
Project Assignm
ent Softw

are
O

din Johan Vatne

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

ar
tm

en
t o

f C
om

pu
te

r S
ci

en
ce

Odin Johan Vatne

Project Assignment Software

Specifications for an Improved Project
Assignment Software for use by Universities with
Larger Student Bodies

Master’s thesis in Computer Science
Supervisor: Guttorm Sindre
July 2022

M
as

te
r’s

 th
es

is

Odin Johan Vatne

Project Assignment Software

Specifications for an Improved Project Assignment
Software for use by Universities with Larger Student
Bodies

Master’s thesis in Computer Science
Supervisor: Guttorm Sindre
July 2022

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of Computer Science

Abstract

Each year, university students across the globe take on final year research projects
to complete their scientific education. As class sizes grow, matching these students
with appropriate project topics becomes increasingly difficult. In order to solve this
problem, universities often turn to software systems to manage the allocation of
projects to students. This paper examines one such system currently in use at the
Department of Computer Science (IDI) at the Norwegian University of Science
and Technology (NTNU).

This system is not meeting the needs of students or professors. It was
implemented with limited resources for planning and design, and was not future-
proofed for a larger student body or use by other departments. It relies on informal
communications between students and professors for most processes, creating
significant administrative work for both parties. The goal of this thesis is to
produce and test a set of requirements for a new project assignment system which
can reduce that load.

Unlike most research in the area of student-project assignment, this paper
focuses on supporting manual matching at larger scales rather than replacing
it with automated matching. The requirements and prototype were designed to
help professors keep track of and evaluate a large number of students, and help
students quickly find interesting projects from a large set of options.

This thesis first outlines a series of requirements for a new, more scalable
system to alleviate the issues observed in the current one. It then documents
the development of a prototype which implements some of those requirements.
Finally, it evaluates the effectiveness of the prototype and requirements through
usability testing and process analysis methods.

Based on our user testing, the prototype was very successful at improving the
experience for students, but only moderately successful for professors. However,
the feedback received from these tests implies that the requirements presented
were sound, even though our implementation fell short.

iii

Sammendrag

Hvert år gjennomfører universitetsstudenter rundt verden avsluttende forsknings-
prosjekter. Etter hvert som antallet studenter øker, blir det stadig vanskeligere å
fordele prosjekter blant studenter etter ønske. Universiteter ser derfor i økende
grad etter programvaresystemer som kan støtte denne prosessen. Denne master-
oppgaven ser på ett slikt system i bruk av Instituttet for Datateknologi og
Informatikk (IDI) ved Norges Teknisk-Naturvitenskapelige Universitet (NTNU).

Dagens system er ikke tilstrekkelig for studentene og veilederne sine behov.
Systemet ble utviklet med begrensede ressurser for å håndtere akutte problemer,
og er ikke tilpasset et økende antall oppgaver eller bruk av andre departementer
og universiteter. Det baserer seg på uformell dialog mellom studenter og
veiledere, som fører til betydelig administrativt arbeid rundt epost-tråder og
møtetidspunkt for begge parter. Målet med denne masteroppgaven er å utvikle
en kravspesifikasjon for et oppgavesystem som kan redusere dette arbeidet, og
evaluere kravene gjennom en prototype.

I motsetning til mye annen forskning angående prosjekttildeling, fokuserer
denne oppgaven på støtte for manuell tildeling av prosjektønsker på større skala, i
stedet for automatisering av denne prosessen. Kravene og prototypen var utformet
for å hjelpe veiledere å håndtere og vurdere et stort antall studenter, og for å hjelpe
studenter kjapt finne interessante oppgaver blant et stort volum av forslag.

Oppgaven presenterer først en kravspesifikasjon for et bedre skalerbart system
som motvirker disse problemene. Deretter dokumenterer den utviklingen av en
prototype basert på disse spesifikasjonene. Til sist evalueres prototypen og kravene
gjennom brukertesting og prosessanalyse.

Basert på brukertestingen, forbedret prototypen brukeropplevelsen for
studenter i stor grad, men lyktes bare delvis for veiledere. Tilbakemeldingene vi
samlet gjennom brukertestingen indikerer at kravene vi utredet utgjør en
forbedring overfor det tidligere systemet, til tross for at prototypen ikke dekket
alle kravene.

v

Preface

This thesis is the capstone of my five year Master of Technology in Computer
Science at the Norwegian University of Science and Technology. The thesis was
worked on throughout the spring of 2022, and expands on a project conducted in
the fall of 2021.

I would like to thank my supervisor, Guttorm Sindre at the Department of
Computer Science, for his advice and feedback throughout this project. I would
also like to thank Joakim Danielsen Petersen for his partnership in the project of
2021. Finally, thank you to Brendan Walsh. Without his support I would not have
made it through the last years of my degree.

Trondheim, July 2022

Odin Johan Vatne

vii

Contents

Abstract . iii
Sammendrag . v
Preface . vii
Contents . ix
Figures . xiii
Tables . xv
1 Introduction . 1

1.1 Motivation . 1
1.2 Previous Work . 2
1.3 Research Questions . 2
1.4 Scope . 3
1.5 Contribution . 3
1.6 Report outline . 4

2 Background . 5
2.1 Master’s Theses and Student-Advisor Matching 5
2.2 Existing IDI System . 6

2.2.1 Features . 6
2.2.2 Project Lifecycle . 10
2.2.3 Issues and Omissions . 12

3 Related Works . 15
3.1 Classifying Project Assignment Systems 15

3.1.1 Two-Way Negotiation Systems 16
3.1.2 One-Way Preference Systems 16
3.1.3 Two-Way Preference Systems 17
3.1.4 Student-Lead Systems . 17

3.2 Existing Project Assignment Systems 18
3.2.1 Coordination of Student Project Allocation (2001) 18
3.2.2 A dynamic project allocation algorithm for a distributed ex-

pert system (2004) . 19
3.2.3 Preference Based Final Year Project Title Selection System

(2009) . 20
3.2.4 Additional Works . 20

3.3 Outcome of Review . 21
4 Methods . 23

ix

x

4.1 Development Methodology . 23
4.2 Interviews . 24
4.3 Task Backlog . 25
4.4 Time-to-Task Evaluation . 25
4.5 Keystroke-Level Modeling System . 25
4.6 User Evaluation . 27
4.7 Process Modeling . 28

5 Software Requirements and Specs . 31
5.1 Goals . 31
5.2 Non-goals . 32
5.3 Functional Requirements . 33

5.3.1 Project Lifecycle . 34
5.3.2 Application Lifecycle . 35
5.3.3 Student Views . 36
5.3.4 Professor Views . 37
5.3.5 Administrative Views . 38
5.3.6 Automatic Processing . 39
5.3.7 Notifications . 40
5.3.8 Filtering . 40
5.3.9 Thesis Proposals . 41
5.3.10 Exportable Data . 42

6 Implementation . 43
6.1 Choice of Technology . 43

6.1.1 Web vs. Desktop vs. Mobile . 43
6.1.2 Programming Language Choice 45
6.1.3 Framework Choice . 45

6.2 Personas and Scenarios . 46
6.2.1 Professor Personas . 47
6.2.2 Student Personas . 47

6.3 Scenarios . 49
6.4 Revised Requirements . 51

6.4.1 Project Lifecycle . 52
6.4.2 Application Lifecycle . 53
6.4.3 Student Views . 54
6.4.4 Professor Views . 55
6.4.5 Automatic Processing . 56
6.4.6 Filtering . 56
6.4.7 Thesis Proposals . 57

6.5 Design Decisions . 58
6.5.1 Group Applications . 58
6.5.2 AJAX . 59
6.5.3 Profiles . 59
6.5.4 Automation . 60
6.5.5 Tags . 61

Contents xi

6.5.6 Filter Totals . 63
6.5.7 Ranking Interface . 63

6.6 Testing and Deployment . 64
6.6.1 Test Data . 64
6.6.2 Deployment . 64
6.6.3 Test Accounts . 64

7 Results . 67
7.1 Software Walkthrough . 67
7.2 Data Models . 77
7.3 Process models . 78

7.3.1 Project Search . 79
7.3.2 Project Listing . 79
7.3.3 Application Lifecycle . 80
7.3.4 Full Matching Process . 80

7.4 Time-to-Task . 93
7.4.1 Project Creation . 93
7.4.2 Finding a Project . 95

8 User Evaluation . 97
8.1 Student Responses . 97

8.1.1 Pre-test Questions . 97
8.1.2 Task Questions . 100
8.1.3 Post-test Questions . 109

8.2 Professor Responses . 112
8.2.1 Pre-test Questions . 112
8.2.2 Task Questions . 114
8.2.3 Post-test Questions . 122

9 Discussion . 127
9.1 Success of the Prototype . 127

9.1.1 Evaluation Criteria and Priorities 127
9.1.2 Improvement over manual two-way negotiation 129

9.2 Success of the Requirements . 130
9.3 Bias and Evaluation Problems . 131

10 Conclusion . 133
10.1 Future Work . 134

10.1.1 Unimplemented Requirements 134
10.1.2 Impact of Popularity Metrics . 134
10.1.3 Student Selection System . 135
10.1.4 Tag Set . 135

Bibliography . 137
A User Evaluation Questions . 141

A.1 Student Questionnaire . 141
A.2 Professor Questionnaire . 145

Figures

2.1 The project listing page of the IDI system 7
2.2 The project ranking tool of the IDI system 8
2.3 The Administrator view of projects in the IDI system 9
2.4 The project creation page in the IDI system 10
2.5 A project’s details page in the IDI system 11
2.6 The main page for professors in the IDI system 12
2.7 The archive section for professors in the IDI system 13

4.1 A legend of common BPMN elements 29

7.1 The main page of our prototype . 69
7.2 The project creation page of our prototype 70
7.3 The project details page of our prototype 71
7.4 The application creation page of our prototype 72
7.5 The student applications page of our prototype 73
7.6 The professor applications page of our prototype 74
7.7 The professor projects page of our prototype 75
7.8 The profile page of our prototype . 76
7.9 An entity relationship diagram of our database model. 77
7.10 Process model for finding a project without a system 82
7.11 Process model for finding a project with the IDI system 83
7.12 Process model for finding a project in our prototype 84
7.13 Process model for listing a project without a system 85
7.14 Process model for listing a project in either system 86
7.15 Process model for the manual application lifecycle 87
7.16 Process model for the IDI system application lifecycle 88
7.17 Process model for the prototype’s application lifecycle 89
7.18 Model of the full matching process without a system 90
7.19 Model of the full matching process in the IDI system 91
7.20 Model of the full matching process in our prototype 92

8.1 Student usability rating of the IDI system 98
8.2 Number of projects each student applied for 99
8.3 Difficulty rating of our filtering system 102

xiii

xiv

8.4 Student test difficulty rating . 110
8.5 Student usability rating for the prototype 110
8.6 Professor familiarity with the IDI system 112
8.7 Readability of the applications page . 117
8.8 Professor test difficulty rating . 123
8.9 Professor usability rating of the prototype 123

Tables

5.1 Functional requirements regarding project lifecycle. 34
5.2 Functional requirements regarding application lifecycle. 35
5.3 Functional requirements regarding student views. 36
5.4 Functional requirements regarding professor views. 37
5.5 Functional requirements regarding administrative views. 38
5.6 Functional requirements regarding automatic processing. 39
5.7 Functional requirements regarding notifications. 40
5.8 Functional requirements regarding filtering. 40
5.9 Functional requirements regarding thesis proposals. 41
5.10 Functional requirements regarding exportable data. 42

6.1 Revised requirements regarding project lifecycle. 52
6.2 Revised requirements regarding application lifecycle. 53
6.3 Revised requirements regarding student views. 54
6.4 Revised requirements regarding professor views. 55
6.5 Revised requirements regarding automatic processing. 56
6.6 Revised requirements regarding filtering. 56
6.7 Revised requirements regarding thesis proposals. 57

7.1 Approximate task time to create a new project with the IDI system . 93
7.2 Approximate task time to create a new project with our prototype . 94
7.3 Approximate task time to find a project with the IDI system 95
7.4 Approximate task time to find a project with our prototype 96

8.1 Student response about the large number of projects 98
8.2 Student responses about profiles saving them time 100
8.3 Student responses to questions about the first filtering task 102
8.4 Student responses to questions about the project application tasks . 104
8.5 Student responses about combining filters 106
8.6 Student responses about creating group applications 106
8.7 Student responses to questions about the application ranking task . 107
8.8 Student responses on whether they were more comfortable con-

tacting professors via our prototype . 108
8.9 Student responses to questions about accepting an offer 109

xv

xvi

Chapter 1

Introduction

1.1 Motivation

Each year, university students across the globe embark on final year research pro-
jects to complete their scientific education. Students must find a topic to study,
seek out a professor to act as their advisor, and form an agreement with that pro-
fessor to develop the research. The student and professor then spend the next year
working closely on delivering a thesis paper which contributes some new know-
ledge, process, or object to their field of study. Success in these projects is crucial
for students’ academic development[1]. It is also necessary for their degree pro-
gress; without a passing project, students may be unable to graduate. Additionally,
the content of the final year of each student’s education is dependent upon their
choice of topic. Therefore the selection of this professor and project is deeply im-
portant for both the academic success of the student and the research output of
the university.

Although this process may vary by university, we expect the problems they
face to be similar in nature. The process of selecting a project requires frequent
communication between students and professors, producing a large amount of
work for both parties as they write and respond to applications. Professors need
to keep track of which students they have spoken to, what projects they have
already assigned out, and what administrative formalities need to be cleared to
finalize each student-project pairing. Students have to sift through an extensive
list of projects and sponsors to find ones applicable to their skills and interests,
write applications for each project, and contend with invisible deadlines as other
students reach out first and take projects out of circulation. Alternatively, students
may suggest their own project topics, which requires finding professors with rel-
evant experience and interests, and proposing their project to them. Out of the
many projects a student may apply to, they will ultimately only pursue one, and
each professor will only select a handful of students from the many that approach
them.

As universities have grown, the student-project matching problem has only
become more difficult. Reasons for this include the growing number of project

1

2

proposals and potential supervisors students have to familiarize themselves with
in order to make informed decisions, and the increasing administrative load of
managing such a large number of people and agreements. Enacting the match-
ing process manually at these larger scales is prohibitively time-consuming and
error-prone. As a result, many universities have implemented tools to facilitate
this matching process[2]. These tools typically allow professors to create and edit
project listings for students to browse, and link in with the school administrative
systems to allow professors to assign students to projects.

None of these tools have found wide adoption. Individual universities or de-
partments tend to develop their own systems which address only a subset of their
most painful problems, then do not iterate on them due to a lack of resources and
time. As a result, these systems make large-scale student-project assignment pos-
sible, yet fail to make it easy or efficient. In this project we will make a case study
of one such system, currently in use at the Department of Computer Science (IDI)
at the Norwegian University of Science and Technology (NTNU). By designing
and testing an improved version of this system, we aim to develop a better under-
standing of the shortcomings of this type of tool and how to overcome them. We
will provide a set of requirements for an improved manual matching system and
a data-driven analysis of their effectiveness. The resulting knowledge will help
other universities improve their own student-professor matching tools or imple-
ment new ones with ease.

1.2 Previous Work

The development of this software is a continuation of a project previously carried
out by the researcher along with Joakim Danielsen Petersen under the supervi-
sion of Guttorm Sindre. The initial project was focused on interviewing professors
and administrators from NTNU and other schools about the systems currently in
place at their universities for student-project matching. Based on these interviews
and the complaints each subject had about their current systems, a general list
of requirements for student-project matching systems was devised. The project
included a prototype of several of these requirements, which was made public on
a GitLab site hosted by IDI. This project builds upon that previous prototype, ex-
panding its capabilities so that its functionality can be analyzed and compared to
other systems in this space. Several of our software requirements are also based
on those interviews.

1.3 Research Questions

This section lists the research questions that we attempt to answer in this thesis.
Two questions were defined:

Chapter 1: Introduction 3

Research Question 1: How can one design and develop a system for effective
pairing of master students with thesis projects for universities?

Research Question 2: How does the software created for this paper compare to
existing solutions in terms of usability, user satisfaction, and features available?

1.4 Scope

The aim of this project is to show that there exists a generic set of requirements
which can be used to develop effective student-project matching systems without
automated matching, that is, where all decisions are made manually. To this end,
we will produce a prototype software which implements these requirements and
then test it in comparison to IDI’s matching system, which we take as representat-
ive of manual project matching systems in general. We will gather data on whether
the improvements made result in a better user experience and a more effective
tool. It is not the aim of this project to produce a fully-integrated software package
ready to be used widely within NTNU or elsewhere. We have chosen to focus on
demonstrating that the proposed requirements used to develop our application
provide a meaningful improvement over those used for the existing IDI system,
and argue that they should be integrated into any future systems put in use in this
area.

1.5 Contribution

The contribution of this master’s thesis is a set of functional and non-functional re-
quirements for a manual student-project allocation system, along with an analysis
of the effectiveness of that set of requirements in improving the user experience
over a baseline implementation. These requirements can then be used by any uni-
versity or team building a student-professor matching system in order to produce
a higher-quality system. Ultimately, this project attempts to contribute to a better
understanding of the challenges and solutions of this type of system. This project
will also produce a web application which implements these requirements, the
source code of which can be found at:
https://gitlab.stud.idi.ntnu.no/odinjv/project-assignment-software.
This software is published under the MIT open source license, to enable free use
of the code in future work.

Additionally, this report presents findings from interviews with professors and
students about the process of matching students with thesis projects. This inform-
ation is made available in the interest of supporting future research and projects
in this area.

https://gitlab.stud.idi.ntnu.no/odinjv/project-assignment-software

4

1.6 Report outline

This report is structured as follows:

• Chapter 1 introduces the concept and motivation of the project.
• Chapter 2 gives an overview of the existing IDI system, which we will use

throughout the report as a baseline implementation for comparison.
• Chapter 3 provides an overview of previous research into project assignment

systems in order to provide context for this paper’s contribution to the field.
• Chapter 4 describes the research, development, and analysis methodologies

used to carry out the project.
• Chapter 5 lists the software requirements generated to guide development,

and the goals we oriented them around.
• Chapter 6 details the process of implementing the system and the specific

choices we made while doing so.
• Chapter 7 shows the results of the implementation and our analysis, includ-

ing screenshots of the delivered software.
• Chapter 8 delivers the results of our user testing, and our interpretation of

those results.
• Chapter 9 discusses the results of the system and the overall results of the

project.
• Chapter 10 concludes this report and suggests future work.

Chapter 2

Background

This chapter introduces the IDI project matching system, which we use as a baseline
reference implementation of a manual matching system throughout this paper.
The current state of the system is described, along with analysis of its features
and shortcomings based on interviews with school administrators and professors.

2.1 Master’s Theses and Student-Advisor Matching

In order to graduate with a master’s degree at NTNU, students must complete a
one- or two-semester master’s thesis under the guidance of a professor. The sub-
jects of these projects are chosen by professors and then listed somewhere for
students to browse and consider. Generally, students do not propose their own
project topics, choosing instead from the options listed by their professors. Much
of the student’s final year of study is dedicated to pursuing this project, with the
full final semester focused exclusively on performing the research, development,
and writing necessary to produce a completed report. Upon delivery of an accept-
able report, the students are then able to graduate with a master’s degree in their
field of study. This process is common at universities around the world which offer
master’s degrees[1].

Because the project chosen by each student defines their entire final year of
education, it is very important that the process for choosing a project be as clear as
possible. Mistakes and misunderstandings could lead to students running out of
options and being required to work on a project which they are not qualified for or
interested in, in order to graduate. This can result in lower-quality research and
cause tension between students and their advisors[3]. Professors would prefer
to work on research with students who are motivated by the project they have
proposed, and school administrators would like to reduce the number of students
with unexpected assignment issues as much as possible[4]. These are the stakes
for the student-project matching process.

Without using any tools to facilitate project selection, the matching process
can be generalized as follows:

5

6

1. Professors provide a set of project ideas to students in some form.
2. Students choose interesting projects and apply for them, or propose their

own.
3. Professors respond to students’ applications, accepting and rejecting them

over the course of the matching period.
4. Professors and their accepted students finalize their choices and formalize

a contract for the next year’s research.

Some universities have systems in place to facilitate these steps to varying
degrees. One such system is IDI’s project assignment system, described below. For
the purposes of this paper, we will use the IDI system as a representative reference
of a project matching system.

2.2 Existing IDI System

NTNU’s Department of Computer Science (IDI) has developed a web application
to assist in the student-project matching process. This system was developed be-
cause the administrative load of managing the assignment of specialization pro-
jects manually grew too large for the department to handle as it expanded. To
better understand this existing solution, the researchers previously reached out to
faculty members at IDI to get an overview of how the system works, what function-
ality it covers, and what it fails to manage. This section will provide a description
of that system as a point of comparison for our own, and outline some of the issues
listed by its current users.

2.2.1 Features

The IDI system targets steps 1 and 4 in the matching process described above, as-
sisting professors in listing projects for students to see and finalizing their choices
in the school’s academic records. It allows professors to create any number of
projects which are added to a large central listing for students to browse. These
projects can be duplicated from previous projects created by the professors, an
important tool for ongoing research topics. Each project is assigned to at least
one specialization from any of three programmes, which categorizes it in the in-
ternal records system. Projects also specify whether they are appropriate for a
single student or a group of two, a title, and a description explaining the project’s
goals and academic requirements. The system also automatically archives projects
eight months after their last activity, though they remain available for professors
to reuse.

The project listing available to students, seen in Figure 2.1, displays all active
projects created by professors. This list can be filtered by specialization and pro-
fessor, allowing students to browse for interesting projects and find professors to
contact about working together on their theses. The listing can also be sorted al-
phabetically by either title or professor name. Students can register interest in up
to five projects, and remove them or reorder them by preference using the ranking

Chapter 2: Background 7

Figure 2.1: The project listing page of the IDI system. Projects can be filtered by
professor and specialization.

8

Figure 2.2: The project ranking tool of the IDI system

tool in Figure 2.2. In turn, professors can see the rank each student assigned to
their projects, as shown in Figure 2.3. When attempting to register interest the
first time, students are prompted to log in via Felles Studentsystem (FS)1, a na-
tionally shared university login system used for all university services, to view this
page.

After a student and a professor have agreed to work on a project together,
the professor can extend an offer to the student within the system, given that the
student has the project in their ranked list. If the project they decided on does not
have a listing, as is the case for projects proposed by students, then the professor
must create a new listing for it. New project listings can be added at any time,
and will show up in the system immediately. Once the listing has been made, the
student must find it and add it to their list. Only then can the professor extend
an offer to the student. The student may at any time have multiple of these offers
extended. The student can then choose to accept a single offer, which finalizes the
decision.

The IDI system also has a number of useful tools for school administrators. It
produces tables showing which students have not yet been assigned to a project,
which projects are active and fully assigned, and which projects have been offered
but are pending confirmation from the student. A section of this can be seen in
Figure 2.3. These features allow administrators to gain an understanding of how
well the process is proceeding, which enables them to make decisions about send-
ing out broad reminder emails or checking in on specific students. The existing
system also allows administrators to view any page as if they were any particular
professor, which can help with resolving problems with listings and assignments.

Additionally, the IDI system handles "theory modules" alongside projects. The-
ory modules are specialized courses taken by students in the first semester of their
final year, typically in connection with the subject of their master project. After a
student has accepted a project offer, the web application will redirect to a page
for selecting theory modules. The student can select these freely from two drop-
down menus, though they are asked to discuss this with their advising professor,
and many modules may have limited slots and require the approval of the teach-
ing professor as well. The system allows for exporting the data of which students

1https://www.fellesstudentsystem.no/

https://www.fellesstudentsystem.no/

Chapter 2: Background 9

Figure 2.3: A section of the administrator view of project statuses in the IDI
system

10

are enrolled in which modules, for administrators to use when determining exam
dates, to avoid scheduling collisions. For the purposes of this project, features re-
garding theory modules are considered out of scope.

Figure 2.4: The project creation page in the IDI system

2.2.2 Project Lifecycle

This section describes the typical process a project goes through in the IDI system.
First, a new project is created by a professor, either from scratch or by cloning

and editing an older archived project, via the interface in Figure 2.4. This may be
published and added to the project listing, or saved in a draft state which prevents
students from seeing it. Once a project is published, students can find it via the
project listing shown in Figure 2.1. The system includes a details page for each

Chapter 2: Background 11

project as pictured in Figure 2.5, though it does not expose any new information
that is not accessible to students from the main listing page.

Figure 2.5: A project’s details page in the IDI system

Formally, the only remaining step in the project’s lifecycle is its assignment to
a specific student. Informally, students must indicate their interest in the project
somehow in order to get themselves assigned to it. One mechanism for this is
the IDI system’s ranking interface, which can be seen in Figure 2.2. Professors
can see what rank each student has assigned their project, which can help them
find and compare interested students. This is done on the main professor page
shown in Figure 2.6. However, these ranks offer no further information about the
student attached to them, so professors generally expect students to send an email
application or set up an in-person meeting to discuss the project topic and the
student’s qualifications. This can be considered a part of the process, even though
it is not an officially enforced policy or a part of the system. Following this, the
professor assigns the project to the students they’ve chosen within the IDI system.

12

Once the students confirm the assignment, the project selection is recorded in the
school’s academic records system, and the process concludes. After eight months
of inactivity with no further edits, the project is archived, at which point professors
can access their archived projects via the interface shown in Figure 2.7.

Figure 2.6: The main page for professors in the IDI system

2.2.3 Issues and Omissions

This section summarizes our findings on the failure points of the current system.
These observations were derived from interviews we conducted with professors,
administrators, and students, as well as our analysis of other project matching sys-
tems. These interviews were conducted according to the requirements elicitation
methodology laid out in section 4.2.

Firstly, we note that the existing IDI system does not assist with step 3 of the
matching process described in section 2.1. For step 2, although it generates a pro-
ject listing for students to look at, it offers only limited tools to sort through the
ever-growing number of projects in the system. Additionally, there is no way for
students to act upon their project rankings within the system. As described in sub-
section 2.2.2, students can rank their top five projects, but they cannot apply for

Chapter 2: Background 13

Figure 2.7: The archive section for professors in the IDI system

projects or ask professors questions through the system. Additionally, professors
cannot see any information about students within the system, making it impossible
for them to evaluate whether a student has the academic foundation necessary to
work on the project without setting up a meeting. This means that professors are
unable to act on rankings alone, necessitating additional work outside of the sys-
tem.

As mentioned in subsection 2.2.2, professors expect that any student who
ranks their project will also email them to discuss it further. Without such an
email, most professors will not extend an offer, as they cannot assess how well
the student fits their project. This expectation is not communicated explicitly to
students, and its informal nature was stressful for many students who were not
sure how many professors to contact or what to say. Because these applications
occur over email, they are independent from the state of the student’s rankings
and the professor’s project. This leads to professors wasting their time following
up on applications from students who are no longer available, correspondence
being lost in crowded inboxes, and both parties losing track of who is responsible
for the next step.

There is also no formal process for students to propose a project within the
IDI system. Students who want to work on their own project idea must find an
advisor with no direction or assistance from the system. This requires them to
either have prior familiarity with many of their department’s professors, or read

14

through the public profiles of dozens of professors to figure out who may have
an interest in their proposal. This is a problem that is particularly exacerbated
as departments grow in size and more staff are hired. Because student proposals
cannot be handled within the system, they too must happen over email, and are
therefore subject to many of the same issues as applications.

The use of email in these cases means that information pertaining to applic-
ation or proposal status is unavailable to the system. Professors cannot see a list
of all students who have applied to each of their projects. Administrators have
no idea what projects students have applied to and what their application status
is. Students have no way to see how popular a project or gauge if its likely to
be at capacity, and have to manually email each professor to retract their other
applications after choosing a project.

Chapter 3

Related Works

In this chapter, we summarize the results of our literature survey. We searched
for published works related to project allocation, final year projects, and student-
project matching. This literature review is not intended to be a comprehensive
overview of the entire project allocation problem, as that is not the goal of this
paper.

3.1 Classifying Project Assignment Systems

As discussed in chapter 1, the concept of a software-driven system for assigning
final year projects is not novel. A 2022 literature review performed by Mubarak
Ali et al. found papers on the subject published as early as 2003[5], though our
research turned up several papers even earlier than that. That literature review
also found that the number of publications dealing with project assignment sys-
tems is trending upwards, implying that this topic is of increasing interest to the
research community. The authors of the review do not attempt to attribute this
increase to any particular factor, but we believe it is related to the issues caused
by growing student bodies as described in our introduction.

In their 2019 review of project assignment methods for transnational engin-
eering programs, Hussain et al. offered a comprehensive view of the issues and
desires currently shaping the development of project assignment systems, as well
as a scheme for categorizing existing assignment systems and a case study of two
specific project allocation systems currently in use[2]. They identify the growing
number of students in engineering programs as a major issue for project assign-
ment systems, an assertion in line with our own observations. Specifically, they
focus on the workload that matching large numbers of students with projects im-
poses on university faculty. The authors then enumerate the general approaches
to project assignment that they observed and address how well they scale in size,
along with analysis of their other strengths and weaknesses. The categories out-
lined below are based on those defined in the paper.

15

16

3.1.1 Two-Way Negotiation Systems

In a two-way negotiation system, students and professors discuss project alloca-
tion back and forth and come up with project assignments based on those discus-
sions. This is equivalent to project assignment without any formal system at all.
In a system like this, there may not even be a list of projects made available for
discussion; students may be required to develop concepts directly with profess-
ors. As noted in Hussain et al., this style of matching requires the most work from
professors and students to execute[2]. It is also liable to leave students who are
less confident about contacting professors without project assignments. However,
it gives students and professors complete control over who they work with and
what they work on, which is often a very desirable feature. For this reason, along
with the fact that it does not require any technological infrastructure to set up,
two-way negotiation is used in many universities despite its time costs.

3.1.2 One-Way Preference Systems

In one-way preference systems, students create a partial or complete preference
ranking over some resource or group of resources in the matching system. Pro-
jects are then assigned using these rankings either manually or algorithmically.
Some specific algorithmic implementations of this scheme are discussed below in
section 3.2. One-way preference systems can be further broken down according
to the resource ranked by students; the three most common things for students to
rank are projects, areas of study, and professors.

By Title

In this type of project assignment system, students are provided with a list of
project titles and descriptions. They then rank these project concepts according to
which ones interest them the most. These ranks are then used to pick out projects
for the students, either algorithmically or by using them to guide negotiation as
described in subsection 3.1.1. The existing IDI project assignment system is a by-
title one-way preference system where final assignments are made by negotiation,
as is our prototype. Using rankings to assist matching makes this method faster
than a pure negotiation system, but retains most of the student and professor
control that comes from negotiation.

By Area of Study

In this type of assignment system, students rank areas of study rather than spe-
cific project proposals. Professors then reach out to students who ranked their
area of study highly to attempt to arrange a specific project. According to a study
produced by Harland et al, there was no significant difference in what factors
students considered when choosing a project in this system, but professors were
significantly happier with the resulting assignments because they felt they could

Chapter 3: Related Works 17

better match their projects with students[6]. However, this scheme requires more
work on the side of the advisors than by-title preferences, as they have to manage
the specific project assignment themselves.

By Advisor

The third type of one-way preference system has students rank specific profess-
ors instead of projects. The professors then get in contact with the students who
ranked them highly and discuss projects. This system was proposed by Calvo-
Serrano et al. to address the issue of matching a significantly larger number of
students to a small number of professors[7]. According to the authors, no alloc-
ation system can guarantee that every student gets their first choice given this
numerical imbalance. By shifting the students’ ranking to the most limited re-
source in the system (professors), they are able to guarantee more high-ranking
matches without negatively impacting student project selections. However, this
scheme scales very poorly. As departments grow larger, it is more likely that stu-
dents know a smaller set of their professors. In our user evaluation, all seven of
the students who we spoke to said that they did not already know the professor
they chose to work with prior choosing their project. This system would thus re-
quire extra work from students to research every professor in their department,
and extra work from professors to then choose which projects to assign to which
students.

3.1.3 Two-Way Preference Systems

In all of the one-way systems described above, students formally ranked some
aspect of the system and then were matched with projects by negotiation or auto-
mation. In a two-way preference system, professors also rank their interest in
students in order to produce a bidirectional ranking. Projects are then assigned
algorithmically using both of these rankings. This is not a trivial problem to solve,
and requires a complex multi-step optimization process which can only approx-
imate the best match[8]. However, it does produce high-quality matches between
students and professors without the need for time-consuming negotiation pro-
cesses.

3.1.4 Student-Lead Systems

The final type of matching system outlined in Hussain et al. inverts the flow de-
scribed in the previous matching schemes. In the student-lead scheme, students
are required to propose their own thesis topics directly to professors, who then
either accept their proposals or refer them to other professors who would be a
better fit for the project. This system has the benefit of cutting out all of the work
that would otherwise be necessary to generate and develop enough projects to
cover the entire student body, and encourages greater student engagement be-
cause each student’s project will be of personal interest to them. However, most

18

students also lack the research skills and knowledge of the field necessary to pro-
duce well-scoped, novel research topics. This can result in professors having to
heavily alter student project proposals to make them feasible, which often makes
students feel disenfranchised[2].

3.2 Existing Project Assignment Systems

In this section, we will outline some existing research on project assignment sys-
tems that we encountered in our literature review. This is only a small selection
of the papers that are out there. They are chosen for their relevance to our imple-
mentation or demonstration of key automated matching methods.

3.2.1 Coordination of Student Project Allocation (2001)

This paper by Dimitar Kazakov, published in 2001 by the University of York, de-
tails the earliest implementation of a digital project assignment system that we
were able to find. Prior to the implementation of this system, the University of
York’s Department of Computer Science handled final year project allocation en-
tirely manually using a paper system[8]. Professors would deliver a printed page
of project proposals to the department secretaries, who then compiled all of those
proposals into a single document to be printed and distributed to students. Stu-
dents then met with professors to discuss projects of interest and sign a final con-
tract. Per the definitions above, this is an implementation of a two-way negotiation
system.

The department struggled to maintain this process as the number of students
needing projects grew past 150, leading Kazakov to design a new automated sys-
tem. This system was then implemented by a student, Jamie Hodkinson. In this
new system, professors turned their project definitions in to a system adminis-
trator who then entered them into a database. The matching process then oper-
ated in three phases:

1. Students search the database for interesting projects via a filtering system
and rank them according to interest. Simultaneously, professors rank stu-
dents according to how much they’d like to work with them. No matching
could occur during this period.

2. Projects and students are matched algorithmically. First, perfect marriages
(pairings where the professor and student are both each other’s first choices)
are matched, and those projects and students are removed from further
consideration. Lower priorities are then shifted upwards, potentially creat-
ing new perfect marriages. These marriages are matched and this process
repeated until no perfect marriages remain. Then an interactive, iterative
process takes place where students and professors re-rank their remaining
choices to produce new perfect marriages. This whole sequence repeats un-
til the system runs out of ranked applications.

Chapter 3: Related Works 19

3. The remaining students are matched with the remaining projects at random,
as no more rankings exist to guide the process. These matches are not made
final until the students and professors who were randomly assigned can
agree on the assignment via negotiation.

Interestingly, this system included a mechanism for ranking entire queries en
masse – in addition to ranking their top n favorite projects, students could also
rank entire sets of projects equally based on some filter query. This enables stu-
dents to rank a much larger number of projects, which makes the matching al-
gorithm more likely to converge on better results by reducing the number of ran-
dom assignments. The paper did not include an analysis of the effectiveness of
this matching system.

3.2.2 A dynamic project allocation algorithm for a distributed expert
system (2004)

Another foundational paper on project allocation, this report by Cheung et al. de-
scribes the implementation of a front-end and back-end system for automated pro-
ject matching[9]. Unlike Kazakov’s implementation, which formatted the match-
ing problem as an instance of the stable marriages problem, this system used an
integer programming model across the one-way preferences provided by students
to minimize the total ranking sum of all matched projects. In other words, this
system finds the project allocation where the overall rank is as low as possible,
which is not necessarily the same as the allocation where the most students get
their first choice.

This system used three different front-end interfaces to enter data into its
matching back-end: a student interface for creating project rankings, a professor
interface for supplying project definitions, and an administrator interface for mon-
itoring the submissions and activating the matching algorithm. This is quite sim-
ilar to the system we propose in chapter 5. Notably, this system seems to require
a very high number of ranked projects per student to resolve well; while its stu-
dent interface demonstration showcases only five ranked projects, its data shows
a student who got their 19th-choice project. Obviously, it is a significant burden
on students to find, read, and rank so many projects, especially if they have to
discuss any details with professors.

Using this scheme, 30.8% of students received their top-ranked project, and
65.5% received one of their top five projects. This data was collected for only a
single academic year of use, so it may have been skewed by a small number of
highly-popular projects making it difficult for students to receive their top choices.
However, if the data is representative of a typical usage of the system, then it seems
likely that this allocation system could frustrate students if one third of them are
not able to get one of their top five projects.

20

3.2.3 Preference Based Final Year Project Title Selection System (2009)

Hasan et al. outlined and compared several algorithms for allocating projects us-
ing one-way by-title preferences[10]. They asked each student to pick their top 10
projects from the set of project proposals provided by professors. They then fed
these preferences into a program which ran three different matching algorithms
over the data to produce project assignments. Following that, the authors ana-
lyzed these assignments both numerically and by gathering student feedback on
satisfaction with the results.

The three algorithms compared were a naive rank sorting algorithm, a se-
lection frequency sorting algorithm, and a network flow optimization algorithm.
The authors found that the network optimization algorithm produced the most
favorable results by far, with 40% of students getting their top-ranked project and
78.5% of students getting one of their top 3 projects. Additionally, students were
more satisfied with the assignments generated by this algorithm and reported less
stress during the process, compared to a first-come first-served system.

In order to implement the network flow optimization algorithm, the project
allocation problem must first be interpreted as a directional network of nodes.
This work was initially done for two-way preference systems by Abraham et al.
in the influential 2007 paper "Two Algorithms for the Student-Project Allocation
Problem"[11]. However, Abraham’s paper was formalized for two-way preference
matching, while Hasan intended to use student preferences alone. In the resulting
modified formulation, nodes representing students are connected to nodes rep-
resenting projects with edge costs equal to the students’ preference rankings. This
double layer of nodes is then sandwiched between a source node at the start, which
is connected to every student with a cost of 0, and a sink node at the end, which
every project connects to with a cost of 0. This creates a network of nodes which
can accommodate any number of students and projects over which flows can be
calculated. The authors then use a maximum flow, minimum cost algorithm to
minimize the ranks of every project while ensuring that every student is matched.

Notably, while this system is able to easily encode additional constraints like
the number of allowed students per project, it does not provide any guarantees
on the maximum load of projects per professor. This is a serious issue, as a pro-
fessor with popular projects could easily end up supervising far more projects than
they could reasonably handle. The algorithms presented in Abraham et al. handle
this, but that capability was lost by removing professor nodes. This could be a
preventative issue for real-world uses of this scheme.

3.2.4 Additional Works

In 2017, The University of Hong Kong’s Department of Computer Science pub-
lished a paper titled A Web-based Project Allocation System by Lei Wan-Hong, which
details the implementation of an automated student-assignment system in Django
and Java[12]. We note this project here because its purpose and technology stack
are very similar to our own.

Chapter 3: Related Works 21

Raihanah Binti Abdul Waha’s 2012 paper Final Year Project Online Manage-
ment System for Universiti Teknologi PETRONAS outlines the implementation of a
project management system which implements an unranked two-way negotiation
matching scheme[13]. This paper is of interest to us as it is one of the few that
chooses to focus on manual matching instead of algorithmic matching. However,
unlike our prototype, this system does not record student project preferences; it
only acts as a portal for professors to post projects and for students to find them.
Thus it is not of great use to study in depth.

3.3 Outcome of Review

Our literature review revealed that the vast majority of research into project as-
signment matching has been about algorithmic solutions. This is a reasonable res-
ult given the pressure of growing student bodies, and the desire for a system that
produces the most fair outcomes possible. However, it reveals a lack of projects
examining how to make manual assignment more effective and efficient without
the use of algorithms. We consider this to be an important gap in existing know-
ledge, as improved manual matching may be an ideal solution for universities
with a more manageable number of students, or that want more control over
their matches. Additionally, none of the papers we reviewed detailed a formula
for developing a project assignment system.

Our goal with this project was therefore to improve the matching system at
IDI while remaining close to the existing implementation, and to document our
process and rationale in a scientific manner which could aid other universities in
implementing their own systems. Through this exercise, we hope to expand the
knowledge of what assistive features can make manual negotiation-based systems
more viable for larger student bodies.

Chapter 4

Methods

This section describes the methods used in the development and evaluation of the
requirements and software presented in this thesis.

4.1 Development Methodology

In order to design software for research, an overarching approach must first be
selected. The goal of our project was to develop a prototype which could address
the issues we found from our interviews with users of existing project assignment
systems. As these issues arose from the actual use of the system, they are con-
sidered practical problems. Software artifacts, when developed according to the
design software process, can be an effective way to address practical problems
while also providing generalizable scientific information to the field [14]. There-
fore, we chose to use design science to organize our development process.

Design science research is a rigorous process for designing artifacts to solve
problems [15]. There are many research strategies which can be used to actuate
the design science process, but we chose to model our strategy on Action Research.
The steps of the process are as follows:

1. Explicate the Problem: Identify a practical problem to be solved, as well as
the underlying causes of that problem.

2. Define Requirements: Outline a solution to the explicated problem and elicit
requirements for that solution. These requirements should be drawn from
real practitioners who are impacted by the practical problem.

3. Design and Develop an Artifact: Create an artefact that addresses the explic-
ated problem and fulfils the defined requirements.

4. Evaluate the Artifact: Determine how well the artifact fulfils the require-
ments and the extent to which it can solve or alleviate the practical problem
that motivated the research.

We identified the problem of project matching through our personal experi-
ence with the IDI system, and began to determine the underlying causes through
interviews with practitioners as described below. Through these interviews, we

23

24

generated a set of requirements which we believe any software solution to the
student-project matching problem should implement. We then built a task back-
log containing tasks corresponding to each requirement and developed the soft-
ware artefact using that backlog as described below. Finally, we evaluated the
effectiveness of the artefact and its requirements through user testing and process
analysis.

4.2 Interviews

In order to understand what features are important for a project assignment soft-
ware, we conducted one-on-one requirements elicitation interviews with profess-
ors and administrators at NTNU. Requirements elicitation is the process of seek-
ing, uncovering, acquiring, and elaborating requirements for computer based sys-
tems [16]. Requirements elicitation is an essential part of the software design
lifecycle; unclear requirements rank among the five most common reasons for
software projects to fail [17]. There are many methods for requirements elicita-
tion, including structured and unstructured interviews, card sorting and ranking
exercises, and prototype presentations. The effectiveness of each method varies
by project, but in most cases structured interviews are the most effective form of
requirement elicitation, followed by unstructured interviews [18]. Methods for
requirements elicitation generally provide information in five areas: understand-
ing the application domain, identifying the sources of requirements, analyzing the
stakeholders, selecting techniques to use, and gathering specific requirements. In-
terviews yield information in all of these categories, and are faster to set up and
come more naturally to participants than other requirement elicitation methods
[16].

We chose to run unstructured interviews based on the research above. We
reached out to two professors and two administrators from IDI, as well as two
members of NTNU’s management who were also investigating solutions for mas-
ter’s thesis assignment. We asked each participant to discuss the workings of the
current system from their perspective, what parts of it frustrated them, and what
they thought it was missing. These questions were presented informally without
a survey or other structured feedback system. Live notes on requirements and
desires were taken during the meetings as participants brought them up. We com-
bined these with requirements gathered from introspection on our own experi-
ences with the system as students to get our final list of project requirements. In-
terviews by their nature yield a lot of extraneous information and requirements,
which can be useful but distract from the final project [18]. Thus some filtering
was employed to narrow down the final requirements to only those which aligned
with our research questions.

Chapter 4: Methods 25

4.3 Task Backlog

In order to track and prioritize work on the software portion of this project, we
created a task board inspired by the Kanban system. Kanban is a system for con-
trolling tasks and resource allocation first developed in the Japanese automotive
industry [19]. To execute Kanban for software engineering, practitioners break up
their proposed work into small, incremental tasks and lay them out on a backlog
board. Individual developers then tackle these tasks one or two at a time, remov-
ing them from the backlog. This process keeps development focused on achievable
tasks, limits the amount of work in progress at any one time, and helps reveal
bottlenecks in production by providing a visual representation of tasks suck in
pending states [19].

Tasks were added to the board to represent each of the functional require-
ments listed in chapter 5. These tasks were then grouped according to broad
themes of development. These themes were then ordered by priority and de-
veloped one at a time. Because there was only one developer for this project, some
aspects of the Kanban scheme relating to team management were not observed.
Specifically, tasks in progress were not claimed by the individual developer, as
there were no other developers to communicate this information to.

4.4 Time-to-Task Evaluation

RQ2 requires us to evaluate how our prototype compares to existing solutions in
terms of usability. For the purpose of this project, we will assess this using task tim-
ing, or time-to-task evaluation. Time-to-task evaluation is a usability metric which
is measured by setting out a discrete task or goal for the user, such as "create a
new folder and move a document into it", and then timing how long it takes them
to complete the task. This timing is then compared to the time it takes to perform
the same task in another system [20]. By measuring this difference, we obtain
quantitative data about how quickly the software works compared to another. Al-
though this measure alone obviously lacks the nuance of full user sentiment data,
"objective" performance measures such as task time are a reasonable predictor of
actual user preferences [21]. Task timing data can additionally be enriched by
tracking the task’s success rate (whether the user is able to perform the task at
all) and error rate (the number of mistakes the user makes when attempting the
accomplish the task, such as visiting the wrong page or selecting the wrong item).

4.5 Keystroke-Level Modeling System

Due to technical limitations with the existing IDI system, we were not able to
run tests within the software itself. Thus in order to evaluate task timings, we re-
quire a method to estimate task times without recording direct input. We chose
the keystroke-level GOMS model to generate these estimates. GOMS takes its

26

name from "a set of Goals, a set of Operators, a set of Methods for achieving
the goals, and a set of Selections rules for choosing among competing methods
for goals"[22]. It is a model of human-computer interaction which attempts to
predict the amount of time needed to use an interface to achieve a specific task
by modeling the interaction as a series of actions taken conditionally, with mental
processing time and physical input delay factored in. The prediction error of a
well-constructed GOMS model is 21 percent for individual tasks[23] when com-
pared to real user input, so in order to accurately compare the existing IDI system
and our prototype, we chose to generate GOMS times for our own system as well
rather than timing actual user input.

The keystroke-level model (KLM) is an instantiation of the GOMS system de-
signed to predict interaction times with keyboard and mouse controls for an ex-
pert user of the system[23]. In the keystroke-level model, each interaction with
the system is modeled as the sum of six operators:

Texecute = TK + TP + TH + TD + TM + TR (4.1)

The operators are defined as follows:

• TK : The time needed for individual keystrokes. This time varies per user
based on their typing speed. We chose a time of 0.28 seconds per key-
stroke (40 words per minute) as our estimated typing speed. This is the
speed presented for an average skilled typist in the keystroke-level model
paper[23].
• TP : The time needed to point the mouse at an individual target on the

screen, such as a button or textbox. Although this time can be accurately
modeled by Fitts’ Law using exact pixel measurements[24], the KLM aver-
ages these pointing events to take 1.1 seconds based on the shortest and
longest reasonable Fitts’ Law values.
• TH : The homing time needed for the user to place their hands on their key-

board or mouse. Card estimates this at 0.4 seconds.
• TD: The time taken to draw a number of straight lines with the mouse in

a drawing-based interface. This interaction is not used in either of our sys-
tems, so it will be omitted from our evaluations using the model.
• TM : The mental preparation time the user takes before beginning the inter-

action. This models the time needed to read and process the page, search
for relevant inputs and buttons, and decide what to do next. This quantity is
highly variable per user and per task, but is estimated at 1.35 seconds in the
keystroke-level model based on experiments performed by the authors[23].
It is worth noting that the real value of TM is particularly high for creating
new projects, as it would in theory cover the time required to think up a
short description for a project. But because we keep this operator the same
across our evaluations for both the old and new system, its actual value does
not matter.
• TR: The time it takes for the system to respond to the user’s input. This is

a real value that must be obtained from the system in some way. For most

Chapter 4: Methods 27

web-based interactions, this is nearly instantaneous. However, actions like
submitting a form may have more significant processing time. We chose to
use real times from our prototype for this value, and estimated times for the
IDI system based on our observation of recordings of the system in action.

Notably, Card et al.’s keystroke-level model does not take into account the time
needed to scroll through a long page to find a specific item. This is a common
interaction in modern web applications, but was not part of the user interface
landscape when the paper was originally published. In order to account for this,
we add an additional term to the equation, TS . This scrolling action consists of
a constant time for the user to assess if the information they are looking for is
already on the screen, which we estimate at 1.5 seconds[25] and mark as mental
preparation time M, plus 1 additional second for each full-screen scroll the user
has to perform, which we mark as S. Thus our formula in practice is:

Texecute = TS + TK + TP + TH + TM + TR (4.2)

The results of this evaluation can be found in chapter 7.

4.6 User Evaluation

RQ2 requires us to evaluate how our prototype compares to existing solutions in
terms of user satisfaction. Quantitative methods of usability evaluation are sig-
nificantly enhanced by pairing with qualitative methods of usability evaluation.
There are many methods for evaluating ease of use and satisfaction from users,
but for this project we chose to run an unmoderated user test. User testing is a
highly effective way to gather data about the efficiency, effectiveness, and satis-
faction of using a piece of software [26]. In a user test, participants are presented
with a series of tasks which they must complete using the software. The user is
asked to provide feedback on their experience using the software throughout these
tasks. In a moderated user test, a researcher meets with the user in real time and
prompts them through the tasks and questions. In an unmoderated user test, the
user is instead given the directions and questions and asked to walk through them
on their own, without a researcher present. We chose to run an unmoderated user
test because it allowed us to reach more participants and fit our users’ tight end-of-
semester schedules. Unmoderated user studies produce less data than moderated
user studies [26], as researchers are not able to watch the user’s motions and get
their moment-to-moment thoughts. However, we still felt it was the best choice
for our project due to our scheduling constraints.

We designed our test following the steps outlined by Whitenton, 2019 [27].
Our aim was to gather qualitative feedback on how the app compared to the IDI
reference implementation in terms of features and usability. We wrote two sep-
arate test questionnaires, one for students and one for professors. The full text
of both questionnaires is attached as Appendix A. In each questionnaire, we first
asked a series of questions to establish the user’s familiarity with the existing IDI

28

project assignment system. We then presented a sequence of tasks one at a time
for the user to complete using a hosted version of our prototype. After each task,
we present the user with a few questions about their experience of using the soft-
ware to complete that task. We included at least one free response question with
each task to allow users to express their thoughts in an unstructured way, mimick-
ing the type of response elicited by an in-person structured interview. Finally, we
ended each questionnaire with a series of questions about the overall experience
of using the app and how it compared to using the IDI system. Student parti-
cipants were recruited using posts in NTNU student Facebook groups and direct
messages. Professor participants were recruited through email and in-person cor-
respondence.

4.7 Process Modeling

Process modeling is the practice of analyzing and describing complex processes as
visual flows. A simple and familiar example of process modeling is the flowchart,
which breaks down a process into a simple sequence of conditional decisions. Cre-
ating and analyzing flows this way can help reveal inefficiencies, failure points,
and bottlenecks in processes without requiring full implementations of the sys-
tems[28]. We use this technique to compare the methods used for project as-
signment in our prototype, the IDI system, and manually with no system. In this
project, we chose to analyze our processes using the Business Process Model and
Notation (BPMN), version 2.0. A business process is a set of activities that are
performed in an organization, coordinated to jointly realize a business goal[29].
By modeling these processes, we can capture many of the constraints and require-
ments that govern them. The process of discovering and modeling these processes
for an existing system is called process discovery. This task can be automated and
performed at varying levels of rigor, but for our purposes we will develop our
model through manual analysis. This allows us to produce models of the existing
IDI system, our prototype, and a reference process for project matching with no
system.

The Business Process Model and Notation specifies a number of nodes to rep-
resent real-world actions such as writing an application or waiting for time to pass,
as well as logic operations like waiting for multiple processes to complete before
continuing. Because many of these nodes have specific visual symbols and mean-
ings, BPMN charts require some familiarity to be readable. We have produced an
example graph in Figure 4.1, which uses a majority of the BPMN elements we will
need to describe our processes in context and provides explanations for each.

Chapter
4:

M
ethods

29

S
in

gl
e

ac
to

r
po

ol

Multiple outputs
are parallel by
default

Multiple inputs
are exclusive by
default

Task using data

Task

Task

Subprocess

Looping
subprocess

Parallel
multi-instance
subprocess

Ad-hoc subprocess: tasks executed
at any time, any number of times, in

parallel

Task A

Task B

M
ul

tip
le

 a
ct

or
 p

oo
l

Task

Task

Subprocess (detail)

Event-based subprocess:
interrupts concurrent processes

Black box pool Black box pool

Intermediate
send event using

data
Intermediate
receive event

Time-based
start event

End event

Exclusive gate:
proceed when
either input is

complete, ignore
further input

Exclusive gate:
proceed with only
one of the outputs

Condition A

Condition B

Associated data

Multiple actor indicator

Start receive
event

Intermediate
send event

Terminate end
event: stop
concurrent

instances and do
not loop

Start event for all
loops

End event, begins
new loop

End send event

Parallel gate:
proceed with all

outputs
concurrently

Parallel gate:
proceed only

when all inputs
are complete

Inclusive gate:
proceed with one

or more tasks

Inclusive gate:
proceed when all
ongoing tasks are

done

Message flow

Default flow

Timed boundary
event: terminate
all instances and

proceed from
here

Conditional flow

Figure 4.1: A legend of common BPMN elements

Chapter 5

Software Requirements and
Specs

In this section we will outline the specifications for our program. These are the
essential functions which we consider necessary for our prototype to be a reason-
able solution to the problems presented in this report. They were developed using
interviews with school administrators, professors, and students, along with our
knowledge of the current system at IDI and gathered from literature review.

5.1 Goals

We aim to reduce the amount of ambiguous and time-intensive email communica-
tion necessary to match students and professors for thesis work in the current sys-
tem. We have found this method of communication to be error-prone and poorly
scalable for both professors and students. We address this by facilitating student
applications and creating alternative contexts for communications, so that emails
can be reserved for only the most necessary communication. This keeps all inform-
ation about each project in one place for all parties, avoids the spam of dozens
of application conversations going on at once in busy inboxes, and reduces the
chance of applications being lost without followup.

We also intend to increase the quality of applications by making more inform-
ation available to students and professors. Within the current IDI system, it is
very difficult for students to find projects that are relevant to their skills, interests,
and educational history. As discussed in section 2.1, this can be detrimental to
the quality of research produced by the students. We fix this issue by introducing
a comprehensive tagging system which allows students to filter by pre-requisite
classes, areas of interest, fields of study, and more. To complement this, we also
intend to support professor profiles where professors can specify information like
their field of work and their supervision style, so that students can self-select for
professors with complementary preferences and skills.

We also hope to reveal the popularity and availability of certain projects, to

31

32

encourage students to spread their applications more evenly among the available
projects. This means professors won’t need to turn down large amounts of students
or take on more than they can handle, and mitigates students having to apply to
other projects late in the application window because their desired project filled
up.

For professors, we hope to give more information about students’ preferences
and options, to facilitate easier decision-making around which students are a bet-
ter fit for the thesis, and which students already have other offers available. We
address this by displaying useful metadata such as the student’s priority for this
application, as well as their specializations and preferred topics and tasks.

We aim to open up the possibility space to include more types of projects by
allowing students to propose custom thesis projects, both directly to professors
and generally to all professors with matching preference-tags. This is already a
possibility at universities, but not something the old system accommodated well.
The same framework will be used to accept proposals from third parties such as
government agencies and private businesses, though this will be less self-selecting
and instead managed by administrators. Accommodating passionate students with
self-directed goals and academic partners with useful resources will help the uni-
versity produce more impactful research.

Finally, we aim to design the system to be flexible, to be compatible with the
different requirements of different institutes and universities, to whatever degree
it is feasible. We also plan to make the data accessible in ways that make it conveni-
ent to integrate into the administrative environment of various institutes, primar-
ily by allowing bulk-export of student data.

5.2 Non-goals

We do not plan to alter the flow of the university’s existing thesis process. We do
not propose any big changes to how and when projects are posted, how students
choose projects, or how professors select students to work with. Such changes are
beyond the scope of RQ1, and make evaluation of RQ2 more difficult. Therefore,
our program is designed to facilitate the process as it currently stands. As a result
of this, we also do not intend to implement automated matching. Although it is
possible to automatically assign projects based on student preference rankings, it
would significantly change the structure of the application process and remove
the professors’ ability to select students personally. A thorough assessment of the
fairness of any kind of automated matching system should be undertaken before
it can be considered.

We do not intend to develop a complete, comprehensive replacement for the
existing IDI thesis assignment system. Due to the limited development time and
the number of new features we aim to assess, we have decided not to re-implement
some of the current system’s existing functionality. We have attempted to only
choose features which impact the matching process per RQ1. Features for hand-
ling theory modules will therefore not be included in our final product, as they

Chapter 5: Software Requirements and Specs 33

are specific to IDI and irrelevant to the process of pairing students with projects.
For the same reason, we also will not integrate with any external university sys-
tems. We believe that such integration work would be very time-consuming and
would prevent us from building out the new concepts that we plan to assess for
RQ1. Similarly, we do not intend to focus on building a beautiful or optimized
user experience for this tool. We will produce a usable interface which reasonably
communicates all of the information the user needs, but the interest of this paper
is in the improved process flow and information availability afforded by our new
app, rather than refining the interface.

5.3 Functional Requirements

For this section, we use a set of priorities. A priority of "High" means the feature
is necessary for a completed project. A priority of "Medium" means the feature
contributes greatly to the quality of the prototype. A priority of "Low" means the
feature has a smaller impact on the quality of the prototype.

34

5.3.1 Project Lifecycle

Table 5.1: Functional requirements regarding project lifecycle.

ID Requirement Priority

FR-PL-1

Professors must be able to create new projects within
the system. Each project should have a title, description,
tags for encoding useful metadata such as pre-requisite
courses, and an expected group size.

High

FR-PL-2
Professors must be able to create drafts of new projects
that are only visible to themselves.

Low

FR-PL-3
Professors must be able to view, edit, and publish draf-
ted projects.

Low

FR-PL-4
Professors must be able to mark published projects as
drafts, removing them from other views.

Medium

FR-PL-5

Professors must be able to define a total capacity for
how many groups they intend to take on for a given
project, though this should not limit applications or of-
fers.

Medium

FR-PL-6
Professors must be able to duplicate old projects from
previous years to set up projects for the current year,
either as published projects or as drafts.

Low

FR-PL-7
Professors must be able to close any of their projects
from further applications or edits, and removing them
from other views.

High

FR-PL-8
Professors and administrators must be able to edit pro-
jects after creation.

High

FR-PL-9
Professors and administrators must be able to delete
projects.

Medium

These requirements deal with the creation, updating, and deletion of projects. In
our interviews with professors, we found that many of them preferred to copy
closed projects from previous years, or clone a draft template that they kept from
year to year, rather than create new projects from scratch every time. Thus we
determined that in addition to basic creation and deletion of projects, it was ne-
cessary to allow users to create drafts and duplicate projects. This reduces the
amount of time and repeated work needed to create projects, freeing up profess-
ors to correspond more with students, which is one of our goals.

Chapter 5: Software Requirements and Specs 35

5.3.2 Application Lifecycle

Table 5.2: Functional requirements regarding application lifecycle.

ID Requirement Priority

FR-AL-1

Students must be able to submit applications to pro-
jects listed on the site. These applications must include
a text section for the student to explain why they are
interested in the project and would be a good fit.

High

FR-AL-2 Students must be able to retract applications. Medium

FR-AL-3
Students must be able to preemptively accept any pro-
ject they have submitted an application to.

High

FR-AL-4
Professors must be able to respond to applications and
ask for additional information from students.

Medium

FR-AL-5 Professors must be able to decline applications. High

FR-AL-6
Professors must be able to extend final offers to stu-
dents.

High

FR-AL-7
Students must be able to accept one final offer to con-
firm their selected project.

High

Applications require some automation to improve over the base model of emailing
back and forth with a professor. We propose that applications should be directly
tied to one specific project, with automated convenience features like preemptive
acceptance, which accepts an offer as soon as a professor extends it. Applications
should also have clearly-defined states which are visible to both the professor and
student in order to minimize confusion about whether or not the application has
been accepted. These features take the administrative load of managing applica-
tions off of the individual users and place them in the hands of the system instead.
We believe this will reduce errors in the matching process and avoid the cognitive
load of managing applications in an unstructured e-mail inbox.

36

5.3.3 Student Views

Table 5.3: Functional requirements regarding student views.

ID Requirement Priority

FR-SV-1

Students must be able to see a list of all projects. This
list should allow them to browse through the available
projects and enable them to visit the details page for
each project.

High

FR-SV-2
Students must have a set of fixed academic tags that
convey their academic background.

High

FR-SV-3
Students must be able to edit their personal interest
tags.

Medium

FR-SV-4

Students must be given some indication of which pro-
jects have a high number of applications, and which
professors or projects have low or no remaining capa-
city.

Medium

FR-SV-5

Students must be able to see a list of applications they
have submitted to projects. This list should include the
title, description, and professor of each project, as well
as the status of the application, along with the text of
the student’s application and any follow-up conversa-
tion with the professor.

High

FR-SV-6
Students must be able to respond on applications where
the professor has requested more information.

High

FR-SV-7

Students must be able to rank their top 5 projects based
on their level of interest in each project. These ranks
should be mutable, and visible to the professors of those
projects alongside the student’s application.

Medium

In our reflection on our own experience with the process and in speaking with
other students, we determined that visibility and filterability of project data was
crucial to making the system effective for students. By giving students tools to cut
down the large pool of projects into smaller groups, we enable them to find the
types of project they are looking for more quickly. Additionally, allowing them to
manage all of their applications and discussions within the app cuts out the time
lost searching for email threads and figuring out which projects they were about.
This should help students find and apply to more relevant and interesting projects,
leading to better research outcomes.

Chapter 5: Software Requirements and Specs 37

5.3.4 Professor Views

Table 5.4: Functional requirements regarding professor views.

ID Requirement Priority

FR-PV-1
Professors must be able to view a list of all of their pro-
jects. This list should include applications from students
for each project.

High

FR-PV-2
Professors must be able to see and respond to all applic-
ations from students on a project’s details page.

High

FR-PV-3
Professors must be able to get any student’s email by
clicking on their name.

High

FR-PV-4

Professors must be able to view the details of each
application on their projects. These include the stu-
dent’s name, the title and description of each project,
along with the text of the student’s application and any
follow-up conversations.

High

FR-PV-5
Professors must be able to see retracted applications lis-
ted separately.

Low

FR-PV-6
Professors must be able to define a total capacity for
how many projects they intend to take on, though this
should not limit applications or offers.

Low

FR-PV-7
Professors must be able to view a list of all third party
thesis proposals that have been approved by an admin-
istrator.

High

FR-PV-8
Professors must be able to edit, decline, or accept ap-
proved third party thesis proposals.

High

FR-PV-9
Professors must be able to view all student thesis pro-
posals.

High

FR-PV-10
Professors must be able to view student thesis proposals
assigned to them separately.

Medium

FR-PV-11

Professors must be able to decline student thesis pro-
posals assigned to them, which removes them from the
proposal. The proposal remains in the view of all stu-
dent proposals.

Low

FR-PV-12
Professors must be able to accept student thesis propos-
als.

High

FR-PV-13
Professors must be able to copy a student thesis pro-
posal into a draft for editing.

Low

In our interviews we found that when evaluating student applications, profess-
ors often need to ask students for more information on their academic history
and qualifications for a project. Enabling professors to have those conversations
and see them attached directly to the applications and projects they pertain to is

38

therefore very important in a thesis matching system. In addition to applications
and project listings, the administrators and professors we spoke to also expressed
interest in systems for handling student project proposals and projects submitted
by third-party industry partners. While these are important features, the majority
of students will take on projects defined by professors. Thus the requirements for
these systems are listed, but with lower priorities.

5.3.5 Administrative Views

Table 5.5: Functional requirements regarding administrative views.

ID Requirement Priority

FR-AV-1
Administrators must be able to view a list of students
who have not yet been extended a final offer.

High

FR-AV-2
Administrators must be able to view a list of students
who have been given offers but not accepted one.

Medium

FR-AV-3
Administrators must be able to get any student’s email
by clicking on their name.

High

FR-AV-4
Administrators must be able to override the academic
tags of a student.

Low

FR-AV-5
Administrators must be able to view all thesis proposals
submitted by third parties.

High

FR-AV-6
Administrators must be able to create accounts for third
parties that are cleared to submit thesis proposals.

Medium

FR-AV-7
Administrators must be able to edit or decline third
party thesis proposals.

Medium

FR-AV-8
Administrators must be able to assign professors to
third party thesis proposals.

High

FR-AV-9
Administrators must be able to add relevant tags and
prerequisites to third party thesis proposals.

High

FR-AV-10
Administrators must be able to approve third party
thesis proposals only when they have been assigned a
professor.

High

FR-AV-11
Administrators must be able to view student thesis pro-
posals.

Medium

FR-AV-12
Administrators must be able to edit or decline student
thesis proposals.

Low

FR-AV-13

Administrators must be able to view each page from
the perspective of any other account in order to verify
that projects, applications, and other features are set up
correctly.

Medium

Chapter 5: Software Requirements and Specs 39

The university administrators we spoke to expressed a need to manipulate almost
every aspect of the system in order to address errors and unusual cases. They
also intended to be the managers of third-party projects such that third parties
will not need familiarity with the institutes professors. Finally, they required dia-
gnostic views of the system to let them find students who may need additional
help. This resulted in a sizable set of requirements. Unlike with professors and
students, the goal of these requirements is to create an interface that will get out
of the way of administrators as much as possible. They are power users who want
specific things from the system, and thus should be able to achieve those things
with as little resistance as possible.

5.3.6 Automatic Processing

Table 5.6: Functional requirements regarding automatic processing.

ID Requirement Priority

FR-AP-1
All projects must be automatically closed and hidden be-
fore the next academic year.

High

FR-AP-2
Upon accepting a final offer, the student’s other applica-
tions must be marked as retracted.

High

FR-AP-3
When a professor extends a final offer to a student who
has preemptively accepted that project, the offer is ac-
cepted immediately.

High

FR-AP-4
Applications must be deleted fully after a project is
closed.

Low

Automation is one of the main improvements gained from tracking applications
and projects in a dedicated system instead of via e-mail. We identified that it
was important to return the system to a clean state, with all projects closed and
all applications deleted, at the start of each academic year in order to reduce
the workload of system administrators. One common complaint from students
was that after accepting one application, they would have to email every other
professor they’d spoken with to rescind their other applications. And similarly,
professors would need to inform other students that they would not be accepting
more students to a project. Thus we propose automating that process to cut out
that unnecessary, repetitive work.

40

5.3.7 Notifications

Table 5.7: Functional requirements regarding notifications.

ID Requirement Priority

FR-NT-1

The system must notify students of key events via email.
These include extended offers, accepted offers, accep-
ted or copied proposals, declined proposals, declined
applications, and responses on applications.

High

FR-NT-2
The system must notify professors of key events via
email. These include new applications, accepted offers,
new assigned proposals, and responses on applications.

High

FR-NT-3
Notifications must be batched and messaged out daily
or weekly to avoid inbox spam.

Medium

Although we believe that it is important to move application communication out
of unstructured e-mail inboxes and into a system designed explicitly for that in-
formation, we also know from our interviews that professors and students use
their inboxes as their main source of information on academic matters. Thus we
conclude that in order for a matching system to perform well, it must still reach
users in their inboxes, otherwise users are likely to miss key events and informa-
tion. To avoid clutter, and emails getting lost, we also propose these notifications
are sent in batches so that give a better overview.

5.3.8 Filtering

Table 5.8: Functional requirements regarding filtering.

ID Requirement Priority

FR-FL-1
Tags must exist for prerequisite classes, specialization
or subject, topics of interest, and method of work.

High

FR-FL-2
The list of all projects must support filtering by the pres-
ence or absence of tags, and by assigned professor.

High

FR-FL-3
By default, students see a list of all projects which are
relevant to their personal and academic tags.

High

FR-FL-4
The list of all student thesis proposals must support fil-
tering by the presence of tags, and by assigned pro-
fessor.

High

FR-FL-5
By default, professors see a list of all thesis proposals
which are relevant to their personal tags.

Medium

One of the biggest pain points that we identified for students was difficulty in
finding relevant or interesting projects. Searching for keywords was seen as unre-
liable and left students worrying that they weren’t finding everything they wanted

Chapter 5: Software Requirements and Specs 41

to see. Thus we propose a system of specific tags which can be set by professors
and filtered by students to make finding the right projects take less time. We also
suggest allowing students to apply tags to themselves based on their interests and
academic history, which are then used to automatically filter the list of projects.
By making it easier to find projects about specific topics, students are more able
to find interesting theses to work on, leading to better research outcomes.

5.3.9 Thesis Proposals

Table 5.9: Functional requirements regarding thesis proposals.

ID Requirement Priority

FR-TP-1

Third parties with cleared accounts must be able to sub-
mit proposals for theses. These require a title and de-
scription, with the option to add tags or suggest a pro-
fessor.

High

FR-TP-2
Third parties must be able to retract thesis proposals,
removing them from view completely.

Low

FR-TP-3
Students must be able to submit proposal for theses.
These require a title, description, and tags, with the op-
tion to suggest a professor.

High

FR-TP-4
Students must be able to edit their thesis proposals.
Copies of proposals will not be edited.

Medium

FR-TP-5

Students must be able to retract thesis proposals, re-
moving them from view completely. This is not possible
for accepted proposals. Copies of proposals will not be
removed.

Low

FR-TP-6
Professors must be able to view projects proposed to
them and coordinate with the proposer.

High

FR-TP-7

Accepted project proposals must automatically popu-
late into the system. For external partners, this should
create a project listing available to students. For student
proposals, this should create a new project and auto-
matically assign the student and professor to it.

High

The IDI thesis matching system which served as our reference implementation did
not include any features for managing student-proposed projects. Students felt
that the process the university had in place for these projects (emailing a pitch of
your project idea to whichever professors they see fit) was challenging and hos-
tile to project proposals. We believe this is a flaw, as self-directed projects from
motivated students often produce better learning outcomes[4]. Thus we propose
this set of features for managing project proposals from students.

42

5.3.10 Exportable Data

Table 5.10: Functional requirements regarding exportable data.

ID Requirement Priority

FR-ED-1
The system must have functions for exporting lists of
student emails or usernames for any relevant grouping,
such as all students without any extended offers.

High

FR-ED-2
The system must have a function for exporting a plain-
text list of all finalized student-project pairings.

High

FR-ED-3
The system must have a function for exporting a plain-
text list of all open projects, with their description and
professor.

High

Based on discussion with administrators and professors, as well as being aware
of our limitations in integrating with other university systems, we found a need
for making the system data available in a simple format. Both administrators and
professors mentioned wanting to contact single students as well as sets of relev-
ant students based on some criteria. An administrator also mentioned wanting to
export open projects, for example to compile into documents for easy viewing by
third parties or students without access to the system. Further, for the system to
integrate with other systems, such as Inspera for digital submission deadlines, it
would be necessary to export student-project pairings especially.

Chapter 6

Implementation

This chapter details the decisions made and lessons learned during the imple-
mentation of the prototype. The content of this section may be of use to future re-
searchers or individuals attempting to build effective project assignment systems,
and is based on the experience of the researcher. The applicability of this informa-
tion may be narrow due to its specificity, as it only regards the development of this
particular software artefact. However, we believe that it is scientifically valuable
regardless.

A presentation of the final state of our prototype can be found in chapter 7.
The outcome of our user tests is documented in chapter 8, and a discussion of the
overall success of the prototype can be found in chapter 9.

6.1 Choice of Technology

The technology selection for this prototype was done as part of the prior found-
ational work mentioned in section 1.2. We considered several application types
and underlying frameworks before eventually settling on a Django web app. The
reasoning for our choices is reproduced below.

6.1.1 Web vs. Desktop vs. Mobile

Our first major decision was choosing the platform on which we wanted users to
access our prototype. The broad access paths we considered were a web applica-
tion that runs in the browser, a desktop application that runs natively on laptops
and desktops, and a mobile application that runs on smartphones and tablets. Our
goal was to make the prototype as accessible to as many students as possible, in
order to not advantage or disadvantage anyone based on access to technology.
Our decision was narrowed down by our understanding of the system’s very lim-
ited scope of use. We know the system will be utilized by professors, primarily in
office settings, where a personal computer is the primary device. On the student
side, they only need to access the system for a short duration of their entire uni-
versity programme. This means they should have access to computers, either as

43

44

a resource provided on campus, or as the medium for remote learning. If the sys-
tem is not accessible to other devices, such as phones, this should not limit what
students are able to access the system. Beyond this, as there is much variation
between personal computers, we wanted the system to be compatible with a wide
array of devices, and easy to expand to mobile devices if necessary. Additionally,
we wanted a platform that we could develop for very rapidly, as we were under
time constraints to get the prototype to a testable state. Ultimately, we chose a
web application to deliver our prototype.

Web applications have many beneficial features which make them ideal for
this type of development. Web browsers act as platform-agnostic intermediaries
which can interpret and display the same code on any device. By targeting web
browsers as our access point, we were able to write one application and have
it be accessible from any operating system and any device. This fulfills our goal
of making the application as widely accessible as possible, although it requires
additional work to adjust the user experience accordingly. Additionally, web ap-
plication development is very amenable to rapid iteration. New versions of the
prototype can be instantaneously deployed without requiring users to download
or update anything. The separation of front- and backend code enforced by a web
application’s client-server architecture also makes it easy to update one side of the
application without impacting the other, allowing us to focus on specific parts of
the app and repeatedly update them without worrying about breaking unrelated
pieces of the prototype. The researchers were also previously very familiar with
HTML/CSS code and web application design, meaning that building the system
as a web application would require less learning and start-up time than the other
proposed methods.

The choice of a web application aligns with multiple constraints that we had
already imposed on the project. For one, a web application would require all of
our users to have internet access in order to use it. However, since our application
would use its users’ university accounts in a full implementation, it would require
an internet connection anyway to do that authentication. Additionally, universit-
ies generally offer on-campus wireless networks which students can connect their
devices to free of charge. For students without personal devices to access the in-
ternet, university library computers or borrowed devices are sufficient to access
the site. Thus this constraint should not be a problem for this application.

Another major constraint of using a web application for our prototype is that
it requires a hosting server to be maintained for the application to be accessible.
If the server ever goes down, the application becomes completely unavailable.
Additionally, running and maintaining a web server has recurring costs which
must be considered. However, regardless of the front-end solution, every possible
version of this service would require a server with a database to store and send
project and application data. That server would be subject to the same server
uptime constraints as the web application, and would require users to have an
internet connection to access the data necessary to run the application. Thus there
was no additional downside to using a server to manage our interface as well.

Chapter 6: Implementation 45

Our most restrictive constraint is that we require users to have a "modern" web
browser. Web browsers have existed for over 30 years, and new standards of be-
havior are constantly added and adopted to different browsers at different times.
There are thus inevitably browsers which will be incompatible with the features
necessary to run and display a modern web application. In order to minimize the
chance of this preventing some students from using our site, we chose to imple-
ment our front-end interface using basic HTML and only widely-adopted CSS and
JavaScript features. Our metric for wide adoption was a usage score of 90% or
more on Can I Use1, a website which tracks the compatibility of CSS and JavaS-
cript features with a wide range of web browser versions to produce data on how
fully implemented a given feature is. Although this seems restrictive at first, this
constraint comes up in mobile development as well; different operating system
versions support different APIs, requiring some users to be left behind because
their phones are too old. Furthermore, native mobile and desktop development
both suffer from platform segmentation due to competing operating systems on
both platforms. This requires developers to create two versions of their apps, or
use frameworks which can bridge the gap to display one app on both operating
systems. For web applications, supporting both mobile and desktop environments
still has an additional cost to adapt the user interface, but a minimum level of
functionality is guaranteed on all platforms by default. Given these constraints, it
made the most sense for us to choose to build a web application, as the browser
version requirement is less restricting than device or operating system restrictions.

6.1.2 Programming Language Choice

The next major question was what programming language to use for the server
back-end. Our principles for this decision were similar to the ones we considered
for our general application type. We needed a language which would allow rapid
development, be easy to read and maintain, and which was broadly supported for
server deployment. Ultimately, we chose to use Python for our web server. Because
it is an interpreted language, Python is easy to run on almost any server. Addition-
ally, its syntax is very readable by design, and has a wide set of features that make
it easy to adapt to any problem. As with HTML/CSS above, the researchers also
had past experience with working in Python, which meant that no learning time
was needed for the language. There were no particular drawbacks that we iden-
tified with Python, or with any of the other languages that we considered, so this
decision was made purely on the merits of Python rather than on avoiding issues
presented by other languages.

6.1.3 Framework Choice

The final technology consideration was whether to use a framework for writing a
Python web-application or develop from scratch, and if using a framework, which

1https://caniuse.com/

https://caniuse.com/

46

framework to use. From-scratch development is appealing, as it requires no time
spent learning how to use a specific framework and gives the writer the most con-
trol over the application’s behavior and code. However, writing a web server is a
complex problem that is very error-prone and has been solved many times over.
Thus we quickly chose to use a framework instead of developing from scratch.
We evaluated a few Python frameworks, including Flask, Django, and Masonite.
Flask is a very popular Python web server framework with a long history of sup-
port, having first been released in 2010 and updated continuously to the time of
this writing. It provides useful mechanisms for handling requests and it is highly
extensible and customizable. However, Flask does not provide any tools for in-
teracting with databases, requiring developers to write their own database in-
teraction code or install additional libraries to do it. Because our project was so
heavily database-driven, we wanted a framework which would tie our database
directly to our Python code, so we chose not to use Flask. Masonite is a much
newer framework, first released in late 2017. Like Flask, it provides simple re-
quest handling features, but adds a database management system and a number
of convenience features for common tasks like user authentication and sending
notifications. Although Masonite is a powerful framework, we found its existing
knowledge support (Stack Overflow Q&As, forum threads, etc.) lacking due to its
young age. Thus we settled on Django.

Django is the second most popular Python web framework behind Flask2. Sim-
ilar to both Flask and Masonite, it offers a suite of request handling tools. It also
provides an authentication system and an administrator interface for managing
the website right out of the box. As with Masonite, it adds a database layer that al-
lows developers to write database models in Python and automatically handles the
actual database logic. It also provides a convenient system for managing complex
multi-object database relations that are difficult to implement without a helping
tool. We found Django’s database system to be very expressive and applicable to
the things we needed to model, and its management tools very appealing, so we
chose to work with Django.

6.2 Personas and Scenarios

After developing some of the basic functionality for our prototype, we considered
our project goals and initial interviews to develop a series of professor and stu-
dent personas, along with a set of core scenarios required by those personas to
fulfil their needs within our system. We then used these personas and scenarios to
determine what features we should implement with our remaining development
time in order to produce the most complete, testable prototype we could. Those
personas and scenarios are presented in this section.

2https://insights.stackoverflow.com/survey/2021#technology-most-popular-technologies

https://insights.stackoverflow.com/survey/2021#technology-most-popular-technologies

Chapter 6: Implementation 47

6.2.1 Professor Personas

Damian

Damian is a visiting computer science professor. This is his first year supervising
thesis projects at the university. As such, he is only sponsoring a small number of
projects in his area of study, and is not interested in advising students with their
own topic proposals. His goal is to learn the system, post a few project listings,
and choose a few applicants to advise.

Celine

Celine has been a professor in her department for over a decade. Over the years
she has accumulated a large list of project topics for students to work on. She has
numerous un-assigned projects from previous years which she would like to open
again for this year, in addition to a small list of new ones. She needs a system that
lets her manage a large number of projects and applications, re-use old project
listings without trouble, and accommodate a power-user with years of experience.

Gregg

Gregg has been doing research into a very particular sub-topic of his field, and
wants to work with a student who is very driven and interested in his specific
niche of research. He has already formed tentative agreements to work together
on research with some of the students who took his class. Gregg’s goal with the
system is to quickly create listings for these projects and get them assigned to
students he’s chosen.

Frank

Frank is a professor who is interested in mentoring students who propose their
own project topics. Although he has some projects listed in the system, he encour-
ages students to suggest their own research for them to collaborate on. His goal is
to get those student projects into the project tracking system and school adminis-
trative systems as painlessly as possible, and keep those proposals and discussions
together in one place to avoid any student ideas falling through the cracks.

6.2.2 Student Personas

Alice

Alice is a highly-motivated student who already has a strong working relationship
with one of her professors. She has already discussed working together with this
professor on her thesis. Her goal is to find her professor’s projects in the system
quickly, apply to the one she and the professor have already discussed, and then
automatically accept the professor’s offer as soon as it comes in.

48

Bob

Bob was busy with coursework and exams, and waited until the last minute to
select a thesis project. He does not care about finding a project that suits his par-
ticular interests; he just needs to quickly find a project that he has all of the pre-
requisites for which has open slots and few applicants.

Emil

Emil is a deeply passionate student who only wants to work on a project that
interests him. He is also very indecisive when it comes to choosing among those
projects, and needs time to ask questions and mull over his choices before commit-
ting to one topic. He needs a system that will let him easily find projects that match
his specific interests, communicate with professors about his questions, and pri-
oritize his various applications as he thinks about what he would like to research
the most.

Hanna

Hanna is a deeply introverted student who dislikes contacting professors and
would prefer a very hands-off supervisor. Working style is more important to her
than project content. She needs a system that exposes as much project information
as possible so that she does not have to email professors asking for more detail.
Her goal with the system is to find a project advisor whose style of supervision
works for her.

Ingrid

Ingrid and her friend have worked together on a number of projects in the last
few years, to great success. She wants to take on her thesis project together with
that friend as well. Her goal is to find a project that can accommodate her and her
friend, and communicate her group’s interests, and experience to that project’s
professor.

Jakob

Jakob has been reading research papers over the summer as part of an internship
and has a great idea for a project that he would like to pursue. Unfortunately,
it is not an idea that any professor already has a listing for. Thus Jakob wants
to propose his own project. He needs a system that will let him propose a cus-
tom project, find a willing supervisor, and finalize the assignment with whichever
professor agrees to help research it.

Chapter 6: Implementation 49

6.3 Scenarios

Using those personas, we then developed some scenarios for how they might in-
teract inside and outside the system. The individual steps of these sequences were
given simple labels so we could refer to them later.

Alice and Gregg

Gregg has previously talked to Alice about her taking on one of his projects, and
only needs to get it registered in the system.

AG-1 Gregg creates a listing for the project and then sends the link to Alice.
AG-2 Alice applies to the project and chooses to automatically accept the offer as

soon as it comes in.
AG-3 Gregg sees Alice’s application and approves it, triggering the automatic ac-

ceptance.
AG-4 Gregg closes the project now that Alice’s offer is finalized.

Damian and Emil

Damian wants to write a small set of project listings for his specific part of the
field, and make them easy to find for students who are interested in that specific
work. Emil wants to work on a project related to this topic, but hasn’t discussed
it with Damian in advance.

DE-1 Damian creates a new project listing with tags to reflect his specific niche of
the field.

DE-2 Emil searches for projects with this tag, finds Damian’s listing, and applies
for it.

DE-3 Damian decides that Emil is a good fit for this project based on his applic-
ation and profile, but wants more detail on his personal history with the
topic. He asks Emil if he has previous experience with the topic.

DE-4 Emil explains that he does, so Damian extends an offer.
DE-5 Emil waits to see if any of his higher priority applications are accepted before

finalizing this one.
DE-6 Eventually, Emil accepts the offer for the highest priority project he can get.

His other applications are immediately retracted.

Celine

Celine has a big backlog of previous projects to draw on for this year. She wants
to quickly re-list them for this year’s students (updating them where necessary),
and then easily manage the large number of applications she will get.

C-1 Celine creates her projects by duplicating previous listings and editing them
when necessary. She keeps track of new applications via the applications
page throughout the matching period.

50

C-2 Because she has more listed projects than she can actually supervise in a
semester, Celine waits to see which projects get the highest-ranked applic-
ations. She chooses students for each project based on their priority rank
and application message, ignoring low-priority applications without reject-
ing them. She only rejects students once she has found enough high-priority
matches to fill her workload, or once the matching period has ended.

Bob

Bob needs to find an appropriate project quickly. He cares more about availability
and academic qualifications than topic.

B-1 Bob filters the list of open projects to remove any that require classes he has
not taken, as he does not have time to negotiate the requirements with a
professor. Additionally, he filters to only solo projects, as he has no time to
find a partner.

B-2 Bob chooses projects that few students have already applied to in order to
reduce his competition for the slot, and ranks his applications highly.

B-3 Bob accepts the first offer that he gets.

Hanna

Hanna dislikes frequent emails and meetings, and prefers to manage her own time
as much as possible. This is the most important factor for her in picking an advisor.

H-1 Hanna filters to only see projects with working style tags like “infrequent
meetings”, “biweekly meetings”, or “supervision by request” to show only
those that mention minimal supervision, then applies to many of these pro-
jects and ranks them according to her interest in each topic.

H-2 Hanna receives an offer from a professor for one project, but rejects the offer
because she finds out that the research methodology of the project involves
user interviews.

Ingrid

Ingrid has worked together with two friends on numerous projects in the past,
and would like to do her thesis project with them as well. She needs a project that
can accommodate all of them.

I-1 Ingrid filters the available projects to those whose group size is 3 or more.
I-2 Ingrid applies to the project and adds her friends to her application.
I-3 One of Ingrid’s friends decides to withdraw herself from the application

because she has found a solo project to pursue.
I-4 The professor evaluates Ingrid and her friends as a group and accepts all of

them.

Chapter 6: Implementation 51

Jakob and Frank

Jakob has his own topic idea to propose, and needs to find a professor to advise
his research into it. Frank is interested in advising student-proposed topics.

JF-1 Jakob browses the projects and profiles of a few professors, then decides
that Frank and Celine are both good fits for what he wants to research. He
creates a project proposal and assigns it to both professors.

JF-2 Frank sees the proposals and reviews them. After some more discussion with
Jakob and the administrative staff over email, he approves the project. Frank
now sees the project alongside all of his others, with Jakob as its assigned
student.

6.4 Revised Requirements

After constructing these scenarios, we then took each labeled scenario step listed
above and matched it up to the relevant functional requirements from chapter 5.
This helped us prioritize which functional requirements to focus on for the final
stretch of development on the prototype. Due to the limited number of working
hours available for this project, we had to drop large parts of the ambitious original
requirements. In this section, we will document the functional requirements that
drove the second half of development.

The biggest change was the removal of the Administrative Views, Notifica-
tions, and Exportable Data requirements. Administrative Views and Exportable
data are both feature sets that primarily affect the user experience and efficiency
of administrators of the system, which is important for the system in practice,
but largely revolves around large data volumes and edge cases that are difficult
to test and infrequently affect our prototype. FR-AP-1 was removed for the same
reasons, as this is a feature that is only relevant once a year and is primarily an
administrative task. Notifications, while extremely important in an actual imple-
mentation of our system, only impact the user experience on larger scales of time
than a single demo test session. Additionally, they do not change the flow or pro-
cess of any tasks, so we can still evaluate everything we need to in the prototype
without notifications.

Notably, we chose to keep the Thesis Proposals requirements after this process,
even though we ultimately did not get the time to implement them. While it was
necessary to scope down due to the remaining time, Thesis Proposals aligned very
well with our project’s goals, and thus were worth keeping in mind as we moved
towards the end of development in case any time opened up.

This process also allowed us to identify two missing functional requirements,
things which we had already implemented or intended to implement but which
were not described in our functional requirements table. Specifically, when eval-
uating scenario JF-1, we found that we were missing a functional requirement
that specified the existence of profile pages for professors. We added this as FR-
PV-14. And when evaluating H-2, we found that we were missing a functional

52

requirement that specified that students should be able to reject project offers
from professors, even though we had already implemented it. We added that as
FR-AL-8.

The full list of revised requirements from this process is summarized below.

6.4.1 Project Lifecycle

Table 6.1: Revised requirements regarding project lifecycle.

ID Requirement Priority

FR-PL-1

Professors must be able to create new projects within
the system. Each project should have a title, description,
tags for encoding useful metadata such as pre-requisite
courses, and an expected group size.

High

FR-PL-2
Professors must be able to create drafts of new projects
that are only visible to themselves.

Low

FR-PL-3
Professors must be able to view, edit, and publish draf-
ted projects.

Low

FR-PL-4
Professors must be able to mark published projects as
drafts, removing them from other views.

Medium

FR-PL-5

Professors must be able to define a total capacity for
how many groups they intend to take on for a given
project, though this should not limit applications or of-
fers.

Medium

FR-PL-6
Professors must be able to duplicate old projects from
previous years to set up projects for the current year,
either as published projects or as drafts.

Low

FR-PL-7
Professors must be able to close any of their projects
from further applications or edits, and removing them
from other views.

High

FR-PL-8 Professors must be able to edit projects after creation. High
FR-PL-9 Professors must be able to delete projects. Medium

The requirements for project lifecycle remained largely the same, but with the re-
moval of the role "administrator" from FR-PL-8 and FR-PL-9. The project lifecycle
requirements were so central to the functionality of the system that much of this
functionality was already complete by the time of this analysis.

Chapter 6: Implementation 53

6.4.2 Application Lifecycle

Table 6.2: Revised requirements regarding application lifecycle.

ID Requirement Priority

FR-AL-1

Students must be able to submit applications to pro-
jects listed on the site. These applications must include
a text section for the student to explain why they are
interested in the project and would be a good fit.

High

FR-AL-2 Students must be able to retract applications. Medium

FR-AL-3
Students must be able to preemptively accept any pro-
ject they have submitted an application to.

High

FR-AL-4
Professors must be able to respond to applications and
ask for additional information from students.

Medium

FR-AL-5 Professors must be able to decline applications. High

FR-AL-6
Professors must be able to extend final offers to stu-
dents.

High

FR-AL-7
Students must be able to accept one final offer to con-
firm their selected project.

High

FR-AL-8
Students must be able to decline offers that have been
extended.

Low

FR-AL-9
Students must be able to name additional group mem-
bers on an application.

Low

FR-AL-10
Added group members of an application must not be
able to edit that application.

Low

FR-AL-11
Group members must be able to withdraw from the
group application.

Low

We noticed the absence of specifications regarding group applications, and de-
cided to flesh these out, as the current IDI system puts this work onto students
and professors in emails, and additionally requires all students to submit their
applications separately. Both professors and students mentioned this being incon-
venient. We would also have liked to add features assisting in pairing up single
students that want to work on projects scoped for groups only, but decided the
added work of this would not fit into our development schedule at this point.

54

6.4.3 Student Views

Table 6.3: Revised requirements regarding student views.

ID Requirement Priority

FR-SV-1

Students must be able to see a list of all projects. This
list should allow them to browse through the available
projects and enable them to visit the details page for
each project.

High

FR-SV-2
Students must have a set of fixed academic tags that
convey their academic background.

High

FR-SV-3 Students must be able to edit their personal tags. Medium

FR-SV-4

Students must be given some indication of which pro-
jects have a high number of applications, and which
professors or projects have low or no remaining capa-
city.

Medium

FR-SV-5

Students must be able to see a list of applications they
have submitted to projects. This list should include the
title, description, and professor of each project, as well
as the status of the application, along with the text of
the student’s application and any follow-up conversa-
tion with the professor.

High

FR-SV-6
Students must be able to respond on applications where
the professor has requested more information.

High

FR-SV-7

Students must be able to rank their top 5 projects based
on their level of interest in each project. These ranks
should be mutable, and visible to the professors of those
projects alongside the student’s application.

Medium

FR-SV-8
Students must be able to see any group projects that
they have been added to in their applications list.

Medium

No changes to the student view requirements were necessary.

Chapter 6: Implementation 55

6.4.4 Professor Views

Table 6.4: Revised requirements regarding professor views.

ID Requirement Priority

FR-PV-1
Professors must be able to view a list of all of their pro-
jects. This list should include applications from students
for each project.

High

FR-PV-2
Professors must be able to see and respond to all applic-
ations from students on a project’s details page.

High

FR-PV-3
Professors must be able to get any student’s email by
clicking on their name.

High

FR-PV-4

Professors must be able to view the details of each
application on their projects. These include the stu-
dent’s name, the title and description of each project,
along with the text of the student’s application and any
follow-up conversations.

High

FR-PV-5
Professors must be able to see retracted applications lis-
ted separately.

Low

FR-PV-6
Professors must be able to define a total capacity for
how many projects they intend to take on, though this
should not limit applications or offers.

Low

FR-PV-14
Professors must be able to view and edit the tags on
their personal profile pages.

Medium

FR-PV-6 was ultimately not attained, as it would have required changes to the
structure of the database that we did not have time to make towards the end of
development. Various other requirements from Professor Views got moved to the
Thesis Proposals requirements section.

56

6.4.5 Automatic Processing

Table 6.5: Revised requirements regarding automatic processing.

ID Requirement Priority

FR-AP-2
Upon accepting a final offer, the student’s other applic-
ations must be marked as retracted or declined.

High

FR-AP-3
When a professor extends a final offer to a student who
has preemptively accepted that project, the offer is ac-
cepted immediately.

High

FR-AP-5

When a professor closes a project, such as due to the
capacity being met, any remaining applications to that
project are rejected, and lower priority applications are
shifted up.

Medium

We added FR-AP-5 as an equivalent to FR-AP-2 from the professor’s side of the ap-
plication. Just as we wanted to reduce repetitive work for students by automating
retractions, we chose to automate rejections once a project is closed to eliminate
that work for professors.

6.4.6 Filtering

Table 6.6: Revised requirements regarding filtering.

ID Requirement Priority

FR-FL-1
Tags must exist for prerequisite classes, specialization or
subject, topics of interest, and method of work.

High

FR-FL-2
The list of all projects must support filtering by the pres-
ence or absence of tags, and by assigned professor.

High

FR-FL-3
By default, students see a list of all projects which are
relevant to their personal and academic tags.

High

We moved FR-FL-4 and FR-FL-5, which defined filtering of thesis proposals for
professors, to the Thesis Proposals requirements section, and therefore did not
complete them. The remaining filtering requirements are unchanged.

Chapter 6: Implementation 57

6.4.7 Thesis Proposals

Table 6.7: Revised requirements regarding thesis proposals.

ID Requirement Priority

FR-TP-3
Students must be able to submit proposal for theses.
These require a title, description, and tags, with the op-
tion to suggest a professor.

High

FR-TP-4
Students must be able to edit their thesis proposals.
Copies of proposals will not be edited.

Medium

FR-TP-5

Students must be able to retract thesis proposals, re-
moving them from view completely. This is not possible
for accepted proposals. Copies of proposals will not be
removed.

Low

FR-TP-6
Professors must be able to view projects proposed to
them and coordinate with the proposer.

High

FR-TP-7

Accepted project proposals must automatically popu-
late into the system. For student proposals, this should
create a new project and automatically assign the stu-
dent and professor to it.

High

FR-PV-9
Professors must be able to view all student thesis pro-
posals.

High

FR-PV-10
Professors must be able to view student thesis proposals
assigned to them separately.

Medium

FR-PV-11

Professors must be able to decline student thesis pro-
posals assigned to them, which removes them from the
proposal. The proposal remains in the view of all stu-
dent proposals.

Low

FR-PV-12
Professors must be able to accept student thesis propos-
als.

High

FR-PV-13
Professors must be able to copy a student thesis pro-
posal into a draft for editing.

Low

FR-FL-4
The list of all student thesis proposals must support fil-
tering by the presence of tags, and by assigned pro-
fessor.

High

FR-FL-5
By default, professors see a list of all thesis proposals
which are relevant to their personal tags.

Medium

As noted above, although we did not implement thesis proposal features in our
prototype due to time constraints, we included these requirements in this re-
ranking. We chose to do this because we believed that they were important, and
we still intended to implement them when we reached this phase of development.

58

6.5 Design Decisions

This section explains some of the decisions we made about the specific imple-
mentation of various system features. These decisions were made according to
our design principles and personas when possible. These decisions were details
that we did not consider in our initial design, and had to make during implement-
ation.

6.5.1 Group Applications

Security

Group applications require a lot of logic to prevent misuse from bad actors. Without
proper safeguards, a bad actor could sign another student up for a group project
that that student had no interest in without their knowledge. If that application
were accepted, it would rescind all of the student’s other applications and forcibly
assign them to that project. The student would have to get that error corrected
by an administrator and start over on the application process. Alternatively, a bad
actor could flood another student’s applications list with hundreds of false group
applications to a huge number of projects, making it very difficult for them to
manage their applications.

The implementation we settled on in our prototype did not have sufficient
security features to prevent these attacks. Due to our time limitations, we only
implemented the most basic safety feature, an option for group members to leave
a group. This prevents the first kind of attack (malicious application acceptance)
if the targeted user notices the application prior to its acceptance and removes
themselves from the group. It does not do anything to prevent the second kind of
attack (application spam). Our recommendation for a full-scale implementation
of this system would be to require students to invite others to group applications
rather than allowing them to be added without their express consent. Similarly,
final acceptance of a project offer should require each student to accept or reject
the offer, rather than just the owner of the application.

Ownership

As written, group applications in our system only have one owner. The owner is the
person who creates the application. That student is the only one able to rescind the
application or accept offers on it, and the only one who can set its priority. Group
applications appear in group members’ application lists, but do not show up as
options in the priority list. The only interaction a non-owner group member can
take with a group application is to remove themselves from the group application.

This ownership model was chosen for ease of implementation, but we do not
believe it to be the best possible version of the group application system. Ideally,
there should not be an individual owner for group applications. A group applic-
ation should require each student to individually accept a professor’s offer. Addi-

Chapter 6: Implementation 59

tionally, it should either have one priority per student, or take up the same priority
slot for each student as a shared stake. Students should still be able to leave group
applications, but no student should have the option to rescind the group’s applic-
ation. If every student but one leaves the group application, it should then be
treated as a single application with the remaining student as its owner. We be-
lieve that this model would be much more intuitive for users based on our tests.

6.5.2 AJAX

AJAX, which is short for Asynchronous JavaScript and XML, is a web programming
paradigm whereby a web page sends asynchronous requests to a server and re-
ceives data back rather than a new page to render. It then uses this data to update
or manipulate the state of the page without reloading it. This is a very common
technique for implementing web applications, as it allows for the interface to be
updated without the interruption of reloading the whole page.

Despite its usefulness, we opted not to use AJAX as a main pattern in our
web app. The AJAX pattern requires the client to handle displaying whatever in-
formation it receives itself, and we found it much faster to set up pages using
server-side templates than by building components in JavaScript. Thus we chose
to implement all of our data-based pages using server-side rendering. This let us
build out complex pages which displayed a lot of data much more quickly, but
meant that interactions like filtering and setting application priorities couldn’t be
instantaneous; instead, they required users to press a "submit" button which then
fully reloaded the page to reflect their changes. This is not a common pattern in
modern web applications, so some testers found it confusing. Ultimately, we feel
that choosing not to use the AJAX pattern for rendering was the right choice for
our prototype, but a larger-scale version of this system might benefit from includ-
ing it.

We used AJAX in one place, validating usernames in the group application
interface. In order to provide feedback on whether or not a username was valid
without reloading the page, our only options were AJAX or including every user-
name in the page source. Publicising the full list of student names and usernames
was not acceptable to us from a privacy standpoint, so we set up an AJAX endpoint
for validating username inputs instead. This was somewhat challenging to do with
Django, as its cross-site scripting attack prevention required us to pass an author-
ization token into the JavaScript through the HTML templating system. However,
the resulting code functioned very well, so it may indicate that we should have
used AJAX more widely.

6.5.3 Profiles

Another privacy concern for our design was the visibility of user profiles. We chose
to keep profiles very sparse and not include any personal details beyond name,
email, and a set of personal tags chosen by the user. Still, those tags included
academic history which we did not feel should be exposed to anyone who visits a

60

page. Thus we chose to require users to be logged in to view profiles. Furthermore,
we did not want students to be able to view the academic history of other students,
so we restricted student accounts to only be able to view professor profiles. We
allowed professors to view the profile of any student, however. While we believe
that this implementation struck a good balance of personal privacy and conveni-
ence, we believe that it would have been beneficial to allow students to view the
profiles of students with whom they shared one or more group applications. A
complete implementation of this system may want to include that detail.

6.5.4 Automation

Choosing what to automate in this system was a challenging process. When deal-
ing with something as important as project assignments which determine a stu-
dent’s entire final year of education, we did not want to have any automated beha-
viors that would surprise users with unexpected results. We felt that most things
in this system should be very carefully considered, and thus require manual exe-
cution. We did not automate matching or applying because of this. What we did
choose to automate were user tasks we identified within the current system that
were seen as repetitive and annoying.

Specifically, we chose to automate the withdrawal of other applications when
a student accepts a project offer. In the IDI system, students would have to email
each professor they had previously sent an application to and tell them that they
are no longer pursuing that project. This was tedious and meant students might
choose not to announce it, leaving professors in the dark about their interest. Thus,
we set up automation in our system to withdraw all of a student’s outstanding
applications when they accept an offer.

Similarly, we chose to automatically reject outstanding applications to a pro-
ject when it is closed. When a project is closed, it is considered inactive either
because its capacity has been filled or because the professor has cancelled the
project. Either way, in the IDI system the professor would need to inform applic-
ants of this change one at a time. We automated this behavior because there was
no benefit to doing it manually. As an extension of this, we made rejected applic-
ations automatically revoke their priority status, and shifted the priority of other
projects accordingly. This means the priority of remaining applications should in-
crease as the students options are limited, giving professors a proxy for judging if
a student is especially in need of an offer.

Our last automation decision was to add a way for students to instantly accept
an offer for a project. In our interviews, we found that it was somewhat common
for students to discuss projects with professors prior to the projects being listed,
and thus only went through the project listing system as a formality. In order to
facilitate those students with pre-existing arrangements, we added a feature to
allow students to instantly accept that professor’s offer. This system also benefits
students who are in a rush to get a project assignment, as they can set all of their
applications to instantly accept the first offer they get, as well as students who are

Chapter 6: Implementation 61

sure of their priorities or indifferent about which project they get. In combination
with the automatic withdrawal, this should narrow down the choices of professors
faster, as applications are retracted without delay.

6.5.5 Tags

Custom Tags

When designing the tag system, we chose to disallow users from creating their
own custom tags for projects or profiles. We made this decision to simplify the fil-
tering experience and reduce confusion for students trying to find projects. New
tags have to be added via the administrative pages. We believe that if users are able
to create custom tags, the number of tags will increase significantly, duplicate tags
will appear, and each individual tag will increase in specificity as users create the
most perfect and accurate tag for their individual need. Over time, this makes fil-
tering and searching for projects increasingly painful. For example, without some
central authority to wrangle the system’s set of tags, a student interested in ma-
chine learning projects could end up having to check tags like "deep learning",
"convolutional neural networks", "generative adversarial networks", and dozens
more specific subtypes of machine learning just to get a view of all of the avail-
able machine learning projects. This is further complicated if professors generate
duplicative tags, such as tagging a project "CNNs" when the tag "convolutional
neural networks" already exists. The interface for navigating this much larger set
of tags would also need to be much more dynamic and complex in order to make
it reasonable to find specific items from the resulting glut of information.

Systems to mitigate some of these issues do exist. The machine learning ex-
ample can be solved by tag implication, which is the process of mapping a tag
to some set of additional tags which must also apply if that first tag is true. By
having all of those specific machine learning subtypes imply the "machine learn-
ing" tag, we would be able to retain the ability to quickly filter those projects even
as professors became more specific with their tagging. Additionally, the issue of
duplicative tags can be solved with tag aliasing, wherein equivalent tags like "con-
volutional neural networks" and "CNNs" are automatically resolved to one term
or the other. This allows users to input useful shorthands or alternate spellings
without actually creating confusing duplicate tags, and helps control the overall
tag count at the same time. Finally, there is an established paradigm to solve the
interface issue of finding and selecting tags from large sets, namely a search with
auto-complete suggestions. With all of these systems in place, we could have al-
lowed users to specify custom tags. However, with even a single one of them miss-
ing, we felt that custom tags would grow out of control. Because we did not have
time to implement these systems, we chose to restrict custom tagging instead.

While the systems proposed above do make custom tags significantly more
viable, it is worth noting that the tag aliasing and implication features require a
system administrator to keep track of every new tag added each day and set up ap-
propriate aliases and implications. This is a time-consuming task which requires

62

extensive knowledge of the field to correctly identify redundant tags and know
what broader tags a specific tag should imply. Large-scale systems with custom
tags use entire teams of volunteers or employees to manage their tags and main-
tain a clean working state. Any future implementations which are considering
allowing custom tags should be aware of these costs when making that decision.

Tag Types

There are additional complications for custom tags that arise from the use of tags
on both profiles and projects. The initial design for tags was based around using
them solely for filtering projects by subject matter and prerequisites. Extending
this behavior to user profiles seemed reasonable, but some tags were much harder
to interpret in relation to profiles than they were for projects. When we extended
the use of tags to encompass administrative metadata, like group size or collab-
orating third parties, we ended up with tags that did not apply to profiles at all,
or which applied to students but not professors and vice versa. We then had to
make a choice about whether to allow these tags on profiles, and how to hide
them from the list of options if we chose to do so. Additionally, we found these
administrative tags to be unintuitive to assign to projects using the tag menu, as
opposed to separate menus, which would require hiding these tags from the tag
menu. While we could expand our tag category model significantly to implement
all of these distinctions with our pre-made set of tags, applying that level of sep-
aration to custom tags would require even more tag management work from an
administrator. But without that separation, completely inapplicable custom profile
tags could end up on project pages. One of our goals with the system was to avoid
requiring administrators to edit the code or pages in any way, so asking them to
set up lists of which tags can be used where was counter to our principles. In the
end, we chose not to allocate time to this.

However, even in our first set of requirements we noted the need to separ-
ate out academic tags from preference tags. Academic tags represent a student’s
academic status in terms of classes and specialization, and cannot be edited by
students because they are intended to be a true academic record to help pro-
fessors assess whether the student has the prerequisites necessary to work on a
project. In order to enable this, we added an "academic" Boolean field to our tag
category model. This property was implemented before the other considerations
mentioned above.

Tagging Interface

The tagging interface we chose to implement was a dropdown which allowed
users to select from available tags. The selected tags would then appear in colored
bubbles below the dropdown, which could be clicked to remove the tag. This in-
terface was a compromise, as we did not have sufficient time to dedicate to finding
and implementing a tried and tested design paradigm for tag selection. We even-
tually implemented a text field with value checking for adding group members,

Chapter 6: Implementation 63

which we believe to be a common design for tagging systems, and ideally we
would have employed this for our tags too. Another consideration was to show a
menu of all tags, separated by category, and allow professors to toggle them on
and off like a switchboard. This would likely have become overwhelming in prac-
tice, when a full set of tags are defined. Our drop-down is similarly infeasible, as
the length of the dropdown list increases linearly with the number of tags, and
we only tested it with far fewer tags than we expect a full system to use.

Tag Colors

Throughout our interface, we use colored tag bubbles to help users quickly see
which tags are from which tag category. However, color-coding is not accessible
to users with various forms of colorblindness. While we intentionally chose our
colors to be distinct even to most colorblind users, we also designed a number of
fallback systems to help users distinguish tag groups without color. Firstly, all tags
display their tag group as alt-text when hovered with the mouse. In addition, we
always display tags sorted by category, and often group them under headers that
display their category names. Lastly, we implemented these colors using clearly
named css classes that can be easily overridden by users in their browsers to fit
their personal needs.

6.5.6 Filter Totals

One nice feature of the IDI system’s interface is the listing counts that it provides.
After each filter option it displays a parenthetical number indicating the number
of listings that meet that option. We wanted to replicate this in our prototype,
however we found it difficult to do in a computationally efficient manner without
significantly restructuring our database.

6.5.7 Ranking Interface

As described in section 2.2, the concept of project rankings already exists in the
IDI system. We chose to keep the functionality of rankings largely the same in our
implementation, with our only notable change being that we tied them to indi-
vidual applications instead of just projects. As a result of this, we did not make it
our goal to improve the ranking interface. We instead settled on a simple interface
which was quick to implement. We present users with a ranked list of dropdown
menus populated with the names of projects they have applied to. Users can then
select titles at the appropriate list slot to rank them there. If a title already listed in
another rank is selected, that title is moved up to that slot, leaving its old position
empty. The other slots are unaffected.

This interface was received poorly in chapter 8’s user tests. Users were con-
fused by the re-ranking behavior as well as the additional unlabeled ranking slots
past five which we provided. Additionally, our choice to use a "submit" button in-
stead of updating priorities in real time confused some users. Based on our feed-

64

back and a survey of similar ranking interfaces, we believe that the best ranking
interface would have been a drag-and-drop ordering list containing every project
the student had applied to. The ranking display on each application would then
automatically update whenever this list was changed. We recommend that any
future developers consider building this type of interface instead.

6.6 Testing and Deployment

In order to test our prototype with users, we set up an unsupervised user test as
described in section 4.6, as we were not able to get in-person interviews. This test
included dynamically populated test data to fill out the system, and a temporary
test account system in place of permanent authorization. The implementation of
these features is detailed below.

6.6.1 Test Data

To test our system, we needed a way to fill it with arbitrary test data quickly. To
this end we developed a Django command that can read in data from a group of
spreadsheet files and create all of the objects specified within those spreadsheets
in the database. We then created a base set of test data pulled from actual projects
on the IDI project listing site. We used this test data to assess how well the site
functioned with a significant number of projects, tags, and applications in place.
This functionality could easily be adapted to import real data exported from other
services, such as user accounts and student prerequisite classes.

6.6.2 Deployment

In order to enable remote user testing, we had to deploy our application to a pro-
duction server for users to access from their own devices. We chose to use Heroku
for this, as it was free and had a well-documented integration path for Django
applications. This required us to make a number of changes to the application in
order to facilitate hosting. The version of the app with these changes can be found
in the demo branch of our repository. While most of these changes were related
to app settings and did not change anything visible to the user, there were some
new systems we implemented to make testing easier.

6.6.3 Test Accounts

In order to showcase all of the features of our prototype, we needed a way to give
professors and students applications and offers to interact with. However, in the
time we had available to set up the demo branch, implementing a system to dy-
namically detect projects created by professor testers and send them applications
(or give offers to applications created by student testers) was not worthwhile.

Chapter 6: Implementation 65

Therefore, we chose to build a system that generated test accounts already pop-
ulated with projects and applications in various states by extending the test data
system described above.

We removed the standard login form from our site’s top bar and instead presen-
ted users with two buttons, "Get Student Account" and "Get Professor Account".
When selected, these buttons generated a new account with a unique name and
username. They would then populate the system with new projects or applica-
tions created by that account in states that would otherwise be impossible without
some kind of interaction from another user. The data describing these projects
and applications was read in and instantiated using the same method described
in subsection 6.6.1. This account generation system also generated new instances
of every account that was used in the demo account’s test data. These instanced
accounts were only visible to the matching test user. This prevented the actions of
one demo user from impacting any other demo users who might have been oper-
ating on the same data at the same time. While authenticated with a test account,
the "log out" button is replaced with an "end test" button, which wipes all of the
test data associated with the account and returns the system to a clean state.

Chapter 7

Results

In this chapter, we present the results of our development phase. This section
includes a presentation of the prototype we created as well as an analysis of its
performance using the keystroke-level GOMS and business process modeling nota-
tion discussed in section 4.5 and section 4.7. The version of the application shown
here is the one which we presented to users for our user tests.

7.1 Software Walkthrough

In this section we present a series of screenshots documenting the final state of
the application.

Figure 7.1 shows the main page of the prototype, which lists all active projects
currently in the system. The filters on the right side can be used to show or hide
posts with various tags, in order to make finding projects easier. At the top of
the page, professors can see a button to add a new project. This button is hidden
for students. The title of each project can be clicked to visit its details page, and
each professor’s name links to their profile. Tags are color coded by type, with a
color key in the filter pane. Additionally, each filter section can be collapsed or
expanded by clicking its title.

The project creation page in Figure 7.2 can only be accessed by professors.
The dropdown directly above the tags section allows professors to select tags to
add to their project. Clicking on a tag in the display removes it from the project.
The status dropdown lets professors choose whether the project should be open,
closed, or a draft. If this page is opened by copying or editing another project, the
fields are all already populated. A project can be saved by itself, or one can save it
and immediately begin on a new project or a new copy, by choosing between the
"Create Project" and "Create and start another" buttons.

Figure 7.3 shows a project’s details page. This page shows all of the informa-
tion about the project that is recorded in the system. If the user viewing the page
is also the creator of the project, they see a link to edit the project, as well as a
list of all of the applications students have made to the project. The professor can

67

68

accept and reject applications from this page, or add comments to them. Students
will only see their own application on this page, or if they have not applied to the
project, a button inviting them to create an application.

The interface for applying to projects is shown in Figure 7.4. Students can
enter the usernames of other students they want to work with to create a group
application. If the entered username is valid, the name of that student will show up
below the entry box. Group members can be removed by clicking on their names.
Selecting the checkbox enables auto-accept for the application. With auto-accept
enabled, the professor’s project offer will be instantly accepted, skipping the final
student verification step.

Figure 7.5 shows the student view of the applications page. This page displays
all of the student’s applications, grouped by status. At the top of the page is the
ranking interface, which lets students set priorities for their applications. The titles
of all of the projects the student has applied to are listed in each drop-down, and
are swapped and re-ranked as necessary when one is selected. Each application is
then shown in order of status. If the the application has been given an offer from a
professor, students have the option to accept or reject the offer. Otherwise, they are
given the option to toggle auto-accept and a button to withdraw the application.
All comments attached to an application are also shown here.

Professors see an alternate version of the applications page, shown in Fig-
ure 7.6. Here, the professor can see all of their applications, grouped by project
and sorted by recency. Professors can manage their applications from this page,
including sending comments and accepting and rejecting students. Priority and
status are shown for each application. Additional students are also shown on
group applications, and all student names can be clicked to visit the student’s
profile.

Alternatively, professors can get an overview of their applications on their pro-
jects page, shown in Figure 7.7. This page does not show applications in full, but
groups projects by status. This page lets professors easily change the state of their
projects, and see how many applications they have in a compact format. In addi-
tion, the page has a new project button, and adds a copy button to each draft and
closed project, making it easy for professors to populate the database with new or
old projects.

Finally, Figure 7.8 shows a profile page. Each profile contains the user’s name
and email, role in the system (student or professor), and a self-selected list of tags
describing the user’s academic history and interests. As with other tag sections in
the system, tags are chosen from the dropdown and can be removed by clicking
on them. A profile’s owner is the only person who is able to edit it.

Chapter
7:

Results
69

Figure 7.1: The prototype’s main page. Filters can be selected to reduce the number of projects shown.

70

Figure 7.2: The project creation page. This page is only accessible to professors.

Chapter
7:

Results
71

Figure 7.3: The project details page. Only the professor who owns the project can see student applications on this page.

72

Figure 7.4: The interface for creating a new application to a project.

Chapter
7:

Results
73

Figure 7.5: The applications page as it appears to students. All of the student’s applications are shown on this page, grouped by status.

74

Figure 7.6: The applications page as it appears to professors. All applications to a professor’s projects are shown on this page, grouped
by status.

Chapter
7:

Results
75

Figure 7.7: The professor projects page of our prototype.

76

Figure 7.8: A profile page. Professor profiles are visible to all users, but student profiles can only be seen by professors.

Chapter 7: Results 77

7.2 Data Models

In addition to the frontend application, we needed to develop a data model to
encode all of the system’s users, projects, applications, and comments in our data-
base. The resulting data model is shown in Figure 7.9. Due to the nature of Django,
this diagram is also a class diagram of our system.

Figure 7.9: An entity relationship diagram of our database model.

We began by designing the user model. For this we leveraged Django’s built-in
user model, which already included all of the fields we needed and was integ-
rated automatically with Django’s authentication system. In addition to fields for
a username, email, and first and last name, the model also supports assigning
each user to an arbitrary number of user groups. We used these groups to divide
users into students and professors. Functionally, this is a boolean value, and our

78

system treats it as such, so it is represented as such in the diagram.
We then developed the data model for projects. Each project is tied to one

owning professor, with free text fields for professors to enter the project’s title
and description. We also store metadata about the project’s creation date and
last update time, which is used for sorting projects in some places. Projects have
a status field which indicates whether they are open, closed, or drafts. This is
implemented as a free text field so that it can also be set to an arbitrary text
value, with the project’s visibility encoded in the "hidden" Boolean field instead.
We also gave projects an optional capacity field for professors to indicate how
many students or groups they expect to take on for that project.

At the same time, we built out the data model for applications. Similarly to
projects, each application is tied to one owning student, as well as one associated
project.

Next, we set up the data structures for the tagging system. Each tag in the sys-
tem has only one property, a name string, but is also associated with a named cat-
egory that provides additional context for it. We group tags by category through-
out the app. Additionally, projects and users can be associated with any number of
tags, enabling project and profile tagging. We also added an "academic" Boolean
to tag categories which prevents that category’s tags from being edited on profiles
when true, as described in section 6.5.5.

It should be noted that in the data diagram above, we have abridged two
relational classes, UserTag and ProjectTag, which are present in the prototype.
These tables simply relate a single project or user to any number of tags. This
is a relation that could have been expressed more simply using Django’s built-
in features for one-to-many relationships, as we later did for group application
members. Because these models were so simple, representing their effect inline
as we did for group members was more reasonable than breaking them out into
their own nodes.

Finally, we added the comment system. Each comment is simply a free text
message with a sending user and a creation date. Any number of comments can
be attached to an application, and they are displayed in order of creation.

Our model is simple, but sufficient, and can easily be expanded.

7.3 Process models

In this section, we present a series of process models to illustrate the similarit-
ies and differences between project matching with no system, the IDI system,
and our prototype system. We use the process modeling system described in sec-
tion 4.7 for these diagrams. All referenced diagrams are presented at the end of
this section, as they are large and each require a full page.

Chapter 7: Results 79

7.3.1 Project Search

Our first comparison is the process of finding a project. Without any assisting sys-
tem, as shown in Figure 7.10, administrators must first compile and release a list
of project descriptions to students in some manner, at which point it is difficult to
update the list with new projects. Students then read through all of these projects
one by one until they find an interesting project. They must read through the en-
tire list, as they have no way of knowing if projects later on in the list might be
more interesting than the one they’re currently most interested in. With the IDI
system, professors enter projects directly into the database that students then ac-
cess, and are able to add new projects throughout the matching process. Students
then filter this list to remove any projects that aren’t part of their specialization
path, and then optionally filter further by professor. The same project selection
process then takes place, but with a smaller list. Finally, in our prototype system,
students first engage in an iterative filtering process as shown in Figure 7.12. This
allows students to filter out any projects that they would not be eligible for, or that
require any techniques they dislike. Once the filter conditions are acceptable, the
student then browses projects in a similar manner as the other two systems.

The key process difference for finding projects is that in our prototype, stu-
dents no longer need to check each project for unmet requirements, as they have
already filtered those projects out during the initial filter selection step. Addition-
ally, the number of irrelevant projects each student has to read through to make
sure they are not missing an interesting topic is significantly smaller, because stu-
dents are able to filter out subjects and methods that they do not care about. Both
of these refinements significantly speed up the process of choosing projects for
students.

7.3.2 Project Listing

Next, we examine the process of listing a project in the various systems. Fig-
ure 7.13 shows the manual implementation of this process. Professors email their
project names and descriptions to an administrator, who then adds this informa-
tion to a draft of the project list to email out later. With the IDI system, professors
have a more complex process to list a project, though the complexity is neces-
sary and makes a number of convenience features possible. The biggest benefit
is reducing the administrative load, projects can be listed immediately without
requiring the time of an administrator. This also enables professors to add new
projects throughout the matching period. As shown in Figure 7.14, professors can
choose to either create a new project or edit an existing one. They then fill out
or edit all of the necessary fields, then publish the project immediately or save
it for later. Our system replicates this process, with the only difference being the
addition of tags to the project creation/editing step.

We chose to keep this process the same because we felt it was already a very
minimal and expressive way for professors to control project listings. Much of the
apparent complexity in this flow comes from splitting up work that already hap-

80

pens informally in the no-system version. In the formal systems, some additional
metadata is required, and when copying other projects, each operation becomes
optional. Comparatively, professors using emails to compose projects might save
them as drafts or copy and paste text from other projects. The process described in
Figure 7.14 simply enables that same behavior for professors who are interacting
directly with a project database.

7.3.3 Application Lifecycle

The next set of charts chart describes the lifecycle of a single application. This
lifecycle is similar across all three systems, but there are some differences worth
modeling. Figure 7.15 shows the lifecycle of a student application without any
system to assist it. In this scheme, the student contacts the professor directly and
the two engage in a back-and-forth discussion process. When the negotiation is
complete and the two parties agree on a project, the professor then registers this
decision with an administrator who finalizes the pairing. It should be noted that
although the message and response subprocesses use email nodes, they are also
equivalent to in-person meetings or any other form of communication.

The main difference between this process and the IDI process modeled in Fig-
ure 7.16 is the final professor step; in the IDI system, registering the student-
project match is done using the system instead of by emailing an administrator.
Additionally, some key communications between student and professor such as
sending project offers use the system as an intermediary instead of relying on
direct emails.

Our prototype uses a similar process, as shown in Figure 7.17, but the vari-
ous message events are always executed with the system as an intermediary. As a
result, the negotiation and offer confirmation processes are much simplified. Ad-
ditionally, state changes such as retracting interest or offering projects are done by
simple buttons rather than composing emails. Our system is also able to provide
automation for some steps to reduce redundant email steps; the "Accepted other
project offer" event branch seen in Figure 7.16 is performed automatically, as is
the "Decline student" branch when a project is closed and becomes unavailable.
These are minor improvements on the scale of a single application, but since they
are performed for all concurrent applications, they can save significant time and
organization overall.

7.3.4 Full Matching Process

The final set of models tracks the full matching process from start to finish. In
Figure 7.18, we model matching without a system to help. As mentioned above,
this requires an administrator to manage the project listings and record student-
project pairs. In the IDI system, shown in Figure 7.19, the administrator’s role
is automated via the system. However, there are still some crucial lines of com-
munication which take place outside of the system. Specifically, these are pieces
of the application lifecycle, which means that the status of an application cannot

Chapter 7: Results 81

be fully or accurately tracked. Figure 7.20 shows that in our system, all commu-
nication flows through the system, enabling better status tracking, automation,
and preventing the possibility of critical peer-to-peer communication being lost in
busy inboxes.

82

S
tu

de
nt

Receive project
listings

Project listings

Project selected

Project

Scan project

Find next
project

Project selected

Project ignored

Read project
title

Title interesting?

Read project
description

Project
interesting?

Requirements
met?

Conditions
acceptable?

No

Yes

Yes Yes

No No No

Yes

Administrator

Figure 7.10: Process model for finding a project without a system

Chapter
7:

Results
83

S
tu

de
nt

Project selected

Project
Projects
available

Select
specialization

Prefers certain
professors?

Select preferred
professors

Project listings

Scan project

Find next
project

Project selected

Project ignored

Read project
title

Title interesting?

Read project
description

Project
interesting?

Requirements
met?

Conditions
acceptable?

No

Yes

Yes Yes

No No No

Yes

No

Yes

Figure 7.11: Process model for finding a project with the IDI system

84

S
tu

de
nt

Project listings

Projects
available

Project selected

Project

Adjust filters

Include more
tags

Exclude more
tags

Acceptable
filters

Too few projects

Too many projects

Scan project

Find next
project

Project selected

Project ignored

Read project
title

Title interesting?

Read project
description

Project
interesting?

No

Yes
No

Yes

Figure 7.12: Process model for finding a project in our prototype

Chapter
7:

Results
85

P
ro

fe
ss

or Professor has a
project to list

Compose new
email

Write project title
Write project
description

Send email

New project email

A
dm

in
is

tr
at

or

Receive project
specification

New project email

Copy project
details to listing

draft

Project listing
draft

Await further
projects

Figure 7.13: Process model for listing a project without a system

86

P
ro

fe
ss

or

Professor has a
project to list

Professor has
relevant draft or

prior project?

Edit project title

Edit project
description

Publish project?

Open new
project copy

Draft or prior
project

Fields edited as
needed

Save project as
draft

Project remains
copyable draft

New draft

Open new
project page

All fields filled
Save project as

open

New project

Project published

Input project
description

Input project title

Edit project tags

Edit project
metadata

Input project
tags

Input project
metadata

No

Yes

Yes

No

Project returned
to later

Figure 7.14: Combined process model for listing a project in both the IDI system and our prototype. Elements in blue are exclusive to
our prototype.

Chapter
7:

Results
87

P
ro

fe
ss

or

Wait for message

Interest
retracted

Receive
retraction
response

Handle message

Student-project
viable?

Compose
further response

or inquiry

Send offer

Send message

No further
inquiries

Send decline
message

Receive response
or inquiry

Evaluate
student-project

viability

Write message
to decline

Write offer

Yes

No

Unclear
Receive offer

response

S
tu

de
nt

Interested in
a project

Find professor
contact info

Compose
message of

interest

Send message

Project

Write message
to decline

Write message
to accept

Wait for response

Offer
received

Receive offer

Project
declined

Receive decline
response

Handle response

Project still
interesting?

Retract interest

Compose
response or

inquiry

Too long since
last email

Receive response
or inquiry

Write message
to retract
interestNo

YesEvaluate
response

Write message
to retract
interest

Retract interest

Consider project
against others

Accepted other
project offer

Administrator

Matching
period ended

Send message Satisfied with
offer?

Decline offer

Accept offer

No

Yes

Register
student project

No further action

No further action

Project not offered

Interest
retracted

Project offered

Matching
period started

Matching
period ended

No further action

Project not offered

Offer accepted?

No

Yes

Offer received

Figure 7.15: Process model for the application lifecycle with no system

88

System

P
ro

fe
ss

or

Wait for message

Interest
retracted

Receive
retraction
response

Handle message

Student-project
viable?

Compose
further response

or inquiry

Send offer

Send message

No further
inquiries

Send decline
message

Receive response
or inquiry

Evaluate
student-project

viability

Write message
to decline

Yes

No

Unclear

No further action
Matching

period ended

Receive offer
response

Matching
period started

Matching
period ended

Project offered

Project not offered

S
tu

de
nt

Interested in
a project

Find professor
contact info

Compose
message of

interest

Project

Send
message

Wait for response

Offer
received

Receive offer

Project
declined

Receive decline
response

Handle response

Project still
interesting?

Retract interest

Interest
retracted

Compose
response or

inquiry

Too long since
last email

Receive response
or inquiry Send message

Write message
to retract
interest

Evaluate
response

No

Yes

Register
interest

Write message
to retract
interest

Retract interest

No further action

Satisfied with
offer?

Write message
to decline

Decline offer

Accept offer

No further action

Consider project
against others

Matching
period ended

Project not offered

Yes

No

Accepted other
project offer

Offer received

Figure 7.16: Process model for the application lifecycle in the IDI system

Chapter
7:

Results
89

P
ro

fe
ss

or

Wait for message

Handle message

Compose
comment

Evaluate
student-project

viability

System

S
tu

de
nt

Compose
application

Wait for response

Handle comment

Compose
comment

Evaluate
comment

Consider project
against others

Matching
period started

Receive offer
responseNo

Yes

Send comment

Offer project

Reject
application

Student-project
viable? No further

comments

Application
retracted

Application
retracted

No further actionUnclear
Receive

application or
comment

Matching
period ended

Project not offered

Project offered

No

Project not offered

Offer received

Interested in
a project

Project

No further action

No further action

Decline offer

Submit
application

Application
rejected

Application
rejected

Offer
received

Receive offer

Yes

No

Send comment

Receive
comment

Project still
interesting?

Matching
period ended

Accepted other
project offer

Retract
application

Application
retracted

Accept offer

Yes

Satisfied with
offer?

Figure 7.17: Process model for the application lifecycle in our prototype

90

P
ro

fe
ss

or

Decline further
inquiries

List project
Application

lifecycle

S
tu

de
nt

s

Retract interest
in other projects

Manage applications

Application
lifecycle

Find projectFind project

A
dm

in
is

tr
at

or
Compile project

listing
Register project

assignments

Start of semester Matching
period started

Offer accepted

Matching
period ended

Matching
period ended

Matching
period ended

Projects assigned

Matching
period ended

Project assigned

Start of semester

Announce
matching period

Distribute
project listing

Projects assigned
Matching

period ended

Project listing
received

Personal
capacity met

Figure 7.18: Model of the full matching process without a system

Chapter
7:

Results
91

P
ro

fe
ss

or

Decline further
inquiries

Matching
period ended

Projects assigned

Start of semester Matching
period started

Manage projects

Application
lifecycle

List projectList project

Matching
period ended

Personal
capacity met

S
tu

de
nt

s

Matching
period started

Retract interest
in other projects

Matching
period ended

Project assigned

Find project

Manage applications

Application
lifecycle

Find project

Offer accepted

Matching
period ended

System

Figure 7.19: Model of the full matching process in the IDI system

92

P
ro

fe
ss

or

Start of semester Matching
period started

Manage projects

Application
lifecycle

List projectList project

Projects assigned

Close projects

Matching
period ended

Personal
capacity met

S
tu

de
nt

s

Matching
period started

Find project

Manage applications

Application
lifecycle

Find project

Project assigned

Offer accepted

Matching
period ended

System

Figure 7.20: Model of the full matching process in our prototype

Chapter 7: Results 93

7.4 Time-to-Task

In this section we compare the time taken to perform certain key actions in the IDI
system and our prototype using the keystroke-level model estimation framework
described in section 4.5. We compare the systems on two key tasks: creating a
new project and finding an interesting project. Other key flows such as applying
to a project cannot be accurately compared because they take place partially or
fully outside of the IDI system.

7.4.1 Project Creation

First, we look at the steps necessary to create a new project in both systems. For
this task, we begin measuring on the main page of each application with the user
already authenticated.

IDI System

Step Description Operator Duration (sec)
1 Click the "Add Project" link P 1.1
2 Page load time R 0.7
3 Mentally prepare to create a project M 1.35
4 Select the title field P 1.1
5 Move hand from mouse to keyboard H 0.4
6 Type a 65-character title K 18.2
7 Move hand from keyboard to mouse H 0.4
8 Select the description field P 1.1
9 Move hand from mouse to keyboard H 0.4
10 Type a 450-character description K 126
11 Mentally prepare to add metadata M 1.35
12 Move hand from keyboard to mouse H 0.4
13 Select 6 relevant metadata items P 6.6
14 Click the "Update" button P 1.1

Total 160.2

Table 7.1: Approximate task time to create a new project with the IDI system

The project entry process begins with the title and description of the project. For
this estimation we assumed a 65-character title and 450-character description
based on the lengths of titles and descriptions pulled from the real system. After
entering this information, the user must then select a number of checkboxes and
radio buttons to encode metadata about the project’s status, associated specifica-
tion, and group size. The resulting process time measurement was 160 seconds.
Most of this time was spent typing, though a not insignificant amount is wasted
moving between the mouse and keyboard to select various fields on the page. It

94

is worth noting that power users can cut down on the required pointing time by
using the tab key to switch between fields.

Prototype

Step Description Operator Duration (sec)
1 Click the "Add New Project" link P 1.1
2 Page load time R 0.5
3 Mentally prepare to create a project M 1.35
4 Select the title field P 1.1
5 Move hand from mouse to keyboard H 0.4
6 Type a 65-character title K 18.2
7 Move hand from keyboard to mouse H 0.4
8 Select the description field P 1.1
9 Move hand from mouse to keyboard H 0.4
10 Type a 450-character description K 126
11 Mentally prepare to add metadata M 1.35
12 Move hand from keyboard to mouse H 0.4
13 Select "Open" status (2 clicks) P 2.2
14 Select 2 relevant tags (2 clicks each) P 4.4
15 Click the "Create Project" button P 1.1

Total 160

Table 7.2: Approximate task time to create a new project with our prototype

The comparison between our systems reveals that despite our interface changes,
it takes the exact same amount of time to use our system for a simple project entry.
This was expected and intentional; we modeled our project creation process on
the IDI system’s process. However, there are some notable interface changes we
made which actually make our process slower in most cases. We make use of drop-
down menus for tags and status, which require one click to open and one click to
select from. As seen in steps 13 and 14, this doubles the amount of time necessary
to add one piece of metadata. The IDI system has fewer options for status and
only a few tag-like metadata options, so it shows all of them on screen at once as
a list of checkboxes. Even with our limited number of prototype tags, it would be
infeasible to represent all of them on screen at once. Thus a user representing the
same amount of metadata would require more time to input it. The only reason
that this was not true of this example is that many of the metadata options in the
IDI system are duplicative, so the same amount of information (six options) could
be encoded in our system with half as many items (two tags and the status field).

Chapter 7: Results 95

7.4.2 Finding a Project

This section compares the time necessary for a student to find an interesting pro-
ject within each system. We start measuring on the project listing page, with the
student already authenticated.

IDI System

Step Description Operator Duration (sec)
1 Mentally prepare for filtering projects M 1.35

2
Select 1 specialization to find eligible
projects

P 1.1

3 Wait for the page to reload R 0.7
4 Mentally take stock of the reloaded page M 1.35

5
Select another specialization to find ad-
ditional eligible projects

P 1.1

6 Wait for the page to reload R 0.7

7
Mentally prepare to read through pro-
jects

M 1.35

8
Scan the first visible group of projects for
interesting keywords

M 1.5

9
Scroll the screen to show the next group
of projects

S 1

10
Scan the visible group of projects for in-
teresting keywords

M 1.5

11
Repeat 9 and 10 a total of n number of
times

S + M (n− 1) ∗ 2.5

12 Select the first interesting project P 1.1
Total 10.25+ n ∗ 2.5

Table 7.3: Approximate task time to find a project with the IDI system

In the IDI system, there are very few filters available to students. Furthermore,
these filters are inclusive, meaning that selecting additional filters from the same
group expands the results list instead of shrinking it. As a result, the project lists
returned by the system are usually long and unfocused. Thus students typically
have to scroll a number of times before they can find an interesting project. In our
tests, we found that it could take anywhere from 30 to 40 scrolls to read through
all of the projects in a typical query in the IDI system without any professor prefer-
ences. Thus we added the note about steps 9 and 10 repeating numerous times to
our model. Without professors, the range of totals is thus from 85 to 110 seconds.
If the student has one or a few professors that they know of beforehand, that range
goes down to 3 to 10 scrolls, or 17 to 35 seconds.

96

Additionally, each time the user selects a filter in the IDI system, the entire
page reloads, which quickly adds up in waiting time. This is exacerbated by the
fact that users need to re-situate themselves on the page each time it refreshes,
which costs over a second each time.

Prototype

Step Description Operator Duration (sec)
1 Mentally prepare for filtering projects M 1.35

2
Select 4 filters to filter out uninteresting
projects

P 4.4

3 Select the "filter projects" button P 1.1
4 Wait for the page to reload R 0.5

5
Mentally prepare to read through pro-
jects

M 1.35

6
Scan the first visible group of projects for
interesting keywords

M 1.5

7 Select the first interesting project P 1.1
Total 11.3

Table 7.4: Approximate task time to find a project with our prototype

The final time in our prototype is significantly faster than in the IDI system in
almost all cases. This is because our expanded filtering options allow students to
cut down the projects list until it is very easily visible on one screen, or with one
or two scrolls. This does, however, assume the student is very decisive about the
filters they want and does not need additional mental preparation between se-
lections. Figuring out the right filters would be a one-time cost, and so looking
for projects afterwards should remain at the calculated cost. Additionally, we cut
out the unnecessary refreshing that the IDI system performs each time a special-
ization is selected. It is worth noting that we still could cut out another reload
and button press if we did our filtering on the browser side, but as discussed in
subsection 6.5.2, we chose not to do this for ease of implementation.

Chapter 8

User Evaluation

In this chapter we present a summary of the feedback gathered from our unmod-
erated user tests. The data presented was gathered from seven students and five
professors. All of the participants in our user testing had previously used the IDI
project assignment system. As described in section 4.6, our user tests consisted
of a series of opening questions to establish the user’s familiarity with the IDI
system, a set of tasks with associated questions, and a final group of questions
about the user’s overall experience with the prototype. For most of the multiple
choice questions, we gave users the option to choose "Other" and provide a free
response rather than choosing from the predetermined answers. These responses
have been grouped according to sentiment. The results of this testing are explored
below, beginning with student feedback and ending with professor feedback.

8.1 Student Responses

The results of every question asked as part of the student test are listed below. Ad-
ditionally, some qualitative responses are quoted verbatim, but the complete re-
sponse text of every participant to every question is not made public in this paper.
The full set of student testing questions is attached to this paper as Appendix A.

8.1.1 Pre-test Questions

The questions listed in this section were presented to the participants before the
testing tasks.

97

98

Figure 8.1: Student responses to the question "How easy was the IDI system to
use?"
Mean: 3.57

The first question in our initial evaluation aimed to gather data about the user’s
experience of using the existing IDI system. This data is displayed in Figure 8.1.
Sentiment about the existing system was negative. On a scale from 1 to 5, where
1 was very easy and 5 was very difficult, the average ease of use was 3.57. No
respondents felt that the existing system was very easy to use.

Question Yes No
Has the large number of projects in the IDI system caused
you any trouble?

4 3

Table 8.1: Student response to the question "Has the large number of projects in
the IDI system caused you any trouble?"

The next preamble question aimed to measure whether project volume spe-
cifically was a pain point for students in the current system. This data is presented
in Table 8.1. When identifying the underlying problems with the IDI system, we
suspected that the growing number of projects was making it more difficult to find
relevant projects in the IDI site. However, student response to the question was
mixed. Only 4 of the 7 students who participated in the testing felt that the large
number of projects specifically caused them problems.

Chapter 8: User Evaluation 99

Figure 8.2: Student responses to the question "How many projects did you apply
for?"
Mean: 4.57

Next, we tried to get an idea of how many projects each student had applied to.
The results are displayed in Figure 8.2. Even among our small sample of students,
we had one student who applied to 10 projects and one who only applied to 2.
This shows a wider variance in project application numbers than we had expected.
Our design decisions assumed four or five applications per student, as the IDI
system only allowed each student to rank 5 projects. These assumptions seem to
be mostly in line with the students we polled. We designed our system to expand
easily to large numbers of applications per student, meaning that we would be
able to accommodate the student who applied to 10 projects, but this data raises
the question of whether we could have done anything to optimize the system more
for students who put in only two or three applications.

We then asked the students what they both liked and disliked about the exist-
ing IDI system. Overall, responses to the question "What did you like about the
IDI project system?" were not very enthusiastic; one user simply answered "Not
too much," while another responded "Somewhat got the information I needed
for some projects." Four of the six responses mentioned the IDI system’s filtering
capabilities, especially its ability to filter to specific professors. This shows that
we correctly identified filtering as an important feature to expand upon. Three of
the responses mentioned the project descriptions being useful. This implies that
choosing to add additional descriptive information such as tags and project capa-
city was in line with student desire. It also highlights the importance of features
that make descriptions more informative, such as rich text and image embedding.
Although we did not implement these in our prototype, we consider them essential
features for a full-scale implementation of the system.

Responses to the question "What did you dislike about the IDI project sys-
tem?" were highly varied. Four of the six responses stated that the IDI system’s
filtering wasn’t detailed enough, once again reinforcing our decision to focus on
improving project filtering. In a similar vein, two responses expressed disappoint-
ment that the IDI system did not have a way to search projects. While we believe

100

that our improved filtering system alone should provide the tools necessary to find
interesting projects, there is no reason that a system like ours should not be aug-
mented with a search functionality. Indeed, when asked if they felt if anything was
lacking from the system in the post-test questions, multiple students requested a
search function.

In addition to those filtering responses, we also received a number of responses
complaining about the user interface of the IDI system. Four replies said it felt bad
to use, and two replies called it outdated. One student told the story of pressing
an “Ok” button on a project without knowing what it would do and accidentally
choosing it as their thesis project, which they attributed to the IDI site’s unclear
interface. While we did not prioritize interface design as part of our prototype’s
development goals, we did try to build according to modern web app paradigms
when possible, which these results indicate was a good decision. Additionally, by
making applications part of the system so they can be tracked separately from
projects, we were able to make their status at any given time much more explicit.

8.1.2 Task Questions

These questions were presented to users during the testing, alongside correspond-
ing tasks. The tasks will be briefly summarized here to provide context for the
responses. After each task, users were asked the question "Was there anything
that was confusing or did not work correctly?" This question will be omitted
from discussion below for tasks where no students mentioned any issues.

Task 1 - Profile

In the first task, students were asked to edit their profiles within the prototype to
include some tags relevant to their interests. Afterwards, we asked one multiple-
choice question, presented in Table 8.2, along with a free response question to
gather more detail.

Question Yes No
Do you think having a profile will save you time when
applying to projects?

6 1

Table 8.2: Student responses to the question "Do you think having a profile will
save you time when applying to projects?", attached to the profile editing task.
One "Other" response interpreted as No.

Six of the seven responses to the free response question "Do you like the idea
of having a profile that’s visible to professors? What information would you
want it to show?" were positive, stating that student profiles were a good idea
that could be useful. Four students mentioned wanting to have a more complete
academic record on their profiles than just the specialization tags we provided.
Additionally, two responses expressed a desire to have more control over their

Chapter 8: User Evaluation 101

profiles than the existing tags allowed, either by letting them create custom tags or
giving them a free text field to write down additional information. These are both
reasonable pieces of feedback, especially given our limited tag set in the demo.
We believe that custom tags would end up being more confusing than helpful for
professors, but allowing students to divulge as much or as little academic history
as they want via a free-text box on their profiles is a reasonable way to address
this complaint.

One student said that having a profile would save them time because they
“don’t have to write the same information to several professors”, which is exactly
what we were hoping to achieve. Conversely, another student doubted that the
professors would even take the time to check profiles given the number of students
they have to manage. Future projects may want to assess whether that is true, and
look into incorporating profile information into applications in a more immediate
way if so.

Another student said that “it could make it possible for professors also to find
students for their project, and not only the other way around.” This is not some-
thing we considered in our design, given our stated problem is a too large volume
of students, putting this work on professors would likely not be acceptable. As
such we did not make it easy for professors to view arbitrary profiles. However,
it is an interesting idea. A future project could attempt to invert the relationship
and make it possible for professors to filter and search students, view their pro-
files, and send them suggestions to look at certain projects. This would require
giving professors a lot of tools to quickly filter students. We could see machine
learning being a powerful tool for narrowing down options here, while mitigating
the potential for bias in fully automatic matching.

Three of the seven students faced difficulty or felt that something was unclear
in this task. Two students mentioned that the tag selection dropdown was a chal-
lenging piece of UI to use, with one saying they struggled to find it on the page
and another calling it “not optimal”. As discussed in section 6.5.5, we expected
these complaints, as the tag input interface was a compromise to make the system
testable within the time we had available.

One student called out a lack of informational/educational text on the site
explaining what the profile actually was, or what could be edited. Given the time
constraints on development, we did not implement any explanatory text on the
site, so this was an expected piece of negative feedback. It is likely that a better
visual design for the profile page could clarify these points on its own without the
addition of text explanations.

Task 2 - Filtering

The next task required users to find a specific project within the system. This pro-
ject was easy to find by filtering the large project list in various ways, though the
task never explicitly directed the users to do so. According to the data in Table 8.3,
every user found the projects by filtering, and all students thought that filtering

102

would be useful to them in a final year project search.

Question Yes No
Did you use the filtering system to find these projects? 7 0
If you were using this tool to pick your masters topic,
would you use the filtering system to search for relevant
projects?

7 0

Table 8.3: Student responses to questions about the first filtering task.
No "Other" responses.

Despite this positive feedback on our filtering system, the overall ease of use
for finding projects as relayed in Figure 8.3 did not meet our expectations; four
out of seven respondents rated the task’s difficulty at 3 or higher on a 1 to 5
scale, giving us an average difficulty of 2.57. We suspect that some of the issues
discussed below explains this rating.

Figure 8.3: Student responses to the question "How easy was it to find the project
you were looking for?"
Mean: 2.57

Following that, we asked the question "By default, projects on the main page
are filtered according to your academic history and interests as defined in
your profile. Do you think this would be helpful when trying to find masters
topics?" Six of the seven responses were positive, with one student saying that
this default filtering would save them time because they wouldn’t “have to put in
the same filters every time”. Although many of our testers thought that default
filtering was helpful, it might conflict with the students’ desire to have a larger
number of more expressive tags on their profiles, as it would lead to each student
having such specific default filters that they would no longer see results by default
until they cleared some of their filters away.

The one negative response said that it did not seem important to have this
default filtering as students could just do it themselves, which is reasonable. One
user also noted that the usefulness of this system is predicated on proper tagging

Chapter 8: User Evaluation 103

from professors. It is true that this system fails if the projects do not tag their
work well, but we have no way around that short of auto-tagging projects based
on keywords in their descriptions, which can be error-prone and lead to projects
showing up under confusing or incorrect tags. Still, the perception that professors
may not tag their projects appropriately could lead students to avoid filtering in
order to not miss any projects.

Last, we asked students "Is it helpful to see the number of applicants and
offers on each project? What do you like or dislike about that?" Responses
to this question were unexpectedly mixed. Three responses were positive, three
were negative, and one was neutral. The students who responded positively felt
that it was helpful to see how many people they would be competing with for a
slot, and said it would help them avoid wasting time applying to a project that
was likely to be taken. The students who responded negatively felt the same, but
noted that project assignments should be based on who is the best applicant, not
on who applied first. Some students felt that if people who were qualified for a
project saw that it was very popular, they might not apply for it, even though they
would get an offer if they did apply. This is a fair criticism that revealed a bias in
the design of the system; the researcher’s experience was in line with the students
who felt that they were unlikely to receive a slot for a popular project, and thus
the feature was intentionally designed to help students avoid popular projects.
However, this behavior encourages users to spread their applications among a
wider pool of projects, which could lighten the load of individual professors. A
more specific study of the impact of this information on user behavior should be
carried out in order to determine whether or not it should be included in other
project assignment systems.

Three respondents reported issues with this task. Two students mentioned
being confused by the filters requiring them to press an “apply” button instead
of applying instantly as soon as they were toggled. This was expected negative
feedback, as we knew that the most common modern paradigm for filtering is
instantaneous browser-side filtering via JavaScript. Unfortunately, our technical
design forbade that approach, as the filter queries we constructed were complex
and all of the database information available to the server. We could have imple-
mented near-instant filtering via AJAX, but as discussed in subsection 6.5.2, we
found AJAX unexpectedly difficult to manage with Django and thus not worth the
time. Alternatively, we could have used client-side filtering, but this would also
not leverage the strengths of Django, and require a lot of extra work. This feed-
back once again highlights the importance of UI in project matching applications,
and we encourage future researchers to take this into account when choosing to
allocate their time.

One student reported being confused by the default filters being applied from
their profile, but quickly realized why those filters were there and cleared them
in order to start searching for the project they needed. This is another element of
the site that is not clear at first glance, and could be improved with explanatory
text in the profile or above the filtering section.

104

Task 3 - Applying to a Project

Question Yes No
Is this process comparable to how you got a project in the
IDI system?

1+1 4+1

If you chose to automatically accept an offer, then this
project becomes your final choice the moment the pro-
fessor offers it to you. Is this a feature you would make
use of?

2+3 2

Table 8.4: Student responses to questions about the project application tasks.
Respectively 2 and 3 "Other" responses were interpreted as yes or no, listed with
+ as prefix.

The next task asked students to apply to the project they just found. Our first
question after this task attempted to assess whether users felt that the applica-
tion process implemented in the prototype was an appropriate formalization of
the informal application process they had previously engaged in. However, the
question was poorly phrased, and did not particularly lend itself well to a simple
choice format. From the "Other" responses we received, it seems that the students
viewed this process as fundamentally different from the informal application pro-
cess they used with the IDI system, and felt that it was a better process. This is an
interesting difference from the professor responses, which largely regarded this
process as no different from the IDI one.

We also explained the auto-acceptance feature and attempted to gauge interest
in it. The responses to that question were in line with our expectations; all of the
"Other" answers mentioned only wanting to use it if they were absolutely sure
about a project, which is the intended use case.

In order to get more detail on the comparison we were driving at in our first
question, we asked how applying to projects in this system compared to applying
via email. Five out of seven respondents felt that using our system to apply was
better than emailing. Multiple students appreciated having everything all in one
place, with one saying they prefer this system because “emails make it messy”.
The removal of the extra step of finding the professor’s email and setting context
for which project you are interested in was appreciated. The negative respondents
felt that the application within this system did not provide enough information on
its own; one stated that they felt email was “more personal” and would probably
send an email to the professor in addition to applying through the website, and
another mentioned wanting to meet potential advisors in person before accepting
their offer.

One student pointed out that it is awkward to apply to multiple projects made
by the same professor in our prototype, as each application is tied to only one
project. This leaves the student in the position of having to repeat their application
several times as they apply to each of the professor’s projects, or work things out

Chapter 8: User Evaluation 105

over email instead of in the system. This was an oversight in the design, as we
did not consider this a problem when designing our system. We could choose to
incorporate this into the database model for applications, applying to multiple
projects with one application. However, with the previous discussion of free-text
in profiles, it may be more beneficial to move any application text that is true
for multiple projects to a student’s profile, so that the student only has to include
information specific to each project in each application.

We also asked "Do you like the idea of having formal applications within
this system? Why or why not?" and got mostly positive responses. Some students
felt that our application system would prevent email applications being lost in
professors’ inboxes, while other students felt that these applications were more
likely to get lost, and said they would email the professor if they did not get a
response quickly. The students who felt that way believed that professors would
not check the website frequently or thoroughly enough to keep track of every
new application. It is interesting that these students thought about notification
behavior for professors unprompted - this implies that we were right to create
requirements for notifications, as they are clearly important to students both for
themselves and for professors. Additionally, two responses again mentioned that
they appreciated having everything relating to project selection gathered in one
place.

One student expressed a desire to talk with the professors about their projects
before submitting a formal application via our system. We originally considered
including a functional requirement to allow students to comment on projects
without sending applications, but ultimately removed that requirement because it
seemed reasonable to do that over email, as an informal communication like that
does not need tracking in a place where it cannot get lost. However, it may be
worth considering making that possible within systems like this in the future, as
several students expressed that they felt more comfortable contacting professors
within this system than via email. If these questions could be posed publicly, this
functionality could also cover the case of students wanting group projects without
having groups. Students could informally ask if there were incomplete groups they
could join under a project, and then submit a group application together, without
requiring professors to interact.

Task 4 - Finding a Group Project

In the next task, we asked students to return to the main page and find a project
that accepted group applications but did not require user evaluation. We felt that
using both inclusion and exclusion filters at the same time might be confusing for
some users, but the results recorded in Table 8.5 show that none of the users felt
that it was unintuitive.

106

Question Yes No
Was it intuitive to combine positive and negative filters? 7 0

Table 8.5: Student responses about combining filters.
No "Other" responses.

We also asked students "If you were using this tool to pick your masters
topic, would you find it useful to filter out certain tags or requirements? If
not, why not?" Every response to this question was positive, with several students
saying it would help them avoid “irrelevant” and “uninteresting” topics. This is a
strong indicator that the addition of negative filters was a good way to address
student feedback on interesting projects being hard to find. One student said spe-
cifically that it would reduce the time they spent reading uninteresting proposals,
which was one of our goals.

Task 5 - Creating a Group Application

In the next task, we asked students to apply to the project they just found in the
previous task. We also asked them to add two other students to their application as
group members. Following this, we asked the question "How does doing group
applications this way compare to doing them via email?" This question was
poorly posed, as many of our respondents did not apply for any group projects
and thus had no prior experience to compare to. Regardless, the users did provide
speculative answers of how it compared to what they would have done to apply as
a group in the current IDI system. Several students stated that the method presen-
ted in our prototype was easier and more intuitive than doing group applications
via email, as it did not require professors to cross-reference multiple emails to
make sure they knew everyone in a group. However, one student felt that this
was a less personal approach, as it didn’t allow each group member to send their
own introduction to the professor.

Question Yes No
Was it easy to add the other students to your application? 7 0

Table 8.6: Student responses about creating group applications.
No "Other" responses.

Per the results in Table 8.6, all students found the student adding interface
easy to use. As mentioned in subsection 6.5.2, this was the only instant-feedback
AJAX interface that we implemented in our system. The positive feedback here
seems to imply that this type of interface is what users expected for this feature.

While working on this task, one user encountered a bug where the member
name entry field was not cleared after pressing the button to add that user to
the application. We fixed this bug before any further users could take the test.
Otherwise, no users ran into any issues completing this task. However, one student

Chapter 8: User Evaluation 107

mentioned that adding students to an application should require the consent of
each added student. This is something that we considered as part of our group
projects implementation, but did not implement for the sake of the demo. The
full explanation of the complexities of group project management and our choices
around it can be found in subsection 6.5.1.

Task 6 - Ranking Applications

In the next task, we asked users to visit their applications page and rank their ap-
plications according to their interest. Application ranking is a concept that already
exists in the IDI project system, so we expected the test students to be familiar
with its operation. The results in Table 8.7 seem to match this assumption. Every
student felt that it was easy to see how their applications were ranked, and the
mechanism we introduced for re-ranking applications after a rejection was seen
as a reasonable behavior by every participant.

Question Yes No
Was it easy to tell which application had which rank? 7 0
In this system, lower-ranked applications are automatic-
ally moved up when a higher-ranked application is rejec-
ted. Is that something you’d expect to happen?

7 0

Table 8.7: Student responses to questions about the application ranking task.
No "Other" responses.

Unfortunately, our ranking interface was not well received. Four of the seven
testers reported confusion or difficulty with this task. One user stated that updat-
ing the priorities of their applications did not work; this was most likely the result
of them not noticing the submit button that must be pressed to save priorities. This
was another case of our decision to not use AJAX patterns (see subsection 6.5.2)
creating interface confusion. Another student was confused by the unlabeled pri-
ority fields below the first five, and the fact that they could assign priorities lower
than their total number of applications. Two testers were also confused by the
fact that they could not set a rank for the group application that they were a non-
owning member of (see subsection 6.5.1). One student expected each project to be
removed from the drop-down menus after it was ranked, rather than it remaining
available and swapping to the new rank if selected somewhere else. Finally, one
student requested a completely different interface where projects were dragged
up and down in an ordered list instead of selected from drop-downs.

All of these criticisms are reasonable. The interface for this page was rather
poorly considered, and our test data created additional confusion by providing
students with very few projects to rank, as well as including a prominent group
application that didn’t show up in the menus as the test student was not its owner.
Because ranking is a feature that already exists within the IDI system, we did not

108

focus on improving it as much as we should have, and had to compromise on the
interface design due to time constraints. We explain this decision in section 6.5.5.

Task 7 - Comments

In this task, we asked students to respond to a comment from a professor on one
of their applications. We then asked the question "How does discussing a pro-
ject with a professor in this system compare to doing it via email?" Students
were mostly positive about the comments system, again citing the ease of having
everything together in one place on the app. Two of the respondents mentioned
the lack of notifications as a deterrent in using this app to converse with professors
- they want to respond promptly, but don’t want to waste time checking the app
multiple times per day. As described in chapter 6, we do consider notifications an
important feature for this kind of application, but did not implement them due to
our time constraints.

Question Yes No Other
(Neutral)

Would you feel more comfortable using this
system to communicate with a professor
about a project than emailing them directly?

6 0 1

Table 8.8: Student responses to the question "Would you feel more comfortable
using this system to communicate with a professor about a project than emailing
them directly?"
One "Other" response simply said "neutral."

One of the goals of moving communication from emails to the app was to
make students feel more comfortable contacting professors by creating a dedic-
ated space for it. Based on the results shown in Table 8.8, this appeared to work,
as almost all respondents stated that they would feel more comfortable using this
system than emailing professors directly. The one "Other" response simply said
"neutral."

Chapter 8: User Evaluation 109

Task 8 - Accepting an Offer

Question Yes No
Was it clear which application had an offer? 7 0
After accepting an offer, your other applications were
automatically revoked, and you were removed from the
group application you were a part of. Is that something
you’d expect to happen?

6+1 0

Table 8.9: Student responses to questions about accepting an offer.
One "Other" response on the last question was interpreted as a yes, listed with +
as prefix.

In the final task, students were asked to accept an offer from a professor. As re-
corded in Table 8.9, none of the users indicated any difficulty finding the one
application in their list that had an offer on it. After the students accepted an of-
fer, their other applications got automatically retracted. This behavior was also
considered reasonable by all participants, though the student who submitted the
"Other" response noted that they’d expect the professors and group members to
be notified in some way that the change was due to accepting another project,
and not just a regular withdrawal. Our prototype did not indicate that in any way
to the professor or to other students, which is an oversight.

8.1.3 Post-test Questions

The following questions were asked after the completion of all of the tasks listed
above. By this point, the users had acquired a decent understanding of our system,
so we could ask questions about the overall experience of using it.

110

Figure 8.4: Student responses to the question "How difficult were the tasks you
were asked to complete in this test?"
Mean: 1.14

The goal of the first post-test question was to assess whether our tasks had
been unclear or frustrating for the user. The responses in Figure 8.4 were con-
centrated on the easy side of the scale, implying that the test was not unusually
difficult. The professor responses in Figure 8.8 were similarly positive.

Figure 8.5: Student responses to the question "How easy to use was this system?"
Mean: 1.57

The next question asked users to rank the system’s overall ease of use. The
results in Figure 8.5 were entirely positive, although the majority of our testers
felt the prototype could still be easier to use. These results were reasonable, con-
sidering that it is still only a prototype. They are also much more positive than
the results shown in Figure 8.1, where we asked the same question about the IDI
system.

Following those quantitative questions, we asked a series of qualitative ques-
tions beginning with "How did this system compare to the existing IDI solu-

Chapter 8: User Evaluation 111

tion?" The feedback on our prototype was very positive. Students called out fil-
tering, tags, comments, and the cleaner user interface as improvements over the
current system. Next, we asked "Was there anything that surprised you about
the tool during the tasks you completed?" Only one respondent gave a negative
answer to this question, repeating their earlier complaint that they could not set
a priority for the group project they were in. As mentioned above, our discussion
of that decision can be found in subsection 6.5.1.

The third question aimed to assess what things the students were worried
might go wrong when the system was used at full scale, and their academic career
actually depended on it. We asked the question "What problems do you think
you would encounter if you used this system to find a thesis project in a
real semester?" Four of the seven responses were either blank or said they could
not think of any issues they would have with the system, which indicates that
testers felt our prototype would be appropriate for real-world use. Two students
mentioned that they thought the number of filters could get overwhelmingly large
in a real instance of the system, and asked for a search bar to find filters instead of
listing all of them out on the page. We noticed this issue during development, the
filter menu is very long even when we only use a subset of the tags we expect a
full system to use. We implemented collapsible categories for this reason, but did
not make use of them by default, so a different solution for navigating the filters
will be needed.

One student asked for more tools to find interesting projects - search, sort, and
more filters. This would be a good set of features to explore in the future, however
we suspect these features may quickly reach a point of diminishing returns due
to their overlap, which is why we focused only on improved filtering for this pro-
totype. This student also mentioned wanting to favorite or save projects for later
in some way. We considered adding a requirement for this during the ideation
phase, but decided not to because students could simply bookmark project pages
in their browsers to save them for later. We still believe that this is a reasonable
thing to leave up to users, but it is worth pointing out that many modern web
applications which don’t support bookmarks offer a favorites system instead, so
users have grown to expect it.

Another student asked for a system for students to formally propose alterations
or conditions to a project that the professor would have to accept. Specifically,
they wanted to be able to auto-accept a project only if the professor accepted
whatever change they laid out. While this could be an interesting feature, it seems
an unnecessary formalization; students can lay out these sorts of conditions in
their applications or in the comments, and professors would presumably only offer
them the project if they agreed to those conditions. More often than not, these
things are resolved in one-on-one meetings instead.

Next, we asked for the student’s opinion of the project discovery systems in
our prototype. Specifically, we asked "Do you feel this tool would help you
find interesting projects more quickly? Why or why not?" Every response to
this question was positive, with six of the seven responses mentioning filtering

112

as something that would help them find projects more quickly. One student was
particularly excited about the tag system making it more explicit what research
methods a project expects, as they personally took on a machine learning project
by mistake because they thought it was a software programming project.

Finally, we asked the question "Was there anything you felt was lacking
or missing from the system" in order to identify potential holes in our design.
Most of the answers to this question were repeats of the suggestions explored two
questions ago, in response to our question about possible problems at full scale.
However, one student did mention that they felt the system was lacking a way
for students to submit custom project proposals. As discussed in chapter 5, this is
something that we believe is important for a full-scale project assignment system,
but we did not implement it in our prototype. This answer reinforces our assertion
that project suggestions are important for a system like this.

8.2 Professor Responses

The results of every question asked as part of the professor test are listed below.
Additionally, some qualitative responses are quoted verbatim, but the complete
response text of every participant to every question is not made public in this pa-
per. The full set of professor testing questions is attached to this paper as Appendix
Appendix A.

8.2.1 Pre-test Questions

The questions listed in this section were presented to the participants before the
testing tasks.

Figure 8.6: Professor responses to the question "How much experience do you
have with the IDI specialization project assignment system?"
Mean: 3.80

Our first question aimed to get a sense of how familiar each professor was

Chapter 8: User Evaluation 113

with using the current IDI system. Because we used complaints from professors
about the current system to guide our prototype’s design, knowing how much
each professor has used that system helps us assess if we identified and alleviated
those complaints correctly. The results for this question are shown in Figure 8.6.
Responses were polarized, with one professor expressing minimal familiarity with
the IDI system while four others described themselves as somewhat or very famil-
iar with it. While we would have ideally liked a wider spread of familiarity levels
among our users, the one user who identified themselves as not very familiar with
the system was still a useful point of comparison to the other professors’ answers.

Next, we asked users if they had ever used any other systems for project assign-
ment before, and to name them if they had. While this would have been helpful
in providing additional points of comparison for our implementation, none of the
respondents had used any other systems, so this question generated no data for
us to analyze.

We then asked our participants what they both liked and disliked about the
existing IDI system. Responses to the question "What do you like about the IDI
project system?" covered a wide range of features. Across the five answers we
received, the professors mentioned every available feature of the IDI system as
positives – project statuses, student project rankings, draft and copy projects, and
the ability to browse all projects. It is clear that we were correct to treat these as
core requirements which had to be reproduced in our system. It is interesting how
much more positive the professors were about this system than the students – one
professor called it "easy to use" and stated that it had all of the features it needed,
while one student said it just barely functional enough to sometimes meet their
needs.

Despite this positivity, the respondents still had plenty of feedback to share
when we asked the question "What do you dislike about the IDI project system
(or other systems you’ve used)?" Two responses complained about the lack of
a detailed categorization system making it difficult to find projects on specific
topics. Three professors complained about the program’s interface not being user
friendly. Two of the responses mentioned the separation of old, outdated projects
and new projects being insufficient, leading to confusion. Finally, one professor
noted that it is unclear what action a professor should take after a student ranks
their project unless that student also sends an email, and another complained
about not being able to tell if the students ranking a project want to take it as a
group or separately.

This negative feedback was was mostly in line with what we heard from pro-
fessors during our requirements elicitation interviews, and confirms that we iden-
tified the IDI system’s problems correctly. We addressed the categorization issues
by introducing a tagging system, and the old project separation by formalizing the
project state logic and hiding closed projects. The complaints about applications
being unclear were part of our core motivation for developing these improvements
in the first place, so our system addresses those issues by formalizing applications
and tying ranks to those applications.

114

Next, we asked if the large number of students and projects specifically had
given professors trouble in the IDI system. We posed this as a multiple choice ques-
tion, but received different answers from every one of our five respondents. One
selected "Yes", one selected "No", and the remaining three gave "Other" answers
with additional details. Of those answers, one user abstained from responding due
to lacking familiarity with the system. The two remaining "Other" responses both
said that the volume of everything hadn’t caused them any particular trouble, but
that it was hard to get an overview of everything and required additional note-
taking to manage. The last user selected the "Yes" option and did not elaborate.
These responses are generally in line with our assertion that project and user
volume was a pain point for professors in the IDI system, but they are somewhat
less emphatic than we expected. This implies that the improvements we made in
grouping information in one place and making it easier to track may not be as
impactful for professors as we thought.

Finally, we asked professors what their primary method for managing project
applications and questions from students currently is. This question was a bit un-
clear, resulting in us receiving different types of answers from every professor,
but each answer was helpful in illustrating different techniques professors use to
manage student applications. One professor described their strategy for choos-
ing students, saying they picked whichever student ranked each of their projects
the highest. Two professors described what we consider the standard pathway for
the IDI system, listing projects on the site and waiting for students to email them
applications. Two professors mentioned setting up in-person or virtual meetings
with students to discuss questions, while two others mentioned discussing ques-
tions over email.

The prevalence of synchronous meetings in this feedback was unexpected; we
optimized our system for text communications under the assumption that most
student-professor contact took place via email, so we should emulate that pro-
cess. The asynchronous nature of text communication also scales much better to
large numbers of students, as it does not require shared free time between the stu-
dents and the professor, so it made sense to optimize it given our theory that the
growing size of the IDI department was straining the current system. However,
this feedback raises questions about whether a system like this should assist in
scheduling meetings between students and advisors in addition to the text com-
munication mechanisms it already provides.

8.2.2 Task Questions

These questions were presented to users during the testing, alongside correspond-
ing tasks. The tasks will be briefly summarized here to provide context for the
responses. After each task, users were asked the question "Was there anything
that was confusing or did not work correctly?" This question will be omitted
from discussion below for tasks where no professors mentioned any issues.

Chapter 8: User Evaluation 115

Task 1 - Project Creation

In the first task, we asked professors to create a new project. Specifically, we asked
them to fill in every project field, including capacity and appropriate tags. We then
asked a series of questions, beginning with "How did the process of creating
a project in this system compare to project creation/listing in any project
tracking systems you have used in the past?" Responses to this question were
positive. Two of the five professors called the process easy, and two complimented
the addition of the tags. One said that it was very similar to the process they used
in the old system. This shows that we did not regress the project creation process
from what it was before with our changes, and that our additions were appreciated
by the professors.

Next we asked if there was anything professors felt was missing from the
project creation process. Only two of the five responses felt that something was
missing. One mentioned wanting custom project tags, which are discussed in sec-
tion 6.5.5. The other called for richer text in project descriptions, either via mark-
down or a full rich text editor. This supports our previous conclusion that it would
have been valuable to implement a more expressive text system given how im-
portant project descriptions are.

Following that, we asked "If you used this tool to track all of your projects,
could you see yourself tagging all of them using this system?" Our goal with
this question was to see if professors felt the tagging was too annoying or time
consuming to do for every project. One professor selected the multiple choice
"Yes", one selected "No", and the remaining three selected "Other" and elaborated.
All three of these responses were positive about the tag system and said they
wouldn’t mind using it, but expressed dissatisfaction with the selection of tags
available in the prototype. Two professors requested the ability to create custom
tags in response to this. As explained in section 6.5.5, we chose not to allow custom
tags in our prototype due to the complexity they add to filtering. We suspect that if
we had supplied a more complete set of tags, or explained that it was intentionally
limited or could be added by administrators, sentiment about the tagging system
would have been more positive among professors.

Three of the five professors reported issues or confusion while completing this
task. One felt that the font size was a bit small. While we did design the site to
work with web browser zoom functionality, we recognize that the default size
may be too small for the wide range of users our site needs to work for. This was
an oversight on our part. Another user was confused by the custom status option
for projects. We implemented this feature because it was specifically asked for
by multiple professors in our requirements elicitation interviews, but we could
have done a better job clarifying what it did and how it worked in the interface.
The third professor mentioned being unsure how to remove erroneous tags. We
thought that having the tags change their outline when hovered should have been
a clear enough affordance to show that they could be interacted with, but we
suspect the interface would have been more clear with a close icon in each tag to

116

encourage professors to hover over them.

Task 2 - Profile

Our next task required professors to visit their profile pages and add some tags
to reflect their academic interests. We then asked if professors were able to give
themselves tags that accurately reflected their project topics and interests. Predict-
ably, the responses to this question mirrored the responses to the previous one.
One professor answered "Yes," one chose "Somewhat", and the remaining three
answered "No." Although there were no "Other" responses with explanations in
this answer set, we can surmise that the same issue of limited tags and no cus-
tomization that made the previous task unsatisfying applied here. This is further
confirmed by the response to our next question.

We then asked the users if there there was anything that they felt was missing
from the profile screen. Two of the professors said they thought the profile was
fine, but that the selection of tags was insufficient. As has been mentioned before,
the set of tags present in our prototype was rather limited, and we expect this to
not be a problem in a full implementation of the system with more tags. The other
three professors felt that the profile was a bit empty, and wanted a place to enter
a free-text personal description or link to their NTNU profile page. Some students
shared this same feedback, so it is definitely a missed opportunity to have not
included this functionality. Additionally, one professor was confused that the tags
available on the profile were the same as those available for projects. The tags
in our prototype were chosen with project pages in mind, so some do not have a
clear meaning when applied to personal pages. However, we feel that using one
consistent set of tags is the right choice for this system, as it keeps the relationship
between personal tags and project tags immediately clear and consistent. The best
compromise would be to use a system to hide the inapplicable tags from the profile
editing screen. We considered such a system, but ultimately did not implement it
due to time constraints.

Next, we asked if the professors would rather redirect students to an external
profile entirely, and if so, why. The responses from professors favored both, re-
questing a profile within the matching system that also had a link to their NTNU
profile or other external profiles. One professor mentioned specifically that their
university profile includes their published research, which could be very helpful
for students deciding on a project advisor. This could have been easily implemen-
ted by giving professors a field for links, or a free text field on their profile as
discussed earlier.

Two users reported issues with this task. One repeated the earlier complaint
about a lack of close icons on the tag bubbles in the tag editing section. The other
user said "I believe the profile page did not work correctly," but did not elaborate
further. Our guess is that this user did not press the save button to save their
changes to the profile page, causing their edits to disappear when they next visited
the page.

Chapter 8: User Evaluation 117

Task 3 - Survey of Applications

Figure 8.7: Professor responses to the question "How easy is it to tell who is
applying to each project and what state their application is in?"
Mean: 2.20

In this task, we asked professors to visit their applications page and look over
their outstanding applications, taking note of the applications’ ranks and states.
We then asked professors how easy it was to find that information. The results,
displayed in Figure 8.7, were slightly less encouraging than expected. While no
professors felt that it was difficult to get an overview of the applications, two of the
four respondents felt neutrally about the interface, implying that it didn’t make
that information as clear as it could have. It may have been a mistake to pose
this question in reference to our own interface only rather than asking professors
to compare it to how they would accomplish the same thing in the current IDI
system.

As a follow-up, we asked the professors if they were able to find their projects
with open applications quickly. This gave us some more insight into the results dis-
cussed in the previous paragraph. Three of the professors responded positively, but
one said they had to "get used to the interface" to find the open applications. We
got one confused negative response from a professor who appeared to be looking
at a specific project’s details page rather than the application overview. Addition-
ally, one of the positive responses said that while it was visible and readable, they
still would have liked to be able to sort or filter this page by things like application
status. We believe that these complaints are likely a response to the page’s high
information density. Every one of the professor’s projects, along with all of their
applications, are listed on this page, with very little spacing between them. Within
each project, the application "cards" themselves are densely packed with student
information, application text, and comments. When presented with this interface
for the first time, especially if the page is already populated with data, users were
overwhelmed.

The suggestion of using filtering to control this page was interesting. We did

118

not consider it in our requirements, but it would make it easier to manage large
numbers of applications. By presenting the professor’s applications as a static page
separated by application status, we forced a specific order of information on the
page which does not necessarily match how the professors want to see that in-
formation. Given this feedback, it seems that allowing them to filter by project,
application status, and student would have been a better design.

Three professors reported confusion during this task. Two of the professors
did not understand the "auto-accept" tag that some of the applications had. This
is understandably confusing without context, especially for users who have never
used this system as a student. Showing some explanatory text on hover would be
a quick and effective way to address this. The remaining professor claimed that
they were seeing other professors’ project applications, which were irrelevant. This
is not possible within the system. Most likely this user was seeing the pre-made
projects already in the account and thinking they belonged to other professors,
because they had not been created by the professor in task 1.

Notably, one professor was not sure what the "priority" number meant either.
When designing the interface, we assumed that all of our users would already
understand this concept from their past experience with the IDI system. However,
if users do not have that experience or do not make that connection, they may
mistake the priority number for something generated by the system, rather than
a ranking chosen by the student themself. That misunderstanding could have an
impact on which students get offers for projects, so some sort of explanation is
definitely necessary.

Task 4 - Viewing a Profile

The next task required professors to view the profile of one of their applicants.
The fastest way to get to this profile was to click on the student’s name in the
application, but the name is not visibly a link unless it is hovered. We chose to
style the page this way because links naturally draw users’ eyes when they are
skimming pages, so cluttering a page with a large number of links makes it hard
to read. To make sure that this wasn’t confusing, we asked professors if they were
able to find the student’s profile easily. Four of the five respondents said yes, so it
seems that this UI choice was mostly acceptable. It is worth noting that the one
respondent who said no was also the user who was not on the right page in the
previous task, which suggests that they may have run into difficulty because they
were on a page with no profile links in the first place.

Next, we asked if the student’s profile and written application provided enough
information for the professors to evaluate them. Three of the four respondents
said that they wanted more information from the student’s profile than just tags.
The information they requested ranged from technical academic information like
grades and a full course history to personal statements like favorite course and
extracurricular activities or hobbies. These are all things that the professors could
ask for in comments or via email, but given the wide range of information that

Chapter 8: User Evaluation 119

professors asked for, the best solution is likely to add a free text box to the profile
page as discussed before. The fourth respondent stated that they did not use pro-
files or personal information at all, and assigned projects solely based on ranking.

In response to our question about issues with the task, one professor left a very
helpful comment about the tags on the student’s profile. They explained that the
headers on the tag categories were confusing, even though the tags themselves
were understandable. In their example, the "Method" section on the student’s pro-
file was confusing, because it could either mean research methods the student has
worked with in the past, or research methods the student wants to work with in
the future. One possible way to fix this would be to use different tag group head-
ings on student and professor profiles specifically to make it more clear how the
tags should be read.

One professor struggled to find a profile because they were looking at their
newly-created project’s details page rather than the overall applications page. This
was the same professor who incorrectly believed that they were viewing others’
projects in the previous task. It seems likely that they clicked into the details of
their own newly-made project, which had no applications, and thus had no stu-
dent profile links to click on.

Task 5 - Responding to Comments

In the next task, we asked professors to respond to some comments left by students
on their applications. After the users had completed the task, we asked "How does
answering followup questions and comments in the application compare to
doing it via email? Would you have preferred it if the student emailed you?"
Overall, responses were positive, with four of the five professors saying that they
appreciated having the whole history and context in one place. However, three
of the five professors were concerned about having another communication sys-
tem to have to check in addition to email, Microsoft Teams, Blackboard, Piazza,
and more. This once again underscored the importance of notifications, so that
checking this system can be a part of checking email rather than a separate task.
Additionally, one professor simply said they would prefer email with no further
detail.

Task 6 - Managing Applications

For this task we had the professors accept and reject a few pending applications.
Following this, we asked the question "With this system, all applications to a
project are listed together on the same page. Did that change the way you
approached evaluating the applications?" Responses were mixed, which was
expected for this question. One professor was pleased that they were able to see
the exact list of members in each group, and also said the ranks were easier to
see. Three other professors said that it did not particularly change the way they
worked, while the last one declined to answer. This kind of question would be bet-

120

ter assessed by a long-term A/B test to compare differences in project assignment
using our prototype and the IDI system.

Following that, we explained that when a student accepts an offer, their other
applications are automatically retracted. We then asked professors if they thought
this behavior would make managing a large number of applicants easier. Re-
sponses to this question were generally positive, but indicated some confusion
on the part of the users. This was likely due the way the question was posed, as
it attempted to explain a mechanic of the system that was largely relevant to stu-
dents rather than professors, and that the professors could not see in action for
themselves. One professor interpreted this as saying that accepting an applica-
tion would close a project from future applications, and so asked for the ability to
toggle this behavior, as some projects can accept multiple students or groups. An-
other stated that they wanted to know how many other applications the student
had open in response to this question, which is a seemingly unrelated desire, as
the student’s other applications become irrelevant as soon as they accept an offer.
We still believe that this behavior will be helpful to professors, as it automatically
eliminates invalid candidates, but it is clear that it should either be explained to
them more clearly or hidden from them entirely.

The following question was similar. We explained the reprioritization behavior
for applications, wherein a student’s application lower-priority applications are
automatically ranked higher to fill the gap. We then asked the professors if they
thought that behavior would make managing a large number of applicants easier.
Responses were similarly mixed. Three professors responded "Yes", one responded
"No", and the fifth abstained because they felt they did not understand the ranking
system well enough to comment. Again, this implies that although these details
may help professors select candidates for their projects, they may not want or
need to know about them in such detail. The student responses to these features
were much more clearly positive and less confused, which we believe is because
it is more immediately obvious to students how these behaviors are helpful. It
seems that what matters for professors is that applications have accurate statuses
and ranks, which these systems help ensure. The exact mechanisms of how that
comes to be are unimportant.

Finally, we asked if the professors found application priorities useful when
selecting students. Four professors responded positively, while one did not feel
strongly about priorities. One professor left some additional feedback on ranks
that was particularly interesting. They said that although ranks are useful, they
find them difficult to use in evaluation because there are no concrete protocols
around them. The professor mentioned not knowing how long to wait for more
applicants before choosing a student based on rank, or what to do when a student
ranks a project but doesn’t send an application. While we have solved the latter
issue by tying ranks directly to applications in our system, we intentionally did not
attempt to solve the former. Making changes to the process as a whole, such as
enforcing a minimum open time for projects, was out of the scope of the project.
However, this was a specific pain point which we heard from professors during our

Chapter 8: User Evaluation 121

requirements elicitation as well, and which we strongly believe that universities
should address by setting some policies about open application periods in addition
to using this system.

Task 7 - Closing Projects

In the next task, users were asked to close out any of their projects that had
reached their application capacity. We then asked them if they would prefer for the
system to automatically close at-capacity projects for them. Results were evenly
split, with two respondents saying yes and two saying no. The fifth respondent
declined to answer, saying they do not set capacities for their projects. This is the
result that we expected to see from our test, and is why we chose not to automate
this feature. From our interviews, we know that some professors view project
capacities as hard limits which they won’t go over, but for others they are just sug-
gestions, or they don’t set limits at all. While it would be possible to introduce a
checkbox for professors to tick if they wanted projects to close automatically upon
reaching capacity, we believe that keeping the process manual to avoid accidental
project closures is the best option.

We also asked professors the question "When a project is closed, it is re-
moved from the main project list for students, but students can still visit
its details page if they have the link. Is that what you’d expect to happen?"
and received similarly mixed answers. Two professors said yes and two said no,
with one "other" answer asking what the point would be (which we interpret as
another "no"). We asked a followup qualitative question which drilled into the de-
tails. One professor felt that allowing students to see closed projects would lead
to them sending emails asking for slots in closed projects, which was annoying
and a waste of time, while another felt that students should be able to see closed
projects precisely because they might be willing to offer more slots in their closed
projects. That second professor also mentioned that seeing closed projects could
help students get a better understanding of their academic interests.

Next, we explained that students cannot see closed projects unless they have
direct links to them, and then asked the professors if they would prefer for students
to still be able to see closed projects on the project search page. Two professors re-
sponded negatively, with one saying that letting students see closed projects would
just lead to time-wasting emails from students asking about them. One professor
responded exactly oppositely, suggesting that students should be able to see closed
projects precisely because the professor may be willing to take on additional stu-
dents for that project. Additionally, they brought up the point that seeing closed
projects may help students get a better sense of what types of projects the pro-
fessor likes to work on. While the first point can be addressed by professors not
closing their projects until the absolute end of the application period, the second
requires system changes that are worth considering. It is reasonable that a pro-
fessor could end up with only one open project left after their closing all of their
others, which would make it hard for students to get an idea of the type of work

122

that professor does. It might make sense to allow students to search for closed
projects on the main page, but keep them filtered out by default.

One professor reported being confused by the sorting of applications on the
page in this task. We show applications in order of update time, so that the most
recently sent or updated application appears first. We chose this sort order because
we had no notifications system to alert professors to new interactions, so we tried
to surface them as readily as possible. However, it may have been worthwhile to
allow professors to choose the sort order here instead.

Task 8 - Copying Projects

The final task asked professors to duplicate a closed project, edit some details,
and then save it as a draft. We then asked the question "Do you feel that cloning
and editing an older project is preferable to creating a new one? How did
this process compare to the new project creation process?" Four of the five
professors responded positively, with one stating that they often reuse their pro-
jects and another saying it was "always preferable." The final professor’s response
was neutral. This is even more strongly positive feedback than we expected, and
shows that we were right to call out project drafting and duplication as important
features.

Following that, we asked "Is it important to you to be able to create and
edit listings as drafts before publishing them?" Results were once again split,
with two "yes" answers and three nos. This is again unsurprising, and lines up with
what we heard in our pre-development interviews. Some professors like to cre-
ate template projects and copy and edit them repeatedly, while others write each
project from scratch. Accommodating both of those workflows was an important
part of our design.

8.2.3 Post-test Questions

The following questions were asked after the completion of all of the tasks listed
above. By this point, the users had acquired a decent understanding of our system,
so we could ask questions about the overall experience of using it.

Chapter 8: User Evaluation 123

Figure 8.8: Professor responses to the question "How difficult were the tasks you
were asked to complete in this test?"
Mean: 1.80

Students and professors were both asked this question as the first post-test
question. The goal was to assess whether our tasks had been unclear or frustrat-
ing for the user. The professor responses, seen in Figure 8.8, were almost all on
the easy side of the scale, implying that the test was not unusually difficult. The
student responses in Figure 8.4 were similar, though slightly more positive.

Figure 8.9: Professor responses to the question "How easy to use was this sys-
tem?"
Mean: 1.80

That question was immediately followed by a question about the difficulty of
using the prototype itself. The results in Figure 8.9 were mostly positive, with
the majority of our testers giving the system the best possible rating. However,
one user rated the system somewhat difficult to use. This was the same user who
struggled with the application tasks early in the test, which we believe influenced
this score. The positive result is slightly surprising given some of the negative
feedback in earlier portions of the test, but it is reasonable given that the point
of comparison for these professors was the existing IDI system, which is rather

124

difficult to use.
We then asked users if anything about the tool surprised them during the

test. The goal of this question was to prompt users to discuss things about the
app that were confusing or counter-intuitive. There were no negative responses
to this question, and one professor praised the colors we gave to tags. This was
surprising, as we expected more issues to come out in this question, but it shows
that our implementation lined up with professors’ expectations.

Next we asked what problems professors thought they might encounter if they
used the system in a real semester. Most of the issues raised here were repeats of
ones addressed earlier in this analysis – the selection of available tags, the lack of
notifications, and some interface complaints. One professor mentioned the cost of
onboarding professors to the new system. They also brought up the issue of not
having clear guidelines about application periods from the university. As discussed
before, we consider these details external to our prototype, but this response is
another reminder of the importance of rigorously defined policies around the tool,
as well as learning resources for professors to get started.

In our last quantitative question, we once again returned to the question of
large user counts. We asked "Do you feel this tool would help you manage a
large number of students and projects better?" Three of the four responses
were positive, one was negative, and one was neutral. The neutral responder felt
that followup conversations with students through this system may be difficult
because the tool required a separate login. Our interpretation of this response is
that the professor was worried about having to check a separate place than their
inbox for conversations - a worry that students also shared about professors. We
take this as yet another indicator that notifications are an important feature for
this type of system, to make sure that professors do not miss any followups. We
found that the professors we spoke to did nearly all of their communication via
email, so bringing conversations to their attention in the place they already look
for communications is important for any app following this scheme.

Following that, we asked professors what they thought was missing from the
system. None of the feedback here was new. The selection of tags in the prototype
came up once again, with the professor who brought it up saying that they would
want meetings with both professors and students to determine the best possible
list of tags. One professor requested free text fields in profiles again, and two
mentioned our UI again. All of these complaints have been addressed already
in this chapter. One professor did mention that they did not see how to search
other professors’ projects. The project listing is the main page of the website, but
we did not have any professor tasks that interacted with it, so this confusion is
understandable.

Finally, we asked how our system compared to the IDI system. The responses
were mostly neutral; most professors felt that it was very similar to the IDI sys-
tem, with a few improvements. None of the respondents were particularly excited
about the prototype, or felt that it solved their problems significantly. This was
unexpected, and not in line with the results from our student evaluation. Based

Chapter 8: User Evaluation 125

on our understanding of the problem, formalizing the application process and
connecting applications directly to projects should have solved a number of the
problems professors faced. However, it seems that most of the professors who took
our test did not consider that to be a significant improvement. Students were no-
ticeably more positive about it in contrast. This could imply that our choice of
solution was biased in favor of students rather than being an effective solution for
both parties.

Chapter 9

Discussion

This chapter synthesizes the technical results presented in chapter 7 with the user
evaluation performed in chapter 8 to build a thorough analysis of the success of
the prototype. This analysis is then extended to assess the requirements and design
principles that guided the prototype, including our conception of the problem and
overall choice of solution.

9.1 Success of the Prototype

In this section we will discuss the success of the prototype through the lens of
the motivations we established in chapter 5. This analysis is based on the user
feedback described in chapter 8, as well as the process comparison presented in
section 7.3 and task timings in section 7.4.

9.1.1 Evaluation Criteria and Priorities

We evaluate the success of the prototype in three areas: information availability,
ease of communication, and preventing lost applications. We believe that these
are all important metrics of success, as they are all ways to address the issues
brought on by an increasing number of students who need to be matched.

Information Availability

In order to make it easier for students to find the best projects and for professors
to find the best students, we attempted to expose richer information about pro-
jects, professors, and students in our prototype. We did this by adding student and
professor profiles, project tags, and project availability metrics.

Overall, we feel these features were successful in improving the amount of
valuable information available to users. The students who tested our prototype felt
that our professor profiles would make it much easier for them to find professors
who would be good to work with. Similarly, they felt that the tags we added
to projects made it significantly easier to find projects that were of interest to

127

128

them, and that those tags helped clarify a project’s goals and methods when its
description was unclear.

Student responses were more mixed on the application capacity information
that we added to projects; some students found it very helpful, while others felt
it would discourage them from applying to projects they were interested in. Ulti-
mately, we believe that this feature positively impacts the matching system. One
of our goals is to make it easier to manage large numbers of students. Encouraging
students to spread their applications among projects and not overload one pro-
fessor will ultimately reduce the amount of work necessary to balance workloads
which normally has to be taken on by administrators.

The professors who tested our application were similarly positive about pro-
files and tagging, though they wanted more flexibility and expressiveness in both
the tags and profiles. Most importantly, the professors did not feel that adding this
information was a painful or unnecessarily time-consuming process, which means
that the benefits of these features for students would be achievable in a real sys-
tem. With a larger number of tags available and needing to repeat the process
for each of their actual projects, the experience might become less tolerable how-
ever. Additionally, they were positive about having their own profiles to quickly
communicate their research interests to students.

We also believe that the changes we made to project rankings to tie them to
applications and automatically update them as students accept and reject other
offers will significantly improve the decision-making process for professors. Al-
though responses from professors about these features were mostly confused, we
believe that is due to poor question formatting on our part rather than an issue
with the features. These features allow professors to more quickly see the actual
priority of every application and ignore applications from students who already
have projects, which will speed up the decision process significantly.

Facilitating Communication

To make the negotiation process more efficient and less stressful for students and
professors, we required students to write applications to each project they were
interested in and introduced a comments system for followup discussion with pro-
fessors. Previously, students could rank projects without actually applying, and all
conversations with professors had to happen over email or in person.

Students were strongly positive about these changes. They were more comfort-
able sending comments within this system than via email, and felt that the added
context of having their applications attached to a specific project made it easier to
explain what they were interested in and why they were a good candidate. They
also liked having their academic history in their profiles so that they would not
need to repeat that information in multiple applications. We believe that these
changes will make communication during the negotiation process easier for stu-
dents who are less confident in emailing professors directly, mitigating one of the
biggest weaknesses of a negotiation-based matching system.

Chapter 9: Discussion 129

Professors also liked the added context to their communications within this
system. They felt that it was very helpful to have the student’s application text
and followups in the same place as the accept and reject options. They were less
certain about not also having the conversations in their inboxes, as email is their
main communication form, but we believe that the benefits of having all of the
communication between students and professors formally organized into specific
applications will outweigh the drawbacks. This is especially true if email notifica-
tions are put in place to make sure no new applications or comments are missed.

Preventing Lost Applications

One of the most concerning issues we identified with the existing IDI system was
the possibility for student applications to be lost in professors’ inboxes, as there
was no way to organize and track them. We addressed this by building the formal
application system, along with a page for professors that displays all of their ap-
plications grouped by project and status. As discussed above, professors were pos-
itive about formal applications because they removed a lot of ambiguity from the
process. The formal status tracking also helps ensure that professors and students
never have a misunderstanding about who needs to take the next step in the pro-
cess at any point. While we were not able to test whether this actually solves the
problem of forgotten applications, we strongly believe that we have fixed that
issue with these features.

Overall, we find that our prototype is successful at addressing many of the
problems identified with the IDI system, but could still be improved significantly.

9.1.2 Improvement over manual two-way negotiation

In this section, we compare our matching system to a basic two-way negotiation
system as defined in subsection 3.1.1 and show that it is greatly improved in terms
of speed of use and scalability. We consider the flow of one application through
each system to illustrate this. First, students must find the project they wish to
apply for, which can be done quickly and efficiently in our system using tag filter-
ing. Without filters, students must peruse a long list of projects which grows even
larger as student bodies increase in size. Then, the student applies for a project.
In our system, they do this directly on the project page. Without it, they have to
find the professor’s email address somewhere or visit their office to discuss their
interest. The professor then reviews the application and discusses the project with
the student. Without our system, this discussion would take place over a series of
emails with no formal tracking, or over a meeting or two. With our prototype, it is
directly attached to the application for both professors and students, and the ap-
plication has an informative rank to help the professor understand how interested
the student is. Finally, the professor must accept the application, which is easily
done in our prototype but may require more frustrating administrative work in a
generic two-way negotiation system.

130

At each step of the way, our prototype is able to save time without altering the
overall flow of the application. It makes projects easier to find with tagging, helps
professors evaluate students more quickly with rankings and profiles, and makes
accepting and rejecting applications simple. We believe that it is a clear improve-
ment over simple two-way negotiation without a system, while simultaneously
keeping the best features of two-way negotiation.

9.2 Success of the Requirements

In this section, we assess the success of the requirements we derived in chapter 5
at producing a useful prototype. As we noted in chapter 6, we found that we
needed to modify our requirements in the middle of development. However, that
modification was almost entirely about scaling down our goals due to time rather
than our requirements being ineffective. Once we began implementing, we only
found two requirements which we had missed in the initial set.

Overall, the user feedback reveals that the requirements we implemented in
our prototype were well received. More crucially, the user feedback revealed that
most of the requirements which we defined but had to cut were in line with
user desires. Both students and professors expressed a desire for notifications and
thesis proposals, which we have fully defined requirements for. The success of our
prototype combined with the calls for these features implies that our specifications
for the software were well-chosen.

It should be noted that our requirements for administrative features and data
exports have not been tested at all, and thus we cannot be confident about their
efficacy or correctness. We believe that these are crucial features for any full-scale
implementation of this system, so we have chosen to publish our requirements for
them regardless. Furthermore, we have some confidence in these requirements as
they were generated by the same elicitation method as the rest of our require-
ments, and those other requirements proved to be useful and well-chosen.

A feature that was mentioned occasionally in elicitation, feedback, and delib-
eration, was student-to-student interaction. While we did not construct require-
ments for these features, as we did not have a strong idea of where they would fit
into our system, we believe there is functionality to explore here. One particular
idea we considered was enabling students with an interest in a particular group
project to announce this under that project, which would free up professors from
trying to coordinate single students into groups. Another idea was to have public
spaces for students to request more information about projects, such that profess-
ors would not need to answer the same questions repeatedly. These features could
potentially be implemented together in a single comment field for each project.

Chapter 9: Discussion 131

9.3 Bias and Evaluation Problems

Our testing setup had a number of issues which could have biased our results.
This section details those issues and the impact we believe that they had.

First, we would like to point out the bias in our user recruitment process for
testing. As discussed in chapter 4, we first used a series of posts in student Face-
book groups to recruit. However, response was minimal, even after several posts.
In order to recruit a sufficient number of students, the researcher reached out
directly to students he had previously worked with in classes and asked them to
take the test. The researcher only had a brief working relationship with each of
these students, however the pressure of being contacted directly and knowing the
researcher who developed the project may have made some students want to re-
spond more positively. Additionally, all the students had graduated by the time
of the test, which may mean they were not under particular stress. The profess-
ors who took our test were contacted via direct email or in-person meetings with
the researcher’s advisor. This direct contact method may have similarly biased the
professors, although none of the contacted professors had previously worked with
the researcher. The professors were all still working, with upcoming deadlines for
grading exams, and may thus have found the test to be annoying during a stressful
work period.

Many of the requirements for student-facing features in this project were de-
rived from the researcher’s reflection on his experience using the IDI system. As
such, they may have been biased towards improving the student experience more
than the professor experience, resulting in a prototype that favors students rather
than being an effective solution for both parties. This may be the case given the
fact that the student response to the prototype was more positive than the pro-
fessor response.

In our test setup, we failed to set context on the state of the prototype or
the goal of our tests before asking users questions. This was in part due to the
shortcomings of remote testing; we felt that it would be too much text to ask users
to read through a full explanation of what we were testing for, while in person this
would have been a much quicker verbal explanation and could be reiterated if the
feedback got too focused on the interface. As a result of this missing context, and
some poorly-worded questions, many users evaluated our prototype on the merits
of its interface and test data rather than the features available. This feedback was
still useful, but because our primary goal was to evaluate the effectiveness of our
feature requirements, it was not directly related to what we were hoping to test.

It is also worth noting that in all of our testing, we asked users to compare
our prototype to the existing IDI solution. This makes sense for professors, who
had recently assigned projects in the tool for next year’s students at the time of
our testing. However, our student testers had not used that system at all since
selecting their projects one year ago, so their memory of its function and ability to
use it as a point of comparison may have been limited. We provided a link to the
listing page if they wished to refresh their memories, but the rest of the system

132

was unavailable. Additionally, students had used the IDI system to sort through a
long list of projects, and had done so under time pressure, which likely colored
their impression of it negatively.

The current IDI system is biased against students in a few ways. Professors deal
with a much smaller volume of data on a regular basis, primarily their own pro-
jects, while students have to sift through possibly hundreds of projects. Professors
also get familiarized with the system across multiple semesters, while students are
using the system for the first time. The stakes are additionally higher for students,
as the project they end up with decides who and what they will be working with
full time for the last two semesters, and ultimately what they will be graded on as
the capstone of a five year endeavour. On the other hand, while professors may
feel significant responsibility for the success and satisfaction of their students, a
bad match will only occupy a limited amount of their workload for the next two
semesters, and not affect them past that. With all of this in mind, we should expect
students to be more easily biased against the current IDI system, and eager to see
the potential improvements of a new system, as they would benefit more from an
easy-to-use system. Professors may be convinced if a new system addresses their
problems, but any system will need to make up for the added cost of the profess-
ors having to re-familiarize themselves with it, and so a new system will generally
face more criticism. These explanations align with our results, but this does not
rule out the possibility that our development itself favored the student experience.

Finally, it is worth noting that all of our users interacted with our system in a
very restricted and prescribed capacity. None of our tests asked for users to explore
the system freely or interact with other users. There are numerous complexities
and edge cases that can arise from this type of interaction which we did not at-
tempt to test. We partially addressed this flaw by asking users to imagine what
problems they might run into if they used the system in a real semester.

Chapter 10

Conclusion

As student bodies in engineering grow at NTNU and other universities, the final
year project matching process will only become more difficult. We have observed
evidence of this scaling problem at universities around the world. While many of
those institutions solved this problem by implementing systems for algorithmic
matching, we instead propose a solution that retains the control and personal
attention of manual matching while still facilitating larger student bodies. We have
presented a set of requirements for a scalable manual matching system derived
from our research and interviews, as well as a prototype software artefact which
implements some of those requirements. We then tested this prototype with users
of the existing IDI solution to evaluate the effectiveness of our requirements at
producing a high quality system that scales well to large student bodies.

Research Question 1: How can one design and develop a system for effective pair-
ing of master students with thesis projects for universities?
Using the design science methods described in section 4.1, the researcher de-
veloped a set of functional and non-functional requirements for the creation of
effective manual project matching systems. These requirements are specified in
chapter 5. They were derived from interviews with students, professors, and ad-
ministrators who had all previously engaged in the final year project matching
process. The researcher then developed a software prototype based on these re-
quirements with the goal of efficiently matching students to final year projects.
This prototype was then evaluated with user testing and other analysis techniques
in order to assess the accuracy and effectiveness of the requirements. Based on
the results of this evaluation, we believe that our presented requirements and de-
velopment methodology provide an effective way to develop a matching system.

Research Question 2: How does the software created for this paper compare to
existing solutions in terms of usability, user satisfaction, and features available?
To evaluate the usability of the IT artefact produced for this paper, the researcher
set up remote usability tests with 7 students and 5 professors using the prototype.

133

134

Using a questionnaire with both restricted and free response questions, the re-
searcher obtained qualitative and quantitative data about the experience of using
the application. Analysis of both types of data showed that the prototype software
was an improvement over the existing IDI process, particularly for students. Stu-
dents felt that our prototype was much easier to use than the IDI software, while
professors found it only somewhat easier to use. Both students and professors
were excited about the new features introduced in our prototype. Finally, stu-
dents felt that the prototype solved almost all of the problems they encountered
in the matching process, while professors were mixed on whether or not it would
help. We conclude that our prototype was only moderately effective at addressing
the issues of the current system. However, the feedback we received shows that
our requirements were accurate to user desires, implying that it was our imple-
mentation that could have been improved.

10.1 Future Work

Through the course of developing this project, the researcher gained a much
deeper understanding of project assignment systems. Due to time limitations in
the research, not every avenue of exploration could be pursued fully for this pro-
ject. Below we describe some possible areas of future work based on our learnings.

10.1.1 Unimplemented Requirements

As noted in chapter 6, we were not able to implement all of the requirements
we specified due to our time constraints. We focused on the core student and
professor experiences, and dropped the requirements relating to administrative
views entirely. An obvious direction for future exploration would be to imple-
ment these remaining requirements and evaluate how well they meet the needs
of administrators. Alternatively, designing and iterating on the underdeveloped
features of the system, such as the tagging types detailed in section 6.5.5 or the
student-to-student communication in section 9.2, could reveal entirely different
ways to improve the experience. Additionally, repeating user tests with some of
the cut features like notifications would be interesting, as those features were very
heavily requested in our feedback.

10.1.2 Impact of Popularity Metrics

Some of the student feedback we recorded in chapter 8 expressed concern that the
availability metrics we made available for projects (the number of open applica-
tions, accepted applications, and expected capacity) might deter the student who
is the best match for a project from applying to it due to competition. We consider
this an improvement to the matching system, as it should help spread the stu-
dent load among professors and projects. However, a rigorous study of how this

Chapter 10: Conclusion 135

information affects student behavior would probably be necessary before putting
it into use at a large scale.

10.1.3 Student Selection System

Our requirements and prototype focused entirely on building a one-way prefer-
ence system where students rank projects and professors can only accept or reject
applications. It could be worthwhile to investigate inverting this relationship and
allowing professors to search through students according to their personal tags
and offer them projects, or invite them to apply. While we dismissed that idea
in this paper as it seems like it would increase administrative load rather than
decrease it, testing it as an alternate pathway could reveal unexpected benefits.

10.1.4 Tag Set

As discussed in chapter 6, we chose not to implement custom tags due to the
amount of interface and operational complexity that they generate. Instead, we
focused on a small set of hand-selected tags for our prototype. Professors and
students were both interested in having more tags to express themselves better
within our prototype. Some research and experimentation to determine the best
set of tags and categories within various fields would be essential to make this
sort of system work in real scenarios.

Bibliography

[1] A.-B. Hunter, S. L. Laursen and E. Seymour, ‘Becoming a scientist: The
role of undergraduate research in students’ cognitive, personal, and pro-
fessional development,’ Science Education, vol. 91, no. 1, pp. 36–74, 2007.
DOI: 10.1002/sce.20173. [Online]. Available: https://onlinelibrary.
wiley.com/doi/abs/10.1002/sce.20173.

[2] S. Hussain, K. A. A. Gamage, M. H. Sagor, F. Tariq, L. Ma and M. A. Imran, ‘A
systematic review of project allocation methods in undergraduate transna-
tional engineering education,’ Education Sciences, vol. 9, no. 4, 2019, ISSN:
2227-7102. DOI: 10.3390/educsci9040258. [Online]. Available: https:
//www.mdpi.com/2227-7102/9/4/258.

[3] R. A. I’Anson, K. A. Smith et al., ‘Undergraduate research projects and dis-
sertations: Issues of topic selection, access and data collection amongst
tourism management students,’ Journal of Hospitality, Leisure, Sport and
Tourism Education, vol. 3, no. 1, pp. 19–32, 2004.

[4] T. Barber and V. Timchenko, ‘Student-specific projects for greater engage-
ment in a computational fluid dynamics course,’ Australasian Journal of
Engineering Education, vol. 17, no. 2, pp. 129–138, 2011. DOI: 10.1080/
22054952.2011.11464055.

[5] N. I. S. I. Jailani, A.-F. Mubarak Ali and S. Ngah, ‘Final year project al-
location system techniques: A systematic literature review,’ in 2022 IEEE
12th Symposium on Computer Applications & Industrial Electronics (ISCAIE),
2022, pp. 99–104. DOI: 10.1109/ISCAIE54458.2022.9794501.

[6] J. Harland, S. Pitt and V. Saunders, ‘Factors affecting student choice of
the undergraduate research project: Staff and student perceptions,’ Bios-
cience Education, vol. 5, no. 1, pp. 1–19, 2005. DOI: 10.3108/beej.2005.
05000004. [Online]. Available: https://doi.org/10.3108/beej.2005.
05000004.

[7] R. Calvo-Serrano, G. Guillén-Gosálbez, S. Kohn and A. Masters, ‘Mathem-
atical programming approach for optimally allocating students’ projects
to academics in large cohorts,’ Education for Chemical Engineers, vol. 20,
pp. 11–21, 2017, ISSN: 1749-7728. DOI: https://doi.org/10.1016/j.
ece.2017.06.002. [Online]. Available: https://www.sciencedirect.
com/science/article/pii/S1749772817300301.

137

https://doi.org/10.1002/sce.20173
https://onlinelibrary.wiley.com/doi/abs/10.1002/sce.20173
https://onlinelibrary.wiley.com/doi/abs/10.1002/sce.20173
https://doi.org/10.3390/educsci9040258
https://www.mdpi.com/2227-7102/9/4/258
https://www.mdpi.com/2227-7102/9/4/258
https://doi.org/10.1080/22054952.2011.11464055
https://doi.org/10.1080/22054952.2011.11464055
https://doi.org/10.1109/ISCAIE54458.2022.9794501
https://doi.org/10.3108/beej.2005.05000004
https://doi.org/10.3108/beej.2005.05000004
https://doi.org/10.3108/beej.2005.05000004
https://doi.org/10.3108/beej.2005.05000004
https://doi.org/https://doi.org/10.1016/j.ece.2017.06.002
https://doi.org/https://doi.org/10.1016/j.ece.2017.06.002
https://www.sciencedirect.com/science/article/pii/S1749772817300301
https://www.sciencedirect.com/science/article/pii/S1749772817300301

138

[8] D. Kazakov, ‘Coordination of student project allocation,’ 2001. [Online].
Available: https://www-users.cs.york.ac.uk/kazakov/papers/proj.
pdf.

[9] Y. Cheung, G. Meng Hong and K. Keng Ang, ‘A dynamic project allocation
algorithm for a distributed expert system,’ Expert Systems with Applications,
vol. 26, no. 2, pp. 225–232, 2004, ISSN: 0957-4174. DOI: https://doi.
org/10.1016/S0957-4174(03)00137-4. [Online]. Available: https://
www.sciencedirect.com/science/article/pii/S0957417403001374.

[10] M. Hasan, K. M. Sahari and A. Anuar, ‘Implementation of a new preference
based final year project title selection system for undergraduate engineer-
ing students in uniten,’ in 2009 International Conference on Engineering
Education (ICEED), IEEE, 2009, pp. 230–235.

[11] D. J. Abraham, R. W. Irving and D. F. Manlove, ‘Two algorithms for the
student-project allocation problem,’ Journal of discrete algorithms, vol. 5,
no. 1, pp. 73–90, 2007.

[12] L. Wan-hong, ‘A web-based project allocation system interim report,’ Uni-
versity of Hong Kong, 2017.

[13] R. B. Abdul Wahab, ‘Final year project online management system (fypos):
Client and server design,’ 2012.

[14] P. Johannesson and E. Perjons, An Introduction to Design Science. Springer
Cham, Jul. 2014, ISBN: 978-3-030-78132-3. DOI: 10.1007/978-3-030-
78132-3.

[15] A. Dresch, D. P. Lacerda and J. A. V. Antunes, ‘Design science research:
A method for science and technology advancement,’ in Design Science Re-
search. Springer International Publishing, 2015, pp. 67–102, ISBN: 978-3-
319-07374-3. DOI: 10.1007/978-3-319-07374-3_4. [Online]. Available:
https://doi.org/10.1007/978-3-319-07374-3_4.

[16] D. Zowghi and C. Coulin, ‘Requirements elicitation: A survey of techniques,
approaches, and tools,’ in Engineering and Managing Software Requirements,
A. Aurum and C. Wohlin, Eds. Springer, Berlin, Heidelberg, 2005, pp. 19–
46. DOI: 10.1007/3-540-28244-0\{_}2.

[17] PM Solutions, ‘Strategies for project recovery,’ Tech. Rep., 2011. [Online].
Available: https://www.pmsolutions.com/resources/view/strategies-
for-project-recovery/.

[18] A. Davis, O. Dieste, A. Hickey, N. Juristo and A. M. Moreno, ‘Effective-
ness of requirements elicitation techniques: Empirical results derived from
a systematic review,’ in 14th IEEE International Requirements Engineering
Conference (RE’06), 2006, pp. 179–188. DOI: 10.1109/RE.2006.17.

https://www-users.cs.york.ac.uk/kazakov/papers/proj.pdf
https://www-users.cs.york.ac.uk/kazakov/papers/proj.pdf
https://doi.org/https://doi.org/10.1016/S0957-4174(03)00137-4
https://doi.org/https://doi.org/10.1016/S0957-4174(03)00137-4
https://www.sciencedirect.com/science/article/pii/S0957417403001374
https://www.sciencedirect.com/science/article/pii/S0957417403001374
https://doi.org/10.1007/978-3-030-78132-3
https://doi.org/10.1007/978-3-030-78132-3
https://doi.org/10.1007/978-3-319-07374-3_4
https://doi.org/10.1007/978-3-319-07374-3_4
https://doi.org/10.1007/3-540-28244-0\{_}2
https://www.pmsolutions.com/resources/view/strategies-for-project-recovery/
https://www.pmsolutions.com/resources/view/strategies-for-project-recovery/
https://doi.org/10.1109/RE.2006.17

Bibliography 139

[19] M. O. Ahmad, J. Markkula and M. Oivo, ‘Kanban in software development:
A systematic literature review,’ in 2013 39th Euromicro Conference on Soft-
ware Engineering and Advanced Applications, 2013, pp. 9–16. DOI: 10.1109/
SEAA.2013.28.

[20] J. Nielsen, ‘Usability metrics,’ Tech. Rep., 2001. [Online]. Available: https:
//www.nngroup.com/articles/usability-metrics/.

[21] J. Nielsen and J. Levy, ‘Measuring usability: Preference vs. performance,’
Communications of the ACM, vol. 37, no. 4, pp. 66–75, Apr. 1994, ISSN:
0001-0782. DOI: 10.1145/175276.175282. [Online]. Available: https:
//doi.org/10.1145/175276.175282.

[22] S. K. Card, T. P. Moran and A. Newell, The Psychology of Human-Computer
Interaction. Laurence Erlbaum Associates, Inc., 1983, ISBN: 0-89859-859-1.

[23] S. K. Card, T. P. Moran and A. Newell, ‘The keystroke-level model for user
performance time with interactive systems,’ Communications of the ACM,
vol. 23, no. 7, pp. 396–410, Jul. 1980, ISSN: 0001-0782. DOI: 10.1145/
358886.358895. [Online]. Available: https://doi.org/10.1145/358886.
358895.

[24] I. S. MacKenzie, ‘Fitts’ law as a research and design tool in human-computer
interaction,’ Human–Computer Interaction, vol. 7, no. 1, pp. 91–139, 1992.
DOI: 10.1207/15327051hci0701_3. [Online]. Available: https://doi.
org/10.1207/s15327051hci0701_3.

[25] K. Pernice, ‘Scanning patterns on the web are optimized for the current
task,’ 2017. [Online]. Available: https://www.nngroup.com/articles/
eyetracking-tasks-efficient-scanning/.

[26] C. M. Barnum, Usability testing essentials: ready, set... test! Morgan Kaufmann,
2020.

[27] K. Whitenton, ‘Unmoderated user tests: How and why to do them,’ Tech.
Rep., 2019. [Online]. Available: https://www.nngroup.com/articles/
unmoderated-usability-testing/.

[28] D. R. Chand and A. M. Chircu, ‘Chapter 3: Business process modeling,’ in
Business enterprise, process, and technology management: Models and applic-
ations, V. Shankararaman, J. Leon Zhao and J. K. Lee, Eds. Business Science
Reference, 2012, pp. 187–212, ISBN: 9781466602502.

[29] M. von Rosing, S. White, F. Cummins and H. de Man, Business process model
and notation – bpmn, 2015.

https://doi.org/10.1109/SEAA.2013.28
https://doi.org/10.1109/SEAA.2013.28
https://www.nngroup.com/articles/usability-metrics/
https://www.nngroup.com/articles/usability-metrics/
https://doi.org/10.1145/175276.175282
https://doi.org/10.1145/175276.175282
https://doi.org/10.1145/175276.175282
https://doi.org/10.1145/358886.358895
https://doi.org/10.1145/358886.358895
https://doi.org/10.1145/358886.358895
https://doi.org/10.1145/358886.358895
https://doi.org/10.1207/15327051hci0701_3
https://doi.org/10.1207/s15327051hci0701_3
https://doi.org/10.1207/s15327051hci0701_3
https://www.nngroup.com/articles/eyetracking-tasks-efficient-scanning/
https://www.nngroup.com/articles/eyetracking-tasks-efficient-scanning/
https://www.nngroup.com/articles/unmoderated-usability-testing/
https://www.nngroup.com/articles/unmoderated-usability-testing/

Appendix A

User Evaluation Questions

This appendix contains the full text of the user questionnaires used to generate re-
sponses in chapter 8. This includes the exact task instructions, as well as full text
and response options for each question. A response option of "Other" is accom-
panied by a text field to let users specify. Some questions included URLs linking
to specific web pages; these links have been removed, as some of them pointed to
internal university resources.

A.1 Student Questionnaire

This questionnaire was given to our student testers. Each section description fol-
lowing this point is a verbatim quote from the questionnaire.

Pre-Task Questions

These questions are to help us understand your familiarity and history with project
assignment systems. You may leave any questions you do not wish to answer blank.

Several of these questions make reference to the existing IDI project assignment
system. This system is not fully accessible due to ongoing changes, but the project
listing component can still be found at [link removed].

• Did you use the IDI specialization/master project assignment system to find
a thesis project to work on?

◦ Response Options: Yes, No

• How easy was the IDI system to use?

◦ Response Options: Rank from 1 (Very easy to use) to 5 (Very hard to
use)

• Did you already know the professor you chose to work with before you
applied for their project?

◦ Response Options: Yes, No

141

142

• How many projects did you apply for?
• Has the large number of projects in the IDI system caused you any trouble?

◦ Response Options: Yes, No, Other

• What did you like about the IDI project system?
• What did you dislike about the IDI project system?

Task 0 - Get an Account

You will use an account that has already been populated with some data in order
to complete these tasks. To begin, select the “Get Student Account” button at the top
right. This will take a few seconds to complete as the system generates data for your
account.

Task 1 - Profile

Before you start searching for projects, you should set up your profile to reflect your
interests. This profile will help professors get to know your background and augment
the information you include in your applications. Visit your profile and add tags to
reflect your interests.

• Do you like the idea of having a profile that’s visible to professors? What
information would you want it to show?
• Do you think having a profile will save you time when applying to projects?

◦ Response Options: Yes, No

• Was there anything that was confusing or did not work correctly?

Task 2 - Finding a Project

You want to apply to a project that involves games. You also want to work with Lucas
Li, a professor whose course you really enjoyed. Find some games-related projects
posted by Lucas Li, then visit the details page of the one with the least applicants.

• Did you use the filtering system to find these projects?

◦ Response Options: Yes, No

• How easy was it to find the projects you were looking for?

◦ Response Options: Rank from 1 (Very easy) to 5 (Very hard)

• By default, projects on the main page are filtered according to your academic
history and interests as defined in your profile. Do you think this would be
helpful when trying to find masters topics?
• If you were using this tool to pick your masters topic, would you use the

filtering system to search for relevant projects?

◦ Response Options: Yes, No, Other

Chapter A: User Evaluation Questions 143

• Is it helpful to see the number of applicants and offers on each project? What
do you like or dislike about that?
• Was there anything that was confusing or did not work correctly?

Task 3 - Creating an Application

Now that you’ve found an interesting project, apply to it. If you’d like, choose to
automatically accept an offer to work on this project. The content of your application
does not matter. For example, you can paste "This project sounds interesting to me! I
worked on something similar last summer."

• Is this process comparable to how you got a project in the IDI system?

◦ Response Options: Yes, No, Other

• How does applying to projects in this system compare to applying via email?
• Do you like the idea of having formal applications within this system? Why

or why not?
• If you chose to automatically accept an offer, then this project becomes your

final choice the moment the professor offers it to you. Is this a feature you
would make use of?

◦ Response Options: Yes, No, Other

• Was there anything that was confusing or did not work correctly?

Task 4 - Finding a Group Project

You also want to apply to a project with some friends, and none of you want to
perform user evaluation. Find any project that accepts groups but doesn’t include
user evaluation, then visit its details page.

• If you were using this tool to pick your masters topic, would you find it
useful to filter out certain tags or requirements? If not, why not?
• Was it intuitive to combine positive and negative filters?

◦ Response Options: Yes, No, Other

• Was there anything that was confusing or did not work correctly?

Task 5 - Creating a Group Application

Create an application to the project you just found, adding your friends Alice Alaine
(“alicea”) and Ingrid Innsmouth (“ingridi”) to the application as group members.
The content of this application does not matter. For example, you can paste "Alice,
Ingrid, and I worked on a project like this in one of our classes last year. We’d really
like to take on this project!"

• Was it easy to add the other students to your application?

◦ Response Options: Yes, No, Other

144

• How does doing group applications this way compare to doing them via
email?
• Was there anything that was confusing or did not work correctly?

Task 6 - Ranking Applications

At this point you have applied to a few projects. Now would be a good time to manage
those applications. Visit your applications page and assign ranks to them in any order
you want.

• Was it easy to tell which application had which rank?

◦ Response Options: Yes, No, Other

• In this system, lower-ranked applications are automatically moved up when
a higher-ranked application is rejected. Is that something you’d expect to
happen?

◦ Response Options: Yes, No, Other

• Was there anything that was confusing or did not work correctly?

Task 7 - Responding to Comments

Lucas Li asked for more details on your academic history. Reply to his question (the
content of your reply does not matter). For example, you can write "Yes, i had that
topic in recommender systems last year."

• How does discussing a project with a professor in this system compare to
doing it via email?
• Would you feel more comfortable using this system to communicate with a

professor about a project than emailing them directly?

◦ Response Options: Yes, No, Other

• Was there anything that was confusing or did not work correctly?

Task 8 - Accepting an Offer

You have an offer on one of your applications! Accept that offer.

• Was it clear which application had an offer?

◦ Response Options: Yes, No, Other

• After accepting an offer, your other applications were automatically revoked,
and you were removed from the group application you were a part of. Is that
something you’d expect to happen?

◦ Response Options: Yes, No, Other

• Was there anything that was confusing or did not work correctly?

Chapter A: User Evaluation Questions 145

Task 9 - Complete the Test

Thank you for your time! To conclude the test, press the “Finish Test” button in the
top right. This will log you out of your test account and remove your edits from the
system.

Post-Test Questions

Now that you are familiar with the system and have performed some core tasks in it,
these questions aim to assess the system’s successes and failures in providing useful
accommodations for project matching.

• How difficult were the tasks you were asked to complete in this test?

◦ Response Options: Rank from 1 (Very easy) to 5 (Very hard)

• How easy to use was this system?

◦ Response Options: Rank from 1 (Very easy to use) to 5 (Very difficult to
use)

• How did this system compare to the existing IDI solution?
• Was there anything that surprised you about the tool during the tasks you

completed?
• What problems do you think you would encounter if you used this system

to find a thesis project in a real semester?
• Do you feel this tool would help you find interesting projects more quickly?

Why or why not?
• Was there anything you felt was lacking or missing from the system?

A.2 Professor Questionnaire

This questionnaire was given to our professor testers. Each section description
following this point is a verbatim quote from the questionnaire.

Pre-Task Questions

These questions are to help us understand your familiarity and history with project
assignment systems. You may leave any questions you do not wish to answer blank.

Several of these questions make reference to the existing IDI project assignment
system. This system is not fully accessible due to ongoing changes, but the project
listing component can still be found at [link removed]

• How much experience do you have with the IDI specialization project as-
signment system?

◦ Response Options: Rank from 1 (Used it very little) to 5 (Used it for
years)

146

• Have you used any other systems for project assignment before? If so, what
were they?

◦ Response Options: No, Other

• What do you like about the IDI project system (or other systems you’ve
used)?
• What do you dislike about the IDI project system (or other systems you’ve

used)?
• Has the large number of students and projects caused you any trouble with

the IDI system?

◦ Response Options: Yes, No, Other

• What is your primary method for managing project applications and ques-
tions from students currently?

Task 0 - Get an Account

You will use an account that has already been populated with some data in order to
complete these tasks. To begin, select the “Get Professor Account” button at the top
right. This will take a few seconds to complete as the system generates data for your
account.

Task 1 - Create a Project

Now that you have logged in, you want to create a new project listing. The title and
description of the project are not important, but you should try to tag it appropriately
for whatever topic you enter. Your project should be open for applications and have
a capacity of two groups. It should only accept groups, not single students.

As an example, the project could be called “Collaborative Games for IT and Sus-
tainability”, with a description like “There is a growing effort to integrate sustainab-
ility in IT education. As part of this larger effort, this task will focus on the develop-
ment of collaborative games for increasing awareness about the role of IT in reaching
the UN Sustainable Goals.” This project would have tags like “Software Systems”,
“Games”, and “Environment”. You are free to use these example values verbatim if
you wish.

• How did the process of creating a project in this system compare to project
creation/listing in any project tracking systems you have used in the past?
• Was there anything you felt was missing from the project creation process?
• If you used this tool to track all of your projects, could you see yourself

tagging all of them using this system?

◦ Response Options: Yes, No, Other

• Was there anything that was confusing or did not work correctly?

Chapter A: User Evaluation Questions 147

Task 2 - Edit your Profile

As a professor, you have a profile in the system that can help you communicate your
interests to students. Users viewing your new project may want to know more about
the professor they might be working with, so you should update your profile. Edit
your profile to include a few tags that match your academic interests. For example,
“Education”, “Virtual Reality”, or “Machine Learning”.

• Were you able to give yourself tags that accurately reflect your project topics
and interests?

◦ Response Options: Yes, Somewhat, No, Other

• Was there anything you felt was missing from your profile page?
• Would you rather direct students to an external profile instead? If so, why?
• Was there anything that was confusing or did not work correctly?

Task 3 - Survey your Applications

Two of your projects have applications from students for you to review. Inspect the
applications on both projects, but do not take any actions on them yet. Take note of
the ranks of the applications and the students involved.

• How easy is it to tell who is applying to each project and what state their
application is in?

◦ Response Options: Rank from 1 (Very easy) to 5 (Very difficult)

• Were you able to find the projects with open applications quickly?

◦ Response Options: Yes, No, Other

• Was there anything that was confusing or did not work correctly?

Task 4 - View an Applicant’s Profile

To get a better picture of one of your applicants, navigate to their profile and take a
look at their interest and academic history tags.

• Were you able to find the student’s profile easily?

◦ Response Options: Yes, No, Other

• Did the student’s profile, along with their written application, provide enough
information for you to evaluate whether you would offer them the project?
If not, what was missing?
• Was there anything that was confusing or did not work correctly?

Task 5 - Respond to a Comment

On the Natural Language to Long-Range Path Plans project in your project list, a
student has asked for clarification on whether you will accept group applications.

148

Navigate to that project’s page and send the student a reply (the content of your
reply does not matter).

• How does answering followup questions and comments in the application
compare to doing it via email? Would you have preferred it if the student
emailed you?
• Was there anything that was confusing or did not work correctly?

Task 6 - Manage your Applications

For the Long-Range Path Plans project, reject the student who ranked it the lowest,
and add a comment explaining why (the content of this comment does not matter).
Then send an offer to the student who ranked the project the highest. Next, check the
applications to your other project about Predicting Hospital Readmission. It should
now have only one viable application for you to accept.

• With this system, all applications to a project are listed together on the same
page. Did that change the way you approached evaluating the applications?
• When a student accepts an offer, their other applications are automatically

retracted. Do you think this would make managing a large number of ap-
plicants easier?

◦ Response Options: Yes, No, Other

• When a student’s application is rejected, their lower-priority applications
are automatically increased to fill the gap. Do you think this would make
managing a large number of applicants easier?

◦ Response Options: Yes, No, Other

• In the IDI system as well as this system, do you find application priorities
useful to you when selecting students?
• Was there anything that was confusing or did not work correctly?

Task 7 - Close a Project

The group you offered the Long-Range Path Plans project to has automatically ac-
cepted your offer, which means you’ve hit the set capacity for that project. Close the
project so that no more students can send in applications.

• Would you prefer to have the system close your projects automatically when
they reach the capacity you chose?

◦ Response Options: Yes, No, Other

• When a project is closed, it is removed from the main project list for stu-
dents, but students can still visit its details page if they have the link. Is that
what you’d expect to happen?

◦ Response Options: Yes, No, Other

Chapter A: User Evaluation Questions 149

• Would you prefer for students to still be able to see closed projects on the
main page? If so, why?
• Was there anything that was confusing or did not work correctly?

Task 8 - Clone an Old Project

There is another closed project from the previous year in your history that you would
like to list again this year. Its title is “Time- and Space-Efficient Aggregate Range
Queries over Encrypted Databases (2021)”. Copy it and edit the year to match the
current time, then set it as a draft. Afterwards, publish the draft.

• Do you feel that cloning and editing an older project is preferable to creat-
ing a new one? How did this process compare to the new project creation
process?
• Is it important to you to be able to create and edit listings as drafts before

publishing them?

◦ Response Options: Yes, No, Other

• Was there anything that was confusing or did not work correctly?

Post-Test Questions

Now that you are familiar with the system and have performed some core tasks in it,
these questions aim to assess the system’s successes and failures in providing useful
accommodations for project matching.

• How difficult were the tasks you were asked to complete in this test?

◦ Response Options: Rank from 1 (Very easy) to 5 (Very difficult)

• How easy to use was this system?

◦ Response Options: Rank from 1 (Very easy to use) to 5 (Very difficult to
use)

• Was there anything that surprised you about the tool during the tasks you
completed?
• What problems do you think you would encounter if you used this system

for your thesis project management in a real semester?
• Do you feel this tool would help you manage a large number of students

and projects better?

◦ Response Options: Yes, No, Other

• Was there anything you felt was lacking or missing from the system?
• How did this system compare to the existing IDI solution, or other project

listing systems you’ve used?

Project Assignm
ent Softw

are
O

din Johan Vatne

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

ar
tm

en
t o

f C
om

pu
te

r S
ci

en
ce

Odin Johan Vatne

Project Assignment Software

Specifications for an Improved Project
Assignment Software for use by Universities with
Larger Student Bodies

Master’s thesis in Computer Science
Supervisor: Guttorm Sindre
July 2022

M
as

te
r’s

 th
es

is

	Abstract
	Sammendrag
	Preface
	Contents
	Figures
	Tables
	Introduction
	Motivation
	Previous Work
	Research Questions
	Scope
	Contribution
	Report outline

	Background
	Master's Theses and Student-Advisor Matching
	Existing IDI System
	Features
	Project Lifecycle
	Issues and Omissions

	Related Works
	Classifying Project Assignment Systems
	Two-Way Negotiation Systems
	One-Way Preference Systems
	Two-Way Preference Systems
	Student-Lead Systems

	Existing Project Assignment Systems
	Coordination of Student Project Allocation (2001)
	A dynamic project allocation algorithm for a distributed expert system (2004)
	Preference Based Final Year Project Title Selection System (2009)
	Additional Works

	Outcome of Review

	Methods
	Development Methodology
	Interviews
	Task Backlog
	Time-to-Task Evaluation
	Keystroke-Level Modeling System
	User Evaluation
	Process Modeling

	Software Requirements and Specs
	Goals
	Non-goals
	Functional Requirements
	Project Lifecycle
	Application Lifecycle
	Student Views
	Professor Views
	Administrative Views
	Automatic Processing
	Notifications
	Filtering
	Thesis Proposals
	Exportable Data

	Implementation
	Choice of Technology
	Web vs. Desktop vs. Mobile
	Programming Language Choice
	Framework Choice

	Personas and Scenarios
	Professor Personas
	Student Personas

	Scenarios
	Revised Requirements
	Project Lifecycle
	Application Lifecycle
	Student Views
	Professor Views
	Automatic Processing
	Filtering
	Thesis Proposals

	Design Decisions
	Group Applications
	AJAX
	Profiles
	Automation
	Tags
	Filter Totals
	Ranking Interface

	Testing and Deployment
	Test Data
	Deployment
	Test Accounts

	Results
	Software Walkthrough
	Data Models
	Process models
	Project Search
	Project Listing
	Application Lifecycle
	Full Matching Process

	Time-to-Task
	Project Creation
	Finding a Project

	User Evaluation
	Student Responses
	Pre-test Questions
	Task Questions
	Post-test Questions

	Professor Responses
	Pre-test Questions
	Task Questions
	Post-test Questions

	Discussion
	Success of the Prototype
	Evaluation Criteria and Priorities
	Improvement over manual two-way negotiation

	Success of the Requirements
	Bias and Evaluation Problems

	Conclusion
	Future Work
	Unimplemented Requirements
	Impact of Popularity Metrics
	Student Selection System
	Tag Set

	Bibliography
	User Evaluation Questions
	Student Questionnaire
	Professor Questionnaire

