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Abstract: We consider the problem of calibrating range measurements of a Light Detection and Rang-
ing (lidar) sensor that is dealing with the sensor nonlinearity and heteroskedastic, range-dependent,
measurement error. We solved the calibration problem without using additional hardware, but
rather exploiting assumptions on the environment surrounding the sensor during the calibration
procedure. More specifically we consider the assumption of calibrating the sensor by placing it in
an environment so that its measurements lie in a 2D plane that is parallel to the ground. Then, its
measurements come from fixed objects that develop orthogonally w.r.t. the ground, so that they may
be considered as fixed points in an inertial reference frame. Moreover, we consider the intuition that
moving the distance sensor within this environment implies that its measurements should be such
that the relative distances and angles among the fixed points above remain the same. We thus exploit
this intuition to cast the sensor calibration problem as making its measurements comply with this
assumption that “fixed features shall have fixed relative distances and angles”. The resulting calibra-
tion procedure does thus not need to use additional (typically expensive) equipment, nor deploy
special hardware. As for the proposed estimation strategies, from a mathematical perspective we
consider models that lead to analytically solvable equations, so to enable deployment in embedded
systems. Besides proposing the estimators we moreover analyze their statistical performance both in
simulation and with field tests. We report the dependency of the MSE performance of the calibration
procedure as a function of the sensor noise levels, and observe that in field tests the approach can
lead to a tenfold improvement in the accuracy of the raw measurements.

Keywords: lidar; sensor calibration; heteroskedastic; landmark position estimation

1. Introduction

Localization is essential for applications where robots shall move precisely in the
surroundings, and is typically performed by leveraging on measurements acquired through
distance sensors. Calibrating these distance measurement sensors so that their readings
are as accurate as possible is thus a preliminary task that is essential for achieving good
navigation performance at a later stage.

To make a practical and typical (but not exhaustive) example, calibrating a distance
sensor may mean considering a measurement model of the type

r = fbias(d) + fst.dev(d)e (1)

where r is the noisy sensor reading, d is the true distance, fbias(·) includes the true distance
plus an unknown bias term, and fst.dev(·) is a factor modulating the measurement noise
whose stochasticity is induced by a random variable e typically assumed standard Gaussian
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and independent and identically distributed (iid). Such a model is motivated by practical
real-life situations, such as the one depicted in Figure 1, and the uncertainty constructed
according to the work in [1]. A strategy for calibrating a model such as (1) would in this
case correspond to estimating fbias and fst.dev so that these factors can be accounted for
when postprocessing new measurements from the sensor.
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Figure 1. An example of a series of raw measurements obtained using a non-calibrated distance sensor
(in this case the triangulation lidar described in Section 4.3).
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The operation of calibrating a sensor is typically performed by comparing the raw
measurements of the sensor against readings from an external and sufficiently more ac-
curate system (e.g., a motion capture system) that is considered as ground truth (e.g., as
in [2]). Acquiring this ground truth (and thus this external and sufficiently more accurate
system), however, may be expensive and time-consuming. It may thus be beneficial to find
strategies that substitute this information acquisition step with more easily implementable
and cheaper approaches.

For example, this substitution can be performed as follows: assume that in structured
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environment trunks of trees in a forest, etc.). Assume moreover that these structures may
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Figure 2. Raw measurements (right plot) from a non-calibrated triangulation lidar surrounded by
trees in a forest (the ones in the left picture).
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Figure 2. Raw measurements (right plot) from a noncalibrated triangulation lidar surrounded by
trees in a forest (the ones in the left picture).

As soon as the structures do not move, these signatures may be considered as fixed
points in an inertial reference frame. If a distance sensor is moved within this environment,
then the measurements from the sensor referring to these fixed points should be such that
the relative distances and angles among these fixed points remain the same. The calibration
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process may then be cast, from an intuitive perspective, as finding models like (1) for which
the measurement process complies with the assumption that “fixed features shall have
fixed relative distances and angles”.

The goal of this paper is thus to understand how to leverage these assumptions on the struc-
ture of the environment surrounding the distance sensors for the purpose of building statistically
accurate distance sensors calibration strategies.

To do so we will thus consider using a simple strategy: (a) place some artificial
landmarks (i.e., some poles) in random positions in space; (b) calibrate the sensor by
making its measurements comply with the fixed-world assumption above.

1.1. Literature Review

The strategy described in the previous subsection relates to the existing literature as in
the following. First of all, distance sensors are often used for reconstructing environmental
maps used by robots to move without colliding with obstacles, as, for example, in [3] (We
also note that map generation is not the only application; for example, forestry applications
use lidars to measure and monitor the growth of forests, compute trunk’s diameters, and
calculate the density of trunks or canopies [4,5]). Several strategies have been proposed to
improve distance sensor performance and accuracy through statistical manipulation of their
measurement processes. For example, the statistical sensor model for ultrasound sensors
was presented in [6] with calibration algorithms in [7] and a good review on odometer
calibration is presented in [8]. As a generic definition, statistical sensor calibration is
the process of improving sensor accuracy and/or precision through transforming the
measurements into something closer to ground truth via combining information about the
same sensed quantity that is obtained using different sources of information like ground
truth data. Sensor calibration for installation error has been well studied in the literature
and, in general, is solved using nonlinear optimization, see for example in [9]. However, in
this research, we are not considering the extrinsic calibration of the sensor but we focus on
the intrinsic calibration that is dealing with the sensor nonlinearity and heteroskedastic,
range-dependent, measurement error. Unfortunately, ground truth is not always available
and in some cases, if exists, it is very expensive. Therefore, it is usually substituted with
one of the following strategies.

• Certain assumptions about the sensor movement and about the surrounding envi-
ronment, in which the calibration process is shaped as joint parameters and state
estimation, for example, lidar calibration from linear motion [10].

• Another strategy for substituting ground truth information with some other informa-
tion is to implement appropriate sensor fusion strategies, i.e., to combine redundant in-
formation from independent distance sensors. Such a strategy has been used in [10,11],
where approximated Expectation Maximization (EM) procedures (in the former) and
Markov chain Monte Carlo (MCMC) techniques under Bayesian frameworks (in the
later) are used for joint parameter and state estimation combining information from
lidars, odometry, and ultrasound sensors. Calibrating the intrinsic parameters of
one beam based on other beams of rotating multi-beam lidar attracted large amount
of research, for example, in [12–15]. We note that sensor fusion is a vast topic and
there are many publications on calibrating other sensors, for example, magnetometer
calibration using inertial sensors in [16], camera and IMU calibration in [17], and lidar
and camera calibration in [18]. However, here, we are interested only in calibration
that is related to lidars.

• The last strategy is to use assumptions on the environment, for example, odometer
calibration with localization [19]. Another example is to use the planar feature in the
environment to calibrate lidars. Originally plane-based calibration was presented
for calibrating airborne lidars in [20,21]. Then, the authors of [22] introduced a
mathematical model and static calibration for the Velodyne HDL-64E lidar using
planar feature and least squares solution. The authors of [23] calibrated a 3D lidar for
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both the geometric and temporal parameters based on Rényi Quadratic Entropy to
formulate an optimization problem that maximizes the quality of the point cloud.

As said above, here we specifically investigate how to substitute ground truth in-
formation with assumptions on the environment. Our strategy will intrinsically require
localizing (in a sense to be specified later) the position of the sensor within the surrounding
environment. This means that our paper relates to the existing literature on localizing
sensors in space using noisy measurements of distances from landmarks or beacons. To the
best of our knowledge, it is possible to do so using three different approaches:

• triangulation, where the position is determined through measuring the angles between
the sensing device and the known landmarks (see, e.g., in [24]);

• trilateration, where the position is determined through measuring the distances be-
tween the device and the landmarks (see, e.g., in [25,26]);

• triangulateration, a strategy that combines both of the above (see, e.g., in [27,28]).

Generally, most algorithms use either triangulation or trilateration alone, as they require
less information from the sensor (measuring both distances and angles, indeed, normally
requires more expensive hardware). For this reason several studies on how to localize the
position of a sensor using landmarks or beacons mostly use triangulation or trilateration
approaches. For example, the authors of [29–31] all propose different techniques for self-
localization using landmarks or beacons and triangulation concepts, while the authors
of [25,26,32,33] all use trilateration.

In the literature mentioned above the solutions are based on the assumption that he
landmark positions are known which is not the case in our setup. Extensive research has
been done to solve mobile device localization given several known mobile base stations [34].
However, in this paper, we relax this assumption into a more general case where the
landmark positions are assumed to be completely unknown. Instead we assume to know
imprecise information about the sensor’s new position with respect to the previous one.
This kind of information is actually the control commands to the robot which is always
available for robot moving in its environment. Furthermore, to make the calibration process
independent on the robot dynamical model, we assume to take measurements only when
the robot is not moving (stand still).

Scan-matching techniques like ICP [35] and NDT [36,37] are also commonly used to
localize a sensor in space. This class of methods determines the relative transformation
between two lidar scans by minimizing surface-to-surface distances using all points in the
scans, as opposed to a sparse set of extracted landmarks as is the case with triangulation
and trilateration. Scan matching could potentially be used instead of, or in addition to,
the control commands used as input to estimate the sensor pose in this work. However,
this pose estimation is not the focus of the present paper, but rather the calibration of the
range-dependent sensor noise.

Finally, we note that our strategy is specifically designed for cheap distance sensors:
generally, the more accurate and precise a sensor is, the more useful (and, at the same time,
likely expensive) it is. Our focus is on enabling software-based improvements of cheap sen-
sors so that, by adding a bit of statistical processing, we extend their applicability. For this
reason, we use triangulation lidar sensors as a practical and motivating example. Therefore,
our paper relates also with the literature around the calibration of these sensors, and thus
to the analyses on the effect of color of the target on the measured distance [38]; the works
in [39,40], that build two partially different statistical models (the former homoskedastic,
the latter heteroskedastic) and thus two slightly different calibration procedures based on
ground truth information, using Weighted Least Squares (WLS) for parameter estimation
and Akaike Information Criterion (AIC) for model selection; and the work in [41], that
extends upon the work in [40] by including the effects of beam angles in the calibration
process.
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1.2. Statement of Contributions

Summarizing, we propose and validate a strategy that uses triangulateration concepts
for calibrating distance sensors that return 2D measurements (i.e., both angles and dis-
tances). The algorithm leverages on placing the distance sensor inaccurately in equally
distant positions along straight paths and making the measurements from the sensor
comply with the assumption that the landmarks do not move, plus some other practical as-
sumptions listed exhaustively in Section 2. The strategy is intended to be applicable at least
(but not only) for the very specific situation where vacuum cleaning robots move within
an apartment, and are able—by moving around and detecting obstacles—to self-calibrate
their distance sensors.

More specifically, our strategy works as follows. First, we assume the pre-existence of
a procedure that correctly identifies and distinguishes landmarks in the 2D measurements
stream. Then, laddering on this knowledge, we perform two steps: (1) use the measured
angles to the identified landmarks and the knowledge of the sensor movement to obtain
an unbiased estimate of the landmarks positions in the fixed frame, and (2) calibrate the
distance measurement model using these estimated landmarks positions.

We moreover validate the strategy using two approaches: (a) via simulated datasets,
to analyze the limitations of the proposed procedure in a Monte Carlo (MC) fashion, and
(b) to quantitatively assess the performance of the proposed procedure in real-life scenarios
via field datasets recorded in a lab equipped with high-fidelity motion capture system.

1.3. Organization of the Manuscript

Section 2 formulates the calibration problem from a mathematical perspective. Section 3
describes the proposed algorithm, while Section 4 quantitatively assesses its performance.
Section 5 concludes by listing the most important discoveries and research questions
opened in the process.

2. Problem Formulation

We pose the following assumptions.

(A1) The environment from which we collect the measurements to be used for the cali-
bration process has particular structures that produce easily recognizable features
in the sensor readings. For example, the situation is as in Figure 3, where corners
and poles produce clear features in the 2D plane of the measurements. Note that
this means that our strategy cannot work in environments that miss these easily
recognizable structures (such as natural places like deserts, or flat areas without trees).
However, generally we consider applications where robots shall move precisely in
the surroundings, and this calls for objects to be avoided. If there are no such ob-
stacles/structures then the need for precise calibration becomes feeble. Given this,
without loss of generality we require static and detectable landmarks; in this paper,
we will use cylinders with known radius, but it could be anything as long as we have
a detector for it.

(A2) The sensor measurements lie in a 2D plane that is parallel to the ground. Moreover,
the objects that produce the above mentioned features develop orthogonally w.r.t.
the ground. This implies that the distances measurements are not affected by tilt
effects. This requirement may not hold in generic situations; however, our envisioned
calibration strategy is to be carried out within a building, where the conditions
above hold. The problem of removing these assumptions is considered as a potential
future extension.

(A3) The statistical model underlying the distance readings contains heteroskedastic noise
(for which the variance of the noise increases with the actual distance that shall be
measured) and a bias whose amplitude also increases with the distance above. More
specifically, we will focus on the situation where there exist l = 1, . . . , L objects in the
environment, and k = 1, . . . , K places where the sensor can be placed. We then let
[xl , yl ] and [x̃k, ỹk] be, respectively, the Cartesian coordinates of the L objects and of
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the K sensor positions. Accordingly, the actual distance between the sensor position k
and the object placement l is

dl,k =
√
(xl − x̃k)2 + (yl − ỹk)2. (2)

We then assume that the distance readings are distributed as the polynomial model

d̃l,k =
nb

∑
i=0

αi(dl,k)
i

︸ ︷︷ ︸
bias

+
nh

∑
i=0

βi(dl,k)
iel,k

︸ ︷︷ ︸
heteroskedastic noise

(3)

with el,k ∼ N (0, 1) iid. The model parameters are thus {αi}, {βi}, with n being the
corresponding model order (hereafter assumed for simplicity equal for both the bias
and noise terms, i.e., n = nb = nh). Note that in the following we may also use a
simplified distance model that, for the sake of numerical tractability, neglects the
heteroskedastic term in (3) so that the model reduces to

d̃l,k =
n

∑
i=0

αi(dl,k)
i + el,k. (4)

We will refer to this model as to the “simplified distance model”.
(A4) Finally, we also assume that the angular readings θ̃l,k are noisy measurements of

the actual angles θl,k from which the object l is seen by the sensor at position k with
respect to the reference frame of the horizontal axis. More precisely, we assume

θ̃l,k = θl,k + νl,k (5)

where the measurement noise is νl,k ∼ N
(
0, σ2

θ

)
iid. Note that in practice this is a

simplificative assumption that we use for analytical tractability reasons and that, a
posteriori, is motivated by the numerical results we got during our experiments (For
the sake of precision, it would be more formally correct to model the angle measure-
ment noise through a Von Mises distribution with circular mean and non-circular
concentration parameter. However, such a distribution converges to a normal one as
the concentration parameter grows larger. In our case thus the approximation is justi-
fied in practice). Note, moreover, that this assumption implies that σ2

θ is an unknown
parameter of the model. We also assume that the error characteristics of (3)–(5) are
time-invariant and do not depend on the absolute positions of the landmark (while
they obviously depend on the relative distances “sensor vs. obstacle”). The angle θl,k
is thus the sum of the angle from which the object l is seen by the sensor with respect
to the robot reference frame, plus the robot heading angle plus the rotation angle
of the lidar’s internal coordinate system with the robot coordinate system which is
assumed to be a known constant. Note also that the measurement noise νl,k in (5)
incorporates imprecisions in the knowledge of the robot heading and rotation angle.

Summarizing, the calibration procedure shall return a reasonable model order n̂ and
an estimated parameter vector Θ̂ =

[
α̂1, . . . , α̂n̂, β̂1, . . . , β̂n̂, σ̂2

θ

]
. The problems are thus

(P1) design a statistically optimal or near-optimal (in the Mean Squared Error (MSE)
sense) algorithm that can be computed using closed-form expressions, and that can
simultaneously estimate: the sensor coordinates xk, yk for each sampling position k,
the position of the objects xl , yl for each object l, the model order n̂ and the model
parameters vector Θ̂ above;

(P2) quantitatively characterize the statistical performance of these estimators using ap-
propriate mathematical analysis and field tests.
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3. A Triangulateration Strategy for Calibrating Distance Sensors

Optimally solving the problem 2 above requires jointly solving a nonlinear parameter
estimation and a nonlinear state estimation problem. The solution is in general not available
in closed form, and a viable numerical strategy could be using Monte Carlo techniques.
However, this would require extensively long simulations and high processing power,
which we assume is not available or usable. Recall indeed our initial idea: our goal is to
develop strategies that can be used to endow cheap embedded systems (such as vacuum
cleaning robots) to autonomously self-calibrate their distance sensors when desired and
without the need to connect to external computing infrastructure. Therefore, we proceed
to solve the problem using an ad hoc strategy that is easily implementable on normal
embedded systems at the cost of sacrificing optimality of the estimates in the MSE sense.

More precisely, we propose to construct an estimator that computes solutions perform-
ing the following steps:

1. Assume to know that there exist L landmarks, and to be able to identify and label
them at each time instant from the raw measurements stream;

2. place the sensor in a finite number of ideally equally spaced positions along an ideally
straight line (say sk where k = 1, . . . , K);

3. collect noisy measurements of the angles θ̃l,k and distances d̃l,k between the sensor and
the various landmarks l = 1, . . . , L at each position sk (we recall that the stochastic
models for these processes are (3) and (5));

4. estimate the 2D positions of the L landmarks in the inertial frame based on the sensor
angle measurements θ̃l,k only, using the strategy defined in Section 3.1 below; and

5. given the estimated landmark positions above, and the measured distances d̃l,k,
estimate the model order and model parameters (i.e., do the actual sensor calibration
step) with the strategy proposed in Section 3.2 below.
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3.1. Estimating the 2D Positions of Circular Landmarks

For illustration purposes and to make the paper self-contained, we now present a
simple landmark position estimation algorithm and show that the method still works,
even though better landmark detectors may be available. We also note that the focus of
the paper is on sensor calibration. However, the same method developed for the sensor
calibration part can be used to build a simple landmark position estimation algorithm.
Recall then that we assume the landmarks l = 1, . . . , L to be circular geometrical features
in the measurement stream that are induced by distinct circular objects in the sensor
environment as in Figure 2. To contextualize this assumption, consider Figures 3 and 4
and their captions, showing the sensor mounted on a robot moving in between the various
circular landmarks. We used a lidar sensor from Neato. (It measure ranges from 0.2 m to
6 m and cover full 360 degree planar scan with angular resolution of 1 degree, [42]). (Neato
Robotics www.neatorobotics.com).

Assume then, as in step 2 above, to place the sensor in k = 1, . . . , K ideally equally
spaced positions along an ideally straight line, and to collect the corresponding raw
measurements from the sensor. Note that it is possible to do the calibration without moving
in a straight line, but it was chosen so to prevent the error from increasing largely during
rotation and also to keep motion model (8) as simple as possible by excluding the robot
heading angle. We selected equally spaced positions to minimize the error propagation
from rover controller to the calibration process, as different step sizes might have different
error levels in the controller. The next step is to compute, starting from this raw data, an
estimate of the center of each circular landmark l using the information obtained at each
sensor position k. Intuitively, we estimate the center of the landmark l as the point that
minimizes the sum of its distances with the lines obtained at each k pointing towards the
landmark, as shown in Figure 5 and described more formally in its caption.
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The remainder of this section is then dedicated to deriving the analytical structure of such
estimator. To help readability, the notation is general so that l means “landmark”, sk means “sensor
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Figure 5. Illustration of the intuitions behind the suggested landmark position estimation algorithm.
For each sensor position k one may identify from the raw distance measurements the angle between
the sensor and the landmark, and thus the direction of the line from the sensor to the center of the
landmark estimated while staying in position k (the dotted lines). Note that as while staying in posi-
tion k the estimate of the center of the landmark is uncertain, these dotted lines do not aim perfectly
at the actual center of the landmark, i.e., the blue dot labeled with l1. An intuitively meaningful
strategy for estimating the unknown position of l1 is then finding that point that minimizes the sum
of its distances with the dotted lines from each position k. Given this intuition, the short solid red
lines represent the distances between these directions and the center of the landmark.

Given that in this paper we assume that the sensor sees round landmarks, this means
that we implicitly assume the presence of an offset in the distance measurements that
is equal to the landmark radius. For brevity, here we assume to know this parameter.

www.neatorobotics.com
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Otherwise, circular landmarks lead to raw measurements like the ones in Figure 2, from
which it is not difficult to obtain practically accurate estimates of such radii.

Therefore, to summarize, we assume that the robot moves along a straight line and
that the sensor takes measurements in equally spaced positions along this line. For each
landmark we can compute the straight lines that aim from all the various sensor positions
to the (individually estimated) landmark centers. If there was no error, we could find the
center of each landmark simply by intersecting the various lines referring to the same
landmark. As we are in practice always far from this ideal condition (i.e., do not have
accurate information neither about the sensor positions nor the measurement angles), the
proposal is to find an estimate of each landmark center, say x̂l , ŷl , with a least-squares
solution that minimizes the sum of perpendicular distances from the unique solution point
to all these lines.

The remainder of this section is then dedicated to deriving the analytical structure
of such estimator. To help readability, the notation is general so that l means “landmark”,
sk means “sensor position”, x and y relate to the Cartesian reference frame, ? and ?̃
refer to respectively the “ideal” and “noisy” versions of the same quantity. For example,
the relation

θ̃l,k = θl,k + νl,k (6)

indicates that the measured angle θ̃l,k of landmark l w.r.t. the position sk is a noisy version
of the actual angle θl,k.

To find the estimated landmark position x̂l , ŷl in a closed form, consider then that
in its k-th position the sensor is located at sk = [x̃k ỹk]

T (importantly, a quantity that is
unknown to the system). Ideally, the (k + 1)-th position of the sensor should be along a
straight line (i.e., a fixed heading angle) and at a fixed distance, i.e., be

[xk+1 yk+1]
T = [xk yk]

T + [δxk δyk]
T (7)

where δxk and δyk are either zeros when the robot is not moving or constants determined
by the step size when the robot is moving. In practice, though, the ideal conditions are not
satisfied. We thus model the actual sensor position to be

[x̃k+1 ỹk+1]
T = [xk+1 yk+1]

T + [ex,k ey,k]
T (8)

where ex,k and ey,k are zero mean Gaussian iid with the same variance σ2
s . Note that this

Gaussianity assumption is once again instrumental for the purpose of being able to devise
computationally efficient schemes that can be implemented in embedded systems. Note,
moreover, that we are recording the sensor measurements after the robot reached its new
position (i.e., we are not considering measurements recorded during transients). As the
actual sensor positions sk are not available, the best we have is only the reference (noiseless)
sensor positions [xk yk]

T which can be determined using (7).
Moreover, consider the actual sensor position sk and the measured angle θ̃l,k of land-

mark l w.r.t. the position sk (line whose slope is then tan(θ̃l,k), as the dotted lines in Figure 5).
The equation of this line is then

sin(θ̃l,k)xl − cos(θ̃l,k)yl − sin(θ̃l,k)x̃k + cos(θ̃l,k)ỹk = 0. (9)

Substituting (5) in (9) above yields

sin(θl,k + νl,k)xl − cos(θl,k + νl,k)yl−
sin(θl,k + νl,k)x̃k + cos(θl,k + νl,k)ỹk = 0.

(10)

Expanding then the sine and cosine terms using the trigonometric identities

sin(θl,k + νl,k) = sin(θl,k) cos(νl,k) + cos(θl,k) sin(νl,k) (11)



Sensors 2021, 21, 155 10 of 22

cos(θl,k + νl,k) = cos(θl,k) cos(νl,k)− sin(θl,k) sin(νl,k) (12)

and simplifying gives the following expanded equation

(sin(θl,k) + cos(θl,k) tan(νl,k))xl−
(cos(θl,k)− sin(θl,k) tan(νl,k))yl−
(sin(θl,k) + cos(θl,k) tan(νl,k))x̃k+

(cos(θl,k)− sin(θl,k) tan(νl,k))ỹk = 0.

(13)

Moving the stochastic terms to the right hand side of the equation, we then obtain

sin(θl,k)xl − cos(θl,k)yl − sin(θl,k)x̃k + cos(θl,k)ỹk

= gk tan(−νl,k)
(14)

where
gk := sin(θl,k)(yl − ỹk) + cos(θl,k)(xl − x̃k). (15)

Now substituting the geometrical identities sin(θl,k) =
(yl−ỹk)

dl,k
and cos(θl,k) =

(xl−x̃k)
dl,k

(immediately proved upon inspecting Figure 6) into (15), and then simplifying leads to

gk :=
(yl − ỹk)

2 + (xl − x̃k)
2

dl,k
= dl,k.
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θ multiplied by the heteroskedastic variance of d̃l,k (that, we recall, is different in each
sensor position). In the ideal case of no measurement noise, the line should pass through the center of
the landmark l. In this special case, the point of intersection between these lines will be the position of
the landmark center. As mentioned above, the presence of the measurement noise will however make
the lines drift. The K lines corresponding to the K sensor positions in general will not intersect in a
unique point, but in pairs. In this case we may then solve the problem in a least-squares sense: the idea
is to minimize the weighted sum of the squared distances (the solid red lines in Figure 5), i.e., to solve

[
x̂l
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[
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Figure 6. A simplified diagram illustrating the geometrical relation between the angle θl,k, sk, dl,k and
the landmark position in the noiseless case. The dashed line in the plot indicates the robot heading
direction, while the dotted line represents the sensor to landmark true distance.

Recall that dl,k is the ground truth for the sensor-to-landmark distances—a ground
truth that is not available. Consider then that our main goal is to calibrate the sensor
without using such ground truth information. Therefore, the best we can do instead is
to plug in the measured distances d̃l,k as estimates (or the sample mean if more than one
measurement is available at the same sensor position).

For small values of νl,k (i.e., for the case where the dotted lines in Figure 5 aim decently
at their target) we can simplify (14) using the approximations

sin(νl,k) u νl,k cos(νl,k) u 1. (16)
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This means obtaining

sin(θl,k)xl − cos(θl,k)yl − sin(θl,k)x̃k + cos(θl,k)ỹk

u d̃l,kνl,k.
(17)

Recall then that in our assumptions the measurement noise el,k in (3) is statistically
independent of the measurement noise νl,k in (5). For that reason, the residual error in (17)
will be heteroskedastic since the variance is σ2

θ multiplied by the heteroskedastic variance of
d̃l,k (that, we recall, is different in each sensor position). In the ideal case of no measurement
noise, the line should pass through the center of the landmark l. In this special case, the
point of intersection between these lines will be the position of the landmark center. As
mentioned above, the presence of the measurement noise will however make the lines drift.
The K lines corresponding to the K sensor positions in general will not intersect in a unique
point, but in pairs. In this case, we may then solve the problem in a least-squares sense:
the idea is to minimize the weighted sum of the squared distances (the solid red lines in
Figure 5), i.e., to solve

[
x̂l
ŷl

]
= arg min

xl ,yl∈R

∥∥∥∥W
1
2

l

(
Hl

[
xl
yl

]
− b̃l

)∥∥∥∥
2

(18)

where

Wl :=




1
var(d̃l,1)

0 · · · 0

0 1
var(d̃l,1)

· · · 0

...
...

. . .
...

0 · · · 0 1
var(d̃l,1)




Hl :=




sin(θl,1) − cos(θl,1)
...

...
sin(θl,K) − cos(θl,K)




b̃l :=




sin(θl,1)x̃1 − cos(θl,1)ỹ1
...

sin(θl,K)x̃K − cos(θl,K)ỹK


.

(19)

Consequently, solving this system according to Aitken’s generalized least square
method [43] gives the following Best Linear Unbiased Estimator (BLUE) of the land-
mark centers, [

x̂l
ŷl

]
=
(

HT
l Wl Hl

)−1
Wl HT

l b̃l . (20)

The computations above assume the full knowledge of the sensor positions
sk = [x̃k ỹk]. As this information is not available, the best we can do is to plug in, instead,
the expected sensor positions [xk yk] in (7). Replacing [x̃k ỹk] with [xk yk] in the least
squares problem (18) thus leads to the problem

[
x̂l
ŷl

]
= arg min

xl ,yl∈R

∥∥∥∥W∗l
1
2

(
Hl

[
xl
yl

]
− bl

)∥∥∥∥
2

(21)

where
W∗l := Wl (as explaind below Equation (25))

bl :=




cos(θl,1)y1 − sin(θl,1)x1
...

cos(θl,K)yK − sin(θl,K)xK




(22)
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which in turns gives the weighted least squares estimator

[
x̂l
ŷl

]
=
(

HT
l W∗l Hl

)−1
W∗l HT

l bl , (23)

whose weights matrix W∗ is motivated below and defined in (25).
This estimator is solvable, in the sense that the embedded system has all the information

necessary to compute and minimize the cost. In other words, solving (21) is computationally
feasible as all the required information is available while solving (18) is not. However,
solving (21) leads to solving an approximate model of the intersection problem which will
indeed result in a biased estimator, as it corresponds to solving the system of equations
that is obtained after substituting xk and yk from (8) into (17), i.e.,

sin(θl,k)xl − cos(θl,k)yl − sin(θl,k)xk + cos(θl,k)yk

u sin(θl,k)ex,k − cos(θl,k)ey,k + d̃l,kνl,k.
(24)

To characterize the error of this estimator, we notice that the residual error includes
two different terms: the first is homoskedastic (specifically, corresponding to the first two
terms in (24)) and with a variance of

var
(

sin(θl,k)ex,k − cos(θl,k)ey,k

)
= sin(θl,k)

2σ2
s + cos(θ2

l,k)σ
2
s

= σ2
s .

The second term is heteroskedastic with variance σ2
θ var

(
d̃l,k

)
(specifically, corre-

sponding to the last terms in (24)). Consequently, we suggest to set the weighting matrix
W∗l as

W∗l := σ−2
s I + σ−2

θ Wl . (25)

Note that in our assumptions both σ2
s and σ2

θ are assumed unknown constants. How-
ever, minimizing the sum of the squared residual errors in (24) is equivalent to minimizing
the sum of the squared residual errors d̃l,kνl,k, as the transformation between these errors is
affine. This means that replacing W∗l with Wl will give exactly the BLUE for the parameters
in (24).

3.2. Calibrating the Sensor

Once all the L landmark positions are estimated as x̂l , ŷl as in the previous section, we
can easily estimate the various landmark–sensor position distances d̂l,k simply through
computing the distance between each landmark with all the sensor positions and subtract-
ing the radius of the landmark (which, as we said above, is either assumed to be known
or assumed to be inferrable from the raw data). For notational compactness, define the
(KL× 1)-dimensional distance measurement vector

d̃ :=
[
d̃1,1 . . . d̃1,K . . . d̃L,1 . . . d̃L,K

]T
,

the noise vector
e :=

[
e1,1 . . . e1,K . . . eL,1 . . . eL,K

]T ,
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and rewriting (4) through a Vandermonde matrix, i.e.,

d̃ =




1 d̂1,1 (d̂1,1)
2 · · · (d̂1,1)

n

...
...

...
. . .

...
1 d̂1,K (d̂1,K)

2 · · · (d̂1,K)
n

...
...

...
. . .

...
1 d̂L,1 (d̂L,1)

2 · · · (d̂L,1)
n

...
...

...
. . .

...
1 d̂L,K (d̂L,K)

2 · · · (d̂L,K)
n




︸ ︷︷ ︸
:=Φ




α0
α1
α2
...

αn




︸ ︷︷ ︸
:=α

+e (26)

where the Vandermonde matrix Φ is of size KL× n + 1 and the parameter vector of size
n + 1× 1.

Given this notation, the calibration procedure consists of three phases:

• phase#1: model parameters estimation. After obtaining the estimates of the distances
between the sensor and landmarks, estimate the parameters α casting the prob-
lem as a linear regression on (26) and the measurement vector d̃ for model orders
n = 0, 1, 2, . . . , nmax, where nmax is a user-defined parameter. This means solving for
each potential n the problem

α̂ = arg min
α∈Rn+1

∥∥∥Φα− d̃
∥∥∥

2
(27)

which has the closed-form solution

α̂ = (ΦTΦ)−1ΦT d̃. (28)

Note that, once again, the estimator α̂ is unbiased; however, due to the simplification
of the noise term in (3) (i.e., ignoring the heteroskedastic part of the noise), α̂ will not
be efficient.

• phase#2: model order selection. We note that there exist various alternatives for selecting
the optimal model order n̂ ∈ {0, 1, 2, . . . , nmax}: fitting opportune test sets, using cross-
validation, or also using model order selection criteria, for example, AIC. In the setups
we considered for this paper we actually found that the model order selection problem
has quite clear solutions, implying that all the various alternatives clearly indicated
the very same number (see Section 4), implying in its turn that for our specific case
all the various approaches tend to give equivalent results. It may, however, be that in
other cases different strategies lead to different results;

• phase#3: filtering new measurements. Once the model order selection and the model
parameters estimation problems are solved, this means rewriting the “object distance
vs. sensor reading” measurement model (3) as

d̃ =
n̂

∑
i=0

α̂i(d)i +
n̂

∑
i=0

β̂i(d)ie (29)

where d̃ is the raw measurement, and d is the actual distance. To estimate d from d̃
and the trained model one should thus invert (29). This inversion is not immediate;
for example, one may solve the Least Squares (LS)-type optimization problem

d̂ = arg min
d̂∈R+

∥∥∥∥∥
n̂

∑
i=0

α̂i d̂i − d̃

∥∥∥∥∥

2

(30)
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which requires finding the roots of a polynomial of order 2n̂. Thus, despite its apparent
simplicity, the problem of finding polynomial roots requires numerical methods for
polynomial orders greater than 3.

4. Numerical Results

In this section, we verify in an empirical way the performances of the proposed
calibration procedure, first with simulations using Matlab® and then with laboratory ex-
periments using real sensors and landmarks in an environment endowed with a localization
infrastructure that can return accurate assumingly ground truth information.

In general terms we thus consider d̃j, j = 1, . . . , J raw measurements from a non-
calibrated sensor. To each raw distance measurement d̃j there corresponds also a true
distance dj, and a filtered distance d̂j, i.e., the corresponding filtered version of these
raw data.

As for the statistical performance index, the goal is to assess if and how much the
calibration algorithm is actually leading to improved estimates of the distances, i.e., whether
d̂j is statistically closer to dj than d̃j, and if so how much. To do so we use the MSE, i.e.,

MSE(a, b) :=
1
J

J

∑
j=1

(
aj − bj

)2.

More precisely we will compute the ratio between the MSE computed with the raw
data (distances measured by the sensor) and the MSE computed with the estimated data
(distances estimated by the algorithm), i.e., use the

MSE ratio :=
MSE(d, d̃)
MSE(d, d̂)

. (31)

Thus, in order to get an improvement with the estimation, this ratio has to be greater
than 1.

4.1. Analyzing the Statistical Properties of the Landmark Position Estimator through
Simulation Results

Unless otherwise stated, for all our simulations’ plots, each point is the average of
1000 simulations of five landmarks and 20 sensor positions.

We start with statistically characterizing the landmark position estimator described
in Section 3.1 by simulating a measurement model of the type (3) characterized by n = 2,
α = [0.0525 , 0.8838 , 0.0584] and β = 0.05α, values that seem representing typical distance
measurement systems mounted in modern autonomous vacuum systems.

We then investigate the MSE of the landmark position estimation procedure by ana-
lyzing how its bias and variance depend on three specific quantities:

1. the standard deviation σθ associated to the uncertainty of the sensor-to-landmark
angle measurement in (6),

2. the standard deviation σs associated to the uncertainty in the sensor position evolution
in (8), and

3. the total number of landmarks L present in the scene.

The results are summarized in Figure 7, plotting the dependencies on σs for a set of
given σθ and L, and in Figure 8, plotting the dependencies on L given σs and σθ .

In words, the results shown in Figures 7 and 8 confirm the obvious intuition that the
smaller the noises, the better the estimator. However, we also note that, from numerical
standpoints, it seems that guaranteeing σs < 10 cm is important, and that guaranteeing
σs < 1 cm is instead not a necessity. This result is of practical importance, because the
assumption that the sensor will be placed in a perfectly straight line will always be violated.
However it seems that, at least for standard “domestic” cases like autonomous vacuum
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cleaners, violating this assumption will not disrupt the final results. We also note that
Figure 8 suggests to set L to be around 5, i.e., an environment that is sufficiently rich while
not being cluttered.Version December 18, 2020 submitted to Sensors 16 of 23
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Figure 7. Bias and variance of the landmark position estimator of Section 3.1 as a function of the
uncertainty in the sensor position evolution σs for different sensor-to-landmark angle measurement
standard deviations σθ ’s (in degrees) for the case L = 1.
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4.2. Analyzing the Statistical Properties of the Sensor Calibration Procedure through
Simulation Results

We then pass to the second part of the estimation procedure, i.e., calibrating the model
parameter that we presented in Section 3.2. Recall that the calibration algorithm is based
on the estimated landmarks position, i.e., there is the need to estimate the landmarks
positions first, to then proceed to the calibration step. We then define as main performance
index the MSE ratio (31), i.e., a measure of how much worse the raw data measured by the
sensor is w.r.t. the distances estimated by the data filtering algorithm. We analyze how
the MSE ratio (31) depends on the standard deviation σθ of the sensor-to-landmark angle
measurement error in (6), and the standard deviation σs of the sensor position evolution
uncertainty in (8).

The results are summarized in Figure 9, and they show that the overall approach
seems to be robust: increasing gradually the standard deviations σθ and σs does not lead to
abrupt decays of the overall statistical performance. Moreover, for values of σθ and σs that
are meaningful in autonomous vacuum cleaners situations, we note MSE ratios that may
reach 100.
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Figure 8. Bias and variance of the landmark position estimator of Section 3.1 as a function of the
number of landmarks L for the case σθ = 2.
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We also remark that the overall strategy seems robust in its model order selection
step. More precisely, in all our simulations we selected a model order n = 2, which is the
value we obtained in our previous work [40] while calibrating the same lidar sensor from
field data (a value that is numerically convenient also because n = 2 leads to closed-form
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solutions for (30)). In the simulations considered in this section, the overall estimation
approach leads to estimating the model order n̂ as the correct one, i.e., 2, when the standard
deviations σθ and σs are reasonably low. However, as the noises increase, we noted that
the order selection process tends to become more and more conservative, and select the
simpler model n̂ = 1 (see graphically Figure 10).
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Finally, we again investigate the effect of using different numbers of landmarks on
the whole calibration process. The results, summarized in Figure 11, show again that
increasing the number of landmarks from one to three leads to noticeable improvements
in the MSE ratio. However, increasing the number of landmarks further will not lead to
further improvements while, at the same time, increasing the computation complexity.Version December 18, 2020 submitted to Sensors 19 of 23
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4.3. Field Experiments

We consider field experiments in a laboratory provided with a Vicon motion capture
system that uses triangulation to compute the position of the objects inside the laboratory.
Such a Vicon system is very accurate, compared to the sensors we aim at calibrating. For
this reason, we assume that the Vicon measurements are for all the practical purposes
noiseless and considerable as ground truth.

We then apply both the landmarks position estimator in Section 3.1 and the consequent
parameters calibration procedure in Section 3.2 to calibrate the triangulation lidar shown
in Figure 4. We recall that this type of lidar is not really accurate, as its measurements are
affected by both a systematic bias and a heteroskedastic variance (see Figure 1) that lead to
increasing measurement errors as the measured distance increases.

For practical purposes we placed the lidar sensor on top of a Pioneer 3AT mobile robot,
as shown in Figure 4, controlled through a computer using Robot Operating System (ROS).
We also consider five hand-made cylindrical landmarks with a radius of 12 cm, scattered
within the field of view of the Vicon system and in a way that all of them are always visible
and distinguishable by the sensor from all the positions [xk, yk] from where it will take
measurements. As a practical indication, because of the intrinsic limits of the considered
sensor, each landmark has to be placed not farther than 5 meters and closer than 20 cm from
all the sensor positions. We then programmed the robot to move on a straight line path,
and oriented it so to not hit the landmarks while moving. More precisely, we programmed
the robot to move and stop 10 times, doing each time an incremental step of 30 cm. In order
to have proper calibration of the sensor we need to have a “sufficient” calibration dataset.
In general, for range sensors, a sufficient dataset should cover all the sensor ranges of
interest. During our field experiments we moved the sensor in a straight line for about 3 m
to ensure the richness of the recorded dataset.

Figure 3 shows a photo of one of the experiments. We repeated this type of experi-
ment with three different placements, so to take three datasets of Vicon measurements of
distances and angles (i.e., ground truth) of the five landmarks for all the sensor positions.
In other words, thanks to the Vicon system we were able to compute all the actual distances
and angles between all the various landmarks and the sensor in its various positions.

We then split each dataset in three parts: the first two to be used as a training set
(the first third to estimate the sensor parameters in (3) and the second third to choose
the model order n̂) and the third part to be used as a test set. The field results presented
for landmarks number other than 5 is basically obtained with the same recorded dataset
of five landmarks after removing the receded data of extra land marks. For example,
the 3-landmark datasets, is the 5-landmark datasets after removing the recorded data
associated with the last two landmarks, and the 4-landmark datasets is the same as the
5-landmark datasets after removing the data of the fifth landmark, and so on. The obtained
results, summarized in Figure 12, show again that the improvements change as more
landmarks are involved in the calibration process. In other words, the field results are
in good agreement with the simulated ones. However, a few outliers still exist which
might be due to increased noise variance in one of the unconsidered processes like the
landmark association problem. Moreover, in all the calibrations we performed on the
different datasets, we obtain a selected model order n̂ = 1, which indicates, based on our
simulations, that there may be a high noise variance associated to the noise in measuring
the angle with the landmarks.

Finally, Figure 13 shows how the proposed calibration procedure can help in real-life
situations by reporting the measurement process relative to the third placement considered
in Figure 12. Here, the landmarks’ borders are plotted as gray circles, the series of actual
positions of the sensor as a stripe of blue dots. Moreover, the red crosses plot the raw
measurements d̃l,k obtained by the sensor when observing the various landmarks, while the
green dots plot the filtered measurements d̂l,k obtained by applying the proposed calibration
and filtering algorithms. One may note how the d̂l,k’s capture the actual positions of the
various landmarks in a qualitatively much more precise way.
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Figure 12. Statistics of the field tests for all possible combinations of datasets recorded in three different
placements. Plots show clear increment of the MSE ratio with the increased number of the involved
landmarks in the calibration process.
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characteristics of a distance sensor without the need for external distance-measuring devices to be405

used as providers of ground truth information.406

Through field experiments we saw that the overall proposed calibration approach may be quite407

robust: even if one does not get results that are as good as the ones achievable using external ground408

truth systems, our algorithm has been able to lead to a reduction of the norm of the measurement409

errors between the pre-calibration raw data and the post-calibration ones by a factor 10; in comparison,410

using ground truth calibration as in [40] led to a reduction factor of 17 (thus better but not of orders of411

magnitude, and at the cost of having to buy, set up and use a ground truth collection system).412

We thus remark that this factor 10 achievement is through using just software logic and413

assumptions on the landmarks being fixed, and no additional hardware nor special conditions. In414

conclusion, the here proposed calibration procedure is expected to lessen the time to prepare the415

calibration setup, and is expected to be implementable well beyond laboratory setups.416

We though recall that one standing assumption we exploited is that sensor measurements lie417

in a 2D plane that is parallel to the ground. Since this requirement may not hold in some practical418

situations, we devise this as the most important future research direction spanned by the current work.419

Figure 12. Statistics of the field tests for all possible combinations of datasets recorded in three
different placements. Plots show clear increment of the MSE ratio with the increased number of the
involved landmarks in the calibration process.Version December 18, 2020 submitted to Sensors 21 of 23

−2 −1 0 1 2 3
0

1

2

3

4

5

x [m]

y
[m

]

Figure 13. Example of the effects of the proposed calibration procedure on a field experiment. The
actual sensor positions are plotted with a series of practically aligned blue dots, the true cylindrical
landmarks in gray circles, the raw measurements taken by the sensor with red crosses, and the filtered
distances, computed using the proposed strategy, in green circles. Ideally, the measurements should lie
on the borders of the landmarks. It is immediately noticeable how the calibrated measurements lie
much closer to such borders than the non-calibrated ones.
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5. Conclusions

The nonlinear and heteroskedastic model of distance sensors can be calibrated by
exploiting just the structure of a fixed environment. In other words, if the environment
presents some particular features that may be used as generic landmarks, then one may
use the fact that the landmarks do not move to infer the own movement. This means the
possibility of estimating the landmarks’ positions minimizing opportune cost functions,
and in this way obtain information useful to learn the characteristics of a distance sensor
without the need for external distance measuring devices to be used as providers of ground
truth information.

Through field experiments we saw that the overall proposed calibration approach
may be quite robust: even if one does not get results that are as good as the ones achievable
using external ground truth systems, our algorithm has been able to lead to a reduction
of the norm of the measurement errors between the precalibration raw data and the post-
calibration ones by a factor 10; in comparison, using ground truth calibration as in [40] led
to a reduction factor of 17 (thus better but not of orders of magnitude, and at the cost of
having to buy, set up and use a ground truth collection system).

We thus remark that this factor 10 achievement is through using just software logic
and assumptions on the landmarks being fixed, and no additional hardware nor special
conditions. In conclusion, the here proposed calibration procedure is expected to lessen the
time to prepare the calibration setup, and is expected to be implementable well beyond
laboratory setups.

We though recall that one standing assumption we exploited is that sensor measure-
ments lie in a 2D plane that is parallel to the ground. As this requirement may not hold in
some practical situations, we devise this as the most important future research direction
spanned by the current work.
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