,182 patients 
who have had a stroke (five ancestries, 33% non-European) and 1,503,898 control 
individuals, we identify association signals for stroke and its subtypes at 89 (61 new) 
independent loci: 60 in primary inverse-variance-weighted analyses and 29 in 
secondary meta-regression and multitrait analyses. On the basis of internal 
cross-ancestry validation and an independent follow-up in 89,084 additional cases  
of stroke (30% non-European) and 1,013,843 control individuals, 87% of the primary 
stroke risk loci and 60% of the secondary stroke risk loci were replicated (P < 0.05). 
Effect sizes were highly correlated across ancestries. Cross-ancestry fine-mapping, in 
silico mutagenesis analysis3, and transcriptome-wide and proteome-wide association 
analyses revealed putative causal genes (such as SH3PXD2A and FURIN) and variants 
(such as at GRK5 and NOS3). Using a three-pronged approach4, we provide genetic 
evidence for putative drug effects, highlighting F11, KLKB1, PROC, GP1BA, LAMC2 and 
VCAM1 as possible targets, with drugs already under investigation for stroke for F11 
and PROC. A polygenic score integrating cross-ancestry and ancestry-specific stroke 
GWASs with vascular-risk factor GWASs (integrative polygenic scores) strongly 
predicted ischaemic stroke in populations of European, East Asian and African 
ancestry5. Stroke genetic risk scores were predictive of ischaemic stroke independent 
of clinical risk factors in 52,600 clinical-trial participants with cardiometabolic 
disease. Our results provide insights to inform biology, reveal potential drug targets 
and derive genetic risk prediction tools across ancestries.

Stroke is the second leading cause of death worldwide, responsible for 
approximately 12% of total deaths, with an increasing burden particu-
larly in low-income countries 6. Characterized by a neurological deficit 
of sudden onset, stroke is predominantly caused by cerebral ischaemia 
(of which the main aetiological subtypes are large-artery atherosclerotic 
stroke (LAS), cardioembolic stroke (CES), and small-vessel stroke (SVS)) 
and, less often, by intracerebral haemorrhage (ICH). The frequency 
of stroke subtypes differs between ancestry groups as exemplified by 
a higher prevalence of SVS and ICH in Asian and African populations 
compared with European populations. Most genetic loci associated 
with stroke have been identified in populations of European ancestry. 
The largest published GWAS meta-analysis to date (67,162 cases and 
454,450 control individuals, MEGASTROKE) reported 32 stroke risk 
loci1. To identify new genetic associations and provide insights into 
stroke pathogenesis and putative drug targets, we first performed 
a cross-ancestry GWAS of 1,614,080 participants, including 110,182 
patients who had a stroke, and followed up genome-wide significant 
signals in an independent dataset of 89,084 patients who had a stroke 
and 1,013,843 control individuals. We then characterized the identified 
stroke risk loci by leveraging expression and protein quantitative trait 
loci, cross-ancestry fine-mapping and shared genetic variation with 
other traits. Finally, we used a series of approaches for genomics-driven 
drug discovery for stroke prevention and treatment, and examined the 

prediction of stroke with polygenic scores (PGSs) across ancestries in 
the setting of both population-based studies and clinical trials.

Genetic discovery from GWASs
We performed a fixed-effect inverse-variance weighted (IVW) GWAS 
meta-analysis on 29 population-based cohorts or biobanks with inci-
dent stroke ascertainment and 25 clinic-based case–control studies, 
comprising up to 110,182 patients who had a stroke and 1,503,898 
control individuals (of whom 45.5% were in longitudinal cohorts or 
biobanks), nearly doubling the number of cases in previous stroke 
GWASs (the GIGASTROKE initiative; Supplementary Table 1 and 
Extended Data Fig. 1). Genome-wide genotyping and imputation charac-
teristics are described in Supplementary Table 2. The cohorts included 
individuals of European (66.7% of the patients who had a stroke), East 
Asian (24.8%), African American (3.7%), South Asian (3.3%) and Hispanic 
(1.4%) ancestry. Analyses were performed for any stroke (AS; compris-
ing ischaemic stroke, ICH, and stroke of unknown or undetermined 
type), any ischaemic stroke regardless of subtype (AIS; n = 86,668) 
and ischaemic stroke subtypes (LAS, n = 9,219; CES, n = 12,790; SVS, 
n = 13,620). We also conducted separate GWAS analyses of incident 
AS and AIS (n = 32,903 and n = 16,863, respectively) in longitudinal 
population-based cohort studies.
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We tested up to around 7,588,359 single-nucleotide polymorphisms 
(SNPs) with a minor allele frequency (MAF) of ≥0.01 for association 
with stroke. The linkage-disequilibrium score intercepts for our 
ancestry-specific GWAS meta-analyses ranged from 0.91 to 1.12, sug-
gesting that there was no systematic inflation of association statistics 
(Supplementary Table 3). By performing IVW GWAS meta-analyses, we 
identified variants associated with stroke at genome-wide significance 
(P < 5 × 10−8) at 60 loci, of which 33 were new (Fig. 1 and Supplementary 
Table 4). Lead variants at all of the new loci were common (MAF ≥ 0.05), 
except for low-frequency intronic variants in THAP5 (MAF = 0.02, in 
complete association (r2 = 1) with variants in the 5′ UTR of NRCAM) asso-
ciated with cross-ancestry incident AS/AIS, and in COBL (MAF = 0.04) 
associated with AS/AIS in South Asian individuals. Most of the associa-
tions for these 60 loci were with AS (48 loci, 23 new) and AIS (45 loci, 
18 new), and one of the AIS loci was associated only with incident AIS 
(Supplementary Table 4c). Although AIS subtypes were not available in 
some population-based cohorts (Supplementary Table 1), genome-wide 
significance was reached for 4 loci for LAS, 8 for CES and 7 for SVS (of 
which 1, 3 and 3 were new, respectively; Supplementary Table 4). Our 
results include a large and comprehensive description of stroke genetic 
risk variants in each of the five represented ancestries. In cross-ancestry 
meta-analyses, 53 loci (51 loci after controlling for ancestry-specific 
linkage-disequilibrium score intercepts) reached genome-wide sig-
nificance (Supplementary Table 4), whereas 42 loci were genome-wide 
significant in individual ancestries (35 in Europeans, 6 in East Asians,  
1 in South Asians and 2 in African Americans; Supplementary Table 4). 
Using conditional and joint analysis (GCTA-COJO)7, we confirmed three 
independent signals at PITX2 and two at SH3PXD2A1 (CES in Europeans; 

Supplementary Table 5). We also performed cross-ancestry gene-based 
association tests using VEGAS28 and MAGMA9, which revealed 267 
gene-wide significant associations (P < 2.63 × 10−6) at 39 loci, of which 
14 were in 8 new loci that did not reach genome-wide significance in 
the single-variant analyses (AGAP5/SYNPO2L/SEC24C/CHCHD1, CD96, 
HNRNPA0, MAMSTR, PPM1H, RALGAPA1, USP34 and USP38; Supple-
mentary Tables 6 and 7).

Next, we conducted a secondary cross-ancestry GWAS meta-analysis 
using MR-MEGA10, which accounts for the allelic heterogeneity between 
ancestries. We identified three additional genome-wide significant 
loci for AS (all new), near TSPAN19, and in introns of DAZL and SHOC1, 
all showing high heterogeneity in allelic effects across ancestries (het-
erogeneity P < 0.01; Supplementary Table 8). To further enhance the 
statistical power for AIS subtypes, we conducted secondary multitrait 
analyses of GWASs (MTAG)11 in Europeans and East Asians, including 
traits correlated with specific stroke subtypes, namely (1) coronary 
artery disease (CAD) for LAS, both caused by atheroma; (2) atrial 
fibrillation for CES, as its main underlying cause; and (3) white mat-
ter hyperintensity volume (WMH, an MRI-marker of cerebral small 
vessel disease) for SVS (available in Europeans only). In Europeans, 
11 additional loci were associated with LAS (10 new), 3 with SVS (all 
reported in a recent SVS GWAS2) and 5 with CES (all new; Supplementary 
Tables 9–11). Moreover, 18 and 15 additional genome-wide significant 
associations were identified (all new) for AS and AIS, respectively, using 
MTAG with WMH, CAD and atrial fibrillation (Supplementary Tables 12 
and 13). In East Asian individuals, one locus was associated with AS 
(FGF5) and one with LAS (HDAC9, new in East Asians) using MTAG. This 
brings the number of identified stroke-risk loci from primary (IVW) 
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Fig. 1 | Identifying genetic variants that influence stroke risk. Ideogram 
showing 89 genome-wide significant stroke-risk loci. The shapes correspond 
to ancestry: circles, cross-ancestry (CROSS-ANC); diamonds, Europeans (EUR); 
triangles, East Asians (EAS); squares, African Americans (AFR) or South Asians 
(SAS). Colours correspond to stroke types: green, AS; red, AIS; light blue, SVS; 
dark blue, CES; purple, LAS. The nearest genes to lead variants are displayed. 

Loci are characterized as follows, on the basis of replication results (Methods): 
bold with asterisk, high confidence; bold without asterisk, intermediate 
confidence; not bold, low confidence; underlined, loci identified in secondary 
MR-MEGA and MTAG analyses. Black and grey font indicate new and known loci, 
respectively. The numbers at the top indicate the chromosome.
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and secondary (MR-MEGA and MTAG) analyses to 89 in total (61 new), 
of which 69 were associated with AS, 45 with AIS, 15 with LAS, 13 with 
CES and 10 with SVS (of these 44, 33, 11, 8 and 3 were new, respectively; 
Fig. 1 and Supplementary Tables 4, 8 and 9–14).

Independent follow-up of GWAS signals
We followed up genome-wide significant stroke-risk loci both inter-
nally and externally. First, we sought to replicate the 42 stroke-risk 
loci that reached genome-wide significance in individual ancestries 
in at least one other ancestry group among the discovery samples. We 
successfully replicated, with consistent directionality, 10 of these loci 
at P < 1.19 × 10−3 (accounting for the number of loci tested), of which 7 
were genome-wide significant in Europeans, 1 in East Asians, and 2 in 
both Europeans and East Asians. An additional 15 loci showed nominal 
association (P < 0.05) in at least one other ancestry (Supplementary 
Table 15).

Second, we gathered an independent dataset of 89,084 individuals 
who had a stroke (AS; of which 85,546 AIS; 70.0% European, 15.6% African  
American, 10.1% East Asian, 4.1% Hispanic and 0.1% South Asian) and 
1,013,843 control individuals, mostly from large biobanks, for external 
replication (the biobank setting did not allow suitable ischaemic stroke 
subtype analyses). Out of the 60 loci that reached genome-wide sig-
nificance in the IVW meta-analyses, 48 loci (80%) replicated at P < 0.05 
with consistent directionality (Extended Data Fig. 2), of which 31 (52%) 
replicated at P < 8.2 × 10−4 (accounting for the number of loci tested) 
(Supplementary Table 16). When considering both the internal and 
external follow-up, 52 (87%) of the 60 IVW loci replicated, of which 
37 replicated with high confidence, and 15 with intermediate confi-
dence (Methods, Fig. 1 and Supplementary Table 14). The 8 loci that 
did not replicate were labelled as low confidence (Methods and Sup-
plementary Table 14). Four of these were ethnic specific and three were 
low-frequency variants that were monomorphic in some ancestries and 
were therefore probably underpowered for replication.

Within the secondary analyses, none of the three MR-MEGA loci 
replicated, although one was borderline significant (Supplementary 
Table 16). Of the 26 MTAG loci, 18 (69%) replicated with AS or AIS at 
P < 0.05, of which 9 (35%) replicated with high confidence (P < 1.7 × 10−3, 
accounting for 29 secondary loci tested; Supplementary Table 16). Of 
the eight MTAG loci that did not replicate, seven showed a consist-
ent directionality and four were subtype specific and were therefore 
underpowered to detect associations with AS or AIS.

Cross-ancestry effects and fine-mapping
For the 60 loci associated with stroke risk derived from the IVW 
meta-analyses, we first demonstrated the added value in terms of locus 
discovery of including non-European samples, showing a clear gain in 
power beyond sample size increase, compared with the incremental 
addition of European ancestry samples (Extended Data Fig. 3). We next 
compared the per-allele effect size across the three ancestries with the 
largest sample size (European, East Asian, African American). Corre-
lations of per-allele effect sizes of index variants varied from r = 0.55 
(European with African American) to r = 0.66 (European with East Asian) 
and r = 0.74 (East Asian with African American; Fig. 2a).

To identify putative causal variants at stroke-risk loci identified 
through IVW meta-analyses, we performed multiple-causal-variant 
fine-mapping using SuSiE12, separately in European and East Asian 
participants (Methods). Across stroke types, we identified 110 and 16 
95% credible set–trait pairs in European and East Asian participants, 
respectively, each of which having a 95% posterior probability of con-
taining a causal variant, with multiple credible sets identified at 6 (in 
Europeans) and 1 (in East Asians) stroke-risk loci (Supplementary 
Tables 17–19). Within the credible sets identified in European partici-
pants, 17 variants were found to have a posterior inclusion probability 

(PIP) of >0.9. We found overlapping credible sets between European 
and East Asian participants at SH3PXD2A (19 overlapping variants), 
suggesting that there is cross-ancestry-shared genetic architecture 
at this locus (Fig. 2b). Two loci had credible sets with a single variant 
(rs10886430 at GRK5 (PIP = 0.999), associated with GRK5 platelet gene 
expression and thrombin-induced platelet aggregation13, and rs1549758 
at NOS3, PIP = 0.995), probably representing strong targets for func-
tional validation.

Although there were six non-synonymous variants among cred-
ible sets (rs671 (ALDH2), rs8071623 (SEPT4), rs35212307 (WDR12), 
rs72932557 (CARF), rs11906160 (MYH7B) and rs2501968 (CENPQ)), 
exonic variants for coding RNA within credible sets were few (1.2%). To 
detect putative causal regulatory variants, we conducted an in silico 
mutagenesis analysis using MENTR, a machine-learning method to 
precisely predict transcriptional changes caused by causal variants3. 
From credible sets, we obtained 78 robust predictions of variant–
transcript-model sets comprising 13 variants and 19 transcripts (Sup-
plementary Table 20), involving multiple cell types, consistent with the 
diversity of mechanisms that underlie stroke aetiology. For example, 
the G allele of rs12476527 (5′ UTR of KCNK3) is a risk allele for stroke and 
was predicted to increase KCNK3 expression in kidney cortex tubule 
cells, despite no expression quantitative trait loci (eQTL) of this variant 
being reported in Genotype-Tissue Expression (GTEx, v.8) or eQTLgen 
(2019-12-23). The same G allele has been associated with higher systolic 
blood pressure14. Furthermore, three variants (rs12705390 at PIK3CG, 
rs2282978 at CDK6 and rs2483262 at PRDM16) were predicted to affect 
the expression of a long non-coding RNA and enhancer RNAs, predomi-
nantly in endothelial cells, as well as other vascular cells and visceral 
preadipocytes, whereas a promoter variant of SH3PXD2A was predicted 
to modulate its expression in macrophages.

Characterizing stroke-associated loci
VEGAS2Pathway15 analysis revealed significant enrichment 
(P < 5.01 × 10−6) of stroke-risk loci in pathways involved in (1) carboxy-
lation of amino-terminal glutamate residues required for the activation 
of proteins involved in blood clot formation and regulation; (2) negative 
regulation of coagulation; and (3) angiopoietin receptor Tie2-mediated 
signalling, involved in angiogenesis (Supplementary Table 21).

We examined shared genetic variation with 12 (in Europeans) and 10 
(in East Asians) vascular risk factors and disease traits (Methods and 
Supplementary Methods). In Europeans, the lead variants for stroke 
at 57 of the 89 primary and secondary risk loci (64.0%) were associated 
(P < 5 × 10−8) with at least one vascular trait, most frequently blood pres-
sure (33 loci, 37.1%; Extended Data Fig. 4 and Supplementary Table 22). 
After correction for multiple testing (Methods; P < 4.17 × 10−3), all of the 
vascular-risk traits except for low-density lipoprotein (LDL)-cholesterol 
showed significant genetic correlation (rg) with at least one stroke 
type, the strongest correlations being for CAD and LAS (rg = 0.73), atrial 
fibrillation and CES (rg = 0.63), and systolic blood pressure (SBP) with 
all stroke types (rg ranging from 0.21 for CES to 0.49 for LAS and SVS; 
Extended Data Fig. 5 and Supplementary Table 23). Using two-sample 
Mendelian randomization (MR), we found evidence for a possible causal 
association for every vascular-risk trait except for triglycerides with at 
least one stroke type (P < 4.17 × 10−3), with some subtype-specific asso-
ciation patterns. Genetic liability to WMH was associated with increased 
risk of SVS but not other stroke subtypes, whereas genetic liability to 
venous thromboembolism was associated with AS, AIS, CES and LAS, 
but not SVS (Extended Data Fig. 5 and Supplementary Table 24). Owing 
to a limited overlap between the European GIGASTROKE sample and 
cohorts included in GWASs for the exposure traits, we ran sensitivity 
analyses weighting our genetic instruments on the basis of a sub-sample 
of the UK Biobank, excluding cases included in GIGASTROKE16. The 
notable consistency of these with the main analyses confirmed their 
robustness against weak instrument bias (Supplementary Table 25). 
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We confirmed directionality using the Steiger test (Supplementary 
Table 24) and ruled out reverse causation with reverse MR (Supple-
mentary Table 26). In East Asian individuals, SBP, diastolic blood 
pressure (DBP), body mass index (BMI) and atrial fibrillation showed 
significant genetic correlation with AS (rg = 0.45, 0.39, 0.24 and 0.32 
versus rg = 0.36, 0.21, 0.22 and 0.44 in Europeans) and AIS (except for 
BMI), with evidence for a causal association of SBP and DBP with AS, 

AIS and SVS; CAD with AS, AIS and LAS; and atrial fibrillation with CES 
(Extended Data Fig. 6 and Supplementary Tables 23 and 24). Notably, 
MR analyses performed with binary exposures should be interpreted 
with caution owing to the potential violations of the exclusion restric-
tion assumption16.

Next, to generate hypotheses of target genes and directions of effect, 
we conducted transcriptome-wide association studies (TWAS) using 
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Fig. 2 | Effect-size comparison across ancestry groups of lead variants 
identified in stroke GWASs and cross-ancestry fine-mapping. a, Plots showing 
the Pearson’s correlation coefficient (r) between the effect sizes (β) of the 60 
stroke-risk alleles on AS significant after multiple-testing correction (P < 0.017) 
in Europeans and East Asians (left; r (95% CI) = 0.66 (0.47–0.79), P = 1 × 10−7); 
Europeans and African Americans (middle; r (95% CI) = 0.55 (0.33–0.71), 
P = 2 × 10−5); and East Asians and African Americans (right; r (95% CI) = 0.74 
(0.58–0.85), P = 8 × 10−10). n = 60 independent stroke-risk variants  from the IVW 
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the effect sizes between ancestries. The nearest gene is reported for SNPs 
showing a difference in effect size (β, absolute value) of >0.05 between a pair  
of ancestries. The dots represent the effect-size (β) estimates and the bars 
represent the 95% CI of the estimates. Two-sided P values of the deviation of 
Pearson’s correlation coefficient from zero are reported. Colour corresponds 
to genome-wide significant association (P < 5 × 10−8) in individual ancestries: 

purple, European only (±cross-ancestry); green, East Asian only 
(±cross-ancestry); yellow, African American only (±cross-ancestry); blue,  
both ancestries (±cross-ancestry); red, cross-ancestry only; grey, not 
genome-wide significant in two plotted ancestries and in cross-ancestry.  
b, Locus plots of variants at SH3PXD2A in five ancestries. Fine-mapped variants 
are shown only in European and East Asian individuals (insufficient power  
for other ancestries). Variants are coloured on the basis of their linkage 
disequilibrium with the cross-ancestry lead variant (rs4918058), shown by the 
purple diamonds. In the fine-mapping plots, variants in the SuSiE 95% credible 
sets (CS) are shown. Shared variants between credible sets of European and 
East Asian participants are indicated by black circles. The red vertical lines 
represent the position of the lead variants in European (rs55983834) and East 
Asian (rs4918058) participants. The grey dashed horizontal lines represent 
P = 5 × 10−8. The linkage disequilibrium of each ancestry was derived from the 
1000 Genomes Project.



Nature  |  Vol 611  |  3 November 2022  |  119

TWAS-Fusion and eQTL based on RNA-sequencing (RNA-seq) analyses 
in different tissues17–20. We identified 27 genes of which the geneti-
cally regulated expression is associated with stroke and its subtypes 
at the transcriptome-wide level and colocalized in at least one tissue 
(10 genes in arteries and heart; 6 genes in brain tissue; 17 genes across 
tissues). Of these genes, 18 overlapped with 11 genome-wide significant 
stroke-risk loci (Extended Data Fig. 7 and Supplementary Table 27). For 
several genes of which bulk tissue expression levels showed evidence 
for association with stroke, human single-nucleus sequencing data of 
brain cells in the dorsolateral prefrontal cortex (DLPFC) showed distinct 
cell-specific gene expression patterns suggesting that multiple genes 
could be involved through different cell types21 (Extended Data Fig. 8). 
Overall, we observed a significant enrichment mostly in brain vascular 
endothelial cells and astrocytes, possibly reflecting the importance 
of both vascular pathology and brain response to the vascular insult 
in modulating stroke susceptibility (Extended Data Fig. 8 and Sup-
plementary Tables 28 and 29). Furthermore, using proteome-wide 
association studies (PWAS) in DLPFC brain tissue, we found evidence 
for the association of ICA1L with AS and AIS through its cis-regulated 
protein abundance, with colocalization evidence (Extended Data Fig. 8 
and Supplementary Table 30). In both TWAS and PWAS, lower ICA1L 
transcript or protein abundance in the DLPFC was associated with a 
higher risk of stroke.

Genomics-driven drug discovery
We used a three-pronged approach for genomics-driven discovery 
of drugs for the prevention or treatment of stroke4 (Methods and 
Fig. 3). First, using GREP22, we observed significant enrichment of 
stroke-associated genes (MAGMA9 or VEGAS28 false-discovery rates 
(FDR) < 0.05) in drug-target genes for blood and blood-forming organs 

(Anatomical Therapeutic Chemical Classification System B drugs, for 
AS, AIS and CES). This encompasses the previously described PDE3A and 
FGA genes1, which encode targets for cilostazol (antiplatelet agent) and 
alteplase (thrombolytic drug acting through plasminogen23), respec-
tively, as well as F11, KLKB1, F2, TFPI and MUT, which encode targets 
for conestat alfa, ecallantide (both used for hereditary angioedema), 
lepirudin, dalteparin (both used to treat recurrent thromboembolism) 
and vitamin B12, respectively (Supplementary Table 31). Notably, the 
results for AS are probably driven by AIS (the vast majority of AS in the 
current study) and cannot be extrapolated to ICH. Second, we used 
Trans-Phar24 to test the negative correlations between genetically deter-
mined case–control gene expression associated with stroke (TWAS 
using all GTEx v.7 tissues17) and compound-regulated gene expression 
profiles. At FDR < 0.10, we observed significant negative correlations 
for BRD.A22514244 (for SVS; drug target unknown) and GR.32191 (for 
CES; Supplementary Table 32). GR-32191 is a thromboxane A2 receptor 
antagonist that has been proposed as an alternative antiplatelet therapy 
for stroke prevention25, and further drugs of this class are under devel-
opment26. Note that one of those drugs, terutroban, was evaluated in a 
phase III study but did not show non-inferiority against aspirin27. Third, 
we used protein quantitative trait loci (pQTL) for 218 drug-target pro-
teins as instruments for MR and found evidence for causal associations 
of 9 plasma proteins with stroke risk (4 cis-pQTL and 6 trans-pQTL), of 
which 7 were supported by colocalization analyses, with no evidence 
for reverse causation using the Steiger test (PROC, VCAM1, F11, KLKB1, 
MMP12, GP1BA and LAMC2; Supplementary Table 33). All of these rep-
licated (at FDR < 0.05) with consistent directionality using at least one 
independent plasma pQTL resource and cerebrospinal fluid pQTL 
for PROC and KLKB1, with evidence for colocalization for PROC, F11, 
KLKB1 and MMP12, but not for GP1BA (for which both concordant and 
discordant directionality was observed) and LAMC2 (pQTL available in 
one replication dataset only; FDR = 0.08). Using public drug databases, 
we curated drugs targeting those proteins in a direction compatible 
with a beneficial therapeutic effect against stroke based on MR esti-
mates and identified such drugs for VCAM1, F11, KLKB1, GP1BA, LAMC2 
(inhibitors) and PROC (activators; Supplementary Table 34). Drugs 
targeting F11 (NCT04755283, NCT04304508, NCT03766581) and PROC 
(NCT02222714) are currently under investigation for stroke, and our 
results provide genetic support for this. Notably, F11 and KLKB1 are 
adjacent genes with a long-range linkage-disequilibrium pattern and 
complex co-regulation28, as illustrated here by the presence of a shared 
trans-pQTL in KNG1 (Supplementary Table 33). Additional studies are 
needed to disentangle causal associations and the most appropri-
ate drug target in this region29,30. Next, for the five genes targeted by 
inhibitors, VCAM1, F11, KLKB1, GP1BA and LAMC2, we examined the 
associations of rare deleterious variants (MAF < 0.01) with stroke and 
stroke-related traits, applying gene-based burden tests to whole-exome 
sequencing data from >450,000 UK Biobank participants to support 
potential therapeutic targets for inhibitors31. We observed one sig-
nificant protective association of rare deleterious variants in F11 with 
venous thromboembolism (odds ratio (OR) = 0.471, P = 2.46 × 10−4), 
in a direction concordant with that of MR estimates (Supplementary 
Table 35). To further validate the candidate drugs and estimate their 
potential side effects, we investigated whether the drug-target genes 
were associated with stroke-related phenotypes using a phenome-wide 
association study (PheWAS) approach. We conducted PheWAS in the 
Estonian Biobank (EstBB) for pQTL variants for the PROC, VCAM1, 
F11, KLKB1, GP1BA and LAMC2 genes. A cis-pQTL for F11, rs2289252, 
was associated with higher risk of venous thromboembolic disorders 
(P < 3.45 × 10−6), as previously described32, and showed suggestive asso-
ciation (P = 3.44 × 10−3) with cerebral artery occlusion with cerebral 
infarction (Phecode 433.21; Extended Data Fig. 9 and Supplementary 
Table 36). By contrast, we observed no significant association with 
non-stroke-related phenotypes, suggesting the safety of targeting F11. 
Similar profiles were observed in the UK Biobank (https://pheweb.org/
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UKB-SAIGE/variant/4-187207381-C-T) and FinnGen (https://r7.finngen.
fi/variant/4-186286227-C-T), with no significant associations with other 
disorders and no overlap of subthreshold signals with side-effects 
reported in clinical trials33. We further confirmed the association of 
rs2289252 with venous thromboembolic disorders and that it has 
no association with other non-stroke-related phenotypes using the  
Phenoscanner database (Supplementary Table 37).

Overall, combining evidence from genomics-driven drug discovery 
approaches, characterization of stroke-risk loci (missense variants, 
TWAS, PWAS, colocalization, pathway enrichment, MR with pQTL, 
MENTR and PoPS34), and previous knowledge from monogenic disease 
models and experimental data, we found evidence for the potential 
functional implication of 56 genes that should be prioritized for further 
functional follow-up, with evidence from multiple approaches for 20 
genes (Supplementary Table 38).

Integrative polygenic risk prediction
We investigated the risk prediction potential of stroke GWASs, alone 
and in combination with vascular-risk-trait GWASs, first in Europeans 
and East Asians, using ancestry-specific PGSs. PGSs were based on 
ancestry-specific and cross-ancestry GWAS summary statistics. We first 
derived single PGS (sPGS) models from single stroke GWAS summary 
data (Supplementary Table 39). We then constructed integrative PGS 
(iPGS) models, which combined multiple GWAS summary data of dif-
ferent traits into a PGS using elastic-net logistic regression5 (Extended 
Data Fig. 10). The iPGS analysis used two datasets for each ancestry for 
model training and evaluation, respectively. The participants in the 
training and evaluation datasets did not overlap and were not included 
in the input GWAS summary data.

For Europeans, we constructed the iPGS model using 1,003 prevalent 
AIS cases and 8,997 controls, followed by evaluation of the model using 
1,128 incident AIS cases among 102,099 participants, all from the EstBB. 
The improvement in predictive ability (∆C-index) was assessed over 
a base model including age, sex and the top 5 principal components 
(PCs) for population stratification. The iPGS model for Europeans 
incorporated 10 GIGASTROKE GWAS analyses (all stroke types, using 
the European and cross-ancestry analysis) and 12 vascular-risk-trait 
GWAS analyses (Extended Data Fig. 10 and Supplementary Table 40). 
The iPGS model achieved a ∆C-index of 0.027 (Supplementary 
Table 41), 93% higher than that for a previously constructed iPGS 
model for Europeans, derived from 5 MEGASTROKE GWAS analyses 
and similar vascular-risk-trait GWASs (∆C-index = 0.014)5. The age-, 
sex- and top 5 PC-adjusted hazard ratio (HR) per s.d. of the iPGS was 
1.26 (95% confidence interval (CI) = 1.19–1.34, P = 2.0 × 10−15) for the 
GIGASTROKE-based iPGS model compared to 1.19 (95% CI = 1.12–1.26, 
P = 4.2 × 10−9) for the MEGASTROKE-based iPGS model. Compared with 
participants in the middle 10% (45–55%) of the GIGASTROKE-based 
iPGS model, those in the top 1% showed a >2.5-fold higher hazard of AIS 
(HR = 2.56, 95% CI = 1.59–4.10, P = 9.6 × 10−5; Fig. 4a and Supplementary 
Table 42). We further confirmed the GIGASTROKE-based European 
iPGS model trained on the EstBB in 403,489 European-ancestry par-
ticipants of the Million Veteran Program (MVP) study, of whom 8,392 
developed an AIS: HR per s.d. = 1.19 (95% CI = 1.16–1.21, P = 6.94 × 10−52), 
with a ∆C-index of 0.010 (Supplementary Table 43).

For East Asians, we derived the iPGS model using 577 cases of preva-
lent AIS and 9,232 control individuals, and evaluated the model using 
1,470 cases of prevalent AIS and 40,459 control individuals from 
Biobank Japan (BBJ). A base model including age, sex and the top 5 
PCs showed an area under the curve (AUC) of 0.634. The iPGS model 
was constructed by integrating 10 GIGASTROKE GWAS analyses 
and 12 vascular-risk-trait GWAS analyses (Extended Data Fig. 10 and 
Supplementary Table 44). The iPGS model for East Asians showed 
an improvement in AUC (∆AUC) of 0.019 (Supplementary Table 45). 
The age-, sex- and top 5 PC-adjusted odds ratio (OR) per s.d. of PGS 

was 1.33 (95% CI = 1.26–1.40, P = 9.9 × 10−26) for the iPGS model. The 
MEGASTROKE- and GIGASTROKE-based iPGS models for Europeans 
achieved a lower AUC improvement (∆AUC = 0.007 and 0.009, respec-
tively) than the GIGASTROKE-based iPGS model for East Asians. While 
this suggests that the transferability of iPGS models from Europeans to 
East Asians might be limited (Supplementary Table 45), it does indicate 
that an ancestry-specific stroke iPGS approach yields similar improve-
ment in predictive ability relative to their base models.

Participants in the top 1% of the iPGS showed 1.9-fold higher odds of 
AIS (OR = 1.90, 95% CI = 1.20–2.91, P = 0.004) compared with the middle 
10% (Fig. 4b and Supplementary Table 46). We further confirmed the 
GIGASTROKE-based East Asian iPGS model trained on the BBJ in 1,399 
cases of prevalent AIS and 86,283 controls from the Taiwan Biobank 
(TWB): OR per s.d. = 1.18 (95% CI = 1.12–1.25, P = 1.1 × 10−9), with a ∆AUC 
of 0.003 (Supplementary Table 47).

Notably, iPGS models derived from cross-ancestry stroke GWASs had 
a higher predictive ability compared with iPGS models derived from 
ancestry-specific stroke GWASs both in Europeans and East Asians 
(Supplementary Table 48).

Next, we evaluated the predictive ability of the European-derived 
GIGASTROKE-based iPGS model in African American and indig-
enous African (Nigerian and Ghanaian) datasets. In 107,343 African 
American MVP participants, of whom 2,227 developed an AIS, the 
GIGASTROKE-based iPGS model showed a significant association 
with AIS incidence (HR per 1 s.d. = 1.11, 95% CI = 1.06–1.17, P = 1.8 × 10−5, 
∆C-index = 0.003; Supplementary Table 49), although weaker than 
in European MVP participants (Supplementary Table 43). The par-
ticipants in the top 1% of the iPGS showed 1.5-fold higher odds of AIS 
(HR = 1.53, 95% CI, 1.04–2.25, P = 0.03) compared with participants in 
the middle 10% (Fig. 4c and Supplementary Table 50). In 1,691 cases 
and 1,743 control participants from the indigenous African (Nigerian 
and Ghanaian) SIREN case–control study, the GIGASTROKE-based 
iPGS also showed a significant association with the odds of AIS (OR per 
1 s.d. = 1.09, 95% CI = 1.02–1.17, P = 0.010, ∆AUC = 0.007; Supplemen-
tary Table 51). The GIGASTROKE-based iPGS model showed a stronger 
association with AIS and a larger improvement in predictive ability 
compared with the MEGASTROKE-based iPGS model in both MVP and 
SIREN (Supplementary Tables 49 and 51).

Risk prediction in clinical trials
Following up on previous work1,35, we further examined whether a 
genetic risk score (GRS) based on genome-wide significant risk loci from 
the cross-ancestry IVW AS meta-analyses could identify individuals who 
are at higher risk of AIS after accounting for established risk factors in 
five clinical trials across the spectrum of cardiometabolic disease35. 
The primary analysis was conducted in 51,288 European participants 
of whom 960 developed an incident ischaemic stroke (AIS) over a 3 year 
follow-up. In a Cox model adjusted for age, sex and vascular risk factors 
(Methods), a higher GIGASTROKE GRS was significantly associated with 
increased risk of AIS in Europeans (adjusted HR = 1.17, 95% CI = 1.09–1.24 
per s.d. increase, P = 2 × 10−6; Supplementary Table 52). This associa-
tion was substantially stronger than the association with the earlier 
MEGASTROKE GRS based on 32 genome-wide significant stroke-risk loci 
(HR = 1.07, 95% CI = 1.00–1.14, P = 0.036)1,35. Compared with patients in 
the lowest GIGASTROKE GRS tertile, patients in the top GRS tertile had 
an adjusted HR of 1.35 (95% CI = 1.16–1.58) for developing AIS, whereas 
those in the middle tertile had an adjusted HR of 1.13 (95% CI = 0.96–1.33, 
Ptrend = 1.4 × 10−4; Fig. 4e). The performance of the GRS was stronger in 
individuals who had not previously had a stroke (n = 44,095; adjusted 
HR of the top versus lowest tertile = 1.37, 95% CI = 1.14–1.65) compared 
with in those who previously had a stroke (n = 7,193; adjusted HR = 1.15, 
95% CI = 0.87–1.54). Similar associations were observed when using 
effect estimates from stroke GWAS meta-analyses in Europeans or for 
AIS (Supplementary Table 52). In secondary analyses, we examined  
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the association of the GIGASTROKE cross-ancestry AS GRS with 
incident AIS in the much smaller East Asian sample (1,312 partici-
pants of whom 27 developed an incident AIS over a 3 year follow-up), 
and found consistent associations (adjusted  HR = 1.49, 95% CI =  
1.00–2.21 per s.d. increase, P = 0.048; Supplementary Table 52), whereas 
the MEGASTROKE GRS was not associated with incident AIS in East 
Asians (adjusted HR = 0.82, 95% CI = 0.55–1.23, P = 0.34). Finally, in 
European trial participants (there were too few East Asian individuals 
for this analysis), the GIGASTROKE-based iPGS was also significantly 
associated with increased AIS incidence (HR per 1 s.d. increase = 1.19, 
95% CI = 1.11–1.27, P = 3.2 × 10−7, ∆C-index = 0.008), performing better 
than the MEGASTROKE-based iPGS (Supplementary Table 53). Com-
pared with the middle 10% of the participants, those in the top 1% had a 
2.8-fold higher hazard of AIS (HR = 2.78, 95% CI = 1.67–4.61, P = 7.9 × 10−5) 
(Fig. 4d and Supplementary Table 54).

Discussion
Our GWAS meta-analyses, including 110,182 patients who had a stroke 
and 1,503,898 control participants from five different ancestries (33% of 
patients who had a stroke were non-European), identified 89 (61 new) 
risk loci for stroke and stroke subtypes (60 through primary IVW and 
29 through secondary MR-MEGA and MTAG analyses). We observed 
substantial shared susceptibility to stroke across ancestries, with a 
strong correlation of effect sizes. On the basis of internal cross-ancestry 
validation and independent follow-up in 89,084 cases of stroke (30% 
non-European) and 1,013,843 control individuals, mostly from large 
biobanks with information on AS and AIS only, the level of confidence 
of these loci was intermediate or high for 87% of primary stroke-risk 
loci and 60% of secondary loci. Effect estimates for variants that were 
common across ancestries were typically similar, whereas, expectedly, 
variants that were rare or low frequency in one or more populations 

showed differences in effect size, for example, at PROCR, TAP1 or 
BNCZ-CNTLN (MAF ≤ 0.05 in East Asians), or at GRK5, FOXF2 or COBL 
(MAF ≤ 0.05 in African Americans). Ancestry-specific meta-analyses 
in smaller non-European populations detected fewer loci than in  
Europeans that were nevertheless biologically plausible, for example, 
3p12 and PTCH1 for SVS in African Americans. Rare variants at 3p12 
were recently shown to be associated with WMH volume36, whereas 
common variants at PTCH1 were associated with functional outcome 
after ischaemic stroke (in European individuals)37. New association 
signals from cross-ancestry GWASs included, for example, variants at 
PROCR, GRK5 and F11 (thrombosis), LPA and ATP2B1 (lipid metabolism, 
hypertension and atherosclerosis), SWAP70 (membrane ruffling) and 
LAMC1 (cerebrovascular matrisome).

Extensive bioinformatics analyses highlight genes for prioritization 
in functional follow-up studies (Supplementary Table 38). For example, 
a promoter variant of SH3PXD2A, which encodes an adaptor protein that 
is involved in extracellular matrix degradation through invadopodia 
and podosome formation, was predicted to modulate its expression in 
macrophages38. FURIN expression levels across tissues were associated 
with an increased stroke risk. FURIN has previously been implicated in 
CAD39 as well as in atherosclerotic lesion progression in mice40. It also 
has a key role in SARS-CoV-2 infectivity41, and patients with COVID-19 
are at increased risk of AIS, especially LAS42; the FURIN locus was pre-
dominantly associated with LAS in our data (Supplementary Table 55).

Our results provide genetic evidence for putative drug effects using 
three independent approaches, with converging results from two meth-
ods (gene enrichment analysis and pQTL-based MR) for drugs targeting 
F11 and KLKB1. F11 and F11a inhibitors (such as abelacimab, BAY 2433334 
and BMS-986177) are currently being examined in phase 2 trials for pri-
mary or secondary stroke prevention (NCT04755283, NCT04304508, 
NCT03766581). pQTL-based MR suggested PROC as a potential drug 
target for stroke. A recombinant variant of human activated protein C  
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(encoded by PROC) was found to be safe for the treatment of acute 
ischaemic stroke after thrombolysis, mechanical thrombectomy or 
both in phase 1 and 2 trials (3K3A-APC, NCT02222714)43,44, and is poised 
for an upcoming phase 3 trial. 3K3A-APC is proposed as a neuropro-
tectant, with evidence for the protection of white matter tracts and 
oligodendrocytes against ischaemic injury in mice45. Weaker evidence 
was found for GP1BA, VCAM1 and LAMC2 as potential drug targets 
for stroke, with evidence for colocalization in only one pQTL dataset. 
Anfibatide, a GPIbα antagonist, reduced blood–brain barrier disruption 
after ischaemic stroke in mice46 and is being tested as an antiplate-
let drug in myocardial infarction (NCT01585259). Although specific 
VCAM1 inhibitors are not available, probucol—a lipid lowering drug 
with pleiotropic effects including VCAM1 inhibition—was tested for 
secondary prevention against atherosclerotic events in patients with 
CAD (PROSPECTIVE, UMIN000003307)47.

We investigated stroke PGSs across ancestries. PGSs integrating 
cross-ancestry and ancestry-specific stroke GWASs with vascular- 
risk-factor GWASs (iPGS) analyses showed strong prediction of ischae-
mic stroke risk in Europeans and, importantly, in East Asians, in whom 
stroke incidence is highest6. These results were confirmed in several 
independent datasets. The iPGS performed better than stroke PGS 
alone and better than the previous best iPGS models in Europeans5. 
The transferability of European-specific iPGS models to East Asians 
was limited. While there were not enough African participants to gen-
erate an African-specific stroke PGS, the European iPGS showed a sig-
nificant association with AIS in both African American and indigenous 
African participants, although expectedly weaker than in European 
participants. Individuals in the top 1% of the PGS distribution had a 2- to 
2.5-fold risk of ischaemic stroke in East Asian and European participants 
compared with those in the middle 10%, whereas this risk was 1.5-fold 
in African American participants. Although caution is warranted when 
interpreting risk estimates owing to the wide CIs, these results suggest 
that GIGASTROKE-based iPGS models may be useful to stratify individu-
als exposed to genetically high risk of ischaemic stroke, especially in 
Europeans and East Asians. Our results highlight the importance of 
ancestry-specific and cross-ancestry genomic studies for the transfer-
ability of genomic risk prediction across populations, and the urgent 
need to substantially increase participant diversity in genomic studies, 
especially from the most under-represented regions such as Africa, to 
avoid exacerbation of health disparities in the era of precision medicine 
and precision public health48.

Finally, leveraging data from 5 clinical trials in 52,600 patients with 
cardiometabolic disease, we showed that a cross-ancestry GRS pre-
dicted ischaemic stroke, independently of clinical risk factors, and 
outperforming previous genetic risk evaluation35. Notably, although 
the trials included predominantly European participants, consistent 
results were observed in East Asian participants. We further confirmed 
the GIGASTROKE iPGS in these clinical trials.

Our study includes a considerable contribution of non-European 
stroke genetics resources (n = 61,528/616,014 cases/controls for the 
GWASs and follow-up and an additional n = 1,718/3,055 for the PGS/GRS 
studies). Despite substantial efforts to enhance non-European contribu-
tions to GIGASTROKE, we still had limited power for identifying shared 
causal variants through cross-ancestry fine-mapping. We provided 
independent validation of the vast majority of identified genome-wide 
significant associations and graded loci by level of confidence based on 
these findings. Despite the notable size of the follow-up study sample, 
with nearly 90,000 additional patients who had a stroke, this analysis 
remains underpowered, especially for low-frequency variants and 
ancestry- and subtype-specific associations, as most follow-up studies 
were derived from large biobanks with event ascertainment based on 
electronic health records and no suitable stroke subtype information. 
The muted risk prediction in clinical-trial participants with previous 
stroke history possibly points to the impact of selection or index event 
biases and secondary prevention therapy49.

In conclusion, our genomic findings derived from >200,000 patients 
who had a stroke worldwide provide critical insights to inform future 
biological research on stroke pathogenesis, highlight potential drug 
targets for intervention and provide tools for genetic risk prediction 
across ancestries.
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Methods

All human research was approved by relevant boards and/or institutions 
for each study (Supplementary Table 56) and was conducted according 
to the Declaration of Helsinki. All of the participants provided written 
informed consent.

Study design and phenotypes
Information on participating studies (discovery and follow-up), study 
design, and definitions of stroke and stroke subtypes is provided in 
the Supplementary Information. Population characteristics of indi-
vidual studies are provided in Supplementary Table 1.

Genotyping, imputation and GWASs
Genotyping methods, pre-imputation quality control of genotypes and 
imputation methods of individual cohorts (discovery and follow-up) 
are presented in Supplementary Table 2. High-quality samples and 
SNPs underwent imputation using mostly Haplotype Reference Con-
sortium (HRC) or 1000 Genomes phase 1 or phase 3 reference panels 
and, less often, TOPMed, HapMap or biobank-specific reference panels. 
Individual studies performed a GWAS using logistic regression (or Cox 
regression in some longitudinal population-based cohorts) testing 
association of genotypes with five stroke phenotypes (AS, AIS, CES, 
LAS and SVS) under an additive effect model, adjusting for age, sex, 
principal components of population stratification and study-specific 
covariates when needed (Supplementary Table 2).

The R package EasyQC along with custom harmonization scripts 
were used to perform the quality control of individual GWAS summary 
results. Marker names and alleles were harmonized across studies. 
Meta-analyses were restricted to autosomal biallelic SNPs from the 
HRC panel. Duplicate markers were removed. Before the meta-analysis, 
we removed variants with extreme effect size values (log[OR] > 5 or 
log[OR] < −5), minor allele frequency (MAF) < 0.01, imputation quality 
scores of less than 0.50 and effective allele counts (EAC = 2 × number 
of cases × MAF × imputation quality score) of less than 6.

The overall analytical strategy is shown in Extended Data Fig. 1. 
We conducted ancestry-specific fixed-effect IVW meta-analyses in 
European, East Asian, African American, Hispanic and South Asian 
populations, followed by cross-ancestry meta-analyses using 
METAL50. In each meta-analysis we removed variants with hetero-
geneity P < 1 × 10−6 and variants available in less than one third of 
the total number of cases and less than one third of the total num-
ber of contributing studies. We applied the covariate adjusted 
linkage disequilibrium score regression (cov-LDSC) method to 
ancestry-specific GWAS meta-analyses without GC correction to 
test for genomic inflation and to compute robust SNP-heritability 
estimates in admixed populations51. We conducted cross-ancestry 
GWAS meta-analyses without genomic correction and with cor-
rection of the linkage-disequilibrium score intercept for genomic 
inflation observed in individual ancestry-specific GWASs. We con-
ducted separate GWAS analyses of incident AS and AIS (n = 32,903 and 
n = 16,863) in longitudinal population-based cohort studies. For the 
meta-analysis combining both incident and prevalent stroke studies, 
a few incident stroke studies were removed because they were already 
part of a meta-analysis of stroke GWASs used as an input of the overall 
meta-analysis (WHI, Hisayama, REGARDS, JHS). We considered loci 
to be genome-wide significant for P < 5 x 10-8. 

We applied the conditional and joint analysis approach7 implemented 
in the Genome-wide Complex Trait Analysis software52 (GCTA-COJO) 
to identify potentially independent signals within the same geno
mic region. We performed GCTA-COJO analyses on (1) European  
GWAS meta-analysis summary statistics using HRC imputed data of 
6,489 French participants from the 3C study as in ref. 53 and (2) East 
Asian-ancestry-specific GWAS meta-analysis summary statistics using 
BBJ data as reference (Supplementary Information).

We also performed a cross-ancestry meta-regression using 
MR-MEGA10. Before the meta-analysis using MR-MEGA, we applied 
the ‘genomic inflation’ correction option to all of the input files, and 
removed variants with extreme effect size values (log[OR] > 5 or 
log[OR] < −5), MAF < 0.01, imputation quality scores of less than 0.50 
and effective allele counts (EAC = 2 × number of cases × MAF × imputa-
tion quality score) of less than 6. After the meta-analysis, we considered 
loci to be genome-wide significant for MR-MEGA P < 5 × 10−8 and show-
ing nominal association (P < 0.05) in at least one third of studies in any 
individual ancestry group (European, East Asian, African American, 
Hispanic and South Asian).

Multitrait association study
To identify additional stroke-risk loci we used MTAG11 in Europeans and 
East Asians, including traits correlated with specific stroke subtypes, 
namely CAD for LAS, atrial fibrillation54 for CES, and WMH55 (an MRI 
marker of cerebral small vessel disease, available in Europeans only) 
for SVS. We also ran an MTAG analysis of AS and AIS, including all three 
correlated traits (CAD, atrial fibrillation, WMH (European)). In European 
individuals, we used summary statistics of published GWAS analyses 
for CAD56, AF54 and WMH55. In East Asians, we used summary statistics 
of published GWAS analyses for CAD57 and atrial fibrillation58 (Supple-
mentary Information). Associations were retained when the following 
three conditions were verified: (1) MTAG P value for stroke < 5 × 10−8; 
(2) P value for stroke < 0.05 in the univariate GWAS; and (3) MTAG  
P value for stroke less than the P value for any of the included traits in 
univariate GWASs.

Independent follow-up of GWAS signals
First, we sought to replicate internally the 42 stroke-risk loci reach-
ing genome-wide significance in IVW meta-analyses within individual 
ancestries, in at least one other ancestry group among the discovery 
samples, considering both nominal replication levels (P < 0.05) and 
multiple-testing corrected significance at P < 1.19 × 10−3 (0.05/42). Sec-
ond, we gathered independent datasets totalling 89,084 AS (including 
85,546 AIS; and 70.0% European, 15.6% African American, 10.1% East 
Asian, 4.1% Hispanic and 0.1% South Asian) and 1,013,843 controls for 
external replication of associations with AS and AIS (Supplementary 
Tables 1 and 2). These comprised eight biobanks (82,263 cases, 930,988 
controls) and four hospital-based cohorts (6,821 cases, 82,855 con-
trols). We considered both nominal replication levels (P < 0.05) and 
multiple-testing corrected significance at P < 8.2 × 10−4 (0.05/60) and 
P < 1.3 × 10−3 (0.05/29) for follow-up of genome-wide significant loci 
from the IVW and the MR-MEGA/MTAG meta-analyses, respectively 
(two-sided P values were used for both discovery and replication analy-
ses). We considered stroke-risk loci as high confidence in the case of 
significant internal inter-ancestry and/or external replication after 
accounting for the number of loci tested, nominally significant repli-
cation in both internal and external replication analyses, or evidence 
of involvement in monogenic stroke; intermediate confidence in the 
case of nominal significance in either internal inter-ancestry or external 
replication analyses but not both; and low confidence in the absence 
of formal replication.

Gene-based analyses
We performed gene-based tests of common variant associations using 
VEGAS28 and MAGMA9. Both VEGAS2 and MAGMA considered variants 
in the gene or within 10 kb on either side of a gene’s transcription site 
to compute a gene-based P value. We performed MAGMA tests using 
the default parameters, whereas the VEGAS2 analyses were performed 
using the ‘-top 10’ parameter that tests enrichment of the top 10% var-
iants assigned to a gene accounting for the linkage disequilibrium 
between variants and the total number of variants within a gene. We 
used 1000 Genomes phase 3 continental reference samples of European,  
East Asian, African, South Asian and South American (for our Hispanic 



samples) ancestry and to compute the linkage disequilibrium between 
variants for respective ancestry-specific gene-based analyses. We then 
meta-analysed ancestry-specific gene-based results, using Stouffer’s 
method for sample-size-weighted combination of P values. Gene-wide 
significance was defined as P < 2.72 × 10−6, correcting for 18,371 auto-
somal protein-coding genes tested.

Pathway-based analyses
We used the ancestry-specific gene-based association P values gener-
ated using VEGAS2 to perform pathway analyses for individual ances-
try groups, testing enrichment of gene-based P values in Biosystems 
pathways with VEGAS2Pathway8,15. For each stroke phenotype, we 
meta-analysed the ancestry-specific pathway association P values 
using Stouffer’s method considering the number of cases in each 
ancestry-specific GWAS; for example, for AS, we considered 73,652, 
27,413, 3,961, 1,516 and 3,640 cases in European-, East Asian-, African 
American-, Hispanic- and South Asian-specific GWAS analyses to com-
bine the respective ancestry-specific pathway association P values. 
Pathway-wide significance was defined at P < 5.01 × 10−6 correcting for 
9,977 Biosystems pathways tested.

Shared genetic variation
We examined shared genetic variation with 12 vascular risk factors and 
related disease traits in Europeans using summary statistics of GWASs 
on SBP59, DBP59, BMI and waist-to-hip ratio60, high density lipoprotein 
(HDL) cholesterol61, LDL cholesterol61, triglycerides61, type 2 diabetes62, 
WMH volume55, atrial fibrillation54, CAD56 and venous thromboembo-
lism32. We extracted sentinel stroke-risk variants (or a proxy (r2 > 0.9)) 
that showed genome-wide significant association (P < 5 × 10−8) with 
the aforementioned vascular-risk traits.

We then systematically examined genetic correlations and poten-
tially causal associations between vascular-risk traits and risk of stroke 
using linkage-disequilibrium score regression (LDSC) and MR analyses, 
with 12 (in Europeans) and 6 (in East Asians) vascular-risk traits. In indi-
viduals of European ancestry, we used summary statistics of the afore-
mentioned GWASs32,54–56,59–62. For the analysis in East Asians, we used 
unpublished GWAS analyses for SBP, DBP, LDL and HDL cholesterol, 
triglycerides and BMI in up to 53,323 participants of the independent 
Tohoku Medical Megabank Project (Supplementary Information).

We used cov-LDSC to compute genetic correlations between stroke 
and vascular-risk traits, using European and East Asian GWAS summary 
files and 1000Gp3v5 reference data of respective continental ances-
tries (considering the recommended subset of high-quality HapMap3 
SNPs only).

For MR analyses, we constructed genetic instruments for each 
vascular-risk trait based on genome-wide significant associations 
(P < 5 × 10−8) after clumping for linkage disequilibrium at r2 < 0.01 
(based on European and East Asian 1000 Genomes reference panels). 
We applied two-sample MR analyses in the GIGASTROKE summary 
statistics separately for individuals of European and East Asian ances-
try based on variant associations derived from the aforementioned 
sources. After extraction of the association estimates and harmoniza-
tion of their direction-of-effect alleles, we computed MR estimates with 
fixed-effect IVW analyses63. As a measure of pleiotropy, we assessed 
heterogeneity across the MR estimates for each instrument in the IVW 
MR analyses with Cochran’s Q statistic (P < 0.05 was considered to be 
significant)64. We further applied alternative MR methods that are more 
robust to the use of pleiotropic instruments: the weighted median 
estimator enables the use of invalid instruments under the assumption 
that at least half of the instruments used in the MR analysis are valid65; 
MR-Egger regression allows for the estimation of an intercept term, 
provides less precise estimates and relies on the assumption that the 
strengths of potential pleiotropic instruments are independent of their 
direct associations with the outcome66. The intercept obtained from 
MR-Egger regression was used as a measure of directional pleiotropy 

(P < 0.05 indicated significance)66. MR analyses were performed in R 
v.4.1.1 using the Mendelian Randomization package.

For all genetic correlation and MR analyses, we set statistical signifi-
cance at Bonferroni-corrected P < 4.17 × 10−3 in Europeans (correcting 
for 12 vascular-risk traits) and P <8.33 × 10−3 in East Asians (correcting 
for 6 vascular-risk traits).

Cross-ancestry fine mapping
Fine-mapping was performed separately for Europeans and East Asians 
using susieR v.0.9.112 on all variants within 3 Mb of the lead variant of 
each genomic risk locus (60 loci reached genome-wide significance 
in the IVW meta-analysis). Unrelated individuals from the UK Biobank 
(n = 420,000) and BBJ (n = 170,000) were used as ancestry-matched 
linkage-disequilibrium reference panels that fulfil the sample size 
requirement67. After extracting variants present in the linkage disequi-
librium reference panel, the default settings of susieR were used while 
allowing for a maximum of 10 putative causal variants in each locus. 
The fine-mapping results were checked for potential false-positive 
findings using a diagnostic procedure implemented in SuSiE. In brief, 
we compared observed and expected z-scores for each variant at a given 
locus and removed the variant if the difference between the observed 
and expected z-score was too high after manual inspection. We com-
pared the variants in credible sets of the same loci between Europeans 
and East Asians.

To detect putative causal regulatory variants, we conducted an in 
silico mutagenesis analysis using MENTR (mutation effect prediction 
on non-coding RNA transcription; https://github.com/koido/MENTR), a 
machine-learning method to precisely predict transcriptional changes 
induced by causal variants3,68. The in silico mutations predicted to 
have strong effects are highly concordant with the observed effects of 
known variants in a cell-type-dependent manner. Furthermore, MENTR 
does not use population datasets and is therefore less susceptible 
to linkage-disequilibrium-dependent association signals, enabling 
precise prediction of the effects of causal variants on transcriptional 
changes. From 1,274 variants in the credible sets from the European 
and East Asian fine-mapping, we searched FANTOM5 promoters and 
enhancers, obtained by cap analysis of gene expression, within ±100 kb 
from each variant. As a result, we found 37,878 variant–transcript pairs 
comprising 1,270 variants and 2,350 transcripts. We used MENTR with 
the pretrained FANTOM5 347 cell/tissue models + LCL models69–72 and 
extracted reliable predictions using the predetermined robust thresh-
old (absolute in silico mutation effects ≥ 0.1, achieving >90% concord-
ance for predicting effects on expression).

TWAS and PWAS
We performed TWAS using TWAS-Fusion19 to identify genes of which 
the expression is significantly associated with stroke risk. We restricted 
the analysis to tissues considered to be relevant for cerebrovascular 
disease, and used precomputed functional weights from 21 publicly 
available eQTL reference panels from blood (Netherlands Twin Registry;  
Young Finns Study)19,20, arterial and heart (GTEx v.7))17 and brain tis-
sues (GTEx v.7, CommonMind Consortium)17,18. Moreover, we used the  
newly developed cross-tissue weights generated in GTEx v.8 using 
sparse canonical correlation analysis (sCCA) across 49 tissues avail-
able on the TWAS-Fusion website, including gene expression models 
for the first three canonical vectors (sCCA1–3), which were shown to 
capture most of the gene expression signal73. TWAS-Fusion was then 
used to estimate the TWAS association statistics between predicted 
gene expression and stroke by integrating information from expression 
reference panels (SNP-expression weights), GWAS summary statistics 
(SNP-stroke effect estimates) and linkage disequilibrium reference 
panels (SNP correlation matrix)19. Transcriptome-wide significant 
genes (eGenes) and the corresponding eQTLs were determined using  
Bonferroni correction, based on the average number of features (5005.8 
genes) tested across all reference panels and correcting for the 5 stroke 

https://github.com/koido/MENTR
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phenotypes (P < 2.0 × 10−6). eGenes were then tested in conditional 
analysis as implemented using the Fusion software19. To ensure that 
the observed associations did not reflect random correlation between 
gene expression and non-causal variants associated with stroke, we 
performed a colocalization analysis on the conditionally significant 
genes (P < 0.05) to estimate the posterior probability of a shared causal 
variant between the gene expression and trait association (PP4)74. We 
used a prior probability of P < 2.0 × 10−6 for the stroke association. Genes 
presenting a PP4 ≥ 0.75, for which eQTLs did not reach genome-wide 
significance in association with stroke, and were not in linkage dis-
equilibrium (r2 < 0.01) with any of the lead SNPs of genome-wide sig-
nificant risk loci for stroke, were considered to be new, i.e. not within 
a genome-wide significant stroke risk locus.

Using similar parameters in TWAS-Fusion19, we also performed 
a proteome-wide association study. For this analysis, we used the 
precomputed weights for protein expression in DLPFC75 from the ROS/
MAP study (n = 376 individuals, n = 1,475 proteins)76 and the Banner 
Sun Health Institute study (n = 152 individuals, n = 1,145 proteins)77. 
Proteome-wide significant genes and the corresponding pQTLs were 
determined using Bonferroni correction, on the number of proteins 
tested across the reference panel and correcting for the 5 stroke phe-
notypes (P < 1.7 × 10−4 for ROS/MAP and P < 2.2 × 10−8 for the Banner 
Sun Health Institute study). We then followed the same method as 
described for the TWAS.

Brain single-cell expression analyses
Single-nucleus RNA-sequencing data of the DLPFC region of 24 ageing 
individuals chosen to represent the range of pathologic and clinical 
diagnoses of AD dementia, from the ROS/MAP cohorts, was obtained21. 
RNA profiles of cells annotated as endothelial, pericytes or smooth 
muscle cells and vascular leptomeningeal cells (VLMC) were used, and 
a pseudobulk RNA profile was generated for each cell type by averaging 
the expression of all genes across the cells. Average expression levels and 
the percentage of expressed genes were calculated for genes of interest 
using the DotPlot function from the Seurat package v.4.0.4 in R v.4.1.1.

We also conducted a cell-type enrichment analysis using the STEAP 
pipeline (https://github.com/ComPopBio/STEAP). This is an extension 
of CELLECT and uses S-LDSC78, MAGMA9 and H-MAGMA79 for enrich-
ment analysis. Stroke GWAS summary statistics were first munged. 
Expression specificity profiles were then calculated using human 
and mouse single-cell RNA-seq databases (Supplementary Table 28). 
Cell-type enrichment was calculated using three models: MAGMA, 
H-MAGMA (incorporating chromatin interaction profiles from human 
brain tissues in MAGMA) and stratified linkage-disequilibrium score 
regression. P values were corrected for the number of independent 
cell types in each database (Bonferroni correction).

Genomics-driven drug discovery
We used three methodologies for in-depth genomics-driven drug dis-
covery as described previously4: (1) an overlap enrichment analysis of 
disease-risk genes in drug-target genes in medication categories; (2) 
negative correlation tests between genetically determined case–con-
trol gene expression profiles and compound-regulated gene expres-
sion profiles; and (3) endophenotype MR. Details of the methods are 
described in the following sections. For the overlap enrichment analysis 
and the endophenotype MR-nominated drug targets, we curated drug 
candidates from four major drug databases: DrugBank23, Therapeutic 
Target Database (TTD)80, PharmGKB81 and Open Target Platform82. As 
for the endophenotype MR, we curated drugs with opposite effects 
against the signs of the MR effect estimates. By contrast, the negative 
correlation tests directly prioritized candidate compounds. We manu-
ally curated supporting evidence for candidate drugs and compounds.

Overlap enrichment analysis of disease-risk genes in drug-target 
genes in medication categories. We ran MAGMA9 and VEGAS28 to 

summarize variant-level P values into gene level and used the genes 
with FDR < 0.05 in either MAGMA or VEGAS2 as the disease-risk genes. 
We then used GREP22 to perform a series of Fisher’s exact tests for the 
enrichment of the disease-risk genes in the drug-target genes involved 
in the drug indication categories, Anatomical Therapeutic Chemical 
Classification System codes.

Negative correlation tests between genetically determined and 
compound-regulated gene expression profiles. We nominated the 
compounds with inverse effects on gene expression against genetically 
determined gene expression by using Trans-Phar24. In brief, genetically 
determined case–control gene expression was inferred for 44 tissues 
in the Genotype-Tissue Expression project (v.7)17 with FOCUS83, and 
the genes in the top decile for the absolute value of the z-score were 
used for the following correlation analysis. The Library of Integrated 
Network-based Cellular Signatures project (LINCS) CMAP L1000 library 
data84 were used for the compound library. After matching the tissues 
in GTEx with the cell lines in the LINCS L1000 library, we performed 
a series of Spearman’s rank correlation tests for 308,872 pairs of ge-
netically determined and compound-perturbed tissue- or cell-type 
specific gene expression profiles. We prioritized compounds with 
FDR < 0.1, as we previously showed that the compounds with FDR < 0.1 
contained plausible therapeutic targets with literature supports4.

Endophenotype MR. To pin-point the disease-causing proteins that 
were targeted by existing drugs, we performed MR analyses (specifi-
cally, a Wald ratio test) by using lead variants in pQTL as instrumental 
variables and five stroke phenotypes as outcomes: AS, AIS, CES, LAS 
and SVS. We used the tier 1 lead variants defined in ref. 85 to avoid con-
founding by horizontal pleiotropy. The tier 1 variants, summarized 
from five pQTL studies (n = 997 to 6,861)86–90, did not include variants 
with heterogeneous effect sizes among the studies or with a number of 
associated proteins of larger than five. We restricted the lead variants to 
the variants associated with drug-target proteins. For the lead variants 
of pQTLs that were missing in the stroke GWAS summary statistics, the 
proxy variants with the largest r2 were used if the r2 was greater than 0.8 
(1000 Genomes, European). In total, we used 277 lead variants for 218 
drug-target proteins for MR and considered FDR < 0.05 as the thresh-
old to identify significant associations. We used the TwoSampleMR R 
package91 for MR analysis. As post-MR quality controls, we performed 
(1) a directionality check of causal relationships by Steiger filtering92 
and (2) colocalization analysis for the proteins with FDR < 0.05. To 
examine colocalization assuming multiple causal variants per locus, 
coloc74 was applied to the decomposed signals by SuSiE12 for the variants 
within 500 kb upstream and downstream of the lead variants (coloc + 
SuSiE)93. If SuSiE did not converge after 10,000 iterations, coloc was 
used instead. coloc + SuSiE and coloc were run with their respective 
default parameters. For the two pQTL studies without public summary 
statistics86,90, we compared the r2 between the lead variants of the pQTL 
study and the stroke GWAS. We considered that colocalization occurred 
when the maximum posterior probability (that is, PP.H4) was greater 
than 0.75 or r2 was greater than 0.8.

To provide further support for our findings, we conducted MR analy-
ses with two additional recent independent pQTL datasets, using the 
same methodology and significance thresholds (FDR < 0.05 for MR and 
PP.H4 > 0.75 for colocalization) as above: one study comprised both 
plasma (n = 529) and cerebrospinal fluid (n = 835) pQTL datasets94, the 
second is one of the largest plasma pQTL studies conducted in 35,559 
Icelandic individuals95.

Protective rare variants
For the five genes targeted by inhibitors—VCAM1, F11, KLKB1, LAMC2 
and GP1BA—we extracted the associations of rare deleterious variants 
(MAF < 0.01) with stroke and stroke-related traits from the gene-based 
burden tests in the whole-exome sequencing data of >450,000 UK 
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Biobank participants31. As stroke and stroke-related traits, we extracted 
30 traits belonging to 9 vascular risk factor and disease categories 
(Supplementary Table 35). We applied Bonferroni correction and the 
corrected P-value threshold was 0.05/5/30 = 3.33 × 10−4 (5 and 30 rep-
resent the number of tested genes and traits, respectively).

PheWAS
PheWAS analysis was performed using R (v.4.0.3). We used the PheWAS 
R package96 (https://github.com/PheWAS/PheWAS) function create-
Phenotypes to translate ICD10 diagnosis codes into phecodes for the 
PheWAS analysis. We tested the associations between phecodes and 
genetic variants using logistic regression and adjusting for sex, birth 
year and ten genotype PCs. We applied Bonferroni correction to select 
statistically significant associations (number of tested phecodes: 1,809; 
number of tested SNPs: 8; corrected P-value threshold: 0.05/(1,809 × 8) =  
3.45 × 10−6). The results were visualized using the PheWAS library.  
To further characterize the associations of the genetic variants with 
other phenotypes, we searched for all eight SNPs in the PhenoScanner  
database97,98.

Polygenic risk prediction
We constructed iPGS models for stroke in European and East Asian 
individuals (Extended Data Fig. 10). For each ancestry, independent 
datasets were used for model training and evaluation. We used as input 
summary statistics data of multiple GWAS analyses for stroke outcomes 
and vascular-risk traits to derive iPGS models. We denote the number of 
input GWASs as N. For each of the N GWAS summary data, 37 candidate 
single-trait polygenic score (sPGS) models were generated using the 
P+T99,100, LDpred101 and PRScs102 algorithms with an ancestry-specific 
linkage-disequilibrium reference panel from the 1000 Genomes Pro-
ject103 (Supplementary Methods). The plink (v.1.90b6.8)104, LDpred 
(v.1.0.11)101 and PRScs.py (5 June 2021)102 programs were used to com-
pute the P+T, LDpred and PRScs models, respectively. Subsequently, 
among the 37 candidate models, the best sPGS model, which was 
defined as the model that showed a maximal improvement in AUC 
over a base model (age, sex and top five PCs were included in the base 
model), was selected using the model training dataset5,100. Then, N best 
sPGS models were selected from the N input GWASs. Among the N best 
sPGS models, we retained models that were significantly associated 
with AIS in the model-training dataset (Bonferroni-corrected P < 0.05).

Then, each retained best sPGS was z-transformed (zero mean and unit 
s.d.) over the model-training dataset, followed by elastic-net logistic 
regression105 to model the associations between the N sPGS variables 
and AIS with the adjustments for age, sex and top five genetic PCs. 
Two regularization parameters (α and λ) were optimized using tenfold 
cross-validation. Coefficients (weights) for the retained sPGS models 
were then determined by elastic-net logistic regression with the optimal 
regularization parameters, followed by integration of the sPGS models 
into a single iPGS model according to a formula presented previously5. 
Elastic-net regression was performed using the glmnet R package106.

The predictive ability of the iPGS model was estimated using the 
model-evaluation dataset, whereby we evaluated the improvement 
in C-index for a prospective cohort dataset or AUC for a case-control 
dataset over a base model that includes age, sex and top five genetic PCs.

We used EstBB data for the model training and evaluation of iPGS 
model in Europeans. The model-training dataset was composed of 1,003 
cases of prevalent AIS at the baseline and 8,997 control individuals. The 
control individuals were randomly selected among EstBB participants 
who had no history of AS at the baseline and who did not develop AS dur-
ing the follow-up. The remaining 102,099 EstBB participants were used 
for the model evaluation (mean ± s.d. age at the baseline, 44.0 ± 15.7 
years; 37.8% men). Among the participants in the model-evaluation 
dataset, 1,128 cases of incident AIS were observed during 4.6 ± 4.8 years. 
To derive the European iPGS model, we incorporated 5 ancestry-specific 
and 5 cross-ancestry stroke GWAS analyses (AS, AIS, LAS, SVS and CES) 

from the GIGASTROKE project, and 12 GWAS analyses of vascular-risk 
traits from other groups (Extended Data Fig. 10). To avoid the overlap 
of participants across datasets, the GWAS summary statistics for stroke 
outcomes were recalculated for the iPGS analysis by excluding the EstBB 
from the meta-analysis of GIGASTROKE studies. To enable compari-
son with a previous European iPGS model based on the MEGASTROKE 
GWAS5, we incorporated 12 GWAS analyses of vascular-risk traits (atrial 
fibrillation, CAD, T2D, SBP, DBP, TC, LDL-C, HDL-C, TG, BMI, height and 
smoking)54,56,59–61,107,108 into the GIGASTROKE-based iPGS model. The 
iPGS model for Europeans was further evaluated in two external cohorts 
of European ancestry (MVP and pooled data of clinical trials) as well as 
in two studies of participants with African ancestry (MVP and SIREN).

For the East Asian iPGS model, we used BBJ data for the model train-
ing and evaluation. The model-training dataset was composed of 577 
cases of AIS and 9,232 control individuals, whereas there were 1,470 
cases of AIS and 40,459 control individuals in the model-evaluation 
dataset. The mean ± s.d. of age at recruitment was 69.2 ± 10.8 years 
for cases and 66.5 ± 12.5 years for controls in the model evaluation 
dataset. The percentage of male participants was 70.0% for cases and 
53.1% for controls. The two case–control datasets were not included in 
the meta-analysis of GIGASTROKE studies and, therefore, the overlap 
of participants across datasets was avoided. To derive the East Asian 
iPGS model, we incorporated 5 ancestry-specific and 5 cross-ancestry 
stroke GWAS analyses (AS, AIS, LAS, SVS and CES) from the GIGASTROKE 
project, and 12 GWAS analyses of vascular-risk traits (Extended Data 
Fig. 10). The iPGS model for East Asian individuals was further evalu-
ated in an external study of East Asian ancestry (TWB).

GRS in clinical trials
Participants who had consented for genetic testing and who were of 
European ancestry from the ENGAGE AF-TIMI 48 (effective anticoagula-
tion with factor Xa next generation in atrial fibrillation)109, SOLID-TIMI 52 
(stabilization of plaques using darapladib)110, SAVOR-TIMI 53 (saxaglip-
tin assessment of vascular outcomes recorded in patients with diabetes 
mellitus)111, PEGASUS-TIMI 54 (prevention of cardiovascular events in 
patients with prior heart attack using ticagrelor compared to placebo 
on a background of aspirin)112 and FOURIER (further cardiovascular 
outcomes research with PCSK9 inhibition in patients with elevated 
risk)113 trials were included in this analysis. Methods for genotyping and 
imputation have previously been published35,114 and are summarized 
in Supplementary Table 2. A set of 58 sentinel variants at stroke-risk 
loci identified in the IVW meta-analysis was used to calculate a GRS for 
each trial participant and identify tertiles of genetic risk (Supplemen-
tary Table 57). A Cox model was used to estimate HRs for ischaemic 
stroke associated with the quantitative GRS and across genetic risk 
groups, adjusted for clinical risk factors (age, sex, hypertension, hyper-
lipidaemia, diabetes, smoking, CAD, atrial fibrillation and congestive 
heart failure) and the first five principal components of population 
stratification. Analyses were conducted primarily in participants of 
European ancestry (n = 51,288, with 960 incident AIS)—with secondary  
analyses in the much smaller East Asian (n = 1,312, with 27 incident AIS) 
ancestry subset—using the AS cross-ancestry IVW meta-analysis effect 
estimates as weights for the primary analysis and ancestry-specific, 
as well as AIS effect estimates for secondary analyses. We also looked 
separately at associations with incident stroke in participants with and 
without previous stroke.

Reporting summary
Further information on research design is available in the Nature 
Research Reporting Summary linked to this article.

Data availability
Summary statistics generated by the GIGASTROKE consortium across 
ancestries and stroke subtypes are available in the GWAS Catalog 
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(GCST90104534–GCST90104563). The integrated polygenic risk 
score models of stroke in Europeans and East Asians are available in 
the PGS Catalog (PGS002724 and PGS002725). Individual level data 
can be requested directly from the authors of the contributing stud-
ies, listed in Supplementary Table 1. Single-nucleus RNA-seq data have 
been deposited in the SYNAPSE database as part of the Religious Orders 
Study and Memory and Aging Project (ROSMAP) (https://www.syn-
apse.org) and through the RADC Resource Sharing Hub (https://www.
radc.rush.edu). We used publicly available data from GTEx (https://
gtexportal.org/home/), the Gusev laboratory (http://gusevlab.org/
projects/fusion/), the FinnGen Freeze 7 cohort (https://www.finngen.
fi/en/access_results), PhenoScanner v.2 database (http://www.phenos-
canner.medschl.cam.ac.uk), pQTL summary statistics (https://doi.
org/10.1038/s41588-020-0682-6, http://www.phpc.cam.ac.uk/ceu/
proteins/, http://metabolomics.helmholtz-muenchen.de/pgwas/index.
php, https://zenodo.org/record/264128), deCODE genetics (https://
www.decode.com/summarydata/) and summary statistics using the 
UK Biobank whole-exome sequencing (https://doi.org/10.1038/s41586-
021-04103-z).

Code availability
The code for computation of the integrated polygenic risk score 
of stroke are available at GitHub (https://github.com/hacchy1983/
iPGS-construction). The drug discovery analysis was conducted using 
the following publicly available tools: GREP (https://github.com/saori-
sakaue/GREP), Trans-Phar (https://github.com/konumat/Trans-Phar), 
and the TwoSampleMR (https://mrcieu.github.io/TwoSampleMR/), 
coloc (https://chr1swallace.github.io/coloc/) and susieR (https://ste-
phenslab.github.io/susieR/index.html) R packages.
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Extended Data Fig. 1 | GIGASTROKE study workflow. Study workflow and 
rationale. EUR: European; EAS: East-Asian; AFR: African; HIS: Hispanic; SAS: 
South Asian; AS: any stroke; AIS: any ischaemic stroke; LAS: large artery stroke; 
CES: cardioembolic stroke; SVS: small vessel stroke; GWAS: genome-wide 
association study; IVW: inverse-variance weighted; MR-MEGA: meta-regression 
of multi-ethnic genetic association; COJO:conditional and joint analysis; 
VEGAS2:versatile gene-based association study 2; MTAG: multi-trait analysis of 
GWAS; TWAS: Transcriptome-wide association study; coloc: Colocalisation 
Test; PWAS: Proteome-wide association studies; pQTL-MR: protein 

quantitative trait loci Mendelian Randomization; SuSiE: sum of single effects 
model; MENTR: Mutation Effect prediction on Non-coding RNA TRanscription; 
PIP: posterior probability; FDR: false discovery rate; LDSC-COV: covariate- 
adjusted LD score regression; MR-Egger: Mendelian randomization-Egger; 
GREP: genome for REPositioning drugs; ATC: Anatomical Therapeutic Chemical; 
P+T: pruning and thresholding; PRScs: polygenic risk score under continuous 
shrinkage; BBJ: Biobank Japan; TIMI: thrombolysis in myocardial infarction; 
MVP: Million Veteran Program; SIREN: Stroke Investigative Research and 
Educational Network.



Extended Data Fig. 2 | Graphical representation of replication results. 
Shown are effect sizes and 95% confidence intervals for the 48 replicated IVW 
loci for (A) cross-ancestry discovery and replication association results for any 

stroke and (B) cross-ancestry discovery and replication association results for 
any ischaemic stroke. OR = odds ratio; 95% CI = 95% confidence interval.
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Extended Data Fig. 3 | Increase in power with increase in population 
diversity. The scatter plot shows the number of loci identified with 
incremental increase in sample size and population diversity. The diagonal  
line reflects the increase in number of genome-wide significant loci with 
increasing sample size of European ancestry only. The increase in number of 
loci departs from this line when adding non-European ancestry samples; EUR: 
European; EAS: East Asian; AFR: African; HIS: Hispanic; SAS: South Asian; 
BBJ: Biobank Japan; CKB: China Kadoorie Biobank. Strat0_EUR: N = 22,634 
stroke cases (European population-based longitudinal cohorts); Strat1_
Strat0&EUR: N = 26,253 stroke cases, adding Spanish and Estonian samples; 

Strat2_Strat1&EUR: N = 32,980 stroke cases, adding German and Dutch samples;  
Strat3_Strat2&EUR: N = 42,783, adding large European biobanks; Strat4_Strat3& 
EUR: N = 73,652 stroke cases, adding MEGASTROKE European; Strat5_Strat4& 
EAS: N = 91,303 stroke cases, adding Japanese BBJ; Strat6_Strat5&EAS: N = 99, 
661 stroke cases, adding Chinese CKB; Strat7_Strat6&EAS: N = 101,065 stroke 
cases, adding other East Asian samples; Strat8_Strat7&AFR: N = 105,026 stroke 
cases, adding African ancestry samples; Strat9_Strat8&HIS: N = 106,542  
stroke cases, adding South American ancestry samples; Strat10_Strat9&SAS, 
N = 110,182 stroke cases, adding South Asian ancestry samples.



Extended Data Fig. 4 | Association of stroke risk variants with vascular risk 
traits. We report only associations for which the stroke lead variant of a proxy 
in very high LD (r2 > 0.9) showed genome-wide significant association with the 
vascular risk trait in a prior GWAS. Colours represent the Z-scores of 
association of stroke risk increasing alleles with the trait.
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Extended Data Fig. 5 | Genetic correlations and Mendelian randomization 
causal estimates of 12 vascular risk factors and disease traits with stroke 
(any and stroke subtypes), in European ancestry participants. Larger 
squares correspond to more significant P-values, with genetic correlations or 
Mendelian randomization (MR) causal estimates (expressed in Z-scores) 

significantly different from zero at a P < 0.05 shown as a full-sized square. 
Genetic correlations or causal estimates that are significant after multiple 
testing correction (P < 4.17 × 10−3) are marked with an asterisk. Two-sided 
P-values were calculated using LD score regression (LDSC) for genetic 
correlations and inverse variance weighted analysis for MR.



Extended Data Fig. 6 | Genetic correlations and Mendelian randomization 
causal estimates of 10 vascular risk factors and disease traits with stroke 
(any and stroke subtypes), in East Asian ancestry participants. Larger 
squares correspond to more significant P-values, with genetic correlations or 
Mendelian randomization (MR) causal estimates significantly different from 

zero at a P < 0.05 shown as a full-sized square. Genetic correlations or causal 
estimates (expressed in Z-scores) that are significant after multiple testing 
correction (P < 5 × 10−3) are marked with an asterisk. Two-sided P-values were 
calculated using LD score regression (LDSC) for genetic correlations and 
inverse variance weighted analysis for MR. CPD: cigarettes per day.
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Extended Data Fig. 7 | Transcriptome-wide association study of stroke in 
multiple tissues. Heatmap of the transcriptome-wide association studies 
(TWAS) of stroke (any stroke and stroke subtypes) showing transcriptome-wide 
significant associations with supporting evidence from colocalization; 
Coloured squares are TWAS significant associations based on two-sided 
p-values after multiple testing correction (p < 2.0 × 10−6); * Conditionally 

significant (p < 0.05) and COLOC PP4 ≥ 0.75; Genes are presented on the x-axis, 
those underlined in blue are in a stroke GWAS locus, those underlined in purple 
are not within a genome-wide significant stroke risk locus (Methods); Tissue 
types are on the y-axis (blue: cross-tissue weights; pink: arterial; orange: heart; 
green: brain).
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(A) Single-cell gene expression data of TWAS-COLOC genes in dorsolateral 
prefrontal cortex (ROS-MAP study)

(B) Proteome-wide association study (PWAS) of stroke in brain tissue

(C) Cell-type enrichment in human and mouse single 
cell RNA-seq databases using STEAP
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Extended Data Fig. 8 | Single-nucleus gene expression/enrichment analysis 
and proteome-wide association study (PWAS) of stroke in brain tissue.  
(A) Single-nucleus gene expression data of TWAS-COLOC genes in dorsolateral 
prefrontal cortex (ROS-MAP study)21; Dot plot of the mean expression level in 
expressing cells (colour) and percent of expressing cells (circle size) of selected 
genes across different cell types; (B) Proteome-wide association study (PWAS) 
of stroke in brain tissue; Box plot showing effect estimates (odds ratio) for 
associations of pQTL of ICA1L in the ROS-MAP (N = 376 independent samples) 
and Banner (N = 152 independent samples) studies with any stroke (AS) and any 
ischaemic stroke (AIS), identified in PWAS after multiple testing correction. 
Odds ratios ± 95% CIs are shown. Dashed line indicates an odds ratio of 1. 
Two-sided p-values were computed using the TWAS-COLOC approach.  

(C) Cell-type enrichment in human and mouse single cell RNA-seq databases 
using STEAP; the UpSet plot displays the number of significant enrichment 
results, by stroke subtype (horizontally; 2 for CES, 5 for AIS, 6 for AS, and 12 for 
LAS) and by cell subtype (vertically; 2 cell-types show significant enrichment in 
LAS, AIS, and AS, 2 cell-types in AIS and AS, and 1 cell-type in LAS and AS, while  
9 cell-types show significant enrichment in LAS only, 2 in CES only and 1 in  
AS and AIS respectively); details are displayed in Supplementary Table 29. AS: 
any stroke; AIS: any ischaemic stroke; LAS: large artery stroke; CES: cardioembolic 
stroke; VLMC: vascular and leptomeningeal cells, OPC: oligodendrocyte 
progenitor cells, SMC: smooth muscle cells; VSMCA: vascular smooth muscle 
cells, arterial.
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Extended Data Fig. 9 | Drug target pQTL PheWAS. PheWAS in Estonian 
biobank for rs2289252, a cis-pQTL of F11. Each triangle in the plot represents 
one Phecode and the direction of the triangle represents direction of effect. 

Two-sided P-values were calculated using logistic regression to test association 
between the pQTL and Phecodes (p = 3.45 × 10−6 for phenome-wide 
significance).



(A) Derivation of standard PGS models
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(B) Derivation and evaluation of integrative PGS models
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Extended Data Fig. 10 | Derivation and evaluation of integrative polygenic 
score models for Europeans and East Asians. (A) With summary statistics  
of 22 GWAS (10 GIGASTROKE and 12 on vascular risk factors) and linkage 
disequilibrium reference data of 1000 Genomes Europeans (n = 503) and 
East Asians (n = 504), we computed 37 candidate PGS models using P+T, 
LDpred, and PRScs algorithms. For each GWAS, the best PGS model was 
selected based on the maximal area under the curve (AUC) values in the 
training dataset of Europeans (any ischaemic stroke [AIS] case-control data, 
Ncases/Ncontrols = 1,003/8,997) and East Asians (AIS case-control data, 
Ncases/Ncontrols = 577/9,232). Out of 22 selected PGS models derived from the 
22 GWAS, 11 and 7 were significantly associated with AIS in the European and 
East Asian training dataset respectively (Bonferroni-corrected P < 0.05).  
(B) The significant PGS models were used as the variables for elastic-net logistic 
regression and the weights for the variables were trained using the model 
training dataset. The European iPGS model consisting of 1,213,574 variants and 

an East-Asian iPGS model consisting of 6,010,730 variants were constructed by 
combining the 11 and 7 significant PGS models using the elastic-net derived 
weights respectively. The European and East Asian iPGS models were evaluated 
in the European (a European prospective cohort data with 102,099 participants 
including 1,128 incident IS cases) and East-Asian (AIS case-control data, Ncases/
Ncontrol = 1,470/40,459) model evaluation dataset (Methods); AS indicates any 
stroke; AIS, any ischaemic stroke; LAS, large artery stroke; SVS, small vessel 
stroke; CES, cardioembolic stroke; AF, atrial fibrillation; CAD, coronary artery 
disease; T2D, type 2 diabetes; SBP, systolic blood pressure; DBP, diastolic blood 
pressure; TC, total cholesterol; LDL-C, low-density lipoprotein cholesterol; 
HDL-C, high-density lipoprotein cholesterol; TG, triglyceride; BMI, body mass 
index; AUC indicates area under the curve; EUR, European; EAS, East Asian; 
GWAS, genome-wide association study; LD, linkage disequilibrium; PGS, 
polygenic score.
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