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Abstract
This paper considers a single-stage make-to-stock production–inventory system under
random demand and random yield, where defective units are reworked. We exam-
ine how to set cost-minimizing production/order quantities in such imperfect sys-
tems, which is challenging because a random yield implies an uncertain arrival time
of outstanding units and the possibility of them crossing each other in the pipeline.
To determine the order/production quantity in each period, we extend the unit-
tracking/decomposition approach, taking into account the possibility of order-crossing,
which is new to the literature and relevant to other planning problems. The extended
unit-tracking/decomposition approach allows us to determine the optimal base-stock
level and to formulate the exact and an approximate expression of the per-period cost
of a base-stock policy. The same approach is also used to develop a state-dependent
ordering policy. The numerical study reveals that our state-dependent policy can reduce
inventory-related costs compared to the base-stock policy by up to 6% and compared to
an existing approach from the literature by up to 4.5%. From a managerial perspective,
the most interesting finding is that a high mean production yield does not necessar-
ily lead to lower expected inventory-related costs. This counterintuitive finding, which
can be observed for the most commonly used yield model, is driven by an increased
probability that all the units in a batch are either of good or unacceptable quality.
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1 INTRODUCTION

We consider a single-stage make-to-stock production–
inventory system under random demand and random yield,
where defective units are reworked. Random yield refers to
the number of items meeting the desired quality require-
ments, set either by a company itself or externally, for exam-
ple, by the US Food and Drug Administration (FDA) for
pharmaceutical products or the Federal Communications
Commission (FCC) for electronic products. Our goal is to
determine the ordering policy that minimizes the total aver-
age inventory-related cost per period, comprised of holding
costs for all units on stock and backorder costs for all units
that cannot be satisfied immediately from stock on hand.
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In particular, the high-tech industry has to deal with
surprisingly low yield rates given the level of automation
and sophisticated production equipment commonly used.
This leads to many products that cannot be sold directly to
customers but still incorporate substantial value. Gurnani
et al. (2000) and Chen and Yang (2014) report that in the
liquid crystal display (LCD) manufacturing industry, pro-
duction yield rates of less than 50% are common. In the
semiconductor industry, yield rates are usually between 50%
and 70% (Gavirneni, 2004) but can vary from 0% to 100%
between production runs (Leachman & Hodges, 1996). The
reasons for producing defective items are manifold and range
from imperfect or inconsistent raw material quality and the
limited skill level of workers to limited machine capabilities.
Although the high-tech industry is commonly used in the
scientific literature as an example of an industry with random
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yields, other industries also have to deal with yield rates that
are significantly below 100%. For example, yield rates for
olive oil production can be as low as 30% or 40% (Kazaz,
2004), and for vaccines they are about 75% (White III &
Cheong, 2012).

Products that do not meet quality requirements are com-
monly either scrapped (e.g., in the food industry, Öztürk,
2017), sold as lower quality products for a lower price (e.g.,
in the apparel industry, Moussawi-Haidar et al., 2016), or
reworked (e.g., in the automobile industry, Sarker et al.,
2008). Especially in industries where defective units incor-
porate substantial value, an incentive exists to rework these
units. Rework activities are common in, for example, the
semiconductor, glass, metal processing, chemical, pharma-
ceutical, and automobile industries (Buscher & Lindner,
2007; Chiu et al., 2007; Sarker et al., 2008; Widyadana
& Wee, 2012). The following two examples from industry
emphasize the considerable role of rework in the manufactur-
ing process: Tesla, Inc. had to rework 84% of its Model 3
vehicles due to a low first-pass yield of only 16%. First-
pass yields correspond to the percentage of units that leave
the manufacturing process without requiring any rework,
which in the automobile industry are commonly around
80% (Lopez, 2018). The Boeing Company announced as a
result of its Boeing 787 Dreamliner quality issues that “the
low production rates and rework are expected to result in
approximately $1 billion of abnormal costs” (Gates, 2021),
which emphasizes the necessity to incorporate random yields
and rework.

This paper shows how to manage production–inventory
systems under random demand, random yield, and rework,
focusing on minimizing inventory-related costs. Because of
the complexity of this planning problem, optimal policies are
either unknown or very complex and practically irrelevant,
wherefore heuristic solutions are commonly used. In particu-
lar, when considering rework, all existing approaches rely on
approximations. We follow this line of literature and focus on
identifying heuristic solution approaches to this rarely stud-
ied problem.

We develop a new extension of the unit-
tracking/decomposition approach—originally developed
by Axsäter (1990)—to derive an exact expression for the
expected holding and backorder costs per period under a
base-stock policy and an improved state-dependent ordering
policy. The idea behind the unit-tracking/decomposition
approach is to decompose the problem into a series of
single-unit problems and minimize the expected cost per
unit by comparing the cost of ordering the unit now with
the cost of ordering it in a later period. We adjust the unit-
tracking/decomposition approach by taking order-crossing
into account, which occurs when units ordered in later peri-
ods that pass quality control enter the warehouse before units
ordered earlier that require rework.

In summary, the contributions of this paper are as fol-
lows: (1) Problem-wise, the contribution of this paper is
that it analyzes a rarely discussed but practically highly
relevant make-to-stock production–inventory system under

random demand, random yield, and rework. We espe-
cially consider that items might have to undergo rework
multiple times until they satisfy the quality requirements,
which has not been studied in make-to-stock production–
inventory systems under random demand and yield before.
(2) Methodology-wise, the contribution is threefold. First,
we extend the unit-tracking/decomposition approach to for-
mulate the exact expression of the per-period cost under a
base-stock policy and a simple approximation of this cost.
Second, we use the same approach to develop a state-
dependent ordering policy. state-dependent policy, take
order-crossing into account, which is prohibited by assump-
tion in existing literature on the unit-tracking/decomposition
approach (see, e.g., Berling & Martínez-de-Albéniz, 2016a;
Muharremoglu & Tsitsiklis, 2008). This emphasizes the
paper’s contribution also for other planning problems. Third,
our solution approaches are, unlike existing approaches in the
literature, not limited to a specific demand or yield model
and, therefore, applicable to a variety of different systems.
(3) Numerical results reveal that especially for low yields
of 50%, as observed in the high-tech industry, our state-
dependent approach leads to cost reductions of up to 6%
compared to the base-stock policy and 4.5% compared to an
existing approach from the literature. (4) Managerial-wise,
we provide simple decision rules that help decision mak-
ers to decide when to use a base-stock policy or a state-
dependent ordering policy. Finally, we show that for the most
commonly used yield model, namely, stochastic proportional
yield, high production yields do not necessarily reduce the
inventory-related cost of the system. This finding is counter-
intuitive but can be explained by an increased probability of
the extreme outcomes, that is, all units in a batch being good
or needing rework, which has a negative effect on the overall
cost.

The remainder of this paper is organized as follows. We
review the relevant literature in Section 2 and describe our
problem in detail in Section 3. In Section 4, we derive
the base-stock policy using the unit-tracking/decomposition
approach. Based on this, we develop a heuristic for a state-
dependent ordering policy in Section 5. In Section 6, we
analyze the performance of the state-dependent ordering pol-
icy compared to the optimal base-stock policy and an exist-
ing policy from the literature. In Section 7, we discuss the
assumptions made in Section 3 regarding their effect on the
solution procedure and the applicability of the model to solve
practically relevant problems. We conclude the paper with a
summary and an outlook on future research opportunities in
Section 8.

2 LITERATURE REVIEW

In Section 2.1, we discuss papers that consider make-to-stock
production systems under random demand and yield with a
focus on papers discussing similar planning problems and
methodological aspects as we do in this paper. We review the
literature on the unit-tracking approach in Section 2.2.
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2.1 Make-to-stock production–inventory
systems under random yield

Research into make-to-stock production systems under ran-
dom demand and yield began in the late 1980s with a study
by Ehrhardt and Taube (1987). They analyzed a single-period
inventory model, in which ordered units were subject to ran-
dom yield and defective items were disposed of. The work
by Ehrhardt and Taube (1987) has been extended by Henig
and Gerchak (1990) and Wang and Gerchak (1996) to han-
dle multiple periods and capacity restrictions on the produc-
tion quantity. Bollapragada and Morton (1999) and Huh and
Nagarajan (2010) analyze stationary multiperiod inventory
systems under random yield and present different heuristic
solution approaches, mainly within the class of linear infla-
tion policies, because the optimal policy is very complex
(Henig & Gerchak, 1990). Under a linear inflation policy, the
order quantity calculated based on a classical base-stock pol-
icy is inflated depending on the yield rate. Linear inflation
policies show excellent performance and are therefore com-
monly used for such systems; this is also one of the reasons
why our analysis relies on (adjusted) base-stock policies.

Based on the early works on random yield systems with
disposal of defective items, various extensions have been ana-
lyzed, focusing either on the effect of different yield mod-
els, for example, binomial, stochastic proportional, or all-
or-nothing yield (see Yano & Lee, 1995), on the system
costs (see Erdem & Özekici, 2002; Inderfurth & Vogelge-
sang, 2013; Kutzner & Kiesmüller, 2013; Sonntag & Kies-
müller, 2016), on the extension of the system to nonzero pro-
duction times (see Inderfurth & Kiesmüller, 2015; Kiesmüller
& Inderfurth, 2018), or multistage production processes (see
Choi et al., 2008; Dettenbach & Thonemann, 2015; Son-
ntag & Kiesmüller, 2017). Voelkel et al. (2020) complement
this work by analyzing the impact different costly track-
ing possibilities—always, never, or dynamic—have on order-
ing decisions.

None of these papers model rework activities. Rework pro-
cesses in make-to-stock production systems with stochastic
demand and yield have, to the best of our knowledge, only
been considered by Gotzel and Inderfurth (2005) and Son-
ntag and Kiesmüller (2018). Gotzel and Inderfurth (2005)
analyze a different system to this paper, considering an addi-
tional stock point before the rework process, which is perfect.
They use a two-parameter policy with both a produce-up-to
level and a rework-up-to level to determine the production
and rework quantities in each period.

Sonntag and Kiesmüller (2018) analyze the same
production–inventory system as considered in this paper but
only consider a perfect rework process. They modify an
approach by Inderfurth and Kiesmüller (2015) under dis-
posal to incorporate the possibility of reworking defective
items. Sonntag and Kiesmüller (2018) approximately deter-
mine the expected per-period cost and the optimal base-stock
level under a traditional base-stock policy and then present
an alternative base-stock policy, which we describe in Sec-
tion 6. Unlike Sonntag and Kiesmüller (2018), we derive the

true expected cost and the optimal base-stock level using an
exact approach. Furthermore, we compare the performance
of the heuristics proposed in this paper with the performance
of the alternative base-stock policy proposed in Sonntag and
Kiesmüller (2018) and show that our methods outperform the
existing approach.

Although Sonntag and Kiesmüller (2018) discuss the same
system under perfect rework as considered in this paper, non-
perfect rework processes have not been considered so far.
Furthermore, their model is limited to normally distributed
demand and stochastic proportional yield. In contrast, our
proposed methods are able to handle various demand and
yield distributions.

2.2 Unit-tracking approach

The unit-tracking or unit decomposition approach by Axsäter
(1990) determines the total cost for the system by tracking
the cost for each item ordered. This cost is made up of the
holding cost while the item is in storage or the backorder
cost for the time a customer has to wait for the unit to be
available. The method differs from traditional approaches in
inventory management that determine the cost by tracking
the inventory level at the different stocking points. Axsäter
(1990) introduces the unit-tracking approach for a divergent
two-echelon inventory system under Poisson demand and a
one-for-one replenishment policy under continuous review.
Axsäter (1993a) extends the approach to batch ordering,
and Axsäter (1993b) considers periodic instead of continu-
ous review.

Whereas Axsäter (1990) introduces the unit-tracking
methodology for the class of one-for-one replenishment
policies, Muharremoglu and Tsitsiklis (2008) and Janaki-
raman and Muckstadt (2009) use the approach to derive
structural insights regarding the optimal solution. Muhar-
remoglu and Tsitsiklis (2008) consider a serial multiechelon
inventory system under stochastic lead times but without
order-crossing. They show that a state-dependent echelon
base-stock policy is optimal and present an efficient algorithm
to calculate the optimal base-stock levels. Janakiraman and
Muckstadt (2009) consider a similar system but add capac-
ity limits to the production stages. Berling and Martínez-
de-Albéniz (2016a) extend the analysis by Muharremoglu
and Tsitsiklis (2008) and allow for expediting but again do
not allow order-crossing. Berling and Martínez-de-Albéniz
(2016b) apply the results of Berling and Martínez-de-Albéniz
(2016a) in the context of transportation within a supply chain.

Unlike previous works focusing on either divergent or
serial multiechelon inventory systems, Yu and Benjaafar
(2008) consider a single-stage periodic review system with
correlated, nonstationary demands. In line with the find-
ings of Muharremoglu and Tsitsiklis (2008), they show that
the optimal policy is a state-dependent base-stock policy.
Berling and Martínez-de-Albéniz (2011) extend the analy-
sis of single-echelon continuous-review systems by consider-
ing variable purchase prices for the considered product, for



4 BERLING AND SONNTAGProduction and Operations Management

F I G U R E 1 Periodic review production–inventory system with random yield and nonperfect rework in period t

example, on the commodity market. They show how to
determine the optimal price-dependent policy with regard to
stochastic demand and stochastic prices.

In summary, the unit-tracking approach has shown broad
applicability to various inventory-related problems. However,
the problem in the present paper requires a significant adjust-
ment of the method in order to take order-crossing into
account. This has not been done so far due to its complex-
ity. The present paper thus contributes significantly to other
inventory-related problems where order-crossing is present
(e.g., under stochastic lead times as discussed in Muhar-
remoglu & Tsitsiklis, 2008, under the assumption of no order-
crossing).

3 MODEL FORMULATION

We consider a periodic review production–inventory sys-
tem with random demand and random yield where defective
items are reworked. In the following, we will first present
the sequence of events and then explain the yield processes
in more detail. The practical implications of the assumptions
made in the model are discussed in detail in Section 7. The
sequence of events in each period t is as follows:

1. The period demand Dt, which is stochastic and indepen-
dent and identically distributed (i.i.d.) across periods with
a known distribution, is observed and satisfied from avail-
able stock-on-hand together with the backordered demand
from previous periods. All demand that cannot be met is
backordered at a cost of b per unit, and there is a holding
cost of h per unit that is in stock at this point. We assume
that demand occurs at the beginning rather than at the end
of a period in order to simplify the notation.

2. As visualized in Figure 1, the warehouse is restocked
with all items leaving the production/rework process with
sufficient quality, that is, YP(Qt−LP

) and YR(QR,t−LR
),

respectively. A detailed explanation of the notation is
given below.

3. An order of a batch of Qt ≥ 0 units is placed, where the
order quantity Qt depends on the chosen ordering policy
(see Sections 4 and 5).

The number of units leaving the production process with
sufficient quality in period t, YP(Qt−LP

), depends on the num-
ber of items entering the production process in period t − LP,
Qt−LP

, where LP denotes the constant production lead-time.
The production yield is stochastic with a known distribution
which is i.i.d. across production runs of the same size Q.
The YP(Qt−LP

) = Qt−LP
− YP(Qt−LP

) units that do not pass
the quality inspection enter the rework process directly.

Regarding the rework process, we consider two variants:
perfect and nonperfect rework, where perfect rework is a
special case of the more general nonperfect rework process.
Under perfect rework, the items entering the rework process
in period t, QR,t, equal the nonconforming items from the pro-

duction process, YP(Qt−LP
). After a constant rework lead time

LR, the number of items leaving the rework process in period
t, YR(QR,t−LR

), equals YP(Qt−LP−LR
).

Under nonperfect rework, reworked items might fail the
quality inspection and require an additional rework cycle.
Let Lm

R denote the constant rework time for the m : th
rework cycle, Qm

R,t−Lm
R

equal the number of units that entered

the m : th rework cycle in period t − Lm
R , and QR,t−LR

=

(Q1
R,t−L1

R

,Q2
R,t−L2

R

, …). The number of reworked units that

enter the warehouse in period t after the m : th rework
cycle equals Ym

R (Qm
R,t−Lm

R
), wherefore the total number of

units entering the warehouse after a successful rework pro-
cess in period t equals YR(QR,t−LR

) =
∑∞

m=1 Ym
R (Qm

R,t−Lm
R

).

The yield of the rework process, Ym
R (Qm

R,t−Lm
R

), is stochastic

with a known distribution that is i.i.d. across periods but do
depend on the batch-size Qm

R,t−Lm
R

and may depend on the

rework cycle m. All reworked items not satisfying the qual-

ity requirements, Y
m

R (Qm
R,t−Lm

R
), have to undergo rework for at

least one additional cycle. Therefore, Qm+1
R,t = Y

m

R (Qm
R,t−Lm

R
) =

Qm
R,t−Lm

R
− Ym

R (Qm
R,t−Lm

R
) for m ≥ 1 and Q1

R,t = YP(Qt−LP
).

The optimal decision in each period is to order the amount
of goods, Q⋆

t , that minimizes the expected sum of all future
holding and backorder costs. Determining Q⋆

t is not a triv-
ial task because the expected amount of inventory available
at the end of period t + LP (and beyond) depends not only
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on the inventory position—the stock-on-hand minus backo-
rders plus all outstanding orders in the production and rework
process—after the order in period t has been placed but on the
exact location of the pipeline inventory because of possible
order-crossing. We analyze the order-crossing phenomenon
and the resulting challenges in detail in the next section.

To the best of our knowledge, the structure of the optimal
policy for the described problem is unknown and a complete
enumeration of all possible outcomes to find the optimal pol-
icy is computationally intractable. Rather than search for the
truly optimal decision in each period, we focus on finding the
optimal base-stock policy in Section 4 and then introduce a
state-dependent ordering policy in Section 5.

4 BASE-STOCK POLICY

We use a base-stock policy as starting point for our analysis
on how to determine the production quantities in each period.
Using an (adjusted) base-stock policy is reasonable for sev-
eral reasons. First, base-stock policies are simple and com-
monly used in inventory management as a proxy for the opti-
mal ordering policy. Second, the base-stock policy is known
to be the optimal policy under perfect yield (Federgruen &
Zipkin, 1986). Third, an adjusted base-stock policy—known
as the “linear inflation policy” (Huh & Nagarajan, 2010)—
has shown excellent performance in random yield systems
with disposal of defective items, and is commonly used in
the literature (see, e.g., Bollapragada & Morton, 1999; Huh
& Nagarajan, 2010; Inderfurth & Kiesmüller, 2015). Finally,
(adjusted) approximate base-stock policies are also com-
monly preferred within the existing literature on random yield
systems with rework of defective items (Gotzel & Inderfurth,
2005; Sonntag & Kiesmüller, 2018).

The new solution procedure used to find the opti-
mal base-stock policy, which has not been determined
for the considered problem so far, is inspired by the
unit-tracking/decomposition approach introduced by Axsäter
(1990). This method aims to decompose the problem into
a series of independent “order the next unit now or later”
problems that are solved sequentially. Therefore, each unit
is matched with a specific demand that it will satisfy, and the
expected cost for this pair is then determined. The expected
cost is composed of a backorder cost multiplied by the
expected time the customer has to wait for the unit and a hold-
ing cost multiplied by the expected time the unit has to wait
for the demand. Both expectations are calculated based on the
lead-time until an item enters the warehouse and the distribu-
tion of the arrival time of customer demand.

Incorporating random yields and (nonperfect) rework
increases the complexity substantially because units can cross
each other in the pipeline. Order-crossing implies that it is
uncertain which demand will be matched with which unit
because this will depend on past and future ordering deci-
sions. For example, let us consider a situation under perfect
rework with three units in stock and an outstanding order of
one unit placed in the last period. With perfect yield, these
units will be used to satisfy four consecutive demands, and

the “next unit” to be produced will be used to fulfill a fifth
demanded item. Now consider a system under random yield
where the unit ordered in the last period needs to be reworked
for two (or more) periods. That unit will then be available
at the end of period t + LP + 1 (or later), whereas the “next
unit” will be available at the end of period t + LP if it is of
good quality. Thus, these units will cross each other in the
pipeline, so the “next unit” will be used to satisfy the fourth
rather than the fifth demand, and the unit ordered in the last
period will be used to satisfy the fifth demand (or possibly an
even later demand if LR > 2 and it is crossed by more units).
An illustration of this behavior with LP = 4 and LR = 2 and
a perfect rework process is shown in Figure 2.

In Section 4.1, by extending the unit-tracking approach, we
derive an exact expression of the expected cost per period
under a base-stock policy and perfect rework. The struc-
ture of this cost is discussed in Section 4.2, along with its
implications for the search procedure for the optimal base-
stock level. In Section 4.3, an accurate approximation of the
marginal cost of increasing the base-stock level is derived.
This approximate expression facilitates the search for the
optimal base-stock level and provided the correct value in all
instances calculated in Section 6. In Section 4.4, we show
how this analysis can be extended to systems with a nonper-
fect rework process.

4.1 Base-stock policy: Exact cost expression
under a perfect rework process

The derivation of the expected cost per period is inspired by
the unit-tracking/decomposition approach and is carried out
in three steps. The notation used is summarized in Table 1.
Based on the number of units, Q0, ordered in an arbitrary
period 0, we first match each of the Q0 − i good units, that
is, units that pass the quality inspection, and the i reworked
units with a demand. We then formulate the expected back-
order and holding costs for each such unit-demand pair.
Finally, based on the probability of each demand–yield sce-
nario, we summarize the single-unit costs into an expected
cost per period. In this subsection, we take a closer look at
all three steps. Note again, that we assume a perfect rework
process and discuss adjustments under nonperfect rework in
Section 4.4.

Step 1: Match each produced unit with a demand

A base-stock policy implies that the order placed at the
end of period t resets the inventory position to the desired
base-stock level S. In a traditional model with perfect yield,
the Q0 units ordered at the end of period 0 would thus be
used to satisfy the S − Q0 + 1 : th, S − Q0 + 2 : th, … , S : th
demand occurring “after” period 0. However, this is not the
case with nonperfect yield due to the possibility of order-
crossing. The Q0 − i good units will cross the j units in
QB = [Q−LR

, … ,Q−1] that need rework and will therefore
be used to satisfy the S − Q0 + 1 − j : th, S − Q0 + 2 − j :
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2 1 0 1 2 3 4 5 6 7 8

Period t

Order Q0:

bad units in QB good units in QA good units in Q0 bad units in Q0

F I G U R E 2 Timeline showing when orders are placed and when units arrive at the warehouse for LP = 4, LR = 2, and perfect rework

TA B L E 1 Notation

S Base-stock level

Dt Demand in period t

Dmin Minimum demand in a period

Dmax Maximum demand in a period

Prob(Dt) Probability that the demand in period t is Dt

DB = [D−LR
, … ,D−1] Demand in the LR periods before period 0

DA = [D1, … ,DLR
] Demand in the LR periods after period 0

DLR
Set encompassing all demand combinations

over LR periods

Prob(DN) Probability that the demand over LR periods
is DN

ΣDA Total number of unit demanded in the LR

periods after period 0

Qt Order placed in period t

Prob(x|Qt) Probability that YP(Qt) = x, i.e., that x of the
Qt units ordered in period t need rework

QB = [Q−LR
, … ,Q−1] Orders placed in the LR periods before period

0

ΣQB Total number of units ordered the LR periods
before period 0

QA = [Q1, … ,QLR
] Orders placed in the LR periods after period 0

ΣQA Total number of units ordered the LR periods
after period 0

QN Set encompassing all order quantity
combinations over LR periods

Prob(x|QN) Probability that x of the units in QN need
rework

pn,t(x) Probability that the x : th demand after period
n occurs in period n + t

th, … , S − i − j : th demand occurring “after” period 0. The
i units ordered in period 0 that need rework will, in con-
trast, be crossed by the good units ordered in period 1 to
LR (see Figure 2). Because the order placed in period LR
resets the inventory position to S, these units will be used
to satisfy the S − i + 1 − k : th to S − k : th demand occur-

ring “after” period LR, where k is the number of units in
QA = [Q1, … ,QLR

] that do not pass the quality inspection.
To simplify the notation, we assume that good units ordered
in period t are sequenced before reworked units ordered
in period t − LR. As these units arrive at the same time,
the sequencing rule can be changed without affecting the
cost.

Step 2: Determine per unit holding and backorder
cost

The expected cost for a good unit used to satisfy the x :
th demand occurring “after” period 0, given D0 and DB =

[D−LR
, … ,D−1], is equal to

CG(x,D0,DB)

=

⎧⎪⎪⎨⎪⎪⎩
b(LP + 1 + t), −

t∑
𝜏=0

D−𝜏 < x ≤ −

t−1∑
𝜏=0

D−𝜏, t ∈
[
0,LR

]
b

LP∑
t=1

(LP + 1 − t)p0,t(x) + h
∞∑

t=LP+2

(t − (LP + 1))p0,t(x), 0 < x.

(1)

The first case in Equation (1), that is, when x ≤ 0, represents
a scenario where the unit is used to satisfy a demand that has
already occurred. Hence the quotation marks around the word
after used earlier. The cost for the unit is thus the backorder
cost paid from when the demand occurred until it is satisfied
in period LP + 1. If −D0 < x ≤ 0, the unit is matched with
a demand that occurred in the current period. Similarly, it is
matched with a demand in period −1 if −(D0 + D−1) < x ≤

−D0, period −2 if −(D0 + D−1 + D−2) < x ≤ −(D0 + D−1),
and so forth. The corresponding customer waiting time is
LP + 1, LP + 2, … and backorder costs are accumulated for
all these periods, resulting in the first case in Equation (1).
If x > 0, then the unit will be used to satisfy a demand
that truly occurs after period 0. If this demand occurs in
period t < LP + 1, then the unit is not available in stock when
the demand occurs and the customer has to wait LP + 1 − t
period(s). If, on the other hand, the demand occurs after
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period LP + 1, then the unit will have to be kept in stock
for t − (LP + 1) period(s). The second case in Equation (1)
provides the resulting expected value of the backorder and
holding costs with the different scenarios weighted by their
respective probabilities, p0,t(x).

The expected cost for a reworked unit ordered in period
0 that is used to satisfy the x : th demand occurring “after”
period LR, given D0 and DA = [D1, … ,DLR

], is equal to

CRW (x,D0,DA)

=

⎧⎪⎪⎨⎪⎪⎩
b(LP + 1 + t), −

t∑
𝜏=0

DLR−𝜏
< x ≤ −

t−1∑
𝜏=0

DLR−𝜏
, t ∈

[
0,LR

]
b

LP∑
t=1

(LP + 1 − t)pLR ,t(x) + h
∞∑

t=LP+2

(t − (LP + 1))pLR ,t(x), 0 < x.

(2)

The formula is much in line with the formula for the expected
cost for a good unit in Equation (1). The difference between
the two expressions occurs in the first case where x ≤ 0.
In this case, the period of the demand matched with the
reworked unit is LR if −DLR

< x ≤ 0, and LR − 1 if −(DLR
+

DLR−1) < x ≤ −DLR
, … . This results in a backorder cost

of b(LP + LR + 1 − LR), b(LP + LR + 1 − (LR − 1)), … , or
equivalently b(LP + 1 + t) for t = 0, 1, … .

Step 3: Determine the cost per period

In a stationary state, that is, when the inventory position at
the end of the last LR periods or more has been the base-stock
level S, the order quantity at the end of period t equals the
demand occurring at the beginning of period t, that is, Qt =

Dt. This is in order to replace the inventory used to fulfill
the demand and reset the inventory position to the base-stock
level S. Using the unit-demand matching procedure described
above, the expected cost per period under perfect rework as a
function of S can be formulated as

ECP(S) =
Dmax∑
D0=0

Prob(D0)
Q0=D0∑

i=0

Prob (i |Q0 )

⋅

⎡⎢⎢⎣
S−i∑

IP=S−Q0+1

∑
DB∈DLR

Prob(DB)

⋅

ΣQB∑
j=0

Prob(j|QB = DB)CG(IP − j,D0,DB)

+

S∑
IP=S−i+1

∑
DA∈DLR

Prob(DA)

⋅

ΣQA∑
k=0

Prob (k |QA = DA ) CRW(IP − k,D0,DA)

]
.

(3)

The first two sums in Equation (3), that is, those with
Prob(D0) and Prob(i|Q0), allow us to consider each possible
combination of Q0 and i—the number of units ordered and
the number of units requiring rework—with its probability
of occurring. For each such combination, the first triple sum
in the parentheses provides the expected cost for the Q0 − i
good units, and the second triple sum provides the expected
cost for the i units that need rework.

Equation (3) can be simplified further by using the i.i.d.
property of the demand so that it reads:

ECP(S) =
Dmax∑
D0=0

Prob(D0)
Q0=D0∑

i=0

Prob (i |Q0 )

⋅
∑

DN∈DLR

Prob(DN)
ΣQN∑
n=0

Prob
(
n |QN = DN

)

⋅

(
S−i∑

IP=S−Q0+1

CG(IP − n,D0,DN)

+

S∑
IP=S−i+1

CRW(IP − n,D0,DN)

)
, (4)

where DN is the demand realization over LR periods, QN
is the order placed in response to this demand, and n is
the number of units among QN that require rework. This is
because the i.i.d. demand implies that Prob(DA) = Prob(DB)
for DA = DB and the same is also true for the probability
that j = k of these units must be reworked and that p0,t(x) =
pLR,t(x). The computational effort to find the expected cost
per period using the exact equation in (4) can be substan-
tial because all possible combinations of D0 and DN must
be considered and an approximation is hence suggested and
presented in Section A of the Supporting Information.

4.2 Cost structure and optimal base-stock
level under a perfect rework process

The optimal base-stock level S⋆ is, by definition, the base-
stock level S that minimizes the expected cost per period,
ECP(S). Before discussing how to determine S⋆, we exam-
ine the behavior of ECP(S) by describing in detail the behav-
ior of the cost for a good unit and then briefly discuss the
behavior of the cost for a bad unit. The expected backorder
cost for a good unit satisfying the x : th demand occurring
“after” period 0 is naturally nonincreasing toward zero in x.
Typically, it is decreasing, but for low values of x, it is piece-
wise constant due to the periodic nature of the problem (see
Figure 3). The length of the plateaus for the backorder cost
when x ≤ 0 (i.e., case 1 in Equation (1)) are equal to D0,
D−1, and so forth, which is in line with the discussion about
CG(x,D0,DB) in the description of Step 2 in the previous sub-
section.



8 BERLING AND SONNTAGProduction and Operations Management

-10 0 10 20 30 40
0

5

10

15

20

25

-2 0 2 4 6 8

8

10

12

14

16

F I G U R E 3 Periodic review production–inventory system with random yield and nonperfect rework in period t

In contrast, the expected holding cost will be nondecreas-
ing (typically increasing) in x from a constant value of 0 for
x ≤ 0. The behavior of the expected holding-, backorder-, and
total cost for a good unit CG(x,D0,DB) as a function of x
is illustrated in Figure 3. A figure for CRW (x,D0,DA) would
look very similar, with the difference being that the plateaus
would be of the length DLR

,DLR−1, … .
From Figure 3 and the explanation above, it is apparent that

the expected cost for a unit, either good or reworked, in Equa-
tion (4) is nonconvex in x = IP − n. This carries over to the
expected cost per period as a function of the base-stock level,
where the upper and lower limits in the summation of CG and
CRW in Equation (4) are functions of S. This complicates the
search for the optimal base-stock level but the decreasing and
increasing characteristics of the backorder and holding cost,
respectively, limit the required number of base-stock levels
that need to be investigated in the search for S⋆.

4.3 Approximation of the marginal cost
under a perfect rework process

The unit-tracking/decomposition approach is traditionally
based on the marginal cost of the last unit ordered rather
than the expected cost per period. As previously men-
tioned, such an approach is problematic due to the possi-
bility of units crossing each other in the pipeline. However,
a good approximation of the marginal cost can be attained
if one instead focuses on the last unit that becomes avail-
able at the end of period LP + LR given that at least one
unit becomes available in this period. The last unit that
becomes available in this period will—in line with the dis-
cussion about CRW (x,D0,DA)—be used to satisfy the S − nth
demand occurring “after” period LR. If the base-stock level is
decreased by one unit, this demand will instead be satisfied by
a unit that becomes available in a later period; it is not certain
in which period due to the stochastic demand and yield. For
a high-demand product, it is reasonable to assume that some
units become available in each period and that the unit used
to satisfy the S − nth demand thus will be available in the

next period, that is, period LP + LR + 1. This would suggest
the following approximate expression of the marginal cost of
increasing the base-stock level by one unit from S − 1 to S:

ΔECP(S) = ECP(S) − ECP(S − 1)

≈

LR⋅Dmax∑
n=0

Prob(n)
(
h ⋅

(
1 − PLR,LP+1(S − n)

)
− b ⋅ PLR,LP+1(S − n)

)
, (5)

where Prob(n) is the probability of n bad units over LR peri-

ods and PLR,LP+1(S − n) =
∑LP+1

t=1 pLR,t(S − n) is the proba-
bility that demand x = S − n occurs in one of the LP + 1
periods following period LR. The optimal base-stock level,
S̃, based on the approximation in (5) is the largest S for which
ΔECP(S) is negative:

S̃ = arg max
S

{ΔECP(S)|ΔECP(S) < 0}. (6)

Note that if there are periods with no units becoming available
then the delay might be more than one period, and (5) is thus
an approximation of the marginal cost. Otherwise, S̃ equals
the optimal base-stock level S⋆.

4.4 Extension to a nonperfect rework
process

The same general principle as in Sections 4.1 to 4.3 can be
used to determine the expected cost per period and the opti-
mal base-stock level even if the rework process is nonper-
fect and items might have to undergo rework several times.
That is, we can still (i) match each unit ordered in period
t = 0 with a demand for a given demand scenario, (ii) deter-
mine the expected cost for each such pair, and (iii) calcu-
late the expected cost per period by summing up all these
costs weighted with the probability of each scenario. To
describe the matching process, we use the additional notation
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TA B L E 2 Additional notation for nonperfect rework

QR,t Total number of items entering the rework process in
period t

QR,0 Total number of units having entered the rework process
in all periods before period 0
(QR,0 = [QR,−∞,… ,QR,−1])

im Number of units ordered in period 0 that need to be
reworked m times

Im = Im−1 − im Number of units ordered in period 0 that need to be
reworked more than m times

J Number of units ordered before period 0 that will arrive
in or after period LP due to rework

Km Number of units ordered before period 0 that will arrive
in or after period LP +

∑m
k=1 Lk

R plus the number of

units ordered in periods (0,
∑m

k=1 Lk
R] that will arrive

after period LP +
∑m

k=1 Lk
R, all due to rework.

introduced in Table 2. In line with Step 1 in Section 4.1,
the Q0 − I0 good units ordered in period 0 will be used to
satisfy “future” demand S − Q0 + 1 − J to S − I0 − J occur-
ring “after” period t = 0. Furthermore, the im units ordered
in period 0 that need to be reworked m times will be used
to satisfy the S − Im−1 + 1 − Kmth to S − Im − Kmth demand
occurring “after” period

∑m
k=1 Lk

R.
In Step 2, the expected cost for a good unit under non-

perfect rework is much in line with the cost for such a unit
under perfect rework, that is, Equation (1). The difference is
that there is no upper bound to the delay for x < 0, which
implies that one must track the demand in all past periods
and not just the last L1

R periods. The expression for a unit
that needs rework, CRWm

, depends on the number of times,
m, it needs to be reworked. The cost for a unit satisfying
a “future” demand, that is, when x > 0, will be the same
independent of the number of times it is being reworked as
p∑m

k=1 Lk
R,t

(x) = pL1
R,t

(x) = p0,t(x). Again, the difference in cost

occurs when the unit is used to satisfy a demand that has
already occurred, that is, x ≤ 0, as the demand vector that
dictates the delay is now [D−∞,… ,D∑m

k=1 Lk
R
] rather than just

[D0, … ,DL1
R
].

When computing the expected cost, ECNP(S), in Step 3,
one must thus consider all possible outcomes of an infinitely
long demand vector. This is computationally intractable and
we will therefore use the following approximation:

ACNP(S) =
Dmax∑
D0=0

Prob(D0)
S∑

IP=S−Q0+1

(
IP−1∑
N=0

Prob(N)

⋅

(
b

LP∑
t=1

(LP + 1 − t)pt(IP − N) + h
∞∑

t=LP+2

(t − (LP + 1))pt(IP − N)

)

+ b
∞∑

N=IP

Prob(N)

(
LP + 1 +

N − IP
𝜇D

))
≈ ECNP(S). (7)

To arrive at (7), it is first concluded that i.i.d. demand implies
that the probability for J = N is the same as the probability
for Km = N for all m. The i.i.d. demand also implies that the
probability of the x : th demand after period 𝜏 occurring in
period 𝜏 + t is independent of 𝜏 for all m and we let pt(x)

denote this probability. The sum
∑IP−1

N=0 Prob(N)… in (7) thus
provides the exact expression for all cases where x = IP −

N > 0.
The probability that x ≤ 0, that is, the unit is used to

satisfy a demand that has occurred before time 𝜏, is typ-
ically negligible due to positive lead-times and unit back-
order cost that are significantly higher than unit holding
cost. We approximate the expected cost for these scenar-
ios using the sum

∑∞

N=IP Prob(N)… in (7). The approxi-
mation is based on calculating the time before 𝜏 that the
demand occurred by taking its ordinal number, −x = N − IP,
and dividing it with the expected demand per period, 𝜇D.
A similar approximation was used for the case of a per-
fect rework process with no observable difference in true
and approximately calculated cost (see Section A of the
Supporting Information for the approximation under perfect
rework).

Similarly as in the case of perfect rework process in Equa-
tion (5), we can estimate the marginal cost of increasing S
as

ΔECNP(S) = ECNP(S) − ECNP(S − 1)

≈

LR⋅Dmax∑
N=0

Prob(N)
(
h ⋅

(
1 − PLR,LP+1(S − N)

)
− b ⋅ PLR,LP+1(S − N)

)
, (8)

and use this expression to find the optimal base-stock level.

5 STATE-DEPENDENT POLICY

Remember that the base-stock policy discussed in the previ-
ous section is not the optimal policy under stochastic yield
with perfect or nonperfect rework. Indeed, the optimal pol-
icy is unknown. Here, we present computationally efficient
heuristics for state-dependent ordering policies that consider
the current pipeline inventory instead of basing the decision
on the long-run distribution of the same, as the base-stock
policy does. Similar to Section 4, we will focus on a prob-
lem with a perfect rework process and then briefly explain
how to extend the heuristic to a problem with a nonperfect
rework process.

Inspired by the unit-tracking/decomposition approach, the
state-dependent ordering policies are based on comparing the
expected cost of unit u if it is ordered in this period, period
0, or the next, period 1, assuming that one returns to the opti-
mal base-stock policy with base-stock level S = S⋆ in period
1 after unit u has been ordered. Under these heuristics, one
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should order unit u now and raise the inventory position in
period 0 to S + u if the expected cost of doing this is less than
the expected cost of ordering this unit in the next period. Note
that u might be either positive or negative because one might
choose to order more or less than what is stipulated by the
base-stock policy.

To reduce the computational complexity, it is assumed that
if unit u requires rework, it will do so independent of when
it is ordered. This reduces the number of scenarios that need
to be considered to two, namely, that u is of good quality
(Scenario 1) and that it needs rework (Scenario 2). In both of
these scenarios, the decision whether or not to postpone the
ordering of unit u by one period will only affect the inventory
level in two periods. In certain circumstances, it is plausible
that unit u will need rework if ordered in period 0 but not
if it is ordered in period 1 or vice versa (Scenarios 3 and 4,
respectively). The decision when to order the unit will then
affect the inventory level in multiple periods (LR − 1 periods
in Scenario 3 and LR + 1 periods in Scenario 4 to be precise),
which substantially increases the computational complexity.
The effect of incorporating these scenarios was investigated
in a numerical study, but no significant difference in the cost
performance was observed, wherefore excluding Scenarios 3
and 4 is reasonable. Using this assumption, the expected cost
for unit u if ordered in this period rather than the next can be
expressed as

ΔECH,P(S, u,Q′
B) = g ⋅ ΔECG,P(S, u,Q′

B)

+ (1 − g) ⋅ ΔECRW,P(S, u). (9)

In Equation (9), ΔECG,P(S, u,Q′
B) is the expected cost of

ordering unit u now rather than in period 1 if it is of good
quality (i.e., Scenario 1), ΔECRW,P(S, u) is the corresponding
expected cost if u needs rework (i.e., Scenario 2) and g is the
probability of unit u being of good quality. Two methods of
estimating g are presented later in this section, resulting in
two different heuristics. Both heuristics entail ordering unit u
now if ΔECH,P(S, u,Q′

B) is negative, because this myopically
constitutes an expected cost saving.

To determine ΔECG,P(S, u,Q′
B), we use the fact that the

cost is independent of how one sequences the units that
become available in a period. This allows us to sequence the
units, so that unit u will be used to satisfy the same demand
irrespective of whether it is ordered in this or the next period.
Thus, it is the last unit made available in period LP if it
is ordered now and the first unit made available in period
LP + 1 if ordered in the next period. If one orders unit u in
period 0 then, by definition, one will raise the inventory posi-
tion to S + u in that period. If unit u is of good quality, it
will be used to satisfy the S + u − i′ − j′ : th demand occur-
ring “after” period 0 with the suggested sequencing. This is
because it will overtake the i′ units among the other Q′

0 units
ordered in period 0 that need rework and the j′ units among
Q′

B = (Q−LR+1, … ,Q−1) that need rework (see Figure 2). The
expected cost of ordering unit u now rather than in the next

period can thus, in line with Equation (5), be calculated as

ΔECG,P(S, u,Q′
B) =

Q′
0∑

i′=0

Prob
(

i′ |||Q′
0

) ΣQ′
B∑

j′=0

Prob
(

j′ |||Q′
B

)
⋅
(
h
(
1 − P0,LP+1(S + u − i′ − j′)

)
− b ⋅ P0,LP+1(S + u − i′ − j′)

)
, (10)

where ΣQ′
B = Q−LR+1 +⋯+ Q−1. It should be noted that the

distribution of j′ is independent of u and only depends on the
pipeline inventory, Q′

B, which is known.
To determine ΔECRW,P(S, u), we use a similar sequenc-

ing rule as above to ensure that unit u will be used to sat-
isfy the same demand irrespective of when it is ordered. If
unit u needs rework it will be passed by all the good units
ordered in periods 1 to LR (see Figure 2). By assumption, a
base-stock policy is applied in these periods, so the inventory
position after the order has been placed in period LR will be
S + max(0, u − ΣDA), where ΣDA is the sum of the demand
in the LR periods after period 0. With the chosen sequencing
rule, unit u will thus be used to satisfy the S + max(0, u −
ΣDA) − k′ : th demand occurring “after” period LR, where
k′ is the number of units among Q′

A = (Q′
1, … ,Q

′
LR

) that
need rework. The resulting expected cost of ordering unit
u in this period rather than the next, if it needs rework,
is

ΔECRW,P(S, u) =
∑

DA∈DLR

Prob(DA)
ΣDA−u∑

k′=0

Prob
(

k′ |||Q′
A

)
⋅
(
h
(
1 − PLR ,LP+1(S + max(0, u − ΣDA) − k′)

)
− b ⋅ PLR ,LP+1

(
S + max(0, u − ΣDA) − k′

))
.

(11)

In accordance with the assumption that a base-stock policy is
used in period 1 and onwards, the order quantities will be set
as Q′

1 = max(0,D1 − u) in period 1 and as Q′
t = max(0,Dt −

max(0, u −
∑t

𝜏=1 D𝜏)) in period 2 ≤ t ≤ LR .
If the probability of unit u being of good quality is constant,

then g will be equal to the expected yield rate, that is, g =
Ḡ. However, for some yield processes this probability will
depend on the batch size and the additional number of units
in the batch that need rework. For these yield processes, we
suggest the following two approximations:

1. g ≈ Ḡ,

2. g ≈
G(Q′

0,i
′)+Ḡ

2
.

The second estimate is based on the average of the state-
dependent probability that unit u is of good quality if ordered
in this period given Q0 and i′, G(Q′

0, i
′), or in the next, Ḡ. Note

that when the decision is made, one knows Q′
0 but not Q′

1;
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thus, the probability of unit u being of good quality after the
production process if ordered in period 1 must be based on the
average yield. The above approximations lead to two heuris-
tics, BS1 and BS2, which are based on the cost of ordering unit
u now compared to the cost of ordering it in the next period.

Under a nonperfect rework process, the marginal cost of
postponing the ordering of unit u reads

ΔECH,NP(S, u,Q′
B,QR,0)

= g ⋅ ΔECG,NP(S, u,Q′
B,QR,0)

+ (1 − g) ⋅
∞∑

m=0

pm ⋅ ΔECRWm,NP(S, u,Q′
B,QR,0), (12)

where ΔECG,NP is the cost of delaying the order of unit u
one period if it passes the quality inspection directly after the
production process. Furthermore, pm is the probability that
unit u needs to be re-reworked m times and ΔECRWm,NP is
the corresponding marginal cost of having ordered unit u one
period later in this case.

6 NUMERICAL STUDY

In this section, we first present in Section 6.1 the test series
used for the numerical studies. Afterwards, we investigate
in Section 6.2 the performance of the state-dependent order-
ing policies, BS1 and BS2, compared to the optimal base-
stock policy and an existing approach from the literature.
Finally, we discuss a counterintuitive finding, which we call
the “Mean Yield Paradox” in Section 6.3.

6.1 Instance characteristics

As a starting point for the numerical study, we use an
extended version of the test series in Sonntag and Kies-
müller (2017), which assumes a perfect rework process.
The production time LP equals either five or ten peri-
ods. The corresponding rework times can vary from one
to LP and are therefore LR ∈ {1, 2, 3, 4, 5} for LP = 5 and
LR ∈ {1, 2, 3, 4, 5, 6, 7, 8, 9, 10} for LP = 10. The demand is
assumed to follow a normal distribution with mean 𝜇D
equal to 20 and three different coefficients of variation 𝜌D ∈

{0.1, 0.2, 0.3}, which are defined as the ratio between the
standard deviation 𝜎D and the corresponding mean demand
(𝜌D = 𝜎D∕𝜇D). For the holding and backorder cost parame-
ters h and b, we set the ratio b∕(b + h) ∈ {0.75, 0.85, 0.95}
with h = 1. To emphasize that our solution procedures for
determining the optimal base-stock level and the state-
dependent order quantities are not limited to a specific
demand or yield distribution, we analyze the performance
under the two most common yield models. Namely, the
“most-widely studied” (Gupta & Cooper, 2005) stochas-
tic proportional yield model as well as the binomial yield

model. Under a stochastic proportional yield model, the out-
put YP(Q) of the production process equals a random frac-
tion Z of the input Q with Z being a random variable on
the interval [0; 1]. The yield factor Z of the production pro-
cess follows a beta-distribution that is defined on the inter-
val [0, 1] with a mean yield 𝜇Z,P ∈ {0.5, 0.8, 0.9}, reflecting
situations with low and high yield rates. The correspond-
ing coefficient of variation 𝜌Z,P is set such that for 𝜇Z,P =

0.5, 𝜌Z,P ∈ {0.1, 0.2, 0.3, 0.4, 0.5}, and for 𝜇Z,P ∈ {0.8, 0.9},
𝜌Z,P ∈ {0.1, 0.2, 0.3}. Under a binomial yield model, each
unit is of perfect quality with probability g as defined in Sec-
tion 5. For a given order quantity Q, the yield is binomially
distributed with parameters (Q, g) and probability mass func-
tion

P(Y(Q) = k) = gk(1 − g)Q−k
(Q

k

)
, ∀k = 0, 1, … ,Q. (13)

The success probability g corresponds to the expected
yield for which we have considered the same values as
under stochastic proportional yield, that is, g = 𝜇Z,P ∈

{0.5, 0.8, 0.9}. The standard deviation of the yield probabil-
ity is a function of g and can thus not be varied indepen-
dently of 𝜇Z,P. It should also be noted that the two heuris-
tics will coincide under binomial yield as the probability of
unit u being of good quality is constant and equal to g, that
is, BS = BS1 = BS2. We discretize the demand and yield dis-
tributions and refer for details to Section B of the Support-
ing Information. In total 1485 instances under stochastic pro-
portional yield and 405 instances under binomial yield are
included in this test series.

6.2 Performance of the state-dependent
policies

In this section, the performance of the state-dependent poli-
cies BS1 and BS2 derived in Section 5 are evaluated with
respect to the relative cost savings compared to the base-
stock policy with optimal base-stock level S⋆ derived in
Section 4.1. Remember that the optimal policy is unknown,
wherefore the base-stock policy is a reasonable benchmark
for a performance analysis of the state-dependent policies. To
highlight our methods contribution, we add a comparison to
the “alternative base-stock policy,” SK, proposed by Sonntag
and Kiesmüller (2018), which is briefly described as follows.

“Alternative base-stock policy” SK
In their paper, Sonntag and Kiesmüller (2018) propose an
“alternative base-stock policy” based on an adjusted inven-
tory position that is defined as the physical stock-on-hand
minus backorders plus the expected number of units among
the outstanding orders that will become available during the
risk period [0,LP], rather than all outstanding orders. The
reason for this is that during these LP periods, it is not pos-
sible to influence the amount of units available by placing
new orders. Including only the expected outstanding units
that become available during the risk period implies that the
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TA B L E 3 Relative cost savings Δi (in %) for the neglected instances
in Table 4 with i ∈ {(5, 1), (5, 2), (10, 1), (10, 2)} reflecting different
combinations of (LP,LR) and 𝜌D = 0.1, b∕(b + h) = 0.95, 𝜇Z,P = 0.9,
𝜌Z,P = 0.3

i (i.e., (LP,LR)) 𝚫SK
i

𝚫
BS1
i

𝚫
BS2
i

(5,1) −4.96 −54.17 −7.96

(5,2) −5.50 −39.72 −3.49

(10,1) −1.92 −39.79 −3.95

(10,2) −2.27 −14.43 −2.20

adjusted inventory position must be updated in each period
based on the realized yield and, therefore, the exact numbers
of units that enter the warehouse without requiring rework
and those requiring rework.

Note that the “alternative base-stock policy” SK has been
derived only for a stochastic proportional yield model and
that an adjustment to a binomial yield model is not straight-
forward. Therefore, under binomial yield, we cannot com-
pare the performance of the state-dependent policies with
that of SK. To determine the relative cost savings of the
state-dependent policies, BS1 and BS2, and the “alternative
base-stock policy” SK compared to the base-stock policy, the
costs of the optimal base-stock policy EC(S⋆) are calculated
exactly using Equation (4). However, no expression exists
for calculating the costs for the ordering policies BS1, BS2,
and SK, wherefore these costs were determined via simula-
tions. Specifically, a sequential sampling procedure was used,
where each simulation run represented 5000 periods with a
1000-period warm-up phase. To guarantee a high validity, the
simulation run was repeated until the half-width of the 95%
confidence interval of the average cost per period was smaller
than 0.1% of the corresponding sample average, with a mini-
mum number of 10 runs.

The results are summarized in Table 4. Note that we omit
four instances under stochastic proportional yield from the
table because they lead to unusually high cost increases com-
pared to the optimal base-stock policy and therefore cre-
ate a false impression of the average performance of the
heuristics. For completeness, the results for the four excluded
instances are summarized in Table 3 and we refer back to
these instances later in the section.

In Table 4, positive values indicate cost savings compared
to the base-stock policy whereas negative values reflect cost
increases. For each method and each parameter of our full
factorial design, the average and the maximum relative cost
savings, Δ̄ and Δmax, are displayed. To allow for an esti-
mate of the absolute performance, the average expected cost
EC(S⋆) of the base-stock policy with optimal base-stock level
S⋆ is reported. The results show that the input parameters
influence the potential to save costs in a structurally similar
manner for all methods and both considered yield models.
The relative savings compared to the base-stock policy are
increasing with the demand uncertainty 𝜌D and the ratio of
rework lead-time LR and production lead-time LP (LR∕LP).
For all other parameters, that is, the expected yield 𝜇Z,P = g,

the critical ratio (b∕(b + h)), and in case of stochastic propor-
tional yield the yield uncertainty 𝜌Z,P, the relative savings are
decreasing with an increase in these parameters. In the fol-
lowing, we focus on the most interesting findings and discuss
them in more detail.

The performance increases with the demand variability
and the rework time
The improvement in performance of the different methods is
linked to the amount of information about the current pipeline
inventory used when determining the order quantity. The
base-stock policy uses the long-run distribution of the number
of units ordered over LR periods to determine the order quan-
tity based on the inventory position and thus no information
about the current pipeline inventory. The method in SK uses
current information to correctly forecast the expected num-
ber of units ordered in periods [−LR, … , −1] that will need
rework and adjust the ordering decision accordingly. The new
heuristics BS1 and BS2 correctly forecast the full distribution
function of the number of units needing rework based on the
observed pipeline inventory. The accuracy of a forecast based
on current information rather than long-run data naturally
improves with the variability of the information available,
that is, with the demand variability, 𝜌D and horizon consid-
ered, LR. This improvement of the accuracy and detail of the
forecast is the reason why BS1 and BS2 typically show a bet-
ter performance than SK, and SK a better performance than
the base-stock policy and why the performance is improving
in 𝜌D and LR.

The expected costs increase and the relative performance
decreases with the yield uncertainty
The increase in cost for the base-stock policy observed in
Table 4 is expected as an increased uncertainty implies more
safety stock and/or backorders. This also partly explains the
observed decrease in the relative savings, as Δi is defined as
the absolute savings divided with the expected cost for the
base-stock policy. Another reason for the decreased perfor-
mance with increasing yield is that the value of using more
exact information about the pipeline inventory when fore-
casting the number of units that need rework is decreas-
ing with the yield uncertainty. Comparing the test series for
the binomial yield model with that of the stochastic propor-
tional yield model, it can be concluded that the latter typ-
ically exhibits a significantly larger yield uncertainty. The
differences between the results for the two yield models
observed in Table 4 are, thus, in line with the conclusions
above. The reason for lower yield uncertainty under bino-
mial yield is that it is connected to the expected value through
the variable g and the yield uncertainty can, thus, not be set
to the same high values used under stochastic proportional
yield.

A closer look at the behavior of the heuristics under
stochastic proportional yield and very high yield variability
reveals that they become too near-sighted. This results in an
overestimation of the cost impact of ordering unit u now and
downplaying the impact of decisions in subsequent periods.
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TA B L E 4 Relative performance of the myopic policies compared to the base-stock policy (in %)

Stochastic proportional yield Binomial yield

SK BS1 BS2 BS1

EC(S∗) �̄�SK 𝚫SK
max �̄�BS1 𝚫

BS1
max �̄�BS2 𝚫

BS2
max EC(S∗) �̄�BS1 𝚫

BS1
max

(LP,LR)

(5,1) 17.62 −0.10 0.00 0.20 1.57 0.27 1.45 16.47 0.58 1.34

(5,2) 18.92 0.26 0.88 0.58 2.68 0.65 2.70 16.92 1.04 2.46

(5,3) 20.14 0.49 1.74 0.85 3.52 0.97 3.56 17.35 1.41 3.49

(5,4) 21.20 0.68 2.49 1.12 4.54 1.25 4.56 17.76 1.74 4.45

(5,5) 22.20 0.82 3.18 1.35 5.57 1.49 5.52 18.16 2.08 5.32

(10,1) 22.91 −0.03 0.00 0.19 0.83 0.15 0.83 22.01 0.32 0.80

(10,2) 23.94 0.17 0.51 0.39 1.61 0.39 1.53 22.35 0.60 1.56

(10,3) 24.92 0.32 1.00 0.55 2.10 0.58 2.07 22.68 0.86 2.16

(10,4) 25.82 0.43 1.46 0.73 2.70 0.79 2.69 23.01 1.11 2.70

(10,5) 26.66 0.52 1.88 0.88 3.34 0.96 3.29 23.32 1.30 3.23

(10,6) 27.47 0.56 2.35 1.02 3.82 1.11 3.85 23.63 1.50 3.79

(10,7) 28.24 0.59 2.72 1.16 4.51 1.27 4.45 23.93 1.70 4.32

(10,8) 28.98 0.63 3.13 1.28 4.96 1.39 4.98 24.23 1.85 4.83

(10,9) 29.70 0.63 3.54 1.40 5.47 1.51 5.55 24.52 2.03 5.32

(10,10) 30.39 0.65 4.04 1.50 5.96 1.63 6.08 24.80 2.21 5.88

𝜌D

0.1 16.13 0.22 3.15 0.69 5.06 0.68 5.16 12.00 1.09 3.40

0.2 24.24 0.49 3.67 0.91 5.92 1.03 5.92 21.24 1.45 5.26

0.3 33.40 0.62 4.04 1.04 5.96 1.17 6.08 30.98 1.52 5.88

b∕(b + h)

0.75 19.01 0.50 3.68 0.98 5.96 1.00 6.08 16.69 1.36 5.88

0.85 23.41 0.51 3.83 0.93 5.92 0.97 5.85 20.42 1.36 5.65

0.95 31.49 0.32 4.04 0.74 5.79 0.91 5.70 27.12 1.35 5.38

(𝜇Z,P, 𝜌Z,P)

(0.5,0.1) 21.37 1.74 4.04 3.30 5.96 3.29 6.08

22.61 2.91 5.88

(0.5,0.2) 22.41 1.20 2.87 2.65 5.20 2.66 5.18

(0.5,0.3) 23.96 0.60 1.73 1.84 3.78 1.89 3.95

(0.5,0.4) 25.88 0.06 0.88 0.99 2.44 1.13 2.68

(0.5,0.5) 28.09 −0.50 0.43 0.08 0.91 0.40 1.49

(0.8,0.1) 20.98 0.64 1.62 0.86 1.67 0.86 1.71

21.12 0.90 1.80(0.8,0.2) 23.73 0.57 1.58 0.50 1.15 0.51 1.18

(0.8,0.3) 27.75 0.45 1.34 −0.16 0.15 −0.04 0.34

(0.9,0.1) 21.18 0.23 0.57 0.22 0.51 0.23 0.49

20.50 0.26 0.54(0.9,0.2) 24.99 0.05 0.59 0.00 0.18 −0.01 0.22

(0.9,0.3) 30.61 −0.17 0.39 −0.64 0.10 −0.38 0.00

Total 24.62 0.44 4.04 0.88 5.96 0.96 6.08 21.41 1.36 5.88

This leads to something resembling a bullwhip effect, where
a small disturbance can lead to the ordering decisions starting
to oscillate between high and low values with a large adverse
effect on the expected costs per period. For example, for BS2
with (LP,LR) = (5, 1) in Table 3, the variance of the order
quantity is six times higher than that of the demand, which
explains the large cost increase compared to the base-stock
policy, where the variance of the demand and order quan-
tity are equal. SK shows a similar tendency for high variance
in the order quantity, but to a smaller extent; under SK, the

variance in the order quantity is up to four times higher than
that of the demand.

The best performance is observed for mean yields of 50%
Because the base-stock policy is the optimal policy under
perfect yield, the potential for cost improvements by myopi-
cally adjusting the base-stock policy is, as can be expected,
decreasing with the expected production yield, 𝜇Z,P. There-
fore, the myopic approximations BS1 and BS2 lead to
the highest improvements for the lowest mean yield. The
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F I G U R E 4 Periodic review production–inventory system with random yield and nonperfect rework in period t [Color figure can be viewed at
wileyonlinelibrary.com]

boxplot in Figure 4 emphasizes the excellent performance of
the myopic improvements under low mean yields and shows
that BS2, in particular, outperforms the approach SK and the
base-stock policy in almost all instances, particularly for low
to medium yield variability.

Summarizing, the newly developed heuristics provide large
potential for cost savings. Under stochastic proportional
yield, the state-dependent policies BS1 and BS2 provide cost
savings up to 6.08% compared to the base-stock policy and up
to 4.5% compared to the SK approach, while under binomial
yield cost savings of up to 5.88% compared to the base-stock
policy can be achieved. The highest savings are attained for
low to medium production yields as emphasized in Figure 4.
Such low yields occur, for example, in the LCD manufac-
turing or semiconductor industries (see Section 1). However,
the savings are lower when production yields are high, and
can be even negative under stochastic proportional yield. It
is worth pointing out that the yield is almost a two-point dis-
tribution for parameter settings like (𝜇Z,P, 𝜌Z,P) = (0.9, 0.3),
with either all units being good or all of them needing rework.
In this case, a state-dependent ordering policy leads to an
overreaction and, therefore, high variance in the order quan-
tity and high costs. Therefore, under stochastic proportional
yield the state-dependent ordering policies should not be used
if a combination of the following is present:

∙ high yield uncertainty, that is, close to an all or nothing
scenario (0% or 100% yield);

∙ high mean yield, that is, close to perfect yield (100%); and
∙ low demand uncertainty.

A policy using these rules along with the best heuristic BS2
instead of purely using BS2 increases the average cost sav-
ing relative to the base-stock policy from −0.08% to 1.00%
(including all 1485 instances) and, more importantly, gives
a maximum increase of just 0.23% compared to 7.96% dis-
played in Table 3. Correspondingly, for BS1, the average cost

savings increase from −0.25% to 0.95% and, more impor-
tantly, the maximum cost increase compared to the base-stock
policy decreases from 54.17% as displayed in Table 3 to
1.13%. Thus, using the state-dependent ordering policies sug-
gested with discretion (i.e., not when the mean yield or the
yield uncertainty is very high) leads to large cost improve-
ments especially in view of the high costs associated with,
for example, the high-tech and automobile industry that have
products incorporating substantial value.

6.3 The mean yield paradox

Unexpectedly, the numerical study shows that the expected
inventory-related costs are not always strictly decreasing in
the expected yield, 𝜇Z,P. For example, according to Table 4,
the costs of the base-stock policy increase from 23.96 to
30.61 when 𝜇Z,P increases from 0.5 to 0.9 for 𝜌Z,P = 0.3
under stochastic proportional yield—the most commonly
used yield model—and the same effect can be observed for
all solution methods. We refer to this counterintuitive effect
as the “Mean Yield Paradox.” Interestingly, no such effect
occurred under binomial yield.

To analyze the “Mean Yield Paradox,” we present
the results from an extended test series for LP = 5 (the
results for LP = 10 are similar and provide no addi-
tional insights). The test series is extended compared
to the one described in Section 6.1 by using 𝜇Z,P
equal to {0.5, 0.55, 0.6, 0.65, 0.7, 0.75, 0.8, 0.85, 0.9}. Instead
of using 𝜌Z,P we have opted to use 𝜎Z,P equal to
{0.05, 0.1, 0.15, 0.2, 0.25} to decouple the expected yield
from the yield uncertainty. The resulting coefficients of varia-
tion are in line with those used in Section 6.2. The remaining
parameters are kept as they were. While Section 6.2 focused
on a perfect rework process to allow for comparisons with
the approach SK by Sonntag and Kiesmüller (2018), we now
also analyze the system under nonperfect rework. For the test
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F I G U R E 5 Comparison of the cost performance of perfect and nonperfect rework systems depending on (a) the mean yield and (b) the standard
deviation of the yield of the production process

F I G U R E 6 Standard deviation (a) and skewness (b) of the number of units ordered over LR = 1 periods needing rework under a perfect process

series with a nonperfect rework process, we define 𝜇Z,R and
𝜎Z,R on the same range as 𝜇Z,P and 𝜎Z,P and, for simplicity,
assume the same distribution for each rework cycle. In total,
we analyze 2025 instances under perfect rework and 91,125
instances under nonperfect rework.

The “Mean Yield Paradox” is illustrated by Figure 5a,
which shows that the paradox exists under perfect and non-
perfect rework. A similar paradox linked to the yield uncer-
tainty cannot be observed as shown in Figure 5b. This
figure verifies the conclusion from the previous section that
the expected costs are increasing in the yield uncertainty.
Figure 6a shows that the standard deviation of the num-
ber of units in a batch needing rework decreases with the
expected yield, particularly when the demand uncertainty
is high. This along with the decrease linked to lower yield
uncertainties explains the initial decrease in expected cost
observed in Figure 5a. However, a higher expected yield also
implies that the yield distribution is—particularly under high
yield variability—more anchored at the two extremes, that
is, toward all units being of good quality or all units need-

ing rework. This is illustrated by the skewness of the number
of units in a batch that need rework in Figure 6b. The ten-
dency of anchoring toward the extremes has a negative effect,
which explains the increase of the expected cost for high val-
ues of 𝜇Z,P observed in Figure 5a. The positive effect of a
decrease in variability of the number of units in a batch need-
ing rework stemming from a higher expected yield increases
in the rework lead time, whereas the negative effect of the
tendency of all or nothing requiring rework decreases. This
explains why the curve for the perfect rework process in
Figure 5a is flatter than the one for nonperfect rework.

The reason that the “Mean Yield Paradox” is observed
under stochastic proportional yield but not under binomial
yield lies in the yield models themselves. While, the stochas-
tic proportional yield model is a batch-based yield model,
the binomial yield model is an item-based yield model. That
means, that under stochastic proportional yield, the probabil-
ity of an item being of good quality depends on the batch size
and the number of other units in the batch that pass the quality
inspection. Under binomial yield, the probability of an item
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being of good quality is always equal to g and the tendency
to be anchored at the two extremes—all units being good or
needing rework—does not exist.

7 DISCUSSION OF THE ASSUMPTIONS

In this section, we discuss the practical implication of the
assumptions made in Section 3.

7.1 LP and LR,m are constant

The processing time LP and the rework time LR,m per rework
cycle are both assumed to be constant and independent of
the batch size, which is a common assumption under peri-
odic planning, for example in material requirements planning
(MRP) systems, to enable coordinated decisions even when
some variability exists. From an industry perspective, pro-
cessing times may be constant, for example, in the chemi-
cal industry the duration of chemical reactions is independent
of the amount being produced (see, e.g., Blomer & Gunther,
2000; Dessouky & Kijowski, 1997; Grunow et al., 2002).

7.2 No quality differentiation

Note that the quality of a reworked item passing the quality
inspection is the same as that of an item produced correctly
without rework, which is commonly the case in, for example,
the automobile or pharmaceutical industries. Therefore, all
items entering the warehouse can be sold to customers with-
out quality differentiation. However, depending on the indus-
try, quality differentiation can be reasonable and is very com-
mon. One common example is the semiconductor industry
and the microchips production, where the speed of the chips
can vary and based on their quality be used to satisfy different
customer segments (see, e.g., Bitran & Gilbert, 1994; Gallego
et al., 2006; Hsu & Bassok, 1999; Nahmias & Moinzadeh,
1997).

7.3 Discrete instead of continuous time

The proposed model in this paper considers a periodic review
policy which implies a discrete instead of a continuous time
model. Based on our experience with industry, this assump-
tion is reasonable as periodic production planning is used.
Note that the length of a period can be chosen arbitrarily small
in the model and one can, hence, asymptotically approach a
continuous time model.

7.4 Items are never disposed of

We assume that items can always be reworked even though it
might take several rework cycles. The reason is that the unit-

tracking approach is based on matching each ordered unit
with a demand and vice versa, which is not possible if some
units stochastically leave the system. Extending the solution
process so that it can be applied to these scenarios is an inter-
esting venue for future research as mentioned in Section 8.

7.5 Defective items are reworked
immediately

Reworking defective items immediately can be reasonable
for several reasons: First, reworking costs are arguably lower
than production costs as the rework process is carried out on
a product that already has been processed. This makes it eco-
nomically preferable to rework defective units rather than ini-
tiating production of a new unit. Second, the value of keep-
ing the units as finished products is higher than keeping them
as defective products because finished products can be used
to serve customer demand. Reworking defective units imme-
diately has the additional benefit of reducing the uncertainty
about the warehouse’s future inventory level. Third, rework is
usually required at the end of the production process, which
means that the holdings costs for work in process inventory
and finished goods inventory do not differ too much. How-
ever, there are situations where an immediate rework is not
optimal, for example, if one has plenty of finished goods in
stock because of high yield and/or low demand over a pro-
longed period. Of course, in such a situation one typically
does not have many units to rework. Such a setting is par-
ticularly true for high demand products with relatively sta-
ble demand and demand in each period as considered in this
paper. However, for products with low and erratic demand,
this assumption might be an issue.

7.6 Focus on inventory-related costs

In this paper, we focus on the inventory-related cost of differ-
ent ordering policies because these are the costs that can be
reduced by altering the ordering policy. The expected produc-
tion, rework and holding cost for work in process are constant
if all defective units are reworked as the average batch size is
the same as the average demand per period. However, to be
able to determine if defective items should be reworked or
scraped, as analyzed in Sonntag and Kiesmüller (2018), or to
determine the value of improving the yield, one must consider
additional costs such as production and rework costs.

8 CONCLUSIONS AND FUTURE
RESEARCH

This paper discussed how to determine order quantities in
a periodic make-to-stock production–inventory system with
random yield and rework by deriving an exact expression for
the expected cost per period under a base-stock policy and
then myopically improve upon the same.
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Given that the optimal ordering policy is unknown, the
numerical study revealed that it is reasonable to rely on a
base-stock policy if the mean yield and coefficients of vari-
ation of the yield are high. In such a case, the system is close
to a perfect inventory system without random yield, for which
the base-stock policy is the optimal policy. A state-dependent
ordering policy adds little value under such parameter set-
tings. However, under low mean yields of 50%, which are
commonly observed in the high-tech industry, the myopic
improvements of the base-stock policy outperform not only
the base-stock policy, by up to 6% in terms of costs, but also
an existing approach by up to 4.5% in terms of costs. Such
cost reductions may lead to sizable savings, especially when
considering that products may incorporate substantial value,
and that holding and backorder costs are relatively high in the
high-tech industry.

In contrast to earlier presented research, the approaches
presented in this paper have the advantage that they are appli-
cable independent of the input parameters and can even han-
dle various other yield models and other demand distribu-
tions, such as Poisson distributions, which emphasizes the
contribution of this paper. Our paper does not only contribute
to random yield problems under rework but is also highly rel-
evant to other inventory systems where order-crossing occurs.
As explained in Section 2.2, order-crossing is always pro-
hibited in existing papers using the unit-tracking approach.
Thus, the insights generated in this paper can be used, for
example, to determine order quantities in an inventory sys-
tem with continuous review and stochastic lead times where
orders can cross each other. A highly interesting topic for
future research is the consideration of nonstationary demand
and yield distributions, because demand and yield distribu-
tions usually change over the life cycle of a product. Another
worthwhile extension to the considered problem is to allow
for products to be scrapped after a number of rework cycles
if one has not managed to reach the required quality by then.
A combination of the current heuristic and an inflation pol-
icy could be an interesting alternative to investigate in such
a setting.
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