
N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

ar
tm

en
t o

f C
om

pu
te

r S
ci

en
ce

Petter Bjørseth

New visual programming approaches
for robots

Master’s thesis in Computer science
Supervisor: Michael Engel
July 2022

M
as

te
r’s

 th
es

is

Petter Bjørseth

New visual programming approaches
for robots

Master’s thesis in Computer science
Supervisor: Michael Engel
July 2022

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of Computer Science

Abstract

Robot programming is a complex endeavour that requires advanced programming

skills. Visual programming aims to reduce the syntactic complexity of programming

languages and ease development of complex applications.

This thesis explores visual programming approaches for robots that aim to reduce

the complexity of robot programming. This is done by creating a simple visual

programming language that compiles to Java code. This Java code can then be run

in the Webots robot simulator.

This visual programming language is evaluated as less complex and simpler to learn

for non-programmers. It does, however, still require some programming knowledge

to use efficiently.

i

Sammendrag

Programmering av roboter er et komplekst problemomr̊ade som krever avanserte

programmeringsferdigheter. Visuelle programmeringsspr̊ak ønsker å senke den syn-

taktiske kompleksiteten til programmeringsspr̊ak og senke terskelen for å utvikle

komplekse applikasjoner.

Denne masteroppgaven utforsker muligheten for å anvende visuelle programmer-

ingsspr̊ak for å redusere kompleksiteten ved programmering av roboter. Dette

utføres ved å utvikle et enkelt visuelt programmeringsspr̊ak som kompilerer til Java

kode. Denne Java koden kan deretter kjøres i robot simulatoren Webots.

Dette visuelle programmeringsspr̊aket evalueres til å være mindre komplekst, og

enklere å lære for ikke-programmere. Det krever dog fortsatt noe kunnskap om

programmering for å kunne brukes effektivt.

ii

Preface

This thesis continues the work from the specialization project TDT4501. For this

reason, and since it might not be available to the reader, some parts of chapter 2

are adapted or directly taken from the report of that project [1].

iii

Contents

Abstract i

Sammendrag ii

Preface iii

List of Figures vii

1 Introduction 1

2 Previous work 3

2.1 Visual programming . 3

2.2 Statecharts . 3

2.2.1 Clustering . 4

2.2.2 Orthogonality . 5

2.2.3 Default states . 6

2.2.4 History . 6

2.2.5 Economizing of arrows . 7

2.2.6 Condition and selection entrances 7

2.2.7 Delays and timeouts . 8

2.2.8 Unclustering . 8

2.2.9 Actions and activities . 9

2.2.10 Broadcast . 9

2.2.11 Problems with statecharts . 10

2.3 Coordinating robotic tasks and systems with rFSM statecharts 10

2.4 The ArmarX statechart concept: graphical programming of robot

behavior . 12

2.5 RAFCON . 13

iv

2.6 Scratch . 14

3 Technologies 16

3.1 Eclipse Modeling Framework . 16

3.2 Xtext . 16

3.3 Xtend . 16

3.4 Yakindu Statechart Tools . 17

3.5 Webots . 17

4 Implementation 18

4.1 General approach . 18

4.2 Yakindu Statechart Tools . 18

4.2.1 Language . 19

4.2.2 Grammar . 20

4.2.3 Code generation . 21

4.3 Webots . 21

4.4 Extending the language . 22

5 Results 27

5.1 Line follower example . 30

6 Discussion 33

6.1 Webots . 33

6.2 Complexity . 33

6.3 Yakindu Statechart Tools . 34

6.4 Visual and textual components . 34

6.5 Event-based vs cycle-based execution 35

7 Conclusion and future work 36

v

7.1 Future work . 36

References 37

Appendix 39

A Complete Yakindu Statecharts grammar 39

vi

List of Figures

1 A simple state machine [4] . 3

2 A simple example of clustering [4] . 4

3 Orthogonal state in statechart. [4] . 5

4 The orthogonal state from 3 modelled without orthogonality. [4] . . . 6

5 Economical representation of arrows [4] 7

6 Different ways to represent a condition entrance [4] 7

7 Timeout of a state [4] . 8

8 A simple state machine [4] . 9

9 Structural model of rFSM [7] . 11

10 Basic state machine classes of RAFCON [9] 14

11 A sample scratch script [10] . 15

12 Overview of Yakindu Statecharts language [15] 19

13 Grammar of StatechartScope in Xtext 20

14 Grammar of ScopeDeclaration in Xtext 20

15 Ecore model of Yakindu Statechart Tools type system 21

16 Nodes of a robot in Webots . 22

17 Some methods of the class DistanceSensor 22

18 Overview of the compilation process 23

19 Robot definition section . 23

21 Robot element class . 24

20 Robot scope parsing . 24

22 Generating functions to identify each element 25

23 Generating robot functions . 25

24 Main method . 26

25 Definition sections . 27

vii

26 Main statechart region . 28

27 Function that is executed upon entering the state ’Drive’ 29

28 Function that is executed upon entering the state ’Turn’ 29

30 Green lines showing the infrared sensors on the robot 30

29 Condition checked on each cycle while in the state ’Drive’ 30

31 Picture of the robot following the line in Webots 31

32 Definition section for line follower example 31

33 Main statechart region for line follower example 32

viii

1 Introduction

Robot programming is a very complex task. It requires advanced programming

skills, and intricate knowledge of the robot itself. This makes it very difficult to get

into as a novice. It is a considerable effort to learn both programming and robotics,

which means it is accessible only to those who are willing to dedicate a lot of time

to learn this skill.

The world is becoming increasingly technological, and the demand for software en-

gineers is increasing [2]. The world is becoming increasingly dependent on software,

and there is constantly software that needs to be created or updated. An increas-

ing number of software applications are written by people without formal software

development training [3].

Visual programming languages are programming languages where the program is

expressed graphically rather than textually. They are commonly used educationally,

with languages such as scratch, as well as to spark interest for programming. They

simplify the process of learning programming by making the behaviour of programs

easier to visualize, and reducing the need for deep syntactical knowledge. Though

they are mostly used for education, they are also used for real-world applications.

Statecharts are a visual formalism for complex systems. It was invented by Harel to

address the weaknesses of traditional state machines [4]. Over the years, statecharts

has been included and adapted in many projects and variants. One variant has

become part of UML, yielding a rise in popularity.

Multiple researchers have succeeded in using statecharts for robot programming.

In these cases statecharts are used as a visual programming language, usually com-

bined with a conventional programming language. Statecharts are then handling the

structure of the program, while the conventional programming language handles the

underlying behaviour.

This project looks at new visual programming approaches aimed at programming

robots. For this purpose, statecharts are utilized, as it is well-suited to model

complex, reactive systems. It is natural to use in such a situation since it uses boxes

and arrows that make it easy to understand the behaviour and flow of a program.

The aim of this is to reduce the complexity of programming robots, and to make it

more available to those with little programming knowledge.

The overarching goal of this project is to explore the usage of visual programming for

robot applications. This will include creating a simple visual programming language

that can compile to a robot controller that can be run in the Webots robot simulator.

1

This thesis will first look at previous work done on visual programming as well as

robot programming. It will then introduce the technologies used in this project.

Then the implementation of the visual programming language is explained. The

results of this are then presented. Then these results are discussed, before finishing

with a conclusion and a discussion of future work.

2

2 Previous work

2.1 Visual programming

Visual programming languages allow the programmer to create applications by ma-

nipulating visual objects. This is usually done with a combination of boxes and

arrows, where the boxes represent an action, and the arrows represent a transition

between these actions. Typically, this is done to make programming more accessible

and easier to understand for people who do not have a comprehensive understanding

of the field.

Repenning [5] identifies three main cognitive challenges when it comes to program-

ming. The first one is syntactic challenges. They deal with arranging the compon-

ents of a programming language into well-formed programs. Visual languages aim

to reduce the syntactic challenges by removing the need for deep knowledge of the

syntactic structure of the language. Since less text is used there is less room for syn-

tactic errors. Secondly, semantic challenges are about the user comprehending the

meaning of the program. And finally, pragmatic challenges deal with the practical

concerns of programming languages. This can include understanding what programs

do in specific situations.

2.2 Statecharts

Finite-state machines are widely used as a mathematical model of computation. A

finite-state machine can be in one state at a given time, and changes state based

on the input it receives. Even though they are commonly used in many different

fields, they are severely underpowered to model complex, reactive systems. This is

mainly due to the number of states growing exponentially as the system grows in

complexity. Figure 8 shows a very simple state machine. It consists of three states,

and transitions between them.

Figure 1: A simple state machine [4]

In 1987, Harel presented a broad extension to state machines, to enable it to model

3

complex systems [4]. This extension is called statecharts and adds multiple new fea-

tures that give additional capabilities not possible in the original concept. Possibly

the most important additions are orthogonality, clustering and broadcast commu-

nication. The sections below will highlight some of the most important features of

statecharts, as it lays the foundation for the rest of the work in this project.

2.2.1 Clustering

Clustering creates a hierarchy of states, where two or more states are contained

within the same superstate. If state A is a superstate containing state B and C, if

the system is in state A it must be in either state B or C, but not both. In other

words, this superstate is the XOR of the two states. This superstate can be seen as

an abstraction of the substates it contains.

In statecharts, a transition leaving a superstate represents a transtition leaving all

substates. This is a very important aspect of statecharts, as it is one of the main ways

it economizes arrows. Arrows represent transitions in both finite-state machines and

statecharts. One of the reasons that regular state machines are underpowered to

model complex systems, is that the number of states and arrows simply grow too

large. With clustering and clever ways to bundle transitions together, statecharts

are able to reduce the number of arrows significantly. This enables it to model larger

systems without becoming too cluttered for human comprehension.

Figure 2: A simple example of clustering [4]

Figure 2 shows a simple example of clustering. State A and C are contained within

state D. The arrow labeled β show a transition leaving state D, which then also

represents leaving state A and C.

4

2.2.2 Orthogonality

Orthogonality is another feature introduced by statecharts to simplify the modeling

of complex systems. An orthogonal state also contains multiple substates, just

like superstates in clustering. The difference is that to be in an orthogonal state the

system must be in all of its substates. This means that the system can be in multiple

states at the same time, enabling concurrency. Orthogonal states severely reduce

the amount of states needed to model complex systems. This is clearly illustrated

by comparing figure 3 and figure 4. Figure 3 shows a simple orthogonal state with

2 components containing 2 and 3 substates respectively. Figure 4 shows this same

state modelled without ortogonality. This system contains 6 states, since it contains

all combinations of the substates. This is not a huge deal in this simple system, but

if each component in the orthogonal state contained a thousand states, the number

of states in the system without orthogonality would reach one million.

Figure 3: Orthogonal state in statechart. [4]

5

Figure 4: The orthogonal state from 3 modelled without orthogonality. [4]

2.2.3 Default states

Default state refers to one state being entered unless otherwise specified. If we have

a state A containing substates B and C, and B has a default arrow pointing at it,

it will be entered when entering A, unless it is specified that C should be entered.

This can simplify the model, as some transitions can be replaced by default states.

It can also make it easier for humans to understand the flow and logic of the system.

2.2.4 History

History is another way to determine which state to enter without the use of explicit

arrows. It is represented with an ”H”, and specifies that the most recently visited

state should be entered. It can also be coupled with a default arrow, which means

that if the system has not been in this state before, and therefore has no history, it

should enter the default state.

Specifying ”H” applies the history feature just to the current level. It is also possible

to apply this feature to this level as well as all levels below. This is specified by an

asterisk: ”H*”. To have the history applied to some levels below, but not all, one

would have to specify it at the levels it should apply to.

Statecharts also provide two actions clear-history(state) and clear-history(state*).

The first action is used to clear the history of a state, while the second one is used

to clear the history of a state as well as all levels below the state. When these are

6

used the history is forgotten, and default states will be used.

2.2.5 Economizing of arrows

Statecharts allow arrows to represent transitions with common sources, targets or

events to merge. This results in a less cluttered, easier to understand graphical

model. However, this functionality should be used with some caution. If one is

not careful, subtle contradictions can occur. One example of this is shown in the

rightmost example of figure 5: one arrow splits into two arrows. In this case it is

unclear if arrow α or arrow β should be chosen.

Figure 5: Economical representation of arrows [4]

2.2.6 Condition and selection entrances

Condition and selection are two ways to enter substates that provide more possibil-

ities than a single arrow. They are similar to history in that enable entering a given

state based on some criteria.

Figure 6: Different ways to represent a condition entrance [4]

The condition entrance enables the programmer to specify a condition which de-

termines which state to enter. The programmer can choose how to represent this

condition, as illustrated in figure 6. The decision is typically based on how complex

7

the condition in question is. If the condition is to complex to be effectively visual-

ized in the chart, the full details should be provided separately. The rational is to

keep the graphical visualization clear and concise, while enabling the opportunity

for advanced functionality.

The selection entrance determines which state to enter based on the value of a

generic event. Given a number of states, the event would contain a value which

chooses between the states. This makes the event a selection that chooses between

some number of clearly defined options.

2.2.7 Delays and timeouts

Figure 7: Timeout of a state [4]

Timeouts trigger an event a specified time after the occurrence of an event. This is

specified using the expression ’timeout(event, number)’. Statecharts also provides a

simple way to express that a state will be left after a given time period. Figure 7

shows that this is represented with a squiggle and a time condition. This means that

the system cannot linger in this state for longer than 2 seconds. It is also possible

to use lower bounds, specifying that the system has to remain in a state for a given

amount of time.

2.2.8 Unclustering

Statecharts are created with the use of computerized graphics in mind, which was

quite a new idea at the time of the original paper [4]. The paper puts great emphasis

on using zooming and similar functions to enable the programmer to express the

general layout of the system, as well as the details of each part. In other words, one

can zoom out to see an overview without seeing the details, but zoom in to see the

details of each part.

8

2.2.9 Actions and activities

Pure statecharts represent the control part of the system. To make this system fully

functional we need some way to generate events, in addition to reacting to them.

This is where actions come in. Actions are expressed with the following notation:

”.../S” (1)

This notation is then attached to the label of a transition, where S is the action.

The dots in the notation are replaced by the event triggering the action. So if event

α triggers action S, the notation would be α/S.

In statecharts, actions are instantaneous, and should be considered as occurences

which take zero time. They are not long-running, and only use the time it takes to

actually send the signal. In addition, actions are not solely used for triggering other

events in the system, but could be the output of the system as a whole.

In addition to actions, activities are introduced. Where actions are instantaneous

and ideally take zero time, activities always take at least some time. This allows

computations to be done, and other functionality can be implemented. To start and

stop activities we require two special actions: start(X) and stop(X), where X is the

given activity. To start a given activity upon entering a state, start(X) could be

attached to the entering transition. In addition to this the condition active(X) can

be used to check if a given activity is running.

2.2.10 Broadcast

Statecharts implement broadcast communication. This means that if a state gen-

erates an event, all other states in the chart sense this event. This event can then

trigger another event in another part of the system.

Figure 8: A simple state machine [4]

9

2.2.11 Problems with statecharts

All the projects discussed in the sections below, while basing themself on statecharts,

make modifications to create their own version. They change how some features

work, and remove other features entirely.

One common criticism of statecharts is the broadcast feature. This feature triggers

events in different parts of the system than from which it originated. This eliminates

the concept of modularity, which is commonly employed in software development.

Modularity is commonly used both for reusability of components and ease of under-

standing of the system. Many states that broadcast events make the relationships

between different components difficult to understand, as well as making systems

more error prone.

Breen [6] argues that statecharts are too subtle. One of his arguments is that it can

be difficult to understand all interactions between states, as well as the implications

of an event, which makes it difficult to notice errors and inaccuracies. He also argues

that the clustering and abstractions that can be done make it difficult to understand

the entire system, as well as the details.

2.3 Coordinating robotic tasks and systems with rFSM stat-

echarts

rFSM [7] stands for restricted finite state machine, and is a minimal subset of UML2

and Statecharts. It is used to simplify the programming of robot programming, and

is based on the separation of four concerns:

1. Communication: how entities communicate

2. Computation: defines functionality

3. Configuration: how computations are configured, and how computations com-

municate

4. Coordination: managing individual entities so the system as a whole behaves

as specified

The paper argues that robotic software frameworks focuses on communication, com-

putation and configuration, but forgets to focus on coordination, which is often en-

tangled in computation and communication. This can lead to problems for both

10

reusability and robustness, as the code governing the coordination between com-

ponents gets mixed in with the functionality of the components. This could make it

harder to reuse this functionality in similar components. rFSM therefore introduces

a separate coordination entity to handle the coordination between components.

rFSM bases itself on the widely used semantics of UML state machines. The focus

is on being composable, to support reuse of coordination component, and of existing

models within each other. It consists of only three elements: states, transitions and

connectors.

Figure 9: Structural model of rFSM [7]

States can be either a composite state or a leaf state. A composite state is a state

that contains child nodes, while a leaf state does not. In rFSM only a single leaf

state can be active at once. This is an important point, because it means that rFSM

does not utilize the parallel states that statecharts introduced, and therefore does

not have concurrency in and of itself. The reason for this decision is that parallelism

requires making a number of platform-specific assumptions about the underlying

concurrency mechanism. This does not work well for reusability.

Instead of orthogonal states defined in the statechart formalism, rFSM takes a

loosely coupled approach where multiple state machines can be used on different

machines over a distributed network. Using multiple hosts restricts the communica-

tion of these parallel components to a clearly defined interface. This improves many

of the issues with the parallelism included in the statecharts formalism.

rFSM has entry and exit behaviours. These behaviours are executed when entering

or and leaving a state. In addition to this, the do activity is executed while the

11

system is in a given state. The do activity is restricted to leaf states, and is therefore

not permitted in composite states.

The rFSM state machine works by calling the step function. This function advances

the machine one step. In doing this, it retrieves all events that happened since

the last time step was called. The system then searches for a transition triggered

by an event, starting from the top of the hierarchy. The first transition enabled

by one of the events found in this search is executed, and the system searches no

further. Transitions further up the hierarchy therefore have a higher priority, and

the execution of the system becomes deterministic.

2.4 The ArmarX statechart concept: graphical program-

ming of robot behavior

ArmarX statecharts [8] are similar to rFSM. The main difference is that while the

separation of coordination and computation is enforced in rFSM, it is only encour-

aged in ArmarX.

ArmarX enables runtime-reconfigurability, as well as no need for recompilation on

layout changes. This simplifies the process when making changes to a system, as

the time needed to test the changes is greatly reduced. This is done by enabling

the programmer to define the statecharts in configuration files. Since these files do

not have to be compiled, they can be changed at runtime. It also enables runtime

introspection, which makes the debugging process significantly easier.

The aim of ArmarX is to reduce the complexity of programming robotics software.

It attempts to achieve this by separating the structure of the application from the

behaviour. This is done by using statecharts as the structural component, while

enabling the programmer to use conventional programming languages to specify the

behaviour. The paper presenting ArmarX lists 5 key principles:

1. Modularity

2. Reusability

3. Runtime-reconfigurability

4. Decentralization

5. State disclosure

States in ArmarX has explicitly specified input and output, and no direct interaction

is allowed between sub-states of different parent states. This is to ensure modularity,

12

which in turn improves reusability. Since each state has explicitly specified inputs

and outputs, it creates a clearly defined interface which other states can interact

with. This means that states are easy to reuse in multiple parts of the system.

ArmarX includes the same functionality as rFSM when it comes to running the

system on multiple hosts. In contrast to rFSM, though, ArmarX allows some par-

allelism on one host, but still not in the same way has the original statecharts. In

ArmarX, each active state can contain an asynchronous user code function. This

enables some form of orthogonality, but still without allowing parallel states as in

the original specification.

2.5 RAFCON

RAFCON stands for RMC advanced flow control and is presented in the paper

”RAFCON: A Graphical Tool for Engineering Complex, Robotic Tasks” [9]. It is

also made for graphical robot programming, but is more inspired by flowcharts than

by statecharts. This was done because statecharts are inherently event-driven. The

creators of RAFCON argues that event-driven systems are error-prone. They argue

this because event-driven systems have to deal with issues such as event caching,

event prioritization, event expiration and parallel event handling.

The paper also argues that statecharts have too many features. These features,

while one one side making some work easier for the programmer, on the other hand

increases complexity and error-proneness of the system. Since robotic programming

is already a very complex field, one can argue that the focus should be on making

it as easy as possible.

Figure [9] shows the basic state machine classes of RAFCON. RAFCON has three

types of states: ExecutionStates, HierarchyStates and ConcurrencyStates. Ex-

ecution states are leaf states which contain the functionality of the system, while

hierarchy states are superstates containing child states.

Concurrency states are superstates where all child states are executed in parallel.

This is essentially equvialent to the orthogonal states in statecharts. In contrast to

rFSM and ArmarX, RAFCON chooses to implement this feature, and argues that

it is crucial to applications needing several tasks to be accomplished at once.

13

Figure 10: Basic state machine classes of RAFCON [9]

2.6 Scratch

When talking about visual programming languages it is worth mentioning Scratch.

Scratch is a visual programming language intended for education [10]. The language

is extremely easy to use, and is aimed mainly at children. It works by connecting

different blocks together. Different blocks have different effects, which enables the

user to create and execute programs. Even though the language is not really used for

robot programming, it is relevant for this project in that it is intended for education,

as well as simply sparking an interest in programming. Scratch being very easy to

learn, as well as having a very simple user interface makes it extremely accessible to

people with little experience in programming. Its over 80 million users [11] seem to

indicate that this is an effective approach.

14

Figure 11: A sample scratch script [10]

15

3 Technologies

This section will introduce some of the different technologies that are utilized in this

project.

3.1 Eclipse Modeling Framework

The Eclipse Modeling Framework (EMF) is a modeling framework and code gen-

eration facility [12]. It enables the programmer to build applications based on a

data model. EMF produces Java classes from a model specified in XML Metadata

Interchange (XMI). EMF works by specifying models in XMI (XML Metadata Inter-

change), and then producing a set of java classes for the given model. This removes

the need for the programmer to manually create the classes from models, as EMF

does it automatically.

A significant advantage of this appears when making changes to the model. The

code can be regenerated, so any changes to the model is easily implemented in the

code. This could be a significant amount of work when making changes to the model

in later stages of development.

3.2 Xtext

Xtext is a framework for developing programming languages and domain-specific

languages [13]. It is a part of the Eclipse Modeling Framework Project. Xtext

provides a grammar language which can be used to specify a language. This enables

Xtext to generate an ANTLR parser, in addition to classes for the model. Xtext

provides a parser, linker typechecker and compiler. The Xtext grammar derives an

Ecore model.

3.3 Xtend

Xtend is a Java dialect which compiles into readable Java code [14]. It is general

purpose and high-level, and as it compiles to java code, it integrates with all java

libraries. Xtend aims to provide a more syntactically compact and less verbose ver-

sion of Java, in addition to providing some additional functionality. This includes

operator overloading, type inference and extension methods. Xtend is mainly an

object oriented language, but implements some features from functional program-

ming. An example of this is lambda expressions. Xtend uses the same type system

16

as Java, and is statically typed.

3.4 Yakindu Statechart Tools

Yakindu Statecharts Tools is a tool for developing event-driven systems. It uses

statecharts to graphically program reactive systems. It supports graphical editing

of statecharts, and provides validation, simulation and source code generation of

the models. Yakindu Statechart Tools uses a combination of graphical modeling

and textual modeling.

3.5 Webots

Webots is a free and open-source robot simulator. It allows the user to add objects

and robots to a simulated world. It includes many different prebuild robots and

sensors, as well as actuators and objects. The user may also create their own mod-

els and add them to the simulation. The robots can be programmed using robot

controllers. Webots supports robot controllers programmed in C, C++, Python,

ROS, Java and MATLAB. Webots uses a fork of Open Dynamics Engine for col-

lision detection and rigid body simulation. This enables it to simulate a realistic

physics environment.

17

4 Implementation

This section will describe the implementation of the visual programming language.

The implementation is based on the latest open source version of Yakindu Statechart

Tools. How Yakindu Statechart Tools works will therefore first be discussed, before

moving on to how it is extended in this project.

4.1 General approach

The aim of this project is to explore visual programming approaches for robots.

Since finding a real robot well suited for testing proved to be difficult, as well as to

ease the development process, it was decided to use a virtual robot simulator. The

simulator used in this project is Webots, which was chosen based on its simplicity

and ease of use.

The language itself is an extension of the language provided by Yakindu Statechart

Tools. This supports programming with statecharts, and can compile down to sev-

eral different languages. In this project the visual components compiles down to

Java, which is then compiled to Java Byte code, which is then run by the robot

simulator.

4.2 Yakindu Statechart Tools

Yakindu Statechart Tools is built upon the Eclipse IDE. Eclipse is a free and open-

source IDE used for software development. Yakindu Statechart Tools is a large

application, and this section will only discuss the parts that are relevant to this

project. This will mainly include how it compiles statechart models to executable

code.

As of version 4.0 the Yakindu Statechart Tools repository is read only, due to changes

to the licensing. This means that later versions are not open source. This project

is therefore based on the latest open source version.

18

4.2.1 Language

Figure 12: Overview of Yakindu Statecharts language [15]

Figure 12 shows an overview of the visual programming language available through

Yakindu Statechart Tools. It shows most of the basic elements that can be used to

create a program using statecharts.

The left side of the figure shows the definition section. In this section elements of the

statechart can be defined, which includes variables, events and operations. These

can be defined as interfaces, which can be exposed to and used by external code.

The user can also specify whether execution should be event-driven or cycle-based.

If event-driven is specified, the statechart will only respond to incoming events. If

cycle-based is specified, the statechart will run continuously and process events as

they are received.

The right side of the figure shows the main view the programmer will use to create

the statechart. This is composed mainly of states, as well as transitions between

states. The main region starts with an entry point which is the entry point to the

statechart, and is accompanied by a transition which arrives at the first state that

will be entered.

States and transitions define the behaviour of the program. These are organized

in regions. Different regions are essentially different statecharts. This means that

the programmer can specify different statecharts which can execute virtually con-

currently. The program is always in a given state, and transitions change the state

the program is in. Transitions are triggered by events, which can be raised outside

the scope of the statechart, or raised by code inside the statechart.

Inside each state the programmer can add text-based code. This code can do several

different things including raising events, checking conditions, and calling functions.

19

This text-based code enables adding complex functionality to the statecharts, and

creating complete applications without the need of much external code.

The code inside each state is always tied to a trigger. Examples of such triggers

are ’entry’ and ’oncycle’. Code following ’entry’ is executed upon entering the given

state. Code following ’oncycle’ is executed every cycle of the state machine while

in the given state. This means that all execution of such code is triggered by some

type of event, whether this event is raised inside or outside the statechart itself.

4.2.2 Grammar

The grammar of Yakindu Statechart Tools is written in Xtext. This parses the in-

put and generates corresponding Java objects that is later used for code generation.

Figure 13 and figure 14 shows the Xtext code for the grammar of ’StatechartScope’,

’InterfaceScope’ and ’ScopeDeclaration’. These together parse the input of an in-

terface. The rule ’InterfaceScope’ parses the declaration of the interface itself, with

an optional name, while ’ScopeDeclaration’ parses the fields of the interface.

Figure 13: Grammar of StatechartScope in Xtext

Figure 14: Grammar of ScopeDeclaration in Xtext

To generate Java classes for the parsed objects the Eclipse Modeling Framework is

20

used. Figure 15 shows the Ecore model for the type system of Yakindu Statechart

Tools. This model is defined visually, but compiles to usable Java classes.

Figure 15: Ecore model of Yakindu Statechart Tools type system

Yakindu Statechart Tools can compile statecharts to many different languages, such

as Java, Python and C. It uses the same grammar for all of these languages. Only

the code generation stage differs in the compilation process for different languages.

4.2.3 Code generation

The code generation is written partly in Java and partly in the Java dialect Xtend.

Xtend is used here as it is more concise and less verbose than plain Java. The code

generation differs depending on the target language. The code generation stage

takes the parsed objects and creates human-readable code in the specified language.

4.3 Webots

The implementation of this project uses the Webots API. Before describing the

implementation it is necessary to take a look at how this API works.

21

Figure 16: Nodes of a robot in Webots

A robot in Webots is composed of different nodes. A node can be the body of the

robot, a sensor, a motor, or some other part of the robot. Figure 16 shows a robot

with multiple nodes in Webots. These nodes correspond to different classes in the

API, and can be programmed in a robot controller.

Figure 17: Some methods of the class DistanceSensor

Figure 17 shows some of the methods available for the class ’DistanceSensor’ in the

Webots API. These classes are are utilized to create the robot controller during the

compilation process.

4.4 Extending the language

This implementation is based on the Yakindu Statechart Tools language discussed

in the previous section. That language is very general, and therefore needs more

specification for the applications of this project.

Specifically, this project aims to produce code that can be run within the Webots

22

Figure 18: Overview of the compilation process

robot simulator. Webots provides its own API to control robots, and the language

created here needs to use this API.

Figure 18 shows an overview of the compilation process. The programmer creates

an application using the visual interface. This then gets processed to XMI which

describes the different elements of the specified statechart. The parser then processes

this data and creates Ecore objects. Ecore objects are Java object created by the

Ecore model. In the code generation stage these objects are processed to create Java

code.

Figure 19: Robot definition section

The extension of the language relates mostly to the interactions with the different

parts of the robot. To be able to program the robot the application needs to know

what different inputs and outputs the robot has, i.e sensors and motors. This is

done by extending the definition section. As figure 19 shows, the programmer can

define a robot as well as the the elements it is composed by. This is separated into

input and output elements. Input elements will typically be sensors that feed the

application with some type of information, while the output elements typically are

some type of motor that the application can control in some way.

23

Figure 21: Robot element class

These elements have to be assigned a name that matches the respective elements

name in Webots. This is to ensure that each reference to this element in the stat-

echart code gets translated to a reference to the correct element in the compiled

code.

Figure 20: Robot scope parsing

The parsing of the robot elements is done in much the same way as interfaces, as

shown in figure 20. First, one defines the scope with an optional name for the robot.

Then, as many individual elements as necessary can be specified. Each element is

defined by an optional direction (i.e. in or out), a type and a name. The type of the

element has to match the type of the element in Webots, for example DistanceSensor

or Motor.

24

Figure 22: Generating functions to identify each element

Figure 22 shows the code that generates functions to initialize DistanceSensor and

Motor elements. These elements needs some initialization to work properly, due

to the way Webots work. Since each different input and output element works

differently, there needs to be exlplicit code generation for each individual type of

input and output element. This means that for each different type of sensor or

motor one would have to manually write code generation for each one.

Figure 23: Generating robot functions

Figure 23 show code generation for two function calls to the Webots API. This

generates code allowing the programmer to access the functionality provided by the

Webots API through the visual programming language. The code generation filters

the elements of the robot by the field ”ioType”, which corresponds to the class it is

in the Webots API. It then generates functions for this class which in turn calls some

type of function defined in the Webots API, which in turn enables the programmer

to get information from the sensors of the robot, or give instructions to the Motors.

25

Figure 24: Main method

Yakindu Statechart Tools is mainly intended to create state machines that are a

part of a larger application. This means that by default it does not create an entry

point, as it expects the programmer to create this separately. To make this imple-

mentation work on its own without the need for separate coding, a file containing

a main method needs to be created during code generation. This main method is

very simple: it creates and initializes the state machine, and then loops calling the

runCycle() method.

This implementation is not event-driven, since Webots does not support this style

and needs the controller to execute for each cycle of the simulation. This means

that the state machine executes a cycle for each cycle of the simulation.

26

Figure 25: Definition sections

5 Results

The result of this project is a working version of the visual programming language

capable of creating robot controllers for Webots. This language is not entirely

visual, but uses a combination of visual and textual elements to create a stand-

alone program. This combination allows the programmer to utilize visual elements

to specify the flow of the application. Furthermore, textual commands can be used

to specify the behaviour of the individual states of the application.

Initially, an interface needs to be created. This interface defines the different vari-

ables and events that can be used in the statechart. Figure 25 shows the definition

of an interface and a robot. The interface defines variables and events that can be

used in the statechart. Here, a variable ’counter’ is defined, which is an integer. In

addition two events are defined: ’sensor event’ and ’turn done’. These events can

then be used to trigger transitions between states.

The robot section defines the different elements the given robot is composed by.

Figure 25 shows a robot composed by two distance sensors and four motors. These

can then be accessed as objects in the statechart.

Figure 26 shows a simple example of a robot controller programmed with this lan-

guage. The robot in this example is composed by two distance sensors and four

wheels. The controller created by this statechart programs the robot to drive straight

forward until it encounters an obstacle. It then turns away from the obstacle, and

drives straight forward until the next obstacle.

The controller is entirely contained inside one region called ’main region’. This

region is composed by two states: ’Drive’ and ’Turn’, representing the robot driving

straight forward and the robot turning, respectively. The black circle in the top left

of the region is the entry point. This is where the state machine is entered. The

27

Figure 26: Main statechart region

28

arrow from the black circle then leads directly to drive, which is the first state that

is entered.

Inside the state drive there is some code. The commands following ’entry \’ is
executed upon entering the state. Here the command ’setVelocity(-2.0)’ is performed

on all the wheels defined earlier. ’oncycle’ defines commands that are executed every

cycle of the state machine. The conditions inside the brackets are called guard

conditions, and stop the commands following ’\’ from being executed unless the

conditions inside the brackets evaluate to true. In this case, if the condition inside

the bracket evaluate to true, the event ’sensor event’ is raised.

Between the states ’Drive’ and ’Turn’ there are arrows marked with labels. These

arrows are transitions that are taken when the event matching the label is raised.

When the event ’sensor event’ is raised while in the state ’Drive’, the state machine

will transition to the state ’Turn’.

This statechart is then compiled to readable Java code. Figure 27 shows the code

that is executed upon entering the state ’Drive’. This is a relatively straight forward

translation of the commands in the statechart.

Figure 27: Function that is executed upon entering the state ’Drive’

Figure 28: Function that is executed upon entering the state ’Turn’

29

Figure 30: Green lines showing the infrared sensors on the robot

Figure 29: Condition checked on each cycle while in the state ’Drive’

Figure 29 shows the compiled code for the condition expressed after ’oncycle’ in the

state drive. This reads the values from the sensors and checks it against the given

value. If the condition evaluates to true the ’sensor event’ event is raised.

5.1 Line follower example

This section will take a look at an example of programming a robot to follow a line.

This will use a simple robot with two wheels, and to infrared sensor pointing down

beneath it (shown in figure 30).

Figure 31 shows the robot following the line in Webots. This environment needs

to be set up before the robot controller can be run. The robot will try to follow

the line using the two infrared sensors. Using a black line on a white background,

the sensors return different values depending on the color of the material it detects.

When the left sensor detects that it is no longer over the line, the robot should turn

to the right, and when the right sensor detects that it is no longer over the line, the

robot should turn to the left.

30

Figure 31: Picture of the robot following the line in Webots

Figure 32: Definition section for line follower example

Figure 32 shows the definition section, defining one interface and one robot. The

interface defines one constant and three events. The constant controls the speed

of the robot, while the events define the transitions between the states. The robot

section defines the elements of the robot corresponding to how they are defined in

Webots.

The main section shown in 33 defines the behaviour of the robot controller. It

contains three states: ”Drive straight”, ”Turn Left”, and ”Turn right”.

The ”Drive Straight” state sets the velocity of the motors, making the robot drive

forward on entry. For each cycle it checks the value of both sensors, and if either

of them makes the criteria defined for not being over the line, it raises an event

31

Figure 33: Main statechart region for line follower example

corresponding to the direction the robot should turn.

The ”Turn left” and ”Turn right” states are very similar. On entry they set the

velocity of the wheel so that the robot turns, and then they return back to the

”Drive straight” state.

32

6 Discussion

This report has described the implementation of a visual programming language for

robots. The language is relatively simple, and can be used to create robot controllers

for the Webots robot simulator.

6.1 Webots

The goal of this project was to explore visual programming approaches for program-

ming robots. As it was difficult to get a well-suited robot to use in this project, it

was decided that using a robot simulator was the best alternative. This resulted

in choosing Webots as a simulator to test the language. When creating robot con-

trollers for Webots it is necessary to use the API they provide to get information,

and manipulate the behaviour of the robots. This means that the compiled result

of the visual programming language needed to utilize this API. As a result of this,

the language is very tied to the API of Webots, and not of very much use outside

this environment.

To adapt this language to other applications, for example embedded C code, the

code generation would need to be changed. The grammar and the parser should stay

the same, but the code generator needs to generate code that is compatible with

the target platform. Yakindu Statechart Tools provides a compiler that compiles

statecharts to C code, so only the additional robot specific code generation would

need to be added.

6.2 Complexity

Complexity is somewhat relative and difficult to measure. However, there are some

indications that this visual programming language is easier to use for novice pro-

grammers than using any other language with the Webots API.

Firstly, there is less text to write, meaning that there is less syntax to learn before

one is able to start programming. Learning the syntax of a programming language

can be a big road block when wanting to program.

Using boxes and arrows makes it easy to visualize how the program will behave in

a given situation. Furthermore, states can be labeled in a way that makes it clear

what happens when the program is in a given state. Together, this makes it very

intuitive to program with Separation of Concerns, even for people who have little

experience with this approach to problem solving.

33

This visual language is, however, not completely free from complexity. Since the

language uses textual components, some syntactic knowledge is required. Some

knowledge of programming conventions is also helpful, such as using ’.’ to access

the fields of an object, or using parenthesis to call a function.

Moreover, some knowledge of the workings of statecharts is also required. The boxes

and arrows are easy to understand, but the usage of more complex features such

as history, choices and synchronization requires some understanding of how these

work. It is possible to create simple application without these features, but creating

something more advanced might require the use of them.

However, since the simple applications have very little need for these features, it can

be argued that this gives the user more time to acclimate to the language before

more knowledge is needed to create more complex applications. This means that it

is easy for novices to start creating, while still retaining the functionality to create

more advanced systems. This results in great flexibility for both newer and more

advanced users.

6.3 Yakindu Statechart Tools

The decision to base the implementation of this project on Yakindu Statechart Tools

was made based on the knowledge that it is a complete, working IDE that utilizes

statecharts for visual programming. It was the closest available application to the

goal of this project. However, since it is a large and complex application, it proved

difficult and time consuming to extend the functionality in a way suited for these

applications. This was exacerbated by the use of technologies that are not widely

used, such as Eclipse Modeling Framework and Xtend.

6.4 Visual and textual components

The language presented here uses both visual and textual components to program

robots. The tradeoff between these is usually that visual components make the lan-

guage easier to comprehend, but generally also limits functionality. Textual com-

ponents requires more knowledge of the language, but at the same time offer more

functionality and freedom when programming. This project aimed to keep all the

functionality, while still simplifying the structure of the program with visual ele-

ments. It is, however, possible to replace some textual elements with visual elements

to further simplify the language.

34

6.5 Event-based vs cycle-based execution

The current implementation of the language only works with cycle-based execution.

This means that the state machine executes continuously, and processes events as

they are received. An event-based execution scheme would be preferable, as the state

machine could go to sleep while waiting for events. This was difficult to achieve with

Webots, as the steps of the simulation is tightly connected to the steps of the robot

controller.

35

7 Conclusion and future work

This thesis has presented a visual programming language capable of programming

robot controllers run in the Webots robot simulator. The visual programming lan-

guage uses a combination of visual and textual elements that create a stand-alone

application without the need for any external coding.

The language reduces complexity compared to using any of the other languages

compatible with the Webots API. It necessitates less knowledge of syntax compared

to these languages. It is also easier to visualize the behaviour of the program, since

it uses boxes and arrows that can be manipulated.

7.1 Future work

Future work for this project would be to adapt the code generation for the language

to be able to test it on a real robot. This project has focused entirely on getting

the language to work on Webots. Since Webots has a very specific API, the code

generation would need to be rewritten to be compatible with other systems.

Since the goal of this project was to explore the visual programming approach,

the language is not complete. It was not prioritized to implement all classes and

functions from the Webots API. To make the language fully compatible with all

different classes in the API, the code generation would need to be expanded to

accommodate all of them. This is not difficult, but tedious and time consuming,

while adding little value to this project.

36

References

[1] P. Bjørseth, ‘Using statecharts for robot programming’, Dec. 2021.

[2] ‘2022 state of software engineers’. (2022), [Online]. Available: https://hired.

com/2022-state-of-software-engineers/.

[3] M. A. Kuhail, S. Farooq, R. Hammad and M. Bahja, ‘Characterizing visual

programming approaches for end-user developers: A systematic review’, IEEE

Access, 2021. doi: 10.1109/ACCESS.2021.3051043.

[4] D. Harel, ‘Statecharts: A visual formalism for complex systems’, Behavioral

and Brain Sciences, pp. 87–114, 1987. doi: 10.1016/0167-6423(87)90035-9.

[5] A. Repenning, ‘Moving beyond syntax: Lessons from 20 years of blocks pro-

graming in agentsheets’, Journal of Visual Languages and Sentient Systems,

vol. 3, pp. 68–91, Jul. 2017. doi: 10.18293/VLSS2017-010.

[6] M. Breen, ‘Statecharts: Some critical observations’, 2006.

[7] M. Klotzbuecher and H. Bruyninckx, ‘Coordinating robotic tasks and systems

with rfsm statecharts’, 2012.

[8] M. Wächter, S. Ottenhaus, M. Kröhnert, N. Vahrenkamp and T. Asfour, ‘The

armarx statechart concept: Graphical programing of robot behavior’, Frontiers

in Robotics and AI, 2016, issn: 2296-9144. doi: 10.3389/frobt.2016.00033.

[Online]. Available: https://www.frontiersin.org/article/10.3389/frobt.2016.

00033.

[9] S. G. Brunner, FranzSteinmetz, R. Belder and A. Dömel, ‘Rafcon: A graphical

tool for engineering complex, robotic tasks’, pp. 3283–3290, 2016. doi: 10 .

1109/IROS.2016.7759506.

[10] M. Resnick, J. Maloney, A. Monroy-Hernández et al., ‘Scratch: Programming

for all’, 2009, issn: 0001-0782. doi: 10.1145/1592761.1592779. [Online]. Avail-

able: https://doi.org/10.1145/1592761.1592779.

[11] ‘Scratch statistics’, [Online]. Available: https : / / scratch .mit . edu/ statistics/

(visited on 8th Dec. 2021).

[12] ‘Eclipe modeling framework’, [Online]. Available: https://www.eclipse.org/

modeling/emf/.

[13] ‘Webots: Robot simulator’, [Online]. Available: https : / /www . eclipse . org /

Xtext/.

[14] ‘Xtend’, [Online]. Available: https://www.eclipse.org/xtend/.

37

https://hired.com/2022-state-of-software-engineers/
https://hired.com/2022-state-of-software-engineers/
https://doi.org/10.1109/ACCESS.2021.3051043
https://doi.org/10.1016/0167-6423(87)90035-9
https://doi.org/10.18293/VLSS2017-010
https://doi.org/10.3389/frobt.2016.00033
https://www.frontiersin.org/article/10.3389/frobt.2016.00033
https://www.frontiersin.org/article/10.3389/frobt.2016.00033
https://doi.org/10.1109/IROS.2016.7759506
https://doi.org/10.1109/IROS.2016.7759506
https://doi.org/10.1145/1592761.1592779
https://doi.org/10.1145/1592761.1592779
https://scratch.mit.edu/statistics/
https://www.eclipse.org/modeling/emf/
https://www.eclipse.org/modeling/emf/
https://www.eclipse.org/Xtext/
https://www.eclipse.org/Xtext/
https://www.eclipse.org/xtend/

[15] ‘Yakindu statechart tools quick reference’, [Online]. Available: https://www.

itemis.com/en/yakindu/state-machine/documentation/user-guide/quick ref#

quick ref.

38

https://www.itemis.com/en/yakindu/state-machine/documentation/user-guide/quick_ref#quick_ref
https://www.itemis.com/en/yakindu/state-machine/documentation/user-guide/quick_ref#quick_ref
https://www.itemis.com/en/yakindu/state-machine/documentation/user-guide/quick_ref#quick_ref

Appendix

A Complete Yakindu Statecharts grammar

39

40

41

42

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

ar
tm

en
t o

f C
om

pu
te

r S
ci

en
ce

Petter Bjørseth

New visual programming approaches
for robots

Master’s thesis in Computer science
Supervisor: Michael Engel
July 2022

M
as

te
r’s

 th
es

is

	Abstract
	Sammendrag
	Preface
	List of Figures
	Introduction
	Previous work
	Visual programming
	Statecharts
	Clustering
	Orthogonality
	Default states
	History
	Economizing of arrows
	Condition and selection entrances
	Delays and timeouts
	Unclustering
	Actions and activities
	Broadcast
	Problems with statecharts

	Coordinating robotic tasks and systems with rFSM statecharts
	The ArmarX statechart concept: graphical programming of robot behavior
	RAFCON
	Scratch

	Technologies
	Eclipse Modeling Framework
	Xtext
	Xtend
	Yakindu Statechart Tools
	Webots

	Implementation
	General approach
	Yakindu Statechart Tools
	Language
	Grammar
	Code generation

	Webots
	Extending the language

	Results
	Line follower example

	Discussion
	Webots
	Complexity
	Yakindu Statechart Tools
	Visual and textual components
	Event-based vs cycle-based execution

	Conclusion and future work
	Future work

	References
	Appendix
	Complete Yakindu Statecharts grammar

