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Previous genome-wide association studies (GWASs) of stroke — the second leading
cause of death worldwide — were conducted predominantly in populations of
European ancestry'?. Here, in cross-ancestry GWAS meta-analyses of 110,182 patients
who have had a stroke (five ancestries, 33% non-European) and 1,503,898 control
individuals, we identify association signals for stroke and its subtypes at 89 (61 new)
independentloci: 60 in primary inverse-variance-weighted analyses and 29 in
secondary meta-regression and multitrait analyses. On the basis of internal
cross-ancestry validation and an independent follow-up in 89,084 additional cases

of stroke (30% non-European) and 1,013,843 control individuals, 87% of the primary
stroke risk loci and 60% of the secondary stroke risk loci were replicated (P < 0.05).
Effect sizes were highly correlated across ancestries. Cross-ancestry fine-mapping, in
silico mutagenesis analysis®, and transcriptome-wide and proteome-wide association
analyses revealed putative causal genes (such as SH3PXD2A and FURIN) and variants
(such as at GRKS and NOS3). Using a three-pronged approach®*, we provide genetic
evidence for putative drug effects, highlighting F11, KLKB1, PROC, GP1BA, LAMC2 and
VCAML1 as possible targets, with drugs already under investigation for stroke for F11
and PROC. A polygenic score integrating cross-ancestry and ancestry-specific stroke

GWASs with vascular-risk factor GWASs (integrative polygenic scores) strongly
predicted ischaemic stroke in populations of European, East Asian and African
ancestry’. Stroke genetic risk scores were predictive of ischaemic stroke independent
of clinical risk factorsin 52,600 clinical-trial participants with cardiometabolic
disease. Our results provide insights to inform biology, reveal potential drug targets
and derive genetic risk prediction tools across ancestries.

Strokeis the second leading cause of death worldwide, responsible for
approximately 12% of total deaths, withanincreasing burden particu-
larly inlow-income countries ®. Characterized by a neurological deficit
of suddenonset, stroke is predominantly caused by cerebral ischaemia
(of whichthe main aetiological subtypes arelarge-artery atherosclerotic
stroke (LAS), cardioembolic stroke (CES), and small-vessel stroke (SVS))
and, less often, by intracerebral haemorrhage (ICH). The frequency
of stroke subtypes differs between ancestry groups as exemplified by
a higher prevalence of SVS and ICH in Asian and African populations
compared with European populations. Most genetic loci associated
with stroke have beenidentified in populations of European ancestry.
The largest published GWAS meta-analysis to date (67,162 cases and
454,450 control individuals, MEGASTROKE) reported 32 stroke risk
loci'. To identify new genetic associations and provide insights into
stroke pathogenesis and putative drug targets, we first performed
a cross-ancestry GWAS of 1,614,080 participants, including 110,182
patients who had a stroke, and followed up genome-wide significant
signalsinanindependent dataset of 89,084 patients who had a stroke
and 1,013,843 controlindividuals. We then characterized the identified
strokerisk loci by leveraging expression and protein quantitative trait
loci, cross-ancestry fine-mapping and shared genetic variation with
othertraits. Finally, we used aseries of approaches for genomics-driven
drugdiscovery for stroke prevention and treatment, and examined the

prediction of stroke with polygenic scores (PGSs) across ancestries in
the setting of both population-based studies and clinical trials.

Geneticdiscovery from GWASs

We performed afixed-effect inverse-variance weighted (IVW) GWAS
meta-analysis on 29 population-based cohorts or biobanks with inci-
dent stroke ascertainment and 25 clinic-based case-control studies,
comprising up to 110,182 patients who had a stroke and 1,503,898
control individuals (of whom 45.5% were in longitudinal cohorts or
biobanks), nearly doubling the number of cases in previous stroke
GWASs (the GIGASTROKE initiative; Supplementary Table 1 and
Extended DataFig.1). Genome-wide genotyping and imputation charac-
teristics are described in Supplementary Table 2. The cohortsincluded
individuals of European (66.7% of the patients who had a stroke), East
Asian (24.8%), African American (3.7%), South Asian (3.3%) and Hispanic
(1.4%) ancestry. Analyses were performed for any stroke (AS; compris-
ing ischaemic stroke, ICH, and stroke of unknown or undetermined
type), any ischaemic stroke regardless of subtype (AIS; n = 86,668)
and ischaemic stroke subtypes (LAS, n=9,219; CES, n=12,790; SVS,
n=13,620). We also conducted separate GWAS analyses of incident
AS and AIS (n=32,903 and n =16,863, respectively) in longitudinal
population-based cohort studies.
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Fig.1|Identifying genetic variants thatinfluence strokerisk.ldeogram
showing 89 genome-wide significant stroke-risk loci. The shapes correspond
toancestry:circles, cross-ancestry (CROSS-ANC); diamonds, Europeans (EUR);
triangles, East Asians (EAS); squares, African Americans (AFR) or South Asians
(SAS). Colours correspond to stroke types: green, AS; red, AIS; light blue, SVS;
darkblue, CES; purple, LAS. The nearest genesto lead variants are displayed.

Wetested up toaround 7,588,359 single-nucleotide polymorphisms
(SNPs) with a minor allele frequency (MAF) of 20.01 for association
with stroke. The linkage-disequilibrium score intercepts for our
ancestry-specific GWAS meta-analyses ranged from 0.91to 1.12, sug-
gesting that there was no systematic inflation of association statistics
(Supplementary Table 3). By performing IVW GWAS meta-analyses, we
identified variants associated with stroke at genome-wide significance
(P<5x10"%) at60loci, of which 33 were new (Fig.1and Supplementary
Table4).Lead variants at all of the new loci were common (MAF > 0.05),
except for low-frequency intronic variants in THAPS (MAF = 0.02, in
complete association (2 =1) with variantsin the 5 UTR of NRCAM) asso-
ciated with cross-ancestry incident AS/AIS, and in COBL (MAF = 0.04)
associated with AS/AISin South Asian individuals. Most of the associa-
tions for these 60 loci were with AS (48 loci, 23 new) and AIS (45 loci,
18 new), and one of the AIS loci was associated only with incident AIS
(Supplementary Table 4c). Although AlS subtypes were not availablein
some population-based cohorts (Supplementary Table 1), genome-wide
significance was reached for 4 loci for LAS, 8 for CES and 7 for SVS (of
which 1,3 and 3 were new, respectively; Supplementary Table 4). Our
resultsinclude alarge and comprehensive description of stroke genetic
risk variantsin each of the five represented ancestries. In cross-ancestry
meta-analyses, 53 loci (51 loci after controlling for ancestry-specific
linkage-disequilibrium score intercepts) reached genome-wide sig-
nificance (Supplementary Table 4), whereas 42 loci were genome-wide
significant inindividual ancestries (35 in Europeans, 6 in East Asians,
linSouth Asians and 2 in African Americans; Supplementary Table 4).
Using conditional and joint analysis (GCTA-CQJO)”, we confirmed three
independent signals at PITX2 and two at SH3PXD2A' (CES in Europeans;
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Lociarecharacterized as follows, on the basis of replication results (Methods):
bold with asterisk, high confidence; bold without asterisk, intermediate
confidence; notbold, low confidence; underlined, lociidentified in secondary
MR-MEGA and MTAG analyses. Black and grey font indicate new and known loci,
respectively. The numbers at the top indicate the chromosome.

Supplementary Table 5). We also performed cross-ancestry gene-based
association tests using VEGAS2® and MAGMA?, which revealed 267
gene-wide significant associations (P < 2.63 x 107°) at 39 loci, of which
14 were in 8 new loci that did not reach genome-wide significance in
thesingle-variant analyses (AGAPS5/SYNPO2L/SEC24C/CHCHDI, CD96,
HNRNPAO, MAMSTR, PPM1H, RALGAPA1, USP34 and USP38; Supple-
mentary Tables 6 and 7).

Next, we conducted a secondary cross-ancestry GWAS meta-analysis
using MR-MEGA'®, which accounts for the allelic heterogeneity between
ancestries. We identified three additional genome-wide significant
loci for AS (all new), near TSPAN19, and inintrons of DAZL and SHOCI,
allshowing high heterogeneity inallelic effects across ancestries (het-
erogeneity P < 0.01; Supplementary Table 8). To further enhance the
statistical power for AIS subtypes, we conducted secondary multitrait
analyses of GWASs (MTAG)" in Europeans and East Asians, including
traits correlated with specific stroke subtypes, namely (1) coronary
artery disease (CAD) for LAS, both caused by atheroma; (2) atrial
fibrillation for CES, as its main underlying cause; and (3) white mat-
ter hyperintensity volume (WMH, an MRI-marker of cerebral small
vessel disease) for SVS (available in Europeans only). In Europeans,
11 additional loci were associated with LAS (10 new), 3 with SVS (all
reportedinarecent SVS GWAS?) and 5 with CES (all new; Supplementary
Tables 9-11). Moreover, 18 and 15 additional genome-wide significant
associations wereidentified (all new) for ASand AlS, respectively, using
MTAG with WMH, CAD and atrialfibrillation (Supplementary Tables 12
and 13). In East Asian individuals, one locus was associated with AS
(FGF5) and one with LAS (HDAC9, new in East Asians) using MTAG. This
brings the number of identified stroke-risk loci from primary (IVW)



and secondary (MR-MEGA and MTAG) analyses to 89 in total (61 new),
of which 69 were associated with AS, 45 with AIS, 15 with LAS, 13 with
CESand 10 with SVS (of these 44, 33,11, 8 and 3 were new, respectively;
Fig.1and Supplementary Tables 4, 8 and 9-14).

Independent follow-up of GWAS signals

We followed up genome-wide significant stroke-risk loci both inter-
nally and externally. First, we sought to replicate the 42 stroke-risk
loci that reached genome-wide significance in individual ancestries
inatleastone other ancestry group among the discovery samples. We
successfully replicated, with consistent directionality, 10 of these loci
at P<1.19 x107% (accounting for the number of loci tested), of which 7
were genome-wide significant in Europeans, 1in East Asians, and 2 in
both Europeans and East Asians. An additional 15 loci showed nominal
association (P < 0.05) in at least one other ancestry (Supplementary
Table15).

Second, we gathered anindependent dataset of 89,084 individuals
who had astroke (AS; of which 85,546 AIS; 70.0% European, 15.6% African
American, 10.1% East Asian, 4.1% Hispanic and 0.1% South Asian) and
1,013,843 control individuals, mostly from large biobanks, for external
replication (the biobank setting did not allow suitable ischaemic stroke
subtype analyses). Out of the 60 loci that reached genome-wide sig-
nificancein the VW meta-analyses, 48 loci (80%) replicated at P< 0.05
with consistent directionality (Extended Data Fig. 2), of which 31(52%)
replicated at P< 8.2 x10™* (accounting for the number of loci tested)
(Supplementary Table 16). When considering both the internal and
external follow-up, 52 (87%) of the 60 IVW loci replicated, of which
37 replicated with high confidence, and 15 with intermediate confi-
dence (Methods, Fig.1and Supplementary Table 14). The 8 loci that
did not replicate were labelled as low confidence (Methods and Sup-
plementary Table 14). Four of these were ethnic specificand three were
low-frequency variants that were monomorphicinsome ancestries and
were therefore probably underpowered for replication.

Within the secondary analyses, none of the three MR-MEGA loci
replicated, although one was borderline significant (Supplementary
Table 16). Of the 26 MTAG loci, 18 (69%) replicated with AS or AIS at
P<0.05, of which 9 (35%) replicated with high confidence (P<1.7 x 1073,
accounting for 29 secondary loci tested; Supplementary Table 16). Of
the eight MTAG loci that did not replicate, seven showed a consist-
ent directionality and four were subtype specific and were therefore
underpowered to detect associations with AS or AlS.

Cross-ancestry effects and fine-mapping

For the 60 loci associated with stroke risk derived from the IVW
meta-analyses, we first demonstrated the added value in terms of locus
discovery of including non-European samples, showing a clear gainin
power beyond sample size increase, compared with the incremental
addition of European ancestry samples (Extended Data Fig. 3). We next
compared the per-allele effect size across the three ancestries with the
largest sample size (European, East Asian, African American). Corre-
lations of per-allele effect sizes of index variants varied from r= 0.55
(European with African American) tor = 0.66 (European with East Asian)
and r=0.74 (East Asian with African American; Fig. 2a).

To identify putative causal variants at stroke-risk loci identified
through IVW meta-analyses, we performed multiple-causal-variant
fine-mapping using SuSiE™, separately in European and East Asian
participants (Methods). Across stroke types, we identified 110 and 16
95% credible set-trait pairs in European and East Asian participants,
respectively, each of which having a 95% posterior probability of con-
taining a causal variant, with multiple credible sets identified at 6 (in
Europeans) and 1 (in East Asians) stroke-risk loci (Supplementary
Tables 17-19). Within the credible sets identified in European partici-
pants, 17 variants were found to have a posterior inclusion probability

(PIP) of >0.9. We found overlapping credible sets between European
and East Asian participants at SH3PXD2A (19 overlapping variants),
suggesting that there is cross-ancestry-shared genetic architecture
at this locus (Fig. 2b). Two loci had credible sets with a single variant
(rs10886430 at GRKS (PIP = 0.999), associated with GRKS5 platelet gene
expression and thrombin-induced platelet aggregation®, and rs1549758
at NOS3, PIP = 0.995), probably representing strong targets for func-
tional validation.

Although there were six non-synonymous variants among cred-
ible sets (rs671 (ALDH2), rs8071623 (SEPT4), rs35212307 (WDR12),
172932557 (CARF), rs11906160 (MYH7B) and rs2501968 (CENPQ)),
exonic variants for coding RNA within credible sets were few (1.2%). To
detect putative causal regulatory variants, we conducted an in silico
mutagenesis analysis using MENTR, a machine-learning method to
precisely predict transcriptional changes caused by causal variants>.
From credible sets, we obtained 78 robust predictions of variant-
transcript-model sets comprising 13 variants and 19 transcripts (Sup-
plementary Table 20), involving multiple cell types, consistent with the
diversity of mechanisms that underlie stroke aetiology. For example,
the Gallele of rs12476527 (5’ UTR of KCNK3) is arisk allele for stroke and
was predicted to increase KCNK3 expression in kidney cortex tubule
cells, despite no expression quantitative trait loci (eQTL) of this variant
being reported in Genotype-Tissue Expression (GTEX, v.8) oreQTLgen
(2019-12-23). The same G allele has been associated with higher systolic
blood pressure™. Furthermore, three variants (rs12705390 at PIK3CG,
rs2282978 at CDK6 and rs2483262 at PRDM16) were predicted to affect
the expression of along non-coding RNA and enhancer RNAs, predomi-
nantly in endothelial cells, as well as other vascular cells and visceral
preadipocytes, whereas a promoter variant of SH3PXD2A was predicted
to modulate its expression in macrophages.

Characterizing stroke-associated loci

VEGAS2Pathway® analysis revealed significant enrichment
(P<5.01x107%) of stroke-risk loci in pathways involved in (1) carboxy-
lation of amino-terminal glutamate residues required for the activation
of proteinsinvolvedinblood clot formation and regulation; (2) negative
regulation of coagulation; and (3) angiopoietin receptor Tie2-mediated
signalling, involved in angiogenesis (Supplementary Table 21).

We examined shared genetic variation with 12 (in Europeans) and 10
(in East Asians) vascular risk factors and disease traits (Methods and
Supplementary Methods). In Europeans, the lead variants for stroke
at57 of the 89 primary and secondary risk loci (64.0%) were associated
(P<5x107®) withat least one vascular trait, most frequently blood pres-
sure (33 loci, 37.1%; Extended Data Fig. 4 and Supplementary Table 22).
After correction for multiple testing (Methods; P< 4.17 x 107%), all of the
vascular-risk traits except for low-density lipoprotein (LDL)-cholesterol
showed significant genetic correlation (r,) with at least one stroke
type, the strongest correlations being for CAD and LAS (r, = 0.73), atrial
fibrillation and CES (r,= 0.63), and systolic blood pressure (SBP) with
all stroke types (r, ranging from 0.21 for CES to 0.49 for LAS and SVS;
Extended DataFig.5and Supplementary Table 23). Using two-sample
Mendelian randomization (MR), we found evidence for a possible causal
association for every vascular-risk trait except for triglycerides with at
least one stroke type (P < 4.17 x 107), with some subtype-specific asso-
ciation patterns. Genetic liability to WMH was associated with increased
risk of SVS but not other stroke subtypes, whereas genetic liability to
venous thromboembolism was associated with AS, AIS, CES and LAS,
but notSVS (Extended DataFig. 5 and Supplementary Table 24). Owing
to a limited overlap between the European GIGASTROKE sample and
cohorts included in GWASs for the exposure traits, we ran sensitivity
analyses weighting our geneticinstruments on the basis of asub-sample
of the UK Biobank, excluding cases included in GIGASTROKE'. The
notable consistency of these with the main analyses confirmed their
robustness against weak instrument bias (Supplementary Table 25).
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Fig.2|Effect-size comparison across ancestry groups of lead variants
identifiedinstroke GWASs and cross-ancestry fine-mapping. a, Plotsshowing
the Pearson’s correlation coefficient (r) between the effect sizes (f) of the 60
stroke-risk alleles on AS significant after multiple-testing correction (P < 0.017)
in Europeans and East Asians (left; r (95% CI) = 0.66 (0.47-0.79), P=1x107);
Europeans and African Americans (middle; r (95% CI) = 0.55 (0.33-0.71),
P=2x107%);and East Asians and African Americans (right; r (95% Cl) = 0.74
(0.58-0.85), P=8x107%). n= 60 independent stroke-risk variants from the VW
meta-analyses were used to compute Pearson’s correlation coefficients (r) of
theeffectsizes between ancestries. The nearest geneis reported for SNPs
showinga differencein effectsize (3, absolute value) of >0.05 between a pair
ofancestries. The dotsrepresent the effect-size () estimates and the bars
represent the 95% Cl of the estimates. Two-sided Pvalues of the deviation of
Pearson’s correlation coefficient fromzero arereported. Colour corresponds
togenome-wide significant association (P <5 x 1078 inindividual ancestries:

We confirmed directionality using the Steiger test (Supplementary
Table 24) and ruled out reverse causation with reverse MR (Supple-
mentary Table 26). In East Asian individuals, SBP, diastolic blood
pressure (DBP), body mass index (BMI) and atrial fibrillation showed
significant genetic correlation with AS (r, = 0.45, 0.39, 0.24 and 0.32
versusr,=0.36,0.21,0.22 and 0.44 in Europeans) and AlS (except for
BMI), with evidence for a causal association of SBP and DBP with AS,
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purple, Europeanonly (tcross-ancestry); green, East Asian only
(+cross-ancestry); yellow, African Americanonly (cross-ancestry); blue,
bothancestries (+cross-ancestry); red, cross-ancestry only; grey, not
genome-wide significantin two plotted ancestriesandin cross-ancestry.

b, Locus plots of variants at SH3PXD2A in five ancestries. Fine-mapped variants
areshownonly in European and East Asian individuals (insufficient power

for otherancestries). Variants are coloured on the basis of their linkage
disequilibrium with the cross-ancestry lead variant (rs4918058), shown by the
purple diamonds. In the fine-mapping plots, variants in the SuSiE 95% credible
sets (CS) areshown. Shared variants between credible sets of European and
East Asian participantsareindicated by blackcircles. Thered verticallines
represent the position of thelead variants in European (rs55983834) and East
Asian (rs4918058) participants. The grey dashed horizontal lines represent
P=5x107% Thelinkage disequilibrium of each ancestry was derived from the
1000 Genomes Project.

AIS and SVS; CAD with AS, AlS and LAS; and atrial fibrillation with CES
(Extended Data Fig. 6 and Supplementary Tables 23 and 24). Notably,
MR analyses performed with binary exposures should be interpreted
with caution owing to the potential violations of the exclusion restric-
tion assumption®,

Next, to generate hypotheses of target genes and directions of effect,
we conducted transcriptome-wide association studies (TWAS) using



Methods Drug-target genes Example candidate drugs

FGA ————— Alteplase

PDE3A Cilostazol

MUT

Cyanocobalamin, hydroxocobalamin

Gene prioritization and
enrichment in ATC code
(GREP)

F2 ———— Lepirudin
Dalteparin
Abelacimab, conestat alfa

Isolated human kallikrein

MR and colocalization

VCAM1 Symbiopolyol, probucol
GP1BA Anfibatide, TGX-6b4
LAMC2 BST-1005

Negative correlation tests GR-32191

between genetically determined /
and compound-regulated
gene expression BRD-A22514244
(Trans-Phar)

AIS and AS SVS - CES

Fig.3|Genomics-driven drugdiscovery. Overlap enrichment analysis using
GREP? (top). Middle, integrating MR results using cis- and trans-pQTLs as
instrumental variables with data from drug databases. Bottom, negative
correlation tests between compound-regulated gene expression profiles and
genetically determined case-control gene expression profiles using
Trans-Phar.

TWAS-Fusionand eQTL based on RNA-sequencing (RNA-seq) analyses
in different tissues'” 2. We identified 27 genes of which the geneti-
cally regulated expression is associated with stroke and its subtypes
at the transcriptome-wide level and colocalized in at least one tissue
(10 genesinarteries and heart; 6 genes inbrain tissue; 17 genes across
tissues). Of these genes, 18 overlapped with 11 genome-wide significant
stroke-risk loci (Extended Data Fig. 7 and Supplementary Table 27). For
several genes of which bulk tissue expression levels showed evidence
for association with stroke, human single-nucleus sequencing data of
brain cellsinthe dorsolateral prefrontal cortex (DLPFC) showed distinct
cell-specific gene expression patterns suggesting that multiple genes
couldbeinvolved through different cell types® (Extended Data Fig. 8).
Overall, we observed asignificant enrichment mostly in brain vascular
endothelial cells and astrocytes, possibly reflecting the importance
of both vascular pathology and brain response to the vascular insult
in modulating stroke susceptibility (Extended Data Fig. 8 and Sup-
plementary Tables 28 and 29). Furthermore, using proteome-wide
association studies (PWAS) in DLPFC brain tissue, we found evidence
for the association of ICAIL with AS and AIS through its cis-regulated
protein abundance, with colocalization evidence (Extended Data Fig. 8
and Supplementary Table 30). In both TWAS and PWAS, lower /ICAIL
transcript or protein abundance in the DLPFC was associated with a
higher risk of stroke.

Genomics-driven drug discovery

We used a three-pronged approach for genomics-driven discovery
of drugs for the prevention or treatment of stroke* (Methods and
Fig. 3). First, using GREP?, we observed significant enrichment of
stroke-associated genes (MAGMA® or VEGAS28 false-discovery rates
(FDR) < 0.05) indrug-target genes for blood and blood-forming organs

(Anatomical Therapeutic Chemical Classification System B drugs, for
AS, AIS and CES). This encompasses the previously described PDE3A and
FGA genes', which encode targets for cilostazol (antiplatelet agent) and
alteplase (thrombolytic drug acting through plasminogen®), respec-
tively, aswell as F11, KLKBI1, F2, TFPl and MUT, which encode targets
for conestat alfa, ecallantide (both used for hereditary angioedema),
lepirudin, dalteparin (bothused to treat recurrent thromboembolism)
and vitamin B12, respectively (Supplementary Table 31). Notably, the
results for AS are probably driven by AIS (the vast majority of ASin the
current study) and cannot be extrapolated to ICH. Second, we used
Trans-Phar? to test the negative correlations between genetically deter-
mined case-control gene expression associated with stroke (TWAS
using all GTEx v.7 tissues”) and compound-regulated gene expression
profiles. At FDR < 0.10, we observed significant negative correlations
for BRD.A22514244 (for SVS; drug target unknown) and GR.32191 (for
CES; Supplementary Table 32). GR-32191is athromboxane A2 receptor
antagonist that hasbeen proposed as an alternative antiplatelet therapy
for stroke prevention®, and further drugs of this class are under devel-
opment*. Note that one of those drugs, terutroban, was evaluatedina
phase Il study but did not show non-inferiority against aspirin®. Third,
we used protein quantitative trait loci (pQTL) for 218 drug-target pro-
teins asinstruments for MR and found evidence for causal associations
of 9 plasma proteins with stroke risk (4 cis-pQTL and 6 trans-pQTL), of
which 7 were supported by colocalization analyses, with no evidence
for reverse causation using the Steiger test (PROC, VCAM], F11, KLKBI1,
MMP12, GP1BA and LAMC2; Supplementary Table 33). All of these rep-
licated (at FDR < 0.05) with consistent directionality using at least one
independent plasma pQTL resource and cerebrospinal fluid pQTL
for PROC and KLKB1, with evidence for colocalization for PROC, F11,
KLKB1and MMP12, but not for GP1BA (for which both concordant and
discordant directionality was observed) and LAMC2 (pQTL availablein
onereplication dataset only; FDR = 0.08). Using public drug databases,
we curated drugs targeting those proteins in a direction compatible
with a beneficial therapeutic effect against stroke based on MR esti-
mates and identified such drugs for VCAM1, F11, KLKB1, GP1BA, LAMC2
(inhibitors) and PROC (activators; Supplementary Table 34). Drugs
targeting F11 (NCT04755283,NCT04304508,NCT03766581) and PROC
(NCT02222714) are currently under investigation for stroke, and our
results provide genetic support for this. Notably, F11 and KLKBI are
adjacent genes with a long-range linkage-disequilibrium pattern and
complex co-regulation®, asillustrated here by the presence of ashared
trans-pQTLin KNGI (Supplementary Table 33). Additional studies are
needed to disentangle causal associations and the most appropri-
ate drug target in this region®?°. Next, for the five genes targeted by
inhibitors, VCAM1, F11, KLKB1, GP1BA and LAMC2, we examined the
associations of rare deleterious variants (MAF < 0.01) with stroke and
stroke-related traits, applying gene-based burden tests to whole-exome
sequencing data from >450,000 UK Biobank participants to support
potential therapeutic targets for inhibitors®. We observed one sig-
nificant protective association of rare deleterious variants in F11 with
venous thromboembolism (odds ratio (OR) =0.471, P=2.46 x10™),
inadirection concordant with that of MR estimates (Supplementary
Table 35). To further validate the candidate drugs and estimate their
potential side effects, we investigated whether the drug-target genes
were associated with stroke-related phenotypes using aphenome-wide
association study (PheWAS) approach. We conducted PheWAS in the
Estonian Biobank (EstBB) for pQTL variants for the PROC, VCAMI1,
FI11, KLKB1, GP1BA and LAMC2 genes. A cis-pQTL for F11,rs2289252,
was associated with higher risk of venous thromboembolic disorders
(P<3.45x107°),as previously described®, and showed suggestive asso-
ciation (P =3.44 x107®) with cerebral artery occlusion with cerebral
infarction (Phecode 433.21; Extended Data Fig. 9 and Supplementary
Table 36). By contrast, we observed no significant association with
non-stroke-related phenotypes, suggesting the safety of targeting F11.
Similar profiles were observed in the UK Biobank (https://pheweb.org/
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UKB-SAIGE/variant/4-187207381-C-T) and FinnGen (https://r7.finngen.
fi/variant/4-186286227-C-T), with no significant associations with other
disorders and no overlap of subthreshold signals with side-effects
reported in clinical trials®>. We further confirmed the association of
rs2289252 with venous thromboembolic disorders and that it has
no association with other non-stroke-related phenotypes using the
Phenoscanner database (Supplementary Table 37).

Overall, combining evidence from genomics-driven drug discovery
approaches, characterization of stroke-risk loci (missense variants,
TWAS, PWAS, colocalization, pathway enrichment, MR with pQTL,
MENTR and PoPS**), and previous knowledge from monogenic disease
models and experimental data, we found evidence for the potential
functionalimplication of 56 genes that should be prioritized for further
functional follow-up, with evidence from multiple approaches for 20
genes (Supplementary Table 38).

Integrative polygenicrisk prediction

We investigated the risk prediction potential of stroke GWASs, alone
and in combination with vascular-risk-trait GWASs, first in Europeans
and East Asians, using ancestry-specific PGSs. PGSs were based on
ancestry-specificand cross-ancestry GWAS summary statistics. We first
derived single PGS (sPGS) models from single stroke GWAS summary
data (Supplementary Table 39). We then constructed integrative PGS
(iPGS) models, which combined multiple GWAS summary data of dif-
ferenttraits into a PGS using elastic-net logistic regression® (Extended
DataFig.10). The iPGS analysis used two datasets for each ancestry for
model training and evaluation, respectively. The participants in the
training and evaluation datasets did not overlap and were notincluded
inthe input GWAS summary data.

For Europeans, we constructed theiPGS model using 1,003 prevalent
AIS cases and 8,997 controls, followed by evaluation of the model using
1,128 incident AIS cases among 102,099 participants, all from the EstBB.
The improvement in predictive ability (AC-index) was assessed over
abase model including age, sex and the top 5 principal components
(PCs) for population stratification. The iPGS model for Europeans
incorporated 10 GIGASTROKE GWAS analyses (all stroke types, using
the European and cross-ancestry analysis) and 12 vascular-risk-trait
GWAS analyses (Extended Data Fig. 10 and Supplementary Table 40).
The iPGS model achieved a AC-index of 0.027 (Supplementary
Table 41), 93% higher than that for a previously constructed iPGS
model for Europeans, derived from 5 MEGASTROKE GWAS analyses
and similar vascular-risk-trait GWASs (AC-index = 0.014)°. The age-,
sex- and top 5 PC-adjusted hazard ratio (HR) per s.d. of the iPGS was
1.26 (95% confidence interval (Cl) =1.19-1.34, P=2.0 x 107") for the
GIGASTROKE-based iPGS model compared to1.19 (95% Cl =1.12-1.26,
P=4.2x107°) for the MEGASTROKE-based iPGS model. Compared with
participants in the middle 10% (45-55%) of the GIGASTROKE-based
iPGS model, thosein the top 1% showed a >2.5-fold higher hazard of AIS
(HR=2.56,95% Cl=1.59-4.10, P=9.6 x 1075; Fig. 4aand Supplementary
Table 42). We further confirmed the GIGASTROKE-based European
iPGS model trained on the EstBB in 403,489 European-ancestry par-
ticipants of the Million Veteran Program (MVP) study, of whom 8,392
developed anAIS:HR pers.d. =119 (95% Cl =1.16-1.21, P= 6.94 x 107%?),
with a AC-index of 0.010 (Supplementary Table 43).

For East Asians, we derived the iPGS model using 577 cases of preva-
lent AIS and 9,232 control individuals, and evaluated the model using
1,470 cases of prevalent AIS and 40,459 control individuals from
Biobank Japan (BBJ). A base model including age, sex and the top 5
PCs showed an area under the curve (AUC) of 0.634. The iPGS model
was constructed by integrating 10 GIGASTROKE GWAS analyses
and 12 vascular-risk-trait GWAS analyses (Extended Data Fig. 10 and
Supplementary Table 44). The iPGS model for East Asians showed
animprovement in AUC (AAUC) of 0.019 (Supplementary Table 45).
The age-, sex- and top 5 PC-adjusted odds ratio (OR) per s.d. of PGS
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was 1.33 (95% C1=1.26-1.40, P=9.9 x 107*) for the iPGS model. The
MEGASTROKE- and GIGASTROKE-based iPGS models for Europeans
achieved alower AUCimprovement (AAUC = 0.007 and 0.009, respec-
tively) than the GIGASTROKE-based iPGS model for East Asians. While
this suggests that the transferability of iPGS models from Europeans to
East Asians might be limited (Supplementary Table 45), it doesindicate
that an ancestry-specific stroke iPGS approachyields similarimprove-
mentin predictive ability relative to their base models.

Participantsinthetop 1% of the iPGS showed 1.9-fold higher odds of
AIS(OR=1.90,95% CI=1.20-2.91, P= 0.004) compared with the middle
10% (Fig. 4b and Supplementary Table 46). We further confirmed the
GIGASTROKE-based East Asian iPGS model trained on the BBJ in 1,399
cases of prevalent AIS and 86,283 controls from the Taiwan Biobank
(TWB): OR pers.d.=1.18 (95% Cl =1.12-1.25,P=1.1x10"°), witha AAUC
0f 0.003 (Supplementary Table 47).

Notably, iPGS models derived from cross-ancestry stroke GWASs had
a higher predictive ability compared with iPGS models derived from
ancestry-specific stroke GWASs both in Europeans and East Asians
(Supplementary Table 48).

Next, we evaluated the predictive ability of the European-derived
GIGASTROKE-based iPGS model in African American and indig-
enous African (Nigerian and Ghanaian) datasets. In 107,343 African
American MVP participants, of whom 2,227 developed an AlS, the
GIGASTROKE-based iPGS model showed a significant association
with AlSincidence (HRper1s.d.=1.11,95% Cl=1.06-1.17,P=1.8 x 1075,
AC-index = 0.003; Supplementary Table 49), although weaker than
in European MVP participants (Supplementary Table 43). The par-
ticipants in the top 1% of the iPGS showed 1.5-fold higher odds of AIS
(HR=1.53,95% CI,1.04-2.25, P=0.03) compared with participants in
the middle 10% (Fig. 4c and Supplementary Table 50). In 1,691 cases
and 1,743 control participants from the indigenous African (Nigerian
and Ghanaian) SIREN case-control study, the GIGASTROKE-based
iPGS also showed asignificant association with the odds of AIS (OR per
1s.d.=1.09, 95% Cl =1.02-1.17, P= 0.010, AAUC = 0.007; Supplemen-
tary Table 51). The GIGASTROKE-based iPGS model showed a stronger
association with AIS and a larger improvement in predictive ability
compared with the MEGASTROKE-based iPGS modelinboth MVP and
SIREN (Supplementary Tables 49 and 51).

Risk predictionin clinical trials

Following up on previous work*, we further examined whether a
geneticrisk score (GRS) based on genome-wide significantrisk loci from
the cross-ancestry IVW AS meta-analyses could identify individuals who
areathigherrisk of AIS after accounting for established risk factors in
five clinical trials across the spectrum of cardiometabolic disease®.
The primary analysis was conducted in 51,288 European participants
ofwhom 960 developed anincidentischaemic stroke (AIS) over a3 year
follow-up. InaCox modeladjusted for age, sex and vascular risk factors
(Methods), ahigher GIGASTROKE GRS was significantly associated with
increasedrisk of AISin Europeans (adjusted HR =1.17,95% Cl =1.09-1.24
pers.d.increase, P=2 x10% Supplementary Table 52). This associa-
tion was substantially stronger than the association with the earlier
MEGASTROKE GRS based on 32 genome-wide significant stroke-risk loci
(HR=1.07,95% Cl=1.00-1.14, P= 0.036)*. Compared with patientsin
the lowest GIGASTROKE GRS tertile, patientsin the top GRS tertile had
anadjusted HR 0f1.35 (95% Cl = 1.16-1.58) for developing AlS, whereas
thoseinthe middletertile had anadjusted HR 0f 1.13 (95% Cl = 0.96-1.33,
Pyena = 1.4 x107*; Fig. 4€). The performance of the GRS was stronger in
individuals who had not previously had astroke (n = 44,095; adjusted
HRof thetop versus lowest tertile =1.37,95% Cl =1.14-1.65) compared
withinthose who previously had astroke (n=7,193; adjusted HR = 1.15,
95% Cl = 0.87-1.54). Similar associations were observed when using
effect estimates from stroke GWAS meta-analyses in Europeans or for
AlS (Supplementary Table 52). In secondary analyses, we examined
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Fig.4 |Risk predictioninapopulationand trial setting.a-d, The association
of iPGS withischaemic stroke (AIS) in European (Estonian Biobank) (a), East
Asian (BioBankJapan) (b), African American (Million Veteran Program) (c) and
European participantsin clinical trials (d). Compared with the middle decile
(45-55%) of the population as areference group, the risk of high-iPGS groups
with varying percentile thresholds was estimated using a Cox proportional
hazards model for European and African Americanindividuals and logistic

the association of the GIGASTROKE cross-ancestry AS GRS with
incident AIS in the much smaller East Asian sample (1,312 partici-
pants of whom 27 developed an incident AIS over a 3 year follow-up),
and found consistent associations (adjusted HR =1.49, 95% Cl =
1.00-2.21 pers.d.increase, P= 0.048; Supplementary Table 52), whereas
the MEGASTROKE GRS was not associated with incident AIS in East
Asians (adjusted HR = 0.82, 95% CI = 0.55-1.23, P= 0.34). Finally, in
Europeantrial participants (there were too few East Asian individuals
for this analysis), the GIGASTROKE-based iPGS was also significantly
associated withiincreased AlS incidence (HR per1s.d. increase =1.19,
95% Cl=1.11-1.27,P=3.2 107, AC-index = 0.008), performing better
than the MEGASTROKE-based iPGS (Supplementary Table 53). Com-
pared with the middle 10% of the participants, thoseinthe top1%hada
2.8-fold higher hazard of AIS (HR =2.78,95% Cl = 1.67-4.61,P=7.9 x 107)
(Fig. 4d and Supplementary Table 54).

Discussion

Our GWAS meta-analyses, including 110,182 patients who had astroke
and 1,503,898 control participants from five different ancestries (33% of
patients who had a stroke were non-European), identified 89 (61 new)
risk loci for stroke and stroke subtypes (60 through primary IVW and
29 through secondary MR-MEGA and MTAG analyses). We observed
substantial shared susceptibility to stroke across ancestries, with a
strong correlation of effect sizes. On the basis of internal cross-ancestry
validation and independent follow-up in 89,084 cases of stroke (30%
non-European) and 1,013,843 control individuals, mostly from large
biobanks withinformation on AS and AIS only, the level of confidence
of these loci was intermediate or high for 87% of primary stroke-risk
lociand 60% of secondary loci. Effect estimates for variants that were
common across ancestries were typically similar, whereas, expectedly,
variants that were rare or low frequency in one or more populations
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regression models for East Asianindividuals with adjustments for age, sexand
thetop five genetic principal components. e, Kaplan-Meier event rates for
ischaemic stroke in European participants in five clinical trials (Methods) by
tertile of GRS at 3 years (the GRS uses effect estimates of the cross-ancestry AS
GWAS as weights) showing higher GRS increasesrisk of ischaemic stroke
(Pyreng = 1.4 x107*). The two-sided P,,.,qvalue was computed using Cox
regression. Int., intermediate.

showed differences in effect size, for example, at PROCR, TAPI or
BNCZ-CNTLN (MAF < 0.05 in East Asians), or at GRKS, FOXF2 or COBL
(MAF < 0.05 in African Americans). Ancestry-specific meta-analyses
in smaller non-European populations detected fewer loci than in
Europeans that were nevertheless biologically plausible, for example,
3pl2 and PTCHI for SVS in African Americans. Rare variants at 3p12
were recently shown to be associated with WMH volume®, whereas
common variants at PTCHI were associated with functional outcome
after ischaemic stroke (in European individuals)¥. New association
signals from cross-ancestry GWASsincluded, for example, variants at
PROCR, GRKS and F11 (thrombosis), LPAand ATP2BI (lipid metabolism,
hypertension and atherosclerosis), SWAP70 (membrane ruffling) and
LAMCI (cerebrovascular matrisome).

Extensive bioinformatics analyses highlight genes for prioritization
infunctional follow-up studies (Supplementary Table 38). For example,
apromoter variant of SH3PXD2A, which encodes an adaptor protein that
isinvolved in extracellular matrix degradation through invadopodia
and podosome formation, was predicted to modulate its expressionin
macrophages’®. FURIN expression levels across tissues were associated
withanincreased stroke risk. FURIN has previously beenimplicatedin
CAD* aswell as in atherosclerotic lesion progression in mice*. It also
has a key role in SARS-CoV-2 infectivity*, and patients with COVID-19
are atincreased risk of AIS, especially LAS*?; the FURIN locus was pre-
dominantly associated with LAS in our data (Supplementary Table 55).

Ourresults provide genetic evidence for putative drug effects using
threeindependent approaches, with converging results from two meth-
ods (gene enrichment analysis and pQTL-based MR) for drugs targeting
F11and KLKB1.F1land Fllainhibitors (such as abelacimab, BAY 2433334
and BMS-986177) are currently being examined in phase 2 trials for pri-
mary or secondary stroke prevention (NCT04755283, NCT04304508,
NCT03766581). pQTL-based MR suggested PROC as a potential drug
target for stroke. A recombinant variant of humanactivated protein C
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(encoded by PROC) was found to be safe for the treatment of acute
ischaemic stroke after thrombolysis, mechanical thrombectomy or
bothin phaseland2trials (3K3A-APC,NCT02222714)**, and is poised
for an upcoming phase 3 trial. 3K3A-APC is proposed as a neuropro-
tectant, with evidence for the protection of white matter tracts and
oligodendrocytes against ischaemic injury in mice*. Weaker evidence
was found for GP1BA, VCAMI and LAMC2 as potential drug targets
for stroke, with evidence for colocalization in only one pQTL dataset.
Anfibatide, a GPIba antagonist, reduced blood-brainbarrier disruption
after ischaemic stroke in mice*® and is being tested as an antiplate-
let drug in myocardial infarction (NCT01585259). Although specific
VCAMI1 inhibitors are not available, probucol—alipid lowering drug
with pleiotropic effects including VCAML1 inhibition—was tested for
secondary prevention against atherosclerotic events in patients with
CAD (PROSPECTIVE, UMINO0O0003307)*.

We investigated stroke PGSs across ancestries. PGSs integrating
cross-ancestry and ancestry-specific stroke GWASs with vascular-
risk-factor GWASs (iPGS) analyses showed strong prediction of ischae-
micstrokeriskin Europeans and,importantly, in East Asians,inwhom
stroke incidence is highest®. These results were confirmed in several
independent datasets. The iPGS performed better than stroke PGS
alone and better than the previous best iPGS models in Europeans®.
The transferability of European-specific iPGS models to East Asians
was limited. While there were not enough African participants to gen-
erate an African-specific stroke PGS, the European iPGS showed a sig-
nificant association with AIS inboth African American and indigenous
African participants, although expectedly weaker than in European
participants. Individualsin the top 1% of the PGS distribution had a2- to
2.5-fold risk of ischaemicstroke in East Asian and European participants
compared with those in the middle 10%, whereas this risk was 1.5-fold
in African American participants. Although caution is warranted when
interpreting risk estimates owing to the wide Cls, these results suggest
that GIGASTROKE-based iPGS models may be useful to stratify individu-
als exposed to genetically high risk of ischaemic stroke, especially in
Europeans and East Asians. Our results highlight the importance of
ancestry-specific and cross-ancestry genomic studies for the transfer-
ability of genomic risk prediction across populations, and the urgent
need tosubstantially increase participant diversity in genomic studies,
especially from the most under-represented regions such as Africa, to
avoid exacerbation of health disparitiesin the era of precision medicine
and precision public health*s,

Finally, leveraging data from S clinical trials in 52,600 patients with
cardiometabolic disease, we showed that a cross-ancestry GRS pre-
dicted ischaemic stroke, independently of clinical risk factors, and
outperforming previous genetic risk evaluation®. Notably, although
the trials included predominantly European participants, consistent
results were observed in East Asian participants. We further confirmed
the GIGASTROKE iPGS in these clinical trials.

Our study includes a considerable contribution of non-European
stroke genetics resources (n = 61,528/616,014 cases/controls for the
GWASs and follow-up and an additional n =1,718/3,055 for the PGS/GRS
studies). Despite substantial effortstoenhance non-European contribu-
tions to GIGASTROKE, we still had limited power for identifying shared
causal variants through cross-ancestry fine-mapping. We provided
independent validation of the vast majority of identified genome-wide
significantassociations and graded lociby level of confidence based on
these findings. Despite the notable size of the follow-up study sample,
with nearly 90,000 additional patients who had astroke, this analysis
remains underpowered, especially for low-frequency variants and
ancestry- and subtype-specific associations, as most follow-up studies
were derived from large biobanks with event ascertainment based on
electronic healthrecords and no suitable stroke subtype information.
The muted risk prediction in clinical-trial participants with previous
stroke history possibly points to theimpact of selection orindex event
biases and secondary prevention therapy®.
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Inconclusion, our genomic findings derived from>200,000 patients
who had a stroke worldwide provide critical insights to inform future
biological research on stroke pathogenesis, highlight potential drug
targets for intervention and provide tools for genetic risk prediction
across ancestries.
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Methods

Allhuman research was approved by relevant boards and/or institutions
foreach study (Supplementary Table 56) and was conducted according
to the Declaration of Helsinki. All of the participants provided written
informed consent.

Study designand phenotypes

Information on participating studies (discovery and follow-up), study
design, and definitions of stroke and stroke subtypes is provided in
the Supplementary Information. Population characteristics of indi-
vidual studies are provided in Supplementary Table 1.

Genotyping, imputation and GWASs

Genotyping methods, pre-imputation quality control of genotypes and
imputation methods of individual cohorts (discovery and follow-up)
are presented in Supplementary Table 2. High-quality samples and
SNPs underwent imputation using mostly Haplotype Reference Con-
sortium (HRC) or 1000 Genomes phase 1 or phase 3 reference panels
and, less often, TOPMed, HapMap or biobank-specific reference panels.
Individual studies performed a GWAS using logistic regression (or Cox
regression in some longitudinal population-based cohorts) testing
association of genotypes with five stroke phenotypes (AS, AlS, CES,
LAS and SVS) under an additive effect model, adjusting for age, sex,
principal components of population stratification and study-specific
covariates when needed (Supplementary Table 2).

The R package EasyQC along with custom harmonization scripts
were used to performthe quality control of individual GWAS summary
results. Marker names and alleles were harmonized across studies.
Meta-analyses were restricted to autosomal biallelic SNPs from the
HRC panel. Duplicate markers were removed. Before the meta-analysis,
we removed variants with extreme effect size values (log[OR] > 5 or
log[OR] < -5), minor allele frequency (MAF) < 0.01, imputation quality
scores of less than 0.50 and effective allele counts (EAC =2 x number
of cases x MAF x imputation quality score) of less than 6.

The overall analytical strategy is shown in Extended Data Fig. 1.
We conducted ancestry-specific fixed-effect IVW meta-analyses in
European, East Asian, African American, Hispanic and South Asian
populations, followed by cross-ancestry meta-analyses using
METAL®®. In each meta-analysis we removed variants with hetero-
geneity P<1x107°and variants available in less than one third of
the total number of cases and less than one third of the total num-
ber of contributing studies. We applied the covariate adjusted
linkage disequilibrium score regression (cov-LDSC) method to
ancestry-specific GWAS meta-analyses without GC correction to
test for genomic inflation and to compute robust SNP-heritability
estimates in admixed populations®. We conducted cross-ancestry
GWAS meta-analyses without genomic correction and with cor-
rection of the linkage-disequilibrium score intercept for genomic
inflation observed in individual ancestry-specific GWASs. We con-
ducted separate GWAS analyses of incident ASand AIS (n =32,903 and
n=16,863) inlongitudinal population-based cohort studies. For the
meta-analysis combining bothincident and prevalent stroke studies,
afewincident stroke studies were removed because they were already
part of ameta-analysis of stroke GWASs used as aninput of the overall
meta-analysis (WHI, Hisayama, REGARDS, JHS). We considered loci
to be genome-wide significant for P<5x 108,

Weapplied the conditional and joint analysis approach’ implemented
in the Genome-wide Complex Trait Analysis software®? (GCTA-COJO)
to identify potentially independent signals within the same geno-
mic region. We performed GCTA-COJO analyses on (1) European
GWAS meta-analysis summary statistics using HRC imputed data of
6,489 French participants from the 3C study as in ref. ** and (2) East
Asian-ancestry-specific GWAS meta-analysis summary statistics using
BBJ data as reference (Supplementary Information).

We also performed a cross-ancestry meta-regression using
MR-MEGA?™. Before the meta-analysis using MR-MEGA, we applied
the ‘genomic inflation’ correction option to all of the input files, and
removed variants with extreme effect size values (log[OR] > 5 or
log[OR] < -5), MAF < 0.01, imputation quality scores of less than 0.50
and effective allele counts (EAC = 2 x number of cases x MAF x imputa-
tion quality score) of less than 6. After the meta-analysis, we considered
locitobe genome-wide significant for MR-MEGA P < 5 x 108 and show-
ing nominal association (P < 0.05) in atleast one third of studiesin any
individual ancestry group (European, East Asian, African American,
Hispanic and South Asian).

Multitrait association study

Toidentify additional stroke-risk loci we used MTAG" in Europeans and
East Asians, including traits correlated with specific stroke subtypes,
namely CAD for LAS, atrial fibrillation>* for CES, and WMH?® (an MRI
marker of cerebral small vessel disease, available in Europeans only)
for SVS. We alsoran an MTAG analysis of ASand AIS, including all three
correlated traits (CAD, atrial fibrillation, WMH (European)). In European
individuals, we used summary statistics of published GWAS analyses
for CAD¢, AF** and WMH®. In East Asians, we used summary statistics
of published GWAS analyses for CAD* and atrial fibrillation® (Supple-
mentary Information). Associations were retained when the following
three conditions were verified: (1) MTAG P value for stroke <5 x107%;
(2) Pvalue for stroke < 0.05 in the univariate GWAS; and (3) MTAG
Pvalue for stroke less than the P value for any of the included traits in
univariate GWASs.

Independent follow-up of GWAS signals

First, we sought to replicate internally the 42 stroke-risk loci reach-
ing genome-wide significance in IVW meta-analyses within individual
ancestries, in at least one other ancestry group among the discovery
samples, considering both nominal replication levels (P< 0.05) and
multiple-testing corrected significance at P<1.19 x 107 (0.05/42). Sec-
ond, wegathered independent datasets totalling 89,084 AS (including
85,546 AlS; and 70.0% European, 15.6% African American, 10.1% East
Asian, 4.1% Hispanic and 0.1% South Asian) and 1,013,843 controls for
external replication of associations with AS and AIS (Supplementary
Tables1and?2). These comprised eight biobanks (82,263 cases, 930,988
controls) and four hospital-based cohorts (6,821 cases, 82,855 con-
trols). We considered both nominal replication levels (P < 0.05) and
multiple-testing corrected significance at P< 8.2 x10™(0.05/60) and
P<1.3x1073(0.05/29) for follow-up of genome-wide significant loci
from the IVW and the MR-MEGA/MTAG meta-analyses, respectively
(two-sided Pvalues were used for both discovery and replication analy-
ses). We considered stroke-risk loci as high confidence in the case of
significant internal inter-ancestry and/or external replication after
accounting for the number of loci tested, nominally significant repli-
cationin bothinternal and external replication analyses, or evidence
of involvement in monogenic stroke; intermediate confidence in the
case of nominalsignificance in either internal inter-ancestry or external
replication analyses but not both; and low confidence in the absence
of formal replication.

Gene-based analyses

We performed gene-based tests of common variant associations using
VEGAS2® and MAGMA’. Both VEGAS2 and MAGMA considered variants
inthe gene or within 10 kb on either side of a gene’s transcription site
to compute a gene-based P value. We performed MAGMA tests using
the default parameters, whereas the VEGAS2 analyses were performed
using the -top 10’ parameter that tests enrichment of the top 10% var-
iants assigned to a gene accounting for the linkage disequilibrium
between variants and the total number of variants within a gene. We
used 1000 Genomes phase 3 continental reference samples of European,
East Asian, African, South Asian and South American (for our Hispanic



samples) ancestry and to compute the linkage disequilibrium between
variants for respective ancestry-specific gene-based analyses. We then
meta-analysed ancestry-specific gene-based results, using Stouffer’s
method for sample-size-weighted combination of Pvalues. Gene-wide
significance was defined as P< 2.72 x107%, correcting for 18,371 auto-
somal protein-coding genes tested.

Pathway-based analyses

We used the ancestry-specific gene-based association Pvalues gener-
ated using VEGAS2 to perform pathway analyses for individual ances-
try groups, testing enrichment of gene-based P values in Biosystems
pathways with VEGAS2Pathway®". For each stroke phenotype, we
meta-analysed the ancestry-specific pathway association P values
using Stouffer’s method considering the number of cases in each
ancestry-specific GWAS; for example, for AS, we considered 73,652,
27,413, 3,961, 1,516 and 3,640 cases in European-, East Asian-, African
American-, Hispanic- and South Asian-specific GWAS analyses to com-
bine the respective ancestry-specific pathway association P values.
Pathway-wide significance was defined at P < 5.01 x 10~° correcting for
9,977 Biosystems pathways tested.

Shared genetic variation

We examined shared genetic variation with 12 vascular risk factors and
related disease traits in Europeans using summary statistics of GWASs
on SBP*’, DBP¥, BMI and waist-to-hip ratio®®, high density lipoprotein
(HDL) cholesterol®, LDL cholesterol®, triglycerides®, type 2 diabetes®,
WMH volume®, atrial fibrillation**, CAD*® and venous thromboembo-
lism*2., We extracted sentinel stroke-risk variants (or a proxy (r*> 0.9))
that showed genome-wide significant association (P < 5 x107%) with
the aforementioned vascular-risk traits.

We then systematically examined genetic correlations and poten-
tially causal associations between vascular-risk traits and risk of stroke
using linkage-disequilibrium score regression (LDSC) and MR analyses,
with12 (in Europeans) and 6 (in East Asians) vascular-risk traits. Inindi-
viduals of European ancestry, we used summary statistics of the afore-
mentioned GWASs*>5%¢59-2 For the analysis in East Asians, we used
unpublished GWAS analyses for SBP, DBP, LDL and HDL cholesterol,
triglycerides and BMI in up to 53,323 participants of the independent
Tohoku Medical Megabank Project (Supplementary Information).

We used cov-LDSC to compute genetic correlations between stroke
and vascular-risk traits, using European and East Asian GWAS summary
filesand 1000Gp3vs5 reference data of respective continental ances-
tries (considering the recommended subset of high-quality HapMap3
SNPs only).

For MR analyses, we constructed genetic instruments for each
vascular-risk trait based on genome-wide significant associations
(P<5x1078) after clumping for linkage disequilibrium at r?< 0.01
(based on European and East Asian 1000 Genomes reference panels).
We applied two-sample MR analyses in the GIGASTROKE summary
statistics separately forindividuals of European and East Asian ances-
try based on variant associations derived from the aforementioned
sources. After extraction of the association estimates and harmoniza-
tion of their direction-of-effect alleles, we computed MR estimates with
fixed-effect IVW analyses®. As a measure of pleiotropy, we assessed
heterogeneity across the MR estimates for eachinstrumentin the IVW
MR analyses with Cochran’s Q statistic (P < 0.05 was considered to be
significant)®*. We further applied alternative MR methods that are more
robust to the use of pleiotropic instruments: the weighted median
estimator enables the use of invalid instruments under the assumption
thatatleast half of the instruments used in the MR analysis are valid®;
MR-Egger regression allows for the estimation of an intercept term,
provides less precise estimates and relies on the assumption that the
strengths of potential pleiotropic instruments areindependent of their
direct associations with the outcome®. The intercept obtained from
MR-Egger regression was used as a measure of directional pleiotropy

(P<0.05 indicated significance)®. MR analyses were performed in R
v.4.1.1using the Mendelian Randomization package.

Forallgenetic correlationand MR analyses, we set statistical signifi-
cance at Bonferroni-corrected P < 4.17 x 102 in Europeans (correcting
for12 vascular-risk traits) and P <8.33 x 10~ in East Asians (correcting
for 6 vascular-risk traits).

Cross-ancestry fine mapping

Fine-mapping was performed separately for Europeans and East Asians
using susieR v.0.9.1? on all variants within 3 Mb of the lead variant of
each genomic risk locus (60 loci reached genome-wide significance
inthe IVW meta-analysis). Unrelated individuals from the UK Biobank
(n=420,000) and BBJ (n=170,000) were used as ancestry-matched
linkage-disequilibrium reference panels that fulfil the sample size
requirement®. After extracting variants presentin the linkage disequi-
librium reference panel, the default settings of susieR were used while
allowing for a maximum of 10 putative causal variants in each locus.
The fine-mapping results were checked for potential false-positive
findings using a diagnostic procedureimplemented in SuSiE. In brief,
we compared observed and expected z-scores for each variantat agiven
locus and removed the variantif the difference between the observed
and expected z-score was too high after manual inspection. We com-
paredthe variantsin credible sets of the same loci between Europeans
and East Asians.

To detect putative causal regulatory variants, we conducted an in
silico mutagenesis analysis using MENTR (mutation effect prediction
onnon-coding RNA transcription; https://github.com/koido/MENTR), a
machine-learning method to precisely predict transcriptional changes
induced by causal variants*®®, The in silico mutations predicted to
have strong effects are highly concordant with the observed effects of
knownvariantsinacell-type-dependent manner. Furthermore, MENTR
does not use population datasets and is therefore less susceptible
to linkage-disequilibrium-dependent association signals, enabling
precise prediction of the effects of causal variants on transcriptional
changes. From 1,274 variants in the credible sets from the European
and East Asian fine-mapping, we searched FANTOMS promoters and
enhancers, obtained by cap analysis of gene expression, within +100 kb
fromeach variant. As aresult, we found 37,878 variant-transcript pairs
comprising 1,270 variants and 2,350 transcripts. We used MENTR with
the pretrained FANTOMS 347 cell/tissue models + LCL models®® 7?and
extractedreliable predictions using the predetermined robust thresh-
old (absoluteinsilico mutation effects > 0.1, achieving >90% concord-
ance for predicting effects on expression).

TWAS and PWAS

We performed TWAS using TWAS-Fusion® to identify genes of which
the expressionis significantly associated with stroke risk. We restricted
the analysis to tissues considered to be relevant for cerebrovascular
disease, and used precomputed functional weights from 21 publicly
availableeQTLreference panels fromblood (Netherlands Twin Registry;
Young Finns Study)'%, arterial and heart (GTEx v.7))”” and brain tis-
sues (GTExv.7, CommonMind Consortium)'*%, Moreover, we used the
newly developed cross-tissue weights generated in GTEx v.8 using
sparse canonical correlation analysis (sSCCA) across 49 tissues avail-
able on the TWAS-Fusion website, including gene expression models
for the first three canonical vectors (sSCCA1-3), which were shown to
capture most of the gene expression signal”. TWAS-Fusion was then
used to estimate the TWAS association statistics between predicted
gene expression and stroke by integrating information from expression
reference panels (SNP-expression weights), GWAS summary statistics
(SNP-stroke effect estimates) and linkage disequilibrium reference
panels (SNP correlation matrix)*. Transcriptome-wide significant
genes (eGenes) and the corresponding eQTLs were determined using
Bonferroni correction, based on the average number of features (5005.8
genes) tested across all reference panels and correcting for the 5 stroke
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phenotypes (P<2.0 x107°). eGenes were then tested in conditional
analysis as implemented using the Fusion software”. To ensure that
the observed associations did not reflect random correlation between
gene expression and non-causal variants associated with stroke, we
performed a colocalization analysis on the conditionally significant
genes (P < 0.05) to estimate the posterior probability of ashared causal
variant between the gene expression and trait association (PP4)™. We
useda prior probability of P< 2.0 x 107 for the stroke association. Genes
presenting a PP4 > 0.75, for which eQTLs did not reach genome-wide
significance in association with stroke, and were not in linkage dis-
equilibrium (r* < 0.01) with any of the lead SNPs of genome-wide sig-
nificant risk loci for stroke, were considered to be new, i.e. not within
agenome-wide significant stroke risk locus.

Using similar parameters in TWAS-Fusion®®, we also performed
a proteome-wide association study. For this analysis, we used the
precomputed weights for protein expression in DLPFC™ from the ROS/
MAP study (n =376 individuals, n = 1,475 proteins)’ and the Banner
Sun Health Institute study (n =152 individuals, n = 1,145 proteins)”’.
Proteome-wide significant genes and the corresponding pQTLs were
determined using Bonferroni correction, on the number of proteins
tested across the reference panel and correcting for the 5 stroke phe-
notypes (P<1.7 x 107 for ROS/MAP and P < 2.2 x 1078 for the Banner
Sun Health Institute study). We then followed the same method as
described for the TWAS.

Brain single-cell expression analyses
Single-nucleus RNA-sequencing data of the DLPFC region of 24 ageing
individuals chosen to represent the range of pathologic and clinical
diagnoses of AD dementia, from the ROS/MAP cohorts, was obtained®.
RNA profiles of cells annotated as endothelial, pericytes or smooth
muscle cells and vascular leptomeningeal cells (VLMC) were used, and
apseudobulk RNA profile was generated for each cell type by averaging
the expression of allgenes across the cells. Average expression levels and
the percentage of expressed genes were calculated for genes of interest
using the DotPlot function from the Seurat package v.4.0.4 inRv.4.1.1.
We also conducted a cell-type enrichment analysis using the STEAP
pipeline (https://github.com/ComPopBio/STEAP). This is an extension
of CELLECT and uses S-LDSC”®, MAGMA?’ and H-MAGMA?® for enrich-
ment analysis. Stroke GWAS summary statistics were first munged.
Expression specificity profiles were then calculated using human
and mouse single-cell RNA-seq databases (Supplementary Table 28).
Cell-type enrichment was calculated using three models: MAGMA,
H-MAGMA (incorporating chromatininteraction profiles from human
brain tissues in MAGMA) and stratified linkage-disequilibrium score
regression. P values were corrected for the number of independent
cell typesin each database (Bonferroni correction).

Genomics-driven drug discovery

We used three methodologies for in-depth genomics-driven drug dis-
covery asdescribed previously*: (1) an overlap enrichment analysis of
disease-risk genes in drug-target genes in medication categories; (2)
negative correlation tests between genetically determined case-con-
trol gene expression profiles and compound-regulated gene expres-
sion profiles; and (3) endophenotype MR. Details of the methods are
describedin the following sections. For the overlap enrichment analysis
and the endophenotype MR-nominated drug targets, we curated drug
candidates from four major drug databases: DrugBank?, Therapeutic
Target Database (TTD)®°, PharmGKB® and Open Target Platform®2. As
for the endophenotype MR, we curated drugs with opposite effects
against the signs of the MR effect estimates. By contrast, the negative
correlationtests directly prioritized candidate compounds. We manu-
ally curated supporting evidence for candidate drugs and compounds.

Overlap enrichment analysis of disease-risk genes in drug-target
genes in medication categories. We ran MAGMA® and VEGAS2® to

summarize variant-level Pvalues into gene level and used the genes
with FDR < 0.05in either MAGMA or VEGAS2 as the disease-risk genes.
We then used GREP? to perform a series of Fisher’s exact tests for the
enrichment of the disease-risk genesin the drug-target genes involved
inthe drugindication categories, Anatomical Therapeutic Chemical
Classification System codes.

Negative correlation tests between genetically determined and
compound-regulated gene expression profiles. We nominated the
compounds withinverse effects on gene expression against genetically
determined gene expression by using Trans-Phar?. In brief, genetically
determined case-control gene expression was inferred for 44 tissues
in the Genotype-Tissue Expression project (v.7)” with FOCUS®*?, and
the genes in the top decile for the absolute value of the z-score were
used for the following correlation analysis. The Library of Integrated
Network-based Cellular Signatures project (LINCS) CMAP L1000 library
data®* were used for the compound library. After matching the tissues
in GTEx with the cell lines in the LINCS L1000 library, we performed
aseries of Spearman’s rank correlation tests for 308,872 pairs of ge-
netically determined and compound-perturbed tissue- or cell-type
specific gene expression profiles. We prioritized compounds with
FDR < 0.1, as we previously showed that the compounds with FDR < 0.1
contained plausible therapeutic targets with literature supports*.

Endophenotype MR. To pin-point the disease-causing proteins that
were targeted by existing drugs, we performed MR analyses (specifi-
cally, a Wald ratio test) by using lead variants in pQTL as instrumental
variables and five stroke phenotypes as outcomes: AS, AIS, CES, LAS
and SVS. We used the tier 1lead variants defined in ref. * to avoid con-
founding by horizontal pleiotropy. The tier 1 variants, summarized
from five pQTL studies (n =997 t0 6,861)%¢*°, did not include variants
with heterogeneous effect sizesamong the studies or withanumber of
associated proteins of larger than five. Werestricted the lead variants to
the variants associated with drug-target proteins. For the lead variants
of pQTLs that were missing in the stroke GWAS summary statistics, the
proxy variants with the largest P were used if the  was greater than 0.8
(1000 Genomes, European). Intotal, we used 277 lead variants for 218
drug-target proteins for MR and considered FDR < 0.05 as the thresh-
old to identify significant associations. We used the TwoSampleMRR
package® for MR analysis. As post-MR quality controls, we performed
(1) a directionality check of causal relationships by Steiger filtering®?
and (2) colocalization analysis for the proteins with FDR < 0.05. To
examine colocalization assuming multiple causal variants per locus,
coloc™was applied to the decomposed signals by SuSiE* for the variants
within 500 kb upstream and downstream of the lead variants (coloc +
SuSiE)®. If SuSiE did not converge after 10,000 iterations, coloc was
used instead. coloc + SuSiE and coloc were run with their respective
default parameters. For the two pQTL studies without public summary
statistics®®®°, we compared the ’ between the lead variants of the pQTL
study and the stroke GWAS. We considered that colocalization occurred
when the maximum posterior probability (that is, PP.H4) was greater
than 0.75 or # was greater than 0.8.

Toprovide further support for our findings, we conducted MR analy-
ses with two additional recent independent pQTL datasets, using the
same methodology and significance thresholds (FDR < 0.05 for MR and
PP.H4 > 0.75 for colocalization) as above: one study comprised both
plasma (n=529) and cerebrospinal fluid (n = 835) pQTL datasets*, the
second is one of the largest plasma pQTL studies conducted in 35,559
Icelandicindividuals®.

Protective rare variants

For the five genes targeted by inhibitors—VCAMI, F11, KLKB1, LAMC2
and GP1BA—we extracted the associations of rare deleterious variants
(MAF < 0.01) with stroke and stroke-related traits from the gene-based
burden tests in the whole-exome sequencing data of >450,000 UK
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Biobank participants®. As stroke and stroke-related traits, we extracted
30 traits belonging to 9 vascular risk factor and disease categories
(Supplementary Table 35). We applied Bonferroni correction and the
corrected P-value threshold was 0.05/5/30 =3.33 x10™* (Sand 30 rep-
resent the number of tested genes and traits, respectively).

PheWAS

PheWAS analysis was performed using R (v.4.0.3). We used the PheWAS
R package®® (https://github.com/PheWAS/PheWAS) function create-
Phenotypesto translate ICD10 diagnosis codes into phecodes for the
PheWAS analysis. We tested the associations between phecodes and
genetic variants using logistic regression and adjusting for sex, birth
year and tengenotype PCs. We applied Bonferroni correction to select
statistically significant associations (number of tested phecodes: 1,809;
number of tested SNPs: 8; corrected P-value threshold: 0.05/(1,809 x 8) =
3.45 x107°). The results were visualized using the PheWAS library.
To further characterize the associations of the genetic variants with
other phenotypes, we searched for all eight SNPs in the PhenoScanner
database®”®,

Polygenicrisk prediction
We constructed iPGS models for stroke in European and East Asian
individuals (Extended Data Fig. 10). For each ancestry, independent
datasets were used for model training and evaluation. We used as input
summary statistics data of multiple GWAS analyses for stroke outcomes
and vascular-risk traits to derive iPGS models. We denote the number of
input GWASs as N. For each of the NGWAS summary data, 37 candidate
single-trait polygenic score (sPGS) models were generated using the
P+T?°1%, L Dpred' and PRScs'*? algorithms with an ancestry-specific
linkage-disequilibrium reference panel from the 1000 Genomes Pro-
ject'®® (Supplementary Methods). The plink (v.1.90b6.8)'%, LDpred
(v.1.0.11)°*and PRScs.py (5]June 2021)' programs were used to com-
pute the P+T, LDpred and PRScs models, respectively. Subsequently,
among the 37 candidate models, the best sSPGS model, which was
defined as the model that showed a maximal improvement in AUC
over abase model (age, sex and top five PCs were included in the base
model), was selected using the model training dataset>'°°. Then, Nbest
sPGS models were selected from the Ninput GWASs. Among the Nbest
sPGS models, we retained models that were significantly associated
with AlSinthe model-training dataset (Bonferroni-corrected P < 0.05).
Then, eachretained best sSPGS was z-transformed (zero mean and unit
s.d.) over the model-training dataset, followed by elastic-net logistic
regression'® to model the associations between the N sPGS variables
and AIS with the adjustments for age, sex and top five genetic PCs.
Two regularization parameters (o and 1) were optimized using tenfold
cross-validation. Coefficients (weights) for the retained sPGS models
were then determined by elastic-netlogistic regression with the optimal
regularization parameters, followed by integration of the sSPGS models
into asingle iPGS model according to aformula presented previously’.
Elastic-net regression was performed using the glmnet R package'®°.
The predictive ability of the iPGS model was estimated using the
model-evaluation dataset, whereby we evaluated the improvement
in C-index for a prospective cohort dataset or AUC for a case-control
dataset over abase model thatincludes age, sex and top five genetic PCs.
We used EstBB data for the model training and evaluation of iPGS
modelinEuropeans. The model-training dataset was composed of 1,003
cases of prevalent AlS at the baseline and 8,997 control individuals. The
controlindividuals were randomly selected among EstBB participants
who had no history of AS at the baseline and who did not develop AS dur-
ing the follow-up. The remaining 102,099 EstBB participants were used
for the model evaluation (mean + s.d. age at the baseline, 44.0 £15.7
years; 37.8% men). Among the participants in the model-evaluation
dataset, 1,128 cases of incident AIS were observed during 4.6 + 4.8 years.
Toderive the EuropeaniPGS model, we incorporated 5 ancestry-specific
and 5 cross-ancestry stroke GWAS analyses (AS, AIS, LAS, SVS and CES)

from the GIGASTROKE project, and 12 GWAS analyses of vascular-risk
traits from other groups (Extended Data Fig. 10). To avoid the overlap
of participants across datasets, the GWAS summary statistics for stroke
outcomeswererecalculated for the iPGS analysis by excluding the EstBB
from the meta-analysis of GIGASTROKE studies. To enable compari-
sonwithaprevious EuropeaniPGS model based onthe MEGASTROKE
GWAS®, weincorporated 12 GWAS analyses of vascular-risk traits (atrial
fibrillation, CAD, T2D, SBP, DBP, TC, LDL-C,HDL-C, TG, BMI, height and
smoking)®*°¢39-61107108 jntg the GIGASTROKE-based iPGS model. The
iPGS model for Europeans was further evaluated in two external cohorts
of Europeanancestry (MVP and pooled data of clinical trials) as well as
intwo studies of participants with African ancestry (MVP and SIREN).

For the East Asian iPGS model, we used BBJ data for the model train-
ing and evaluation. The model-training dataset was composed of 577
cases of AIS and 9,232 control individuals, whereas there were 1,470
cases of AIS and 40,459 control individuals in the model-evaluation
dataset. The mean * s.d. of age at recruitment was 69.2 + 10.8 years
for cases and 66.5 +12.5 years for controls in the model evaluation
dataset. The percentage of male participants was 70.0% for cases and
53.1% for controls. The two case-control datasets were notincludedin
the meta-analysis of GIGASTROKE studies and, therefore, the overlap
of participants across datasets was avoided. To derive the East Asian
iPGS model, weincorporated 5ancestry-specificand 5 cross-ancestry
stroke GWAS analyses (AS, AIS, LAS, SVS and CES) from the GIGASTROKE
project, and 12 GWAS analyses of vascular-risk traits (Extended Data
Fig.10). The iPGS model for East Asian individuals was further evalu-
ated in an external study of East Asian ancestry (TWB).

GRS inclinical trials

Participants who had consented for genetic testing and who were of
European ancestry from the ENGAGE AF-TIMI 48 (effective anticoagula-
tionwith factor Xanext generation in atrial fibrillation)'°%, SOLID-TIMI 52
(stabilization of plaques using darapladib)®, SAVOR-TIMI 53 (saxaglip-
tin assessment of vascular outcomes recorded in patients with diabetes
mellitus)™, PEGASUS-TIMI 54 (prevention of cardiovascular events in
patients with prior heart attack using ticagrelor compared to placebo
on abackground of aspirin)? and FOURIER (further cardiovascular
outcomes research with PCSK9 inhibition in patients with elevated
risk)™™ trials were included in this analysis. Methods for genotyping and
imputation have previously been published*"* and are summarized
in Supplementary Table 2. A set of 58 sentinel variants at stroke-risk
lociidentifiedinthe IVW meta-analysis was used to calculate a GRS for
eachtrial participant and identify tertiles of genetic risk (Supplemen-
tary Table 57). A Cox model was used to estimate HRs for ischaemic
stroke associated with the quantitative GRS and across genetic risk
groups, adjusted for clinical risk factors (age, sex, hypertension, hyper-
lipidaemia, diabetes, smoking, CAD, atrial fibrillation and congestive
heart failure) and the first five principal components of population
stratification. Analyses were conducted primarily in participants of
Europeanancestry (n = 51,288, with 960 incident AlS)—with secondary
analysesinthe much smaller East Asian (n=1,312, with 27 incident AIS)
ancestry subset—using the AS cross-ancestry IVW meta-analysis effect
estimates as weights for the primary analysis and ancestry-specific,
as well as AlS effect estimates for secondary analyses. We also looked
separately at associations with incident stroke in participants with and
without previous stroke.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability

Summary statistics generated by the GIGASTROKE consortium across
ancestries and stroke subtypes are available in the GWAS Catalog
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(GCST90104534-GCST90104563). The integrated polygenic risk
score models of stroke in Europeans and East Asians are available in
the PGS Catalog (PGS002724 and PGS002725). Individual level data
can be requested directly from the authors of the contributing stud-
ies, listed in Supplementary Table 1. Single-nucleus RNA-seq data have
been depositedinthe SYNAPSE database as part of the Religious Orders
Study and Memory and Aging Project (ROSMAP) (https://www.syn-
apse.org) and through the RADC Resource Sharing Hub (https://www.
radc.rush.edu). We used publicly available data from GTEx (https://
gtexportal.org/home/), the Gusev laboratory (http://gusevlab.org/
projects/fusion/), the FinnGen Freeze 7 cohort (https://www.finngen.
fi/en/access_results), PhenoScanner v.2 database (http://www.phenos-
canner.medschl.cam.ac.uk), pQTL summary statistics (https://doi.
org/10.1038/s41588-020-0682-6, http://www.phpc.cam.ac.uk/ceu/
proteins/, http://metabolomics.helmholtz-muenchen.de/pgwas/index.
php, https://zenodo.org/record/264128), deCODE genetics (https://
www.decode.com/summarydata/) and summary statistics using the
UK Biobank whole-exome sequencing (https://doi.org/10.1038/s41586-
021-04103-2).

Code availability

The code for computation of the integrated polygenic risk score
of stroke are available at GitHub (https://github.com/hacchy1983/
iPGS-construction). The drug discovery analysis was conducted using
the following publicly available tools: GREP (https://github.com/saori-
sakaue/GREP), Trans-Phar (https://github.com/konumat/Trans-Phar),
and the TwoSampleMR (https://mrcieu.github.io/TwoSampleMR/),
coloc (https://chriswallace.github.io/coloc/) and susieR (https://ste-
phenslab.github.io/susieR/index.html) R packages.
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EAS: 4/ 10 studied risk factors show causal association with >= 1 stroke subtype (p<5E-3)
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quantitative trait loci Mendelian Randomization; SuSiE: sum of single effects
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adjusted LD scoreregression; MR-Egger: Mendelian randomization-Egger;
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P+T: pruning and thresholding; PRScs: polygenicrisk score under continuous

shrinkage; BBJ: BiobankJapan; TIMI: thrombolysis in myocardial infarction;
MVP: Million Veteran Program; SIREN: Stroke Investigative Research and

Educational Network.
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(A) Single-cell gene expression data of TWAS-COLOC genes in dorsolateral

prefrontal cortex (ROS-MAP study)

(C) Cell-type enrichment in human and mouse single
cell RNA-seq databases using STEAP
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Extended DataFig. 8|Single-nucleus gene expression/enrichment analysis
and proteome-wide associationstudy (PWAS) of stroke in brain tissue.

(A) Single-nucleus gene expression data of TWAS-COLOC genes in dorsolateral
prefrontal cortex (ROS-MAP study)?; Dot plot of the mean expression level in
expressing cells (colour) and percent of expressing cells (circle size) of selected
genesacross different cell types; (B) Proteome-wide association study (PWAS)
of stroke in brain tissue; Box plot showing effect estimates (odds ratio) for
associations of pQTL of ICAIL inthe ROS-MAP (N =376 independent samples)
and Banner (N =152independent samples) studies with any stroke (AS) and any
ischaemic stroke (AlS), identified in PWAS after multiple testing correction.
Odds ratios + 95% Cls are shown. Dashed line indicates an odds ratio of 1.
Two-sided p-values were computed using the TWAS-COLOC approach.

(C) Cell-type enrichment in human and mouse single cell RNA-seq databases
using STEAP; the UpSet plot displays the number of significant enrichment
results, by stroke subtype (horizontally; 2 for CES, 5for AlS, 6 for AS,and 12 for
LAS) and by cell subtype (vertically; 2 cell-types show significant enrichment in
LAS, AIS,and AS, 2 cell-typesin AISand AS, and 1 cell-typein LAS and AS, while
9 cell-types showsignificantenrichmentin LASonly,2in CESonlyand1in
ASand AlS respectively); details are displayed in Supplementary Table 29. AS:
any stroke; AIS: any ischaemicstroke; LAS: large artery stroke; CES: cardioembolic
stroke; VLMC: vascular and leptomeningeal cells, OPC: oligodendrocyte
progenitor cells, SMC: smooth muscle cells; VSMCA: vascular smooth muscle
cells, arterial.
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(A) Derivation of standard PGS models
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(B) Derivation and evaluation of integrative PGS models
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Extended DataFig.10|Derivation and evaluation of integrative polygenic
score models for Europeans and East Asians. (A) With summary statistics

0f 22 GWAS (10 GIGASTROKE and 12 on vascular risk factors) and linkage
disequilibrium reference dataof 1000 Genomes Europeans (n = 503) and

East Asians (n = 504), we computed 37 candidate PGS models using P+T,
LDpred, and PRScs algorithms. Foreach GWAS, the best PGS model was
selected based onthe maximal area under the curve (AUC) values in the
training dataset of Europeans (any ischaemic stroke [AIS] case-control data,
Ncases/Ncontrols =1,003/8,997) and East Asians (AIS case-control data,
Ncases/Ncontrols =577/9,232). Out of 22 selected PGS models derived from the
22 GWAS, 11and 7 were significantly associated with AlSin the European and
East Asiantraining dataset respectively (Bonferroni-corrected P < 0.05).

(B) The significant PGS models were used as the variables for elastic-net logistic
regression and the weights for the variables were trained using the model
training dataset. The EuropeaniPGS model consisting 0f 1,213,574 variants and

Strake oulcomes East Aisan- specmc GWAS) Stroke outcomes (cross-; anceslry GWAS
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Pre-filtering and model training using elastic-net logistic regression
(EAS case-control data with 577 AIS cases and 9,232 controls)

Integrative PGS model for EAS
(1 model)

Evaluation of the integrative PGS model
(EAS case-control data with 1,470 AIS cases and 40,459 controls)

an East-Asian iPGS model consisting of 6,010,730 variants were constructed by
combining the1land 7 significant PGS models using the elastic-net derived
weights respectively. The European and East Asian iPGS models were evaluated
inthe European (aEuropean prospective cohort datawith 102,099 participants
including1,128 incident IS cases) and East-Asian (AIS case-control data, Ncases/
Ncontrol =1,470/40,459) model evaluation dataset (Methods); ASindicatesany
stroke; AIS, any ischaemic stroke; LAS, large artery stroke; SVS, small vessel
stroke; CES, cardioembolic stroke; AF, atrial fibrillation; CAD, coronary artery
disease; T2D, type 2 diabetes; SBP, systolic blood pressure; DBP, diastolic blood
pressure; TC, total cholesterol; LDL-C, low-density lipoprotein cholesterol;
HDL-C, high-density lipoprotein cholesterol; TG, triglyceride; BMI, body mass
index; AUCindicates areaunder the curve; EUR, European; EAS, East Asian;
GWAS, genome-wide association study; LD, linkage disequilibrium; PGS,
polygenicscore.
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Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated
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Software and code

Policy information about availability of computer code

Data collection | No software was used for data collection

Data analysis Each individual study that contributed genetic-phenotype association summary statistics to the consortium carried out their association
analyses independently of the consortium (study-specific information outlined in Supplementary Table 2). Please refer Supplementary Table 2
for the software used for quality control, imputation and GWAS analyses by individual studies. Moreover we used publicaly available METAL
v2020-05-05, MR-MEGA v.0.1.6 and MTAG v1.0.8 software for GWAS meta-analysis. For post GWAS analysis we used VEGASv2, MAGMA
v1.08, cov-LDSC v1.0.0, GCTA-COJO v1.26.0, susieR, R v4.1.1 (MendelianRandomization package), MENTR v1, R v4.1.1 (TWAS-Fusion package),
STEAP pipeline v1, GREP v1.0.0, Trans-Phar v1, R v4.0.3 (PheWAS package), plink v1.90b6.8, LDpred v.1.0.11, PRScs.py v2021-01-04. These are
publically available software, original manuscript of these software was cited whenever these software were menioned in the manuscript

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.
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- Accession codes, unique identifiers, or web links for publicly available datasets
- A description of any restrictions on data availability

- For clinical datasets or third party data, please ensure that the statement adheres to our policy

Summary statistics generated by the GIGASTROKE consortium across ancestries and stroke subtypes are available in the GWAS Catalog (study code GCST90104534-
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The integrated polygenic risk score models of stroke in Europeans and East Asians are available in the PGS Catalog (PGS002724 and PGS002725). Individual level
data can be requested directly from contributing studies, listed in Supplementary Table 1. Single nucleus RNA-seq (snRNA-seq) data is deposited in the SYNAPSE
database as part of the Religious Orders Study and Memory and Aging Project (ROSMAP) (https://www.synapse.org) and through the RADC Resource Sharing Hub
(https://www.radc.rush.edu). We used publicly available data from GTEx (https://gtexportal.org/home/), the Gusev lab (http://gusevlab.org/projects/fusion/), the
FinnGen Freeze 7 cohort (https://www.finngen.fi/en/access_results), PhenoScanner v2 database (http://www.phenoscanner.medschl.cam.ac.uk), the pQTL
summary statistics (https://doi.org/10.1038/s41588-020-0682-6, http://www.phpc.cam.ac.uk/ceu/proteins/, http://metabolomics.helmholtz-muenchen.de/pgwas/
index.php, https://zenodo.org/record/264128), the deCODE genetics (https://www.decode.com/summarydata/), the summary statistics using the UK Biobank
whole-exome sequencing (https://doi.org/10.1038/s41586-021-04103-z).
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Life sciences study design
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Sample size We performed meta-analysis of GWAS on 29 population-based cohorts or biobanks with incident stroke ascertainment and 25 clinic-based
case-control studies, comprising up to 110,182 stroke patients and 1,503,898 controls. We also gathered an independent dataset of 89,084
any stroke cases and 1,013,843 controls, mostly from large biobanks, for external replication. We included clinic-based studies with minimum
of n=100 cases and n=100 controls, while we were more inclusive for population-based cohorts with longitudinal information on incident
stroke and considered all population-based studies with more than 20 incident stroke cases. No statistical calculation for adequate sample
size was performed, but the results identifying multiple genomic regions at genome-wide significance threshold indicates adequate power for
genetic discovery.

Data exclusions | Individual level phenotype and genotype data exclusions were performed by each individual study, described in supplementary appendix.
However in population-based longitudinal cohorts we considered well ascertained incident stroke cases only, the self-reported stroke cases at
baseline were excluded from this analysis.

Replication To verify the reproducibility of our findings, first, we replicated 42 loci discovered in one ancestry into the internal data of other ancestries
(internal cross-ancestry validation). We successfully replicated 10 out of 42 loci after accounting for the number of loci tested, of which 7
were genome-wide significant in European (EUR), 1 in East Asian (EAS), and 2 in both (EUR) and (EAS). Additional 15 loci showed nominal
association (p<0.05) in at least one other ancestry (Supplementary Table 15). Second, we also gathered an independent dataset of 89,084 any
stroke cases and 1,013,843 controls, mostly from large biobanks, for external replication. Out of the 60 loci reaching genome-wide
significance in primary inverse-variance weighted (IVW) meta-analyses, in this independent external dataset 48 loci (80%) replicated at p<0.05
with consistent directionality, of which 31 (52%), at p<8.2x10-4 (accounting for the number of loci tested).

Based on these follow-up results we characterized the level of confidence of identified loci as follows: high confidence in case of significant
internal ‘cross-ancestry’ and/or external replication after accounting for the number of loci tested, or nominally significant replication in both
internal and external replication, or evidence of involvement in monogenic stroke; intermediate confidence in case of nominal significance in
either internal ‘inter-ancestry’ or external replication but not both; and low confidence in the absence of formal replication.

Overall, out of the 60 loci reaching genome-wide significance in the main IVW GWAS meta-analysis, 52 (87%) replicated at p<0.05 with
consistent direction, of which 37 (61.7%) with high confidence, and 15 with intermediate confidence (25%). The 8 loci that did not replicate
were labeled as “low confidence”. Four of these were ethnic specific and 3 were low frequency variants that were monomorphic in some
ancestries, limiting our ability for replication.

Within the secondary analyses (MR-MEGA and MTAG), none of the 3 MR-MEGA loci replicated, although one was borderline significant
(Supplementary Table 16). Of the 26 MTAG loci, 18 (69%) replicated with AS or AIS at p<0.05, of which 9 (35%) with high confidence. Of the 8
MTAG loci that did not replicate, 7 showed a consistent directionality (borderline significant for one), and 4 were subtype-specific, limiting our
ability for replication with AS or AIS.

While we have clearly labeled “low confidence” variants, we have not removed them from bioinformatics functional follow-up analyses.
Indeed, we feel that despite the important worldwide effort that enabled to gather nearly 90,000 additional stroke cases, several issues still
affect our ability to replicate some of the identified stroke risk loci:

« limits of statistical power, considering a smaller sample size than in the discovery and the winner’s curse phenomenon;

« we cannot rule out some degree of misclassification in the follow-up samples that were, with two smaller exceptions, nearly exclusively
derived from large biobanks with stroke ascertainment based on ICD codes only (Turnbull, Lancet Reg Health West Pac. 2022; Rannikmae,
Neurology 2020), while a large proportion of stroke cases in the discovery were recruited and deeply phenotyped in a hospital-based setting;
 a substantial proportion of genetic risk for stroke is subtype specific, which is not fully captured in the replication because of the limited
availability of stroke subtype data

Randomization  No randomization was performed because there was no allocation of samples to experimental groups.

Blinding Blinding was not relevant to this study. The investigators of each study evaluated the case status of individual samples. Individual studies
performed a genome-wide association study (GWAS) using logistic regression (or cox regression in some longitudinal population-based
cohorts) testing association of genotypes with five stroke phenotypes (AS, AlS, CES, LAS, and SVS) under an additive effect model, adjusting for
age, sex, principal components of population stratification, and study specific covariates when needed, details are provided in Supplementary
table 2. The consortium meta-analysed summary statistics from these case/control studies, not individual level data.
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Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material,
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.

Materials & experimental systems Methods
Involved in the study n/a | Involved in the study
Antibodies |:| ChiIP-seq
Eukaryotic cell lines g |:| Flow cytometry
Palaeontology and archaeology |:| MRI-based neuroimaging

Animals and other organisms

Human research participants
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Human research participants

Policy information about studies involving human research participants

Population characteristics We performed meta-analysis of GWAS on 29 population-based cohorts or biobanks with incident stroke ascertainment and
25 clinic-based case-control studies, comprising up to 110,182 stroke patients and 1,503,898 controls. The cohorts included
individuals of European (EUR, 66.7% of stroke patients), East-Asian (EAS, 24.8%), African-American (AFR, 3.7%), South-Asian
(SAS, 3.3%), and Hispanic (HIS, 1.4%) ancestry. Analyses were performed for any stroke (AS: comprising ischemic stroke, ICH,
and stroke of unknown or undetermined type), any ischemic stroke regardless of subtype (AIS, N=86,668), and ischemic
stroke subtypes (LAS, N=9,219; CES, N=12,790; SVS, N=13,620).

We also gathered an independent dataset of 89,084 AS (of which 85,546 AIS; 70.0% EUR, 15.6% AFR, 10.1% EAS, 4.1% HIS,
and 0.1% SAS) and 1,013,843 controls, mostly from large biobanks, for external replication.
Population characteristics of all individual studies are provided in Supplementary Table 1.

Recruitment As summarized in Supplementary Table 1 and described in greater detail in the Supplementary Appendix, participants were
recruited in three different settings: (1) population-based studies (about one third of the discovery dataset); (2) clinic-based
case-control studies; (3) biobanks (mostly hospital-based, about 90% of follow-up studies). In clinic/hospital-based studies
patients with very severe strokes making informed consent more challenging or very minor strokes not leading to any
hospitalization are less likely to be included. Stroke ascertainment in population-based studies is more comprehensive as it is
conducted prospectively. Stroke subtyping is more detailed in clinic-based case-control studies than in population-based
studies and biobanks.

Ethics oversight Each contributing studies received ethical approval by the respective Institutional Review Boards (IRB). Detailed descriptions
for each contributing study are given in supplementary appendix.

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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